content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import re def glycan_to_graph(glycan, libr = None): """the monumental function for converting glycans into graphs\n | Arguments: | :- | glycan (string): IUPAC-condensed glycan sequence (string) | libr (list): sorted list of unique glycoletters observed in the glycans of our dataset\n | Returns: | :- | (1) a list of labeled glycoletters from the glycan / node list | (2) two lists to indicate which glycoletters are connected in the glycan graph / edge list """ if libr is None: libr = lib bracket_count = glycan.count('[') parts = [] branchbranch = [] branchbranch2 = [] position_bb = [] b_counts = [] bb_count = 0 #checks for branches-within-branches and handles them if bool(re.search('\[[^\]]+\[', glycan)): double_pos = [(k.start(),k.end()) for k in re.finditer('\[[^\]]+\[', glycan)] for spos, pos in double_pos: bracket_count -= 1 glycan_part = glycan[spos+1:] glycan_part = glycan_part[glycan_part.find('['):] idx = [k.end() for k in re.finditer('\][^\(]+\(', glycan_part)][0] idx2 = [k.start() for k in re.finditer('\][^\(]+\(', glycan_part)][0] branchbranch.append(glycan_part[:idx-1].replace(']','').replace('[','')) branchbranch2.append(glycan[pos-1:]) glycan_part = glycan[:pos-1] b_counts.append(glycan_part.count('[')-bb_count) glycan_part = glycan_part[glycan_part.rfind('[')+1:] position_bb.append(glycan_part.count('(')*2) bb_count += 1 for b in branchbranch2: glycan = glycan.replace(b, ']'.join(b.split(']')[1:])) main = re.sub("[\[].*?[\]]", "", glycan) position = [] branch_points = [x.start() for x in re.finditer('\]', glycan)] for i in branch_points: glycan_part = glycan[:i+1] glycan_part = re.sub("[\[].*?[\]]", "", glycan_part) position.append(glycan_part.count('(')*2) parts.append(main) for k in range(1,bracket_count+1): start = find_nth(glycan, '[', k) + 1 #checks whether glycan continues after branch if bool(re.search("[\]][^\[]+[\(]", glycan[start:])): #checks for double branches and removes second branch if bool(re.search('\]\[', glycan[start:])): glycan_part = re.sub("[\[].*?[\]]", "", glycan[start:]) end = re.search("[\]].*?[\(]", glycan_part).span()[1] - 1 parts.append(glycan_part[:end].replace(']','')) else: end = re.search("[\]].*?[\(]", glycan[start:]).span()[1] + start -1 parts.append(glycan[start:end].replace(']','')) else: if bool(re.search('\]\[', glycan[start:])): glycan_part = re.sub("[\[].*?[\]]", "", glycan[start:]) end = len(glycan_part) parts.append(glycan_part[:end].replace(']','')) else: end = len(glycan) parts.append(glycan[start:end].replace(']','')) try: for bb in branchbranch: parts.append(bb) except: pass parts = min_process_glycans(parts) parts_lengths = [len(j) for j in parts] parts_tokenized = [string_to_labels(k, libr) for k in parts] parts_tokenized = [parts_tokenized[0]] + [parts_tokenized[k][:-1] for k in range(1,len(parts_tokenized))] parts_tokenized = [item for sublist in parts_tokenized for item in sublist] range_list = list(range(len([item for sublist in parts for item in sublist]))) init = 0 parts_positions = [] for k in parts_lengths: parts_positions.append(range_list[init:init+k]) init += k for j in range(1,len(parts_positions)-len(branchbranch)): parts_positions[j][-1] = position[j-1] for j in range(1, len(parts_positions)): try: for z in range(j+1,len(parts_positions)): parts_positions[z][:-1] = [o-1 for o in parts_positions[z][:-1]] except: pass try: for i,j in enumerate(range(len(parts_positions)-len(branchbranch), len(parts_positions))): parts_positions[j][-1] = parts_positions[b_counts[i]][position_bb[i]] except: pass pairs = [] for i in parts_positions: pairs.append([(i[m],i[m+1]) for m in range(0,len(i)-1)]) pairs = list(zip(*[item for sublist in pairs for item in sublist])) return parts_tokenized, pairs
b709cd064cc97159e7bf19b90c3dab2016fbc786
4,886
def run(ex: "interactivity.Execution") -> "interactivity.Execution": """Exit the shell.""" ex.shell.shutdown = True return ex.finalize( status="EXIT", message="Shutting down the shell.", echo=True, )
7ab7bbe8b1c276c1b84963c3a8eb9a1bdb79888c
4,887
def get_features(df, row = False): """ Transform the df into a df with basic features and dropna""" df_feat = df df_feat['spread'] = df_feat['high'] - df_feat['low'] df_feat['upper_shadow'] = upper_shadow(df_feat) df_feat['lower_shadow'] = lower_shadow(df_feat) df_feat['close-open'] = df_feat['close'] - df_feat['open'] df_feat['SMA_7'] = df_feat.iloc[:,1].rolling(window=7).mean() df_feat['SMA_14'] = df_feat.iloc[:,1].rolling(window=14).mean() df_feat['SMA_21'] = df_feat.iloc[:,1].rolling(window=21).mean() # Create the STD_DEV feature for the past 7 days df_feat['STD_DEV_7'] = df_feat.iloc[:,1].rolling(window=7).std() # Features from ta-lib as example df_feat.ta.donchian(lower_length=10, upper_length=15, append=True) # Drop the NA rows created by the SMA indicators df_feat.dropna(inplace = True) return df_feat
42e9c54a3357634cc74878909f2f8a33cfc6ee0c
4,888
import torch def match_prob_for_sto_embed(sto_embed_word, sto_embed_vis): """ Compute match probability for two stochastic embeddings :param sto_embed_word: (batch_size, num_words, hidden_dim * 2) :param sto_embed_vis: (batch_size, num_words, hidden_dim * 2) :return (batch_size, num_words) """ assert not bool(torch.isnan(sto_embed_word).any()) and not bool(torch.isnan(sto_embed_vis).any()) batch_size = sto_embed_word.shape[0] num_words = sto_embed_word.shape[1] mu_word, var_word = torch.split(sto_embed_word, DIM_EMBED, dim=-1) mu_vis, var_vis = torch.split(sto_embed_vis, DIM_EMBED, dim=-1) if cfg.metric == 'monte-carlo': k = SAMPLING_K z_word = batch_rsample(mu_word, var_word, k) # (batch_size, num_words, k, hidden_dim) z_vis = batch_rsample(mu_vis, var_vis, k) # (batch_size, num_words, k, hidden_dim) num_samples = k z_word = z_word.unsqueeze(3).repeat([1, 1, 1, k, 1]) # (batch_size, num_words, k, k, hidden_dim) z_vis = z_vis.repeat([1, 1, k, 1]).reshape(list(z_vis.shape[:2]) + [k, k, -1]) # (batch_size, num_words, k, k, hidden_dim) if z_vis.shape[1] == 1: z_vis = z_vis.repeat([1, num_words, 1, 1, 1]) # (batch_size, num_words, k, k, hidden_dim) # Compute probabilities for all pair combinations match_prob = - torch.sqrt(torch.sum((z_word - z_vis) ** 2, dim=-1)) match_prob = match_prob.sum(-1).sum(-1) / (num_samples ** 2) if k > 1 and batch_size > 1 and num_words > 0: assert bool(torch.all(z_word[0, 0, 0, 0] == z_word[0, 0, 0, 1])) assert bool(torch.all(z_vis[0, 0, 0, 0] == z_vis[0, 0, 1, 0])) if sto_embed_vis.shape[1] == 1 and num_words > 1: assert bool(torch.all(z_vis[0, 0] == z_vis[0, 1])) elif cfg.metric == 'w-distance': match_prob = torch.sum((mu_word - mu_vis) ** 2 + (torch.sqrt(var_word) - torch.sqrt(var_vis)) ** 2, dim=-1) else: raise ValueError('Unexpected metric type') assert match_prob.shape == (batch_size, num_words) return match_prob
0668f4bc6e3112cd63d33fcb5612368604724359
4,889
import functools def POST(path): """ Define decorator @post('/path'): """ def decorator(func): @functools.wraps(func) def wrapper(*args, **kw): return func(*args, **kw) wrapper.__method__ = 'POST' wrapper.__route__ = path return wrapper return decorator
d2c76d57687dc0983d2f00995c7a6e6414e8201b
4,890
def BatchNorm( inputs, axis=-1, momentum=0.9, eps=1e-5, use_stats=-1, **kwargs): """Batch Normalization. `[Ioffe & Szegedy, 2015] <https://arxiv.org/abs/1502.03167>`_. We enforce the number of inputs should be *5*, i.e., it is implemented into a fused version. However, you can still fix the *gamma* and *beta*, by disabling the their gradients directly. **Type Constraints**: (*float16*, *float32*) Parameters ---------- inputs : sequence of Tensor The inputs, represent [x, mean, var, gamma, beta]. axis : int, optional The channel axis. momentum : float, optional, default=0.99 The momentum of moving average. eps : float, optional, default=1e-5 The eps. use_stats : int, optional, default=-1 Whether to use global stats. Returns ------- Tensor The output tensor, calculated as: |batchnorm_scale_function| The moving average of mean/var, calculated as: |default_moving_average_function| """ return Tensor.CreateOperator('BatchNorm', **ParseArgs(locals()))
642e8ee5cafdf6a416febaff1ddcae5190e27cb1
4,891
def problem_from_graph(graph): """ Create a problem from the given interaction graph. For each interaction (i,j), 0 <= i <= j <= 1 is added. """ n = graph.vcount() domain = Domain.make([], [f"x{i}" for i in range(n)], real_bounds=(0, 1)) X = domain.get_symbols() support = smt.And(*((X[e.source] <= X[e.target]) for e in graph.es)) return Density(domain, support & domain.get_bounds(), smt.Real(1))
973602abf8a20ffe45a5bcae6ec300ba749ab6d9
4,892
def rotate_points(x, y, x0, y0, phi): """ Rotate x and y around designated center (x0, y0). Args: x: x-values of point or array of points to be rotated y: y-values of point or array of points to be rotated x0: horizontal center of rotation y0: vertical center of rotation phi: angle to rotate (+ is ccw) in radians Returns: x, y: locations of rotated points """ xp = x - x0 yp = y - y0 s = np.sin(-phi) c = np.cos(-phi) xf = xp * c - yp * s yf = xp * s + yp * c xf += x0 yf += y0 return xf, yf
8058385185e937d13e2fd17403b7653f3a5f55e7
4,893
from typing import List def xpme( dates: List[date], cashflows: List[float], prices: List[float], pme_prices: List[float], ) -> float: """Calculate PME for unevenly spaced / scheduled cashflows and return the PME IRR only. """ return verbose_xpme(dates, cashflows, prices, pme_prices)[0]
4301e1e95ab4eee56a3644b132a400522a5ab173
4,894
def get_node(uuid): """Get node from cache by it's UUID. :param uuid: node UUID. :returns: structure NodeInfo. """ row = _db().execute('select * from nodes where uuid=?', (uuid,)).fetchone() if row is None: raise utils.Error('Could not find node %s in cache' % uuid, code=404) return NodeInfo.from_row(row)
87988d0c0baa665f1fcd86991253f8fe0cba96a1
4,895
def bisect_jump_time(tween, value, b, c, d): """ **** Not working yet return t for given value using bisect does not work for whacky curves """ max_iter = 20 resolution = 0.01 iter = 1 lower = 0 upper = d while iter < max_iter: t = (upper - lower) / 2 if tween(t, b, c, d) - value < resolution: return t else: upper = t
f7e1dbeb000ef60a5bd79567dc88d66be9235a75
4,896
def __session_kill(): """ unset session on the browser Returns: a 200 HTTP response with set-cookie to "expired" to unset the cookie on the browser """ res = make_response(jsonify(__structure(status="ok", msg=messages(__language(), 166)))) res.set_cookie("key", value="expired") return res
9313e46e2dcd297444efe08c6f24cb4150349fdb
4,897
def register_errorhandlers(app): """Register error handlers.""" def render_error(error): """Render error template.""" # If a HTTPException, pull the `code` attribute; default to 500 error_code = getattr(error, "code", 500) return render_template(f"errors/{error_code}.html"), error_code for errcode in [401, 404, 500]: app.errorhandler(errcode)(render_error) return None
e8e3ddf10fb6c7a370c252c315888c91b26f6503
4,898
def register(key): """Register callable object to global registry. This is primarily used to wrap classes and functions into the bcdp pipeline. It is also the primary means for which to customize bcdp for your own usecases when overriding core functionality is required. Parameters ---------- key : str Key for obj in registry. Append periods ('.') to navigate the registry tree. Example: 'data_source.rcmed' Returns ------- dec : function Generic decorator which returns the wrapped class or function. """ def dec(obj): registry[key] = obj return obj return dec
4f3d7d9e8b49d448d338408de8ceebee58136893
4,899
import ctypes import six def _windows_long_path_name(short_path): """Use Windows' `GetLongPathNameW` via ctypes to get the canonical, long path given a short filename. """ if not isinstance(short_path, six.text_type): short_path = short_path.decode(_fsencoding()) buf = ctypes.create_unicode_buffer(260) get_long_path_name_w = ctypes.windll.kernel32.GetLongPathNameW return_value = get_long_path_name_w(short_path, buf, 260) if return_value == 0 or return_value > 260: # An error occurred return short_path else: long_path = buf.value # GetLongPathNameW does not change the case of the drive # letter. if len(long_path) > 1 and long_path[1] == ':': long_path = long_path[0].upper() + long_path[1:] return long_path
72d6b9fc1fb8acd6285019a8d48ea42e847ce8db
4,900
import types def _create_behavioral_cloning_agent( time_step_spec: types.NestedTensorSpec, action_spec: types.NestedTensorSpec, preprocessing_layers: types.NestedLayer, policy_network: types.Network) -> tfa.agents.TFAgent: """Creates a behavioral_cloning_agent.""" network = policy_network( time_step_spec.observation, action_spec, preprocessing_layers=preprocessing_layers, name='QNetwork') return behavioral_cloning_agent.BehavioralCloningAgent( time_step_spec, action_spec, cloning_network=network, num_outer_dims=2)
c3420767aaa153ef44054fdb4fbdcc9540d59775
4,901
def sidequery(): """Serves AJAX call for HTML content for the sidebar (*query* **record** page). Used when the user is switching between **material** and **record** pages. See also [M:RECORD.body][record.RECORD.body]. Client code: [{sidecontent.fetch}][sidecontentfetch]. """ session.forget(response) Query = QUERY() Record = RECORDQUERY(Query) return Record.body()
6f5c6660f25e568ea4fa2ad046eac5a57cb4f7e5
4,903
import pandas import numpy def random_answers_2020_ml(): """ Generates random answers the machine learning challenge of hackathons :ref:`l-hackathon-2020`. """ df = pandas.DataFrame({"index": numpy.arange(473333)}) df['label'] = numpy.random.randint(low=0, high=2, size=(df.shape[0], )) df['score'] = numpy.random.random((df.shape[0], )) return df
24a721c1c8e512ade6293644eff61b0866c3f0fe
4,905
def _sizeof_fmt(num, suffix='B'): """Format a number as human readable, based on 1024 multipliers. Suited to be used to reformat a size expressed in bytes. By Fred Cirera, after https://stackoverflow.com/a/1094933/1870254 Args: num (int): The number to be formatted. suffix (str): the measure unit to append at the end of the formatted number. Returns: str: The formatted number including multiplier and measure unit. """ for unit in ['','Ki','Mi','Gi','Ti','Pi','Ei','Zi']: if abs(num) < 1024.0: return "%3.1f%s%s" % (num, unit, suffix) num /= 1024.0 return "%.1f%s%s" % (num, 'Yi', suffix)
c70c9ce46f6b391e2389329a6fcd50bf863ea041
4,907
def num_cluster_members(matrix, identity_threshold): """ Calculate number of sequences in alignment within given identity_threshold of each other Parameters ---------- matrix : np.array N x L matrix containing N sequences of length L. Matrix must be mapped to range(0, num_symbols) using map_matrix function identity_threshold : float Sequences with at least this pairwise identity will be grouped in the same cluster. Returns ------- np.array Vector of length N containing number of cluster members for each sequence (inverse of sequence weight) """ N, L = matrix.shape L = 1.0 * L # minimal cluster size is 1 (self) num_neighbors = np.ones((N)) # compare all pairs of sequences for i in range(N - 1): for j in range(i + 1, N): pair_id = 0 for k in range(L): if matrix[i, k] == matrix[j, k]: pair_id += 1 if pair_id / L >= identity_threshold: num_neighbors[i] += 1 num_neighbors[j] += 1 return num_neighbors
e9034a728b22f7a594ef7842f2a4039559751e21
4,911
def get_score(command: str) -> float: """Get pylint score""" output = check_output(command, shell=True).decode("utf-8") start = output.find("Your code has been rated at ") if start == -1: raise ValueError(f'Could not find quality score in "{output.rstrip()}".') start += len("Your code has been rated at ") end = start + output[start:].find("/") score = float(output[start:end]) return score
d32b6f9496033d4c2b569ebc7403be43bb43ceb1
4,912
import json def __process_input(request_data: str) -> np.array: """ Converts input request data into numpy array :param request_data in json format :return: numpy array """ return np.asarray(json.loads(request_data)["input"])
7639018f69a4e72568cdf86abc503133ebd734af
4,914
import math def getDist_P2L(PointP,Pointa,Pointb): """计算点到直线的距离 PointP:定点坐标 Pointa:直线a点坐标 Pointb:直线b点坐标 """ #求直线方程 A=0 B=0 C=0 A=Pointa[1]-Pointb[1] B=Pointb[0]-Pointa[0] C=Pointa[0]*Pointb[1]-Pointa[1]*Pointb[0] #代入点到直线距离公式 distance=0 distance=(A*PointP[0]+B*PointP[1]+C)/math.sqrt(A*A+B*B) return distance
ca0ec1fc25183a240179faef7473d7b86758a92b
4,915
def skipgram_batch(centers, contexts, num_tokens, dtype, index_dtype): """Create a batch for SG training objective.""" contexts = mx.nd.array(contexts[2], dtype=index_dtype) indptr = mx.nd.arange(len(centers) + 1) centers = mx.nd.array(centers, dtype=index_dtype) centers_csr = mx.nd.sparse.csr_matrix( (mx.nd.ones(centers.shape), centers, indptr), dtype=dtype, shape=(len(centers), num_tokens)) return centers_csr, contexts, centers
e16c7ffd6c4f18e247a885de0b7477ddfa5ed02c
4,916
def JD2RA(JD, longitude=21.42830, latitude=-30.72152, epoch='current'): """ Convert from Julian date to Equatorial Right Ascension at zenith during a specified epoch. Parameters: ----------- JD : type=float, a float or an array of Julian Dates longitude : type=float, longitude of observer in degrees east, default=HERA longitude latitude : type=float, latitude of observer in degrees north, default=HERA latitutde This only matters when using epoch="J2000" epoch : type=str, epoch for RA calculation. options=['current', 'J2000']. The 'current' epoch is the epoch at JD. Note that LST is defined as the zenith RA in the current epoch. Note that epoch='J2000' corresponds to the ICRS standard. Output: ------- RA : type=float, right ascension [degrees] at zenith JD times in the specified epoch. """ # get JD type if isinstance(JD, list) or isinstance(JD, np.ndarray): _array = True else: _array = False JD = [JD] # setup RA list RA = [] # iterate over jd for jd in JD: # use current epoch calculation if epoch == 'current': ra = JD2LST(jd, longitude=longitude) * 180 / np.pi RA.append(ra) # use J2000 epoch elif epoch == 'J2000': loc = crd.EarthLocation(lat=latitude * unt.deg, lon=longitude * unt.deg) t = Time(jd, format='jd', scale='utc') zen = crd.SkyCoord(frame='altaz', alt=90 * unt.deg, az=0 * unt.deg, obstime=t, location=loc) RA.append(zen.icrs.ra.degree) else: raise ValueError("didn't recognize {} epoch".format(epoch)) RA = np.array(RA) if _array: return RA else: return RA[0]
14bb4d621449a7fd9fa57acecb107aaa4ea61010
4,917
def _average_gradients(tower_grads): """Calculate the average gradient for each shared variable across all towers. Note that this function provides a synchronization point across all towers. Args: tower_grads: List of lists of (gradient, variable) tuples. The outer list is over individual gradients. The inner list is over the gradient calculation for each tower. Returns: List of pairs of (gradient, variable) where the gradient has been averaged across all towers. """ average_grads = [] for grad_and_vars in zip(*tower_grads): # Note that each grad_and_vars looks like the following: # ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN)) grads = [] print(len(grad_and_vars)) for g, v in grad_and_vars: if g is None: print(v) for grad_and_vars in zip(*tower_grads): # Note that each grad_and_vars looks like the following: # ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN)) grads = [] print(len(grad_and_vars)) for g, v in grad_and_vars: if g is not None: print(v) for g, v in grad_and_vars: # Add 0 dimension to the gradients to represent the tower. print(v) expanded_g = tf.expand_dims(g, 0) # Append on a 'tower' dimension which we will average over below. grads.append(expanded_g) # Average over the 'tower' dimension. grad = tf.concat(grads, 0) grad = tf.reduce_mean(grad, 0) capped_grad = tf.clip_by_value(grad, -200., 200.) # Keep in mind that the Variables are redundant because they are shared # across towers. So .. we will just return the first tower's pointer to # the Variable. v = grad_and_vars[0][1] grad_and_var = (capped_grad, v) average_grads.append(grad_and_var) return average_grads
24be75daeeb1d5878a9a481c43be440ced40a0a2
4,918
import time def get_online_users(guest=False): # pragma: no cover """Returns all online users within a specified time range :param guest: If True, it will return the online guests """ current = int(time.time()) // 60 minutes = range_method(flaskbb_config['ONLINE_LAST_MINUTES']) if guest: return redis_store.sunion(['online-guests/%d' % (current - x) for x in minutes]) return redis_store.sunion(['online-users/%d' % (current - x) for x in minutes])
39ad71b71e8a8caac0e6a82b7992c6229f85d255
4,920
from typing import Union def reverse_bearing(bearing: Union[int, float]): """ 180 degrees from supplied bearing :param bearing: :return: """ assert isinstance(bearing, (float, int)) assert 0. <= bearing <= 360. new_bearing = bearing + 180. # Ensure strike is between zero and 360 (bearing) return normalize_bearing(new_bearing)
1fd01df40a23c52ff093c17fd5752f0609cee761
4,921
def signUp_page(request): """load signUp page""" return render(request, 'app/signUp_page.html')
ae28acac27264dbb8d2f6a69afb01c6f96a08218
4,922
import csv def read_students(path): """ Read a tab-separated file of students. The only required field is 'github_repo', which is this student's github repository. """ students = [line for line in csv.DictReader(open(path), delimiter='\t')] check_students(students) return students
e64aeb1a73fb79e91d0464d6a95e509d3cc60b94
4,924
from typing import Tuple import torch def get_extended_attention_mask( attention_mask: Tensor, input_shape: Tuple[int], device: torch.device, is_decoder=False, ) -> Tensor: """ Makes broadcastable attention and causal masks so that future and masked tokens are ignored. Arguments: attention_mask (:obj:`torch.Tensor`): Mask with ones indicating tokens to attend to, zeros for tokens to ignore. input_shape (:obj:`Tuple[int]`): The shape of the input to the model. device: (:obj:`torch.device`): The device of the input to the model. Returns: :obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`. """ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. if attention_mask.dim() == 3: extended_attention_mask = attention_mask[:, None, :, :] elif attention_mask.dim() == 2: # Provided a padding mask of dimensions [batch_size, seq_length] # - if the model is a decoder, apply a causal mask in addition to the padding mask # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length] if is_decoder: batch_size, seq_length = input_shape seq_ids = torch.arange(seq_length, device=device) causal_mask = ( seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None] ) # in case past_key_values are used we need to add a prefix ones mask to the causal mask # causal and attention masks must have same type with pytorch version < 1.3 causal_mask = causal_mask.to(attention_mask.dtype) if causal_mask.shape[1] < attention_mask.shape[1]: prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1] causal_mask = torch.cat( [ torch.ones( (batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype, ), causal_mask, ], axis=-1, ) extended_attention_mask = ( causal_mask[:, None, :, :] * attention_mask[:, None, None, :] ) else: extended_attention_mask = attention_mask[:, None, None, :] else: raise ValueError( f"Wrong shape for input_ids (shape {input_shape}) or attention_mask (shape {attention_mask.shape})" ) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. # extended_attention_mask = extended_attention_mask.to( # dtype=self.dtype # ) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 return extended_attention_mask
26104733e3cc970536a11c3930866dc3d11d3583
4,925
def adler32(string, start=ADLER32_DEFAULT_START): """ Compute the Adler-32 checksum of the string, possibly with the given start value, and return it as a unsigned 32 bit integer. """ return _crc_or_adler(string, start, _adler32)
ed4a0905b4891ee931ef08f91e92032a613caee7
4,928
def find_earliest_brs_idx(g: Grid, V: np.ndarray, state: np.narray, low: int, high: int) -> int: """ Determines the earliest time the current state is in the reachable set Args: g: Grid V: Value function state: state of dynamical system low: lower bound of search range (inclusive) high: upper bound of search range (inclusive) Returns: t: Earliest time where the state is in the reachable set """ epsilon = 1e-4 while low < high: mid = np.ceil((high + low) / 2) value = g.get_value(V[..., mid], state) if value < epsilon: low = mid else: high = mid - 1 return low
234a201af98f74c41785a36b3391e23700ac80e6
4,929
def italic(s): """Returns the string italicized. Source: http://stackoverflow.com/a/16264094/2570866 """ return r'\textit{' + s + '}'
7eb9e9629e8556e9410e4d92525dd8c06c3e25de
4,930
import functools def skip_if_disabled(func): """Decorator that skips a test if test case is disabled.""" @functools.wraps(func) def wrapped(*a, **kwargs): func.__test__ = False test_obj = a[0] message = getattr(test_obj, 'disabled_message', 'Test disabled') if getattr(test_obj, 'disabled', False): test_obj.skipTest(message) func(*a, **kwargs) return wrapped
56d42a1e0418f4edf3d4e8478358495b1353f57a
4,931
from typing import Any import itertools def _compare_keys(target: Any, key: Any) -> bool: """ Compare `key` to `target`. Return True if each value in `key` == corresponding value in `target`. If any value in `key` is slice(None), it is considered equal to the corresponding value in `target`. """ if not isinstance(target, tuple): return target == key for k1, k2 in itertools.zip_longest(target, key, fillvalue=None): if k2 == slice(None): continue if k1 != k2: return False return True
ff5c60fab8ac0cbfe02a816ec78ec4142e32cfbf
4,932
import xarray as xr import aux_functions_strat as aux def predict_xr(result_ds, regressors): """input: results_ds as came out of MLR and saved to file, regressors dataset""" # if produce_RI isn't called on data then you should explicitely put time info rds = result_ds regressors = regressors.sel(time=rds.time) # slice regressors = regressors.apply(aux.normalize_xr, norm=1, verbose=False) # normalize reg_dict = dict(zip(rds.regressors.values, regressors.data_vars.values())) # make sure that all the regressors names are linking to their respective dataarrays for key, value in reg_dict.items(): # print(key, value) assert value.name == key reg_da = xr.concat(reg_dict.values(), dim='regressors') reg_da['regressors'] = list(reg_dict.keys()) reg_da.name = 'regressors_time_series' rds['predicted'] = xr.dot(rds.params, reg_da) + rds.intercept rds = aux.xr_order(rds) # retures the same dataset but with total predicted reconstructed geo-time-series field result_ds = rds return result_ds
458f3f9a17d9cc16200f1eb0e20eb2a43f095ea0
4,934
async def list_features(location_id): """ List features --- get: summary: List features tags: - features parameters: - name: envelope in: query required: false description: If set, the returned list will be wrapped in an envelope with this name. responses: 200: description: A list of objects. content: application/json: schema: type: array items: Feature """ location = g.active_incident.Location.find_by_id(location_id) if location is None: raise exceptions.NotFound(description="Location {} was not found".format(location_id)) features = location.Feature.find() # Wrap the list if the caller requested an envelope. query = request.args if "envelope" in query: result = {query.get("envelope"): features} else: result = features return jsonify(result), HTTPStatus.OK
0698a63af10a70cc2ae0b8734dff61fb51786829
4,935
def shot_start_frame(shot_node): """ Returns the start frame of the given shot :param shot_node: str :return: int """ return sequencer.get_shot_start_frame(shot_node)
f13582040ad188b6be8217a7657ce53c145fe090
4,936
def word1(x: IntVar) -> UInt8: """Implementation for `WORD1`.""" return word_n(x, 1)
0cc7e254c48596d190ccb43a0e0d3c90b18f34af
4,937
def _getCols1(): """ Robs Version 1 CSV files """ cols = 'Date,DOY,Time,Location,Satellite,Collection,Longitude,Latitude,SolarZenith,SolarAzimuth,SensorZenith,SensorAzimuth,ScatteringAngle,nval_AOT_1020_l20,mean_AOT_1020_l20,mean_AOT_870_l20,mean_AOT_675_l20,sdev_AOT_675_l20,mean_AOT_500_l20,mean_AOT_440_l20,mean_AOT_380_l20,mean_AOT_340_l20,mean_Water_cm_l20,nval_AOT_1020_l15,mean_AOT_1020_l15,mean_AOT_870_l15,mean_AOT_675_l15,sdev_AOT_675_l15,mean_AOT_500_l15,mean_AOT_440_l15,mean_AOT_380_l15,mean_AOT_340_l15,mean_Water_cm_l15,npix_AOT0550,mean_AOT0550,sdev_AOT0550,mean_rAOTse0550,sdev_rAOTse0550,mean_AOT0470corr_l,npix_AOT0550corr_l,pval_AOT0550corr_l,mean_AOT0550corr_l,sdev_AOT0550corr_l,mean_AOT0660corr_l,mean_AOT2100corr_l,mean_rAOTse0550_l,pval_rAOTse0550_l,mean_AOT0550sm_l,pval_AOT0550sm_l,mean_Aexp0470_0670_l,mean_surfre0470_l,mean_surfre0660_l,mean_surfre2100_l,mean_fiterr_l,mean_atype_l,mean_cfrac_l,mean_mconc_l,QA0470_l,mean_mref0470_l,mean_mref0550_l,mean_mref0660_l,mean_mref0870_l,mean_mref1200_l,mean_mref1600_l,mean_mref2100_l,pval_mref0470_l,pval_mref0550_l,pval_mref0660_l,pval_mref0870_l,pval_mref1200_l,pval_mref1600_l,pval_mref2100_l,mean_AOT0470ea_o,npix_AOT0550ea_o,pval_AOT0550ea_o,mean_AOT0550ea_o,sdev_AOT0550ea_o,mean_AOT0660ea_o,mean_AOT0870ea_o,mean_AOT1200ea_o,mean_AOT1600ea_o,mean_AOT2100ea_o,mean_AOT0470sa_o,npix_AOT0550sa_o,pval_AOT0550sa_o,mean_AOT0550sa_o,sdev_AOT0550sa_o,mean_AOT0660sa_o,mean_AOT0870sa_o,mean_AOT1200sa_o,mean_AOT1600sa_o,mean_AOT2100sa_o,mean_rAOTse0550a_o,mean_effr0550a_o,sdev_effr0550a_o,mean_solindx_sa_o,mean_solindx_la_o,mean_lsqerr_a_o,mean_cfrac_o,sdev_cfrac_o,QAavg_o,mean_mref0470_o,mean_mref0550_o,mean_mref0660_o,mean_mref0870_o,mean_mref1200_o,mean_mref1600_o,mean_mref2100_o,sdev_mref0470_o,sdev_mref0550_o,sdev_mref0660_o,sdev_mref0870_o,sdev_mref1200_o,sdev_mref1600_o,sdev_mref2100_o,mean_wni,mean_wir,pval_wni,pval_wir,mean_pathrad0470_l,mean_pathrad0660_l,mean_critref0470_l,mean_critref0660_l,mean_errprad0470_l,mean_errprad0660_l,mean_errcref0470_l,mean_errcref0660_l,mean_qwtprad0470_l,mean_qwtprad0660_l,mean_qwtcref0470_l,mean_qwtcref0660_l,npix_AOT0550dpbl_l,pval_AOT0550dpbl_l,mean_AOT0550dpbl_l,sdev_AOT0550dpbl_l,mean_AOT0412dpbl_l,mean_AOT0470dpbl_l,mean_AOT0660dpbl_l,mean_Aext0412_0470dpbl_l,mean_SSA0412dpbl_l,mean_SSA0470dpbl_l,mean_SSA0660dpbl_l,mean_surfre0412dpbl_l,mean_surfre0470dpbl_l,mean_surfre0660dpbl_l,tau_550_norm,eta_norm,tau_f,tau_c,alpha_norm,alpha_f,Deta,tau_466,tau_553,tau_644,tau_866,tau_2119,Angs_466_644,exp_errorO_pct,exp_errorL_pct,ncep_pwat,ncep_O3,ncep_pres,ncep_windspd,ncep_winddir' return cols
bf3148b53effc18e212e03cf70673dc25e1d0005
4,938
from typing import Optional from pathlib import Path def run_primer3(sequence, region, primer3_exe: str, settings_dict: dict, padding=True, thermodynamic_params: Optional[Path] = None): """Run primer 3. All other kwargs will be passed on to primer3""" if padding: target_start = region.padding_left target_len = len(sequence) - region.padding_left - region.padding_right else: target_start = 1 target_len = len(sequence) target = ",".join(map(str, [target_start, target_len])) p3 = Primer3(primer3_exe, sequence, target, target, settings_dict, thermodynamic_params=thermodynamic_params) p3_out = p3.run() primers = parse_primer3_output(p3_out) return primers
670f70b5b50200da5c9cd13b447a5836b748fd31
4,939
import inspect def filter_safe_dict(data, attrs=None, exclude=None): """ Returns current names and values for valid writeable attributes. If ``attrs`` is given, the returned dict will contain only items named in that iterable. """ def is_member(cls, k): v = getattr(cls, k) checks = [ not k.startswith("_"), not inspect.ismethod(v) or getattr(v, "im_self", True), not inspect.isfunction(v), not isinstance(v, (classmethod, staticmethod, property)), ] return all(checks) cls = None if inspect.isclass(data): cls = data data = {k: getattr(cls, k) for k in dir(cls) if is_member(cls, k)} ret = {} for k, v in data.items(): checks = [ not k.startswith("_"), not inspect.ismethod(v) or getattr(v, "im_self", True), not isinstance(v, (classmethod, staticmethod, property)), not attrs or (k in attrs), not exclude or (k not in exclude), ] if all(checks): ret[k] = v return ret
ce457615ba8e360243912c3bba532e8327b8def4
4,940
def fixture_loqus_exe(): """Return the path to a loqus executable""" return "a/path/to/loqusdb"
647b31e37854a5cbc8fd066c982e67f976100c03
4,941
def get_reads_section(read_length_r1, read_length_r2): """ Yield a Reads sample sheet section with the specified R1/R2 length. :rtype: SampleSheetSection """ rows = [[str(read_length_r1)], [str(read_length_r2)]] return SampleSheetSection(SECTION_NAME_READS, rows)
19f3e36e34471c6bac89f2a42bdcb3f4b79c22c7
4,942
def validate(number): """Check if the number is valid. This checks the length, format and check digit.""" number = compact(number) if not all(x in _alphabet for x in number): raise InvalidFormat() if len(number) != 16: raise InvalidLength() if number[-1] == '-': raise InvalidFormat() if number[-1] != calc_check_digit(number): raise InvalidChecksum() return number
e191ee9d8631dfd843276b2db7ee9699b974e555
4,943
import re def parse_directory(filename): """ read html file (nook directory listing), return users as [{'name':..., 'username':...},...] """ try: file = open(filename) html = file.read() file.close() except: return [] users = [] for match in re.finditer(r'<b>([^<]+)</b>.*?mailto:([^@]+)@', html): groups = match.groups() users.append({'name':groups[0], 'username':groups[1]}) users.sort(key=lambda x:x['username']) return users
1b7fc5b6257b5c382f520a60c9227e8b458d482d
4,944
from typing import Optional def dec_multiply(*args) -> Optional[Decimal]: """ Multiplication of numbers passed as *args. Args: *args: numbers we want to multiply Returns: The result of the multiplication as a decimal number Examples: >>> dec_multiply(3, 3.5, 4, 2.34) Decimal('98.280') >>> dec_multiply() is None True """ if not args: return total = Decimal(str(args[0])) for element in args[1:]: total *= Decimal(str(element)) return total
f7d953debc5d24c97ee274ec13683be3fda302eb
4,947
import json def get_networks(): """ Returns a list of all available network names :return: JSON string, ex. "['bitcoin','bitcoin-cash','dash','litecoin']" """ return json.dumps([x[0] for x in db.session.query(Node.network).distinct().all()])
755e0238463aabed0a38102ca793842dd54a6c87
4,948
def get_cache_key_generator(request=None, generator_cls=None, get_redis=None): """Return an instance of ``CacheKeyGenerator`` configured with a redis client and the right cache duration. """ # Compose. if generator_cls is None: generator_cls = CacheKeyGenerator if get_redis is None: get_redis = get_redis_client # Instantiate and return the cache key generator. return generator_cls(get_redis(request))
80c25a204976492e2741e46bd79d70d0e6b62b1a
4,949
import pathlib def is_from_derms(output): """Given an output, check if it's from DERMS simulation. Parameters ---------- output: str or pathlib.Path """ if not isinstance(output, pathlib.Path): output = pathlib.Path(output) derms_info_file = output / DERMS_INFO_FILENAME if derms_info_file.exists(): return True return False
e9a9be7e18cda3b22661f773e6bb585c833b74d6
4,950
def js_squeeze(parser, token): """ {% js_squeeze "js/dynamic_minifyed.js" "js/script1.js,js/script2.js" %} will produce STATIC_ROOT/js/dynamic_minifyed.js """ bits = token.split_contents() if len(bits) != 3: raise template.TemplateSyntaxError, "%r tag requires exactly two arguments" % bits[0] return SqueezeNode('js', *bits[1:])
30b10b85001bbb5710584fb41469e1c36d50f086
4,951
def view_extracted_data() -> str: """ Display Raw extracted data from Documents """ extracted_data = read_collection(FIRESTORE_PROJECT_ID, FIRESTORE_COLLECTION) if not extracted_data: return render_template("index.html", message_error="No data to display") return render_template("index.html", extracted_data=extracted_data)
9eccebd4952fc3c988bfc6014d2c12944a197ac4
4,952
import json def get_lstm_trump_text(): """Use the LSTM trump tweets model to generate text.""" data = json.loads(request.data) sl = data["string_length"] st = data["seed_text"] gen_text = lstm_trump.generate_text(seed_text=st, pred_len=int(sl)) return json.dumps(gen_text)
9fbad3e7abcfcbbbfb5919a5c37cf607e972592e
4,953
def countSort(alist): """计数排序""" if alist == []: return [] cntLstLen = max(alist) + 1 cntLst = [0] * cntLstLen for i in range(len(alist)): cntLst[alist[i]] += 1 #数据alist[i] = k就放在第k位 alist.clear() for i in range(cntLstLen): while cntLst[i] > 0: #将每个位置的数据k循环输出多次 alist.append(i) cntLst[i] -= 1 return alist
6727b41794dc2a2f826023c2a53202798dfa49ab
4,955
def _FloatsTraitsBase_read_values_dataset(arg2, arg3, arg4, arg5): """_FloatsTraitsBase_read_values_dataset(hid_t arg2, hid_t arg3, hid_t arg4, unsigned int arg5) -> FloatsList""" return _RMF_HDF5._FloatsTraitsBase_read_values_dataset(arg2, arg3, arg4, arg5)
4f2cfb17e5f0b3cfc980f51ef8e9ae8d7d38ba2c
4,956
import requests from bs4 import BeautifulSoup import io def TRI_Query(state=None, county=None,area_code=None, year=None,chunk_size=100000): """Query the EPA Toxic Release Inventory Database This function constructs a query for the EPA Toxic Release Inventory API, with optional arguments for details such as the two-letter state, county name, area code, and year. More info here: https://www.epa.gov/enviro/envirofacts-data-service-api """ base_url='https://data.epa.gov/efservice/' #Declare the names of the tables that we want to pull table_name1='TRI_FACILITY' table_name2='TRI_REPORTING_FORM' table_name3 = 'TRI_TRANSFER_QTY' output_format='CSV' query = base_url query+=table_name1+'/' #Add in the state qualifier, if the desired_state variable is named if state: query+='state_abbr/=/'+state+'/' #Add in the county qualifier, if the desired_county variable is named if county: query+='county_name/'+county+'/' #Add in the area code qualifier, if the desired_area_code variable is named if area_code: query+='zip_code/'+str(area_code)+'/' #Add in the next table name and year qualifier, if the desired_year variable is named query += table_name2+'/' if year: if type(year) is list: query+='reporting_year/'+str(year[0])+'/'+str(year[1])+'/' else: query+='reporting_year/'+str(year)+'/' #add the third table query += table_name3+'/' count_query = query+'count/' count_xml = requests.get(count_query).content nrows= int(BeautifulSoup(count_xml,features="lxml").find('requestrecordcount').contents[0]) #Add in the desired output format to the query csv_query = query+ output_format #Return the completed query bar = Bar('Downloading Records:',max=nrows,\ suffix='%(index)d/%(max)d %(percent).1f%% - %(eta)ds') bar.check_tty = False s=requests.get(csv_query).content dataframe=pd.read_csv(io.StringIO(s.decode('utf-8')), engine='python', encoding='utf-8', error_bad_lines=False) bar.next(n = dataframe.shape[0]) nrows_prev = dataframe.shape[0] while dataframe.shape[0] < nrows: new_query = query + 'rows/'+str(dataframe.shape[0])+':'\ +str(dataframe.shape[0]+chunk_size)+'/' csv_query = new_query+ output_format s=requests.get(csv_query).content dataframe = dataframe.append(pd.read_csv(io.StringIO(s.decode('utf-8')), engine='python',encoding='utf-8', error_bad_lines=False)) bar.next(n=dataframe.shape[0]-nrows_prev) nrows_prev = dataframe.shape[0] bar.finish() # do the replacement: if 'TRI_TRANSFER_QTY.TYPE_OF_WASTE_MANAGEMENT' in dataframe.columns: dataframe.replace({'TRI_TRANSFER_QTY.TYPE_OF_WASTE_MANAGEMENT':wm_dict},inplace=True) return dataframe
48eef06d1409dfe4404c6548435196cc95baff62
4,957
import requests import html def get_monthly_schedule(year, month): """ :param year: a string, e.g. 2018 :param month: a string, e.g. january :return schedule: a pd.DataFrame containing game info for the month """ url = f'https://www.basketball-reference.com/leagues/NBA_{year}_games-{month}.html' page = requests.get(url) tree = html.fromstring(page.content) game_date = tree.xpath('//*[@data-stat="date_game"]/a/text()') road_team = tree.xpath('//*[@data-stat="visitor_team_name"]/a/text()') road_pts = tree.xpath('//*[@data-stat="visitor_pts"]/text()') road_pts.pop(0) # Remove column name home_team = tree.xpath('//*[@data-stat="home_team_name"]/a/text()') home_pts = tree.xpath('//*[@data-stat="home_pts"]/text()') home_pts.pop(0) # Remove column name box_score_url = tree.xpath('//*[@data-stat="box_score_text"]/a/@href') schedule = { 'DATE': game_date, 'ROAD_TEAM': road_team, 'ROAD_PTS': road_pts, 'HOME_TEAM': home_team, 'HOME_PTS': home_pts, 'BOX_SCORE_URL': box_score_url, } # Create a dictionary with different length columns (Series) that is # suitable for a DataFrame schedule = dict([ (k, pd.Series(v)) for k, v in schedule.items() ]) schedule = pd.DataFrame(schedule) schedule.dropna(how='any', inplace=True) schedule['ROAD_TM'] = schedule['ROAD_TEAM'].map(team_name_abbrev) schedule['HOME_TM'] = schedule['HOME_TEAM'].map(team_name_abbrev) schedule = schedule[['DATE', 'ROAD_TEAM', 'ROAD_TM', 'ROAD_PTS', 'HOME_TEAM', 'HOME_TM', 'HOME_PTS', 'BOX_SCORE_URL']] BBALLREF = 'https://www.basketball-reference.com' schedule['BOX_SCORE_URL'] = \ schedule['BOX_SCORE_URL'].apply(lambda x: BBALLREF + x) def format_date(date): return arrow.get(date, 'ddd, MMM D, YYYY').datetime.strftime('%Y-%m-%d') schedule['DATE'] = schedule['DATE'].apply(format_date) return schedule
1aa48abaa274166110df8dfd55b49560f72db054
4,958
import csv import zlib def get_gzip_guesses(preview, stream, chunk_size, max_lines): """ :type preview: str :param preview: The initial chunk of content read from the s3 file stream. :type stream: botocore.response.StreamingBody :param stream: StreamingBody object of the s3 dataset file. :type chunk_size: int :param chunk_size: Maximum size of the chunk in bytes peeking. :type max_lines: int :param max_lines: Maximum number of lines to peek into. """ COMPRESSION_TYPE = 'GZIP' guesses = dict() dialect = csv.Sniffer().sniff(zlib.decompressobj(zlib.MAX_WBITS|16).decompress(preview)) has_header = csv.Sniffer().has_header(zlib.decompressobj(zlib.MAX_WBITS|16).decompress(preview)) d = zlib.decompressobj(zlib.MAX_WBITS|16) lines_read = 0 first_row = True data = '' while True: if first_row: chunk = preview else: chunk = stream.read(chunk_size) if not chunk: break data += d.decompress(chunk) if '\n' in data: guesses, data, lines_read = analyze_data(data, lines_read, max_lines, first_row, guesses, dialect, has_header) first_row = False if lines_read >= max_lines: return guesses, has_header, COMPRESSION_TYPE, dialect return guesses, has_header, COMPRESSION_TYPE, dialect
aa6185ed31fc4bb5d85e991702925502beff86c0
4,959
from typing import List def make_preds_epoch(classifier: nn.Module, data: List[SentenceEvidence], batch_size: int, device: str=None, criterion: nn.Module=None, tensorize_model_inputs: bool=True): """Predictions for more than one batch. Args: classifier: a module that looks like an AttentiveClassifier data: a list of elements to make predictions over. These must be SentenceEvidence objects. batch_size: the biggest chunk we can fit in one batch. device: Optional; what compute device this should run on criterion: Optional; a loss function tensorize_model_inputs: should we convert our data to tensors before passing it to the model? Useful if we have a model that performs its own tokenization """ epoch_loss = 0 epoch_soft_pred = [] epoch_hard_pred = [] epoch_truth = [] batches = _grouper(data, batch_size) classifier.eval() for batch in batches: loss, soft_preds, hard_preds, targets = make_preds_batch(classifier, batch, device, criterion=criterion, tensorize_model_inputs=tensorize_model_inputs) if loss is not None: epoch_loss += loss.sum().item() epoch_hard_pred.extend(hard_preds) epoch_soft_pred.extend(soft_preds.cpu()) epoch_truth.extend(targets) epoch_loss /= len(data) epoch_hard_pred = [x.item() for x in epoch_hard_pred] epoch_truth = [x.item() for x in epoch_truth] return epoch_loss, epoch_soft_pred, epoch_hard_pred, epoch_truth
67cecfc6648ef4ad10531b086dab2fc9e6e2f6f3
4,960
def array_3_1(data): """ 功能:将3维数组转换成1维数组 \n 参数: \n data:图像数据,3维数组 \n 返回值:图像数据,1维数组 \n """ # 受不了了,不判断那么多了 shape = data.shape width = shape[0] height = shape[1] # z = list() z = np.zeros([width * height, 1]) for i in range(0, width): for j in range(0, height): index = i * width + j z[index][0] = data[i, j, 0] # z.append(data[i, j, 0]) return z
0b2991da94102e5ecf47d037f995b95a3fd28ac8
4,961
import json def UpdateString(update_intervals): """Calculates a short and long message to represent frequency of updates. Args: update_intervals: A list of interval numbers (between 0 and 55) that represent the times an update will occur Returns: A two-tuple of the long and short message (respectively) corresponding to the frequency. This is intended to be sent via AJAX and hence the tuple is turned into json before being returned. Raises: BadInterval in the case that the length of update_intervals is not a key in the constant RESPONSES """ length = len(update_intervals) if length not in RESPONSES: raise BadInterval(length) else: return json.dumps(RESPONSES[length])
35ba60e028c238f304bcf03d745865c93408b9c1
4,962
from typing import Optional from re import T def coalesce(*xs: Optional[T]) -> T: """Return the first non-None value from the list; there must be at least one""" for x in xs: if x is not None: return x assert False, "Expected at least one element to be non-None"
fe388a40ff200f9988514563d0e37d2d604317a7
4,963
def check_phil(phil, scope=True, definition=True, raise_error=True): """ Convenience function for checking if the input is a libtbx.phil.scope only or a libtbx.phil.definition only or either. Parameters ---------- phil: object The object to be tested scope: bool Flag to check if phil is a libtbx.phil.scope definition: bool Flag to check if phil is a libtbx.phil.definition raise_error: bool If true, a RuntimeError is raised if the check(s) fail Returns ------- value: bool """ value = False if scope: # check for only libtbx.phil.scope value = isinstance(phil, libtbx.phil.scope) if definition: # check for only libtbx.phil.definition value = isinstance(phil, libtbx.phil.definition) if scope and definition: # check for either value = isinstance(phil, libtbx.phil.scope) or isinstance(phil, libtbx.phil.definition) if (scope and definition) and not value and raise_error: raise RuntimeError('A libtbx.phil.scope or libtbx.phil.definition is expected.') elif scope and not value and raise_error: raise RuntimeError('A libtbx.phil.scope is expected.') elif definition and not value and raise_error: raise RuntimeError('A libtbx.phil.definition is expected.') return value
11a59bb25689bfc5882b8e0b0b9c2e9a5f233db0
4,964
import json def get_ssm_environment() -> dict: """Get the value of environment variables stored in the SSM param store under $DSS_DEPLOYMENT_STAGE/environment""" p = ssm_client.get_parameter(Name=fix_ssm_variable_prefix("environment")) parms = p["Parameter"]["Value"] # this is a string, so convert to dict return json.loads(parms)
2f5a44c7e01f87c0aff092f9fed83f0030d4f7da
4,965
from datetime import datetime def get_default_date_stamp(): """ Returns the default date stamp as 'now', as an ISO Format string 'YYYY-MM-DD' :return: """ return datetime.now().strftime('%Y-%m-%d')
672cd98265b19da2df92c7849f1059e5988473d7
4,966
import re def check_for_launchpad(old_vendor, name, urls): """Check if the project is hosted on launchpad. :param name: str, name of the project :param urls: set, urls to check. :return: the name of the project on launchpad, or an empty string. """ if old_vendor != "pypi": # XXX This might work for other starting vendors # XXX but I didn't check. For now only allow # XXX pypi -> launchpad. return '' for url in urls: try: return re.match(r"https?://launchpad.net/([\w.\-]+)", url).groups()[0] except AttributeError: continue return ''
87fc4be32cd93671b5d9fe43697d9e6918675843
4,967
import torch def constructRBFStates(L1, L2, W1, W2, sigma): """ Constructs a dictionary dict[tuple] -> torch.tensor that converts tuples (x,y) representing positions to torch tensors used as input to the neural network. The tensors have an entry for each valid position on the race track. For each position (x,y), the tensor is constructed using the gaussian radial basis function with standard deviation sigma. In other words, if entry i corresponds to the position p2 = (x2, y2), then the tensor for a point p1 = (x1,y1) will have tensor[i] = Gaussian_RBF(p1, p2). @type L1: int See description in the @RaceCar class. @type L2: int See description in the @RaceCar class. @type W1: int See description in the @RaceCar class. @type W2: int See description in the @RaceCar class. @type sigma: float The standard deviation of the gaussian radial basis function. """ N_states = (L1+1)*(W1+W2+1)+L2*(W2+1) x_coords = torch.zeros(N_states, dtype=torch.float32) y_coords = torch.zeros(N_states, dtype=torch.float32) state_to_basis = {} ind = 0 for x in range(L1+L2+1): for y in range(W1+W2+1): if (0<=x<=L1 and 0<=y<=W1+W2) or (0<=x<=L1+L2 and W1<=y<=W1+W2): x_coords[ind] = x y_coords[ind] = y ind += 1 for x in range(L1 + L2 + 1): for y in range(W1 + W2 + 1): if (0 <= x <= L1 and 0 <= y <= W1 + W2) or (0 <= x <= L1 + L2 and W1 <= y <= W1 + W2): basis = torch.exp(-((x_coords-x)**2 + (y_coords-y)**2)/(2*sigma**2)) state_to_basis[(x,y)] = basis.view(1, -1).to(device) return state_to_basis
575572e40f66c121468d547b45fa92c23f78f99f
4,969
from typing import Union from typing import Iterator def tile_grid_intersection( src0: DatasetReader, src1: DatasetReader, blockxsize: Union[None, int] = None, blockysize: Union[None, int] = None ) -> tuple[Iterator[Window], Iterator[Window], Iterator[Window], Affine, int, int]: """Generate tiled windows for the intersection between two grids. Given two rasters having different dimensions calculate read-window generators for each and a write-window generator for the intersecion. Parameters: src0: rasterio read source src1: rasterio read source blockxsize: write-window width blockysize: write-window height Returns: read windows for src0, read windows for src1, write windows for the intersection, write raster Affine, write raster width in columns write raster height in rows """ bbox0 = window_bounds(((0, 0), src0.shape), src0.transform, offset='ul') bbox1 = window_bounds(((0, 0), src1.shape), src1.transform, offset='ul') bounds = intersect_bounds(bbox0, bbox1) (row_start0, row_stop0), (col_start0, col_stop0) = bounds_window( bounds, src0.transform ) (row_start1, row_stop1), (col_start1, col_stop1) = bounds_window( bounds, src1.transform ) ncols = col_stop0 - col_start0 nrows = row_stop0 - row_start0 affine = from_bounds(bounds[0], bounds[1], bounds[2], bounds[3], ncols, nrows) if blockxsize is None: blockxsize = ncols if blockysize is None: blockysize = nrows windows0 = tile_grid( ncols, nrows, blockxsize, blockysize, col_offset=col_start0, row_offset=row_start0, ) windows1 = tile_grid( ncols, nrows, blockxsize, blockysize, col_offset=col_start1, row_offset=row_start1, ) write_windows = tile_grid(ncols, nrows, blockxsize, blockysize) return (windows0, windows1, write_windows, affine, nrows, ncols)
847092e1a02ed446d7873658340d578248b1e80c
4,971
def etapes_index_view(request): """ GET etapes index """ # Check connected if not check_connected(request): raise exc.HTTPForbidden() records = request.dbsession.query(AffaireEtapeIndex).filter( AffaireEtapeIndex.ordre != None ).order_by(AffaireEtapeIndex.ordre.asc()).all() return Utils.serialize_many(records)
a79ec31c3849a7e77528d4607859f9bf77899ffb
4,972
from typing import Optional def brute_force(ciphered_text: str, charset: str = DEFAULT_CHARSET, _database_path: Optional[str] = None) -> int: """ Get Caesar ciphered text key. Uses a brute force technique trying the entire key space until finding a text that can be identified with any of our languages. **You should not use this function. Use *brute_force_mp* instead.** This function is slower than *mp* one because is sequential while the other uses a multiprocessing approach. This function only stay here to allow comparisons between sequential and multiprocessing approaches. :param ciphered_text: Text to be deciphered. :param charset: Charset used for Caesar method substitution. Both ends, ciphering and deciphering, should use the same charset or original text won't be properly recovered. :param _database_path: Absolute pathname to database file. Usually you don't set this parameter, but it is useful for tests. :return: Caesar key found. """ key_space_length = len(charset) return simple_brute_force(key_generator=integer_key_generator(key_space_length), assess_function=_assess_caesar_key, # key_space_length=key_space_length, ciphered_text=ciphered_text, charset=charset, _database_path=_database_path)
9b23b4b5068dd36345d6aa43f71bd307f8b24e0c
4,973
def SqZerniketoOPD(x,y,coef,N,xwidth=1.,ywidth=1.): """ Return an OPD vector based on a set of square Zernike coefficients """ stcoef = np.dot(zern.sqtost[:N,:N],coef) x = x/xwidth y = y/ywidth zm = zern.zmatrix(np.sqrt(x**2+y**2),np.arctan2(y,x),N) opd = np.dot(zm,stcoef) return opd
4243f2c4106d5de0b7f6966cfb3244644beff100
4,974
import random def build_voterinfo(campaign, state): """Render a tweet of voting info for a state""" state_info = campaign.info_by_state[state] num_cities = len(state_info[CITIES]) assert num_cities == len(set(state_info[CITIES])), f"Duplicate entries in CITIES for {state}." city_ct = num_cities effective_length = 0 tweet_text = "" while city_ct > 0: # Iterate on building a tweet until it fits within the limit. # Return none if unsuccessful city_set = set(state_info[CITIES]) try: # Select up to city_ct cities cities = [] cities_found = 0 while cities_found < city_ct: city_idx = random.randint(0, num_cities - 1) city = state_info[CITIES][city_idx] if city in city_set: cities.append(hashtag(city)) city_set.remove(city) cities_found += 1 effective_length, tweet_text = render_voterinfo(campaign, state, cities) break except AssertionError: tweet_text = "" city_ct -= 1 return effective_length, tweet_text
a3f6b7aea9b84174ed1e825cacb38966e099c7eb
4,975
def train_model(training_df, stock): """ Summary: Trains XGBoost model on stock prices Inputs: stock_df - Pandas DataFrame containing data about stock price, date, and daily tweet sentiment regarding that stock stock - String representing stock symbol to be used in training Return value: Trained XGBoost model """ print("Beginning training model for ", stock) X_train, X_test, y_train, y_test = create_train_data(training_df) print("Created data") xgb = XGBRegressor(objective="reg:squarederror", random_state=42) parameters = { 'n_estimators': [100, 200, 300, 400], 'learning_rate': [0.001, 0.005, 0.01, 0.05], 'max_depth': [8, 10, 12, 15], 'gamma': [0.001, 0.005, 0.01, 0.02], } print("Performing Grid Search") gs = GridSearchCV(xgb, parameters) gs.fit(X_train, y_train, verbose=2) print("Grid Search Done") model = XGBRegressor(**gs.best_params_, objective="reg:squarederror") model.fit(X_train, y_train) print("Model fit") y_pred = model.predict(X_test) print(stock) print(f'y_true = {np.array(y_test)[:5]}') print(f'y_pred = {y_pred[:5]}') print(f'mean_squared_error = {mean_squared_error(y_test, y_pred)}') print("----------------") return model
be28e84c6796bd002217ab56c85958b52fbc199c
4,976
def create_test_node(context, **kw): """Create and return a test Node object. Create a node in the DB and return a Node object with appropriate attributes. """ node = get_test_node(context, **kw) node.create() return node
21ff9931a7c6859bbe924014cb3a06b9890f7a63
4,978
def get_physical_id(r_properties): """ Generated resource id """ bucket = r_properties['Bucket'] key = r_properties['Key'] return f's3://{bucket}/{key}'
2cd467d9b1df72a4573d99f7a5d799f9612239c9
4,979
def entity_test_models(translation0, locale1): """This fixture provides: - 2 translations of a plural entity - 1 translation of a non-plural entity - A subpage that contains the plural entity """ entity0 = translation0.entity locale0 = translation0.locale project0 = entity0.resource.project locale0.cldr_plurals = "0,1" locale0.save() translation0.plural_form = 0 translation0.save() resourceX = Resource.objects.create( project=project0, path="resourceX.po") entity0.string = "Entity zero" entity0.key = entity0.string entity0.string_plural = "Plural %s" % entity0.string entity0.save() entityX = Entity.objects.create( resource=resourceX, string="entityX", key='Key%sentityX' % KEY_SEPARATOR) translation0pl = Translation.objects.create( entity=entity0, locale=locale0, plural_form=1, string="Plural %s" % translation0.string) translationX = Translation.objects.create( entity=entityX, locale=locale0, string="Translation %s" % entityX.string) subpageX = Subpage.objects.create( project=project0, name="Subpage") subpageX.resources.add(entity0.resource) return translation0, translation0pl, translationX, subpageX
36c6962a69d241e395af1c7ebe16271dcaed975d
4,980
def paris_topology(self, input_path): """Generation of the Paris metro network topology Parameters: input_path: string, input folder path Returns: self.g: nx.Graph(), Waxman graph topology self.length: np.array, lengths of edges """ adj_file = open(input_path + "adj.dat", "r") lines = adj_file.readlines() # graph adjacency list topol = np.zeros([len(lines), 2], dtype=int) for iedge, line in enumerate(lines): topol[iedge][:] = [int(w) for w in line.split()[0:2]] self.g.add_edges_from(topol) # coordinate of nodes coord_file = open(input_path + "coord.dat", "r") lines = coord_file.readlines() for inode, line in enumerate(lines): self.g.nodes[inode]["pos"] = tuple([float(w) for w in line.split()[0:2]]) # length of edges self.length = np.zeros(self.g.number_of_edges()) for i, edge in enumerate(self.g.edges()): self.length[i] = distance.euclidean(self.g.nodes[edge[0]]["pos"], self.g.nodes[edge[1]]["pos"]) # right hand side construction forcing_path = input_path + "rhs.dat" self.forcing = forcing_generation(self, forcing_path) return self.g, self.length, self.forcing
9f81e111cfe9adf265b9a3aa58390935b752f242
4,981
def _rescale(vector): """Scale values in vector to the range [0, 1]. Args: vector: A list of real values. """ # Subtract min, making smallest value 0 min_val = min(vector) vector = [v - min_val for v in vector] # Divide by max, making largest value 1 max_val = float(max(vector)) try: return [v / max_val for v in vector] except ZeroDivisionError: # All values are the same return [1.0] * len(vector)
0091deb65c67ef55b2632ac8d5ff8a15b275d12e
4,982
from datetime import datetime def validate_travel_dates(departure, arrival): """It validates arrival and departure dates :param departure: departure date :param arrival: arrival date :returns: error message or Boolean status """ date_format = "%Y-%m-%dT%H:%M:%SZ" status = True error_message = "" if datetime.strptime(departure, date_format) < datetime.now(): status = False error_message = Response( {"message": "Departure time cannot be in the past"}, status=HTTP_400_BAD_REQUEST, ) elif datetime.strptime(arrival, date_format) < datetime.now(): status = False error_message = Response( {"message": "Arrival time cannot be in the past"}, status=HTTP_400_BAD_REQUEST, ) elif datetime.strptime(departure, date_format) > datetime.strptime( arrival, date_format ): status = False error_message = Response( {"message": "Departure time cannot be greater than arrival time"}, status=HTTP_400_BAD_REQUEST, ) return status, error_message
41759684517daece729ba845b7afc80c6e6b01ea
4,983
def xmatch_arguments(): """ Obtain information about the xmatch service """ return jsonify({'args': args_xmatch})
393e74df6900b8c4ed6f0eac82c162a7287a9b6d
4,984
def rosenbrock_func(x): """Rosenbrock objective function. Also known as the Rosenbrock's valley or Rosenbrock's banana function. Has a global minimum of :code:`np.ones(dimensions)` where :code:`dimensions` is :code:`x.shape[1]`. The search domain is :code:`[-inf, inf]`. Parameters ---------- x : numpy.ndarray set of inputs of shape :code:`(n_particles, dimensions)` Returns ------- numpy.ndarray computed cost of size :code:`(n_particles, )` """ r = np.sum(100*(x.T[1:] - x.T[:-1]**2.0)**2 + (1-x.T[:-1])**2.0, axis=0) return r
5d89e22fde50032175b69f36a4c0031bfc07c2bb
4,985
def isHdf5Dataset(obj): """Is `obj` an HDF5 Dataset?""" return isinstance(obj, h5py.Dataset)
b674106e05d5f10585b58d246654987f174d2048
4,986
import numpy def writing_height(sample_wrapper, in_air): """ Returns writing height. :param sample_wrapper: sample wrapper object :type sample_wrapper: HandwritingSampleWrapper :param in_air: in-air flag :type in_air: bool :return: writing height :rtype: float """ # Get the on-surface/in-air sample data sample = sample_wrapper.on_surface_data \ if not in_air \ else sample_wrapper.in_air_data # Check the presence of sample data if not sample: return numpy.nan # Return the writing height return float(numpy.max(sample.y) - numpy.min(sample.y))
fce6c0abcc65484088278eddd3bb77541725934c
4,987
def simplify_index_permutations(expr, permutation_operators): """ Performs simplification by introducing PermutationOperators where appropriate. Schematically: [abij] - [abji] - [baij] + [baji] -> P(ab)*P(ij)*[abij] permutation_operators is a list of PermutationOperators to consider. If permutation_operators=[P(ab),P(ij)] we will try to introduce the permutation operators P(ij) and P(ab) in the expression. If there are other possible simplifications, we ignore them. >>> from sympy import symbols, Function >>> from sympy.physics.secondquant import simplify_index_permutations >>> from sympy.physics.secondquant import PermutationOperator >>> p,q,r,s = symbols('p,q,r,s') >>> f = Function('f') >>> g = Function('g') >>> expr = f(p)*g(q) - f(q)*g(p); expr f(p)*g(q) - f(q)*g(p) >>> simplify_index_permutations(expr,[PermutationOperator(p,q)]) f(p)*g(q)*PermutationOperator(p, q) >>> PermutList = [PermutationOperator(p,q),PermutationOperator(r,s)] >>> expr = f(p,r)*g(q,s) - f(q,r)*g(p,s) + f(q,s)*g(p,r) - f(p,s)*g(q,r) >>> simplify_index_permutations(expr,PermutList) f(p, r)*g(q, s)*PermutationOperator(p, q)*PermutationOperator(r, s) """ def _get_indices(expr, ind): """ Collects indices recursively in predictable order. """ result = [] for arg in expr.args: if arg in ind: result.append(arg) else: if arg.args: result.extend(_get_indices(arg,ind)) return result def _choose_one_to_keep(a,b,ind): # we keep the one where indices in ind are in order ind[0] < ind[1] if _get_indices(a,ind) < _get_indices(b,ind): return a else: return b expr = expr.expand() if isinstance(expr,Add): terms = set(expr.args) for P in permutation_operators: new_terms = set([]) on_hold = set([]) while terms: term = terms.pop() permuted = P.get_permuted(term) if permuted in terms | on_hold: try: terms.remove(permuted) except KeyError: on_hold.remove(permuted) keep = _choose_one_to_keep(term, permuted, P.args) new_terms.add(P*keep) else: # Some terms must get a second chance because the permuted # term may already have canonical dummy ordering. Then # substitute_dummies() does nothing. However, the other # term, if it exists, will be able to match with us. permuted1 = permuted permuted = substitute_dummies(permuted) if permuted1 == permuted: on_hold.add(term) elif permuted in terms | on_hold: try: terms.remove(permuted) except KeyError: on_hold.remove(permuted) keep = _choose_one_to_keep(term, permuted, P.args) new_terms.add(P*keep) else: new_terms.add(term) terms = new_terms | on_hold return Add(*terms) return expr
3a72459c9f9ee9e1f0f030fa96f5a38c0a1985c0
4,988
from typing import Set from typing import Any from typing import Tuple def get_classification_outcomes( confusion_matrix: pd.DataFrame, classes: Set[Any], class_name: str, ) -> Tuple[int, int, int, int]: """ Given a confusion matrix, this function counts the cases of: - **True Positives** : classifications that accurately labeled a class - **True Negatives** : classifications that accurately labeled an example as not belonging to a class. - **False Positives** : classifications that attributed the wrong label to an example. - **False Negatives** : classifications that falsely claimed that an example does not belong to a class. Args: confusion_matrix: The result of calling [generate_confusion_matrix] [toolbox.algorithms.learning.evaluation.generate_confusion_matrix] classes: The set of all class labels class_name: The name (label) of the class being evaluated. Returns: - `tp`: Count of True Positives - `tn`: Count of True Negatives - `fp`: Count of False Positives - `fn`: Count of False Negatives """ excl_idx = classes.difference(set((class_name,))) tp = confusion_matrix.loc[class_name, class_name] tn = confusion_matrix.loc[excl_idx, excl_idx].sum().sum() fp = confusion_matrix.loc[class_name, excl_idx].sum() fn = confusion_matrix.loc[excl_idx, class_name].sum() return (tp, tn, fp, fn)
c8d84aa5d84e9405539fa40cd05101ac84eda871
4,989
def points_in_convex_polygon_3d_jit(points, polygon_surfaces, ): """check points is in 3d convex polygons. Args: points: [num_points, 3] array. polygon_surfaces: [num_polygon, max_num_surfaces, max_num_points_of_surface, 3] array. all surfaces' normal vector must direct to internal. max_num_points_of_surface must at least 3. num_surfaces: [num_polygon] array. indicate how many surfaces a polygon contain Returns: [num_points, num_polygon] bool array. """ max_num_surfaces, max_num_points_of_surface = polygon_surfaces.shape[1:3] num_points = points.shape[0] num_polygons = polygon_surfaces.shape[0] num_surfaces = np.full((num_polygons,), 9999999, dtype=np.int64) normal_vec, d = surface_equ_3d_jit(polygon_surfaces[:, :, :3, :]) # normal_vec: [num_polygon, max_num_surfaces, 3] # d: [num_polygon, max_num_surfaces] ret = np.ones((num_points, num_polygons), dtype=np.bool_) sign = 0.0 for i in range(num_points): for j in range(num_polygons): for k in range(max_num_surfaces): if k > num_surfaces[j]: break sign = points[i, 0] * normal_vec[j, k, 0] \ + points[i, 1] * normal_vec[j, k, 1] \ + points[i, 2] * normal_vec[j, k, 2] + d[j, k] if sign >= 0: ret[i, j] = False break return ret
b3834ec647fcb6b156f57a36e11dd5dd22bec1d9
4,990
def _get_spamassassin_flag_path(domain_or_user): """ Get the full path of the file who's existence is used as a flag to turn SpamAssassin on. Args: domain_or_user - A full email address or a domain name """ domain = domain_or_user.lower() user = False if '@' in domain: user, domain = domain.split('@') sys_user = get_account_from_domain(domain) if user: return '/home/' + sys_user + '/etc/' + domain + '/' + user + '/enable_spamassassin' else: return '/home/' + sys_user + '/etc/' + domain + '/enable_spamassassin'
e29055f2cbe81dd7ad2083f5bfdc46d02b354dba
4,991
def format(number): """Reformat the passed number to the standard format.""" number = compact(number) return '-'.join((number[:3], number[3:-1], number[-1]))
90ad8360ef773a9386a122d3f44870a6b371d370
4,992
def get_terms(request): """Returns list of terms matching given query""" if TEST_MODE: thesaurus_name = request.params.get('thesaurus_name') extract_name = request.params.get('extract_name') query = request.params.get('term') else: thesaurus_name = request.validated.get('thesaurus_name') extract_name = request.validated.get('extract_name') query = request.validated.get('term') if not (thesaurus_name or query): return {} thesaurus = query_utility(IThesaurus, name=thesaurus_name) if thesaurus is None: return {} try: return { 'results': [ { 'id': term.label, 'text': term.label } for term in unique(thesaurus.find_terms(query, extract_name, exact=True, stemmed=True)) if term.status != STATUS_ARCHIVED ] } except ParseError: return []
b6e6810a1858de9da609b2e42b39a933ee9fbb04
4,993
from .. import sim import __main__ as top def createExportNeuroML2(netParams=None, simConfig=None, output=False, reference=None, connections=True, stimulations=True, format='xml'): """ Wrapper function create and export a NeuroML2 simulation Parameters ---------- netParams : ``netParams object`` NetPyNE netParams object specifying network parameters. **Default:** *required*. simConfig : ``simConfig object`` NetPyNE simConfig object specifying simulation configuration. **Default:** *required*. output : bool Whether or not to return output from the simulation. **Default:** ``False`` does not return anything. **Options:** ``True`` returns output. reference : <``None``?> <Short description of reference> **Default:** ``None`` **Options:** ``<option>`` <description of option> connections : bool <Short description of connections> **Default:** ``True`` **Options:** ``<option>`` <description of option> stimulations : bool <Short description of stimulations> **Default:** ``True`` **Options:** ``<option>`` <description of option> format : str <Short description of format> **Default:** ``'xml'`` **Options:** ``<option>`` <description of option> Returns ------- data : tuple If ``output`` is ``True``, returns (pops, cells, conns, stims, rxd, simData) """ if not netParams: netParams = top.netParams if not simConfig: simConfig = top.simConfig sim.initialize(netParams, simConfig) # create network object and set cfg and net params pops = sim.net.createPops() # instantiate network populations cells = sim.net.createCells() # instantiate network cells based on defined populations conns = sim.net.connectCells() # create connections between cells based on params stims = sim.net.addStims() # add external stimulation to cells (IClamps etc) rxd = sim.net.addRxD() # add reaction-diffusion (RxD) simData = sim.setupRecording() # setup variables to record for each cell (spikes, V traces, etc) sim.exportNeuroML2(reference, connections, stimulations,format) # export cells and connectivity to NeuroML 2 format if output: return (pops, cells, conns, stims, rxd, simData)
84b3fb607ab30b17222143c46d839bab087c4916
4,994
def better_get_first_model_each_manufacturer(car_db): """Uses map function and lambda to avoid code with side effects.""" result = map(lambda x: x[0], car_db.values()) # convert map to list return list(result)
8969c23bfe4df2b1c164dca6c4f929a62de5ba2a
4,996
from collections import Iterable def _is_scalar(value): """Whether to treat a value as a scalar. Any non-iterable, string, or 0-D array """ return (getattr(value, 'ndim', None) == 0 or isinstance(value, (str, bytes)) or not isinstance(value, (Iterable,)))
725aa4a6002146ecb3dca3a17faa829e213cb3f7
4,998
def copy_random(x, y): """ from 2 randInt calls """ seed = find_seed(x, y) rand = JavaRandom(seed) rand.next() # this will be y so we discard it return rand
f1a1019ed7f012d83edca77ba3c7ccd2a806ee01
4,999
def build_tree(train, max_depth, min_size, n_features): """build_tree(创建一个决策树) Args: train 训练数据集 max_depth 决策树深度不能太深,不然容易导致过拟合 min_size 叶子节点的大小 n_features 选取的特征的个数 Returns: root 返回决策树 """ # 返回最优列和相关的信息 root = get_split(train, n_features) # 对左右2边的数据 进行递归的调用,由于最优特征使用过,所以在后面进行使用的时候,就没有意义了 # 例如: 性别-男女,对男使用这一特征就没任何意义了 split(root, max_depth, min_size, n_features, 1) return root
5afd343436f14d9ab704636eb480d92a31d59f04
5,000
import pprint def delete_bucket(bucket_name: str, location: str, verbose: bool) -> bool: """Delete the specified S3 bucket Args: bucket_name (str): name of the S3 bucket location (str): the location (region) the S3 bucket resides in verbose (bool): enable verbose output Returns: bool: True if the specified S3 bucket was successfully deleted, False otherwise """ try: print(f'Deleting S3 bucket {bucket_name} in location {location} ...') start = timer() s3_client = boto3.client('s3', region_name=location) response = s3_client.delete_bucket(Bucket=bucket_name) end = timer() elapsed_time = round(end - start, 3) print(f'Deleted bucket in {elapsed_time} seconds') if verbose: print('delete_bucket() response:') pprint.pprint(response) print() if response['ResponseMetadata']['HTTPStatusCode'] == 204: print(f'S3 bucket {bucket_name} successfully deleted') return True except ClientError as e: print(f'S3 ClientError occurred while trying to delete bucket:') print(f"\t{e.response['Error']['Code']}: {e.response['Error']['Message']}") return False
79c225c9f8caa0d8c3431709d3f08ccaefe3fc1c
5,001
import re def generate_ordered_match_str_from_subseqs(r1, subseqs_to_track, rc_component_dict, allow_overlaps=False): """Generates an ordered subsequences match string for the input sequence. Args: r1: (str) R1 sequence to scan for subsequence matches. subseqs_to_track: (list) Subsequences to look for in R1. rc_component_dict: (dict) Dict mapping DNA sequence to label. allow_overlaps: (boolean) Whether to allow matches that overlap on R1. If False, then it will identify a maximal non-overlapping set of matches. Returns: (str) labeled components for r1 in the form: 'label_1;label_2;...;label_n' """ # Generate ordered set of subseq matches to r1 sequence. match_tups = [] for mer_label in subseqs_to_track: mer = rc_component_dict[mer_label] for match in re.finditer(mer, r1): xstart = match.start() xend = xstart + len(mer) match_tups.append((xstart, xend, mer_label)) match_tups.sort(reverse=True) # Create a maximal independent set that does not allow overlapping subseqs. if not allow_overlaps and len(match_tups) > 0: mer_graph = nx.Graph() mer_graph.add_nodes_from(match_tups) for i in range(len(match_tups)): for j in range(i + 1, len(match_tups)): # Check if the end of match_tups[j] overlaps the start of match_tups[i]. if match_tups[i][0] < match_tups[j][1]: mer_graph.add_edge(match_tups[i], match_tups[j]) # Generate a non-overlapping list of subseqs. match_tups = nx.maximal_independent_set(mer_graph) match_tups.sort(reverse=True) match_str = BCS_SEP.join([match_tup[-1] for match_tup in match_tups]) return match_str
202f228b40b73518342b1cc2419ca466626fc166
5,002
def combination(n: int, r: int) -> int: """:return nCr = nPr / r!""" return permutation(n, r) // factorial(r)
6cf58428cacd0e09cc1095fb120208aaeee7cb7c
5,003
def _extract_operator_data(fwd, inv_prep, labels, method='dSPM'): """Function for extracting forward and inverse operator matrices from the MNE-Python forward and inverse data structures, and assembling the source identity map. Input arguments: ================ fwd : ForwardOperator The fixed_orientation forward operator. Instance of the MNE-Python class Forward. inv_prep : Inverse The prepared inverse operator. Instance of the MNE-Python class InverseOperator. labels : list List of labels belonging to the used parcellation, e.g. the Desikan-Killiany, Destrieux, or Schaefer parcellation. May not contain 'trash' labels/parcels (unknown or medial wall), those should be deleted from the labels array! method : str The inversion method. Default 'dSPM'. Other methods ('MNE', 'sLORETA', 'eLORETA') have not been tested. Output arguments: ================= source_identities : ndarray Vector mapping sources to parcels or labels. fwd_mat : ndarray [sensors x sources] The forward operator matrix. inv_mat : ndarray [sources x sensors] The prepared inverse operator matrix. """ # counterpart to forwardOperator, [sources x sensors]. ### pick_ori None for free, 'normal' for fixed orientation. K, noise_norm, vertno, source_nn = _assemble_kernel( inv=inv_prep, label=None, method=method, pick_ori='normal') # get source space src = inv_prep.get('src') vert_lh, vert_rh = src[0].get('vertno'), src[1].get('vertno') # get labels, vertices and src-identities src_ident_lh = np.full(len(vert_lh), -1, dtype='int') src_ident_rh = np.full(len(vert_rh), -1, dtype='int') # find sources that belong to the left hemisphere labels n_labels = len(labels) for la, label in enumerate(labels[:n_labels//2]): for v in label.vertices: src_ident_lh[np.where(vert_lh == v)] = la # find sources that belong to the right hemisphere labels. Add by n left. for la, label in enumerate(labels[n_labels//2:n_labels]): for v in label.vertices: src_ident_rh[np.where(vert_rh == v)] = la src_ident_rh[np.where(src_ident_rh<0)] = src_ident_rh[np.where( src_ident_rh<0)] -n_labels/2 src_ident_rh = src_ident_rh + (n_labels // 2) source_identities = np.concatenate((src_ident_lh,src_ident_rh)) # extract fwd and inv matrices fwd_mat = fwd['sol']['data'] # sensors x sources """If there are bad channels the corresponding rows can be missing from the forward matrix. Not sure if the same can occur for the inverse. This is not a problem if bad channels are interpolated.""" ### MOVED from weight_inverse_operator, just before """Compute the weighted operator.""" ind = np.asarray([i for i, ch in enumerate(fwd['info']['ch_names']) if ch not in fwd['info']['bads']]) fwd_mat = fwd_mat[ind, :] # noise_norm is used with dSPM and sLORETA. Other methods return null. if method != 'dSPM' or method != 'sLORETA': noise_norm = 1. inv_mat = K * noise_norm # sources x sensors return source_identities, fwd_mat, inv_mat
6daded6f6df4abbd3dea105927ca39e02e64b970
5,004
from prompt_toolkit.interface import CommandLineInterface from .containers import Window from .controls import BufferControl def find_window_for_buffer_name(cli, buffer_name): """ Look for a :class:`~prompt_toolkit.layout.containers.Window` in the Layout that contains the :class:`~prompt_toolkit.layout.controls.BufferControl` for the given buffer and return it. If no such Window is found, return None. """ assert isinstance(cli, CommandLineInterface) for l in cli.layout.walk(cli): if isinstance(l, Window) and isinstance(l.content, BufferControl): if l.content.buffer_name == buffer_name: return l
7912cc96365744c3a4daa44a72f272b083121e3c
5,006