content
stringlengths 35
762k
| sha1
stringlengths 40
40
| id
int64 0
3.66M
|
---|---|---|
def weighted_moments(values, weights):
"""Return weighted mean and weighted standard deviation of a sequence"""
w_mean = np.average(values, weights=weights)
sq_err = (values - w_mean)**2
w_var = np.average(sq_err, weights=weights)
w_std = np.sqrt(w_var)
return w_mean, w_std | 84775550c54f285f9a032641cf27976eebf94322 | 6,400 |
def forestplot(data, kind='forestplot', model_names=None, var_names=None, combined=False,
credible_interval=0.95, quartiles=True, r_hat=True, n_eff=True, colors='cycle',
textsize=None, linewidth=None, markersize=None, joyplot_alpha=None,
joyplot_overlap=2, figsize=None):
"""
Forest plot
Generates a forest plot of 100*(credible_interval)% credible intervals from
a trace or list of traces.
Parameters
----------
data : xarray.Dataset or list of compatible
Samples from a model posterior
kind : str
Choose kind of plot for main axis. Supports "forestplot" or "joyplot"
model_names : list[str], optional
List with names for the models in the list of data. Useful when
plotting more that one dataset
var_names: list[str], optional
List of variables to plot (defaults to None, which results in all
variables plotted)
combined : bool
Flag for combining multiple chains into a single chain. If False (default),
chains will be plotted separately.
credible_interval : float, optional
Credible interval to plot. Defaults to 0.95.
quartiles : bool, optional
Flag for plotting the interquartile range, in addition to the credible_interval intervals.
Defaults to True
r_hat : bool, optional
Flag for plotting Gelman-Rubin statistics. Requires 2 or more chains. Defaults to True
n_eff : bool, optional
Flag for plotting the effective sample size. Requires 2 or more chains. Defaults to True
colors : list or string, optional
list with valid matplotlib colors, one color per model. Alternative a string can be passed.
If the string is `cycle`, it will automatically chose a color per model from the
matyplolibs cycle. If a single color is passed, eg 'k', 'C2', 'red' this color will be used
for all models. Defauls to 'cycle'.
textsize: int
Text size for labels. If None it will be autoscaled based on figsize.
linewidth : int
Line width throughout. If None it will be autoscaled based on figsize.
markersize : int
Markersize throughout. If None it will be autoscaled based on figsize.
joyplot_alpha : float
Transparency for joyplot fill. If 0, border is colored by model, otherwise
a black outline is used.
joyplot_overlap : float
Overlap height for joyplots.
figsize : tuple, optional
Figure size. Defaults to None
Returns
-------
gridspec : matplotlib GridSpec
"""
ncols, width_ratios = 1, [3]
if n_eff:
ncols += 1
width_ratios.append(1)
if r_hat:
ncols += 1
width_ratios.append(1)
plot_handler = PlotHandler(data, var_names=var_names, model_names=model_names,
combined=combined, colors=colors)
if figsize is None:
figsize = (min(12, sum(width_ratios) * 2), plot_handler.fig_height())
textsize, auto_linewidth, auto_markersize = _scale_text(figsize, textsize=textsize)
if linewidth is None:
linewidth = auto_linewidth
if markersize is None:
markersize = auto_markersize
fig, axes = plt.subplots(nrows=1,
ncols=ncols,
figsize=figsize,
gridspec_kw={'width_ratios': width_ratios},
sharey=True
)
axes = np.atleast_1d(axes)
if kind == 'forestplot':
plot_handler.forestplot(credible_interval, quartiles, textsize,
linewidth, markersize, axes[0])
elif kind == 'joyplot':
plot_handler.joyplot(joyplot_overlap, textsize, linewidth, joyplot_alpha, axes[0])
else:
raise TypeError(f"Argument 'kind' must be one of 'forestplot' or "
f"'joyplot' (you provided {kind})")
idx = 1
if r_hat:
plot_handler.plot_rhat(axes[idx], textsize, markersize)
idx += 1
if n_eff:
plot_handler.plot_neff(axes[idx], textsize, markersize)
idx += 1
for ax in axes:
ax.grid(False)
# Remove ticklines on y-axes
for ticks in ax.yaxis.get_major_ticks():
ticks.tick1On = False
ticks.tick2On = False
for loc, spine in ax.spines.items():
if loc in ['left', 'right']:
spine.set_color('none') # don't draw spine
if len(plot_handler.data) > 1:
plot_handler.make_bands(ax)
labels, ticks = plot_handler.labels_and_ticks()
axes[0].set_yticks(ticks)
axes[0].set_yticklabels(labels)
all_plotters = list(plot_handler.plotters.values())
y_max = plot_handler.y_max() - all_plotters[-1].group_offset
if kind == 'joyplot': # space at the top
y_max += joyplot_overlap
axes[0].set_ylim(-all_plotters[0].group_offset, y_max)
return fig, axes | e2170c4bdbfc2fbf5c3db24688e8ab09a2ec498c | 6,401 |
def tf_dtype(dtype):
"""Translates dtype specifications in configurations to tensorflow data types.
Args:
dtype: String describing a numerical type (e.g. 'float'), numpy data type,
or numerical type primitive.
Returns: TensorFlow data type
"""
if dtype == 'float' or dtype == float or dtype == np.float32 or dtype == tf.float32:
return tf.float32
elif dtype == 'int' or dtype == int or dtype == np.int32 or dtype == tf.int32:
return tf.int32
elif dtype == 'bool' or dtype == bool or dtype == np.bool_ or dtype == tf.bool:
return tf.bool
else:
raise TensorforceError("Error: Type conversion from type {} not supported.".format(str(dtype))) | 0c51804974e7e1bb36fcc32f181cfab713fca263 | 6,404 |
from typing import Tuple
import timeit
def decode_frame(raw_frame: bytes, frame_width: int, frame_height: int) -> Tuple[str, np.ndarray]:
"""
Decode the image bytes into string compatible with OpenCV
:param raw_frame: frame data in bytes
:param frame_width width of the frame, obtained from Kinesis payload
:param frame_height height of the frame, obtained from Kinesis payload
"""
start_time = timeit.default_timer()
# frameBuffer = Image.frombytes('RGB', (frame_width, frame_height), raw_frame)
# frameBuffer.save("./h264decoded.png", "png")
# frame = np.array(frameBuffer)
# img_str = cv2.imencode('.jpg', frame)[1].tostring()
img = imageio.get_reader(raw_frame, ".png")
frame: np.ndarray = img.get_data(0)
img_str = cv2.imencode('.png', frame)[1].tostring()
logger.info(f'Decoded frame after: {timeit.default_timer() - start_time}')
return img_str, frame | a38d7362997701756767cf466bb3fbb76b77a92e | 6,405 |
def preprocess(picPath):
"""preprocess"""
#read img
bgr_img = cv.imread(picPath)
#get img shape
orig_shape = bgr_img.shape[:2]
#resize img
img = cv.resize(bgr_img, (MODEL_WIDTH, MODEL_HEIGHT)).astype(np.int8)
# save memory C_CONTIGUOUS mode
if not img.flags['C_CONTIGUOUS']:
img = np.ascontiguousarray(img)
return orig_shape, img | ae44fdbf3613e159f28db0d9417470872439f76d | 6,406 |
import requests
def live_fractal_or_skip():
"""
Ensure Fractal live connection can be made
First looks for a local staging server, then tries QCArchive.
"""
try:
return FractalClient("localhost:7777", verify=False)
except (requests.exceptions.ConnectionError, ConnectionRefusedError):
print("Failed to connect to localhost, trying MolSSI QCArchive.")
try:
requests.get("https://api.qcarchive.molssi.org:443", json={}, timeout=5)
return FractalClient()
except (requests.exceptions.ConnectionError, ConnectionRefusedError):
return pytest.skip("Could not make a connection to central Fractal server") | b121e33a2294edc80d336abbb07c9a12f3301aea | 6,407 |
def get_legendre(theta, keys):
"""
Calculate Schmidt semi-normalized associated Legendre functions
Calculations based on recursive algorithm found in "Spacecraft Attitude Determination and Control" by James Richard Wertz
Parameters
----------
theta : array
Array of colatitudes in degrees
keys: iterable
list of spherical harmnoic degree and order, tuple (n, m) for each
term in the expansion
Returns
-------
P : array
Array of Legendre functions, with shape (theta.size, len(keys)).
dP : array
Array of dP/dtheta, with shape (theta.size, len(keys))
"""
# get maximum N and maximum M:
n, m = np.array([k for k in keys]).T
nmax, mmax = np.max(n), np.max(m)
theta = theta.flatten()[:, np.newaxis]
P = {}
dP = {}
sinth = np.sin(d2r*theta)
costh = np.cos(d2r*theta)
# Initialize Schmidt normalization
S = {}
S[0, 0] = 1.
# initialize the functions:
for n in range(nmax +1):
for m in range(nmax + 1):
P[n, m] = np.zeros_like(theta, dtype = np.float64)
dP[n, m] = np.zeros_like(theta, dtype = np.float64)
P[0, 0] = np.ones_like(theta, dtype = np.float64)
for n in range(1, nmax +1):
for m in range(0, min([n + 1, mmax + 1])):
# do the legendre polynomials and derivatives
if n == m:
P[n, n] = sinth * P[n - 1, m - 1]
dP[n, n] = sinth * dP[n - 1, m - 1] + costh * P[n - 1, n - 1]
else:
if n == 1:
Knm = 0.
P[n, m] = costh * P[n -1, m]
dP[n, m] = costh * dP[n - 1, m] - sinth * P[n - 1, m]
elif n > 1:
Knm = ((n - 1)**2 - m**2) / ((2*n - 1)*(2*n - 3))
P[n, m] = costh * P[n -1, m] - Knm*P[n - 2, m]
dP[n, m] = costh * dP[n - 1, m] - sinth * P[n - 1, m] - Knm * dP[n - 2, m]
# compute Schmidt normalization
if m == 0:
S[n, 0] = S[n - 1, 0] * (2.*n - 1)/n
else:
S[n, m] = S[n, m - 1] * np.sqrt((n - m + 1)*(int(m == 1) + 1.)/(n + m))
# now apply Schmidt normalization
for n in range(1, nmax + 1):
for m in range(0, min([n + 1, mmax + 1])):
P[n, m] *= S[n, m]
dP[n, m] *= S[n, m]
Pmat = np.hstack(tuple(P[key] for key in keys))
dPmat = np.hstack(tuple(dP[key] for key in keys))
return Pmat, dPmat | 8afd34e7e4805fab9393c2efff15c0cffcb9466a | 6,408 |
def table_4_28(x_t, c_):
"""
Вывод поправочного коэффициента, учитывающего влияние толщины профиля
arguments: относительное положение точки перехода ламинарного пограничного слоя в турбулентный (Х_т_),
относительная толщина профиля
return: Значение поправочного коэффициента"""
nu_t_00 = [1.00, 1.03, 1.05, 1.08, 1.11, 1.13, 1.16, 1.19, 1.22, 1.25, 1.29, 1.33, 1.37]
nu_t_02 = [1.000, 1.020, 1.040, 1.060, 1.080, 1.104, 1.127, 1.155, 1.180, 1.205, 1.235, 1.260, 1.295]
nu_t_04 = [1.00, 1.01, 1.03, 1.04, 1.05, 1.07, 1.09, 1.10, 1.12, 1.14, 1.16, 1.17, 1.20]
c_mas = [0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12]
k = int(c_ // 0.01 + 1)
if x_t == 0:
nu_t = interpol(nu_t_00[k], nu_t_00[k - 1], procent(c_, c_mas[k - 1], c_mas[k]))
elif (x_t >= 0) and (x_t <= 0.2):
nu_t = interpol(interpol(nu_t_02[k], nu_t_02[k - 1], procent(c_, c_mas[k - 1], c_mas[k])),
interpol(nu_t_00[k], nu_t_00[k - 1], procent(c_, c_mas[k - 1], c_mas[k])),
procent(x_t, 0, 0.2))
elif (x_t >= 0.2) and (x_t <= 0.4):
nu_t = interpol(interpol(nu_t_04[k], nu_t_04[k - 1], procent(c_, c_mas[k - 1], c_mas[k])),
interpol(nu_t_02[k], nu_t_02[k - 1], procent(c_, c_mas[k - 1], c_mas[k])),
procent(x_t, 0.2, 0.4))
else:
nu_t = interpol(nu_t_04[k], nu_t_04[k - 1], procent(c_, c_mas[k - 1], c_mas[k]))
return nu_t | 954c272bde503363f354b33f6af4f97bee5ad740 | 6,409 |
def random_spectra(path_length, coeffs, min_wavelength, max_wavelength, complexity):
"""
"""
solution = random_solution(coeffs, complexity)
return beers_law(solution, path_length, coeffs, min_wavelength, max_wavelength) | a82a0d638473d63cd768bfdc0318f5042a75ae12 | 6,410 |
def data_prep(data,unit_identifier,time_identifier,matching_period,treat_unit,control_units,outcome_variable,
predictor_variables, normalize=False):
"""
Prepares the data by normalizing X for section 3.3. in order to replicate Becker and Klößner (2017)
"""
X = data.loc[data[time_identifier].isin(matching_period)]
X.index = X.loc[:,unit_identifier]
X0 = X.loc[(X.index.isin(control_units)),(predictor_variables)]
X0 = X0.groupby(X0.index).mean().values.T #control predictors
X1 = X.loc[(X.index == treat_unit),(predictor_variables)]
X1 = X1.groupby(X1.index).mean().values.T #treated predictors
# outcome variable realizations in matching period - Z0: control, Z1: treated
Z0 = np.array(X.loc[(X.index.isin(control_units)),(outcome_variable)]).reshape(len(control_units),len(matching_period)).T #control outcome
Z1 = np.array(X.loc[(X.index == treat_unit),(outcome_variable)]).reshape(len(matching_period),1) #treated outcome
if normalize == True:
# Scaling
nvarsV = X0.shape[0]
big_dataframe = pd.concat([pd.DataFrame(X0), pd.DataFrame(X1)], axis=1)
divisor = np.sqrt(big_dataframe.apply(np.var, axis=1))
V = np.zeros(shape=(len(predictor_variables), len(predictor_variables)))
np.fill_diagonal(V, np.diag(np.repeat(big_dataframe.shape[0],1)))
scaled_matrix = ((big_dataframe.T) @ (np.array(1/(divisor)).reshape(len(predictor_variables),1) * V)).T
X0 = np.array(scaled_matrix.iloc[:,0:len(control_units)])
X1 = np.array(scaled_matrix.iloc[:,len(control_units):(len(control_units)+1)])
Z0 = Z0.astype('float64')
Z1 = Z1.astype('float64')
return X0, X1, Z0, Z1 | 6f13cc083973d5bd7ac7d2ca239741aaf067fede | 6,411 |
import numpy
def kabsch_superpose(P, Q): # P,Q: vstack'ed matrix
"""
Usage:
P = numpy.vstack([a2, b2, c2])
Q = numpy.vstack([a1, b1, c1])
m = kabsch_superpose(P, Q)
newP = numpy.dot(m, P)
"""
A = numpy.dot(numpy.transpose(P), Q)
U, s, V = numpy.linalg.svd(A)
tmp = numpy.identity(3)
tmp[2,2] = numpy.sign(numpy.linalg.det(A))
R = numpy.dot(numpy.dot(numpy.transpose(V), tmp), numpy.transpose(U))
return R | 56b7b9c3168e644ad71bee2146af3e4ae455c648 | 6,413 |
def add(a_t, b_t):
"""
add operator a+b
"""
return add_op(a_t, b_t) | be4e5bad6deb651af8e8f084cbefd185c1f9781f | 6,414 |
def GetExtensionDescriptor(full_extension_name):
"""Searches for extension descriptor given a full field name."""
return _pool.FindExtensionByName(full_extension_name) | 5e0088f785809e38d306d7416129114ac09a5135 | 6,416 |
from operator import sub
def parse_args():
"""
Parses command-line arguments and returns username, title of specified
repository and its' branch.
Returns: tuple (username, repo_name, branch).
Used only once in `main` method.
"""
DESC = 'Automatic license detection of a Github repository.'
parser = ArgumentParser(description=DESC)
# Specify agruments
parser.add_argument('--branch',
default='master',
required=False,
help='A branch of a repository from which license file should be obtained. Default: `master`.')
parser.add_argument('--repository_name',
required=False,
help='A name of a repository, whose license needs to be detected. Required.')
parser.add_argument('--username',
required=False,
help='A name of a user who owns a repository. Required.')
parser.add_argument('--url',
required=False,
help='An URL to Github repository.')
# Start parsing sys.argv
arg_dict = parser.parse_args().__dict__
branch = arg_dict['branch'] # `master` by default
user = arg_dict['username']
repo = arg_dict['repository_name']
url = arg_dict['url']
if (user is None) or (repo is None):
if (url is None):
# No repository information was typed, exiting...
print('Usage: --user <USERNAME> --repo <REPOSITORY NAME> --branch'
'<BRANCH NAME> (optional) or ')
print('--url <LINK TO REPOSITORY>')
exit(-1)
# Cut the `http` header of an URL
chopped_url = sub('https+:\/\/', '', url)
# Extract user and repository names from URL
user, repo = findall('\/{1}([^\/]+)', chopped_url)
return user, repo, branch | f7bf4b0cc27a87add8f65f82bebbabb6a4b9ca06 | 6,418 |
import itertools
def collect_inventory_values(dataset, inventory_list, parameter_map):
"""
Collect inventories from a dataset.
"""
# Collect raw/unicode/clts for all relevant inventories
to_collect = []
for catalog in inventory_list.keys():
to_collect += list(
itertools.chain.from_iterable(inventory_list[catalog].values())
)
values = defaultdict(list)
for row in dataset["ValueTable"]:
if row["Contribution_ID"] in to_collect:
values[row["Contribution_ID"]].append(
{
"raw": row["Value"],
"unicode": parameter_map[row["Parameter_ID"]]["unicode"],
"bipa": parameter_map[row["Parameter_ID"]]["bipa"],
}
)
return values | 1c59e0784b6fc4db24f994440990e46a0ba2b1f0 | 6,420 |
def flatten_list(a_list, parent_list=None):
"""Given a list/tuple as entry point, return a flattened list version.
EG:
>>> flatten_list([1, 2, [3, 4]])
[1, 2, 3, 4]
NB: The kwargs are only for internal use of the function and should not be
used by the caller.
"""
if parent_list is None:
parent_list = []
for element in a_list:
if isinstance(element, list):
flatten_list(element, parent_list=parent_list)
elif isinstance(element, tuple):
flatten_list(element, parent_list=parent_list)
else:
parent_list.append(element)
return parent_list | dd6c9c66a370e65744ede40dfdc295b0ec63379a | 6,423 |
from typing import List
def list_to_csv_str(input_list: List) -> Text:
"""
Concatenates the elements of the list, joining them by ",".
Parameters
----------
input_list : list
List with elements to be joined.
Returns
-------
str
Returns a string, resulting from concatenation of list elements,
separeted by ",".
Example
-------
>>> from pymove import conversions
>>> a = [1, 2, 3, 4, 5]
>>> conversions.list_to_csv_str(a)
'1 1:2 2:3 3:4 4:5'
"""
return list_to_str(input_list) | 4c172b0ce3daba01f2d976bc60739846b852c459 | 6,424 |
def scheme_listp(x):
"""Return whether x is a well-formed list. Assumes no cycles."""
while x is not nil:
if not isinstance(x, Pair):
return False
x = x.second
return True | e5001695035d2d24e2914295e8ae2f86d8ead0b3 | 6,425 |
def list_to_dict(config):
"""
Convert list based beacon configuration
into a dictionary.
"""
_config = {}
list(map(_config.update, config))
return _config | 3d7ace7612e67a0c406a2a400ad3147f99dbef0a | 6,426 |
def get_model(model_name, in_channels = 3, input_size = 224, num_classes = 1000):
"""Get model
Args :
--model_name: model's name
--in_channels: default is 3
--input_size: default is 224
--num_classes: default is 1000 for ImageNet
return :
--model: model instance
"""
string = model_name
if model_name == 'cmt_ti':
model = CMT_Ti(in_channels = in_channels, input_size = input_size, num_classes = num_classes)
elif model_name == 'cmt_xs':
model = CMT_XS(in_channels = in_channels, input_size = input_size, num_classes = num_classes)
elif model_name == 'cmt_s':
model = CMT_S(in_channels = in_channels, input_size = input_size, num_classes = num_classes)
elif model_name == 'cmt_b':
model = CMT_B(in_channels = in_channels, input_size = input_size, num_classes = num_classes)
else:
raise Exception('No other models!')
print(string + ': \n', model)
total = sum(p.numel() for p in model.parameters())
print("Total params: %.2fM" % (total / 1e6))
return model | 0380a19e2a063382920b7986d1087aaf70f05eda | 6,427 |
def check_edge_heights(
stack, shifts, height_resistance, shift_lines, height_arr, MIN_H, MAX_H,
RESOLUTION
):
"""
Check all edges and output an array indicating which ones are
0 - okay at minimum pylon height, 2 - forbidden, 1 - to be computed
NOTE: function not used here! only for test purposes
"""
# print(len(stack))
for i in range(len(stack)):
v_x = stack[-i - 1][0]
v_y = stack[-i - 1][1]
# so far height on in edges
for s in range(len(shifts)):
neigh_x = v_x + shifts[s][0]
neigh_y = v_y + shifts[s][1]
# get minimum heights of v_x,v_y dependent on incoming edge
bres_line = shift_lines[s] + np.array([v_x, v_y])
# required heights
S = int(
np.sqrt((v_x - neigh_x)**2 + (v_y - neigh_y)**2)
) * RESOLUTION
# left and right point
yA = height_resistance[v_x, v_y] + MIN_H
yB = height_resistance[neigh_x, neigh_y] + MIN_H
# compute lowest point of sag
x0 = S / 2 - ((yB - yA) * CAT_H / (CAT_W * S))
# compute height above x0 at left point
A_height = (CAT_W * x0**2) / (2 * CAT_H)
# print(height_bline)
# iterate over points on bres_line
stepsize = S / (len(bres_line) + 1)
heights_above = np.zeros(len(bres_line))
for k, (i, j) in enumerate(bres_line):
x = x0 - stepsize * (k + 1)
cat = (CAT_W * x**2) / (2 * CAT_H)
heights_above[k
] = yA - A_height - height_resistance[i, j] + cat
# analyse heights_above:
if np.all(heights_above >= 11):
# whole cable is okay
fine_60 = 0
elif np.any(heights_above < -MAX_H - MIN_H):
# would not work with 80 - 80
fine_60 = 2
else:
# somewhere inbetween
fine_60 = 1
height_arr[s, neigh_x, neigh_y] = fine_60
return height_arr | f73c6fd0396967e2a5ecfa89d52f1468d2005967 | 6,428 |
def linear_int_ext(data_pts, p, scale=None, allow_extrap=False):
"""
Interpolate data points to find remaining unknown values absent from
`p` with optionally scaled axes. If `p` is not in the range and
`allow_extra` == True, a linear extrapolation is done using the two data
points at the end corresponding to the `p`.
Parameters
----------
data_pts : list_like(tuple)
[(a_1, ... a_n), ...] sorted on the required axis (either direction).
p : list_like
Required point to interpolate / extrapolate with at least a single
known component, i.e. :math:`(..., None, p_i, None, ...)`. If
more than one is supplied, the first is used.
scale :
Same as ``line_pt`` scale.
allow_extrap : bool, optional
If True linear extrapolation from the two adjacent endpoints is
permitted. Default = False.
Returns
-------
list :
Interpolated / extrapolated point :math:`[q_1, ..., q_n]` where
:math:`q_i = p_i` from above.
"""
if len(data_pts) < 2:
raise ValueError("At least two data points required.")
if scale is None:
scale = [None] * len(data_pts[0])
# Get working axis.
for ax, x in enumerate(p):
if x is not None:
break
else:
raise ValueError("Requested point must include at least one known "
"value.")
def on_axis(li): # Return value along required axis.
return li[ax]
# Get two adjacent points for straight line.
try:
# Try interpolation.
l_idx, r_idx = bracket_list(data_pts, p, key=on_axis)
except ValueError:
if not allow_extrap:
raise ValueError(f"Point not within data range.")
if ((on_axis(data_pts[0]) < on_axis(data_pts[-1])) != (
on_axis(p) < on_axis(data_pts[0]))):
l_idx, r_idx = -2, -1 # RHS extrapolation.
else:
l_idx, r_idx = 0, 1 # LHS extrapolation.
return line_pt(data_pts[l_idx], data_pts[r_idx], p, scale) | f69cc25d4610987a5f76f21e23df49efad5c6a7f | 6,429 |
def eval_in_els_and_qp(expression, ig, iels, coors,
fields, materials, variables,
functions=None, mode='eval', term_mode=None,
extra_args=None, verbose=True, kwargs=None):
"""
Evaluate an expression in given elements and points.
Parameters
----------
expression : str
The expression to evaluate.
fields : dict
The dictionary of fields used in `variables`.
materials : Materials instance
The materials used in the expression.
variables : Variables instance
The variables used in the expression.
functions : Functions instance, optional
The user functions for materials etc.
mode : one of 'eval', 'el_avg', 'qp'
The evaluation mode - 'qp' requests the values in quadrature points,
'el_avg' element averages and 'eval' means integration over
each term region.
term_mode : str
The term call mode - some terms support different call modes
and depending on the call mode different values are
returned.
extra_args : dict, optional
Extra arguments to be passed to terms in the expression.
verbose : bool
If False, reduce verbosity.
kwargs : dict, optional
The variables (dictionary of (variable name) : (Variable
instance)) to be used in the expression.
Returns
-------
out : array
The result of the evaluation.
"""
weights = nm.ones_like(coors[:, 0])
integral = Integral('ie', coors=coors, weights=weights)
domain = fields.values()[0].domain
region = Region('Elements', 'given elements', domain, '')
region.cells = iels + domain.mesh.el_offsets[ig]
region.update_shape()
domain.regions.append(region)
for field in fields.itervalues():
field.clear_mappings(clear_all=True)
for ap in field.aps.itervalues():
ap.clear_qp_base()
aux = create_evaluable(expression, fields, materials,
variables.itervalues(), Integrals([integral]),
functions=functions,
mode=mode, extra_args=extra_args, verbose=verbose,
kwargs=kwargs)
equations, variables = aux
out = eval_equations(equations, variables,
preserve_caches=False,
mode=mode, term_mode=term_mode)
domain.regions.pop()
return out | b71a20f0806ac03f9f995ffa41f317bc2c029d1c | 6,430 |
def tracks2Dataframe(tracks):
"""
Saves lsit of Track objects to pandas dataframe
Input:
tracks: List of Track objects
Output:
df: Pandas dataframe
"""
if(len(tracks) == 0):
print("Error saving to CSV. List of tracks is empty")
return
# Collect tracks into single dataframe
df = pd.DataFrame()
for t in tracks:
df = df.append(t.toDataframe())
df = df.sort_values(by=['frame', 'id'], ascending=[True, True])
return df | 9d25e7f9535cfefc5b6faf791555b382edf12a07 | 6,431 |
def sift_point_to_best(target_point, point, sift_dist):
"""
Move a point to target point given a distance. Based on Jensen's inequality formula.
Args:
target_point: A ndarray or tensor, the target point of pca,
point: A ndarray or tensor, point of pca,
sift_dist: A float, distance where point will sift to new one.
Returns:
new_points: A tuple, a couple of new updated points.
References:
https://en.wikipedia.org/wiki/Jensen%27s_inequality
"""
dist = np.sqrt(np.sum((point - target_point) ** 2))
a = sift_dist / dist
new_point = np.array([
point[0] * a + (1 - a) * target_point[0],
point[1] * a + (1 - a) * target_point[1]
])
new_points = (new_point[0], new_point[1])
return new_points | a14216998631f22d6c8d4e98112672608b8477e5 | 6,432 |
def jrandom_counts(sample, randoms, j_index, j_index_randoms, N_sub_vol, rp_bins, pi_bins,
period, num_threads, do_DR, do_RR):
"""
Count jackknife random pairs: DR, RR
"""
if do_DR is True:
DR = npairs_jackknife_xy_z(sample, randoms, rp_bins, pi_bins, period=period,
jtags1=j_index, jtags2=j_index_randoms,
N_samples=N_sub_vol, num_threads=num_threads)
DR = np.diff(np.diff(DR, axis=1), axis=2)
else:
DR = None
if do_RR is True:
RR = npairs_jackknife_xy_z(randoms, randoms, rp_bins, pi_bins, period=period,
jtags1=j_index_randoms, jtags2=j_index_randoms,
N_samples=N_sub_vol, num_threads=num_threads)
RR = np.diff(np.diff(RR, axis=1), axis=2)
else:
RR = None
return DR, RR | dce697b11f1d66b61aef46982c40b0310a292a92 | 6,433 |
from typing import Any
def process_not_inferred_array(ex: pa.ArrowInvalid, values: Any) -> pa.Array:
"""Infer `pyarrow.array` from PyArrow inference exception."""
dtype = process_not_inferred_dtype(ex=ex)
if dtype == pa.string():
array: pa.Array = pa.array(obj=[str(x) for x in values], type=dtype, safe=True)
else:
raise ex # pragma: no cover
return array | c2d84f436dbd1123e38e1468101f8910e928e9ba | 6,434 |
def start_end(tf):
"""Find start and end indices of running streaks of True values"""
n = len(tf)
tf = np.insert(tf, [0, len(tf)], [False, False])
# 01 and 10 masks
start_mask = (tf[:-1] == 0) & (tf[1:] == 1)
end_mask = (tf[:-1] == 1) & (tf[1:] == 0)
# Locations
start_loc = np.where(start_mask)[0]
end_loc = np.minimum(np.where(end_mask)[0] - 1, n-1)
return start_loc, end_loc | 592a55da0d1c02259676444d2dd640f759dfb62d | 6,435 |
def remove_provinces(data, date_range):
"""
REMOVE PROVINCES
:param data: The Data received from the API
:param date_range: the date range of the data
:return: data after removing provinces
"""
countries_with_provinces = []
names_of_countries_with_prov = []
# get countries with provinces
for country in data[:]:
if country['province'] is not None:
if country['country'] not in names_of_countries_with_prov:
names_of_countries_with_prov.append(country['country'])
countries_with_provinces.append(data.pop(data.index(country)))
else:
pass
# deal with countries with provinces
for country_name in names_of_countries_with_prov[:]: # for each country,
countries = list(
filter(lambda x: x['country'] == country_name, countries_with_provinces))
names_of_countries_with_prov.remove(country_name)
# calculate total cases, deaths & recovered per day
cases = {}
recovered = {}
deaths = {}
for date in date_range:
cs = 0
dt = 0
rc = 0
# sum data up per province
for prov in countries:
cs += prov['timeline']['cases'][date]
dt += prov['timeline']['deaths'][date]
rc += prov['timeline']['recovered'][date]
cases[date] = cs
recovered[date] = rc
deaths[date] = dt
# return country after removing provinces
totals = ({'country': country_name, 'province': None, 'timeline': {
'cases': cases, 'deaths': deaths, 'recovered': recovered}})
data.append(totals)
return data | 05e973254402fb2c9873fa065d45a6a5dd3da353 | 6,436 |
def plot_publish(families, targets=None, identifiers=None, keys=None):
"""Parse and plot all plugins by families and targets
Args:
families (list): List of interested instance family names
targets (list, optional): List of target names
identifiers (list, optional): List of interested dict names, take
["context.data", "instance.data"] if not provided.
keys (list, optional): List of interested key names, return all dict
keys if not provided.
"""
if not targets:
targets = ["default"] + api.registered_targets()
plugins = api.discover()
plugins = logic.plugins_by_families(plugins, families)
plugins = logic.plugins_by_targets(plugins, targets)
reports = list()
for plugin in plugins:
report = plot_plugin(plugin, identifiers, keys)
if report:
reports.append(report)
return reports | de2dc8cf3184fdd4d883e340256b55153346a3a9 | 6,437 |
import torch
def mdetr_resnet101_refcocoplus(pretrained=False, return_postprocessor=False):
"""
MDETR R101 with 6 encoder and 6 decoder layers.
Trained on refcoco+, achieves 79.52 val accuracy
"""
model = _make_detr("resnet101")
if pretrained:
checkpoint = torch.hub.load_state_dict_from_url(
url="https://zenodo.org/record/4721981/files/refcoco%2B_resnet101_checkpoint.pth",
map_location="cpu",
check_hash=True,
)
model.load_state_dict(checkpoint["model"])
if return_postprocessor:
return model, PostProcess()
return model | 30f73654fbabccc35629c9adb3d7ac91c5fe368d | 6,439 |
import re
def readConfigFile(filePath):
""" Read the config file and generate a dictionnary containing an entry for
every modules of the installation. """
modules_attributes_list = []
confFile = open(filePath, "r")
for i, line in enumerate(confFile.readlines()):
# Remove everything that is written after "#" character (comments)
line = line.split("#")[0]
line = line.split("//")[0]
line = line.split("$")[0]
# Remove special characters
line = re.sub('[!@#$\0\\n ]','',line)
# Get the MAC addresses and the modules number
words = line.split(",")
if len(words) == 4:
modID = int(words[0])
posY = int(words[1])
posX = int(words[2])
macAddr = words[3]
modules_attributes_list.append((modID, posY, posX, macAddr))
elif len(words) < 2:
pass
else :
raise AttributeError("Wrong formatting of the MAC file.")
return modules_attributes_list | fadaec4dd005d6337eb5950b8782d5db944fb4cc | 6,441 |
def unpad_pkcs7(data):
"""
Strips PKCS#7 padding from data.
Raises ValueError if padding is invalid.
"""
if len(data) == 0:
raise ValueError("Error: Empty input.")
pad_value = data[-1]
if pad_value == 0 or pad_value > 16:
raise ValueError("Error: Invalid padding.")
for i in range(1, pad_value + 1):
if data[-i] != pad_value:
raise ValueError("Error: Invalid padding.")
unpadded = data[: (len(data) - pad_value)]
return unpadded | 27e59b8a880c130997f19814135c09cb6e94354d | 6,442 |
def create_output_channel(
mgr: sl_tag.TagManager, group: str, name: str, data_type: sl_tag.DataType
) -> sl_tag.TagData:
"""Create a FlexLogger output channel."""
# "Import" the channel into FlexLogger.
full_name = get_tag_prefix() + ".Import.Setpoint.{}.{}".format(group, name)
mgr.open(full_name, data_type, create=True)
# Once FlexLogger creates the channel, we'll interact with it as an "export" channel
# (for both reads and writes).
full_name = get_tag_prefix() + ".Export.Setpoint.{}".format(name)
# Go ahead and pre-create the output channel, for ease-of-use. Otherwise, when
# trying to read its value, we'd have to be prepared for an ApiException complaining
# that the tag doesn't exist.
mgr.open(full_name, data_type, create=True)
return sl_tag.TagData(full_name, data_type) | 40bf2f6f555993deb4433d00768a3241dc8d72f6 | 6,443 |
import re
def slugify(value, allow_unicode=False):
"""
adapted from https://github.com/django/django/blob/master/django/utils/text.py
Convert to ASCII if 'allow_unicode' is False. Convert spaces or repeated
dashes to single dashes. Remove characters that aren't alphanumerics,
underscores, or hyphens. Convert to lowercase. Also strip leading and
trailing whitespace, dashes, and underscores.
"""
value = str(value)
value = value.replace(":", "_")
value = value.replace("/", "_")
value = re.sub(r'[^\w\s-]', '', value.lower())
return re.sub(r'[-\s]+', '-', value).strip('-_') | f87a54f124a06fde2163fec39ba41881032db569 | 6,444 |
import torch
def data_process(raw_text_iter: dataset.IterableDataset) -> Tensor:
"""Converts raw text into a flat Tensor."""
data = [torch.tensor(vocab(tokenizer(item)), dtype=torch.long) for item in raw_text_iter]
return torch.cat(tuple(filter(lambda t: t.numel() > 0, data))) | 1c4bb8cf9997f6a6205c7c4f1122892b528f5c0e | 6,445 |
def rna_view_redirect(request, upi, taxid):
"""Redirect from urs_taxid to urs/taxid."""
return redirect('unique-rna-sequence', upi=upi, taxid=taxid, permanent=True) | 7a45b8b75e2cffb7573a7856c74d8e7b21e70543 | 6,446 |
from typing import AbstractSet
def skip_for_variants(meta: MetaData, variant_keys: AbstractSet[str]) -> bool:
"""Check if the recipe uses any given variant keys
Args:
meta: Variant MetaData object
Returns:
True if any variant key from variant_keys is used
"""
# This is the same behavior as in
# conda_build.metadata.Metadata.get_hash_contents but without leaving out
# "build_string_excludes" (python, r_base, etc.).
dependencies = set(meta.get_used_vars())
trim_build_only_deps(meta, dependencies)
return not dependencies.isdisjoint(variant_keys) | 89bc8bf82431043cc4c6b42b6f8385df14c8d7d1 | 6,447 |
def _is_safe_url(url, request):
"""Override the Django `is_safe_url()` to pass a configured list of allowed
hosts and enforce HTTPS."""
allowed_hosts = (
settings.DOMAIN,
urlparse(settings.EXTERNAL_SITE_URL).netloc,
)
require_https = request.is_secure() if request else False
return is_safe_url(url, allowed_hosts=allowed_hosts, require_https=require_https) | e1a8779c72b6d5adfa3fe01b478783d81ef515de | 6,448 |
def _server():
"""
Reconstitute the name of this Blueprint I/O Server.
"""
return urlparse.urlunparse((request.environ.get('wsgi.url_scheme',
'https'),
request.environ.get('HTTP_HOST',
'devstructure.com'),
'', '', '', '')) | 122457aa7f2a5e301299ccaaed4bba75cf273f5a | 6,450 |
def get_range_api(spreadsheetToken, sheet_id, range, valueRenderOption=False):
"""
该接口用于根据 spreadsheetToken 和 range 读取表格单个范围的值,返回数据限制为10M。
:return:
"""
range_fmt = sheet_id + '!' + range
get_range_url = cfg.get_range_url.format(spreadsheetToken=spreadsheetToken, range=range_fmt)
headers = {
"Authorization": "Bearer " + cfg.access_token,
"Content-Type": "application/json"
}
params = {
"valueRenderOption": "ToString" if valueRenderOption else None
}
result = get_http_request(get_range_url, headers=headers, params=params)
return result | 0c226caaa64e1bab09ac9b3af6a839609d62d5a3 | 6,451 |
def rotate_rboxes90(rboxes: tf.Tensor,
image_width: int,
image_height: int,
rotation_count: int = 1) -> tf.Tensor:
"""Rotate oriented rectangles counter-clockwise by multiples of 90 degrees."""
image_width = tf.cast(image_width, dtype=tf.float32)
image_height = tf.cast(image_height, dtype=tf.float32)
rotation_count = rotation_count % 4
x, y, w, h, angle = tf.split(rboxes, 5, axis=1)
if rotation_count == 0:
return rboxes
elif rotation_count == 1:
angle = tf.where(angle < -90.0, angle + 270, angle - 90)
return tf.concat([y, image_width - x - 1, w, h, angle], axis=1)
elif rotation_count == 2:
angle = tf.where(angle < 0.0, angle + 180, angle - 180)
return tf.concat([image_width - x - 1, image_height - y - 1, w, h, angle],
axis=1)
else:
angle = tf.where(angle > 90.0, angle - 270, angle + 90)
return tf.concat([image_height - y - 1, x, w, h, angle], axis=1) | 7c21d6ea3bf8454af9aabd0f4408c9de593432ac | 6,452 |
def get_wrong_user_credentials():
"""
Monkeypatch GithubBackend.get_user_credentials to force the case where
invalid credentias were provided
"""
return dict(username='invalid',
password='invalid',
token='invalid',
remember=False,
remember_token=False) | 3598f00b05a53cdb13543642048fc8c333eebe52 | 6,453 |
def get_points(coords, m, b=None, diagonal=False):
"""Returns all discrete points on a line"""
points = []
x1, y1, x2, y2 = coords[0], coords[1], coords[2], coords[3]
# vertical line
if m is np.nan:
# bottom to top
y = min(y1, y2)
while y <= max(y1, y2):
points.append((x1, y))
y += 1
# horizontal line
elif m == 0:
# left to right
x = min(x1, x2)
while x <= max(x1, x2):
points.append((x, y1))
x += 1
else:
# diagonal line
if diagonal:
x = x1
y = y1
if x1 < x2:
# left to right
while x <= x2:
points.append((x, y))
x += 1
y = m * x + b
else:
# right to left
while x >= x2:
points.append((x, y))
x -= 1
y = m * x + b
else:
return None
return points | 23d6d4002c5625b8ea6011c26a0419c2a2710b53 | 6,454 |
def get_region_geo(region_id):
"""Get Geo/TopoJSON of a region.
Args:
region_id (str): Region ID (e.g. LK-1, LK-23)
Returns:
Geo-spatial data as GeoPandasFrame
"""
region_type = get_entity_type(region_id)
region_to_geo = _get_region_to_geo(region_type)
return region_to_geo.get(region_id, {}) | 0493aa9e521c6d27cad6e6be07662449b6768a20 | 6,455 |
def load_vocabulary(f):
"""
Load the vocabulary from file.
:param f: Filename or file object.
:type f: str or file
:return: Vocabulary
"""
v = Vocabulary()
if isinstance(f, str):
file_ = open(f, 'r')
else:
file_ = f
for line in file_:
wordid, word, wordcount = line.strip().split('\t')
wordid, wordcount = int(wordid), int(wordcount)
v.id2word[wordid] = word
v.word2id[word] = wordid
if wordcount != 0:
v.word_count[wordid] = wordcount
if isinstance(f, str):
file_.close()
return v | 7a7cdf44016eccd1ceefd4fcc9e19f8f50caece2 | 6,456 |
def populate_objects(phylodata_objects, project_name, path_to_species_trees, path_to_gene_trees, path_to_ranger_outputs):
"""
this function will try and associate each phylodata object with the correct
species_besttree
gene_bootstrap_trees
and rangerDTL output files (if they exist)
args:
list of phylodata objects
name of project
paths (to species trees, to bootstrap gene trees, to rangerDTL
returns
True if everything was associated
False if something has gone horribly awry
"""
#try and populate the species and gene files. should work.
for obj in phylodata_objects:
#print("Populating species trees")
obj.populate_species_tree(path_to_species_trees)
#print("Populating gene trees")
obj.populate_gene_boots(path_to_gene_trees)
#now try and populate ranger output, if not make directory and run run_rangerDTL
for obj in phylodata_objects:
#print("Checking for rangerDTL outputs")
exists = obj.populate_ranger_dtl_outputs(path_to_ranger_outputs)
if exists is False:
#run the program.
print("Running RangerDTL")
path_to_ranger_outputs, list_of_ranger_outputs = annotate_ranger.run_rangerDTL(obj, project_name)
#print("Checking for new rangerDTL outputs")
exists = obj.populate_ranger_dtl_outputs(path_to_ranger_outputs)
if exists is False:
print ("error in rangerdtl_output assignation")
raise SystemExit
return True | 5813981113be0513920fed0bc21bd6eedd6890f3 | 6,457 |
def xml_ind(content):
"""Translate a individual expression or variable to MathCAD XML.
:param content: str, math expression or variable name.
:return: str, formatted MathCAD XML.
"""
ns = ''' xmlns:ml="http://schemas.mathsoft.com/math30">''' # name space as initial head
sub_statement = xml_stat(xml_ex(content))
return sub_statement.replace('>', ns, 1) | 67e82cbfd2796e31eaef7305e240fc9e3d93c08e | 6,459 |
from typing import Any
def read_slug(slug: str, db: Session = Depends(get_db)) -> Any:
"""
Get a post by slug
"""
db_slug = get_post(db, slug)
if db_slug is None:
raise HTTPException(status_code=404, detail="Post not found")
return db_slug | 347dfd32aa87417cecfbb5b192288fdc0585a071 | 6,460 |
from typing import List
def left_join_predictions(anno_gold: pd.DataFrame, anno_predicted: pd.DataFrame, columns_keep_gold: List[str],
columns_keep_system: List[str]) -> pd.DataFrame:
"""
Given gold mention annotations and predicted mention annotations, this method returns the gold annotations with
additional columns from the system prediction merged in, based on the optimal 1:1 span matching per sentence. Gold
annotation spans will not be modified, only enriched (hence: left join). Index and column of dataframes must
conform to a certain format (see assert in code). Spans in the dataframes must be non-overlapping.
:param anno_gold:
:param anno_predicted:
:param columns_keep_gold:
:param columns_keep_system:
:return:
"""
assert anno_gold.index.names == [DOCUMENT_ID, MENTION_ID]
assert anno_predicted.index.names == [DOCUMENT_ID, MENTION_ID]
mappings = []
MENTION_ID_GOLD = "mention-id-gold"
MENTION_ID_PREDICTED = "mention-id-predicted"
# perform intersection sentence-wise
if not anno_predicted.empty:
for (doc_id, sent_idx), df_gold in anno_gold.reset_index().groupby([DOCUMENT_ID, SENTENCE_IDX]):
spans_gold = df_gold[[TOKEN_IDX_FROM, TOKEN_IDX_TO]].values.tolist()
# look up mentions at the same spot in system output
anno_predicted_wout_index = anno_predicted.reset_index()
df_predicted = anno_predicted_wout_index.loc[(anno_predicted_wout_index[DOCUMENT_ID] == doc_id) & (anno_predicted_wout_index[SENTENCE_IDX] == sent_idx)]
spans_predicted = df_predicted[[TOKEN_IDX_FROM, TOKEN_IDX_TO]].values.tolist()
# perform span matching (only based on spans! no type information taken into consideration!)
matched_spans = span_matching(spans_gold, spans_predicted, keep_A=True)
# keep MENTION_IDs of matched mentions
for i_gold, i_predicted in matched_spans.items():
row = {DOCUMENT_ID: doc_id,
MENTION_ID_GOLD: df_gold.iloc[i_gold][MENTION_ID]}
# this index can be None because we set keep_A=True for span_matching, to always keep all gold annotations
if i_predicted is not None:
row[MENTION_ID_PREDICTED] = df_predicted.iloc[i_predicted][MENTION_ID]
mappings.append(row)
mappings = pd.DataFrame(mappings, columns=[DOCUMENT_ID, MENTION_ID_GOLD, MENTION_ID_PREDICTED])
if not mappings.empty:
# merge in the columns we want to keep from the gold annotations
mappings = mappings.merge(anno_gold[columns_keep_gold],
left_on=[DOCUMENT_ID, MENTION_ID_GOLD],
right_index=True)
# merge in the columns we want to keep from the predicted annotations - note the use of how="left" to keep gold annotations which have MENTION_ID_PREDICTED == None
left_joined = mappings.merge(anno_predicted[columns_keep_system],
left_on=[DOCUMENT_ID, MENTION_ID_PREDICTED],
right_index=True,
how="left")
# drop unwanted columns, return to original column names, return to original index
left_joined = left_joined.drop(columns=[MENTION_ID_PREDICTED])
left_joined = left_joined.rename(columns={MENTION_ID_GOLD: MENTION_ID})
left_joined = left_joined.set_index([DOCUMENT_ID, MENTION_ID])
else:
# append lots of NaNs if there is nothing to merge
left_joined = pd.concat([anno_gold[columns_keep_gold], pd.DataFrame([], columns=columns_keep_system)], axis=1)
left_joined.sort_index(inplace=True)
return left_joined | c34785e255940f69375ee64674186b0b7e8bdf1f | 6,461 |
import json
def get_users_data(filter):
"""
Returns users in db based on submitted filter
:param filter:
:return:
"""
# presets - filter must be in one of the lists
filter_presets = {"RegistrationStatus": ["Pending", "Verified"], "userTypeName": ["Administrator", "Event Manager", "Alumni"]}
if filter.title() in filter_presets["RegistrationStatus"]:
users_data = db.get_users(RegistrationStatus=filter)
elif filter.title() in filter_presets["userTypeName"]:
users_data = db.get_users(userTypeName=filter)
else:
#filter doesn't exist return all users
users_data = db.get_users()
users_data = list(enumerate(users_data))
return json.jsonify(users_data) | 568dab028a30c9c6f88de83054b6a7b3e95662fc | 6,462 |
def calAdjCCTTFromTrace(nt,dt,tStartIn,tEndIn,dataIn, synthIn):
""" calculate the cross correlation traveltime adjoint sources for one seismogram
IN:
nt : number of timesteps in each seismogram
dt : timestep of seismograms
tStartIn : float starting time for trace
tEndIn : float end time for trace
OUT:
fBar : array containing the adjoint seismogram for the trace
t : ndarray containing the time steps
"""
isCalculateWeights = False
if isCalculateWeights:
dSeism = np.zeros(nt)
weight = 0
# -- time vector
t = np.ogrid[0:(nt-1)*dt:nt*1j]
# -- the norm
norm = 0
# -- numpy arrays initialisation
velSynth = np.zeros(nt)
accSynth = np.zeros(nt)
timeWind = np.zeros(nt)
fBar = np.zeros(nt)
# -- calculate time time-window
tStart = tStartIn
tEnd = tEndIn
# -- the starting and ending sample numbers
iStart = int(np.floor(tStart/dt))
iEnd = int(np.ceil(tEnd/dt))
# -- sample length of the window
iWind = iEnd - iStart
#print iStart,iEnd,iWind
timeWind[iStart:iEnd]=sgnl.hann(iWind)
# -- calculate the adjoint
synth = synthIn
interpTrc = interp.InterpolatedUnivariateSpline(t,synth)
velSynth = interpTrc(t,1)
accSynth = interpTrc(t,2)
integrArgument = timeWind*synth*accSynth
# -- calculating the norm
norm = integr.simps(integrArgument,dx=dt,axis=-1,even='last')
# -- divide every trace (row in matrices) by their norm (row in vector norm)
fBar = timeWind*velSynth / norm
if isCalculateWeights:
# -- read in the data seismograms
data = dataIn
# -- calculate the difference between data and synthetics (amplitude) per trace
dSeism = data - synth
# -- calculate the weight per trace
integrArgument = timeWind*velSynth*dSeism
weight = integr.simps(integrArgument,dx=dt,axis=-1,even='last')
print "weight", weight/norm
# -- multiply weight with every adj trace
fBar = fBar*weight
print weight
return [fBar,t] | 7524d350c241ae07810b1e5c38bb3db869136804 | 6,463 |
def get_par_idx_update_pars_dict(pars_dict, cmd, params=None, rev_pars_dict=None):
"""Get par_idx representing index into pars tuples dict.
This is used internally in updating the commands H5 and commands PARS_DICT
pickle files. The ``pars_dict`` input is updated in place.
This code was factored out verbatim from kadi.update_cmds.py.
:param pars_dict: dict of pars tuples
:param cmd: dict or CommandRow
Command for updated par_idx
:param pars: dict, optional
If provided, this is used instead of cmd['params']
:param rev_pars_dict: dict, optional
If provided, also update the reverse dict.
:returns: int
Params index (value of corresponding pars tuple dict key)
"""
# Define a consistently ordered tuple that has all command parameter information
if params is None:
params = cmd['params']
keys = set(params.keys()) - set(('SCS', 'STEP', 'TLMSID'))
if cmd['tlmsid'] == 'AOSTRCAT':
pars_tup = encode_starcat_params(params) if params else ()
else:
if cmd['tlmsid'] == 'OBS':
# Re-order parameters to a priority order.
new_keys = ['obsid', 'simpos', 'obs_stop', 'manvr_start', 'targ_att']
for key in sorted(cmd['params']):
if key not in new_keys:
new_keys.append(key)
keys = new_keys
else:
# Maintain original order of keys for OBS command but sort the rest.
# This is done so the OBS command displays more nicely.
keys = sorted(keys)
pars_tup = tuple((key.lower(), params[key]) for key in keys)
try:
par_idx = pars_dict[pars_tup]
except KeyError:
# Along with transition to 32-bit idx in #190, ensure that idx=65535
# never gets used. Prior to #190 this value was being used by
# get_cmds_from_backstop() assuming that it will never occur as a
# key in the pars_dict. Adding 65536 allows older versions to work
# with the new cmds.pkl pars_dict.
par_idx = len(pars_dict) + 65536
pars_dict[pars_tup] = par_idx
if rev_pars_dict is not None:
rev_pars_dict[par_idx] = pars_tup
return par_idx | 9be23a37884eb674b3faa67ac17342b830c123fd | 6,464 |
def COSTR(LR, R, W, S):
"""
COSTR one value of cosine transform of two-sided function
p. 90
"""
COSNW = 1.
SINNW = 0.
COSW = COS(W)
SINW = SIN(W)
S = R[0]
for I in range(1, LR):
T = COSW * COSNW - SINW * SINNW
COSNW = T
S += 2 * R[I] * COSNW
return S | c4a4ff69ac4bd2d22885fc5103e62b0d861d8ed6 | 6,467 |
def CV_SIGN(*args):
"""CV_SIGN(int a)"""
return _cv.CV_SIGN(*args) | 380758a917df6111c27e6072a72a483ac13513c9 | 6,468 |
def import_config_data(config_path):
"""
Parameters
----------
config_path : str
path to the experimental configuration file
Returns
-------
config data : dict
dict containing experimental metadata for a given session config file
"""
data = get_config(config_path)
return data | c174272dfd56876f7e8dbd306248c81aa1f3bdb2 | 6,469 |
def sigmaLabel(ax, xlabel, ylabel, sigma=None):
"""Label the axes on a figure with some uncertainty."""
confStr = r'$\pm{} \sigma$'.format(sigma) if sigma is not None else ''
ax.set_xlabel(xlabel + confStr)
ax.set_ylabel(ylabel + confStr)
return ax | 8ecf5ae2defd0d67c545943ea48992906612282e | 6,470 |
def startswith(x, prefix):
"""Determines if entries of x start with prefix
Args:
x: A vector of strings or a string
prefix: The prefix to test against
Returns:
A bool vector for each element in x if element startswith the prefix
"""
x = regcall(as_character, x)
return x.str.startswith(prefix) | 2d41a61d5a569af1925e8df7e2218fdae2bcb7ec | 6,471 |
def create_estimator(est_cls, const_kwargs, node, child_list):
"""
Creates an estimator.
:param est_cls: Function that creates the estimator.
:param const_kwargs: Keyword arguments which do not change during the evolution.
:param child_list: List of converted child nodes - should me empty.
:param evolved_kwargs: Keyword arguments which are set during the evolution process.
:return: A new estimator.
"""
if len(child_list) > 0:
raise ValueError("Estimator cannot have sub-estimators.")
evolved_kwargs = node.obj_kwargs
if 'feat_frac' in evolved_kwargs.keys():
feat_frac = evolved_kwargs['feat_frac']
evolved_kwargs = {key: val for key, val in evolved_kwargs.items()
if key != 'feat_frac'}
est = est_cls(**const_kwargs, **evolved_kwargs)
return RelativeTransformer(est, feat_frac)
return est_cls(**const_kwargs, **evolved_kwargs) | 306a948f11bc3f70a3c489d1740d7144bbaa4c5b | 6,472 |
def exists(hub_id):
"""Check for existance of hub in local state.
Args:
hub_id(str): Id of hub to query. The id is a string of hexadecimal sections used internally to represent a hub.
"""
if 'Hubs.{0}'.format(hub_id) in config.state:
return True
else:
return False | 4b6d333e070e1dea9300db20bcd50b58c1b9b457 | 6,473 |
import logging
def query_by_date_after(**kwargs):
"""
根据发布的时间查询,之后的记录: 2020-06-03之后,即2020-06-03, 2020-06-04, ......
:param kwargs: {'date': date}
:return:
"""
session = None
try:
date = kwargs['date'].strip() + config.BEGIN_DAY_TIME
session = get_session()
ret = session.query(Play).filter(Play.DATE_TIME >= date).order_by(
Play.DATE_TIME.desc()).limit(config.LIMIT_MAX).all()
# 提交即保存到数据库
session.commit()
results = parse_object(*ret)
logging.info('OK : play.py--->query_by_date_after(), 成功')
return results
except Exception as e:
logging.critical('Error : play.py--->query_by_date_after() 失败: {}'.format(e))
return []
finally:
# 关闭session
session.close() | b6bbf40441ae8c3f6db861e8bed025986b7373bd | 6,474 |
from skimage.feature import peak_local_max # Defer slow import
from scipy.stats import iqr
import math
def _step_4_find_peaks(
aligned_composite_bg_removed_im,
aligned_roi_rect,
raw_mask_rects,
border_size,
field_df,
sigproc_params,
):
"""
Find peaks on the composite image
TASK: Remove the mask rect checks and replace with the same masking
logic that is now implemented in the alignment phase. That is, just remove
the peaks from the source instead of in post-processing.
"""
n_outchannels, n_inchannels, n_cycles, dim = sigproc_params.channels_cycles_dim
assert (
aligned_composite_bg_removed_im.shape[0]
== aligned_composite_bg_removed_im.shape[1]
)
aligned_dim, _ = aligned_composite_bg_removed_im.shape
check.array_t(aligned_composite_bg_removed_im, is_square=True)
hat_rad = sigproc_params.hat_rad
brim_rad = sigproc_params.hat_rad + 1
hat_mask, brim_mask = _hat_masks(hat_rad, brim_rad)
kernel = imops.generate_gauss_kernel(1.0)
kernel = kernel - kernel.mean()
_fiducial_im = imops.convolve(aligned_composite_bg_removed_im, kernel)
# Black out the convolution artifact around the perimeter of the _fiducial_im
search_roi_rect = Rect(
aligned_roi_rect.b + brim_rad,
aligned_roi_rect.t - brim_rad,
aligned_roi_rect.l + brim_rad,
aligned_roi_rect.r - brim_rad,
)
search_roi = search_roi_rect.roi()
composite_fiducial_im = np.zeros_like(aligned_composite_bg_removed_im)
# Use Inter-Quartile Range for some easy filtering
_iqr = 0
if sigproc_params.iqr_rng is not None:
_iqr = iqr(
_fiducial_im[search_roi],
rng=(100 - sigproc_params.iqr_rng, sigproc_params.iqr_rng),
)
composite_fiducial_im[search_roi] = (_fiducial_im[search_roi] - _iqr).clip(min=0)
locs = peak_local_max(
composite_fiducial_im,
min_distance=hat_rad,
threshold_abs=sigproc_params.threshold_abs,
)
# Emergency exit to prevent memory overflows
# check.affirm(len(locs) < 7000, f"Too many peaks {len(locs)}")
shift = field_df.set_index("cycle_i").sort_index()[["shift_y", "shift_x"]].values
shift_y = shift[:, 0]
shift_x = shift[:, 1]
# Discard any peak in any mask_rect
# ALIGN the mask rects to the composite coordinate system
aligned_mask_rects = []
for channel in range(sigproc_params.n_output_channels):
channel_rects = safe_list_get(raw_mask_rects, channel, [])
for cycle in range(n_cycles):
for rect in safe_list_get(channel_rects, cycle, []):
yx = XY(rect[0], rect[1])
hw = WH(rect[2], rect[3])
yx += XY(border_size, border_size) - XY(shift_x[cycle], shift_y[cycle])
aligned_mask_rects += [(yx[0], yx[1], yx[0] + hw[0], yx[1] + hw[1])]
aligned_mask_rects = np.array(aligned_mask_rects)
if aligned_mask_rects.shape[0] > 0:
# To compare every loc with every mask rect we use the tricky np.fn.outer()
y_hits = np.greater_equal.outer(locs[:, 0], aligned_mask_rects[:, 0])
y_hits &= np.less.outer(locs[:, 0], aligned_mask_rects[:, 2])
x_hits = np.greater_equal.outer(locs[:, 1], aligned_mask_rects[:, 1])
x_hits &= np.less.outer(locs[:, 1], aligned_mask_rects[:, 3])
inside_rect = x_hits & y_hits # inside a rect if x and y are inside the rect
locs_to_keep = ~np.any(
inside_rect, axis=1
) # Reject if inside of any masked rect
locs = locs[locs_to_keep]
circle_im = np.zeros((aligned_dim, aligned_dim))
center = aligned_dim / 2
peak_rows = []
for field_peak_i, loc in enumerate(locs):
if sigproc_params.radial_filter is not None:
radius = math.sqrt((loc[0] - center) ** 2 + (loc[1] - center) ** 2)
radius /= center
if radius >= sigproc_params.radial_filter:
continue
imops.set_with_mask_in_place(circle_im, brim_mask, 1, loc=loc, center=True)
peak_rows += [
Munch(
peak_i=0,
field_peak_i=field_peak_i,
aln_y=int(loc[0]),
aln_x=int(loc[1]),
)
]
peak_df = pd.DataFrame(peak_rows)
return peak_df, circle_im, aligned_mask_rects | 1439336369681569a85ee3e8a8566e4d02cc2999 | 6,476 |
import socket
def get_reverse_host():
"""Return the reverse hostname of the IP address to the calling function."""
try:
return socket.gethostbyaddr(get_ipaddress())[0]
except:
return "Unable to resolve IP address to reverse hostname" | 48911baf6507563470cb2d34af2392b52c58ac9a | 6,477 |
def trans_stop(value) -> TransformerResult:
"""
A transformer that simply returns TransformerResult.RETURN.
"""
return TransformerResult.RETURN | c124c62a15bca1000ecdfaaa02433de405338e6c | 6,478 |
def generator(n, mode):
""" Returns a data generator object.
Args:
mode: One of 'training' or 'validation'
"""
flip_cams = False
if FLAGS.regularization == 'GRU':
flip_cams = True
gen = ClusterGenerator(FLAGS.train_data_root, FLAGS.view_num, FLAGS.max_w, FLAGS.max_h,
FLAGS.max_d, FLAGS.interval_scale, FLAGS.base_image_size, mode=mode, flip_cams=flip_cams)
logger.info('Initializing generator with mode {}'.format(mode))
if mode == 'training':
global training_sample_size
training_sample_size = len(gen.train_clusters)
if FLAGS.regularization == 'GRU':
training_sample_size = training_sample_size * 2
return iter(gen) | 1dc7950a4ae0f7c35a4ba788710327c2e63fae14 | 6,479 |
import re
def remove_multispaces(text):
""" Replace multiple spaces with only 1 space """
return [re.sub(r' +', " ",word) for word in text] | 0b87f6a4b0d49931b3f4bec6f9c313be05d476f0 | 6,480 |
def empirical_ci(arr: np.ndarray, alpha: float = 95.0) -> np.ndarray:
"""Computes percentile range in an array of values.
Args:
arr: An array.
alpha: Percentile confidence interval.
Returns:
A triple of the lower bound, median and upper bound of the confidence interval
with a width of alpha.
"""
percentiles = 50 - alpha / 2, 50, 50 + alpha / 2
return np.percentile(arr, percentiles) | 8bb0ff5768c70d4e34174ea4187898513a4f841e | 6,481 |
def euclidean(a,b):
"""Calculate GCD(a,b) with the Euclidean algorithm.
Args:
a (Integer): an integer > 0.
b (Integer): an integer > 0.
Returns:
Integer: GCD(a,b) = m ∈ ℕ : (m|a ⋀ m|b) ⋀ (∄ n ∈ ℕ : (n|a ⋀ n|b) ⋀ n>m).
"""
if(a<b):
a,b = b,a
a, b = abs(a), abs(b)
while a != 0:
a, b = b % a, a
return b | 8af351e251e52336d7ef946a28bb6d666bff97c3 | 6,482 |
from typing import Union
def check_reserved_pulse_id(pulse: OpInfo) -> Union[str, None]:
"""
Checks whether the function should be evaluated generically or has special
treatment.
Parameters
----------
pulse
The pulse to check.
Returns
-------
:
A str with a special identifier representing which pulse behavior to use
"""
reserved_pulse_mapping = {
"stitched_square_pulse": _check_square_pulse_stitching,
"staircase": _check_staircase,
}
for key, checking_func in reserved_pulse_mapping.items():
if checking_func(pulse):
return key
return None | d4bd89da98612031fbcc7fcde9bcf40bb0843f70 | 6,483 |
def figure(*args, **kwargs):
"""
Returns a new SpectroFigure, a figure extended with features useful for
analysis of spectrograms.
Compare pyplot.figure.
"""
kw = {
'FigureClass': SpectroFigure,
}
kw.update(kwargs)
return plt.figure(*args, **kw) | 851b02773dc974691ba6e43477244aa8e4ba0760 | 6,484 |
import six
def allow_ports(ports, proto="tcp", direction="in"):
"""
Fully replace the incoming or outgoing ports
line in the csf.conf file - e.g. TCP_IN, TCP_OUT,
UDP_IN, UDP_OUT, etc.
CLI Example:
.. code-block:: bash
salt '*' csf.allow_ports ports="[22,80,443,4505,4506]" proto='tcp' direction='in'
"""
results = []
ports = set(ports)
ports = list(ports)
proto = proto.upper()
direction = direction.upper()
_validate_direction_and_proto(direction, proto)
ports_csv = ",".join(six.moves.map(six.text_type, ports))
directions = build_directions(direction)
for direction in directions:
result = __salt__["file.replace"](
"/etc/csf/csf.conf",
# pylint: disable=anomalous-backslash-in-string
pattern='^{0}_{1}(\ +)?\=(\ +)?".*"$'.format(proto, direction),
# pylint: enable=anomalous-backslash-in-string
repl='{0}_{1} = "{2}"'.format(proto, direction, ports_csv),
)
results.append(result)
return results | 3a14a9ea74daf4062e3bd970623284a152ffde08 | 6,485 |
def add(n1, n2, base=10):
"""Add two numbers represented as lower-endian digit lists."""
k = max(len(n1), len(n2)) + 1
d1 = n1 + [0 for _ in range(k - len(n1))]
d2 = n2 + [0 for _ in range(k - len(n2))]
res = []
carry = 0
for i in range(k):
if d1[i] + d2[i] + carry < base:
res.append(d1[i] + d2[i] + carry)
carry = 0
else:
res.append(d1[i] + d2[i] + carry - base)
carry = 1
while res and res[-1] == 0:
res = res[:-1]
if res: return res
return [0] | 098bfa9ebedf7f219a6f9910e98c4cf9cbf13aa8 | 6,486 |
from datetime import datetime
import pytz
def folder_datetime(foldername, time_infolder_fmt=TIME_INFOLDER_FMT):
"""Parse UTC datetime from foldername.
Foldername e.g.: hive1_rpi1_day-190801/
"""
# t_str = folder.name.split("Photos_of_Pi")[-1][2:] # heating!!
t_str = foldername.split("day-")[-1]
day_naive = datetime.strptime(t_str, time_infolder_fmt)
# # Localize as UTC
# day_local = local_tz.localize(day_naive)
# dt_utc = day_local.astimezone(pytz.utc)
day_utc = pytz.utc.localize(day_naive)
return day_utc | fbbd9d9749cba6807391009e1720ca35b9dd7c7b | 6,487 |
def get_policy_profile_by_name(name, db_session=None):
"""
Retrieve policy profile by name.
:param name: string representing the name of the policy profile
:param db_session: database session
:returns: policy profile object
"""
db_session = db_session or db.get_session()
vsm_hosts = config.get_vsm_hosts()
pp = n1kv_models.PolicyProfile
pprofiles = db_session.query(pp).filter(
sql.and_(pp.name == name, pp.vsm_ip.in_(vsm_hosts))).all()
if pprofiles and check_policy_profile_exists_on_all_vsm(pprofiles,
vsm_hosts):
return pprofiles[0]
else:
raise n1kv_exc.PolicyProfileNotFound(profile=name) | 36136be7e618490bcda58799285277982bc41f71 | 6,488 |
def ecg_hrv_assessment(hrv, age=None, sex=None, position=None):
"""
Correct HRV features based on normative data from Voss et al. (2015).
Parameters
----------
hrv : dict
HRV features obtained by :function:`neurokit.ecg_hrv`.
age : float
Subject's age.
sex : str
Subject's gender ("m" or "f").
position : str
Recording position. To compare with data from Voss et al. (2015), use "supine".
Returns
----------
hrv_adjusted : dict
Adjusted HRV features.
Example
----------
>>> import neurokit as nk
>>> hrv = nk.bio_ecg.ecg_hrv(rpeaks=rpeaks)
>>> ecg_hrv_assessment = nk.bio_ecg.ecg_hrv_assessment(hrv)
Notes
----------
*Authors*
- `Dominique Makowski <https://dominiquemakowski.github.io/>`_
*Details*
- **Adjusted HRV**: The raw HRV features are normalized :math:`(raw - Mcluster) / sd` according to the participant's age and gender. In data from Voss et al. (2015), HRV analysis was performed on 5-min ECG recordings (lead II and lead V2 simultaneously, 500 Hz sampling rate) obtained in supine position after a 5–10 minutes resting phase. The cohort of healthy subjects consisted of 782 women and 1124 men between the ages of 25 and 74 years, clustered into 4 groups: YF (Female, Age = [25-49], n=571), YM (Male, Age = [25-49], n=744), EF (Female, Age = [50-74], n=211) and EM (Male, Age = [50-74], n=571).
References
-----------
- Voss, A., Schroeder, R., Heitmann, A., Peters, A., & Perz, S. (2015). Short-term heart rate variability—influence of gender and age in healthy subjects. PloS one, 10(3), e0118308.
"""
hrv_adjusted = {}
if position == "supine":
if sex == "m":
if age <= 49:
hrv_adjusted["meanNN_Adjusted"] = (hrv["meanNN"]-930)/133
hrv_adjusted["sdNN_Adjusted"] = (hrv["sdNN"]-45.8)/18.8
hrv_adjusted["RMSSD_Adjusted"] = (hrv["RMSSD"]-34.0)/18.3
hrv_adjusted["LF_Adjusted"] = (hrv["LF"]-203)/262
hrv_adjusted["HF_Adjusted"] = (hrv["HF"]-101)/143
hrv_adjusted["LF/HF_Adjusted"] = (hrv["LF/HF"]-3.33)/3.47
else:
hrv_adjusted["meanNN_Adjusted"] = (hrv["meanNN"]-911)/128
hrv_adjusted["sdNN_Adjusted"] = (hrv["sdNN"]-33.0)/14.8
hrv_adjusted["RMSSD_Adjusted"] = (hrv["RMSSD"]-20.5)/11.0
hrv_adjusted["LF_Adjusted"] = (hrv["LF"]-84)/115
hrv_adjusted["HF_Adjusted"] = (hrv["HF"]-29.5)/36.6
hrv_adjusted["LF/HF_Adjusted"] = (hrv["LF/HF"]-4.29)/4.06
if sex == "f":
if age <= 49:
hrv_adjusted["meanNN_Adjusted"] = (hrv["meanNN"]-901)/117
hrv_adjusted["sdNN_Adjusted"] = (hrv["sdNN"]-44.9)/19.2
hrv_adjusted["RMSSD_Adjusted"] = (hrv["RMSSD"]-36.5)/20.1
hrv_adjusted["LF_Adjusted"] = (hrv["LF"]-159)/181
hrv_adjusted["HF_Adjusted"] = (hrv["HF"]-125)/147
hrv_adjusted["LF/HF_Adjusted"] = (hrv["LF/HF"]-2.75)/2.93
else:
hrv_adjusted["meanNN_Adjusted"] = (hrv["meanNN"]-880)/115
hrv_adjusted["sdNN_Adjusted"] = (hrv["sdNN"]-31.6)/13.6
hrv_adjusted["RMSSD_Adjusted"] = (hrv["RMSSD"]-22.0)/13.2
hrv_adjusted["LF_Adjusted"] = (hrv["LF"]-66)/83
hrv_adjusted["HF_Adjusted"] = (hrv["HF"]-41.4)/72.1
hrv_adjusted["LF/HF_Adjusted"] = (hrv["LF/HF"]-2.09)/2.05
return(hrv_adjusted) | fe3ab5e6f97920f44b7a32928785a19a6185e3d9 | 6,489 |
import warnings
def declared_attr_roles(rw=None, call=None, read=None, write=None):
"""
Equivalent of :func:`with_roles` for use with ``@declared_attr``::
@declared_attr
@declared_attr_roles(read={'all'})
def my_column(cls):
return Column(Integer)
While :func:`with_roles` is always the outermost decorator on properties
and functions, :func:`declared_attr_roles` must appear below
``@declared_attr`` to work correctly.
.. deprecated:: 0.6.1
Use :func:`with_roles` instead. It works for
:class:`~sqlalchemy.ext.declarative.declared_attr` since 0.6.1
"""
def inner(f):
@wraps(f)
def attr(cls):
# Pass f(cls) as a parameter to with_roles.inner to avoid the test for
# iterables within with_roles. We have no idea about the use cases for
# declared_attr in downstream code. There could be a declared_attr
# that returns a list that should be accessible via the proxy.
return with_roles(rw=rw, call=call, read=read, write=write)(f(cls))
return attr
warnings.warn("declared_attr_roles is deprecated; use with_roles", stacklevel=2)
return inner | 4128754046a18e332d5b6f8ba7e2c60d1d576c6b | 6,490 |
def _in_iterating_context(node):
"""Check if the node is being used as an iterator.
Definition is taken from lib2to3.fixer_util.in_special_context().
"""
parent = node.parent
# Since a call can't be the loop variant we only need to know if the node's
# parent is a 'for' loop to know it's being used as the iterator for the
# loop.
if isinstance(parent, astroid.For):
return True
# Need to make sure the use of the node is in the iterator part of the
# comprehension.
elif isinstance(parent, astroid.Comprehension):
if parent.iter == node:
return True
# Various built-ins can take in an iterable or list and lead to the same
# value.
elif isinstance(parent, astroid.Call):
if isinstance(parent.func, astroid.Name):
parent_scope = parent.func.lookup(parent.func.name)[0]
if _is_builtin(parent_scope) and parent.func.name in _ACCEPTS_ITERATOR:
return True
elif isinstance(parent.func, astroid.Attribute):
if parent.func.attrname == 'join':
return True
# If the call is in an unpacking, there's no need to warn,
# since it can be considered iterating.
elif (isinstance(parent, astroid.Assign) and
isinstance(parent.targets[0], (astroid.List, astroid.Tuple))):
if len(parent.targets[0].elts) > 1:
return True
return False | f1109b22842e3e9d6306a266b0654670a9f30ac8 | 6,491 |
def to_point(obj):
"""Convert `obj` to instance of Point."""
if obj is None or isinstance(obj, Point):
return obj
if isinstance(obj, str):
obj = obj.split(",")
return Point(*(int(i) for i in obj)) | 340182f054ebac39133edb09c9e1d049f9dde9d4 | 6,492 |
def issues(request, project_id):
"""问题栏"""
if request.method == "GET":
# 筛选条件 -- 通过get来实现参数筛选
allow_filter_name = ['issues_type', 'status', 'priority', 'assign', 'attention']
condition = {} # 条件
for name in allow_filter_name:
value_list = request.GET.getlist(name)
if not value_list:
continue
condition['{}__in'.format(name)] = value_list
# 分页获取数据
form = IssuesModelForm(request)
issues_obj = Issues.objects.filter(project=request.tracer.project).filter(**condition)
page_object = Pagination(
current_page=request.GET.get('page'),
all_count=issues_obj.count(),
base_url=request.path_info,
query_params=request.GET,
per_page=3,
)
issues_object_list = issues_obj[page_object.start:page_object.end]
project_total_user = [(request.tracer.project.create_user_id, request.tracer.project.create_user.username,)]
join_user = ProjectUser.objects.filter(project_id=project_id).values_list('user_id', 'user__username')
project_total_user.extend(join_user)
invite_form = InviteModelForm(data=request.POST)
context = {
'form': form,
'invite_form': invite_form,
'issues_object_list': issues_object_list,
'page_html': page_object.page_html(),
'filter_list': [
{'title': '问题类型', 'filter': CheckFilter('issues_type',
IssuesType.objects.filter(project_id=project_id).values_list(
'id',
'title'),
request)},
{'title': '状态', 'filter': CheckFilter('status', Issues.STATUS_CHOICES, request)},
{'title': '优先级', 'filter': CheckFilter('priority', Issues.PRIORITY_CHOICES, request)},
{'title': '指派者', 'filter': SelectFilter('assign', project_total_user, request)},
{'title': '关注者', 'filter': SelectFilter('attention', project_total_user, request)},
]
}
return render(request, 'web/issues.html', context)
if request.method == "POST":
form = IssuesModelForm(request, data=request.POST)
if form.is_valid():
# 添加问题数据
form.instance.project = request.tracer.project
form.instance.create_user = request.tracer.user
form.save()
return JsonResponse({'code': 200})
return JsonResponse({'msg': form.errors, 'code': 416}) | 099b292e8143f1559f3e78e96ad555eaa7328449 | 6,493 |
from operator import and_
def get_30mhz_rht_data(sensor_id):
"""
Produces a JSON with the 30MHz RH & T sensor data for a specified sensor.
Args:
sensor_id - Advanticsys sensor ID
Returns:
result - JSON string
"""
dt_from, dt_to = parse_date_range_argument(request.args.get("range"))
query = (
db.session.query(
ReadingsZensieTRHClass.sensor_id,
ReadingsZensieTRHClass.timestamp,
ReadingsZensieTRHClass.temperature,
ReadingsZensieTRHClass.humidity,
ReadingsZensieTRHClass.time_created,
ReadingsZensieTRHClass.time_updated,
)
.filter(
and_(
ReadingsZensieTRHClass.sensor_id == sensor_id,
ReadingsZensieTRHClass.timestamp >= dt_from,
ReadingsZensieTRHClass.timestamp <= dt_to,
)
)
.order_by(desc(ReadingsZensieTRHClass.timestamp))
)
execute_result = db.session.execute(query).fetchall()
result = jasonify_query_result(execute_result)
return result | d688850720162c33ea9bdd84eaed9ecd83a49902 | 6,494 |
import requests
def stock_em_gpzy_industry_data() -> pd.DataFrame:
"""
东方财富网-数据中心-特色数据-股权质押-上市公司质押比例-行业数据
http://data.eastmoney.com/gpzy/industryData.aspx
:return: pandas.DataFrame
"""
url = "http://dcfm.eastmoney.com/EM_MutiSvcExpandInterface/api/js/get"
page_num = _get_page_num_gpzy_industry_data()
temp_df = pd.DataFrame()
for page in range(1, page_num + 1):
print(f"一共{page_num}页, 正在下载第{page}页")
params = {
"type": "ZD_HY_SUM",
"token": "70f12f2f4f091e459a279469fe49eca5",
"cmd": "",
"st": "amtshareratio_pj",
"sr": "-1",
"p": str(page),
"ps": "5000",
"js": "var SIqThurI={pages:(tp),data:(x),font:(font)}",
"rt": "52584617",
}
res = requests.get(url, params=params)
data_text = res.text
data_json = demjson.decode(data_text[data_text.find("={") + 1 :])
map_dict = dict(
zip(
pd.DataFrame(data_json["font"]["FontMapping"])["code"],
pd.DataFrame(data_json["font"]["FontMapping"])["value"],
)
)
for key, value in map_dict.items():
data_text = data_text.replace(key, str(value))
data_json = demjson.decode(data_text[data_text.find("={") + 1 :])
temp_df = temp_df.append(pd.DataFrame(data_json["data"]), ignore_index=True)
temp_df.columns = [
"统计时间",
"-",
"行业",
"平均质押比例(%)",
"公司家数",
"质押总笔数",
"质押总股本",
"最新质押市值",
]
temp_df = temp_df[["统计时间", "行业", "平均质押比例(%)", "公司家数", "质押总笔数", "质押总股本", "最新质押市值"]]
temp_df["统计时间"] = pd.to_datetime(temp_df["统计时间"])
return temp_df | 4ac0de7bdbae197c9d89dc663dbef594e2010fc6 | 6,495 |
def to_float32(x: tf.Tensor) -> tf.Tensor:
"""Cast the given tensor to float32.
Args:
x: The tensor of any type.
Returns:
The tensor casts to float32.
"""
return tf.cast(x, tf.float32) | 2c25ea5450e86139fa1c21041be73e21f01b1bff | 6,496 |
def cli_usage(name=None):
"""
custom usage message to override `cli.py`
"""
return """
{logo}
usage: signalyze [-h] [-o OUTPUT] [--show-name] [-b | -w | -all] [--show-graph | --show-extra-info]
""".format(logo=get_logo()) | f512be4404da92aff9a237cdece487a266cbf175 | 6,497 |
def unban_chat_member(chat_id, user_id, **kwargs):
"""
Use this method to unban a previously kicked user in a supergroup. The user will not return to the group automatically,
but will be able to join via link, etc. The bot must be an administrator in the group for this to work
:param chat_id: Unique identifier for the target chat or username of the target channel (in the format @channelusername)
:param user_id: Unique identifier of the target user
:param kwargs: Args that get passed down to :class:`TelegramBotRPCRequest`
:type chat_id: int or str
:type user_id: int
:returns: Returns True on success.
:rtype: bool
"""
# required args
params = dict(
chat_id=chat_id,
user_id=user_id,
)
return TelegramBotRPCRequest('unbanChatMember', params=params, on_result=lambda result: result, **kwargs) | cc1558e1d49841e47ebf4f457e615319e47abae4 | 6,498 |
from typing import Optional
import re
def parse_progress_line(prefix: str, line: str) -> Optional[float]:
"""Extract time in seconds from a prefixed string."""
regexp = prefix + r"(?P<hours>\d+):(?P<minutes>\d{2}):(?P<seconds>\d{2}.\d{2})"
match = re.search(regexp, line)
if not match:
return None
return (
int(match.group("hours")) * 3600
+ int(match.group("minutes")) * 60
+ float(match.group("seconds"))
) | 690b2f0e48a5f584da646f9e4058ed75e654251e | 6,499 |
from functools import reduce
def convert_array_to_df(emission_map):
"""
This function converts the emission map dict to a DataFrame where
- 'emission_map' is a dictionary containing at least 'z_var_ave', 'count_var','std_var','q25_var' and'q75_var
"""
def reform_df(df, nr):
"""This subfunction will reform the format of the dataframe is such a way that it can be saved in the .map.txt
file later on. The expected input is:
df: pd.DataFrame
nr: int
The output is a dataframe that can contains all data of one map and is ready to be written to a .map.txt file"""
df_temp_fin = pd.DataFrame()
for key, value in df.items():
df_temp = pd.DataFrame()
df_temp['Y'] = value.index # CO2_mF [g/s]
df_temp['X'] = key # velocity_filtered [km/h]
df_temp['Z{}'.format(nr)] = df[key].values # avgNOx [mg/s]
df_temp = df_temp[['X', 'Y', 'Z{}'.format(nr)]]
df_temp_fin = df_temp_fin.append(df_temp)
return df_temp_fin
numbering = {'z_var_ave': 1, 'std_var': 2, 'q25_var': 3,
'q75_var': 4, 'count_var': 5}
map_df = []
for var in numbering.keys():
if type(emission_map[var]) == np.ndarray:
map = emission_map[var]
x_axis = np.arange(emission_map['binsizes'][0],
emission_map['binsizes'][0] * map.shape[1] + 1,
emission_map['binsizes'][0])
y_axis = np.arange(emission_map['binsizes'][1],
(emission_map['binsizes'][1] * map.shape[0]) + emission_map['binsizes'][1],
emission_map['binsizes'][1])
# check if shape of axis and indices are the same
if map.shape[1] != len(x_axis):
x_axis = x_axis[:map.shape[1]]
elif map.shape[0] != len(y_axis):
y_axis = y_axis[:map.shape[0]]
## Make Table for .map.txt outputfile
df = pd.DataFrame(data=map, index=y_axis, columns=x_axis)
reformed_df = reform_df(df, numbering[var])
map_df.append(reformed_df)
final_df = reduce(lambda left, right: pd.merge(left, right, on=['X', 'Y']), map_df)
return final_df | 171e387ca51f543b522946a213e51040463aec74 | 6,500 |
def add_missing_flows(data):
"""There are some flows not given in ReCiPe that seem like they should be there, given the relatively coarse precision of these CFs."""
new_cfs = {
"managed forest": {
"amount": 0.3,
"flows": [
"occupation, forest, unspecified",
"occupation, field margin/hedgerow",
],
},
"annual crops": {
"amount": 1.0,
"flows": [
"occupation, annual crop, flooded crop",
"occupation, annual crop, irrigated, extensive",
],
},
"pasture": {
"amount": 0.55,
"flows": [
"occupation, arable land, unspecified use",
"occupation, grassland, natural, for livestock grazing",
"occupation, heterogeneous, agricultural",
],
},
"artificial area": {"amount": 0.73, "flows": [],},
"permanent crops": {
"amount": 0.7,
"flows": [
"occupation, permanent crop, irrigated",
"occupation, permanent crop, irrigated, extensive",
"occupation, permanent crop, non-irrigated",
"occupation, permanent crop, non-irrigated, extensive",
],
},
}
""" The following were included in an earlier version of ReCiPe, but are skipped here, as we don't have enough info to use them consistently:
* 'occupation, bare area (non-use)',
* 'occupation, cropland fallow (non-use)',
* 'occupation, forest, primary (non-use)',
* 'occupation, forest, secondary (non-use)',
* 'occupation, inland waterbody, unspecified',
* 'occupation, lake, natural (non-use)',
* 'occupation, river, natural (non-use)',
* 'occupation, seabed, natural (non-use)',
* 'occupation, seabed, unspecified',
* 'occupation, snow and ice (non-use)',
* 'occupation, unspecified',
* 'occupation, unspecified, natural (non-use)',
* 'occupation, wetland, coastal (non-use)',
* 'occupation, wetland, inland (non-use)'
"""
for ds in data:
ds["exchanges"].extend(
[
{"name": flow, "amount": obj["amount"]}
for obj in new_cfs.values()
for flow in obj["flows"]
]
)
return data | e23184bb7363db4777d9f693a3fdc4ace9f8ff14 | 6,501 |
from typing import List
def cglb_conjugate_gradient(
K: TensorType,
b: TensorType,
initial: TensorType,
preconditioner: NystromPreconditioner,
cg_tolerance: float,
max_steps: int,
restart_cg_step: int,
) -> tf.Tensor:
"""
Conjugate gradient algorithm used in CGLB model. The method of
conjugate gradient (Hestenes and Stiefel, 1952) produces a
sequence of vectors :math:`v_0, v_1, v_2, ..., v_N` such that
:math:`v_0` = initial, and (in exact arithmetic)
:math:`Kv_n = b`. In practice, the v_i often converge quickly to
approximate :math:`K^{-1}b`, and the algorithm can be stopped
without running N iterations.
We assume the preconditioner, :math:`Q`, satisfies :math:`Q ≺ K`,
and stop the algorithm when :math:`r_i = b - Kv_i` satisfies
:math:`||rᵢᵀ||_{Q⁻¹r}^2 = rᵢᵀQ⁻¹rᵢ <= ϵ`.
:param K: Matrix we want to backsolve from. Must be PSD. Shape [N, N].
:param b: Vector we want to backsolve. Shape [B, N].
:param initial: Initial vector solution. Shape [N].
:param preconditioner: Preconditioner function.
:param cg_tolerance: Expected maximum error. This value is used
as a decision boundary against stopping criteria.
:param max_steps: Maximum number of CG iterations.
:param restart_cg_step: Restart step at which the CG resets the
internal state to the initial position using the currect
solution vector :math:`v`. Can help avoid build up of
numerical errors.
:return: `v` where `v` approximately satisfies :math:`Kv = b`.
"""
CGState = namedtuple("CGState", ["i", "v", "r", "p", "rz"])
def stopping_criterion(state: CGState) -> bool:
return (0.5 * state.rz > cg_tolerance) and (state.i < max_steps)
def cg_step(state: CGState) -> List[CGState]:
Ap = state.p @ K
denom = tf.reduce_sum(state.p * Ap, axis=-1)
gamma = state.rz / denom
v = state.v + gamma * state.p
i = state.i + 1
r = tf.cond(
state.i % restart_cg_step == restart_cg_step - 1,
lambda: b - v @ K,
lambda: state.r - gamma * Ap,
)
z, new_rz = preconditioner(r)
p = tf.cond(
state.i % restart_cg_step == restart_cg_step - 1,
lambda: z,
lambda: z + state.p * new_rz / state.rz,
)
return [CGState(i, v, r, p, new_rz)]
Kv = initial @ K
r = b - Kv
z, rz = preconditioner(r)
p = z
i = tf.constant(0, dtype=default_int())
initial_state = CGState(i, initial, r, p, rz)
final_state = tf.while_loop(stopping_criterion, cg_step, [initial_state])
final_state = tf.nest.map_structure(tf.stop_gradient, final_state)
return final_state[0].v | bc00f2423c4ffdaf0494ab6e6114222cbc694915 | 6,502 |
def num_fixed_points(permutation):
"""
Compute the number of fixed points (elements mapping to themselves) of a permutation.
:param permutation: Permutation in one-line notation (length n tuple of the numbers 0, 1, ..., n-1).
:return: Number of fixed points in the permutation.
.. rubric:: Examples
>>> num_fixed_points((0, 2, 1))
1
"""
n = 0
for i in range(len(permutation)):
if permutation[i] == i:
n += 1
return n | 124713cd4c90988c43630a74881e7107ff748682 | 6,505 |
import numpy
def mutate(grid):
"""
Alters the cycle by breaking it into two separate circuits, and then fusing
them back together to recreate a (slightly different) cycle.
This operation is called "sliding" in 'An Algorithm for Finding Hamiltonian
Cycles in Grid Graphs Without Holes', and it's specifically mentioned
because it is insuffient if you want to be able to reach all possible cycles
for a given starting graph. That condition isn't really relevant to this
project, so I use sliding since it's much easier to implement.
"""
working_grid = grid.copy().astype(numpy.uint8)
above = shift_down(grid)
below = shift_up(grid)
left = shift_right(grid)
right = shift_left(grid)
# this mask highlights every grid location that could be turned off
candidates = numpy.logical_and(
numpy.logical_and(grid, above != left),
numpy.logical_and(above == below, left == right)
)
# the connected region is split into two
coord = pick_candidate(candidates)
flood_y, flood_x = coord
working_grid[coord] = 0
# find the right spot to label one of the regions '2'
if left[coord] == 1:
flood_x -= 1
elif right[coord] == 1:
flood_x += 1
elif above[coord] == 1:
flood_y -= 1
elif below[coord] == 1:
flood_y += 1
cv2.floodFill(
working_grid,
numpy.zeros([v + 2 for v in grid.shape], dtype=numpy.uint8),
(flood_x, flood_y),
2
)
above = shift_down(working_grid)
below = shift_up(working_grid)
left = shift_right(working_grid)
right = shift_left(working_grid)
x_neighbors = left + right
y_neighbors = above + below
# this mask highlights every grid location that can fuse the two regions
# back together while preserving a cycle
fuse_candidates = numpy.logical_and(
working_grid == 0,
numpy.logical_or(
numpy.logical_and(x_neighbors == 3, y_neighbors == 0),
numpy.logical_and(x_neighbors == 0, y_neighbors == 3)
)
)
fuse_location = pick_candidate(fuse_candidates)
grid[coord] = 0
grid[fuse_location] = 1
return grid | 35cc32385d090fa8091f872858fbeb0c32ecf43d | 6,507 |
def reverse_permute(output_shape: np.array, order: np.array):
"""
Calculates Transpose op input shape based on output shape and permute order.
:param output_shape: Transpose output shape
:param order: permute order
:return: Transpose input shape corresponding to the specified output shape
"""
return int64_array(output_shape[PermuteAttrs.get_inverse_permutation(order)]) | ada631cc086a1dc0d2dce05f6d97a74a1f3861f4 | 6,508 |
def recursive_bisection(block, block_queue, epsilon_cut, depth_max, theta, lamb, delta, verbose=False):
"""Random cut and random converge
Args:
block_queue (multiprocessing.Queue): Shared queue to store blocks to be executed
Returns:
[{"range": {int: (int,int)}, "mondrian_budget": float, "depth": int}]
"""
# Random cut
if verbose:
print('Before cut', block.domain_dict)
if block.depth > depth_max:
axis, index = cut_random(block)
else:
axis, index = cut_exp_mech(block, epsilon_cut)
if verbose:
print(axis, index)
left_block, right_block = block.split(axis, index)
# Random converge
converged_block_results = []
if left_block.size() == 1:
converged_block_results.append(BlockResult(left_block.domain_dict, left_block.depth))
elif random_converge(left_block, left_block.depth, theta, lamb, delta):
converged_block_results.append(BlockResult(left_block.domain_dict, left_block.depth))
else:
block_queue.put(left_block)
if right_block.size() == 1:
converged_block_results.append(BlockResult(right_block.domain_dict, right_block.depth))
elif random_converge(right_block, right_block.depth, theta, lamb, delta):
converged_block_results.append(BlockResult(right_block.domain_dict, right_block.depth))
else:
block_queue.put(right_block)
return converged_block_results | d65070c2cf64356277c4af044b97c5eaa8efdd3d | 6,509 |
def _get_global_step_read(graph=None):
"""Gets global step read tensor in graph.
Args:
graph: The graph in which to create the global step read tensor. If missing,
use default graph.
Returns:
Global step read tensor.
Raises:
RuntimeError: if multiple items found in collection GLOBAL_STEP_READ_KEY.
"""
graph = graph or ops.get_default_graph()
global_step_read_tensors = graph.get_collection(GLOBAL_STEP_READ_KEY)
if len(global_step_read_tensors) > 1:
raise RuntimeError('There are multiple items in collection {}. '
'There should be only one.'.format(GLOBAL_STEP_READ_KEY))
if len(global_step_read_tensors) == 1:
return global_step_read_tensors[0]
return None | 46bf3b55b36216e4247d6d73226d22b20383321f | 6,510 |
from unittest.mock import Mock
def light_control() -> LightControl:
"""Returns the light_control mock object."""
mock_request = Mock()
mock_request.return_value = ""
return LightControl(mock_request) | cb135ed24d2e992eab64b298e5c9238576a37c5d | 6,511 |
def map_threshold(stat_img=None, mask_img=None, alpha=.001, threshold=3.,
height_control='fpr', cluster_threshold=0):
""" Compute the required threshold level and return the thresholded map
Parameters
----------
stat_img : Niimg-like object or None, optional
statistical image (presumably in z scale)
whenever height_control is 'fpr' or None,
stat_img=None is acceptable.
If it is 'fdr' or 'bonferroni', an error is raised if stat_img is None.
mask_img : Niimg-like object, optional,
mask image
alpha: float, optional
number controling the thresholding (either a p-value or q-value).
Its actual meaning depends on the height_control parameter.
This function translates alpha to a z-scale threshold.
threshold: float, optional
desired threshold in z-scale.
This is used only if height_control is None
height_control: string, or None optional
false positive control meaning of cluster forming
threshold: 'fpr'|'fdr'|'bonferroni'\|None
cluster_threshold : float, optional
cluster size threshold. In the returned thresholded map,
sets of connected voxels (`clusters`) with size smaller
than this number will be removed.
Returns
-------
thresholded_map : Nifti1Image,
the stat_map thresholded at the prescribed voxel- and cluster-level
threshold: float,
the voxel-level threshold used actually
Note
----
If the input image is not z-scaled (i.e. some z-transformed statistic)
the computed threshold is not rigorous and likely meaningless
"""
# Check that height_control is correctly specified
if height_control not in ['fpr', 'fdr', 'bonferroni', None]:
raise ValueError(
"height control should be one of ['fpr', 'fdr', 'bonferroni', None]")
# if height_control is 'fpr' or None, we don't need to look at the data
# to compute the threhsold
if height_control == 'fpr':
threshold = norm.isf(alpha)
# In this case, and is stat_img is None, we return
if stat_img is None:
if height_control in ['fpr', None]:
return None, threshold
else:
raise ValueError(
'Map_threshold requires stat_img not to be None'
'when the heigh_control procedure is bonferroni or fdr')
# Masking
if mask_img is None:
masker = NiftiMasker(mask_strategy='background').fit(stat_img)
else:
masker = NiftiMasker(mask_img=mask_img).fit()
stats = np.ravel(masker.transform(stat_img))
n_voxels = np.size(stats)
# Thresholding
if height_control == 'fdr':
threshold = fdr_threshold(stats, alpha)
elif height_control == 'bonferroni':
threshold = norm.isf(alpha / n_voxels)
stats *= (stats > threshold)
# embed it back to 3D grid
stat_map = get_data(masker.inverse_transform(stats))
# Extract connected components above threshold
label_map, n_labels = label(stat_map > threshold)
labels = label_map[get_data(masker.mask_img_) > 0]
for label_ in range(1, n_labels + 1):
if np.sum(labels == label_) < cluster_threshold:
stats[labels == label_] = 0
return masker.inverse_transform(stats), threshold | ea7c1ca48641ed76eef2f2b0396b93fd522fdbaf | 6,512 |
import time
import random
def grab_features(dataframe: pd.DataFrame) -> pd.DataFrame:
"""
Attempts to assign song features using the get_features function to all songs in given dataframe.
This function creates a column that encompasses all features retuerned from Spotify in a json format for each track ID.
It then explodes this column into a seperate dataframe and concatenates it with the original.
Parameters:
dataframe (pandas dataframe): Dataframe to assigned track IDs to. Must have a "trackID" column
Returns:
dataframe (pandas dataframe): original pandas dataframe with song features included
"""
start = time.time()
print("Getting song features..")
dataframe["features_json"] = dataframe["trackId"].progress_apply(
get_features
) # progress apply allows for tqdm progress bar
dataframe.dropna(
axis=0, subset=["trackId"], inplace=True
) # cannot search for tracks that have no ID
temp_list = [pd.json_normalize(x) for x in dataframe["features_json"]]
features_df = pd.concat(x for x in temp_list).reset_index().drop(["index"], axis=1)
dataframe = dataframe.reset_index().drop(["index"], axis=1)
dataframe = pd.concat([dataframe, features_df], axis=1)
dataframe.drop(["features_json"], axis=1, inplace=True)
index_check = random.randint(
0, len(dataframe)
) # performing check that temporary song feature df matches orignal df
assert (
dataframe["trackId"].iloc[index_check] == dataframe["id"].iloc[index_check]
), "track IDs do not match"
del temp_list, features_df
end = time.time()
print(
f".apply took {round((end - start),3)} seconds for {len(dataframe)} songs, around {round((end-start) / (len(dataframe)), 3)} seconds per song"
)
return dataframe | 7a2810b68815241a62f2ce753169bd982a17a211 | 6,513 |
def _build_geo_shape_query(field, geom, relation):
"""Crea una condición de búsqueda por relación con una geometría en formato
GeoJSON.
Args:
field (str): Campo de la condición.
geom (dict): Geometría GeoJSON.
relation (str): Tipo de búsqueda por geometrías a realizar. Ver la
documentación de Elasticsearch GeoShape Query para más detalles.
Returns:
Query: Condición para Elasticsearch.
"""
options = {
'shape': geom,
'relation': relation
}
return GeoShape(**{field: options}) | f42fe6e21da30e3d6c8466be92143b215925686c | 6,514 |
from typing import Optional
def map_symptom(symptom_name: str) -> Optional[str]:
"""
Maps a *symptom_name* to current symptom values in ID3C warehouse.
There is no official standard for symptoms, we are using the values
created by Audere from year 1 (2018-2019).
"""
symptom_map = {
'feeling feverish': 'feelingFeverish',
'fever': 'feelingFeverish',
'headache': 'headaches',
'headaches': 'headaches',
'cough': 'cough',
'chills': 'chillsOrShivering',
'chills or shivering': 'chillsOrShivering',
'sweats': 'sweats',
'throat': 'soreThroat',
'sore throat or itchy/scratchy throat': 'soreThroat',
'nausea': 'nauseaOrVomiting',
'nausea or vomiting': 'nauseaOrVomiting',
'nose': 'runnyOrStuffyNose',
'runny or stuffy nose': 'runnyOrStuffyNose',
'runny / stuffy nose': 'runnyOrStuffyNose',
'tired': 'fatigue',
'feeling more tired than usual': 'fatigue',
'ache': 'muscleOrBodyAches',
'muscle or body aches': 'muscleOrBodyAches',
'diarrhea': 'diarrhea',
'ear': 'earPainOrDischarge',
'ear pain or ear discharge': 'earPainOrDischarge',
'rash': 'rash',
'breathe': 'increasedTroubleBreathing',
'increased trouble with breathing': 'increasedTroubleBreathing',
'eye': 'eyePain',
'smell_taste': 'lossOfSmellOrTaste',
'other': 'other',
'none': 'none',
'none of the above': 'none',
}
if symptom_name.lower() not in symptom_map:
raise UnknownSymptomNameError(f"Unknown symptom name «{symptom_name}»")
return symptom_map[symptom_name.lower()] | c86f0694715b434b1e3b2dc3f66ddfc3afadeaf0 | 6,516 |
def get_project_details(p):
"""Extract from the pickle object detailed information about
a given project and parse it in a comprehensive dict structure."""
res = {}
project = p['projects'][0]
fields = {'Owner(s)': 'project_owners',
'Member(s)': 'project_members',
'Collaborator(s)': 'project_collabs',
'User(s)': 'project_users',
'last_accessed': 'project_last_access'}
for k, v in fields.items():
res[k] = project[v].strip().split(' <br/> ')
if res[k][0] == '':
res[k] = ['None']
for e in ['insert_user', 'insert_date', 'project_access', 'name',
'project_last_workflow']:
res[e] = project[e]
return res | f8ba3debdd8be7cc7a906851a6a6fb1e3c5f039a | 6,518 |
def get_category(name: str) -> Category:
"""Returns a category with a given name"""
return Category.objects.get(name=name) | 4dc99ed672bbb3d7843692da797d0cd901c2c44c | 6,519 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.