content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def ky_att(xs, b, Mach, k0, Att=-20): """ Returns the spanwise gust wavenumber 'ky_att' with response at 'xs' attenuated by 'Att' decibels Parameters ---------- xs : float Chordwise coordinate of reference point, defined in interval (-b, +b]. b : float Airfoil semi chord. Mach : float Mean flow Mach number. k0 : float Acoustic wavenumber 'k0'. Can be obtained from the temporal frequency 'f' [in Hz] and the speed of sound 'c0' [in m/s] as 'k0 = 2*pi*f/c0'. Att : float, optional Level of attenuation of the surface pressure at point 'xs', in decibels. Defaults to -20 dB. Returns ------- ky_att : float Subcritical gust spanwise wavenumber 'ky_att' such that the aerofoil response at point 'xs' is 'Att' dB reduced. """ beta = np.sqrt(1-Mach**2) # critical gust spanwise wavenumber ky_crit = k0/beta term1 = -(beta**2)*np.log(10**(Att/20))/(k0*(xs + b)) return ky_crit*np.sqrt(term1**2 + 1)
78d62081d0849d035953a694bbb7a0fcf956f76b
6,044
from typing import Optional def has_multiline_items(strings: Optional[Strings]) -> bool: """Check whether one of the items in the list has multiple lines.""" return any(is_multiline(item) for item in strings) if strings else False
75dd6ce7d7152a200ff12c53104ff839a21d28f4
6,045
from typing import Optional from typing import Tuple import inspect def eval_ctx( layer: int = 0, globals_: Optional[DictStrAny] = None, locals_: Optional[DictStrAny] = None ) -> Tuple[DictStrAny, DictStrAny]: """获取一个上下文的全局和局部变量 Args: layer (int, optional): 层数. Defaults to 0. globals_ (Optional[DictStrAny], optional): 全局变量. Defaults to None. locals_ (Optional[DictStrAny], optional): 局部变量. Defaults to None. Returns: Tuple[DictStrAny, DictStrAny]: 全局和局部变量字典. """ frame = inspect.stack()[layer + 1].frame # add the current frame global_dict, local_dict = frame.f_globals, frame.f_locals global_dict.update(globals_ or {}) local_dict.update(locals_ or {}) return global_dict, local_dict
81b782596bcc29f1be4432cc1b95230ac952bf2b
6,046
def extract_vcalendar(allriscontainer): """Return a list of committee meetings extracted from html content.""" vcalendar = { 'vevents': findall_events(allriscontainer), } if vcalendar.get('vevents'): base_url = allriscontainer.base_url vcalendar['url'] = find_calendar_url(base_url) vcalendar['uid'] = find_calendar_uid(base_url) vcalendar['borough'] = find_calendar_borough(base_url) vcalendar['committee'] = find_calendar_committee(allriscontainer) vcalendar['name'] = '{}: {}'.format( vcalendar['borough'], vcalendar['committee'] ) return vcalendar
f792ae3d8826d37b2fba874524ec78ac502fb1f0
6,048
def rnn_helper(inp, length, cell_type=None, direction="forward", name=None, reuse=None, *args, **kwargs): """Adds ops for a recurrent neural network layer. This function calls an actual implementation of a recurrent neural network based on `cell_type`. There are three modes depending on the value of `direction`: forward: Adds a forward RNN. backward: Adds a backward RNN. bidirectional: Adds both forward and backward RNNs and creates a bidirectional RNN. Args: inp: A 3-D tensor of shape [`batch_size`, `max_length`, `feature_dim`]. length: A 1-D tensor of shape [`batch_size`] and type int64. Each element represents the length of the corresponding sequence in `inp`. cell_type: Cell type of RNN. Currently can only be "lstm". direction: One of "forward", "backward", "bidirectional". name: Name of the op. *args: Other arguments to the layer. **kwargs: Keyword arugments to the layer. Returns: A 3-D tensor of shape [`batch_size`, `max_length`, `num_nodes`]. """ assert cell_type is not None rnn_func = None if cell_type == "lstm": rnn_func = lstm_layer assert rnn_func is not None assert direction in ["forward", "backward", "bidirectional"] with tf.variable_scope(name, reuse=reuse): if direction in ["forward", "bidirectional"]: forward = rnn_func( inp=inp, length=length, backward=False, name="forward", reuse=reuse, *args, **kwargs) if isinstance(forward, tuple): # lstm_layer returns a tuple (output, memory). We only need the first # element. forward = forward[0] if direction in ["backward", "bidirectional"]: backward = rnn_func( inp=inp, length=length, backward=True, name="backward", reuse=reuse, *args, **kwargs) if isinstance(backward, tuple): # lstm_layer returns a tuple (output, memory). We only need the first # element. backward = backward[0] if direction == "forward": out = forward elif direction == "backward": out = backward else: out = tf.concat(axis=2, values=[forward, backward]) return out
d6d457a10bd921560a76bc54a083271c82b144ec
6,049
def get_data(dataset): """ :return: encodings array of (2048, n) labels list of (n) """ query = "SELECT * FROM embeddings WHERE label IS NOT NULL" cursor, connection = db_actions.connect(dataset) cursor.execute(query) result_list = cursor.fetchall() encodings = np.zeros((2048, len(result_list))) labels = [] for i in range(len(result_list)): encodings[:, i] = result_list[i][0] labels.append(result_list[i][1].encode()) encodings = np.nan_to_num(encodings) labels = [x.decode('utf-8') for x in labels] return encodings.astype('float32'), labels
9f23631c6e263f99bab976e1225adbb448323783
6,050
def read_hdr(name, order='C'): """Read hdr file.""" # get dims from .hdr h = open(name + ".hdr", "r") h.readline() # skip line l = h.readline() h.close() dims = [int(i) for i in l.split()] if order == 'C': dims.reverse() return dims
57daadfdf2342e1e7ef221cc94f2e8f70c504944
6,051
def IsTouchDevice(dev): """Check if a device is a touch device. Args: dev: evdev.InputDevice Returns: True if dev is a touch device. """ keycaps = dev.capabilities().get(evdev.ecodes.EV_KEY, []) return evdev.ecodes.BTN_TOUCH in keycaps
6fd36c4921f3ee4bf37c6ce8bcaf435680fc82d5
6,052
def load_users(): """ Loads users csv :return: """ with open(USERS, "r") as file: # creates dictionary to separate csv values to make it easy to iterate between them # the hash() function is used to identify the values in the csv, as they have their individual hash # keys, and as the csv is immutable it'll be the same throughout users = {} for user in file: user = user.strip().split(",") user_tuple = create_user(*user[:5], int(user[5])) users[hash(user_tuple)] = user_tuple return users
255745d36b5b995dfd9a8c0b13a154a87ab6f25e
6,053
def clustering_consistency_check(G): """ Check consistency of a community detection algorithm by running it a number of times. """ Hun = G.to_undirected() Hun = nx.convert_node_labels_to_integers(Hun,label_attribute='skeletonname') WHa = np.zeros((len(Hun.nodes()),len(Hun.nodes()))) for i in range(100): partition = community.best_partition(Hun, randomize=None, resolution=1.0) for com in set(partition.values()) : list_nodes = [nodes for nodes in partition.keys() if partition[nodes] == com] list_nodes = np.array(list_nodes) WHa[np.ix_(list_nodes,list_nodes)] += 1 print('Iteration:', i) return WHa
917bb7a23b651821389edbcc62c81fbe4baf3d08
6,055
def l2_normalize_rows(frame): """ L_2-normalize the rows of this DataFrame, so their lengths in Euclidean distance are all 1. This enables cosine similarities to be computed as dot-products between these rows. Rows of zeroes will be normalized to zeroes, and frames with no rows will be returned as-is. """ if frame.shape[0] == 0: return frame index = frame.index return pd.DataFrame( data=normalize(frame, norm='l2', copy=False, axis=1), index=index )
889c2f4473fdab4661fecdceb778aae1bb62652d
6,056
import socket def canonical_ipv4_address(ip_addr): """Return the IPv4 address in a canonical format""" return socket.inet_ntoa(socket.inet_aton(ip_addr))
edacc70ccc3eef12030c4c597c257775d3ed5fa4
6,057
def _build_dynatree(site, expanded): """Returns a dynatree hash representation of our pages and menu hierarchy.""" subtree = _pages_subtree(site.doc_root, site.default_language, True, 1, expanded) subtree['activate'] = True pages_node = { 'title': 'Pages', 'key': 'system:pages', 'expand': True, 'icon': 'fatcow/folders_explorer.png', 'children': [subtree, ], } language = site.default_language menus = [] for menu in Menu.objects.filter(site=site): items = [] for item in menu.first_level.all(): items.append(_menuitem_subtree(item, language, True, 1, expanded)) menus.append({ 'title': menu.name, 'key': 'menu:%d' % menu.id, 'expand': True, 'icon': 'fatcow/folders.png', 'children':items, }) menus_node = { 'title': 'Menus', 'key': 'system:menus', 'expand': True, 'icon': 'fatcow/folders_explorer.png', 'children': menus, } tags = [] for tag in Tag.objects.filter(site=site): title = tag.display_text(language) if not title: title = '<i>None</i>' tags.append({ 'title': title, 'key':'tag:%d' % tag.id, 'icon': 'fatcow/document_tag.png', 'expand': False, }) tags_node = { 'title':'Tags', 'key':'system:tags', 'expand':False, 'icon': 'fatcow/folders_explorer.png', 'children': tags, } tree = [pages_node, menus_node, tags_node] return tree
38dd222ed5cde6b4d6bff4a632c6150666580b92
6,058
def aggregator(df, groupbycols): """ Aggregates flowbyactivity or flowbysector df by given groupbycols :param df: Either flowbyactivity or flowbysector :param groupbycols: Either flowbyactivity or flowbysector columns :return: """ # tmp replace null values with empty cells df = replace_NoneType_with_empty_cells(df) # drop columns with flowamount = 0 df = df[df['FlowAmount'] != 0] # list of column headers, that if exist in df, should be aggregated using the weighted avg fxn possible_column_headers = ('Spread', 'Min', 'Max', 'DataReliability', 'TemporalCorrelation', 'GeographicalCorrelation', 'TechnologicalCorrelation', 'DataCollection') # list of column headers that do exist in the df being aggregated column_headers = [e for e in possible_column_headers if e in df.columns.values.tolist()] df_dfg = df.groupby(groupbycols).agg({'FlowAmount': ['sum']}) # run through other columns creating weighted average for e in column_headers: df_dfg[e] = weighted_average(df, e, 'FlowAmount', groupbycols) df_dfg = df_dfg.reset_index() df_dfg.columns = df_dfg.columns.droplevel(level=1) # if datatypes are strings, ensure that Null values remain NoneType df_dfg = replace_strings_with_NoneType(df_dfg) return df_dfg
f8333087efc4a48d70aa6e3d727f73a7d03c8252
6,060
def unpack(X): """ Unpack a comma separated list of values into a flat list """ return flatten([x.split(",") for x in list(X)])
1033fd5bdcd292a130c08a8f9819bf66a38fccac
6,061
def doize(tock=0.0, **opts): """ Decorator that returns Doist compatible decorated generator function. Usage: @doize def f(): pass Parameters: tock is default tock attribute of doized f opts is dictionary of remaining parameters that becomes .opts attribute of doized f """ def decorator(f): # must create copy not wrapper so inspect.isgeneratorfunction works # result of decoration g = helping.copy_func(f) g.tock = tock # default tock attributes g.done = None # default done state g.opts = dict(opts) # default opts attribute return g return decorator
0c4a4220546b8c0cbc980c10de0476c9fc6c7995
6,062
def make_chained_transformation(tran_fns, *args, **kwargs): """Returns a dataset transformation function that applies a list of transformations sequentially. Args: tran_fns (list): A list of dataset transformation. *args: Extra arguments for each of the transformation function. **kwargs: Extra keyword arguments for each of the transformation function. Returns: A transformation function to be used in :tf_main:`tf.data.Dataset.map <data/Dataset#map>`. """ def _chained_fn(data): for tran_fns_i in tran_fns: data = tran_fns_i(data, *args, **kwargs) return data return _chained_fn
5f24e030df74a0617e633ca8f8d4a3954674b001
6,064
def configure_optimizer(learning_rate): """Configures the optimizer used for training. Args: learning_rate: A scalar or `Tensor` learning rate. Returns: An instance of an optimizer. Raises: ValueError: if FLAGS.optimizer is not recognized. """ if FLAGS.optimizer == 'adadelta': optimizer = tf.train.AdadeltaOptimizer( learning_rate, rho=FLAGS.adadelta_rho, epsilon=FLAGS.opt_epsilon) elif FLAGS.optimizer == 'adagrad': optimizer = tf.train.AdagradOptimizer( learning_rate, initial_accumulator_value=FLAGS.adagrad_initial_accumulator_value) elif FLAGS.optimizer == 'adam': optimizer = tf.train.AdamOptimizer( learning_rate, beta1=FLAGS.adam_beta1, beta2=FLAGS.adam_beta2, epsilon=FLAGS.opt_epsilon) elif FLAGS.optimizer == 'ftrl': optimizer = tf.train.FtrlOptimizer( learning_rate, learning_rate_power=FLAGS.ftrl_learning_rate_power, initial_accumulator_value=FLAGS.ftrl_initial_accumulator_value, l1_regularization_strength=FLAGS.ftrl_l1, l2_regularization_strength=FLAGS.ftrl_l2) elif FLAGS.optimizer == 'momentum': optimizer = tf.train.MomentumOptimizer( learning_rate, momentum=FLAGS.momentum, name='Momentum') elif FLAGS.optimizer == 'rmsprop': optimizer = tf.train.RMSPropOptimizer( learning_rate, decay=FLAGS.rmsprop_decay, momentum=FLAGS.rmsprop_momentum, epsilon=FLAGS.opt_epsilon) elif FLAGS.optimizer == 'sgd': optimizer = tf.train.GradientDescentOptimizer(learning_rate) elif FLAGS.optimizer == "adamweightdecay": optimizer = AdamWeightDecayOptimizer( learning_rate=learning_rate, weight_decay_rate=0.01, beta_1=FLAGS.adam_beta1, beta_2=FLAGS.adam_beta2, epsilon=FLAGS.opt_epsilon, exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"]) else: raise ValueError('Optimizer [%s] was not recognized' % FLAGS.optimizer) return optimizer
bf7dd03c4133675d58428a054cc16e7be41e88b4
6,065
import functools def train_and_evaluate(config, workdir): """Runs a training and evaluation loop. Args: config: Configuration to use. workdir: Working directory for checkpoints and TF summaries. If this contains checkpoint training will be resumed from the latest checkpoint. Returns: Training state. """ rng = jax.random.PRNGKey(config.seed) rng, data_rng = jax.random.split(rng) # Make sure config defines num_epochs and num_train_steps appropriately. utils.check_epochs_and_steps(config) # Check that perturbed-topk is selection method. assert config.selection_method == "perturbed-topk", ( "ntsnet only supports perturbed-topk as selection method. Got: {}".format( config.selection_method)) train_preprocessing_fn, eval_preprocessing_fn = data.parse_preprocessing_strings( config.get("train_preprocess_str", ""), config.get("eval_preprocess_str", "")) assert config.batch_size % jax.local_device_count() == 0, ( f"Batch size ({config.batch_size}) should be divisible by number of " f"devices ({jax.local_device_count()}).") per_device_batch_size = config.batch_size // jax.local_device_count() train_ds, eval_ds, num_classes = data.get_dataset( config.dataset, per_device_batch_size, data_rng, train_preprocessing_fn=train_preprocessing_fn, eval_preprocessing_fn=eval_preprocessing_fn, **config.get("data", {})) module = AttentionNet.partial(config=config, num_classes=num_classes) optimizer = create_optimizer(config) loss_fn = functools.partial(ntsnet_loss, config=config) train_metrics_dict = { "train_loss": loss_fn, "train_loss_raw": cross_entropy_raw_logits, "train_loss_concat": cross_entropy_concat_logits, "train_loss_part": cross_entropy_part_logits, "train_accuracy": accuracy, "train_rpn_scores_entropy": rpn_scores_entropy, } eval_metrics_dict = { "eval_loss": loss_fn, "eval_loss_raw": cross_entropy_raw_logits, "eval_loss_concat": cross_entropy_concat_logits, "eval_loss_part": cross_entropy_part_logits, "eval_accuracy": accuracy, "eval_rpn_scores_entropy": rpn_scores_entropy, } # Enables relevant statistics aggregator. stats_aggregators = [] def add_image_prefix(image_aggregator): def aggregator(stats): d = image_aggregator(stats) return {f"image_{k}": v for k, v in d.items()} return aggregator if config.get("log_images", True): @add_image_prefix def plot_patches(stats): d = { "part_imgs": (stats["part_imgs"] + 1.0) / 2.0, "x": (stats["x"] + 1.0) / 2.0 } for i, sc in enumerate(stats["scores"]): d[f"scores_{i}"] = sc return d stats_aggregators.append(plot_patches) stats_aggregators.append(lambda x: {"sigma": x["sigma"]}) state = classification_lib.training_loop( module=module, rng=rng, train_ds=train_ds, eval_ds=eval_ds, loss_fn=loss_fn, optimizer=optimizer, train_metrics_dict=train_metrics_dict, eval_metrics_dict=eval_metrics_dict, stats_aggregators=stats_aggregators, config=config, workdir=workdir) return state
87f1dba561563acc0033663a30f105fe4056d235
6,066
def increment(i,k): """ this is a helper function for a summation of the type :math:`\sum_{0 \leq k \leq i}`, where i and k are multi-indices. Parameters ---------- i: numpy.ndarray integer array, i.size = N k: numpy.ndarray integer array, k.size = N Returns ------- changes k on return Example ------- k = [1,0,1] i = [2,0,2] increment(i, k) # changes k to [1,0,2] increment(i, k) # changes k to [2,0,0] increment(i, k) # changes k to [2,0,1] """ carryover = 1 if len(k) != len(i): raise ValueError('size of i and k do not match up') for n in range(len(k))[::-1]: if i[n] == 0: continue tmp = k[n] + carryover # print 'tmp=',tmp carryover = tmp // (i[n]+1) # print 'carryover=',carryover k[n] = tmp % (i[n]+1) if carryover == 0: break return k
1ac8ef592376fbfa0d04cdd4b1c6b29ad3ed9fbd
6,067
def sample_lopt(key: chex.PRNGKey) -> cfgobject.CFGObject: """Sample a small lopt model.""" lf = cfgobject.LogFeature rng = hk.PRNGSequence(key) task_family_cfg = para_image_mlp.sample_image_mlp(next(rng)) lopt_name = parametric_utils.choice( next(rng), [ "LearnableAdam", "LearnableSGDM", "LearnableSGD", "MLPLOpt", "AdafacMLPLOpt" ]) kwargs = {} if lopt_name in ["MLPLOpt", "AdafacMLPLOpt"]: kwargs["hidden_size"] = lf(parametric_utils.log_int(next(rng), 2, 512)) kwargs["hidden_layers"] = parametric_utils.log_int(next(rng), 1, 4) kwargs["exp_mult"] = lf(parametric_utils.log_float(next(rng), 1e-5, 1)) kwargs["step_mult"] = lf(parametric_utils.log_float(next(rng), 1e-5, 1)) lopt_cfg = cfgobject.CFGObject(lopt_name, kwargs) num_steps = lf(parametric_utils.log_int(next(rng), 1, 100)) outer_bs = lf(parametric_utils.log_int(next(rng), 1, 8)) return cfgobject.CFGObject( "ParametricLOpt", { "lopt": lopt_cfg, "task_family": task_family_cfg, "num_steps": num_steps, "outer_batch_size": outer_bs, })
b52a7640532ed8ce7760474edbd9832d93e7bdc3
6,068
import numpy import time def gen_df_groupby_usecase(method_name, groupby_params=None, method_params=''): """Generate df groupby method use case""" groupby_params = {} if groupby_params is None else groupby_params groupby_params = get_groupby_params(**groupby_params) func_text = groupby_usecase_tmpl.format(**{ 'method_name': method_name, 'groupby_params': groupby_params, 'method_params': method_params }) global_vars = {'np': numpy, 'time': time} loc_vars = {} exec(func_text, global_vars, loc_vars) _df_groupby_usecase = loc_vars[f'df_groupby_{method_name}_usecase'] return _df_groupby_usecase
3a4f5745744299db354c17198d3175ad8b7ce4e4
6,069
import csv def merge_csvfiles(options): """ Think of this as a 'join' across options.mergefiles on equal values of the column options.timestamp. This function takes each file in options.mergefiles, reads them, and combines their columns in options.output. The only common column should be options.timestamp. The results are undefined if the mergefiles share other column names. Args: options.mergefiles - list of csv filenames options.output - filename of merged csv file from this operation Returns: bool - True if success Raises: AssertionError - if merging encounters an error. """ records = {} all_header_names = [] records_list = [] # collect all header fields from mergefiles for filename in options.mergefiles: records = read_csvfile(filename, True) records_list.append(records) all_header_names += records.fieldnames all_header_names = sorted(set(all_header_names)) # eliminate duplicate $header output_fd = open(options.output,'w') writer = csv.DictWriter(output_fd, all_header_names) writer.writeheader() try: # read all values until StopIteration is reached. while True: merge_list = [ records.next() for records in records_list ] merge_dict = merge_rows(merge_list, options) writer.writerow(merge_dict) except StopIteration: pass output_fd.close() return True
171b448c2b49584ce5a601f7d8789d7198fdf935
6,071
import html def row_component(cards): """ Creates a horizontal row used to contain cards. The card and row_component work together to create a layout that stretches and shrinks when the user changes the size of the window, or accesses the dashboard from a mobile device. See https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout for more information. """ return html.Div( cards, className="govuk-list card-container", style={"alignItems": "stretch"} )
baa9f86bcac786a94802d003b1abcc75686e08d8
6,072
def recCopyElement(oldelement): """Generates a copy of an xml element and recursively of all child elements. :param oldelement: an instance of lxml.etree._Element :returns: a copy of the "oldelement" .. warning:: doesn't copy ``.text`` or ``.tail`` of xml elements """ newelement = ETREE.Element(oldelement.tag, oldelement.attrib) if len(oldelement.getchildren()) > 0: for childelement in oldelement.getchildren(): newelement.append(recCopyElement(childelement)) return newelement
981f0c5ccdeacc1d82ebbde2de6f51298e82fa14
6,073
import hashlib def KETAMA(key): """ MD5-based hashing algorithm used in consistent hashing scheme to compensate for servers added/removed from memcached pool. """ d = hashlib.md5(key).digest() c = _signed_int32 h = c((ord(d[3])&0xff) << 24) | c((ord(d[2]) & 0xff) << 16) | \ c((ord(d[1]) & 0xff) << 8) | c(ord(d[0]) & 0xff) return h
6baec2ea79a166389625b19c56cbcd3734e819b7
6,075
import calendar def add_months(dt, months): """ 月加减 """ month = dt.month - 1 + months year = dt.year + month / 12 month = month % 12 + 1 day = min(dt.day, calendar.monthrange(year, month)[1]) return dt.replace(year=year, month=month, day=day)
5770c1b61e53fc692f3b13efef203d2f5d544b80
6,076
def _decomposer_interp(fp, x=None, xp=None): """Do the actual interpolation for multiprocessing""" return np.interp(x, xp, fp)
eef6debf668c62f4d817a0b3697019d0bd4007c9
6,077
import tensorflow as tf from nn4omtf import utils import numpy as np def create_nn(x, x_shape, is_training): """ Args: x: input hits array x_shape: input tensor shape for single event is_training: placeholder for indicating train or valid/test phase Note: Only code in `create_nn` function scope will be exctracted and saved in model directory. It's important to provide all necessary imports within. """ arr = [0, 5, 10, 15, 20, 25, 30] out_sz = 2 * len(arr) + 1 in_sz = np.prod(x_shape) hidden_layers = [128, 64, 64] x = tf.reshape(x, [-1, in_sz]) for sz in hidden_layers: # Pass is_training to setup batch normalization on these layers x = utils.mk_fc_layer(x, sz, act_fn=tf.nn.relu, is_training=is_training) logits = utils.mk_fc_layer(x, out_sz, is_training=is_training) return logits, arr
8c7a4ce128e434e964b951ca6fe65722c9936be9
6,078
def generate_outlier_bounds_iqr(df, column, multiplier=1.5): """ Takes in a dataframe, the column name, and can specify a multiplier (default=1.5). Returns the upper and lower bounds for the values in that column that signify outliers. """ q1 = df[column].quantile(.25) q3 = df[column].quantile(.75) iqr = q3 - q1 upper = q3 + (multiplier * iqr) lower = q1 - (multiplier * iqr) return upper, lower
7f096d5f5cf2417cbc161713715a39560efd140a
6,080
import random def generate_data(Type): """ 随机生成CAN帧中所包含的数据 :param Type: 需要生成数据的类型 :return: 生成的随机数据序列,长度为8,如['88', '77', '55', '44', '22', '11', '33'', '44'] """ data = [] if Type == 1: # 生成反馈帧单体电池Cell1-24电压信息 standard_vol = 35 offset = random.randint(0, 15) max_vol = standard_vol + offset min_vol = standard_vol - offset // 2 data.append('44') data.append(str(max_vol)) data.append('44') data.append(str(min_vol)) offset = random.randint(0, 15) max_vol = standard_vol + offset min_vol = standard_vol - offset // 2 data.append('44') data.append(str(max_vol)) data.append('44') data.append(str(min_vol)) elif Type == 2: # 生成反馈帧单体电池Cell1-8温度信息 stanard_temp = 45 offest = random.randint(0, 20) max_temp = stanard_temp + offest min_temp = stanard_temp - offest - 5 data.append(str(max_temp)) data.append('6c') data.append(str(min_temp)) data.append('6c') offest = random.randint(0, 20) max_temp = stanard_temp + offest min_temp = stanard_temp - offest - 5 data.append(str(max_temp)) data.append('6c') data.append(str(min_temp)) data.append('6c') elif Type == 3: # 生成反馈帧单体电池最高最低电压温度信息 standard_vol = 35 standard_temp = 45 vol_offset = random.randint(0, 15) temp_offset = random.randint(0, 20) max_temp = standard_temp + temp_offset min_temp = standard_temp - temp_offset - 5 max_vol = standard_vol + vol_offset min_vol = standard_vol - vol_offset // 2 data.append('44') data.append(str(max_vol)) data.append('44') data.append((str(min_vol))) data.append(str(max_temp)) data.append('5c') data.append(str(min_temp)) data.append('5c') elif Type == 4: # 生成常发帧系统电压信息 standard_vol = 55 offset = random.randint(0, 10) max_vol = standard_vol * offset * 10 min_vol = standard_vol - offset - 5 data.append('c5') data.append(str(max_vol)) data.append('f2') data.append(str(min_vol)) data.append('ed') for i in range(3): data.append(str(standard_vol + 5 * i)) elif Type == 5: pass else: pass return data
3a920be4b7ef5c5c3e258b3e3c79bc028004179a
6,081
def counting_sort(array): """ SORTING FUNCTION USING COUNTING SORT ALGORITHM ARG array = LIST(ARRAY) OF NUMBERS """ ## counter lists has elements for every maximum = max(array) counter = [0]*(maximum+1) for i in range(len(array)): counter[array[i]] += 1 for i in range(1, maximum + 1): counter[i] = counter[i] + counter[i-1] #print_array(counter) result = [0]*len(array) for i in range(len(array)): result[counter[array[i]] -1] = array[i] counter[array[i]] -= 1 return result
986e2f9277fa71dcd9897ac409653009c651c49f
6,082
import math from PIL import ImageColor def indexedcolor(i, num, npersat=15, lightness=60): """Returns an rgb color triplet for a given index, with a finite max 'num'. Thus if you need 10 colors and want to get color #5, you would call this with (5, 10). The colors are "repeatable". """ nsats = int(math.ceil(num/float(npersat))) sat = 100 - int((i//npersat)*(100/nsats)) l = lightness nhues = int(math.ceil(num/float(nsats))) hue = (i % nhues) * (360//nhues) #print >>sys.stderr, 'For i %d, num %d, got %d sats, %d hues -> %d, %d, %d' % (i, num, nsats, nhues, hue, sat, l) return ImageColor.getrgb('hsl(%d,%d%%,%d%%)' % (hue, sat, l))
418a875bc8ae50ce21f9667f46718863ba0f55e3
6,083
def make_customer_satisfaction(branch_index='A'): """Create average customer satisfaction heat map""" customer_satisfaction = make_heat_map(branch_index, 'mean(Rating)', 'Average Satisfaction') return customer_satisfaction
b891b74a8942da7c212ba7112ffb865deb52aec2
6,084
def extract_infos(fpath): """Extract information about file""" try: pe = pefile.PE(fpath) except pefile.PEFormatError: return {} res = {} res['Machine'] = pe.FILE_HEADER.Machine res['SizeOfOptionalHeader'] = pe.FILE_HEADER.SizeOfOptionalHeader res['Characteristics'] = pe.FILE_HEADER.Characteristics res['MajorLinkerVersion'] = pe.OPTIONAL_HEADER.MajorLinkerVersion res['MinorLinkerVersion'] = pe.OPTIONAL_HEADER.MinorLinkerVersion res['SizeOfCode'] = pe.OPTIONAL_HEADER.SizeOfCode res['SizeOfInitializedData'] = pe.OPTIONAL_HEADER.SizeOfInitializedData res['SizeOfUninitializedData'] = pe.OPTIONAL_HEADER.SizeOfUninitializedData res['AddressOfEntryPoint'] = pe.OPTIONAL_HEADER.AddressOfEntryPoint res['BaseOfCode'] = pe.OPTIONAL_HEADER.BaseOfCode try: res['BaseOfData'] = pe.OPTIONAL_HEADER.BaseOfData except AttributeError: res['BaseOfData'] = 0 res['ImageBase'] = pe.OPTIONAL_HEADER.ImageBase res['SectionAlignment'] = pe.OPTIONAL_HEADER.SectionAlignment res['FileAlignment'] = pe.OPTIONAL_HEADER.FileAlignment res['MajorOperatingSystemVersion'] = pe.OPTIONAL_HEADER.MajorOperatingSystemVersion res['MinorOperatingSystemVersion'] = pe.OPTIONAL_HEADER.MinorOperatingSystemVersion res['MajorImageVersion'] = pe.OPTIONAL_HEADER.MajorImageVersion res['MinorImageVersion'] = pe.OPTIONAL_HEADER.MinorImageVersion res['MajorSubsystemVersion'] = pe.OPTIONAL_HEADER.MajorSubsystemVersion res['MinorSubsystemVersion'] = pe.OPTIONAL_HEADER.MinorSubsystemVersion res['SizeOfImage'] = pe.OPTIONAL_HEADER.SizeOfImage res['SizeOfHeaders'] = pe.OPTIONAL_HEADER.SizeOfHeaders res['CheckSum'] = pe.OPTIONAL_HEADER.CheckSum res['Subsystem'] = pe.OPTIONAL_HEADER.Subsystem res['DllCharacteristics'] = pe.OPTIONAL_HEADER.DllCharacteristics res['SizeOfStackReserve'] = pe.OPTIONAL_HEADER.SizeOfStackReserve res['SizeOfStackCommit'] = pe.OPTIONAL_HEADER.SizeOfStackCommit res['SizeOfHeapReserve'] = pe.OPTIONAL_HEADER.SizeOfHeapReserve res['SizeOfHeapCommit'] = pe.OPTIONAL_HEADER.SizeOfHeapCommit res['LoaderFlags'] = pe.OPTIONAL_HEADER.LoaderFlags res['NumberOfRvaAndSizes'] = pe.OPTIONAL_HEADER.NumberOfRvaAndSizes # Sections res['SectionsNb'] = len(pe.sections) entropy = list(map(lambda x: x.get_entropy(), pe.sections)) res['SectionsMeanEntropy'] = sum(entropy) / float(len(entropy)) res['SectionsMinEntropy'] = min(entropy) res['SectionsMaxEntropy'] = max(entropy) raw_sizes = list(map(lambda x: x.SizeOfRawData, pe.sections)) res['SectionsMeanRawsize'] = sum(raw_sizes) / float(len(raw_sizes)) res['SectionsMinRawsize'] = min(raw_sizes) res['SectionsMaxRawsize'] = max(raw_sizes) virtual_sizes = list(map(lambda x: x.Misc_VirtualSize, pe.sections)) res['SectionsMeanVirtualsize'] = sum( virtual_sizes) / float(len(virtual_sizes)) res['SectionsMinVirtualsize'] = min(virtual_sizes) res['SectionMaxVirtualsize'] = max(virtual_sizes) # Imports try: res['ImportsNbDLL'] = len(pe.DIRECTORY_ENTRY_IMPORT) imports = sum([x.imports for x in pe.DIRECTORY_ENTRY_IMPORT], []) res['ImportsNb'] = len(imports) res['ImportsNbOrdinal'] = len( list(filter(lambda x: x.name is None, imports))) except AttributeError: res['ImportsNbDLL'] = 0 res['ImportsNb'] = 0 res['ImportsNbOrdinal'] = 0 # Exports try: res['ExportNb'] = len(pe.DIRECTORY_ENTRY_EXPORT.symbols) except AttributeError: # No export res['ExportNb'] = 0 # Resources resources = get_resources(pe) res['ResourcesNb'] = len(resources) if len(resources) > 0: entropy = list(map(lambda x: x[0], resources)) res['ResourcesMeanEntropy'] = sum(entropy) / float(len(entropy)) res['ResourcesMinEntropy'] = min(entropy) res['ResourcesMaxEntropy'] = max(entropy) sizes = list(map(lambda x: x[1], resources)) res['ResourcesMeanSize'] = sum(sizes) / float(len(sizes)) res['ResourcesMinSize'] = min(sizes) res['ResourcesMaxSize'] = max(sizes) else: res['ResourcesNb'] = 0 res['ResourcesMeanEntropy'] = 0 res['ResourcesMinEntropy'] = 0 res['ResourcesMaxEntropy'] = 0 res['ResourcesMeanSize'] = 0 res['ResourcesMinSize'] = 0 res['ResourcesMaxSize'] = 0 # Load configuration size try: res['LoadConfigurationSize'] = pe.DIRECTORY_ENTRY_LOAD_CONFIG.struct.Size except AttributeError: res['LoadConfigurationSize'] = 0 # Version configuration size try: version_infos = get_version_info(pe) res['VersionInformationSize'] = len(version_infos.keys()) except AttributeError: res['VersionInformationSize'] = 0 return res
f7f3cbef72f7b9d05c25e2aabde33c7a814d05bd
6,085
def calibrate_eye_in_hand(calibration_inputs): """Perform eye-in-hand calibration. Args: calibration_inputs: List of HandEyeInput Returns: A HandEyeOutput instance containing the eye-in-hand transform """ return HandEyeOutput( _zivid.calibration.calibrate_eye_in_hand( [ calibration_input._HandEyeInput__impl # pylint: disable=protected-access for calibration_input in calibration_inputs ] ) )
d8bc7b8cfe821809c441d3151297edf7f8267803
6,086
from typing import Optional def get_intersect(A: np.ndarray, B: np.ndarray, C: np.ndarray, D: np.ndarray) -> Optional[np.ndarray]: """ Get the intersection of [A, B] and [C, D]. Return False if segment don't cross. :param A: Point of the first segment :param B: Point of the first segment :param C: Point of the second segment :param D: Point of the second segment :return: The intersection if any, otherwise None. """ det = (B[0] - A[0]) * (C[1] - D[1]) - (C[0] - D[0]) * (B[1] - A[1]) if det == 0: # Parallel return None else: t1 = ((C[0] - A[0]) * (C[1] - D[1]) - (C[0] - D[0]) * (C[1] - A[1])) / det t2 = ((B[0] - A[0]) * (C[1] - A[1]) - (C[0] - A[0]) * (B[1] - A[1])) / det if t1 > 1 or t1 < 0 or t2 > 1 or t2 < 0: # not intersect return None else: xi = A[0] + t1 * (B[0] - A[0]) yi = A[1] + t1 * (B[1] - A[1]) return np.array([xi, yi])
1c3fab6d189f218e9f5f7e6648a46a9e53683366
6,087
from typing import Callable def _make_vector_laplace_scipy_nd(bcs: Boundaries) -> Callable: """ make a vector Laplacian using the scipy module This only supports uniform discretizations. Args: bcs (:class:`~pde.grids.boundaries.axes.Boundaries`): |Arg_boundary_conditions| Returns: A function that can be applied to an array of values """ scaling = bcs._uniform_discretization**-2 args = bcs._scipy_border_mode dim = bcs.grid.dim shape_out = (dim,) + bcs.grid.shape def vector_laplace(arr, out=None): """ apply vector Laplacian operator to array `arr` """ if out is None: out = np.empty(shape_out) for i in range(dim): ndimage.laplace(arr[i], output=out[i], **args) return out * scaling return vector_laplace
3cda36d53755c84fcb47259ade64752610aeffbe
6,088
def dot_to_dict(values): """Convert dot notation to a dict. For example: ["token.pos", "token._.xyz"] become {"token": {"pos": True, "_": {"xyz": True }}}. values (iterable): The values to convert. RETURNS (dict): The converted values. """ result = {} for value in values: path = result parts = value.lower().split(".") for i, item in enumerate(parts): is_last = i == len(parts) - 1 path = path.setdefault(item, True if is_last else {}) return result
a2c56a01b179d27eabc728d6ff2ec979885d5feb
6,089
def _draw_edges(G, pos, nodes, ax): """Draw the edges of a (small) networkx graph. Params: G (nx.classes.*) a networkx graph. pos (dict) returned by nx.layout methods. nodes (dict) of Circle patches. ax (AxesSubplot) mpl axe. Return: (dict) of Circle patches. """ pointer = ArrowStyle.Fancy(head_width=10, head_length=15) curved_edge = ConnectionStyle('arc3', rad=.2) arrow_kwargs = {'arrowstyle': pointer, 'antialiased': True, 'connectionstyle': curved_edge, 'edgecolor': None, 'facecolor': None, 'linewidth': None} edges = {} for i, (a, b, attr) in enumerate(G.edges.data()): arrow_kwargs['edgecolor'] = attr['color'] arrow_kwargs['facecolor'] = attr['color'] arrow_kwargs['linewidth'] = 1.0 edge = FancyArrowPatch(pos[a], pos[b], patchA=nodes[a], patchB=nodes[b], shrinkA=5, shrinkB=5, **arrow_kwargs) ax.add_patch(edge) edges[(a, b)] = edge return edges
28a207a190a7066656518de7c8e8626b2f534146
6,090
def benjamini_hochberg_stepup(p_vals): """ Given a list of p-values, apply FDR correction and return the q values. """ # sort the p_values, but keep the index listed index = [i[0] for i in sorted(enumerate(p_vals), key=lambda x:x[1])] # keep the p_values sorted p_vals = sorted(p_vals) q_vals = [None]*len(p_vals) # initialize an empty list prev_q = 0 # BH Step Up begins here. for i, p in enumerate(p_vals): q = len(p_vals)/(i+1)*p # calculate the q_value for the current point q = min(q, 1) # if q >1, make it == 1 q = max(q, prev_q) # preserve monotonicity q_vals[i] = q # store the q_value prev_q = q # update the previous q_value # prevent the lowest q value from going to zero if np.sum(q_vals == 0) > 0: # set the min q-value to 10x less than the smallest non-zero value q_vals[np.where(q_vals == 0)] = np.min(q_vals[np.where(q_vals != 0)])/10 # return q_vals and the index so we can match up each q-value to its index return q_vals, index
7cff2e8d28cda37c4271935ef2e6fb48441137c3
6,091
def remove_transcription_site(rna, foci, nuc_mask, ndim): """Distinguish RNA molecules detected in a transcription site from the rest. A transcription site is defined as as a foci detected within the nucleus. Parameters ---------- rna : np.ndarray, np.int64 Coordinates of the detected RNAs with shape (nb_spots, 4) or (nb_spots, 3). One coordinate per dimension (zyx or yx coordinates) plus the index of the foci assigned to the RNA. If no foci was assigned, value is -1. foci : np.ndarray, np.int64 Array with shape (nb_foci, 5) or (nb_foci, 4). One coordinate per dimension for the foci centroid (zyx or yx coordinates), the number of RNAs detected in the foci and its index. nuc_mask : np.ndarray, bool Binary mask of the nuclei region with shape (y, x). ndim : int Number of spatial dimensions to consider (2 or 3). Returns ------- rna_out_ts : np.ndarray, np.int64 Coordinates of the detected RNAs with shape (nb_spots, 4) or (nb_spots, 3). One coordinate per dimension (zyx or yx coordinates) plus the index of the foci assigned to the RNA. If no foci was assigned, value is -1. RNAs from transcription sites are removed. foci : np.ndarray, np.int64 Array with shape (nb_foci, 5) or (nb_foci, 4). One coordinate per dimension for the foci centroid (zyx or yx coordinates), the number of RNAs detected in the foci and its index. ts : np.ndarray, np.int64 Array with shape (nb_ts, 5) or (nb_ts, 4). One coordinate per dimension for the transcription site centroid (zyx or yx coordinates), the number of RNAs detected in the transcription site and its index. """ # check parameters check_array(rna, ndim=2, dtype=np.int64) # discriminate foci from transcription sites ts, foci = identify_objects_in_region( nuc_mask, foci, ndim) # filter out rna from transcription sites rna_in_ts = ts[:, ndim + 1] mask_rna_in_ts = np.isin(rna[:, ndim], rna_in_ts) rna_out_ts = rna[~mask_rna_in_ts] return rna_out_ts, foci, ts
3f6fe083cb85dbf2f7bc237e750be57f13398889
6,092
def hexagonal_numbers(length: int) -> list[int]: """ :param len: max number of elements :type len: int :return: Hexagonal numbers as a list Tests: >>> hexagonal_numbers(10) [0, 1, 6, 15, 28, 45, 66, 91, 120, 153] >>> hexagonal_numbers(5) [0, 1, 6, 15, 28] >>> hexagonal_numbers(0) Traceback (most recent call last): ... ValueError: Length must be a positive integer. """ if length <= 0 or not isinstance(length, int): raise ValueError("Length must be a positive integer.") return [n * (2 * n - 1) for n in range(length)]
632e60505cb17536a17b20305a51656261e469f5
6,093
def get_free_remote_port(node: Node) -> int: """Returns a free remote port. Uses a Python snippet to determine a free port by binding a socket to port 0 and immediately releasing it. :param node: Node to find a port on. """ output = node.run("python -c 'import socket; s=socket.socket();" " s.bind((str(), 0)); print(s.getsockname()[1]);" " s.close()'") return int(output)
4cdb0f62909abae1af8470611f63fcc9f5495095
6,094
from typing import Tuple from typing import List import tqdm def read_conll_data(data_file_path: str) -> Tuple[List[Sentence], List[DependencyTree]]: """ Reads Sentences and Trees from a CONLL formatted data file. Parameters ---------- data_file_path : ``str`` Path to data to be read. """ sentences: List[Sentence] = [] trees: List[DependencyTree] = [] with open(data_file_path, 'r') as file: sentence_tokens = [] tree = DependencyTree() for line in tqdm(file): line = line.strip() array = line.split('\t') if len(array) < 10: if sentence_tokens: trees.append(tree) sentences.append(sentence_tokens) tree = DependencyTree() sentence_tokens = [] else: word = array[1] pos = array[4] head = int(array[6]) dep_type = array[7] token = Token(word=word, pos=pos, head=head, dep_type=dep_type) sentence_tokens.append(token) tree.add(head, dep_type) if not sentences: raise Exception(f"No sentences read from {data_file_path}. " f"Make sure you have not replaced tabs with spaces " f"in conll formatted file by mistake.") return sentences, trees
6bee76277fb6a15d03c5c80a5d083920a4412222
6,095
from typing import Optional def get_algo_meta(name: AlgoMeta) -> Optional[AlgoMeta]: """ Get meta information of a built-in or registered algorithm. Return None if not found. """ for algo in get_all_algo_meta(): if algo.name == name: return algo return None
3a568356d56d26192a1e38be6ec5dd57b52a9bba
6,096
def read_gbt_target(sdfitsfile, objectname, verbose=False): """ Give an object name, get all observations of that object as an 'obsblock' """ bintable = _get_bintable(sdfitsfile) whobject = bintable.data['OBJECT'] == objectname if verbose: print("Number of individual scans for Object %s: %i" % (objectname,whobject.sum())) calON = bintable.data['CAL'] == 'T' # HACK: apparently bintable.data can sometimes treat itself as scalar... if np.isscalar(calON): calON = np.array([(val in ['T',True]) for val in bintable.data['CAL']]) n_nods = np.unique(bintable.data['PROCSIZE']) blocks = {} for sampler in np.unique(bintable.data[whobject]['SAMPLER']): whsampler = bintable.data['SAMPLER'] == sampler nods = np.unique(bintable.data['PROCSEQN'][whsampler*whobject]) for nod in nods: whnod = bintable.data['PROCSEQN'] == nod for onoff in ('ON','OFF'): calOK = (calON - (onoff=='OFF')) whOK = (whobject*whsampler*calOK*whnod) if whOK.sum() == 0: continue if verbose: print("Number of spectra for sampler %s, nod %i, cal%s: %i" % (sampler,nod,onoff,whOK.sum())) crvals = bintable.data[whOK]['CRVAL1'] if len(crvals) > 1: maxdiff = np.diff(crvals).max() else: maxdiff = 0 freqres = np.max(bintable.data[whOK]['FREQRES']) if maxdiff < freqres: splist = [read_gbt_scan(bintable,ii) for ii in np.where(whOK)[0]] blocks[sampler+onoff+str(nod)] = pyspeckit.ObsBlock(splist,force=True) blocks[sampler+onoff+str(nod)]._arithmetic_threshold = np.diff(blocks[sampler+onoff+str(nod)].xarr).min() / 5. else: print("Maximum frequency difference > frequency resolution: %f > %f" % (maxdiff, freqres)) return blocks
1215fdccee50f0ab5d135a5cccf0d02da09410e2
6,098
def regression_target(label_name=None, weight_column_name=None, target_dimension=1): """Creates a _TargetColumn for linear regression. Args: label_name: String, name of the key in label dict. Can be null if label is a tensor (single headed models). weight_column_name: A string defining feature column name representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example. target_dimension: dimension of the target for multilabels. Returns: An instance of _TargetColumn """ return _RegressionTargetColumn(loss_fn=_mean_squared_loss, label_name=label_name, weight_column_name=weight_column_name, target_dimension=target_dimension)
064954b58b57caeb654ed30f31b9560ab01d7c42
6,099
def rdoublegauss(mu1, mu2, sigma1, sigma2, ratio, size=None): """random variable from double gaussian""" r1 = ratio / (1. + ratio) r2 = 1 - r1 R = np.asarray(np.random.random(size)) Rshape = R.shape R = np.atleast1d(R) mask1 = (R < r1) mask2 = ~mask1 N1 = mask1.sum() N2 = R.size - N1 R[mask1] = norm(mu1, sigma1).rvs(N1) R[mask2] = norm(mu2, sigma2).rvs(N2) return R.reshape(Rshape)
5286d31985656d2f38c4e6b126d2f6d0915c82cb
6,100
def check_add_role(store, id, name): """ Checks if role exist and then adds record if it doesn't """ role = store.find_role(name) if role == None: return store.create_role(id=id, name=name) else: return role
c8680158cc005bf7a278951774b9fe0a733fc8c6
6,101
from pathlib import Path def delta_path(base_path: Path, item_path: Path, new_base_path: Path) -> Path: """ Removes a base path from an item, and appends result to a new path :param base_path: The :py:class:`pathlib.Path` to be removed from `item_path` :param item_path: The :py:class:`pathlib.Path` to be delta-ed :param new_base_path: The new base :py:class:`pathlib.Path` for `item_path`. :raises ValueError: If base_path is not a sub-path of item_path. :return: The new combined path. """ path_stub = item_path.relative_to(base_path) new_item_path = new_base_path / path_stub return new_item_path
ec531a011e36f053a8092525faae2047f5f66ccc
6,103
import asyncio async def async_validate_config(hass, config): """Validate config.""" automations = list( filter( lambda x: x is not None, await asyncio.gather( *( _try_async_validate_config_item(hass, p_config, config) for _, p_config in config_per_platform(config, DOMAIN) ) ), ) ) # Create a copy of the configuration with all config for current # component removed and add validated config back in. config = config_without_domain(config, DOMAIN) config[DOMAIN] = automations return config
7f77a4c008a5fcb8d275bb2e7f65005d9e1c49b5
6,104
def _fwd6(y, dt): # pragma: no cover """Compute the first derivative of a uniformly-spaced-in-time array with a sixth-order forward difference scheme. Parameters ---------- y : (7,...) ndarray Data to differentiate. The derivative is taken along the first axis. Returns ------- dy0 : float or (...) ndarray Approximate derivative of y at the first entry, i.e., dy[0] / dt. """ return (-147*y[0] + 360*y[1] - 450*y[2] + 400*y[3] - 225*y[4] \ + 72*y[5] - 10*y[6]) / (60*dt)
0d7321b3615fab6d6e065917ec94479ada0ee70c
6,106
def minimize_newton_cg(nrgs, x0, num_params): """ Minimzes a structure using a Newton-CG method. This requires a hopefully fully invertible analytic Hessian that will be used to minimize geometries. Parameters ---------- nrgs: [list of functionals] Energy functions used to compute the energy, hessian, and mixed partials. x0: np.array Structure of the molecule to be minimized. num_params: int total number of parameters of the model. (ytz): this should be refactored out. """ assert x0.shape[1] == 3 N = x0.shape[0] def hessian(conf): conf = conf.reshape((N,3)) hess = None for e in nrgs: _, _, test_hessians, _ = e.total_derivative(conf, num_params) if hess is None: hess = test_hessians else: hess += test_hessians return hess.reshape((N*3, N*3)) def gradient(conf): conf = conf.reshape((N,3)) grads = np.zeros_like(conf) for e in nrgs: _, test_grads, _, _ = e.total_derivative(conf, num_params) grads += test_grads return grads.reshape(-1) def energy(conf): conf = conf.reshape((N,3)) nrg = 0 for e in nrgs: test_nrg, _, _, _ = e.total_derivative(conf, num_params) nrg += test_nrg return nrg res = minimize( energy, x0.reshape(-1), # method='Newton-CG', method='L-BFGS-B', jac=gradient, # hess=hessian, # options={'xtol': 1e-8, 'disp': False} ) # print("before and after") # print(x0) # print(np.array(res.x).reshape((N,3))) return res.x.reshape((N,3)) # print(energy(x0), gradient(x0), hessian(x0).shape)
46ddd6b2004579ef07170ef578859c7119ed4e13
6,107
def currency(price, currency): """ Returns price in currency format """ price = float(price) price *= float(currency.exchange_rate) try: return currency.display_format.format(price) except Exception as e: raise ImproperlyConfigured('Invalid currency format string: "%s" for currency "%s". %s' % (currency.display_format, currency.name, e.message))
2204993f5f51c62669395de40dc14d16f110c4b4
6,108
def project_point(x, R, T, f, c, k, p): """ Args x: Nx3 points in world coordinates R: 3x3 Camera rotation matrix T: 3x1 Camera translation parameters f: 2x1 Camera focal length c: 2x1 Camera center k: 3x1 Camera radial distortion coefficients p: 2x1 Camera tangential distortion coefficients Returns ypixel.T: Nx2 points in pixel space depth: N points """ if 'aist' in config.DATASET.TEST_DATASET: xcam = R.dot(x.T) + T # [B, 3, PJ] else: xcam = R.dot(x.T - T) # [B, 3, PJ] y = xcam[:2] / (xcam[2] + 1e-5) # === add camera distortion r = np.sum(y ** 2, axis=0) d = 1 + k[0] * r + k[1] * r * r + k[2] * r * r * r u = y[0, :] * d + 2 * p[0] * y[0, :] * y[1, :] + p[1] * (r + 2 * y[0, :] * y[0, :]) v = y[1, :] * d + 2 * p[1] * y[0, :] * y[1, :] + p[0] * (r + 2 * y[1, :] * y[1, :]) y[0, :] = u y[1, :] = v ypixel = np.multiply(f, y) + c depth = xcam[2] return ypixel.T, depth
5b6cce136ac6753fcdefcde01db9636357687ab2
6,109
def sum_to_scalar(*args): """Adding losses/nmsks together that were evaluated in parallel""" new_args = list() for arg in args: new_args.append({k: v.sum() for (k, v) in arg.items()}) return new_args
a4264911962c7bf3432735f8872522e193ceec8f
6,110
def inv(h_array: np.ndarray) -> np.ndarray: """ Calculate pinvh of PSD array. Note pinvh performs poorly if input matrix is far from being Hermitian, so use pinv2 instead in this case. Parameters: ---------- h_array : input matrix, assume to be Hermitian Returns: ---------- h_inv : pseudo inverse of h_array. """ if np.allclose(h_array, h_array.T): h_inv = linalg.pinvh(h_array) else: h_inv = linalg.pinv2(h_array) return h_inv
c3305878b3f2dfdaabe6a245d8063b1039e19bc2
6,111
from datetime import datetime def update_risk_cavs(connection): """Parse cavs from html to markdown. Args: connection: SQLAlchemy connection. Returns: ids of risks for which cavs where updated. """ cavs_data = connection.execute( sa.text(""" SELECT cav.id, cav.attribute_value, cav.attributable_id FROM custom_attribute_values AS cav JOIN custom_attribute_definitions AS cad ON cad.id = cav.custom_attribute_id WHERE cad.definition_type = "risk" AND attribute_value REGEXP :reg_exp """), reg_exp=REGEX_HTML ).fetchall() risks_ids = {data[2] for data in cavs_data} cavs_ids = {data[0] for data in cavs_data} cavs_table = sa.sql.table( 'custom_attribute_values', sa.Column('id', sa.Integer()), sa.Column('attribute_value', sa.Text, nullable=False), sa.Column('updated_at', sa.DateTime, nullable=False), ) for cav_id, attribute_value, _ in cavs_data: op.execute(cavs_table.update().values( attribute_value=parse_html(attribute_value), updated_at=datetime.datetime.utcnow(), ).where(cavs_table.c.id == cav_id)) utils.add_to_objects_without_revisions_bulk( connection, cavs_ids, "CustomAttributeValue", "modified", ) return risks_ids
8af9ef613259915573ca1efc699278c0c2a6a4e4
6,112
def prefix_to_number(prefix): """Return the number of the prefix.""" if prefix in PREFIXES: return PREFIXES[prefix] raise ValueError(f'prefix "{prefix}" not found in list of prefixes')
e0a3822aa615d79a1ff0d5c7405097e055573ed0
6,113
def is_response_going_to_be_used(request, spider): """Check whether the request's response is going to be used.""" callback = get_callback(request, spider) if is_callback_using_response(callback): return True for provider in discover_callback_providers(callback): if is_provider_using_response(provider): return True return False
4cd908dbebfd6089a25bf5168937b2a4f02f23ee
6,114
def eval_market1501(distmat, q_vids, g_vids, q_camids, g_camids, max_rank=50): """Evaluation with Market1501 metrics Key: for each query identity, its gallery images from the same camera view are discarded. """ num_q, num_g = distmat.shape if num_g < max_rank: max_rank = num_g print(f"Note: number of gallery samples is quite small, got {num_g}") indices = np.argsort(distmat, axis=1) matches = (g_vids[indices] == q_vids[:, np.newaxis]).astype(np.int32) # compute cmc curve for each query all_cmc = [] all_ap = [] num_valid_q = 0. # number of valid query for q_idx in range(num_q): # get query vid and camid q_vid = q_vids[q_idx] q_camid = q_camids[q_idx] # remove gallery samples that have the same vid and camid with query order = indices[q_idx] remove = (g_vids[order] == q_vid) & (g_camids[order] == q_camid) keep = np.invert(remove) # compute cmc curve # binary vector, positions with value 1 are correct matches orig_cmc = matches[q_idx][keep] if not np.any(orig_cmc): # this condition is true when query identity does not appear in gallery continue cmc = orig_cmc.cumsum() cmc[cmc > 1] = 1 all_cmc.append(cmc[:max_rank]) num_valid_q += 1. # compute average precision # https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Average_precision num_rel = orig_cmc.sum() tmp_cmc = orig_cmc.cumsum() tmp_cmc = [x / (i+1.) for i, x in enumerate(tmp_cmc)] tmp_cmc = np.asarray(tmp_cmc) * orig_cmc ap_ = tmp_cmc.sum() / num_rel all_ap.append(ap_) assert num_valid_q > 0, "Error: all query identities do not appear in gallery" all_cmc = np.array(all_cmc, dtype=np.float32) all_cmc = all_cmc.sum(0) / num_valid_q map_ = np.mean(all_ap) return all_cmc, map_
5387ee7fe7cac90406ac91619844e8e1fd814d88
6,115
def pytype_raise(): """A pytest.raises wrapper for catching TypeErrors. Parameters ---------- match : str, default=None Regular expression to match exception error text against. Returns ------- RaisesContext pytest context manager for catching exception-raising blocks. """ def _pytype_raise(match=None): return pytest.raises(TypeError, match=match) _pytype_raise.__doc__ = pyvalue_raise.__doc__ return _pytype_raise
ec5c7a56a8a3fb9028fb0ec72ac814061def467d
6,117
def lift_split_buffers(lines): """Lift the split buffers in the program For each module, if we find any split buffers with the name "buf_data_split", we will lift them out of the for loops and put them in the variable declaration section at the beginning of the module. Parameters ---------- lines: contains the codelines of the program """ code_len = len(lines) for pos in range(code_len): line = lines[pos] if line.find("variable=buf_data_split") != -1: # Search for the variable declaration section decl_pos = -1 prev_pos = pos - 1 while prev_pos >= 0: prev_line = lines[prev_pos] if prev_line.find("Variable Declaration") != -1: decl_pos = prev_pos break prev_pos -= 1 # Move the two code lines at [pos - 1] and [pos] to [decl_pos] and # [decl_pos + 1] indent = lines[decl_pos].find("/*") line1 = " " * indent + lines[pos - 1].lstrip() line2 = " " * indent + lines[pos].lstrip() del lines[pos - 1] del lines[pos - 1] lines.insert(decl_pos, line1) lines.insert(decl_pos + 1, line2) return lines
78919247b241dc29de84594b097c75d5e7ae1f03
6,118
import scipy def peak_finder( df_run, cd, windowlength, polyorder, datatype, lenmax, peak_thresh): """Determines the index of each peak in a dQdV curve V_series = Pandas series of voltage data dQdV_series = Pandas series of differential capacity data cd = either 'c' for charge and 'd' for discharge. Output: i = list of indexes for each found peak""" (cycle_ind_col, data_point_col, volt_col, curr_col, dis_cap_col, char_cap_col, charge_or_discharge) = col_variables(datatype) V_series = df_run[volt_col] # this makes the peak finding smoothing independent of any smoothing that # has already occured. dQdV_series = df_run['Smoothed_dQ/dV'] sigx, sigy = cd_dataframe(V_series, dQdV_series, cd) # the below is to make sure the window length ends up an odd number - even # though we are basing it on the length of the df wl = lenmax / 20 wlint = int(round(wl)) if wlint % 2 == 0: windowlength_new = wlint + 1 else: windowlength_new = wlint if len(sigy) > windowlength_new and windowlength_new > polyorder: # has to be larger than 69 so that windowlength > 3 - necessary for sav # golay function sigy_smooth = scipy.signal.savgol_filter( sigy, windowlength_new, polyorder) else: sigy_smooth = sigy peak_thresh_ft = float(peak_thresh) i = peakutils.indexes( sigy_smooth, thres=peak_thresh_ft, min_dist=lenmax / 50) if i is not None and len(i) > 0: sigx_volts = list(sigx[i]) peak_heights = list(sigy[i]) else: sigx_volts = [] peak_heights = [] return i, sigx_volts, peak_heights
370e019354579ab7b9a4eedef514dbde84801950
6,119
def make_box(world, x_dim, y_dim, z_dim, mass=0.5): """Makes a new axis-aligned box centered at the origin with dimensions width x depth x height. The box is a RigidObject with automatically determined inertia. """ boxgeom = Geometry3D() boxgeom.loadFile("data/objects/cube.tri") # box is centered at the origin boxgeom.transform([x_dim, 0, 0, 0, y_dim, 0, 0, 0, z_dim], [-x_dim * 0.5, -y_dim * 0.5, -z_dim * 0.5]) print "Making a box a rigid object" bmass = Mass() bmass.setMass(mass) bmass.setCom([0, 0, 0]) bmass.setInertia([x_dim / 12, y_dim / 12, z_dim / 12]) box = world.makeRigidObject("box") box.geometry().set(boxgeom) box.appearance().setColor(0.6, 0.3, 0.2, 1.0) box.setMass(bmass) cparams = box.getContactParameters() cparams.kFriction = 1.5 cparams.kStiffness = 100000 cparams.kDamping = 30000 cparams.kRestitution = 0.5 return box
f3257a8339542c55d96bd752bad1d0c69c6370e0
6,120
def LikelihoodRedshiftMeasure( measure='', data=[], scenario=False, measureable=False): """ returns likelihood functions of redshift for observed data of measure, can be used to obtain estimate and deviation Parameters ---------- measure : string indicate which measure is probed data : array-like 1D array contain extragalactic component of observed values scenario : dictionary list of models combined to one scenario prior : boolean """ if not measure: exit( "you must provide a measure. Try: 'DM', 'RM', 'tau'" ) if scenario.redshift: exit( "requires scenario with telescope and population" ) ## prepare scenario for increasing redshift tmp = scenario.copy() tmp.population = False tmp.telescope = False ## container for likelihoods and deviation at incrasing redshift Ps = np.zeros( [len(DMs),len(redshift_bins)] ) devs= Ps.copy() ## for each redshift for iz, z in enumerate( redshift_bins ): tmp.redshift = z L = GetLikelihood( measure, tmp ) if measureable: L.Measureable() Ps[:,iz], devs[:,iz] = L.Likelihoods( DMs, density=True ) ### use probability density to compare same value of DM at different redshifts. Otherwise influenced by different binning Ls = [] for P, dev in Ps, devs: L = LikelihoodFunction( P=P, x=redshift_range, dev=dev ) Ls.append(L) return Ls
55d414bb0adb00fe549485f2e3682d15b761b7a4
6,123
def plural_suffix(count: int) -> str: """"s" when count is not one""" suffix = '' if count != 1: suffix = 's' return suffix
950002d57560d06e93e08647ff17d885688bca87
6,124
def _pr_exists(user, namespace, repo, idx): """ Utility method checking if a given PR exists. """ repo_obj = pagure.lib.query.get_authorized_project( flask.g.session, project_name=repo, user=user, namespace=namespace ) if not repo_obj: return False pr_obj = pagure.lib.query.search_pull_requests( flask.g.session, project_id=repo_obj.id, requestid=idx ) if not pr_obj: return False return pr_obj
2e68b6d4282f6f3ca4d9645c78579e3df3889494
6,125
import csv def readData(filename): """ Read in our data from a CSV file and create a dictionary of records, where the key is a unique record ID and each value is dict """ data_d = {} with open(filename) as f: reader = csv.DictReader(f) for row in reader: clean_row = [(k, preProcess(v)) for (k, v) in row.items()] row_id = int(row['activity_nr']) data_d[row_id] = dict(clean_row) return data_d
57dcb39dac9568024ae4be07bc0921c941d6fae3
6,126
def _get_client(app): """Returns a client instance for an App. If the App already has a client associated with it, simply returns it. Otherwise creates a new client, and adds it to the App before returning it. Args: app: A Firebase App instance (or ``None`` to use the default App). Returns: Client: A client for the specified App instance. Raises: ValueError: If the app argument is invalid. """ return _utils.get_app_service(app, _AUTH_ATTRIBUTE, Client)
de96140ed7c15a4aa390f08a76fe7de0074730db
6,127
def get_job_config_build_for_branch(**kwargs): """pass kwargs to JobConfig constructor""" return JobConfig( type=JobType.copr_build, trigger=JobConfigTriggerType.commit, branch="build-branch", scratch=True, **kwargs, )
0c16a16bce6a1f05ca8daf764dd2de80147c90c4
6,128
import yaml def get_connection_string_from_config_file(cfg_src, db_cfg_key): """ Gets connection parameters from specified section in a configuration file. """ # reading complete configuration with open(cfg_src, 'r') as yml_file: cfg = yaml.safe_load(yml_file) # looking for specified connection name for connection_cfg in cfg['connections']: if db_cfg_key in connection_cfg: db_cfg = connection_cfg[db_cfg_key] # reading distinct configuration parameters try: db_engine = db_cfg['db_engine'] user = db_cfg['user'] password = db_cfg['password'] host = db_cfg['host'] port = db_cfg['port'] database = db_cfg['database'] except KeyError as e: print( "Unable to retrieve parameter '%s' " "from configuration file." % e.args[0]) return except Exception: print("Unable to read configuration file") return # setting up connection string conn_string = "{0}://{1}:{2}@{3}:{4}/{5}".format( db_engine, user, password, host, port, database) return conn_string
e2245f8e9124d36e5a373f1891590046c10a38fd
6,129
from typing import Tuple from typing import Sequence def _decomp_0_matrices( kak: 'cirq.KakDecomposition', atol: float = 1e-8, ) -> Tuple[Sequence[Tuple[np.ndarray, np.ndarray]], complex]: """Returns the single-qubit matrices for the 0-SQRT_ISWAP decomposition. Assumes canonical x, y, z and (x, y, z) = (0, 0, 0) within tolerance. """ # Pairs of single-qubit unitaries, SQRT_ISWAP between each is implied # Only a single pair of single-qubit unitaries is returned here so # _decomp_to_operations will not insert any sqrt-iSWAP gates in between return [ ( kak.single_qubit_operations_after[0] @ kak.single_qubit_operations_before[0], kak.single_qubit_operations_after[1] @ kak.single_qubit_operations_before[1], ) ], kak.global_phase
b84d65cc7076b5d294cbf7f4f6a3c3ddff7ef7d2
6,130
import math def concave(x, m): """Shape function.""" assert shape_args_ok(x, m) result = 1.0 for i in range(1, len(x) - m + 1): result *= math.sin(x[i - 1] * math.pi / 2.0) if m != 1: result *= math.cos(x[len(x) - m] * math.pi / 2.0) return correct_to_01(result)
70020efb06f35e169041491724bd6ddc7c7a9a35
6,131
def norm_img(img): """ normalization image :param img: (C, H, W) :return: norm_img: (C, H, W) """ height, width, channel = img.shape img = np.reshape(img, (height * width, channel)) # (height * width, channel) mean = np.mean(img, axis=0, keepdims=True) # (1, channel) center = img - mean # (height * width, channel) var = np.sum(np.power(center, 2), axis=0, keepdims=True) / (height * width) # (1, channel) std = np.sqrt(var) # (1, channel) _norm_img = center / std # (height * width, channel) _norm_img = np.reshape(_norm_img, (height, width, channel)) return _norm_img
a794ec4e096faa0efbfc9c993d9292a54f6573cc
6,133
def convert_examples_to_features(examples, use_label): """Loads a data file into a list of `InputBatch`s.""" features = [] line_tags = [] for (ex_index, example) in enumerate(examples): if use_label: labels = example.labels else: labels = ['O'] * len(example.units) samples = [] context, tokens, predict_mask, label_ids = [], [], [], [] for i, w in enumerate(example.units): if w == '[MASK]': sub_words = ['[MASK]'] else: sub_words = tokenizer.tokenize(w) if not sub_words: sub_words = ['[UNK]'] tokens.extend(sub_words) predict_mask.append(1) predict_mask.extend([0] * (len(sub_words) - 1)) label_ids.append(label_map[labels[i]]) label_ids.extend([0] * (len(sub_words) - 1)) while len(context) + len(tokens) >= max_seq_length - 2: l = max_seq_length - len(context) - 2 samples.append( [['[CLS]'] + context + tokens[:l] + ['[SEP]'], [0] * (len(context) + 1) + predict_mask[:l] + [0], [0] * (len(context) + 1) + label_ids[:l] + [0]]) if not context: line_tags.append(1) else: line_tags.append(0) context = tokens[max(0, l - max_seq_length // 2):l] tokens, predict_mask, label_ids = tokens[l: ], predict_mask[l:], label_ids[l:] if sum(predict_mask): samples.append([['[CLS]'] + context + tokens + ['[SEP]'], [0] * (len( context) + 1) + predict_mask + [0], [0] * (len(context) + 1) + label_ids + [0]]) if not context: line_tags.append(1) else: line_tags.append(0) for s in samples: input_ids = tokenizer.convert_tokens_to_ids(s[0]) input_mask = [1] * len(input_ids) padding_length = max_seq_length - len(input_ids) zero_padding = [0] * padding_length input_ids += zero_padding input_mask += zero_padding predict_mask = s[1] + zero_padding assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(predict_mask) == max_seq_length if use_label: label_ids = s[2] + zero_padding assert len(label_ids) == max_seq_length one_hot_labels = np.eye( len(label_map), dtype=np.float32)[label_ids] else: one_hot_labels = None features.append(InputFeatures(input_ids=input_ids, input_mask=input_mask, predict_mask=predict_mask, one_hot_labels=one_hot_labels)) assert len(examples) == sum(line_tags), logger.error( '{} != {}'.format(len(examples), sum(line_tags))) return features, line_tags
7720a79b7404e0d4cc340ae5ea78084b64115f92
6,135
def broadcast_to_rank(t, rank, axis = -1): """Appends dimensions to tf.Tensor `t` at axis `axis` to match rank `rank`.""" rank_t = t.shape.rank # Assumes ranks are known at compile time (static). for _ in range(rank - rank_t): t = tf.expand_dims(t, axis=axis) return t
8a57a1d71f92aefc6015481b358b65f565af1b00
6,136
def operator(func): """ Help decorator to rewrite a function so that it returns another function from it. """ @wraps(func) def wrapper(*args, **kwargs): def operator(stream): return func(stream, *args, **kwargs) return operator return wrapper
cd2873954ee9dff003d2481d296c5be8740675c8
6,137
def json(body, charset="utf-8", **kwargs): """Takes JSON formatted data, converting it into native Python objects""" return json_converter.loads(text(body, charset=charset))
e2cabfca983abb96018f51ea3c09826e033227bb
6,138
def read_corpus(file_path, encoding=ENCODING, **kwargs): """ Create a Linguistica object with a corpus data file. :param file_path: path of input corpus file :param encoding: encoding of the file at *file_path*. Default: ``'utf8'`` :param kwargs: keyword arguments for parameters and their values. """ return Lexicon(file_path=file_path, wordlist_file=False, encoding=encoding, **kwargs)
28f8303e0b94e8df9b6d9a33aca14fa62b15f6e8
6,139
import random def sample_pagerank(corpus, damping_factor, n): """ Return PageRank values for each page by sampling `n` pages according to transition model, starting with a page at random. Return a dictionary where keys are page names, and values are their estimated PageRank value (a value between 0 and 1). All PageRank values should sum to 1. """ pageRanks = {page: 0 for page in corpus} # Randomly select a page to start currPage = random.choice(list(corpus.keys())) for _ in range(n): pageRanks[currPage] += 1 model = transition_model(corpus, currPage, damping_factor) currPage = random.choice(list(model.keys())) return {page: rank / n for page, rank in pageRanks.items()}
5c9f66aaf72c8330c2ee0fcd2402bf613c4eb9b7
6,140
import networkx def compute_participants(matches, challonge_data): """Compute series participants. Iterate all matches and players to create a graph. Apply connected components algorithm to resolve distinct participant groups over all matches. Sort participant groups by number of wins to correlate with Challonge participant data (which also includes number of wins). Note that edge cases exist that are not covered. For example, teams sometimes field a 1v1 player for a single match. If neither player in the 1v1 match takes part in any other matches, the players can't be placed in a participant group and their win is not counted. There are two consequences: 1. Not counting a win may make the number of wins between participants even, in which case we don't know which participant group won the series. 2. Not grouping a player means the participant player list will be incomplete. """ graph = networkx.DiGraph() win_id = 0 platform_ids = [] name_to_user = {} for match in matches: # Record a win win_id += 1 graph.add_node(win_id, type='win') # Record platform ID platform_ids.append(match['platform_id']) # Add node for each player for player in match['players']: name_to_user[player['name']] = player['user_id'] graph.add_node(player['name'], type='player') # Can happen for incomplete matches if match['winning_team'] is None: continue # Connect winning players to recorded win for player in match['winning_team']['players']: graph.add_edge(player['name'], win_id) # Connect all players on the same team for team in match['teams']: for i in team['players']: for j in team['players']: graph.add_edge(i['name'], j['name']) mgz_data = [{ 'wins': len([node for node in g if graph.nodes[node]['type'] == 'win']), 'players': [node for node in g if graph.nodes[node]['type'] == 'player'] } for g in networkx.weakly_connected_components(graph)] return [{ 'user_ids': [name_to_user[n] for n in mgz['players']], 'winner': challonge['winner'], 'name': challonge['name'], 'score': challonge['score'], 'platform_id': platform_ids[0] } for mgz, challonge in zip( sorted(mgz_data, key=lambda k: -1 * k['wins']), sorted(challonge_data, key=lambda k: -1 * k['score'] if k['score'] else 0) )]
a715773d5edd3b4d6852096c665070e64bef1165
6,142
def write_haiku(word_array, is_ipv6): """Return the beautiful haiku""" # String to place in schema to show word slot. octct = 'OCTET' schema = get_schema(is_ipv6, octct) # Replace each instance of 'octet' in the schema with a word from # the encoded word array. for i in range(len(word_array)): for j in range(len(schema)): if schema[j] == octct: schema[j] = word_array[i] break # Capitalize appropriate words. schema = capitalize_haiku(schema) haiku = ''.join(schema) return haiku
b51dc7cd1cca642eb135c48952bbc2ca74faf5e1
6,143
def import_data(): """ Utility function to imoprt summary tsv ready for usage in PyMol """ col_types = { 'sift_score': float, 'sift_median': float, 'total_energy': float, 'interaction_energy': float, 'diff_interaction_energy': float, 'diff_interface_residues': float, 'freq': float } return pd.read_csv('data/output/summary.tsv', sep='\t', index_col=False, dtype=col_types, low_memory=False)
1b116d74ecba83658d05ea5dbda66b15175f3fdb
6,144
from datetime import datetime def get_current_datetime(): """ Get the current datetime. Note: This function is intended to be mocked in testing Return: time(datetime.datetime): current datetime """ return datetime.datetime.now(current_app.config['TIMEZONE'])
6e7986eb6029e9c2be66019d7e9f35a79580c742
6,145
def adapt_all(iterable, to_cls): """ Returns a list of items from adapting each item in iterable to `cls` If `iterable` is `None`, an empty list will be returned. """ if iterable is None: return [] return [adapt(obj, to_cls) for obj in iterable]
a7c4d0adcce144223929081f47512f9d673efb28
6,146
import torch def log_sum_exp_vb(vec, m_size): """ calculate log of exp sum args: vec (batch_size, vanishing_dim, hidden_dim) : input tensor m_size : hidden_dim return: batch_size, hidden_dim """ _, idx = torch.max(vec, 1) # B * 1 * M max_score = torch.gather(vec, 1, idx.view(-1, 1, m_size)).view(-1, 1, m_size) # B * M return max_score.view(-1, m_size) + torch.log(torch.sum(torch.exp(vec - max_score.expand_as(vec)), 1)).view(-1, m_size)
87c99f9ab9a9c114792a2c895284a8743682fc06
6,148
def C_fun_gen(fractions, speciesindices, y, time): """ Calculate the distribution of carbon functional groups as a percent of total carbon. Parameters ---------- fractions : list The lumped phases that you want to include (as specified in MW['species'][1], options are any subset of ['g','s','lt','t','char','H20','CO','CO2'] or ['initial'] for the case when you want to determine the initial distribution before pyrolysis) speciesindices : dict dictionary from `load_results()` where species names are keys and values are the index in `y` that corresponds to that species y : numpy array a matrix with the concentrations of each species in the kinetic scheme for every time in `t` (mol/L) time : int the index of the timepoint that you want the results for Returns ------- C_fun : numpy array the distribution of carbon functional groups as a percent of total carbon. The order of the elements in the array is: carbonyl, aromatic C-O, aromatic C-C, aromatic C-H, aliphatic C-O, aromatic methoxyl, aliphatic C-C """ C_fun = np.zeros(7) ind = speciesindices for species in MW: if fractions == ['initial']: time = 0 if y[time, speciesindices[species]] != 0: # moles of functional group/L (order from Return docstring) C_fun[0] += y[time, ind[species]] * MW[species][4][0] C_fun[1] += y[time, ind[species]] * MW[species][4][1] C_fun[2] += y[time, ind[species]] * MW[species][4][2] C_fun[3] += y[time, ind[species]] * MW[species][4][3] C_fun[4] += y[time, ind[species]] * MW[species][4][4] C_fun[5] += y[time, ind[species]] * MW[species][4][5] C_fun[6] += y[time, ind[species]] * MW[species][4][6] else: if MW[species][1] in set(fractions): C_fun[0] += y[time, ind[species]] * MW[species][4][0] C_fun[1] += y[time, ind[species]] * MW[species][4][1] C_fun[2] += y[time, ind[species]] * MW[species][4][2] C_fun[3] += y[time, ind[species]] * MW[species][4][3] C_fun[4] += y[time, ind[species]] * MW[species][4][4] C_fun[5] += y[time, ind[species]] * MW[species][4][5] C_fun[6] += y[time, ind[species]] * MW[species][4][6] C_fun /= C_fun.sum() return C_fun
28704b470fd919d998fcd8704b125827226fe151
6,149
def _sigmoid(x): """ Sigmoid function that smoothly limits values between 0.0 and 1.0 :param x: Numpy array with float values that are to be limited. :return: Numpy array with float values between 0.0 and 1.0 """ return 1.0 / (1.0 + np.exp(-x))
770875ba82df9d4ac8eb6d403527cf0fb62d3990
6,151
from typing import Dict def inherit_n_genes_prob(n, n_father, n_mother, mutation_prob) -> Dict: """Returns dictionary with distribution of conditional probability of inherited genes given that father has n_father genes and mother has n_mother genes, taking into account probability of mutations.""" # Probabily distributions: # key 0 or False: probability of not inheriting the gene from parent # key 1 or True: probability of inheriting the gene from parent probs_f: Dict[bool, float] = p_not_p(prob_inherit(n_father, mutation_prob)) probs_m: Dict[bool, float] = p_not_p(prob_inherit(n_mother, mutation_prob)) return ( # Prob to not inherit at all probs_f[0] * probs_m[0] if n == 0 # Prob to inherit from one parent only else probs_f[1] * probs_m[0] + probs_f[0] * probs_m[1] if n == 1 # Prob to inherit from both parents else probs_f[1] * probs_m[1] )
0481244db107f6623aa109212e74be8b719f5bb8
6,152
async def get_metrics_address_counts_summary(): """ Latest summary of address counts. """ qry = f""" select col , latest , diff_1d , diff_1w , diff_4w , diff_6m , diff_1y from mtr.address_counts_by_minimal_balance_change_summary; """ async with CONNECTION_POOL.acquire() as conn: rows = await conn.fetch(qry) return [dict(r) for r in rows]
c22d6c3442833743559c42e4be59a25ab073c03b
6,153
from typing import Dict from typing import Any async def processor(db, document: Dict[str, Any]) -> Dict[str, Any]: """ Process a history document before it is returned to the client. :param db: the application object :param document: the document to process :return: the processed document """ return await apply_transforms( virtool.utils.base_processor(document), [AttachUserTransform(db, ignore_errors=True)], )
89de3dd255923b3eca6444ee4410980e857aa8e1
6,154
def _unit_scale_traindata(X, xmins, xmaxs): """If xmax > xmin, unit-scale the training data, else do nothing Parameters ---------- x : ndarray of shape (m, n) xmins : ndarray of shape (n, ) xmaxs : ndarray of shape (n, ) Returns ------- result : ndarray of shape (m, n) Notes ----- Training data must fit inside a rectangular box aligned with each dimension """ X = jnp.atleast_2d(X) xmins = jnp.atleast_1d(xmins) xmaxs = jnp.atleast_1d(xmaxs) msk = xmins == xmaxs norm = jnp.where(msk, 1.0, xmaxs - xmins) offset = jnp.where(msk, 0.0, xmins) return (X - offset) / norm
2778c7a9d7b6e23775df2354b92057e6a5511dc5
6,155
def extractive_explanations( dataset, prefix='explain sentiment', input_feature='review', output_classes=('negative', 'positive'), drop_explanations=False ): """Preprocessor to handle extractive rationale prediction datasets. The preprocessor expects a dataset with the provided 'input_feature', a label, and a list of evidences. E.g. the movie rationale dataset consists of the following features. { review: 'This is a bad movie. Skip it.' label: 0, evidences: ['bad movie', 'Skip it'] } The example will be transformed to the following format by the preprocessor: { inputs: 'explain sentiment review: This is a bad movie. Skip it.' targets: 'NEG because bad movie explanation: Skip it' } Args: dataset: a tf.data.Dataset to process. prefix: str, prefix to prepend to the inputs. input_feature: str, feature name in input dataset. output_classes: list of output classes in the input dataset. Defaults to ['negative', 'positive'] for the movie reviews dataset. drop_explanations: bool, whether or not to drop explanations. Returns: a tf.data.Dataset """ if output_classes is None: output_classes = ['negative', 'positive'] def my_fn(x): """Helper function to transform a rationale dataset to inputs/targets.""" input_label = tf.strings.join([input_feature, ':'], separator='') inputs = tf.strings.join( [prefix, input_label, x[input_feature]], separator=' ') class_label = tf.gather(output_classes, x['label']) if drop_explanations: targets = class_label else: targets = _explanation_targets(class_label, x['evidences']) return {'inputs': inputs, 'targets': targets} return dataset.map(my_fn, num_parallel_calls=tf.data.experimental.AUTOTUNE)
c1549279cbb676ee45287afe99f1f94410c27b62
6,158
def corr_weighted_kendalltau(top_list_prev, top_list, use_fast=True): """Compute weighted Kendall's Tau correlation (based on custom implementation!). NOTE: Lists are DataFrame columns AND they must be sorted according to their value!!!""" # it is irrelevant whether we compute kendall for ranks or scores. list_a, list_b = proc_corr(top_list_prev, top_list) if len(list_a) != len(list_b): raise RuntimeError("The length of 'list_a' and 'list_b' must be the same!") if use_fast: return [fast_weighted_kendall(list_a, list_b)[1]] else: rank_list_a = tiedrank(list_a) rank_list_b = tiedrank(list_b) return [computeWKendall(rank_list_a,rank_list_b,ranked_input=True)[1]]
35b473040508561798831343d770acabd97cb76e
6,159
from datetime import datetime import random def generate_processes_by_exposure(exposure): """ Creates a simulated process based on an exposure. Arguments: exposure {object} -- Exposure model Raises: ValueError -- returns when there is no processing with a respective exposure. Returns: object -- Process model """ flavor = exposure.flavor process = qlf_models.get_last_process_by_flavor( flavor, jobs_isnull=False) if not process: raise ValueError( 'There is no process with {} flavor.'.format(flavor) ) process.exposure_id = exposure.exposure_id process.id = None tdate = datetime.datetime.now() tdate += datetime.timedelta(minutes=random.randint(1, 5)) process.end = tdate process.save() return process
a3a335184fbf9c51e47210ac22fd4d4e8a8a6aa4
6,160
import copy def cross_val_confusion(classifier, X, y, cv=None): """ Evaluate confusion matrix and score from each fold of cross validation Parameters: ---------- classifier: classifier object The object used to fit the data. X[ndarray]: shape=(n_sample, n_feature) y[ndarray]: shape=(n_sample,) cv[int]: the number of folds of the cross validation Returns: ------- conf_ms[list]: confusion matrices of the folds accuracies[list]: accuracies of the folds """ assert getattr(classifier, "_estimator_type", None) == "classifier", \ "Estimator must be a classifier!" # calculate CV metrics conf_ms = [] accuracies = [] classifier = copy.deepcopy(classifier) skf = StratifiedKFold(n_splits=cv) for train_indices, test_indices in skf.split(X, y): # fit and prediction classifier.fit(X[train_indices], y[train_indices]) y_preds = classifier.predict(X[test_indices]) # calculate confusion matrix and accuracy conf_m = confusion_matrix(y[test_indices], y_preds) acc = np.sum(conf_m.diagonal()) / np.sum(conf_m) # collection conf_ms.append(conf_m) accuracies.append(acc) return conf_ms, accuracies
bbdbed0bc18b7ac201f2933e9cff10eab19d5a75
6,161
import asyncio async def async_unload_entry(hass: HomeAssistantType, entry: ConfigEntry): """Unload Synology DSM sensors.""" unload_ok = all( await asyncio.gather( *[ hass.config_entries.async_forward_entry_unload(entry, platform) for platform in PLATFORMS ] ) ) if unload_ok: entry_data = hass.data[DOMAIN][entry.unique_id] entry_data[UNDO_UPDATE_LISTENER]() await entry_data[SYNO_API].async_unload() hass.data[DOMAIN].pop(entry.unique_id) return unload_ok
876aceeaa113a6275a60328f6f00c0d0c4c0f2e1
6,162
import pathlib def confirm_control_contains(trestle_dir: pathlib.Path, control_id: str, part_label: str, seek_str: str) -> bool: """Confirm the text is present in the control markdown in the correct part.""" control_dir = trestle_dir / ssp_name / control_id.split('-')[0] md_file = control_dir / f'{control_id}.md' responses, _ = ControlIOReader.read_all_implementation_prose_and_header(md_file) if part_label not in responses: return False prose = '\n'.join(responses[part_label]) return seek_str in prose
b78cd7a7ef435fcee483d98fe2199ba90c905833
6,164