content
stringlengths 35
762k
| sha1
stringlengths 40
40
| id
int64 0
3.66M
|
---|---|---|
def remove_rule(rule_id):
"""Remove a single rule"""
ruleset = packetfilter.get_ruleset()
ruleset.remove(rule_id)
packetfilter.load_ruleset(ruleset)
save_pfconf(packetfilter)
return redirect(url_for('rules', message=PFWEB_ALERT_SUCCESS_DEL), code=302) | fe45a3d5af532ff67e8aef21ab093438818c6dbc | 6,749 |
def HexToMPDecimal(hex_chars):
""" Convert bytes to an MPDecimal string. Example \x00 -> "aa"
This gives us the AppID for a chrome extension.
"""
result = ''
base = ord('a')
for i in xrange(len(hex_chars)):
value = ord(hex_chars[i])
dig1 = value / 16
dig2 = value % 16
result += chr(dig1 + base)
result += chr(dig2 + base)
return result | 5d81c0e1ee3f4f94e615578e132377b803beb47b | 6,750 |
def fit_growth_curves(input_file, file_data_frame, file_data_units,
condition_unit, time_unit, cell_density_unit):
"""
:Authors:
Chuankai Cheng <[email protected]> and J. Cameron Thrash <[email protected]>
:License:
MIT
:Version:
1.0
:Date:
2021-03-17
:Repository: https://github.com/thrash-lab/sparse-growth-curve
"""
output_data_indices=file_data_frame.groupby(
['Strain','Replicate','Condition']
).size().reset_index().rename(columns={0:'count'}
)[['Strain','Replicate','Condition']]
strains_conditions=output_data_indices.groupby(['Strain','Condition']
).size().reset_index()[['Strain','Condition']]
output_data_indices['Growth: Doubling rate']=0
output_data_indices['Death: Doubling rate']=0
output_data_indices=output_data_indices.astype(object)
output_data_indices=output_data_indices.sort_values(by=['Strain','Condition'])
strains=np.unique(strains_conditions['Strain'])
row_num=len(strains)
col_num=np.int(np.ceil(len(strains_conditions)/len(strains)))
plt.figure(figsize=(col_num*2+1,
row_num*2+1))
plot_j=1
previous_condition=output_data_indices['Condition'].values[0]
plt.subplot(row_num, col_num, plot_j)
color_i=0
plt.title(str(output_data_indices['Strain'].values[0])+'\n'
+str(output_data_indices['Condition'].values[0])+' '
+condition_unit)
plt.ylabel(cell_density_unit)
plt.xlabel(time_unit)
for i in output_data_indices.index:
target_gr_index=output_data_indices.loc[i]
target_growth_curve_df = file_data_frame[
(file_data_frame['Strain']==target_gr_index['Strain'])&
(file_data_frame['Condition']==target_gr_index['Condition']) &
(file_data_frame['Replicate']==target_gr_index['Replicate'])]
#print('\n\nStrain:', target_gr_index['Strain'],
# '\t Condition:',str(target_gr_index['Condition'])+' '+condition_unit,
# '\t Replicate:',str(target_gr_index['Replicate']))
time=target_growth_curve_df.loc[:,'Time'].values
cell_density=target_growth_curve_df.loc[:,'Cell density'].values
#print('time=', time)
#print('cell density=', 'cell_density')
if target_gr_index['Condition']!=previous_condition:
plt.yscale('log')
plt.ylim(10**np.floor(np.log10(np.min(file_data_frame['Cell density']))-1),
10**np.ceil(np.log10(np.max(file_data_frame['Cell density']))+1))
plt.legend()
#plt.xlim(np.floor(np.min(file_data_frame['Time'])),
# np.ceil(np.max(file_data_frame['Time'])))
color_i=0
plot_j+=1
plt.subplot(row_num, col_num, plot_j)
plt.title(str(target_gr_index['Strain'])+'\n'
+str(target_gr_index['Condition'])+' '
+condition_unit)
plt.ylabel(cell_density_unit)
plt.xlabel(time_unit)
if len(cell_density)>4:
(all_fit_time,
all_fit_cell_density,
all_fit_conf_band,
selected_doubling_rate,
selected_fit_time,
selected_fit_cell_density,
selected_doubling_rate_d,
selected_fit_time_d,
selected_fit_cell_density_d)=fit_growth_curve(
time, cell_density, one_order=10, decision_tree_depth=1)
output_data_indices.loc[i,'Growth: Doubling rate']=selected_doubling_rate
output_data_indices.loc[i,'Death: Doubling rate']=selected_doubling_rate_d
for k in range(len(all_fit_time)):
#plt.plot(all_fit_time[i], all_fit_cell_density[i], 'k--')
#plt.fill_between(all_fit_time[k],
# all_fit_cell_density[k]*(all_fit_conf_band[k]),
# all_fit_cell_density[k]/(all_fit_conf_band[k]),
# color=colormap(color_i), alpha=0.1)
plt.plot(selected_fit_time, selected_fit_cell_density, '-',
color=colormap(color_i), linewidth=2)
plt.plot(selected_fit_time_d, selected_fit_cell_density_d, '--',
color=colormap(color_i), linewidth=1)
elif len(cell_density)>2:
x=time
y=np.log2(cell_density)
x_fit = np.arange(0.0, x[-1], 0.01)[:, np.newaxis]
(doubling_rate, pre_y, ci) = myLinearRegression_CB(x, y, x_fit, one_order=10)
#plt.fill_between(x_fit,
# pre_y*ci,
# pre_y/ci,
# color=colormap(color_i), alpha=0.1)
if doubling_rate>0:
output_data_indices.loc[i,'Growth: Doubling rate']=doubling_rate
plt.plot(x_fit, pre_y, '-', color=colormap(color_i), linewidth=2)
else:
output_data_indices.loc[i,'Death: Doubling rate']=doubling_rate
plt.plot(x_fit, pre_y, '--', color=colormap(color_i), linewidth=1)
elif len(cell_density)==2:
x=time
y=np.log2(cell_density)
doubling_rate=(y[1]-y[0])/(x[1]-x[0])
output_data_indices.loc[i,'Growth: Doubling rate']=doubling_rate
if doubling_rate>0:
output_data_indices.loc[i,'Growth: Doubling rate']=doubling_rate
plt.plot(x, y, '-', color=colormap(color_i), linewidth=2)
else:
output_data_indices.loc[i,'Death: Doubling rate']=doubling_rate
plt.plot(x, y, '--', color=colormap(color_i), linewidth=1)
plt.plot(time, cell_density,'o',alpha=0.3, color=colormap(color_i),
label=output_data_indices.loc[i]['Replicate'])
color_i+=1
previous_condition=output_data_indices.loc[i]['Condition']
plt.yscale('log')
plt.ylim(10**np.floor(np.log10(np.min(file_data_frame['Cell density']))-1),
10**np.ceil(np.log10(np.max(file_data_frame['Cell density']))+1))
#plt.xlim(np.floor(np.min(file_data_frame['Time'])),
# np.ceil(np.max(file_data_frame['Time'])))
plt.legend()
plt.tight_layout()
output_file_string=(output_folder+
'/'+input_file+
'/1_Data_fit_visualization_'+
dt_string+'.pdf')
plt.savefig(output_file_string)
print('output file saved:'+output_file_string)
return output_data_indices | d551a094ea398e09dcc88f8f9668922b3e665317 | 6,751 |
def stringify(li,delimiter):
""" Converts list entries to strings and joins with delimiter."""
string_list = map(str,li)
return delimiter.join(string_list) | a4c35a19d8ea654a802cd3f92ababcbdfdf0ecfb | 6,752 |
def norm_w(x, w):
"""
Compute sum_i( w[i] * |x[i]| ).
See p. 7.
"""
return (w * abs(x)).sum() | a9825750cb6ee0bbbe87b0c4d1bd132bcfca90db | 6,753 |
def _tensor_run_opt_ext(opt, momentum, learning_rate, gradient, weight, moment):
"""Apply momentum optimizer to the weight parameter using Tensor."""
success = True
success = F.depend(success, opt(weight, moment, learning_rate, gradient, momentum))
return success | 89ae490ba0f05455dff03bcd57d4b6f52f7d8327 | 6,754 |
from typing import Dict
import yaml
def get_config_settings(env: str = "dev") -> Dict:
"""
Retrieves configuration from YAML file
"""
config_fh = construct_config_path(env)
with open(config_fh, "r") as f:
data = yaml.safe_load(f)
return data | 190a7f8cb2a297ee4ae6d5734d4d9f521a18bb3f | 6,755 |
def get_all(connection: ApiConnection, config: str, section: str = None) -> dict:
"""Get all sections of a config or all values of a section.
:param connection:
:param config:UCI config name
:param section:[optional] UCI section name
:return: JSON RPC response result
"""
return request(connection, 'uci', 'get_all', config, section) | be4a76f87398ce1d4e0765314266647867964e39 | 6,756 |
def load_module(module, app):
"""Load an object from a Python module
In:
- ``module`` -- name of the module
- ``app`` -- name of the object to load
Return:
- (the object, None)
"""
r = __import__(module, fromlist=('',))
if app is not None:
r = getattr(r, app)
return r, None | 858d9d0bf91ff7d83ad391218b8ff1b37007b43b | 6,757 |
def get_routes(app: web.Application) -> list:
"""
Get the full list of defined routes
"""
return get_standard_routes(app) + get_custom_routes(app) | 7f5d365c28ee45096e089ee6913d3aec4d8214d8 | 6,758 |
def cb_round(series: pd.Series, base: Number = 5, sig_dec: int = 0):
""" Returns the pandas series (or column) with values rounded per the
custom base value
Args:
series (pd.Series): data to be rounded
base (float): base value to which data should be rounded (may be
decimal)
sig_dec (int): number of significant decimals for the
custom-rounded value
Returns:
pd.Series
"""
valid.validate_array(series, "series", expected_len=None)
if not base >= 0.01:
err = f"cannot round with base {base}." + "cb_round designed for base >= 0.01."
raise ValueError(err)
result = series.apply(lambda x: round(base * round(float(x) / base), sig_dec))
return result | 29599898fa8686c260e89d2efcdcceec108d5b4c | 6,759 |
def makeGaussian(size, sigma=3, center=None):
""" Make a square gaussian kernel.
size is the length of a side of the square
fwhm is full-width-half-maximum, which
can be thought of as an effective radius.
"""
x = np.arange(0, size, 1, float)
y = x[:, np.newaxis]
if center is None:
x0 = y0 = size // 2
else:
x0 = center[0]
y0 = center[1]
return np.exp(-((x - x0) ** 2 + (y - y0) ** 2) / (2.0 * sigma ** 2))
# return np.exp(-4 * np.log(2) * ((x - x0) ** 2 + (y - y0) ** 2) / sigma ** 2) | 8efef3cc265375d5412107a465a97380e8c4d101 | 6,760 |
import torch
def average_relative_error(y_pred, y_true):
"""Calculate Average Relative Error
Args:
y_true (array-like): np.ndarray or torch.Tensor of dimension N x d with actual values
y_pred (array-like): np.ndarray or torch.Tensor of dimension N x d with predicted values
Returns:
float: Average Relative Mean Squared Error
Raises:
ValueError : If Parameters are not both of type np.ndarray or torch.Tensor
"""
if isinstance(y_true, np.ndarray) and isinstance(y_pred, np.ndarray):
return sum(sum(abs(y_true - y_pred) / y_true) /
len(y_true)) / len(y_true[0, :])
elif isinstance(y_true, torch.Tensor) and isinstance(y_pred, torch.Tensor):
return torch.sum(torch.sum(torch.abs(y_true - y_pred) / y_true, dim=0) /
len(y_true)) / len(y_true[0, :])
else:
raise ValueError(
'y_true and y_pred must be both of type numpy.ndarray or torch.Tensor') | 2243eb82c78ff03181be3c10d50c3aa000e8476c | 6,761 |
from unittest.mock import Mock
def make_subprocess_hook_mock(exit_code: int, output: str) -> Mock:
"""Mock a SubprocessHook factory object for use in testing.
This mock allows us to validate that the RenvOperator is executing
subprocess commands as expected without running them for real.
"""
result_mock = Mock()
result_mock.exit_code = exit_code
result_mock.output = output
hook_instance_mock = Mock()
hook_instance_mock.run_command = Mock(return_value=result_mock)
hook_factory_mock = Mock(return_value=hook_instance_mock)
return hook_factory_mock | a047608503be8bc7fc4b782139e7d12145efb3cd | 6,762 |
def binstr2int(bin_str: str) -> int:
"""转换二进制形式的字符串为10进制数字, 和int2binstr相反
Args:
bin_str: 二进制字符串, 比如: '0b0011'或'0011'
Returns:
转换后的10进制整数
"""
return int(bin_str, 2) | 87c6ac16c2215e533cb407407bef926ed8668e3e | 6,763 |
def _nodeset_compare(compare, a, b, relational=False):
"""
Applies a comparison function to node-sets a and b
in order to evaluate equality (=, !=) and relational (<, <=, >=, >)
expressions in which both objects to be compared are node-sets.
Returns an XPath boolean indicating the result of the comparison.
"""
if isinstance(a, Types.NodesetType) and isinstance(b, Types.NodesetType):
# From XPath 1.0 Section 3.4:
# If both objects to be compared are node-sets, then the comparison
# will be true if and only if there is a node in the first node-set
# and a node in the second node-set such that the result of
# performing the comparison on the string-values of the two nodes
# is true.
if not (a and b):
# One of the two node-sets is empty. In this case, according to
# section 3.4 of the XPath rec, no node exists in one of the two
# sets to compare, so *any* comparison must be false.
return boolean.false
# If it is a relational comparison, the actual comparison is done on
# the string value of each of the nodes. This means that the values
# are then converted to numbers for comparison.
if relational:
# NumberValue internally coerces a node to a string before
# converting it to a number, so the "convert to string" clause
# is handled.
coerce = Conversions.NumberValue
else:
coerce = Conversions.StringValue
# Convert the nodesets into lists of the converted values.
a = map(coerce, a)
b = map(coerce, b)
# Now compare the items; if any compare True, we're done.
for left in a:
for right in b:
if compare(left, right):
return boolean.true
return boolean.false
# From XPath 1.0 Section 3.4:
# If one object to be compared is a node-set and the other is a number,
# then the comparison will be true if and only if there is a node in the
# node-set such that the result of performing the comparison on the
# number to be compared and on the result of converting the string-value
# of that node to a number using the number function is true. If one
# object to be compared is a node-set and the other is a string, then the
# comparison will be true if and only if there is a node in the node-set
# such that the result of performing the comparison on the string-value
# of the node and the other string is true. If one object to be compared
# is a node-set and the other is a boolean, then the comparison will be
# true if and only if the result of performing the comparison on the
# boolean and on the result of converting the node-set to a boolean using
# the boolean function is true.
#
# (In other words, coerce each node to the same type as the other operand,
# then compare them. Note, however, that relational comparisons convert
# their operands to numbers.)
if isinstance(a, Types.NodesetType):
# a is nodeset
if isinstance(b, Types.BooleanType):
a = Conversions.BooleanValue(a)
return compare(a, b) and boolean.true or boolean.false
elif relational:
b = Conversions.NumberValue(b)
coerce = Conversions.NumberValue
elif isinstance(b, Types.NumberType):
coerce = Conversions.NumberValue
else:
b = Conversions.StringValue(b)
coerce = Conversions.StringValue
for node in a:
if compare(coerce(node), b):
return boolean.true
else:
# b is nodeset
if isinstance(a, Types.BooleanType):
b = Conversions.BooleanValue(b)
return compare(a, b) and boolean.true or boolean.false
elif relational:
a = Conversions.NumberValue(a)
coerce = Conversions.NumberValue
elif isinstance(a, Types.NumberType):
coerce = Conversions.NumberValue
else:
a = Conversions.StringValue(a)
coerce = Conversions.StringValue
for node in b:
if compare(a, coerce(node)):
return boolean.true
return boolean.false | 5751b793662689a1e0073cfe5fc4b86505952dcd | 6,764 |
def test_cl_shift(options):
"""
Create tests for centerline shifts
8 out of 8 points are on one side of the mean
>= 10 out of 11 points are on one side of the mean
>= 12 out of 14 points are on one side of the mean
>= 14 out of 17 points are on one side of the mean
>= 16 out of 20 points are on one side of the mean
"""
windows = [
(8, Window(8, init=options.m)),
(10, Window(11, init=options.m)),
(12, Window(14, init=options.m)),
(14, Window(17, init=options.m)),
(16, Window(20, init=options.m)),
]
cl = options.m
def test(x):
for n, w in windows:
w.append(x)
if np.sum(w.data > cl) >= n:
err_out("%s is %g/%g points > centerline" %
(w.data, n, w.n))
elif np.sum(w.data < cl) >= n:
err_out("%s is %g/%g points < centerline" %
(w.data, n, w.n))
return test | 60d874c8b1484ff23c4791043eae949912a969d0 | 6,765 |
def _scale(tensor):
"""Scale a tensor based on min and max of each example and channel
Resulting tensor has range (-1, 1).
Parameters
----------
tensor : torch.Tensor or torch.autograd.Variable
Tensor to scale of shape BxCxHxW
Returns
-------
Tuple (scaled_tensor, min, max), where min and max are tensors
containing the values used for normalizing the tensor
"""
b, c, h, w = tensor.shape
out = tensor.view(b, c, h * w)
minimum, _ = out.min(dim=2, keepdim=True)
out = out - minimum
maximum, _ = out.max(dim=2, keepdim=True)
out = out / maximum # out has range (0, 1)
out = out * 2 - 1 # out has range (-1, 1)
return out.view(b, c, h, w), minimum, maximum | 64eed9bd70c543def6456f3af89fa588ec35bca8 | 6,766 |
def get_moscow_oh(opening_hours):
"""
returns an OpeningHourBlock from a fake json
corresponding to a POI located in moscow city
for different opening_hours formats.
"""
return get_oh_block(opening_hours, lat=55.748, lon=37.588, country_code="RU") | 42f795e262753cc82d8689c2a98e6a82e143a2c3 | 6,767 |
def get_firebase_credential_errors(credentials: str):
""" Wrapper to get error strings for test_firebase_credential_errors because otherwise the
code is gross. Returns None if no errors occurred. """
try:
test_firebase_credential_errors(credentials)
return None
except Exception as e:
return str(e) | fbca79e837a3d6dc85ee90bfd426008c6ce25ac2 | 6,768 |
def url(endpoint, path):
"""append the provided path to the endpoint to build an url"""
return f"{endpoint.rstrip('/')}/{path}" | dee733845984bfc4cf5728e9614cce08d19a2936 | 6,769 |
def is_collision(line_seg1, line_seg2):
"""
Checks for a collision between line segments p1(x1, y1) -> q1(x2, y2)
and p2(x3, y3) -> q2(x4, y4)
"""
def on_segment(p1, p2, p3):
if (p2[0] <= max(p1[0], p3[0])) & (p2[0] >= min(p1[0], p3[0])) & (p2[1] <= max(p1[1], p3[1])) & (p2[1] >= min(p1[1], p3[1])):
return True
return False
def orientation(p1, p2, p3):
val = ((p2[1] - p1[1]) * (p3[0] - p2[0])) - ((p2[0] - p1[0]) * (p3[1] - p2[1]))
if val == 0:
return 0
elif val > 0:
return 1
elif val < 0:
return 2
p1, q1 = line_seg1[0], line_seg1[1]
p2, q2 = line_seg2[0], line_seg2[1]
o1 = orientation(p1, q1, p2)
o2 = orientation(p1, q1, q2)
o3 = orientation(p2, q2, p1)
o4 = orientation(p2, q2, q1)
if (o1 != o2) & (o3 != o4):
return True
if (o1 == 0 & on_segment(p1, p2, q1)):
return True
if (o2 == 0 & on_segment(p1, q2, q1)):
return True
if (o3 == 0 & on_segment(p2, p1, q2)):
return True
if (o4 == 0 & on_segment(p2, q1, q2)):
return True
return False | 17dba61faebe50336cbc2cd2cc56c49474db5431 | 6,770 |
import numpy
def plot_bar_graph_one_time(
example_table_xarray, time_index, predictor_indices, info_string=None,
figure_object=None, axes_object=None):
"""Plots predictors at one time as bar graph.
:param example_table_xarray: xarray table in format returned by
`example_io.read_file`.
:param time_index: Index of valid time to plot.
:param predictor_indices: 1-D numpy array with indices of predictors to
plot.
:param info_string: Info string (to be appended to title).
:param figure_object: Will plot on this figure (instance of
`matplotlib.figure.Figure`). If None, will create new figure.
:param axes_object: Will plot on these axes (instance of
`matplotlib.axes._subplots.AxesSubplot`). If None, will create new
axes.
:return: figure_object: See input doc.
:return: axes_object: See input doc.
:return: pathless_output_file_name: Pathless name for output file.
"""
error_checking.assert_is_integer(time_index)
error_checking.assert_is_geq(time_index, 0)
error_checking.assert_is_integer_numpy_array(predictor_indices)
error_checking.assert_is_geq_numpy_array(predictor_indices, 0)
if info_string is not None:
error_checking.assert_is_string(info_string)
xt = example_table_xarray
predictor_values = (
xt[example_utils.SATELLITE_PREDICTORS_UNGRIDDED_KEY].values[
time_index, predictor_indices
]
)
num_predictors = len(predictor_values)
y_coords = numpy.linspace(
0, num_predictors - 1, num=num_predictors, dtype=float
)
if figure_object is None or axes_object is None:
figure_object, axes_object = pyplot.subplots(
1, 1, figsize=(FIGURE_WIDTH_INCHES, FIGURE_HEIGHT_INCHES)
)
axes_object.barh(
y_coords, predictor_values, color=BAR_FACE_COLOUR,
edgecolor=BAR_EDGE_COLOUR, linewidth=BAR_EDGE_WIDTH
)
pyplot.yticks([], [])
axes_object.set_xlim(MIN_NORMALIZED_VALUE, MAX_NORMALIZED_VALUE)
predictor_names = xt.coords[
example_utils.SATELLITE_PREDICTOR_UNGRIDDED_DIM
].values[predictor_indices].tolist()
for j in range(num_predictors):
axes_object.text(
0, y_coords[j], predictor_names[j], color=BAR_FONT_COLOUR,
horizontalalignment='center', verticalalignment='center',
fontsize=BAR_FONT_SIZE, fontweight='bold'
)
valid_time_unix_sec = (
xt.coords[example_utils.SATELLITE_TIME_DIM].values[time_index]
)
valid_time_string = time_conversion.unix_sec_to_string(
valid_time_unix_sec, TIME_FORMAT_SECONDS
)
cyclone_id_string = xt[satellite_utils.CYCLONE_ID_KEY].values[time_index]
if not isinstance(cyclone_id_string, str):
cyclone_id_string = cyclone_id_string.decode('utf-8')
title_string = 'Satellite for {0:s} at {1:s}'.format(
cyclone_id_string, valid_time_string
)
if info_string is not None:
title_string += '; {0:s}'.format(info_string)
axes_object.set_title(title_string)
pathless_output_file_name = '{0:s}_{1:s}_scalar_satellite.jpg'.format(
cyclone_id_string, valid_time_string
)
return figure_object, axes_object, pathless_output_file_name | 5b1faab11bd6e79bd617ca23a8f49aeb83de2aae | 6,771 |
def reshape_nda_to_2d(arr) :
"""Reshape np.array to 2-d
"""
sh = arr.shape
if len(sh)<3 : return arr
arr.shape = (arr.size/sh[-1], sh[-1])
return arr | 11c721b938e45fd07d2ed1674a569e6836913ff3 | 6,772 |
async def async_setup(hass, config):
"""Initialize the DuckDNS component."""
domain = config[DOMAIN][CONF_DOMAIN]
token = config[DOMAIN][CONF_ACCESS_TOKEN]
session = async_get_clientsession(hass)
result = await _update_duckdns(session, domain, token)
if not result:
return False
async def update_domain_interval(now):
"""Update the DuckDNS entry."""
await _update_duckdns(session, domain, token)
async def update_domain_service(call):
"""Update the DuckDNS entry."""
await _update_duckdns(session, domain, token, txt=call.data[ATTR_TXT])
async_track_time_interval(hass, update_domain_interval, INTERVAL)
hass.services.async_register(
DOMAIN, SERVICE_SET_TXT, update_domain_service, schema=SERVICE_TXT_SCHEMA
)
return result | 7208d0a25b219b6decbae314618e219705224a5a | 6,773 |
def mock_signal(*args):
"""Mock creation of a binary signal array.
:return: binary array
:rtype: np.ndarray
"""
signal = np.array([1, 0, 1])
return signal | ebeb1f40a43c2c51d941208da78e0bfc0acb6530 | 6,774 |
def matmul(a, b):
"""np.matmul defaults to bfloat16, but this helper function doesn't."""
return np.matmul(a, b, precision=jax.lax.Precision.HIGHEST) | a4efb25933a25067b0b37ada8271f09b76929cb8 | 6,775 |
def predictions(logit_1, logit_2, logit_3, logit_4, logit_5):
"""Converts predictions into understandable format.
For example correct prediction for 2 will be > [2,10,10,10,10]
"""
first_digits = np.argmax(logit_1, axis=1)
second_digits = np.argmax(logit_2, axis=1)
third_digits = np.argmax(logit_3, axis=1)
fourth_digits = np.argmax(logit_4, axis=1)
fifth_digits = np.argmax(logit_5, axis=1)
stacked_digits = np.vstack((first_digits, second_digits, third_digits, fourth_digits, fifth_digits))
rotated_digits = np.rot90(stacked_digits)[::-1]
return rotated_digits | 99e22cc4808634e6510196f2e9e79cba9dafd61c | 6,777 |
def execute_parent(parent_path, child_path, input_tensor_npy, return_full_ctx=False):
"""Execute parent model containing a single StreamingDataflowPartition by
replacing it with the model at child_path and return result."""
parent_model = load_test_checkpoint_or_skip(parent_path)
iname = parent_model.graph.input[0].name
oname = parent_model.graph.output[0].name
sdp_node = parent_model.get_nodes_by_op_type("StreamingDataflowPartition")[0]
sdp_node = getCustomOp(sdp_node)
sdp_node.set_nodeattr("model", child_path)
ret = execute_onnx(parent_model, {iname: input_tensor_npy}, True)
if return_full_ctx:
return ret
else:
return ret[oname] | 2757d22c46ee89f34cc89c702393d4a42d275c28 | 6,778 |
def fibonacci(position):
"""
Based on a position returns the number in the Fibonacci sequence
on that position
"""
if position == 0:
return 0
elif position == 1:
return 1
return fibonacci(position-1)+fibonacci(position-2) | cc4fe0860fa97234ead2179e18d208a8567e0cb3 | 6,780 |
def visualize_gebco(source, band, min=None, max=None):
"""
Specialized function to visualize GEBCO data
:param source: String, Google Earth Engine image id
:param band: String, band of image to visualize
:return: Dictionary
"""
data_params = deepcopy(DATASETS_VIS[source]) # prevent mutation of global state
if min is not None:
data_params["bathy_vis_params"]["min"] = min
if max is not None:
data_params["topo_vis_params"]["max"] = max
image = ee.Image(source)
gebco = image.select(data_params["bandNames"][band])
land_mask = LANDMASK
hillshaded = visualize_elevation(
image=gebco,
land_mask=land_mask,
data_params=data_params,
bathy_only=False,
hillshade_image=True,
)
url = _get_gee_url(hillshaded)
info = {}
info["dataset"] = "gebco"
info["band"] = band
linear_gradient = []
palette = (
data_params["bathy_vis_params"]["palette"]
+ data_params["topo_vis_params"]["palette"]
)
n_colors = len(palette)
offsets = np.linspace(0, 100, num=n_colors)
for color, offset in zip(palette, offsets):
linear_gradient.append(
{"offset": "{:.3f}%".format(offset), "opacity": 100, "color": color}
)
info.update(
{
"url": url,
"linearGradient": linear_gradient,
"min": data_params["bathy_vis_params"]["min"],
"max": data_params["topo_vis_params"]["max"],
"imageId": source,
}
)
return info | ccd382f1e1ede4cbe58bca6fc7eec15aa1b0a85a | 6,781 |
import asyncio
import functools
def bound_concurrency(size):
"""Decorator to limit concurrency on coroutine calls"""
sem = asyncio.Semaphore(size)
def decorator(func):
"""Actual decorator"""
@functools.wraps(func)
async def wrapper(*args, **kwargs):
"""Wrapper"""
async with sem:
return await func(*args, **kwargs)
return wrapper
return decorator | 030e4dea0efccf9d5f2cbe4a40f3e6f32dfef846 | 6,783 |
import socket
def _download_file(url, required_length, STRICT_REQUIRED_LENGTH=True):
"""
<Purpose>
Given the url, hashes and length of the desired file, this function
opens a connection to 'url' and downloads the file while ensuring its
length and hashes match 'required_hashes' and 'required_length'.
tuf.util.TempFile is used instead of regular tempfile object because of
additional functionality provided by 'tuf.util.TempFile'.
<Arguments>
url:
A URL string that represents the location of the file.
required_length:
An integer value representing the length of the file.
STRICT_REQUIRED_LENGTH:
A Boolean indicator used to signal whether we should perform strict
checking of required_length. True by default. We explicitly set this to
False when we know that we want to turn this off for downloading the
timestamp metadata, which has no signed required_length.
<Side Effects>
A 'tuf.util.TempFile' object is created on disk to store the contents of
'url'.
<Exceptions>
tuf.DownloadLengthMismatchError, if there was a mismatch of observed vs
expected lengths while downloading the file.
tuf.FormatError, if any of the arguments are improperly formatted.
Any other unforeseen runtime exception.
<Returns>
A 'tuf.util.TempFile' file-like object which points to the contents of
'url'.
"""
# Do all of the arguments have the appropriate format?
# Raise 'tuf.FormatError' if there is a mismatch.
tuf.formats.URL_SCHEMA.check_match(url)
tuf.formats.LENGTH_SCHEMA.check_match(required_length)
# 'url.replace()' is for compatibility with Windows-based systems because
# they might put back-slashes in place of forward-slashes. This converts it
# to the common format.
url = url.replace('\\', '/')
logger.info('Downloading: '+str(url))
# NOTE: Not thread-safe.
# Save current values or functions for restoration later.
previous_socket_timeout = socket.getdefaulttimeout()
previous_http_response_class = httplib.HTTPConnection.response_class
# This is the temporary file that we will return to contain the contents of
# the downloaded file.
temp_file = tuf.util.TempFile()
try:
# NOTE: Not thread-safe.
# Set timeout to induce non-blocking socket operations.
socket.setdefaulttimeout(tuf.conf.SOCKET_TIMEOUT)
# Replace the socket file-like object class with our safer version.
httplib.HTTPConnection.response_class = SaferHTTPResponse
# Open the connection to the remote file.
connection = _open_connection(url)
# We ask the server about how big it thinks this file should be.
reported_length = _get_content_length(connection)
# Then, we check whether the required length matches the reported length.
_check_content_length(reported_length, required_length)
# Download the contents of the URL, up to the required length, to a
# temporary file, and get the total number of downloaded bytes.
total_downloaded = _download_fixed_amount_of_data(connection, temp_file,
required_length)
# Does the total number of downloaded bytes match the required length?
_check_downloaded_length(total_downloaded, required_length,
STRICT_REQUIRED_LENGTH=STRICT_REQUIRED_LENGTH)
except:
# Close 'temp_file'; any written data is lost.
temp_file.close_temp_file()
logger.exception('Could not download URL: '+str(url))
raise
else:
return temp_file
finally:
# NOTE: Not thread-safe.
# Restore previously saved values or functions.
httplib.HTTPConnection.response_class = previous_http_response_class
socket.setdefaulttimeout(previous_socket_timeout) | a9df32371f24a85971807354636621224fc8f7bd | 6,784 |
def tune_speed_librosa(src=None, sr=_sr, rate=1., out_type=np.ndarray):
"""
变语速
:param src:
:param rate:
:return:
"""
wav = anything2wav(src, sr=sr)
spec = librosa.stft(wav)
spec = zoom(spec.T, rate=1 / rate, is_same=0).T
out = librosa.istft(spec)
# out = librosa.griffinlim(spec, n_iter=10)
if out_type is np.ndarray:
return out
else:
return anything2bytesio(out, sr=sr) | 423b83c6a266e8ee2b259bf3497e53ff2087ca44 | 6,785 |
import pathlib
def fqn_from_file(java_filepath: pathlib.Path) -> str:
"""Extract the expected fully qualified class name for the given java file.
Args:
java_filepath: Path to a .java file.
"""
if not java_filepath.suffix == ".java":
raise ValueError("{} not a path to a .java file".format(java_filepath))
package = extract_package(java_filepath)
simple_name = java_filepath.name[:-len(java_filepath.suffix)]
return fqn(package, simple_name) | cb1d515af968c1653d31f0529ce40fa6241cf1f4 | 6,786 |
def assert_raises(*args, **kwargs):
"""Assert an exception is raised as a context manager or by passing in a
callable and its arguments.
As a context manager:
>>> with assert_raises(Exception):
... raise Exception
Pass in a callable:
>>> def raise_exception(arg, kwarg=None):
... raise Exception
>>> assert_raises(Exception, raise_exception, 1, kwarg=234)
"""
if (len(args) == 1) and not kwargs:
return _assert_raises_context_manager(args[0])
else:
return _assert_raises(*args, **kwargs) | 6ef00a131f6ce5192e88fe9bab34f5cd04dd5a8a | 6,787 |
import click
def proxy(ctx, control, host, port, socket, proxy):
"""Settings to configure the connection to a Tor node acting as proxy."""
if control == 'port':
if host is None or port is None:
raise click.BadOptionUsage(
option_name='control',
message=f"--control mode '{control}' requires --host and --port to be defined as well.")
elif control == 'socket':
if socket is None:
raise click.BadOptionUsage(option_name='control',
message="--control mode 'socket' requires --socket to be defined as well.")
return {'proxy': {
'control': control,
'host': host,
'port': port,
'socket': socket,
'proxy': proxy
}} | 4fe25cb7dc38116e26fe61b43e3903908e098459 | 6,788 |
import gzip
def get_gzip_uncompressed_file_size(file_name):
"""
this function will return the uncompressed size of a gzip file
similar as gzip -l file_name
"""
file_obj = gzip.open(file_name, 'r')
file_obj.seek(-8, 2)
# crc32 = gzip.read32(file_obj)
isize = gzip.read32(file_obj)
return isize | bf1e40a83098fa32c95959e28069e4a4d4dcc2d7 | 6,789 |
def Capitalize(v):
"""Capitalise a string.
>>> s = Schema(Capitalize)
>>> s('hello world')
'Hello world'
"""
return str(v).capitalize() | 9072ea91b946694bbb1410fb10a5b1b1f5cdd7c2 | 6,790 |
def pg_index_exists(conn, schema_name: str, table_name: str, index_name: str) -> bool:
"""
Does a postgres index exist?
Unlike pg_exists(), we don't need heightened permissions on the table.
So, for example, Explorer's limited-permission user can check agdc/ODC tables
that it doesn't own.
"""
return (
conn.execute(
"""
select indexname
from pg_indexes
where schemaname=%(schema_name)s and
tablename=%(table_name)s and
indexname=%(index_name)s
""",
schema_name=schema_name,
table_name=table_name,
index_name=index_name,
).scalar()
is not None
) | 98ebdc0db7f3e42050e61205fd17309d015352a0 | 6,791 |
def create_mock_data(bundle_name: str,
user_params: dict):
"""
create some mock data and push to S3 bucket
:param bundle_name: str, bundle name
:param user_params: dict, what parameters to save
:return:
"""
api.context(context_name)
api.remote(context_name, remote_context=context_name, remote_url=s3_path)
component_signature = {k: str(v) for k, v in user_params.items()}
proc_name = api.Bundle.calc_default_processing_name(
bundle_name, component_signature, dep_proc_ids={})
with api.Bundle(context_name, name=bundle_name, processing_name=proc_name) as b:
b.add_params(component_signature) # local_path will be replaced by S3 by Disdat
api.commit(context_name, bundle_name)
api.push(context_name, bundle_name) # save the bundle to S3
return b.uuid # return the bundle uuid | 0fd377eac24555306aceff26a61d4a2b4666d33d | 6,792 |
def _vertex_arrays_to_list(x_coords_metres, y_coords_metres):
"""Converts set of vertices from two arrays to one list.
V = number of vertices
:param x_coords_metres: length-V numpy array of x-coordinates.
:param y_coords_metres: length-V numpy array of y-coordinates.
:return: vertex_list_xy_metres: length-V list, where each element is an
(x, y) tuple.
"""
_check_polyline(
x_coords_metres=x_coords_metres, y_coords_metres=y_coords_metres)
num_vertices = len(x_coords_metres)
vertex_list_xy_metres = []
for i in range(num_vertices):
vertex_list_xy_metres.append((x_coords_metres[i], y_coords_metres[i]))
return vertex_list_xy_metres | ef5bed973f684670f979f6cdb0fcfc38b45a4557 | 6,793 |
from typing import Optional
from typing import Dict
from typing import Any
def info_from_apiKeyAuth(token: str, required_scopes) -> Optional[Dict[str, Any]]:
"""
Check and retrieve authentication information from an API key.
Returned value will be passed in 'token_info' parameter of your operation function, if there
is one. 'sub' or 'uid' will be set in 'user' parameter of your operation function, if there
is one. Should return None if auth is invalid or does not allow access to called API.
The real work happens in Auth0._set_user().
"""
return {"token": token, "method": "apikey"} | 29fec65450780e14dfc94979ba2fb73c00d2a4bf | 6,794 |
from datetime import datetime
def convert_unix2dt(series):
"""
Parameters
----------
series : column from pandas dataframe in UNIX microsecond formatting
Returns
-------
timestamp_dt : series in date-time format
"""
if (len(series) == 1):
unix_s = series/1000
else:
unix_s = series.squeeze()/1000
timestamp_dt = np.zeros(len(unix_s), dtype='datetime64[ms]')
for i in range(len(timestamp_dt)):
timestamp_dt[i] = datetime.fromtimestamp(unix_s.iloc[i])
return timestamp_dt | 92b912ba85b123e9f368b3613bff4a374826130a | 6,795 |
import re
def sentence_segment(text, delimiters=('?', '?', '!', '!', '。', ';', '……', '…'), include_symbols=True):
"""
Sentence segmentation
:param text: query
:param delimiters: set
:param include_symbols: bool
:return: list(word, idx)
"""
result = []
delimiters = set([item for item in delimiters])
delimiters_str = '|'.join(delimiters)
blocks = re.split(delimiters_str, text)
start_idx = 0
for blk in blocks:
if not blk:
continue
result.append((blk, start_idx))
start_idx += len(blk)
if include_symbols and start_idx < len(text):
result.append((text[start_idx], start_idx))
start_idx += 1
return result | c8860a872e779873330eaded8e9951cabdbba01e | 6,797 |
def time_rep_song_to_16th_note_grid(time_rep_song):
"""
Transform the time_rep_song into an array of 16th note with pitches in the onsets
[[60,4],[62,2],[60,2]] -> [60,0,0,0,62,0,60,0]
"""
grid_16th = []
for pair_p_t in time_rep_song:
grid_16th.extend([pair_p_t[0]] + [0 for _ in range(pair_p_t[1]-1)])
return grid_16th | 8986819bd39ae4830d04bf40ab158d310bb45485 | 6,798 |
def _double_threshold(x, high_thres, low_thres, n_connect=1, return_arr=True):
"""_double_threshold
Computes a double threshold over the input array
:param x: input array, needs to be 1d
:param high_thres: High threshold over the array
:param low_thres: Low threshold over the array
:param n_connect: Postprocessing, maximal distance between clusters to connect
:param return_arr: By default this function returns the filtered indiced, but if return_arr = True it returns an array of tsame size as x filled with ones and zeros.
"""
assert x.ndim == 1, "Input needs to be 1d"
high_locations = np.where(x > high_thres)[0]
locations = x > low_thres
encoded_pairs = find_contiguous_regions(locations)
filtered_list = list(
filter(
lambda pair:
((pair[0] <= high_locations) & (high_locations <= pair[1])).any(),
encoded_pairs))
filtered_list = connect_(filtered_list, n_connect)
if return_arr:
zero_one_arr = np.zeros_like(x, dtype=int)
for sl in filtered_list:
zero_one_arr[sl[0]:sl[1]] = 1
return zero_one_arr
return filtered_list | 74a34ed39336c35dfc7eb954af12bb30b3089609 | 6,799 |
def upload():
"""
Implements the upload page form
"""
return render_template('upload.html') | 4dda3418621b3894234b049e22f810304050a398 | 6,800 |
def detect_changepoints(points, min_time, data_processor=acc_difference):
""" Detects changepoints on points that have at least a specific duration
Args:
points (:obj:`Point`)
min_time (float): Min time that a sub-segmented, bounded by two changepoints, must have
data_processor (function): Function to extract data to feed to the changepoint algorithm.
Defaults to `speed_difference`
Returns:
:obj:`list` of int: Indexes of changepoints
"""
data = data_processor(points)
changepoints = pelt(normal_mean(data, np.std(data)), len(data))
changepoints.append(len(points) - 1)
result = []
for start, end in pairwise(changepoints):
time_diff = points[end].time_difference(points[start])
if time_diff > min_time:
result.append(start)
# adds the first point
result.append(0)
# adds the last changepoint detected
result.append(len(points) - 1)
return sorted(list(set(result))) | 872c2e4d5d8cbb33de100495bc8d9ddb050400c8 | 6,801 |
def quad1(P):
"""[summary]
Arguments:
P (type): [description]
Returns:
[type]: [description]
"""
x1, z1, x2, z2 = P
return (Fraction(x1, z1) - Fraction(x2, z2))**2 | f3e9c34740038242c29f4abbe168df573da12390 | 6,803 |
def update_position(position, velocity):
"""
:param position: position(previus/running) of a particle
:param velocity: the newest velocity that has been calculated during the specific iteration- new velocity is calculated
before the new position
:return: list - new position
"""
pos = []
length = len(position)
for i in range(length):
pos.append(position[i] + velocity[i])
return pos | 7734e4021d958f42d974401b78331bcd2911ac92 | 6,804 |
def respond_batch():
"""
responses with [{"batch": [{blacklist_1_name: true}, ]}]
"""
result = get_result(request)
return jsonify([{"batch": result}]) | 97b1ceaafa88aacba09fc0ba6c564e87bfb07b66 | 6,805 |
from typing import Union
import types
from typing import Iterable
def get_iterable_itemtype(obj):
"""Attempts to get an iterable's itemtype without iterating over it,
not even partly. Note that iterating over an iterable might modify
its inner state, e.g. if it is an iterator.
Note that obj is expected to be an iterable, not a typing.Iterable.
This function leverages various alternative ways to obtain that
info, e.g. by looking for type annotations of '__iter__' or '__getitem__'.
It is intended for (unknown) iterables, where the type cannot be obtained
via sampling without the risk of modifying inner state.
"""
# support further specific iterables on demand
if isinstance(obj, _typechecked_Iterable):
return obj.itemtype
try:
if isinstance(obj, range):
tpl = tuple(deep_type(obj.start), deep_type(obj.stop), deep_type(obj.step))
return Union[tpl]
except TypeError:
# We're running Python 2
pass
if type(obj) is tuple:
tpl = tuple(deep_type(t) for t in obj)
return Union[tpl]
elif type(obj) is types.GeneratorType:
return get_generator_yield_type(obj)
else:
tp = deep_type(obj)
if is_Generic(tp):
if issubclass(tp.__origin__, Iterable):
if len(tp.__args__) == 1:
return tp.__args__[0]
return _select_Generic_superclass_parameters(tp, Iterable)[0]
if is_iterable(obj):
if type(obj) is str:
return str
if hasattr(obj, '__iter__'):
if has_type_hints(obj.__iter__):
itrator = _funcsigtypes(obj.__iter__, True, obj.__class__)[1]
if is_Generic(itrator) and itrator.__origin__ is _orig_Iterator:
return itrator.__args__[0]
if hasattr(obj, '__getitem__'):
if has_type_hints(obj.__getitem__):
itrator = _funcsigtypes(obj.__getitem__, True, obj.__class__)[1]
if is_Generic(itrator) and itrator.__origin__ is _orig_Iterator:
return itrator.__args__[0]
return None # means that type is unknown
else:
raise TypeError('Not an iterable: '+str(type(obj))) | 103a3928e4a161f119c8664e58ba7e6270a94a14 | 6,806 |
import re
def getTimerIPs():
"""
returns list of ip addr
"""
client = docker.from_env()
container_list = client.containers.list()
timer_ip_list = []
for container in container_list:
if re.search("^timer[1-9][0-9]*", container.name):
out = container.exec_run("awk 'END{print $1}' /etc/hosts", stdout=True)
timer_ip_list.append(out.output.decode().split("\n")[0])
client.close()
return timer_ip_list | e4bc28407fb8b292df9a813809998bf6b323c938 | 6,807 |
def BRepBlend_BlendTool_NbSamplesV(*args):
"""
:param S:
:type S: Handle_Adaptor3d_HSurface &
:param v1:
:type v1: float
:param v2:
:type v2: float
:rtype: int
"""
return _BRepBlend.BRepBlend_BlendTool_NbSamplesV(*args) | 99af0513463ce64d5369fde226e679e48a7e397a | 6,809 |
def get_response(session, viewstate, event_validation, event_target, outro=None, stream=False, hdfExport=''):
"""
Handles all the responses received from every request made to the website.
"""
url = "http://www.ssp.sp.gov.br/transparenciassp/"
data = [
('__EVENTTARGET', event_target),
('__EVENTARGUMENT', ''),
('__VIEWSTATE', viewstate),
('__EVENTVALIDATION', event_validation),
('ctl00$cphBody$hdfExport', hdfExport),
]
if outro:
data.append(('ctl00$cphBody$filtroDepartamento', '0'))
data.append(('__LASTFOCUS', ''))
response = session.post(url, headers=headers, data=data, stream=stream)
return response | 0bb31b29fb8fb8a0fe007f87d88b8d131fd4308c | 6,811 |
def matchVuln(vuln, element, criteria):
"""
================================================================================
Name:
matchVuln
Description:
Sets the finding details of a given VULN.
Parameter(s):
vuln: The VULN element to be searched.
element: The element to find.
criteria: The search criteria against which to match.
Returns:
True: If a match is found.
False: If a match is not found.
Notes:
N/A
================================================================================
"""
if (getVulnElementValue(vuln, element) == criteria): return True
return False | 7158b263fd70e921b0b131fd8f2537223521570f | 6,812 |
def require(*modules):
"""Check if the given modules are already available; if not add them to
the dependency list."""
deplist = []
for module in modules:
try:
__import__(module)
except ImportError:
deplist.append(module)
return deplist | 88df83cd33d8bddea63e4d2fbfb4d8351a3c23b1 | 6,813 |
def fixture_base_context(
env_name: str,
) -> dict:
"""Return a basic context"""
ctx = dict(
current_user="a_user",
current_host="a_host",
)
return ctx | fbfed439f784bdd64e93910bbb581955200af2bb | 6,814 |
from typing import Optional
from typing import List
import yaml
def definition(server: KedroLanguageServer, params: TextDocumentPositionParams) -> Optional[List[Location]]:
"""Support Goto Definition for a dataset or parameter.
Currently only support catalog defined in `conf/base`
"""
if not server.is_kedro_project():
return None
document = server.workspace.get_document(params.text_document.uri)
word = _word_at_position(params.position, document)
if word.startswith("params:"):
param_location = _get_param_location(server.project_metadata, word)
if param_location:
return [param_location]
catalog_paths = get_conf_paths(server.project_metadata)
for catalog_path in catalog_paths:
catalog_conf = yaml.load(catalog_path.read_text(), Loader=SafeLineLoader)
if word in catalog_conf:
line = catalog_conf[word]["__line__"]
location = Location(
uri=f"file://{catalog_path}",
range=Range(
start=Position(line=line - 1, character=0),
end=Position(
line=line,
character=0,
),
),
)
return [location]
return None | 7713d92fafa2f0acf68ee34b4dc83f1d5100a9b3 | 6,816 |
def augmented_neighbors_list(q_id,
neighbors,
is_training,
processor,
train_eval=False):
"""Retrieve and convert the neighbors to a list.
Args:
q_id: a question id
neighbors: a table mapping q_id to a list of top candidates
is_training: True for training set examples
processor: Helper object
train_eval: If this is on, we have a sub-set of the training set for which
we don't add the gold answer if it is not in the neighbors list
Returns:
lists of passage ids, list of corresponding labels, list of scores,
and the index of the first random negative
"""
n_pb = neighbors[q_id]
n_list = []
n_labels = []
n_scores = [] # the higher, the better
n_positive = 0
answers = processor.get_answers(q_id)
for n in range(len(n_pb)):
if n >= FLAGS.max_neighbors:
break # ignore any later neighbors
next_n = n_pb[n]
if processor.answer_match(q_id, next_n[0], answers):
n_list.append(next_n[0])
n_labels.append(1)
n_scores.append(-next_n[1])
n_positive += 1
else:
# see if we keep it
n_list.append(next_n[0])
n_labels.append(0)
n_scores.append(-next_n[1])
if not n_positive:
if (is_training or FLAGS.add_gold_to_eval):
gold_p_id = processor.get_gold_passage_id(q_id)
if gold_p_id is None and is_training:
print("Did not find answer matches.")
return [], [], [], 0
if gold_p_id is not None:
n_list.append(gold_p_id)
n_labels.append(1)
prior_gold = 0
n_scores.append(prior_gold)
n_positive += 1
else:
if is_training:
print("Did not find answer matches.")
return [], [], [], 0
# add the same number of random examples as we have neighbors
# we should add about
# (FLAGS.num_candidates -1) * FLAGS. train_records_per_query/2 random
index_rand_start = len(n_list)
num_random = index_rand_start
if is_training and not train_eval: # getting fewer random for speed
num_random = (int)(
(FLAGS.num_candidates - 1) * FLAGS.train_records_per_query / 2)
if FLAGS.add_random:
random_passages = processor.get_random(num_random)
random_labels = []
random_scores = [0] * num_random
for r in range(len(random_passages)):
n_scores.append(random_scores[r])
if processor.answer_match(q_id, random_passages[r], answers):
random_labels.append(1)
else:
random_labels.append(0)
n_list.extend(random_passages)
n_labels.extend(random_labels)
return n_list, n_labels, n_scores, index_rand_start | 3ae8756a60fdfa4ce3fc6de91d364c5edebcc0ff | 6,817 |
def estimate_tau_exp(chains, **kwargs):
"""
Estimate the exponential auto-correlation time for all parameters in a chain.
"""
# Calculate the normalised autocorrelation function in each parameter.
rho = np.nan * np.ones(chains.shape[1:])
for i in range(chains.shape[2]):
try:
rho[:, i] = autocorr.function(np.mean(chains[:, :, i], axis=0),
**kwargs)
except:
continue
# Take the max rho at any step.
rho_max = np.max(rho, axis=1)
# Now fit the max rho with an exponential profile.
x = np.arange(rho_max.size)
func = lambda tau_exp: np.exp(-x/tau_exp)
chi = lambda tau_exp: func(tau_exp[0]) - rho_max # tau_exp is a list
# Start with 50% of the chain length. probably OK.
tau_exp, ier = leastsq(chi, [chains.shape[1]/2.])
return (tau_exp, rho, func(tau_exp)) | 3de72cec6fa079913489c9c1b9b72ff572cedf60 | 6,818 |
def lda_model_onepass(dictionary, corpus, topics):
"""Create a single pass LDA model"""
start_time = time.time()
model = LdaMulticore(corpus, id2word = dictionary, num_topics = topics)
model.save(""./data/lda/all_topics_single.lda"")
print(model.print_topics(-1))
print("\nDone in {}".format(time.time() - start_time))
return model | 3a88250af8c83fb23112b15cacaad39eeaebb27c | 6,819 |
import dataclasses
import pydantic
def paramclass(cls: type) -> type:
""" Parameter-Class Creation Decorator
Transforms a class-definition full of Params into a type-validated dataclass,
with methods for default value and description-dictionary retrieval.
Hdl21's `paramclass`es are immutable, strongly-typed data-storage structures.
They are defined through a syntax similar to `@dataclass`, but using the `Param`
constructor, and assignment rather than type annotation.
@paramclass
class C:
reqd = Param(dtype=int, desc="A Required Parameter")
optn = Param(dtype=int, desc="An Optional Parameter", default=11)
`Param`s each have required datatype (`dtype`) and description (`desc`) fields,
and optional default values.
Each `paramclass` constructor can be called with ordered arguments,
in the order defined in the `paramclass`, or with named arguments.
Named arguments are highly recommended for more than a single parameter.
Note Python's function-argument ordering requirements also dictate
that all `paramclass` required-arguments be declared *before* any optional arguments.
This also reinforces good practice for communicating which parameters are required.
Each `paramclass` comes with class-methods `descriptions` and `defaults`,
which return dictionaries of the parameter names to descriptions and
names to default values (for those with defaults), respectively.
Requirements of the input `cls`:
* *All* non-Python-internal fields must be of type `Param`
* Inheritance is not supported
"""
if cls.__bases__ != (object,):
raise RuntimeError(f"Invalid @hdl21.paramclass inheriting from {cls.__bases__}")
protected_names = ["descriptions", "defaults"]
dunders = dict()
params = dict()
# Take a lap through the class dictionary, type-check everything and grab Params
for key, val in cls.__dict__.items():
if key in protected_names:
raise RuntimeError(f"Invalid field name {key} in paramclass {cls}")
elif key.startswith("__"):
dunders[key] = val
elif isinstance(val, Param):
params[key] = val
else:
raise RuntimeError(
f"Invalid class-attribute {key} in paramclass {cls}. All attributes should be `hdl21.Param`s."
)
# Translate the Params into dataclass.field-compatible tuples
fields = list()
for name, par in params.items():
field = [name, par.dtype]
if par.default is not _default:
field.append(dataclasses.field(default=par.default))
# Default factories: not supported, yet. See `Param` below.
# elif par.default_factory is not _default:
# field.append(dataclasses.field(default_factory=par.default_factory))
fields.append(tuple(field))
# Add a few helpers to the class namespace
ns = dict(
__params__=params,
__paramclass__=True,
descriptions=classmethod(
lambda cls: {k: v.desc for k, v in cls.__params__.items()}
),
defaults=classmethod(
lambda cls: {
k: v.default
for k, v in cls.__params__.items()
if v.default is not _default
}
),
)
# Create ourselves a (std-lib) dataclass
cls = dataclasses.make_dataclass(cls.__name__, fields, namespace=ns, frozen=True)
# Pass this through the pydantic dataclass-decorator-function
cls = pydantic.dataclasses.dataclass(cls, frozen=True)
# Pydantic seems to want to add this one *after* class-creation
def _brick_subclassing_(cls, *_, **__):
msg = f"Error: attempt to sub-class `hdl21.paramclass` {cls} is not supported"
raise RuntimeError(msg)
cls.__init_subclass__ = classmethod(_brick_subclassing_)
# And don't forget to return it!
return cls | 5f5b4b6612d3afc7858a4b26419d9238aaf6ec92 | 6,820 |
import string
def text_process(mess):
"""
Takes in a string of text, then performs the following:
1. Remove all punctuation
2. Remove all stopwords
3. Returns a list of the cleaned text
"""
# Check characters to see if they are in punctuation
nopunc = [char for char in mess if char not in string.punctuation]
# Join the characters again to form the string.
nopunc = ''.join(nopunc)
# Now just remove any stopwords
words = [word for word in nopunc.split() if word.lower() not in stopwords.words('english')]
words = [word for word in words if word.lower() not in pills['BrandName'].values]
# words = [word for word in words if word.lower() not in pills['ChemName'].values]
words = [word.lower() for word in words if word.isalpha()]
words = [word.lower() for word in words if len(word) > 2]
return words | 9069df05eb4d1b87c2091a64e7dd55754e362334 | 6,821 |
def IntCurveSurface_ThePolyhedronToolOfHInter_IsOnBound(*args):
"""
:param thePolyh:
:type thePolyh: IntCurveSurface_ThePolyhedronOfHInter &
:param Index1:
:type Index1: int
:param Index2:
:type Index2: int
:rtype: bool
"""
return _IntCurveSurface.IntCurveSurface_ThePolyhedronToolOfHInter_IsOnBound(*args) | bd64cb058793730197a805d7660fe4c8dc4f7af5 | 6,822 |
def read_mrc_like_matlab(mrc_file):
""" Read MRC stack and make sure stack is 'Fortran indexed' before returning it. """
mrc_stack = mrcfile.open(mrc_file).data
fortran_indexed_stack = c_to_fortran(mrc_stack)
return fortran_indexed_stack | 245a7371e94ae6c05248d24e231ce56afc937dd1 | 6,823 |
from typing import List
def freeze_session(session: tf.Session,
keep_var_names: List[str] = None,
output_names: List[str] = None,
clear_devices: bool = True) -> tf.GraphDef:
"""
Freezes the state of a session into a pruned computation graph.
Creates a new computation graph where variable nodes are replaced by
constants taking their current value in the session. The new graph will be
pruned so subgraphs that are not necessary to compute the requested
outputs are removed.
:param session: The TensorFlow session to be frozen.
:param keep_var_names: A list of variable names that should not be frozen,
or None to freeze all the variables in the graph.
:param output_names: Names of the relevant graph outputs.
:param clear_devices: Remove the device directives from the graph for better
portability.
:return The frozen graph definition.
"""
graph = session.graph
with graph.as_default():
freeze_var_names = list(
set(v.op.name for v in tf.global_variables()).difference(
keep_var_names or []))
output_names = output_names or []
output_names += [v.op.name for v in tf.global_variables()]
input_graph_def = graph.as_graph_def()
if clear_devices:
for node in input_graph_def.node:
node.device = ""
frozen_graph = tf.graph_util.convert_variables_to_constants(
session, input_graph_def, output_names, freeze_var_names)
return frozen_graph | 4754de754217031ac6151bc3360b6969a46a4e66 | 6,824 |
def evaluation(evaluators, dataset, runners, execution_results, result_data):
"""Evaluate the model outputs.
Args:
evaluators: List of tuples of series and evaluation functions.
dataset: Dataset against which the evaluation is done.
runners: List of runners (contains series ids and loss names).
execution_results: Execution results that include the loss values.
result_data: Dictionary from series names to list of outputs.
Returns:
Dictionary of evaluation names and their values which includes the
metrics applied on respective series loss and loss values from the run.
"""
eval_result = {}
# losses
for runner, result in zip(runners, execution_results):
for name, value in zip(runner.loss_names, result.losses):
eval_result["{}/{}".format(runner.output_series, name)] = value
# evaluation metrics
for generated_id, dataset_id, function in evaluators:
if (not dataset.has_series(dataset_id)
or generated_id not in result_data):
continue
desired_output = dataset.get_series(dataset_id)
model_output = result_data[generated_id]
eval_result["{}/{}".format(generated_id, function.name)] = function(
model_output, desired_output)
return eval_result | ef3470edb8b2336bdc54507a5df8023f8095b995 | 6,827 |
def bestof(reps, func, *args, **kwargs):
"""Quickest func() among reps runs.
Returns (best time, last result)
"""
best = 2 ** 32
for i in range(reps):
start = timer()
ret = func(*args, **kwargs)
elapsed = timer() - start
if elapsed < best: best = elapsed
return (best, ret) | 975d106a79b79cab3bc287d8b658585f45dd648d | 6,828 |
import tempfile
def gdal_aspect_analysis(dem, output=None, flat_values_are_zero=False):
"""Return the aspect of the terrain from the DEM.
The aspect is the compass direction of the steepest slope (0: North, 90: East, 180: South, 270: West).
Parameters
----------
dem : str
Path to file storing DEM.
output : str
Path to output file.
flat_values_are_zero: bool
Designate flat values with value zero. Default: -9999.
Returns
-------
ndarray
Aspect array.
Notes
-----
Ensure that the DEM is in a *projected coordinate*, not a geographic coordinate system, so that the
horizontal scale is the same as the vertical scale (m).
"""
if output is None:
output = tempfile.NamedTemporaryFile().name
DEMProcessing(destName=output, srcDS=dem, processing='aspect', zeroForFlat=flat_values_are_zero,
format='GTiff', band=1, creationOptions=[GDAL_TIFF_COMPRESSION_OPTION, ])
with rasterio.open(output) as src:
return np.ma.masked_values(src.read(1), value=-9999) | ec8aa51f799368508f78dcff81ae991087b56132 | 6,829 |
import requests
import json
def _handle_braze_response(response: requests.Response) -> int:
"""Handles server response from Braze API.
The amount of requests made is well
below the limits for the given API endpoint therefore Too Many Requests
API errors are not expected. In case they do, however, occur - the API
calls will be re-tried, up to `MAX_API_RETRIES`, using exponential delay.
In case of a server error, the same strategy will be applied. After max
retries have been reached, the execution will terminate.
In case users were posted but there were minor mistakes, the errors will be
logged. In case the API received data in an unexpected format, the data
that caused the issue will be logged.
In any unexpected client API error (other than 400), the function execution
will terminate.
:param response: Response from the API
:return: Number of users that resulted in an error
:raise APIRetryError: On a 429 or 500 server error
:raise FatalAPIError: After `MAX_API_RETRIES` unsuccessful retries, or on
any non-400 client error
"""
res_text = json.loads(response.text)
if response.status_code == 201 and 'errors' in res_text:
print(
f"Encountered errors processing some users: {res_text['errors']}")
return len(res_text['errors'])
if response.status_code == 400:
print(f"Encountered error for user chunk. {response.text}")
return 0
server_error = response.status_code == 429 or response.status_code >= 500
if server_error:
raise APIRetryError("Server error. Retrying..")
if response.status_code > 400:
raise FatalAPIError(res_text.get('message', response.text))
return 0 | da8aca622f7a4812235797501a1afe56cc760ea4 | 6,830 |
def unpack_file(filepath, tmpdir):
"""
Attempt to unpack file.
filepath is the path to the file that should be attempted unpacked.
tmpdir is a path to a temporary directory unique to this thread where
the thread will attempt to unpack files to.
Returns a list of unpacked files or an empty list.
"""
# Other unpacking tools have been removed due to
# lacking reliability and usefulness of the tools.
# If multiple unpacking tools are to be used here,
# subdirectories below tmpdir should be created for each
# tool to avoid tools overwriting output of each other.
# Attempt static unpacking with ClamAV. Return unpacked files.
return clam_unpack(filepath, tmpdir) | 79fb80fe61145e865b128587525bc743d19e2ad0 | 6,831 |
def xarray_image_as_png(img_data, loop_over=None, animate=False, frame_duration=1000):
"""
Render an Xarray image as a PNG.
:param img_data: An xarray dataset, containing 3 or 4 uint8 variables: red, greed, blue, and optionally alpha.
:param loop_over: Optional name of a dimension on img_data. If set, xarray_image_as_png is called in a loop
over all coordinate values for the named dimension.
:param animate: Optional generate animated PNG
:return: A list of bytes representing a PNG image file. (Or a list of lists of bytes, if loop_over was set.)
"""
if loop_over and not animate:
return [
xarray_image_as_png(img_data.sel(**{loop_over: coord}))
for coord in img_data.coords[loop_over].values
]
xcoord = None
ycoord = None
for cc in ("x", "longitude", "Longitude", "long", "lon"):
if cc in img_data.coords:
xcoord = cc
break
for cc in ("y", "latitude", "Latitude", "lat"):
if cc in img_data.coords:
ycoord = cc
break
if not xcoord or not ycoord:
raise Exception("Could not identify spatial coordinates")
width = len(img_data.coords[xcoord])
height = len(img_data.coords[ycoord])
img_io = BytesIO()
# Render XArray to APNG via Pillow
# https://pillow.readthedocs.io/en/stable/handbook/image-file-formats.html#apng-sequences
if loop_over and animate:
time_slices_array = [
xarray_image_as_png(img_data.sel(**{loop_over: coord}), animate=True)
for coord in img_data.coords[loop_over].values
]
images = []
for t_slice in time_slices_array:
im = Image.fromarray(t_slice, "RGBA")
images.append(im)
images[0].save(img_io, "PNG", save_all=True, default_image=True, loop=0, duration=frame_duration, append_images=images)
img_io.seek(0)
return img_io.read()
if "time" in img_data.dims:
img_data = img_data.squeeze(dim="time", drop=True)
pillow_data = render_frame(img_data.transpose(xcoord, ycoord), width, height)
if not loop_over and animate:
return pillow_data
# Change PNG rendering to Pillow
im_final = Image.fromarray(pillow_data, "RGBA")
im_final.save(img_io, "PNG")
img_io.seek(0)
return img_io.read() | 201cb29144054417d7eb743690601ae37558dfbd | 6,832 |
def x_section_from_latlon(elevation_file,
x_section_lat0,
x_section_lon0,
x_section_lat1,
x_section_lon1,
as_polygon=False,
auto_clean=False):
"""
This workflow extracts a cross section from a DEM
based on the input latitude and longitude point pairs.
Parameters:
-----------
elevation_file: str
Path to the elevation DEM.
x_section_lat0: float
THe first coordinate latitude.
x_section_lon0: float
THe first coordinate longitude.
x_section_lat1: float
THe second coordinate latitude.
x_section_lon1: float
THe second coordinate longitude.
as_polygon: bool, optional
If True, will return cross section as a
:obj:`shapely.geometry.Polygon`. Default is False.
auto_clean: bool, optional
If True, will attempt to clean any issues from the polygon.
Default is False.
Returns:
--------
list or :obj:`shapely.geometry.Polygon`
Cross section information.
The list will be xy coordinate pairs.
Example::
from shapely.geometry import Polygon
from xman.xsect import x_section_from_latlon
elevation_file = '/path/to/elevation.tif'
lat1 = 34.105265417341442
lon1 = 38.993958690587505
lat2 = 34.107264451129197
lon2 = 38.99355588515526)
x_sect_list = x_section_from_latlon(elevation_file,
lat1,
lon1,
lat2,
lon2)
"""
utm_proj = utm_proj_from_latlon(x_section_lat0, x_section_lon0,
as_osr=True)
sp_ref = osr.SpatialReference()
sp_ref.ImportFromEPSG(4326)
geo_to_utm_trans = osr.CoordinateTransformation(sp_ref, utm_proj)
x_line_m = LineString((
geo_to_utm_trans.TransformPoint(x_section_lon0, x_section_lat0)[:2],
geo_to_utm_trans.TransformPoint(x_section_lon1, x_section_lat1)[:2]
))
elevation_utm_ggrid = GDALGrid(elevation_file).to_projection(utm_proj)
x_sect_list = []
for x_step in np.linspace(0, x_line_m.length, num=20):
x_point = x_line_m.interpolate(x_step)
x_sect_list.append((
x_step, elevation_utm_ggrid.get_val_coord(x_point.x, x_point.y)
))
if as_polygon or auto_clean:
x_sect_poly = Polygon(x_sect_list)
if not x_sect_poly.is_valid and auto_clean:
x_sect_poly = x_sect_poly.buffer(0)
print("WARNING: Cross section cleaned up.")
if hasattr(x_sect_poly, 'geoms'):
if len(x_sect_poly.geoms) > 1:
largest_poly = x_sect_poly.geoms[0]
for geom_poly in x_sect_poly.geoms[1:]:
if geom_poly.area > largest_poly.area:
largest_poly = geom_poly
x_sect_poly = largest_poly
if as_polygon:
return x_sect_poly
x_coords, y_coords = x_sect_poly.exterior.coords.xy
return list(zip(x_coords, y_coords))
return x_sect_list | 0773cf535ee18ff91db805d692687c67bf6b2ed4 | 6,833 |
import re
def convert_not_inline(line):
""" Convert the rest of part which are not inline code but might impact inline code
This part will dealing with following markdown syntax
- strong
- scratch
- italics
- image
- link
- checkbox
- highlight
:param line: str, the not inline code part of markdown
:return: str, the html format
"""
# deal with strong
line = strong(line)
# Scratch
line = scratch(line)
# italics
line = italics(line)
# highlight
line = highlight(line)
# image
while len(re.match(r'((?P<pre_text>.*)!\[(?P<alt_text>.*)\]\((?P<link>.*)\)(?P<after_text>.*))*', line).group()) \
!= 0:
match = re.match(r'((?P<pre_text>.*)!\[(?P<alt_text>.*)\]\((?P<link>.*)\)(?P<after_text>.*))*', line)
pre_text = match.group('pre_text')
alt_text = match.group('alt_text')
link = match.group('link')
after_text = match.group('after_text')
# scale image
if len(re.match(r'((?P<pre_link>.*)#scale=(?P<scale>[0-9]*))*', link).group()) != 0:
match_scale = re.match(r'((?P<pre_link>.*)#scale=(?P<scale>[0-9]*))*', link)
scale = match_scale.group('scale')
img_html = '<img style="display: block; margin-left: auto; margin-right: auto; height:' + str(scale) + '%" src="' + link + '" alt="' + alt_text + '">'
else:
img_html = '<img style="display: block; margin-left: auto; margin-right: auto;" src="' + link + '" alt="' + alt_text + '">'
line = pre_text + img_html + after_text
# link
while len(re.match(r'((?P<pre_text>.*)\[(?P<alt_text>.*)\]\((?P<link>.*)\)(?P<after_text>.*))*', line).group()) \
!= 0:
match = re.match(r'((?P<pre_text>.*)\[(?P<alt_text>.*)\]\((?P<link>.*)\)(?P<after_text>.*))*', line)
pre_text = match.group('pre_text')
alt_text = match.group('alt_text')
link = match.group('link')
if len(link) != 0 and link[0] == '#':
link = link.replace(' ', '-')
after_text = match.group('after_text')
img_html = '<a href="' + link + '">' + alt_text + '</a>'
line = pre_text + img_html + after_text
return line | 871abca2977fc494036c6d5aa19de789cfbfd5b9 | 6,834 |
def uniform_square_aperture(side, skypos, frequency, skyunits='altaz',
east2ax1=None, pointing_center=None,
power=False):
"""
-----------------------------------------------------------------------------
Compute the electric field or power pattern pattern at the specified sky
positions due to a uniformly illuminated square aperture
Inputs:
side [scalar] Sides of the square (in m)
skypos [list or numpy vector] Sky positions at which the power pattern
is to be estimated. Size is M x N where M is the number of
locations, N = 2 (if skyunits = altaz denoting Alt-Az
coordinates), or N = 3 (if skyunits = dircos denoting direction
cosine coordinates). If skyunits = altaz, then altitude and
azimuth must be in degrees
frequency [list or numpy vector] frequencies (in GHz) at which the power
pattern is to be estimated. Frequencies differing by too much
and extending over the usual bands cannot be given.
Keyword Inputs:
skyunits [string] string specifying the coordinate system of the sky
positions. Accepted values are 'altaz', and 'dircos'.
Default = 'altaz'. If 'dircos', the direction cosines are
aligned with the local East, North, and Up. If 'altaz', then
altitude and azimuth must be in degrees.
east2ax1 [scalar] Angle (in degrees) the primary axis of the array makes
with the local East (positive anti-clockwise).
pointing_center
[list or numpy array] coordinates of pointing center (in the same
coordinate system as that of sky coordinates specified by
skyunits). 2-element vector if skyunits='altaz'. 2- or
3-element vector if skyunits='dircos'.
power [boolean] If set to True, compute power pattern, otherwise
compute field pattern (default=False).
Output:
Electric field pattern or power pattern, number of rows equal to the number
of sky positions (which is equal to the number of rows in skypos), and number
of columns equal to the number of wavelengths.
-----------------------------------------------------------------------------
"""
try:
side, skypos, frequency
except NameError:
raise NameError('Square antenna side, skypos, frequency must be specified')
if not isinstance(sides, (int,float)):
raise TypeError('Antenna sides must be a scalar')
sides = NP.asarray([side]*2, dtype=NP.float)
ab = uniform_rectangular_aperture(sides, skypos, frequency,
skyunits=skyunits,
east2ax1=east2ax1,
pointing_center=pointing_center,
power=power)
return ab | 275249164bba5fae8f8652f8af1f2c8dc13c9525 | 6,835 |
def sources_table(citator):
"""
Return the content for an HTML table listing every template that the
citator can link to.
"""
rows = []
for template in citator.templates.values():
# skip templates that can't make URLs
if not template.__dict__.get('URL_builder'):
continue
URL = urlsplit(''.join(template.URL_builder.parts))
domain_URL = f'{URL.scheme}://{URL.netloc}'
domain_name = URL.hostname
regex = unify_regex(template, simplify_for_regexper=True)
rows.append(SOURCES_TABLE_ROW.format(
name=template.name,
domain_URL=domain_URL,
domain_name=domain_name,
escaped_regex=quote_plus(regex).replace('+', '%20')
))
return SOURCES_TABLE.format(rows=''.join(rows)) | 460a06e03e7ec6d5cee465001d9b828976a4da1b | 6,836 |
def parse_bot_commands(data, starterbot_id):
"""
Parses a list of events coming from the Slack RTM API to find bot commands.
If a bot command is found, this function returns a tuple of command and channel.
If its not found, then this function returns None, None.
"""
user_id, message = parse_direct_mention(data["text"])
print(f'user_id: {user_id}')
print(f'starterbot_id: {starterbot_id}')
if user_id == starterbot_id:
return message, data["channel"]
return None, None | 5d614cfdf55133180425a87aedac34896a54b552 | 6,837 |
from typing import Callable
def construct_obj_in_dict(d: dict, cls: Callable) -> dict:
"""
Args
d (dict):
d[name][charge][annotation]
"""
if not isinstance(d, dict):
return d
else:
new_d = deepcopy(d)
for key, value in d.items():
if value.get("@class", "") == cls.__name__:
new_d[key] = cls.from_dict(value)
else:
new_d[key] = construct_obj_in_dict(value, cls)
return new_d | c069fb474a6a675f8d917483435856df506ff331 | 6,838 |
def signup_user(request):
"""
Function to sing up user that are not admins
:param request: This param contain all the information associated to the request
:param type request: Request
:return: The URL to render
:rtype: str
"""
try:
log = LoggerManager('info', 'singup_manager-info', session=request.session)
if request.method == 'POST':
form = ClientRegistrationForm(request.POST)
if form.is_valid():
form.save()
max_id = Account.objects.all().aggregate(Max('id'))['id__max']
user = Account.objects.filter(id=max_id)
web_group, created = Group.objects.get_or_create(name=request.user.email)
web_group.user_set.add(request.user.id)
web_group.user_set.add(user.get().id)
log.write_info(form.data)
return redirect('client_list')
else:
form = ClientRegistrationForm()
return render(request, 'registration/signup.html', {
'form': form
})
except Exception as ex:
log = LoggerManager('exception', 'singup_manager-exception', session=request.session)
log.write_exception(ex) | 3ea45a9b84cb8281f3afc6997230fdcbab75f045 | 6,839 |
def haar_rand_state(dim: int) -> np.ndarray:
"""
Given a Hilbert space dimension dim this function returns a vector
representing a random pure state operator drawn from the Haar measure.
:param dim: Hilbert space dimension.
:return: Returns a dim by 1 vector drawn from the Haar measure.
"""
unitary = haar_rand_unitary(dim)
fiducial_vec = np.zeros((dim, 1))
fiducial_vec[0] = 1
return np.matmul(unitary, fiducial_vec) | 3d374fe32fee91667747df86d79f9feb08836c61 | 6,840 |
from pathlib import Path
def is_src_package(path: Path) -> bool:
"""Checks whether a package is of the form:
├─ src
│ └─ packagename
│ ├─ __init__.py
│ └─ ...
├─ tests
│ └─ ...
└─ setup.py
The check for the path will be if its a directory with only one subdirectory
containing an __init__.py file.
Parameters
----------
path : Path
Full path pointing to a dir.
Returns
-------
check : bool
If the package is an src package, returns True, False otherwise.
See Also
--------
is_package
"""
check: bool = False
if path.is_dir():
maybe_subdirs = list(path.iterdir())
if len(maybe_subdirs) == 1:
check = is_package(path / maybe_subdirs[0])
return check | 36bfd704a0a71a41e9943dc9a9d19cf5e46746f8 | 6,841 |
from re import T
from typing import Optional
from re import I
def value_element(units=(OneOrMore(T('NN')) | OneOrMore(T('NNP')) | OneOrMore(T('NNPS')) | OneOrMore(T('NNS')))('raw_units').add_action(merge)):
"""
Returns an Element for values with given units. By default, uses tags to guess that a unit exists.
:param BaseParserElement units: (Optional) A parser element for the units that are to be looked for. Default option looks for nouns.
:returns: An Element to look for values and units.
:rtype: BaseParserElement
"""
number = R('^[\+\-–−]?\d+(\.\d+)?$')
joined_range = R('^[\+\-–−]?\d+(\.\d+)?[\-–−~∼˜]\d+(\.\d+)?$')('raw_value').add_action(merge)
spaced_range = (number + Optional(units).hide() + (R('^[\-–−~∼˜]$') + number | number))('raw_value').add_action(merge)
to_range = (number + Optional(units).hide() + I('to') + number)('raw_value').add_action(join)
plusminus_range = (number + R('±') + number)('value').add_action(join)
between_range = (I('between').hide() + number + I('and') + number).add_action(join)
value_range = (Optional(R('^[\-–−]$')) + (plusminus_range | joined_range | spaced_range | to_range | between_range))('raw_value').add_action(merge)
value_single = (Optional(R('^[~∼˜\<\>]$')) + Optional(R('^[\-–−]$')) + number)('raw_value').add_action(merge)
value = Optional(lbrct).hide() + (value_range | value_single)('raw_value') + Optional(rbrct).hide()
return value + units | 1b111fb30369d0d3b6c506d5f02e80b5c88044d5 | 6,842 |
def get_pattern(model_id, release_id) -> list:
"""
content demo:
[
'...',
{
0.1: [
['if', 'checker.check'],
3903,
['if', 'checker.check', '*', Variable(name="ip", value='10.0.0.1')],
['if checker.check():', 'if checker.check()'],
[282. 1877],
27886975249790003104399390262688492018705644758766193963474214767849400520551
]
},
'...',
'...'
]
sensitive_pattern [List]:
- representative tokens: 符合pattern的其中一个分词
- numbers: 属于该pattern的日志数量
- pattern: 聚类模式
- raw_log: 所有原始log,list
- log_index: 所有原始log的index
- log_signature: 聚类模型signature
"""
content = AiopsModelHandler.pickle_decode(
content=AiopsModelHandler().aiops_release_model_release_id_model_file(
model_id=model_id, model_release_id=release_id
)["file_content"]
)
patterns = []
for _, sensitive_patterns in content[CONTENT_PATTERN_INDEX].items():
for sensitive_pattern in sensitive_patterns:
signature = sensitive_pattern[PATTERN_SIGNATURE_INDEX]
pattern_list = []
for pattern in sensitive_pattern[PATTERN_INDEX]:
if hasattr(pattern, "name"):
pattern_list.append("#{}#".format(pattern.name))
continue
pattern_list.append(str(pattern))
patterns.append({"signature": str(signature), "pattern": " ".join(pattern_list)})
return patterns | 2307180d26e687fd7057c326e15e21b7aaf81471 | 6,843 |
def bit_remove(bin_name, byte_offset, byte_size, policy=None):
"""Creates a bit_remove_operation to be used with operate or operate_ordered.
Remove bytes from bitmap at byte_offset for byte_size.
Args:
bin_name (str): The name of the bin containing the map.
byte_offset (int): Position of bytes to be removed.
byte_size (int): How many bytes to remove.
policy (dict, optional): The bit_policy policy dictionary. See: See :ref:`aerospike_bit_policies`. default: None
Returns:
A dictionary usable in operate or operate_ordered. The format of the dictionary
should be considered an internal detail, and subject to change.
"""
return {
OP_KEY: aerospike.OP_BIT_REMOVE,
BIN_KEY: bin_name,
POLICY_KEY: policy,
BYTE_OFFSET_KEY: byte_offset,
BYTE_SIZE_KEY: byte_size
} | 356ff2f3421b67790f7e224ecc49c844335864f8 | 6,844 |
def four2five(data, format_, dst_dtype='float16', need_custom_tiling=True):
"""
Convert 4-dims "data" to 5-dims,the format of "data" is defined in "format_"
Args:
data (tvm.tensor.Tensor): 4-dims tensor of type float16, float32
format_ (str): a str defined the format of "data"
dst_dtype (str): a str defined the type of output, could be float16 or float32
Returns:
5-dims tvm.tensor.Tensor,type is defined by dst_dtype,
which shape is [N, ceil(C / 16), H, W, 16] and attr about tiling args
Raises:
ValueError: If the type of format_ is invalid.
"""
# Check dtype
vc_util.ops_dtype_check(data.dtype, vc_util.DtypeForDavinci.ALL_FLOAT)
# Check shape
shape = get_shape(data)
vc_util.davinci_format_check(shape, format_, dim=4)
# Check format
if format_ not in ['NCHW', 'NHWC']:
raise ValueError("{} format is not support, four2five only support NCHW and NHWC format input"
.format(format_))
last_channel = 16
if format_ == "NCHW":
bs, c, h, w = get_shape(data)
else:
bs, h, w, c = get_shape(data)
pad_c = c
if c % last_channel != 0:
pad_c = (c + 15) // last_channel * last_channel
c1 = pad_c // last_channel
c0 = last_channel
is_dynamic = ds.shape_is_dynamic(data)
if not is_dynamic:
attrs = get_attrs()
else:
attrs = get_dynamic_attrs()
# Check size c when casting happens
if data.dtype != dst_dtype and c0 * c1 >= C_LIMIT_FOR_CAST:
raise ValueError("When input and output data type is not matched, shape of 'c' axis should not exceed {}, "
"while currently set is {}".format(C_LIMIT_FOR_CAST, c0 * c1))
@script(capture=locals())
def nchw_to_nc1hwc0_step(inputs, bs, c1, h, w, c0):
output = allocate((bs, c1, h, c0, w), inputs.dtype, "local")
for n_i in range(bs):
for c_i in range(c1):
for h_i in range(h):
for w_i in range(w):
for c_i0 in range(c0):
output[n_i, c_i, h_i, c_i0, w_i] = inputs[n_i, c_i * last_channel + c_i0, h_i, w_i]
output1 = allocate((bs, c1, h, w, c0), inputs.dtype, "local")
for n_i in range(bs):
for c_i in range(c1):
for h_i in range(h):
for w_i in range(w):
for c_i0 in range(c0):
output1[n_i, c_i, h_i, w_i, c_i0] = output[n_i, c_i, h_i, c_i0, w_i]
return output1
@script(capture=locals())
def nchw_to_nc1hwc0(inputs, bs, c1, h, w, c0):
output = allocate((bs, c1, h, w, c0), inputs.dtype, "local")
for n_i in range(bs):
for c_i in range(c1):
for h_i in range(h):
for w_i in range(w):
for c_i0 in range(c0):
output[n_i, c_i, h_i, w_i, c_i0] = inputs[n_i, c_i * last_channel + c_i0, h_i, w_i]
return output
@script(capture=locals())
def nhwc_to_nc1hwc0(inputs, zero, bs, c1, h, w, c0):
output = allocate((bs, c1, h, w, c0), inputs.dtype, "local")
for n_i in range(bs):
for c_i in range(c1):
for h_i in range(h):
for w_i in range(w):
for c_i0 in range(c0):
if c_i * last_channel + c_i0 < c:
output[n_i, c_i, h_i, w_i, c_i0] = inputs[n_i, h_i, w_i, c_i * last_channel + c_i0]
else:
output[n_i, c_i, h_i, w_i, c_i0] = zero
return output
cast_data = data
need_cast = data.dtype == 'float32' and dst_dtype == 'float16'
if c % last_channel != 0 or need_cast:
expansion = int(ct_util.BLOCK_SIZE / get_bytes(data.dtype))
else:
expansion = None
# float32 -> float16, need to cast before transform
if need_cast:
cast_data = akg.lang.cce.cast_to(data, dst_dtype)
zero_ = akg.tvm.const(0.0, cast_data.dtype)
if format_ == "NCHW":
if c % last_channel != 0:
pad_shape = [bs, pad_c, h, w]
if h == 1 and w == 1:
# if h and w both are 1, it is pad last dim case
output_shape = [bs, pad_c // last_channel, h, w, last_channel]
output = akg.tvm.compute(output_shape,
lambda i, c1, k, l, c0: akg.tvm.expr.Select(
c0 < c - c1 * last_channel, cast_data[i, c1 * last_channel + c0, k, l],
akg.tvm.const(0, cast_data.dtype)),
name="output")
else:
# if need to pad c dim, separate transpose to two steps
# first is nchw -> nc1hc0w, second is nc1hc0w -> nc1hwc0
pad_data = akg.tvm.compute(pad_shape,
lambda i, j, k, l: akg.tvm.expr.Select(j < c, cast_data[i, j, k, l], zero_),
name="pad_data")
output = nchw_to_nc1hwc0_step(
pad_data,
to_tvm_const(bs),
to_tvm_const(c1),
to_tvm_const(h),
to_tvm_const(w),
to_tvm_const(c0))
else:
if not is_dynamic and data.dtype == "float16" and h * w % last_channel == 0 and h * w < 3600:
output_shape = [bs, c1, h, w, c0]
output = akg.tvm.compute(output_shape, lambda n, c1, h, w, c0:
akg.lang.cce.four2five_nchw(cast_data[n, c1 * last_channel + c0, h, w]),
name="output")
else:
output = nchw_to_nc1hwc0(
cast_data,
to_tvm_const(bs),
to_tvm_const(c1),
to_tvm_const(h),
to_tvm_const(w),
to_tvm_const(c0))
else:
if not is_dynamic and c < last_channel:
rank = 5 # (n, c1, h, w, c0)
pad_before = []
pad_after = []
for _ in range(rank):
pad_before.append(0)
pad_after.append(0)
pad_after[-1] = last_channel - c
# As c < last_channel, c1 is 1
output = akg.tvm.compute((bs, c1, h, w, c), lambda bs_i, _, h_i, w_i, c_i: cast_data[
bs_i, h_i, w_i, c_i], name="output")
output = tvm_pad(output, pad_before, pad_after=pad_after, name='pad_output')
else:
output = nhwc_to_nc1hwc0(
cast_data,
zero_,
to_tvm_const(bs),
to_tvm_const(c1),
to_tvm_const(h),
to_tvm_const(w),
to_tvm_const(c0))
# float16 -> float32, need to cast after transform
if data.dtype == 'float16' and dst_dtype == 'float32':
output = akg.lang.cce.cast_to(output, dst_dtype)
vc_util.davinci_format_check(output.shape, "NC1HWC0", dim=5)
if not is_dynamic:
dim_info, _ = four2five_set_dim_func(data, format_, dst_dtype)
if dim_info != "":
attrs["dim"] = dim_info
if need_custom_tiling:
attrs["custom_tiling"] = four2five_tiling_strategy(output, format_, expansion)
elif need_custom_tiling:
attrs["custom_tiling"] = four2five_tiling_strategy_dynamic(output, format_)
if is_dynamic:
attrs["enable_feature_library_pre_poly"] = True
return output, attrs | 71de138f15e5b407a244c1670c48eb806b3be765 | 6,846 |
def MT33_SDR(MT33):
"""Converts 3x3 matrix to strike dip and rake values (in radians)
Converts the 3x3 Moment Tensor to the strike, dip and rake.
Args
MT33: 3x3 numpy matrix
Returns
(float, float, float): tuple of strike, dip, rake angles in radians
(Note: Function from MTFIT.MTconvert)
"""
T,N,P,E=MT33_TNPE(MT33)
N1,N2=TP_FP(T,P)
return FP_SDR(N1,N2) | 0b80df0e43bc546aa36a06858f144f32d75cb478 | 6,847 |
from generate_changelog.utilities import pairs
from typing import Optional
from typing import List
import re
def get_commits_by_tags(repository: Repo, tag_filter_pattern: str, starting_tag: Optional[str] = None) -> List[dict]:
"""
Group commits by the tags they belong to.
Args:
repository: The git repository object
tag_filter_pattern: A regular expression pattern that matches valid tags as versions
starting_tag: Only include tags after this one
Returns:
A list of dictionaries with tag information with most recent first
"""
tags = [tag for tag in get_tags(repository) if re.match(tag_filter_pattern, tag.name)]
head_commit = repository.commit("HEAD")
head_tagger = head_commit.committer.name
if head_commit.committer.email:
head_tagger += f" <{head_commit.committer.email}>"
head = TagInfo(
name="HEAD",
commit=head_commit.hexsha,
tagger=head_tagger,
tagged_datetime=head_commit.committed_datetime,
)
tags.insert(0, head)
groups = []
for end_tag, start_tag in pairs(tags):
start_tag_name = getattr(start_tag, "name", None)
groups.append(
{
"tag_name": end_tag.name,
"tag_info": end_tag,
"commits": parse_commits(repository, start_tag_name, end_tag.name),
}
)
if starting_tag and start_tag_name == starting_tag:
break
return groups | 1e870d2169496e183c1df8d90ddceb4e63cb1689 | 6,848 |
def GetObject():
"""
Required module function.
@returns class object of the implemented adapter.
"""
return SpacePacketAdapter | 38ddac47a1ac7a58f203fc5552a00340a542518d | 6,849 |
def parse(args):
"""Parse the command-line arguments of the `inpaint` command.
Parameters
----------
args : list of str
List of arguments, without the command name.
Returns
-------
InPaint
Filled structure
"""
struct = InPaint()
struct.files = []
while cli.next_isvalue(args):
val, *args = args
struct.files.append(val)
while args:
if cli.next_isvalue(args):
raise ParseError(f'Value {args[0]} does not seem to belong '
f'to a tag.')
tag, *args = args
if tag in ('-m', '--missing'):
struct.missing = []
while cli.next_isvalue(args):
val, *args = args
struct.missing.append(float(val))
elif tag in ('-nrls', '--max-rls'):
cli.check_next_isvalue(args, tag)
struct.max_rls, *args = args
struct.max_rls = int(struct.max_rls)
elif tag in ('-trls', '--tol-rls'):
cli.check_next_isvalue(args, tag)
struct.tol_rls, *args = args
struct.tol_rls = float(struct.tol_rls)
elif tag in ('-ncg', '--max-cg'):
cli.check_next_isvalue(args, tag)
struct.max_cg, *args = args
struct.max_cg = int(struct.max_cg)
elif tag in ('-tcg', '--tol-cg'):
cli.check_next_isvalue(args, tag)
struct.tol_cg, *args = args
struct.tol_cg = float(struct.tol_cg)
elif tag in ('-cpu', '--cpu'):
struct.device = 'cpu'
elif tag in ('-gpu', '--gpu'):
struct.device = 'cuda'
if cli.next_isvalue(args):
gpu, *args = args
struct.device = 'cuda:{:d}'.format(int(gpu))
elif tag in ('-o', '--output'):
struct.output = []
while cli.next_isvalue(args):
val, *args = args
struct.output.append(val)
elif tag in ('-v', '--verbose'):
struct.verbose = 1
if cli.next_isvalue(args):
struct.verbose, *args = args
struct.verbose = int(struct.verbose)
elif tag in ('-h', '--help'):
print(help)
return None
else:
raise ParseError(f'Unknown tag {tag}')
return struct | 6b3eb929ce13559f9bd3d50ee2b15dd25e967d33 | 6,851 |
from unittest.mock import Mock
from datetime import datetime
def log_context(servicer_context: Mock) -> LogContext:
"""Mock LogContext."""
context = LogContext(
servicer_context,
"/abc.test/GetTest",
Mock(name="Request"),
Mock(name="Response", ByteSize=Mock(return_value=10)),
datetime(2021, 4, 3, 0, 0, 0, 0, timezone.utc),
datetime(2021, 4, 3, 0, 1, 0, 0, timezone.utc),
)
return context | 1ea1b8d4e6dad80ac8d95925a70a7f79ec84a686 | 6,852 |
import base64
def base64_decode(string):
"""
Decodes data encoded with MIME base64
"""
return base64.b64decode(string) | 38870882fca9e6595e3f5b5f8943d0bf781f006c | 6,854 |
import re
def convert_operand_kind(operand_tuple):
"""Returns the corresponding operand type used in spirv-tools for the given
operand kind and quantifier used in the JSON grammar.
Arguments:
- operand_tuple: a tuple of two elements:
- operand kind: used in the JSON grammar
- quantifier: '', '?', or '*'
Returns:
a string of the enumerant name in spv_operand_type_t
"""
kind, quantifier = operand_tuple
# The following cases are where we differ between the JSON grammar and
# spirv-tools.
if kind == 'IdResultType':
kind = 'TypeId'
elif kind == 'IdResult':
kind = 'ResultId'
elif kind == 'IdMemorySemantics' or kind == 'MemorySemantics':
kind = 'MemorySemanticsId'
elif kind == 'IdScope' or kind == 'Scope':
kind = 'ScopeId'
elif kind == 'IdRef':
kind = 'Id'
elif kind == 'ImageOperands':
kind = 'Image'
elif kind == 'Dim':
kind = 'Dimensionality'
elif kind == 'ImageFormat':
kind = 'SamplerImageFormat'
elif kind == 'KernelEnqueueFlags':
kind = 'KernelEnqFlags'
elif kind == 'LiteralExtInstInteger':
kind = 'ExtensionInstructionNumber'
elif kind == 'LiteralSpecConstantOpInteger':
kind = 'SpecConstantOpNumber'
elif kind == 'LiteralContextDependentNumber':
kind = 'TypedLiteralNumber'
elif kind == 'PairLiteralIntegerIdRef':
kind = 'LiteralIntegerId'
elif kind == 'PairIdRefLiteralInteger':
kind = 'IdLiteralInteger'
elif kind == 'PairIdRefIdRef': # Used by OpPhi in the grammar
kind = 'Id'
if kind == 'FPRoundingMode':
kind = 'FpRoundingMode'
elif kind == 'FPFastMathMode':
kind = 'FpFastMathMode'
if quantifier == '?':
kind = 'Optional{}'.format(kind)
elif quantifier == '*':
kind = 'Variable{}'.format(kind)
return 'SPV_OPERAND_TYPE_{}'.format(
re.sub(r'([a-z])([A-Z])', r'\1_\2', kind).upper()) | 3d26a0b330ae64209655b24dfe86578cb4b8724c | 6,855 |
from datetime import datetime
def screen_missing_data(database,subject,begin=None,end=None):
""" Returns a DataFrame contanining the percentage (range [0,1]) of loss data
calculated based on the transitions of screen status. In general, if
screen_status(t) == screen_status(t+1), we declared we have at least one
missing point.
Parameters
----------
database: Niimpy database
user: string
begin: datetime, optional
end: datetime, optional
Returns
-------
count: Dataframe
"""
assert isinstance(database, niimpy.database.Data1),"database not given in Niimpy database format"
assert isinstance(subject, str),"usr not given in string format"
screen = database.raw(table='AwareScreen', user=subject)
if(begin!=None):
assert isinstance(begin,pd.Timestamp),"begin not given in timestamp format"
else:
begin = screen.iloc[0]['datetime']
if(end!= None):
assert isinstance(end,pd.Timestamp),"end not given in timestamp format"
else:
end = screen.iloc[len(screen)-1]['datetime']
screen=screen.drop_duplicates(subset=['datetime'],keep='first')
screen = screen.drop(['device','user','time'],axis=1)
screen=screen.loc[begin:end]
screen['screen_status']=pd.to_numeric(screen['screen_status'])
#Include the missing points that are due to shutting down the phone
shutdown = shutdown_info(database,subject,begin,end)
shutdown=shutdown.rename(columns={'battery_status':'screen_status'})
shutdown['screen_status']=0
screen = screen.merge(shutdown, how='outer', left_index=True, right_index=True)
screen['screen_status'] = screen.fillna(0)['screen_status_x'] + screen.fillna(0)['screen_status_y']
screen = screen.drop(['screen_status_x','screen_status_y'],axis=1)
dates=screen.datetime_x.combine_first(screen.datetime_y)
screen['datetime']=dates
screen = screen.drop(['datetime_x','datetime_y'],axis=1)
#Detect missing data points
screen['missing']=0
screen['next']=screen['screen_status'].shift(-1)
screen['dummy']=screen['screen_status']-screen['next']
screen['missing'] = np.where(screen['dummy']==0, 1, 0)
screen['missing'] = screen['missing'].shift(1)
screen = screen.drop(['dummy','next'], axis=1)
screen = screen.fillna(0)
screen['datetime'] = screen['datetime'].apply( lambda screen : datetime.datetime(year=screen.year, month=screen.month, day=screen.day))
screen = screen.drop(['screen_status'], axis=1)
count=pd.pivot_table(screen,values='missing',index='datetime', aggfunc='count')
count = screen.groupby(['datetime','missing'])['missing'].count().unstack(fill_value=0)
count['missing'] = count[1.0]/(count[0.0]+count[1.0])
count = count.drop([0.0,1.0], axis=1)
if (pd.Timestamp.tzname(count.index[0]) != 'EET'):
if pd.Timestamp.tzname(count.index[0]) != 'EEST':
count.index = pd.to_datetime(count.index).tz_localize('Europe/Helsinki')
return count | 70666ed7ddfea359c4c91afd8b52f9821580bda6 | 6,856 |
def check(text):
"""Check the text."""
error_code = "example.first"
msg = "First line always has an error."
reverse(text)
return [(1, 1, error_code, msg)] | 50d8406322225153c055b925609af702bb86d7b6 | 6,857 |
def figure(**kwargs):
"""
Create a new figure with the given settings.
Settings like the current colormap, title or axis limits as stored in the
current figure. This function creates a new figure, restores the default
settings and applies any settings passed to the function as keyword
arguments.
**Usage examples:**
>>> # Restore all default settings
>>> mlab.figure()
>>> # Restore all default settings and set the title
>>> mlab.figure(title="Example Figure")
"""
global _plt
_plt = _Figure()
_plt.kwargs.update(kwargs)
return _plt | a7de48597ecc80872d8d4b108a642956200adcc2 | 6,858 |
from typing import List
from bs4 import BeautifulSoup
def parse(content: str, target: str = "all") -> List[Inline]:
"""Parses an HTML document and extracts."""
soup = BeautifulSoup(content, "html.parser")
if target == "all":
search_queries = chain(*_VALID_TARGETS.values())
elif target in _VALID_TARGETS.keys():
search_queries = chain(_VALID_TARGETS[target])
else:
raise ValueError("Invalid Target")
elements = []
for q in search_queries:
for tag in soup.find_all(q.search_function):
if q.attr_name:
inline = Inline(tag[q.attr_name], tag.sourceline, tag.sourcepos)
else:
if not tag.contents:
continue
inline = Inline(tag.contents[0], tag.sourceline, tag.sourcepos)
elements.append(inline)
return elements | 56238a4def01713220c7d59b266cfcc55f1daf7f | 6,859 |
def create_output(verified_specific_headers_list:list) -> str:
""" Design Output """
if args.verbose is True:
print("[!] INFO: Outputting Specific Header Information")
return_output = ""
for specific_header in verified_specific_headers_list:
split_header = specific_header.split(":")
if split_header[1] != "":
return_output += f"{split_header[0]:<25} is declared -> DATA:{split_header[1]:30}\n"
else:
return_output += f"{split_header[0]:<25} is NOT declared -> NO DATA\n"
return return_output | e38fdf467d1f01167ff00040e7d0f7d8816e4915 | 6,860 |
def registered_response_data():
"""Body (bytes) of the registered response."""
return b"response data" | 1ee44d70592747947d76ff757901f44fde5c9946 | 6,861 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.