content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def writeData(filename, data): """ MBARBIER: Taken/adapted from https://github.com/ChristophKirst/ClearMap/blob/master/ClearMap/IO/TIF.py Write image data to tif file Arguments: filename (str): file name data (array): image data Returns: str: tif file name """ d = len(data.shape); if d == 2: tiff.imsave(filename, data.transpose([0,1])); elif d == 3: tiff.imsave(filename, data.transpose([2,0,1]), photometric = 'minisblack', planarconfig = 'contig', bigtiff = True); elif d == 4: #tiffile (z,y,x,c) tiff.imsave(filename, data.transpose([0,1,2,3]), photometric = 'minisblack', planarconfig = 'contig', bigtiff = True); else: raise RuntimeError('writing multiple channel data to tif not supported!'); return filename;
cc4414b9f52413bebc422032f796cd242ecc8ef4
3,656,000
def get_trigger_function(trigger_message, waiter): """Función auxiliar que genera un activador Args: trigger_message: mensaje o instruccion para continuar. waiter: función que pausa el flujo de instrucciones. """ def trigger_function(): # Se imprime la instrucción para detonar el activador print(trigger_message) waiter() # Se reproduce un audio confirmando que el activador fue # detonado. reproducir_audio(TRIGGER_AUDIO_PATH) return trigger_function
b389dd93631ae396c65d5653da6cea3ec91b3556
3,656,001
def find_peaks(amplitude): """ A value is considered to be a peak if it is higher than its four closest neighbours. """ # Pad the array with -1 at the beginning and the end to avoid overflows. padded = np.concatenate((-np.ones(2), amplitude, -np.ones(2))) # Shift the array by one/two values to the left/right shifted_l2 = padded[:-4] shifted_l1 = padded[1:-3] shifted_r1 = padded[3:-1] shifted_r2 = padded[4:] # Compare the original array with the shifted versions. peaks = ((amplitude >= shifted_l2) & (amplitude >= shifted_l1) & (amplitude >= shifted_r1) & (amplitude >= shifted_r2)) return peaks
192f25bbc491c7e880ff5363098b0ced29f37567
3,656,002
from typing import Optional def sync( *, client: Client, json_body: CustomFieldOptionsCreateRequestBody, ) -> Optional[CustomFieldOptionsCreateResponseBody]: """Create Custom Field Options Create a custom field option. If the sort key is not supplied, it'll default to 1000, so the option appears near the end of the list. Args: json_body (CustomFieldOptionsCreateRequestBody): Example: {'custom_field_id': '01FCNDV6P870EA6S7TK1DSYDG0', 'sort_key': 10, 'value': 'Product'}. Returns: Response[CustomFieldOptionsCreateResponseBody] """ return sync_detailed( client=client, json_body=json_body, ).parsed
6215e704be4bbc32e52fb03817e00d7fd5338365
3,656,003
def decrypt_with_private_key(data, private_key): """Decrypts the PKCS#1 padded shared secret using the private RSA key""" return _pkcs1_unpad(private_key.decrypt(data))
f1dac9113fb97f62afab524239e38c6cb196c989
3,656,004
import os import re def loadvars(builddir): """if builddir does not exist or does not have a cache, returns an empty odict""" v = odict() if builddir is None or not os.path.exists(builddir): return v c = os.path.join(builddir, 'CMakeCache.txt') if os.path.exists(c): with open(c, 'r') as f: for line in f: # logdbg("loadvars0", line.strip()) if not re.match(_cache_entry, line): continue ls = line.strip() name = re.sub(_cache_entry, r'\1', ls) vartype = re.sub(_cache_entry, r'\2', ls)[1:] value = re.sub(_cache_entry, r'\3', ls) # logdbg("loadvars1", name, vartype, value) v[name] = CMakeCacheVar(name, value, vartype) return v
6069461706d88f3dee96eb6b9aece29b3f47c77b
3,656,005
import warnings def deprecated (func): """ This is a decorator which can be used to mark functions as deprecated. It will result in a warning being emitted when the function is used. :param func: original function :type func: :any:`collections.Callable` :return: decorated func :rtype: :any:`collections.Callable` """ @wraps(func) def newFunc (*args, **kwargs): warnings.warn("Call to deprecated function %s." % func.__name__, category=DeprecationWarning, stacklevel=2) return func(*args, **kwargs) return newFunc
ba237c30d97013080bd84569af1817685023dab6
3,656,006
import re def prediction(): """ A function that takes a JSON with two fields: "text" and "maxlen" Returns: the summarized text of the paragraphs. """ print(request.form.values()) paragraphs = request.form.get("paragraphs") paragraphs = re.sub("\d+", "", paragraphs) maxlen = int(request.form.get("maxlen")) summary = summarizer(paragraphs, max_length=maxlen, min_length=49, do_sample=False) return render_template('index.html', prediction_text = '" {} "'.format(summary[0]["summary_text"])), 200
a1bdf996908e65e3087ed4ffe27402c9763b4d69
3,656,007
def is_reviewer(user): """Return True if this user is a financial aid reviewer""" # no need to cache here, all the DB lookups used during has_perm # are already cached return user.has_perm("finaid.review_financial_aid")
e3c599f78eb51c33ab48e3760c0f2965ba305916
3,656,008
def getLogMessage(commitSHA): """Get the log message for a given commit hash""" output = check_output(["git","log","--format=%B","-n","1",commitSHA]) return output.strip()
2d42e587da57faff5366fc656e8d45a8fa797208
3,656,009
def get_old_stacks(cfn, old_instances, debug=True): """ Gets all of the stacks for the old RDS instances """ old_stacks = get_cfn_stack_for_rds(cfn, old_instances, debug) if debug: print("DEBUG: Old stacks found: %s" % len(old_stacks)) return old_stacks
0512b9b9f6043ba5db31a88786e23296ae4c03dc
3,656,010
def sup(content, accesskey:str ="", class_: str ="", contenteditable: str ="", data_key: str="", data_value: str="", dir_: str="", draggable: str="", hidden: str="", id_: str="", lang: str="", spellcheck: str="", style: str="", tabindex: str="", title: str="", translate: str=""): """ Returns superscript.\n `content`: Contents of the superscript.\n """ g_args = global_args(accesskey, class_, contenteditable, data_key, data_value, dir_, draggable, hidden, id_, lang, spellcheck, style, tabindex, title, translate) return f"<sup {g_args}>{content}</sup>\n"
dff8635d98f68e5b024fe23cbeaa6a1a9884222f
3,656,011
def isnonempty(value): """ Return whether the value is not empty Examples:: >>> isnonempty('a') True >>> isnonempty('') False :param value: string to validate whether value is not empty """ return value != ''
0250cb455d8f77027d5cde9101a24683950bbdb2
3,656,012
def InstallSystem(config, deployment, options): """Install the local host from the sysync deployment configuration files.""" installed = {} # Create fresh temporary directory Log('Clearing temporary deployment path: %s' % config['deploy_temp_path']) run.Run('/bin/rm -rf %s' % config['deploy_temp_path']) run.Run('/bin/mkdir -p %s' % config['deploy_temp_path']) # Install the packages result = InstallPackagesLocally(config, deployment, options) return result
642eda86228e5575bc7267d9b3a5c3ddc055daf4
3,656,013
def preprocess_input(x): """前処理。""" return tf.keras.applications.imagenet_utils.preprocess_input(x, mode="torch")
6795c5e571d67a7908edbe3c3ca0ed5e3412d2f0
3,656,014
def attribute_to_partner_strict(partner, partner_string_or_spec, amount): """Return the amount attributable to the given partner.""" spec = ( partner_string_or_spec if isinstance(partner_string_or_spec, dict) else parse_partner_string(partner_string_or_spec) ) if partner not in spec: raise ValueError("Partner not found in partner string: %s" % partner) v100 = spec[partner] * float(amount.abs()) f_floor = round if isclose(v100, round(v100)) else floor v = amount.sign() * 0.01 * f_floor(v100) return Amount(str(v)).with_commodity(amount.commodity)
d7e00b50e8be010d7896b6c51e1e3fcfe73438d2
3,656,015
import math def drawLines(img, lines, color=(255,0,0)): """ Draw lines on an image """ centroids = list() r_xs = list() r_ys = list() for line_ in lines: for rho,theta in line_: a = np.cos(theta) b = np.sin(theta) x0 = a*rho y0 = b*rho x1 = int(x0 + 1000*(-b)) y1 = int(y0 + 1000*(a)) x2 = int(x0 - 1000*(-b)) y2 = int(y0 - 1000*(a)) slope = (y1 - y0) / float(x1 - x0) angle = math.degrees(math.atan(slope)) if abs(angle) > 80: # print(img.shape[1]) h_layout = line((0, 0), (img.shape[1], 0)) h_layout_lower = line((0, img.shape[0]), (img.shape[1], img.shape[0])) r = intersection2(h_layout, line((x1, y1), (x2, y2))) r_lower = intersection2(h_layout_lower, line((x1, y1), (x2, y2))) # cv2.line(img, (int(x1), int(y1)), (int(x2), int(y2)), color, 2) # cv2.line(img, (int(r[0]), int(r[1])), (int(r_lower[0]), int(r_lower[1])), color, 2) # print('min(r, r_lower), max(r, r_lower) :', np.min(np.array([r, r_lower])), np.max(np.array([r, r_lower]))) # min max 의 최소 최대 Range 를 정해주어야 한다. # if np.min(np.array([r, r_lower])) >= 0 and np.max(np.array([r, r_lower])) < max(img.shape): center_p = (int((r[0] + r_lower[0]) / 2), int((r[1] + r_lower[1])/ 2)) centroids.append(center_p) r_xs.append((r[0], r_lower[0])) r_ys.append((r[1], r_lower[1])) # cv2.circle(img, center_p, 10, (255, 0, 255), -1) # cv2.line(img, (int(0), int(0)), (int(0), int(img.shape[0])), color, 2) # cv2.line(img, (int(img.shape[1]), int(0)), (int(img.shape[1]), int(img.shape[0])), color, 2) # cv2.circle(img, (0, int(img.shape[0] / 2)), 10, (255, 0, 255), -1) # cv2.circle(img, (img.shape[1], int(img.shape[0] / 2)), 10, (255, 0, 255), -1) centroids.append((0, int(img.shape[0] / 2))) centroids.append((img.shape[1], int(img.shape[0] / 2))) return r_xs, r_ys, centroids
5918bb1a81d8efae2874f294d927f7b01527d1d1
3,656,016
import numpy def moments_of_inertia(geo, amu=True): """ principal inertial axes (atomic units if amu=False) """ ine = inertia_tensor(geo, amu=amu) moms, _ = numpy.linalg.eigh(ine) moms = tuple(moms) return moms
34153dba5ea49d457ee97d4024a103b0d05c6bd0
3,656,017
def greenblatt_earnings_yield(stock, date=None, lookback_period=timedelta(days=0), period='FY'): """ :param stock: ticker(s) in question. Can be a string (i.e. 'AAPL') or a list of strings (i.e. ['AAPL', 'BA']). :param date: Can be a datetime (i.e. datetime(2019, 1, 1)) or list of datetimes. The most recent date of reporting from that date will be used. By default, date=None. :param lookback_period: lookback from date (used to compare against previous year or quarter etc.) i.e. timedelta(days=90). :param period: 'FY' for fiscal year, 'Q' for quarter, 'YTD' for calendar year to date, 'TTM' for trailing twelve months. :return: .. math:: \\text{Greenblatt Earnings Yield} = \\frac{\\text{EBIT}}{\\text{EV}} """ return earnings_before_interest_and_taxes(stock=stock, date=date, lookback_period=lookback_period, period=period) \ / enterprise_value(stock=stock, date=date, lookback_period=lookback_period, period=period)
333b12b609523ab16eeb1402d0219264a3a159e3
3,656,018
import shutil def remove_directory(dir_path): """Delete a directory""" if isdir(dir_path): try: shutil.rmtree(dir_path) return ok_resp(f'Directory removed {dir_path}') except TypeError as err_obj: return err_resp(f'Failed to remove directory. {err_obj}') except FileNotFoundError as err_obj: return err_resp(f'Directory not found: {err_obj}') except OSError as err_obj: return err_resp(f'Failed to delete directory: {err_obj}') except PermissionError as err_obj: return err_resp(f'Failed to delete directory: {err_obj}') return ok_resp(f'Not a directory {dir_path}')
c174568c024cff1948bdf78206e49c2ca40c6b25
3,656,019
def new_eps_after(since_ep): """ :param since_ep: Episode instance :return: Number of episodes since then """ session = Session.object_session(since_ep) series = since_ep.series series_eps = session.query(Episode).join(Episode.series).\ filter(Series.id == series.id) if series.identified_by == 'ep': if since_ep.season is None or since_ep.number is None: log.debug('new_eps_after for %s falling back to timestamp because latest dl in non-ep format' % series.name) return series_eps.filter(Episode.first_seen > since_ep.first_seen).count() return series_eps.filter((Episode.identified_by == 'ep') & (((Episode.season == since_ep.season) & Episode.number > since_ep.number) | Episode.season > since_ep.season)).count() elif series.identified_by == 'seq': return series_eps.filter(Episode.number > since_ep.number).count() elif series.identified_by == 'id': return series_eps.filter(Episode.first_seen > since_ep.first_seen).count() else: log.debug('unsupported identified_by %s', series.identified_by) return 0
218d19672d0fe3b0b14fa6443c6c00bbd12ba495
3,656,020
from pathlib import Path from typing import Iterator import os def parse_json_main_index(out_dir: Path=OUTPUT_DIR) -> Iterator[Link]: """parse an archive index json file and return the list of links""" index_path = os.path.join(out_dir, JSON_INDEX_FILENAME) if os.path.exists(index_path): with open(index_path, 'r', encoding='utf-8') as f: links = pyjson.load(f)['links'] for link_json in links: try: yield Link.from_json(link_json) except KeyError: try: detail_index_path = Path(OUTPUT_DIR) / ARCHIVE_DIR_NAME / link_json['timestamp'] yield parse_json_link_details(str(detail_index_path)) except KeyError: # as a last effort, try to guess the missing values out of existing ones try: yield Link.from_json(link_json, guess=True) except KeyError: print(" {lightyellow}! Failed to load the index.json from {}".format(detail_index_path, **ANSI)) continue return ()
237b3887cbba40734b820b59200513d614697862
3,656,021
from re import DEBUG import sys def header_maxperdisc(ctx, institution, requirement_id): """ header_maxperdisc : maxperdisc label? ; """ if DEBUG: print(f'*** header_maxperdisc({class_name(ctx)=}, {institution=}, {requirement_id=}', file=sys.stderr) return_dict = {'label': get_label(ctx)} maxperdisc_ctx = ctx.maxperdisc() return_dict.update(maxperdisc(maxperdisc_ctx, institution, requirement_id)) return {'header_maxperdisc': return_dict}
f0e0d35b75692ec7daae12acedadd0b834994b7e
3,656,022
def set_route_queue(path_list,user_position,sudden_id,sudden_xy,pi): """ 最後の患者が一番近い医師が行くようにする """ minimum_dis = 100 minimum_idx = 0 for i in range(len(path_list)): dis = np.sqrt((user_position[path_list[i][-2]][0] - sudden_xy[0])**2 + (user_position[path_list[i][-2]][1] - sudden_xy[1])**2) if(dis < minimum_dis): minimum_dis = dis minimum_idx = path_list[i][-2] pi_idx = [i for i, x in enumerate(pi) if x == minimum_idx] pi.insert(pi_idx[0]+1,sudden_id) return pi
0425c3edf2d488680ccb54661e79698a506e4fe4
3,656,023
def add(x, y): """Add two numbers together.""" return x+y
92015156eac5bc9cc0be3b1812f9c0766f23020c
3,656,024
import tempfile import os def _get_thintar_prefix(tarname): """ Make sure thintar temporary name is concurrent and secure. :param tarname: name of the chosen tarball :return: prefixed tarname """ tfd, tmp_tarname = tempfile.mkstemp( dir=os.path.dirname(tarname), prefix=".thin-", suffix=os.path.splitext(tarname)[1], ) os.close(tfd) return tmp_tarname
e893309972742ffb52fd13911b5805e51b2baadc
3,656,025
import requests def retry_session(tries=2, backoff_factor=0.1, status_forcelist=(500, 502, 504), session=None): """ Parameters ---------- tries : int, number of retires. backoff_factor : A backoff factor to apply between attempts after the second try (most errors are resolved immediately by a second try without a delay). urllib3 will sleep for: {backoff factor} * (2 ^ ({number of total retries} - 1)) seconds. If the backoff_factor is 0.1, then sleep() will sleep for [0.0s, 0.2s, 0.4s, ...] between retries. It will never be longer than Retry.BACKOFF_MAX. status_forcelist : Retries are made on any HTTP responses in this list. Default values include the following: - 500: Internal Server Error. - 502: Bad Gateway. - 504: Gateway Timeout. session Returns ------- """ session = session or requests.Session() retry = Retry( total=tries, read=tries, connect=tries, backoff_factor=backoff_factor, status_forcelist=status_forcelist) adapter = HTTPAdapter(max_retries=retry, pool_block=True) session.mount('http://', adapter) session.mount('https://', adapter) return session
5766c4623e0e53f4353de1e58080c1ad5c9b4080
3,656,026
def vc(t, delta, beta): """velocity correlation of locus on rouse polymer. beta = alpha/2.""" return ( np.power(np.abs(t - delta), beta) + np.power(np.abs(t + delta), beta) - 2*np.power(np.abs(t), beta) )/( 2*np.power(delta, beta) )
89eff8a8cdb0e84a69e7990ebf0c128ca27ecea8
3,656,027
def algorithm(name): """ A function decorator that is used to add an algorithm's Python class to the algorithm_table. Args: A human readable label for the algorithm that is used to identify it in the GUI """ def decorator(class_): algorithm_table[name] = class_ return class_ return decorator
8f67fec3f1933dc0ea041322fcf041f2247bc638
3,656,028
def comp_easy(): """Get easy components.""" return Components(ewlaps, gi_setting.DEFAULT_EASY)
d15093dce67657b05665d7a9373d1328b4171f91
3,656,029
def play(player1, player2, rounds=1, verbose=False, symdict=None): """Play a number of `rounds` matches between the two players and return the score $S = sum_j a_j$, where a_j = 1 if player1 wone --or-- -1 if player2 wone --or-- 0 otherwise. """ if player1 is player2: raise AttributeError("Players match...") if player1._rules is not player2._rules: raise AttributeError("Different rules sets...") if symdict is None: symdict = range(len(pl1._rules)) score = [0, 0, 0] results = ["Player1 wins.", "Tie.", "Player 2 wins."] playiter = xrange(rounds) if verbose else Progress(xrange(rounds)) for i in playiter: res1, res2 = player1.play(), player2.play() player1._memory.append((res1, res2)) player2._memory.append((res2, res1)) resind = 1 - player1._rules[res1][res2] score[resind] += 1 if verbose: print("{} vs {}: {}".format(symdict[res1], symdict[res2], results[resind])) print(score) return score
28e0cc41d664a6681b4af1216d0de6f1a2871f04
3,656,030
def calc_deltabin_3bpavg(seq, files, bin_freqs, seqtype = "fastq"): """ At each position (starting at i), count number of sequences where region (i):(i+3) is mutated. This is sort of a rolling average and not critical to the result. It just ends up a bit cleaner than if we looked at a single base pair since. We are assuming that on average a mutation messes up binding, however this is not always the case. For example, especially with RNAP, there might be a couple positions that are not-at-all optimal for DNA binding. Parameter --------- seq: wild-type sequence of library region files: filenames (used to identify bin number, '...bin*.fastq') bin_freqs: numpy array (np.zeros([# bins, # letters (i.e. 4), length sequence]) that contained the letter frequences from each bin. seqtype: sequence file type (i.e. '.fastq' or '.fasta') Returns ------- avgBin_counts: array 1*seqLength; contains counts used to calculate average of mutated nucleotides at each position. avgBin-avgbin_WT: average bin of mutated nucleotides at each position relative to wild-type average bin. """ seqLength = len(seq) avgBin_counts = np.zeros([len(files),seqLength]) avgBin = np.zeros(seqLength) #filecount = 0 avgbin_WT = 0 for j in range(0,len(files)): avgbin_WT += ( (j+1)*bin_freqs[j,:,0].sum() )/ bin_freqs[:,:,0].sum() print('average_bin_WT', avgbin_WT) for i in range(0,seqLength-2): for j, fname in enumerate(files): count = 0 binnumber = int(fname[-7]) - 1 for rec in SeqIO.parse(fname, seqtype): if (rec.seq[i:(i+2)] != seq[i:(i+2)]): count += 1 avgBin_counts[binnumber,i] = count for i in range(0,seqLength-2): for j in range(0,len(files)): avgBin[i] += ( (j+1)*avgBin_counts[j,i] )/avgBin_counts[:,i].sum() return avgBin_counts, (avgBin-avgbin_WT)
5ea614e7280d6ed288ea03e63e86e3129d4e4994
3,656,031
def make_right_handed(l_csl_p1, l_p_po): """ The function makes l_csl_p1 right handed. Parameters ---------------- l_csl_p1: numpy.array The CSL basis vectors in the primitive reference frame of crystal 1. l_p_po: numpy.array The primitive basis vectors of the underlying lattice in the orthogonal reference frame. Returns ----------- t1_array: numpy.array Right handed array """ l_csl_po1 = l_p_po.dot(l_csl_p1) t1_array = np.array(l_csl_p1, dtype='double') t2_array = np.array(l_csl_p1, dtype='double') if (nla.det(l_csl_po1) < 0): t1_array[:, 0] = t2_array[:, 1] t1_array[:, 1] = t2_array[:, 0] return t1_array
3b5e3f21e6da5292fb84eb632ddcfa2ec52507ee
3,656,032
import logging def process_task(f, module_name, class_name, ftype, f_parameters, f_returns, task_kwargs, num_nodes, replicated, distributed, on_failure, time_out): """ Function that submits a task to the runtime. :param f: Function or method :param module_name: Name of the module containing the function/method (including packages, if any) :param class_name: Name of the class (if method) :param ftype: Function type :param f_parameters: Function parameters (dictionary {'param1':Parameter()} :param f_returns: Function returns (dictionary {'*return_X':Parameter()} :param task_kwargs: Decorator arguments :param num_nodes: Number of nodes that the task must use :param replicated: Boolean indicating if the task must be replicated :param distributed: Boolean indicating if the task must be distributed :param on_failure: Action on failure :param time_out: Time for a task time out :return: The future object related to the task return """ if __debug__: logger.debug("TASK: %s of type %s, in module %s, in class %s" % (f.__name__, ftype, module_name, class_name)) app_id = 0 # Check if the function is an instance method or a class method. has_target = ftype == FunctionType.INSTANCE_METHOD fo = None if f_returns: fo = _build_return_objects(f_returns) num_returns = len(f_returns) # Get path if class_name == '': path = module_name else: path = module_name + '.' + class_name # Infer COMPSs types from real types, except for files _serialize_objects(f_parameters) # Build values and COMPSs types and directions vtdsc = _build_values_types_directions(ftype, f_parameters, f_returns, f.__code_strings__) values, names, compss_types, compss_directions, compss_streams, \ compss_prefixes, content_types = vtdsc # noqa # Get priority has_priority = task_kwargs['priority'] # Signature and other parameters: signature = '.'.join([path, f.__name__]) # num_nodes = 1 # default due to not MPI decorator yet # replicated = False # default due to not replicated tag yet # distributed = False # default due to not distributed tag yet if __debug__: # Log the task submission values for debugging purposes. if logger.isEnabledFor(logging.DEBUG): values_str = ' '.join(str(v) for v in values) types_str = ' '.join(str(t) for t in compss_types) direct_str = ' '.join(str(d) for d in compss_directions) streams_str = ' '.join(str(s) for s in compss_streams) prefixes_str = ' '.join(str(p) for p in compss_prefixes) names_str = ' '.join(x for x in names) ct_str = ' '.join(str(x) for x in content_types) logger.debug("Processing task:") logger.debug("\t- App id: " + str(app_id)) logger.debug("\t- Path: " + path) logger.debug("\t- Function name: " + f.__name__) logger.debug("\t- On failure behavior: " + on_failure) logger.debug("\t- Task time out: " + str(time_out)) logger.debug("\t- Signature: " + signature) logger.debug("\t- Priority: " + str(has_priority)) logger.debug("\t- Has target: " + str(has_target)) logger.debug("\t- Num nodes: " + str(num_nodes)) logger.debug("\t- Replicated: " + str(replicated)) logger.debug("\t- Distributed: " + str(distributed)) logger.debug("\t- Values: " + values_str) logger.debug("\t- Names: " + names_str) logger.debug("\t- COMPSs types: " + types_str) logger.debug("\t- COMPSs directions: " + direct_str) logger.debug("\t- COMPSs streams: " + streams_str) logger.debug("\t- COMPSs prefixes: " + prefixes_str) logger.debug("\t- Content Types: " + ct_str) # Check that there is the same amount of values as their types, as well # as their directions, streams and prefixes. assert (len(values) == len(compss_types) == len(compss_directions) == len(compss_streams) == len(compss_prefixes) == len(content_types)) # Submit task to the runtime (call to the C extension): # Parameters: # 0 - <Integer> - application id (by default always 0 due to it is # not currently needed for the signature) # 1 - <String> - path of the module where the task is # # 2 - <String> - behavior if the task fails # # 3 - <String> - function name of the task (to be called from the # worker) # 4 - <String> - priority flag (true|false) # # 5 - <String> - has target (true|false). If the task is within an # object or not. # 6 - [<String>] - task parameters (basic types or file paths for # objects) # 7 - [<Integer>] - parameters types (number corresponding to the type # of each parameter) # 8 - [<Integer>] - parameters directions (number corresponding to the # direction of each parameter) # 9 - [<Integer>] - parameters streams (number corresponding to the # stream of each parameter) # 10 - [<String>] - parameters prefixes (sting corresponding to the # prefix of each parameter) compss.process_task(app_id, signature, on_failure, time_out, has_priority, num_nodes, replicated, distributed, has_target, num_returns, values, names, compss_types, compss_directions, compss_streams, compss_prefixes, content_types) # Return the future object/s corresponding to the task # This object will substitute the user expected return from the task and # will be used later for synchronization or as a task parameter (then the # runtime will take care of the dependency. return fo
3527b5eb51c1ed5b5a9000e48ff940a63f1610db
3,656,033
def company(anon, obj, field, val): """ Generates a random company name """ return anon.faker.company(field=field)
95580147817a37542f75e2c728941a159cd30bd3
3,656,034
def delete_schedule(): """ При GET запросе возвращает страницу для удаления расписания. При POST запросе, удаляет выбранное расписани (Запрос на удаление идэт с главной страницы(func index), шаблона(template) функция не имеет). """ if not check_admin_status(): flash(f'У вас нет прав для просмотра данной страницы!', 'error') app.logger.warning(f"Сотрудник с недостаточным уровнем допуска попытался удалить расписание: {get_user_info()}") return redirect(url_for('index')) schedule_id = request.args.get('schedule_id') ScheduleCleaning.query.filter_by(id=schedule_id).delete() db.session.commit() return redirect(url_for('index'))
1e73c757956d4bd78f3a093e2a2ddfde894aeac5
3,656,035
import json def dict_from_JSON(JSON_file: str) -> dict: """ Takes a WDL-mapped json file and creates a dict containing the bindings. :param JSON_file: A required JSON file containing WDL variable bindings. """ json_dict = {} # TODO: Add context support for variables within multiple wdl files with open(JSON_file) as data_file: data = json.load(data_file) for d in data: if isinstance(data[d], str): json_dict[d] = f'"{data[d]}"' else: json_dict[d] = data[d] return json_dict
98deccce943e5506233f1e20d73c4d03eda16858
3,656,036
def show(id): """Renderiza a página de um político específico.""" p = Politico.query.get_or_404(id) # Aplica os filtros de mes, ano e a paginação mes, ano, tipo, page = (request.args.get("mes"), request.args.get("ano", 2020, type=int), request.args.get("tipo"), request.args.get("page", 1, type=int)) form = form_filtro_despesas(parlamentar=p, ano=ano) if form.validate_on_submit(): # Retira os filtros do tipo `mes=""` (Todos os meses) # Deixa somente os definidos como `mes=1`, etc. # Depois redireciona para aplicar os filtros params = {k: v for k, v in form.data.items() if v} # Remove o csrf_token antes de redirecionar params.pop("csrf_token") return redirect(url_for("pages.show", id=id, **params)) pagination = p.despesas(ano, mes).paginate(page, 40, error_out=True) total_gasto = Reembolso.total_gasto(p, ano=ano, mes=mes) return render_template("pages/show.html", parlamentar=p, pagination=pagination, total_gasto=total_gasto, form=form)
b06ce6275819d32e9dff1945e97425ee696c1313
3,656,037
def map_datapoint(data_point: DATAPOINT_TYPE) -> SFX_OUTPUT_TYPE: """ Create dict value to send to SFX. :param data_point: Dict with values to send :type data_point: dict :return: SignalFx data :rtype: dict """ return { "metric": data_point["metric"], "value": data_point["value"], "dimensions": dict(data_point["dimensions"], **default_dimensions) if "dimensions" in data_point else default_dimensions, }
cf5d7eb1bded092adb2b002ee93ad168e696230a
3,656,038
def write_obs(mdict, obslist, flag=0): """ """ # Print epoch epoch = mdict['epoch'] res = epoch.strftime("> %Y %m %d %H %M %S.") + '{0:06d}0'.format(int(epoch.microsecond)) # Epoch flag res += " {0:2d}".format(flag) # Num sats res += " {0:2d}".format(len(mdict)-1) res += '\n' # For each satellite, print obs for sat in mdict: if sat == 'epoch': continue res += sat obstypes = obslist[sat[0]] for o in obstypes: try: meas = mdict[sat][o] except KeyError: meas = 0.0 # BeiDou satellites can have long ranges if GEO satellites are used if meas > 40e6: meas = 0.0 res += '{0:14.3f}00'.format(meas) res += '\n' return res
5a91b02fce07f455f4442fe6fbf76d3609f5a74e
3,656,039
from typing import Optional from typing import Union import fsspec def open_view( path: str, *, filesystem: Optional[Union[fsspec.AbstractFileSystem, str]] = None, synchronizer: Optional[sync.Sync] = None, ) -> view.View: """Open an existing view. Args: path: View storage directory. filesystem: The file system used to access the view. synchronizer: The synchronizer used to synchronize the view. Returns: The opened view. Example: >>> view = open_view("/home/user/myview") """ return view.View.from_config(path, filesystem=filesystem, synchronizer=synchronizer)
b12471f59ef78e444a43c0e766cb6b4237e65338
3,656,040
def smi2xyz(smi, forcefield="mmff94", steps=50): """ Example: utils.smi2xyz("CNC(C(C)(C)F)C(C)(F)F") returns: C 1.17813 0.06150 -0.07575 N 0.63662 0.20405 1.27030 C -0.86241 0.13667 1.33270 C -1.46928 -1.21234 0.80597 C -0.94997 -2.44123 1.55282 C -2.99527 -1.22252 0.74860 F -1.08861 -1.36389 -0.50896 C -1.34380 0.44926 2.78365 C -0.84421 1.76433 3.34474 F -2.70109 0.48371 2.84063 F -0.94986 -0.53971 3.63106 H 0.78344 0.82865 -0.74701 H 0.99920 -0.92873 -0.50038 H 2.26559 0.18049 -0.03746 H 1.03185 -0.51750 1.87094 H -1.24335 0.93908 0.68721 H -1.29943 -2.47273 2.58759 H -1.27996 -3.36049 1.05992 H 0.14418 -2.47324 1.55471 H -3.35862 -0.36599 0.16994 H -3.34471 -2.11983 0.22567 H -3.46364 -1.21709 1.73400 H -1.20223 2.60547 2.74528 H -1.22978 1.89248 4.36213 H 0.24662 1.79173 3.40731 """ mol = pybel.readstring("smi", smi) mol.addh() # add hydrogens, if this function is not called, pybel will output xyz string with no hydrogens. mol.make3D(forcefield=forcefield, steps=steps) # possible forcefields: ['uff', 'mmff94', 'ghemical'] mol.localopt() return _to_pyscf_atom(mol)
083bbc1a242a3f5f247fc6f7066e099dab654b7a
3,656,041
from typing import Optional from typing import Tuple from typing import List def pgm_to_pointcloud( depth_image: np.ndarray, color_image: Optional[np.ndarray], intrinsics: Tuple[float, float, float, float], distortion: List[float]) -> Tuple[np.ndarray, Optional[np.ndarray]]: """Fast conversion of opencv images to pointcloud. Takes ~7 ms per 1280x720 RGBD on my corp laptop (hirak). Args: depth_image: OpenCV image. color_image: Corresponding color image, if colors for each point is desired. intrinsics: fx, fy, cx, cy. distortion: Standard distoriton params k1, k2, p1, p2, [k3, [k4, k5, k6]]. Returns: points: Nx3 array of points in space. colors: Nx3 array of colors, each row an RGB. None if color_image is None. """ # The code below is optimized for speed, further optimizations may also be # possible. x_axis, y_axis = np.mgrid[0:depth_image.shape[1], 0:depth_image.shape[0]] valid = ~np.isnan(depth_image) x_axis = x_axis.T[valid] y_axis = y_axis.T[valid] depth = depth_image[valid] * _DEPTH_SCALE x_and_y = np.vstack([x_axis, y_axis]).astype(float) fx, fy, cx, cy = intrinsics camera_matrix = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]]) x_and_y = cv2.undistortPoints(x_and_y, camera_matrix, np.array(distortion)) x_and_y = x_and_y.T.reshape(2, -1) points = np.vstack([x_and_y * depth, depth]).T colors = None if color_image is not None: colors = color_image[valid] if len(colors.shape) > 1 and colors.shape[1] == 3: # OpenCV uses BGR. Point cloud libraries like to use RGB. colors[:, [0, 2]] = colors[:, [2, 0]] else: colors = np.vstack([colors, colors, colors]).T return points, colors
574d514c216f0db1f90bf277dc78a5b5dcc2535a
3,656,042
def matching_poss(poss_1, poss_2): """Count how many rows the possibilities have in common. Arguments: poss_1 {np.array} -- possibilities 1 poss_2 {np.array} -- possibilities 2 Returns: int -- the count/matches """ matches = 0 for row_2 in poss_2: for row_1 in poss_1: if np.array_equal(row_1, row_2): matches += 1 return matches
096214d8e2115afd21cbd76b28cafa54574cdfb1
3,656,043
from collections import Counter def unk_emb_stats(sentences, emb): """Compute some statistics about unknown tokens in sentences such as "how many sentences contain an unknown token?". emb can be gensim KeyedVectors or any other object implementing __contains__ """ stats = { "sents": 0, "tokens": 0, "unk_tokens": 0, "unk_types": 0, "unk_tokens_lower": 0, "unk_types_lower": 0, "sents_with_unk_token": 0, "sents_with_unk_token_lower": 0} all_types = set() for sent in sentences: stats["sents"] += 1 any_unk_token = False any_unk_token_lower = False types = Counter(sent) for ty, freq in types.items(): all_types.add(ty) stats["tokens"] += freq unk = ty not in emb if unk: any_unk_token = True stats["unk_types"] += 1 stats["unk_tokens"] += freq if unk and ty.lower() not in emb: any_unk_token_lower = True stats["unk_types_lower"] += 1 stats["unk_tokens_lower"] += freq if any_unk_token: stats["sents_with_unk_token"] += 1 if any_unk_token_lower: stats["sents_with_unk_token_lower"] += 1 stats["types"] = len(all_types) return stats
221b88e2124f3b8da2976a337476a11a7276a470
3,656,044
import os def basename(path: str) -> str: """Returns the basename removing path and extension.""" return os.path.splitext(os.path.basename(path))[0]
63e8e0220d1c2a9fc5b30d4bff2b609517d8cd18
3,656,045
from typing import List async def search_dcu( ldap_conn: LDAPConnection, dcu_id: str = None, uid: str = None, fullname: str = None ) -> List[DCUUser]: """ Seach DCU AD for user Args: ldap_conn: LDAP connection to use for searching uid: Usersname to search for dcu_id: dcu student id number fullname: Users full name Returns: A list of user found in ad matching search criteria """ query = "".join( filter( None, [ f"(displayName={fullname})" if fullname else None, f"(cn={uid})" if uid else None, f"(id={dcu_id})" if dcu_id else None, ], ) ) if not query: return [] res = await ldap_conn.search("o=ad,o=dcu,o=ie", f"(&{query})", attributes=DCU_ATTR) return [DCUUser.from_ldap(user) for user in res]
32444b30f1463332f51720eef3167c3495deeaec
3,656,046
def jump(inst_ptr, program, direction): """Jump the instruction pointer in the program until matching bracket""" count = direction while count != 0: inst_ptr += direction char = program[inst_ptr] if char == '[': count += 1 elif char == ']': count -= 1 else: pass return inst_ptr
76c6c4dcf4dbc452e9f2b252522871fcca95c75d
3,656,047
import gecosistema_core import os import math def htmlResponse(environ, start_response=None, checkuser=False): """ htmlResponse - return a Html Page """ if checkuser and not check_user_permissions(environ): environ["url"] = justpath(environ["SCRIPT_FILENAME"])+"/back.html" return htmlResponse(environ, start_response) url = environ["url"] if "url" in environ else normpath(environ["SCRIPT_FILENAME"]) url = forceext(url, "html") DOCUMENT_ROOT = environ["DOCUMENT_ROOT"] if "DOCUMENT_ROOT" in environ else "" #HTTP_COOKIE = getCookies(environ) if not isfile(url): return httpResponseNotFound(start_response) workdir = justpath(url) index_html = justfname(url) jss = (DOCUMENT_ROOT + "/lib/js", justpath(url),) csss = (DOCUMENT_ROOT + "/lib/css", DOCUMENT_ROOT + "/lib/js", DOCUMENT_ROOT + "/lib/images", justpath(url),) env = Environment(loader=FileSystemLoader(workdir)) t = env.get_template(index_html) variables = { "loadjs": loadlibs(jss,"js"), "loadcss": loadlibs(csss,"css"), "APPNAME": juststem(workdir), "os": os, "math": math, "gecosistema_core": gecosistema_core, "environ":environ, "__file__":url } html = t.render(variables).encode("utf-8","replace") return httpResponseOK(html, start_response)
bc1ee0367b64c7cfc915ab66e9c519ad101f939e
3,656,048
def center_image(IM, method='com', odd_size=True, square=False, axes=(0, 1), crop='maintain_size', verbose=False, center=_deprecated, **kwargs): """ Center image with the custom value or by several methods provided in :func:`find_origin()` function. Parameters ---------- IM : 2D np.array The image data. method : tuple or str either a tuple (float, float), the coordinate of the origin of the image in the (row, column) format, or a string to specify an automatic centering method: ``image_center`` the center of the image is used as the origin. The trivial result. ``com`` the origin is found as the center of mass. ``convolution`` the origin is found as the maximum of autoconvolution of the image projections along each axis. ``gaussian`` the origin is extracted from a fit to a Gaussian function. This is probably only appropriate if the data resembles a gaussian. ``slice`` the image is broken into slices, and these slices compared for symmetry. odd_size : boolean if ``True``, the returned image will contain an odd number of columns. Most of the transform methods require this, so it's best to set this to ``True`` if the image will subsequently be Abel-transformed. square : bool if ``True``, the returned image will have a square shape. crop : str determines how the image should be cropped. The options are: ``maintain_size`` return image of the same size. Some regions of the original image may be lost, and some regions may be filled with zeros. ``valid_region`` return the largest image that can be created without padding. All of the returned image will correspond to the original image. However, portions of the original image will be lost. If you can tolerate clipping the edges of the image, this is probably the method to choose. ``maintain_data`` the image will be padded with zeros such that none of the original image will be cropped. axes : int or tuple center image with respect to axis ``0`` (vertical), ``1`` (horizontal), or both axes ``(0, 1)`` (default). Returns ------- out : 2D np.array centered image """ if center is not _deprecated: _deprecate('abel.tools.center.center_image() ' 'argument "center" is deprecated, use "method" instead.') method = center rows, cols = IM.shape if odd_size and cols % 2 == 0: # drop rightside column IM = IM[:, :-1] rows, cols = IM.shape if square and rows != cols: # make rows == cols, but maintain approx. center if rows > cols: diff = rows - cols trim = diff//2 if trim > 0: IM = IM[trim: -trim] # remove even number of rows off each end if diff % 2: IM = IM[: -1] # remove one additional row else: # make rows == cols, check row oddness if odd_size and rows % 2 == 0: IM = IM[:-1, :] rows -= 1 xs = (cols - rows)//2 IM = IM[:, xs:-xs] rows, cols = IM.shape # origin is in (row, column) format! if isinstance(method, string_types): origin = find_origin(IM, method=method, verbose=verbose, **kwargs) else: origin = method centered_data = set_center(IM, origin=origin, crop=crop, axes=axes, verbose=verbose) return centered_data
7b9793d720228a246df07c08a2aeda861108f92e
3,656,049
import pysam from cyvcf2 import VCF import gzip import os def check_header(install_path): """Method to check the final genomics headers have a header or not check_header ============ This method is going to go through each of the files that were created by the recipe, and it will check if the those files have a header or not. sam/bam/cram, vcf/bcf, gtf/gff/gff3, bed/bedGraph, csv, txt files require a header and if no header is provided check-recipe will fail. Other files that don't have header will be given a warning. GGD expects most files to have a header. Some files are okay not to have headers, but if a header can be added it should be. For each file, the file header and first 5 lines of the file body will be provided to stdout. Parameters: ----------- 1) install_path: (str) The path to the directory where the files have been installed into. Returns: +++++++ (bool) True or False. - True if a header exist or if only a warning was given - False if a header does not exists and is required """ print( ":ggd:check-recipe: Checking that the final files have headers if appropriate\n" ) installed_files = os.listdir(install_path) for file_name in [ x for x in installed_files if os.path.isfile(os.path.join(install_path, x)) ]: f_path = os.path.join(install_path, file_name) ## Check for an index file if file_name.strip().split(".")[-1] in set( ["tbi", "bai", "crai", "fai", "tar", "bz2", "bw", "csi", "gzi"] ): continue ## Skip fasta or fastq files if any(x in file_name for x in [".fasta", ".fa", ".fastq", ".fq"]): continue ## Check for sam/bam/cram files if any(x in file_name for x in [".sam", ".bam", ".cram"]): try: samfile = pysam.AlignmentFile(f_path, check_sq=False) header = samfile.header if any(header.lengths): print( ":ggd:check-recipe: Header found in file {name}\n".format( name=file_name ) ) print("Head of file:") print("---------------------------") print(str(header).strip()) for i, read in enumerate(samfile): print(read) if i >= 4: break print("---------------------------\n") else: print( ":ggd:check-recipe: !!ERROR!! No header found for file {name}\n".format( name=file_name ) ) print( ":ggd:check-recipe: !!ERROR!! A header is required for sam/bam/cram files\n" ) return False except (ValueError, IOError, Exception) as e: print(str(e)) print( ":ggd:check-recipe: !!ERROR!! No header found for file {name}\n".format( name=file_name ) ) print( ":ggd:check-recipe: !!ERROR!! A header is required for sam/bam/cram files\n" ) return False ## Check vcf/bcf files elif any(x in file_name for x in [".vcf", ".bcf"]): try: vcffile = VCF(f_path) header = str(vcffile.raw_header) if header: print( ":ggd:check-recipe: Header found in file {name}\n".format( name=file_name ) ) print("Head of file:") print("---------------------------") print(str(header).strip()) for i, var in enumerate(vcffile): print(var) if i >= 4: break print("---------------------------\n") else: print( ":ggd:check-recipe: !!ERROR!! No header found for file {name}\n".format( name=file_name ) ) print( ":ggd:check-recipe: !!ERROR!! A header is required for vcf/bcf files\n" ) return False except IOError as e: print(str(e)) print( ":ggd:check-recipe: !!ERROR!! No header found for file {name}\n".format( name=file_name ) ) print( ":ggd:check-recipe: !!ERROR!! A header is required for vcf/bcf files\n" ) return False ## Check other files else: try: file_handler = ( gzip.open(f_path) if f_path.endswith(".gz") else open(f_path) ) header = [] body = [] try: for line in file_handler: if type(line) != str: line = line.strip().decode("utf-8") if len(line) > 0 and str(line)[0] in set(["#", "!", "^"]): header.append(str(line).strip()) else: body.append(str(line).strip()) if len(body) > 4: break except UnicodeDecodeError: print( ":ggd:check-recipe: Cannot decode file contents into unicode.\n" ) pass if header: print( ":ggd:check-recipe: Header found in file {name}\n".format( name=file_name ) ) print("Head of file:") print("---------------------------") print("\n".join(header)) print("\n".join(body)) print("---------------------------\n") elif any( x in file_name for x in [ ".gtf", ".gff", ".gff3", ".bed", ".bedGraph", ".csv", ".txt", ] ): print( ":ggd:check-recipe: !!ERROR!! No header found for file {name}\n".format( name=file_name ) ) print( ":ggd:check-recipe: !!ERROR!! A header is required for this type of file\n" ) print("First 5 lines of file body:") print("---------------------------") print("\n".join(body)) print("---------------------------\n") return False else: print( ":ggd:check-recipe: !!WARNING!! No header found for file {name}\n".format( name=file_name ) ) print("First 5 lines of file body:") print("---------------------------") print("\n".join(body)) print("---------------------------\n") print( ":ggd:check-recipe: !!WARNING!! GGD requires that any file that can have a header should. Please either add a header or if the file cannot have a header move forward.\n" ) print( ":ggd:check-recipe: !!WARNING!! IF you move forward without adding a header when one should be added, this recipe will be rejected until a header is added.\n" ) except IOError as e: print(":ggd:check-recipe: !!ERROR!!") print(str(e)) return False return True
6a87251381c7c4af0dd3fb3ac8e1cf252c380254
3,656,050
def get_mapping(mapping_name): """ Reads in the given mapping and returns a dictionary of letters to keys. If the given mapping is a dictionary, does nothing an returns the mapping mpaping_name can be a path to different file formats """ # read in mapping if type(mapping_name) == str: if mapping_name.split(".")[-1] == "mst": mapping = create_map_from_reformulation(mapping_name) elif mapping_name.split(".")[-1] == "txt": mapping = create_map_from_txt(mapping_name) return mapping else: return mapping_name
1e4f99d14b242ba4e8760fafecd83cd32932a92c
3,656,051
def evaluate(model, reward_gen, n_steps=1000000, delta=1): """Evaulate the regrets and rewards of a given model based on a given reward generator Args: model (TYPE): Description n_steps (int, optional): Description delta (int, optional): Number of steps for feedback delay reward_gen (TYPE, optional): Description Returns: regrets (list): List of regrets for each round. Regret is the maximum reward minus the selected action's reward for the round rewards (list): List of rewards for actions taken """ regrets = [] rewards = [] last_rewards = [] last_changes = [] last_selected_actions = [] # initialize successs and failures to 0 for all items successes = np.zeros(model.n_items) failures = np.zeros(model.n_items) for step in range(1, n_steps + 1): reward_vector, item_changed = reward_gen.get_rewards() # reinitialize the successes and failures if the item has changed if item_changed: successes = np.zeros(model.n_items) failures = np.zeros(model.n_items) selected_action = model.get_action(item_changed, successes, failures) regret = ( np.max(reward_gen.reward_probs) - reward_gen.reward_probs[selected_action] ) regrets.append(regret) rewards.append(reward_vector[selected_action]) last_rewards.append(reward_vector[selected_action]) last_changes.append(item_changed) last_selected_actions.append(selected_action) # record success or failure of action at appropriate index in #successes or failures if reward_vector[selected_action] == 1: successes[selected_action] += 1 else: failures[selected_action] += 1 # Feedback if delta steps have passed if step % delta == 0: model.update(last_selected_actions, last_rewards, last_changes) last_rewards = [] last_changes = [] last_selected_actions = [] return regrets, rewards
a326e905156f6ac195eeb993878ae651a13a306e
3,656,052
def get_photo_from_response(response: dict): """ parse json response and return an Photo Keyword arguments: response -- meetup api response in a dict return -> get or create Photo """ photo, create = Photo.objects.get_or_create(meetup_id=response["id"]) # add optional fields if "highres_link" in response: photo.highres_link = response["highres_link"] if "base_url" in response: photo.base_url = response["base_url"] if "photo_link" in response: photo.photo_link = response["photo_link"] if "thumb_link" in response: photo.thumb_link = response["thumb_link"] if "type" in response: photo.photo_type = response["type"] photo.save() return photo
9f0aeee796c1131424a7f4292a2b712d2bf0158e
3,656,053
from typing import Union from typing import List from typing import Tuple def composition_plot(adata: AnnData, by: str, condition: str, stacked: bool = True, normalize: bool = True, condition_sort_by: str = None, cmap: Union[str, List[str], Tuple[str]] = None, **kwds) -> hv.core.element.Element: """ Generate a composition plot, which shows the percentage of observations from every condition within each cluster (by). Args: adata: Annotated data matrix. by: Key for accessing variables of adata.var_names or a field of adata.obs used to group the data. condition: Key for accessing variables of adata.var_names or a field of adata.obs used to compute counts within a group. stacked: Whether bars are stacked. normalize: Normalize counts within each group to sum to one. condition_sort_by: Sort condition within each group by max, mean, natsorted, or None. cmap: Color map name (hv.plotting.list_cmaps()) or a list of hex colors. See http://holoviews.org/user_guide/Styling_Plots.html for more information. """ adata_raw = __get_raw(adata, False) keys = [by, condition] adata_df = __get_df(adata, adata_raw, keys) for column in adata_df: if not pd.api.types.is_categorical_dtype(adata_df[column]): adata_df[column] = adata_df[column].astype(str).astype('category') cmap = __get_category_cmap(adata_raw, adata_df, condition) if cmap is None else __fix_cmap(adata_df, condition, cmap) keywords = dict(stacked=stacked, group_label=condition) keywords.update(kwds) invert = keywords.get('invert', False) if not invert and 'rot' not in keywords: keywords['rot'] = 90 dummy_df = pd.get_dummies(adata_df[condition]) df = pd.concat([adata_df, dummy_df], axis=1) df = df.groupby(by).agg(np.sum) if normalize: df = df.T.div(df.sum(axis=1)).T if not (pd.api.types.is_categorical_dtype(df.index) and df.index.dtype.ordered): df = df.loc[natsorted(df.index)] secondary = dummy_df.columns.values if condition_sort_by == 'max' or condition_sort_by == 'mean': secondary_sort = df.values.max(axis=0) if condition_sort_by == 'max' else df.values.mean(axis=0) index = np.flip(np.argsort(secondary_sort)) secondary = secondary[index] elif condition_sort_by == 'natsorted': secondary = natsorted(secondary) secondary = list(secondary) p = df.hvplot.bar(by, secondary, cmap=cmap, **keywords) p.df = df return p
f2e588c0ce6d195201754885bbd90aae83b49ba7
3,656,054
def region_of_province(province_in: str) -> str: """ Return the corresponding key in ITALY_MAP whose value contains province_in :param province_in: str :return: str """ region = None for r in ITALY_MAP: for p in ITALY_MAP[r]: if province_in == p: region = r return region
1aa29235d569929a0cfbbc4258d45ba4f0171f3c
3,656,055
def filter_stopwords(words:list)->iter: """ Filter the stop words """ words = filter(is_not_stopword, words) return words
a5516886be0ce5c8671ef259baf38b04d61c511f
3,656,056
def numpy_jaccard(box_a, box_b): """计算两组矩形两两之间的iou Args: box_a: (tensor) bounding boxes, Shape: [A, 4]. box_b: (tensor) bounding boxes, Shape: [B, 4]. Return: ious: (tensor) Shape: [A, B] """ A = box_a.shape[0] B = box_b.shape[0] box_a_x1y1 = np.reshape(box_a[:, 2:], (A, 1, 2)) box_a_x1y1 = np.tile(box_a_x1y1, (1, B, 1)) box_b_x1y1 = np.reshape(box_b[:, 2:], (1, B, 2)) box_b_x1y1 = np.tile(box_b_x1y1, (A, 1, 1)) box_a_x0y0 = np.reshape(box_a[:, :2], (A, 1, 2)) box_a_x0y0 = np.tile(box_a_x0y0, (1, B, 1)) box_b_x0y0 = np.reshape(box_b[:, :2], (1, B, 2)) box_b_x0y0 = np.tile(box_b_x0y0, (A, 1, 1)) max_xy = np.minimum(box_a_x1y1, box_b_x1y1) min_xy = np.maximum(box_a_x0y0, box_b_x0y0) inter = np.clip((max_xy - min_xy), 0.0, np.inf) inter = inter[:, :, 0] * inter[:, :, 1] area_a = ((box_a[:, 2]-box_a[:, 0]) * (box_a[:, 3]-box_a[:, 1])) area_a = np.reshape(area_a, (A, 1)) area_a = np.tile(area_a, (1, B)) area_b = ((box_b[:, 2]-box_b[:, 0]) * (box_b[:, 3]-box_b[:, 1])) area_b = np.reshape(area_b, (1, B)) area_b = np.tile(area_b, (A, 1)) union = area_a + area_b - inter return inter / union
1c0aed3c354a9253c5f9278109cd13365941846c
3,656,057
import uuid def test_get_rule(client_rule_factory, client_response_factory, registered_rule): """Check request data that client uses to get a rule. 1. Create a subclass of the abstract client. 2. Implement send request so that it checks the request parameters. 3. Invoke the get_rule method. 4. Check the rule, returned by the method call. """ rule_id = str(uuid.uuid4()) class _Client(AbstractClient): def _send_request(self, url, method="GET", json=None): assert url == "rule/{0}".format(rule_id), "Wrong url" assert method == "GET", "Wrong method" assert json is None, "Data has been specified" response_json = {"rule_id": rule_id} response_json.update(self._rule_factory.serialize_rule(rule=registered_rule)) return response_json client = _Client( configuration_url="/", rule_factory=client_rule_factory, response_factory=client_response_factory, ) obtained_rule = client.get_rule(rule_id=rule_id) assert obtained_rule.rule_id == rule_id, "Rule ID has not been set"
62b8368072cebf0591137357167980a6d710a1f0
3,656,058
import colorsys def summaryhsl(all_summaries, summary): """ Choose a color for the given system summary to distinguish it from other types of systems. Returns hue, saturation, and luminance for the start of the range, and how much the hue can be randomly varied while staying distinguishable. """ lowest_att = min(att for att, ms in all_summaries) highest_att = max(att for att, ms in all_summaries) att_range = highest_att - lowest_att + 1 attractors, monotonic_species = summary lowest_ms = min(ms for att, ms in all_summaries if att == attractors) highest_ms = max(ms for att, ms in all_summaries if att == attractors) ms_range = highest_ms - lowest_ms + 1 bin_width = 1 / (ms_range + 1) / att_range hue = ((highest_att - attractors) / att_range) + (highest_ms - monotonic_species) * bin_width variability_squeeze = (2 if att_range > 1 else 1) * (2 if ms_range > 1 else 1) return hue, 1, colorsys.ONE_THIRD, bin_width / variability_squeeze
1e874aaa359a5d8bb566809fc2be212df2890885
3,656,059
def _get_cached_values(instance, translated_model, language_code, use_fallback=False): """ Fetch an cached field. """ if not appsettings.PARLER_ENABLE_CACHING or not instance.pk or instance._state.adding: return None key = get_translation_cache_key(translated_model, instance.pk, language_code) values = cache.get(key) if not values: return None # Check for a stored fallback marker if values.get('__FALLBACK__', False): # Internal trick, already set the fallback marker, so no query will be performed. instance._translations_cache[translated_model][language_code] = MISSING # Allow to return the fallback language instead. if use_fallback: lang_dict = get_language_settings(language_code) # iterate over list of fallback languages, which should be already # in proper order for fallback_lang in lang_dict['fallbacks']: if fallback_lang != language_code: return _get_cached_values( instance, translated_model, fallback_lang, use_fallback=False ) return None values['master'] = instance values['language_code'] = language_code return values
e650eabbfde8b877519b9456dba9021dfa0f78e6
3,656,060
def tensor_index_by_list(data, list_index): """Tensor getitem by list of int and bool""" data_shape = F.shape(data) indexes_types = hyper_map(F.typeof, list_index) if const_utils.judge_indexes_types(indexes_types, mstype.int_type + (mstype.bool_,)): sub_tuple_index = const_utils.transform_sequence_index(list_index, data_shape[0], const_utils.TENSOR_GETITEM) if not sub_tuple_index: data_rank = len(data_shape) if data_rank == 1: return const_utils.make_tensor([], data.dtype, ()) return const_utils.make_tensor([], data.dtype, data_shape[1:]) tensor_index = const_utils.make_tensor(sub_tuple_index, mstype.int64) return F.gather(data, tensor_index, 0) tuple_index_new = () for index in list_index: tuple_index_new += (index,) return tensor_index_by_tuple(data, tuple_index_new)
99702ca58ebd7f316d83687804f09ac0639e3f17
3,656,061
def sample_ingridient(user, name='Salt'): """Create and return a sample ingridient""" return Ingridient.objects.create(user=user, name=name)
8904f11164a78959eb8073b80fa349155c1ae185
3,656,062
def remove_duplicates_from_list(params_list): """ Common function to remove duplicates from a list Author: [email protected] :param params_list: :return: """ if params_list: return list(dict.fromkeys(params_list)) return list()
885b2e048ec672bd2d24fabe25066bc2df3ea8a8
3,656,063
import os import logging import sys def _exec_task(fn, task, d, quieterr): """Execute a BB 'task' Execution of a task involves a bit more setup than executing a function, running it with its own local metadata, and with some useful variables set. """ if not d.getVarFlag(task, 'task', False): event.fire(TaskInvalid(task, d), d) logger.error("No such task: %s" % task) return 1 logger.debug(1, "Executing task %s", task) localdata = _task_data(fn, task, d) tempdir = localdata.getVar('T', True) if not tempdir: bb.fatal("T variable not set, unable to build") # Change nice level if we're asked to nice = localdata.getVar("BB_TASK_NICE_LEVEL", True) if nice: curnice = os.nice(0) nice = int(nice) - curnice newnice = os.nice(nice) logger.debug(1, "Renice to %s " % newnice) ionice = localdata.getVar("BB_TASK_IONICE_LEVEL", True) if ionice: try: cls, prio = ionice.split(".", 1) bb.utils.ioprio_set(os.getpid(), int(cls), int(prio)) except: bb.warn("Invalid ionice level %s" % ionice) bb.utils.mkdirhier(tempdir) # Determine the logfile to generate logfmt = localdata.getVar('BB_LOGFMT', True) or 'log.{task}.{pid}' logbase = logfmt.format(task=task, pid=os.getpid()) # Document the order of the tasks... logorder = os.path.join(tempdir, 'log.task_order') try: with open(logorder, 'a') as logorderfile: logorderfile.write('{0} ({1}): {2}\n'.format(task, os.getpid(), logbase)) except OSError: logger.exception("Opening log file '%s'", logorder) pass # Setup the courtesy link to the logfn loglink = os.path.join(tempdir, 'log.{0}'.format(task)) logfn = os.path.join(tempdir, logbase) if loglink: bb.utils.remove(loglink) try: os.symlink(logbase, loglink) except OSError: pass prefuncs = localdata.getVarFlag(task, 'prefuncs', expand=True) postfuncs = localdata.getVarFlag(task, 'postfuncs', expand=True) class ErrorCheckHandler(logging.Handler): def __init__(self): self.triggered = False logging.Handler.__init__(self, logging.ERROR) def emit(self, record): if getattr(record, 'forcelog', False): self.triggered = False else: self.triggered = True # Handle logfiles si = open('/dev/null', 'r') try: bb.utils.mkdirhier(os.path.dirname(logfn)) logfile = open(logfn, 'w') except OSError: logger.exception("Opening log file '%s'", logfn) pass # Dup the existing fds so we dont lose them osi = [os.dup(sys.stdin.fileno()), sys.stdin.fileno()] oso = [os.dup(sys.stdout.fileno()), sys.stdout.fileno()] ose = [os.dup(sys.stderr.fileno()), sys.stderr.fileno()] # Replace those fds with our own os.dup2(si.fileno(), osi[1]) os.dup2(logfile.fileno(), oso[1]) os.dup2(logfile.fileno(), ose[1]) # Ensure Python logging goes to the logfile handler = logging.StreamHandler(logfile) handler.setFormatter(logformatter) # Always enable full debug output into task logfiles handler.setLevel(logging.DEBUG - 2) bblogger.addHandler(handler) errchk = ErrorCheckHandler() bblogger.addHandler(errchk) localdata.setVar('BB_LOGFILE', logfn) localdata.setVar('BB_RUNTASK', task) flags = localdata.getVarFlags(task) event.fire(TaskStarted(task, logfn, flags, localdata), localdata) try: for func in (prefuncs or '').split(): exec_func(func, localdata) exec_func(task, localdata) for func in (postfuncs or '').split(): exec_func(func, localdata) except FuncFailed as exc: if quieterr: event.fire(TaskFailedSilent(task, logfn, localdata), localdata) else: errprinted = errchk.triggered logger.error(str(exc)) event.fire(TaskFailed(task, logfn, localdata, errprinted), localdata) return 1 finally: sys.stdout.flush() sys.stderr.flush() bblogger.removeHandler(handler) # Restore the backup fds os.dup2(osi[0], osi[1]) os.dup2(oso[0], oso[1]) os.dup2(ose[0], ose[1]) # Close the backup fds os.close(osi[0]) os.close(oso[0]) os.close(ose[0]) si.close() logfile.close() if os.path.exists(logfn) and os.path.getsize(logfn) == 0: logger.debug(2, "Zero size logfn %s, removing", logfn) bb.utils.remove(logfn) bb.utils.remove(loglink) event.fire(TaskSucceeded(task, logfn, localdata), localdata) if not localdata.getVarFlag(task, 'nostamp', False) and not localdata.getVarFlag(task, 'selfstamp', False): make_stamp(task, localdata) return 0
064a217bdb967db5d15634864aa62fcd09068adf
3,656,064
def mediaRecognitionApi(): """ Retrieve the resource id, name, author and time index of a sampled media. """ #TODO: Improve recognition if 'file' not in request.files: abort(400, "No file.") file = request.files['file'] if file.filename == '': abort(400, "No selected file") if file and allowed_file(file.filename): filename = secure_filename(file.filename) filepath = pth.join(app.config['UPLOAD_FOLDER'], filename) file.save(filepath) asynctask = recognizeMedia.delay(filepath) return jsonify({"uuid": asynctask.task_id}), 202 abort(400, "Bad request")
a4a4a6aaffe83f2d15f5ad32b826f135385c7ef3
3,656,065
from typing import Sequence def _scale_and_shift( x: chex.Array, params: Sequence[chex.Array], has_scale: bool, has_shift: bool, ) -> chex.Array: """Example of a scale and shift function.""" if has_scale and has_shift: scale, shift = params return x * scale + shift elif has_scale: assert len(params) == 1 return x * params[0] elif has_shift: assert len(params) == 1 return x + params[0] else: raise ValueError("You must have either `has_scale` or `has_shift` set " "to True.")
68c7128ff7c1788cd77e3737adff293f488e190e
3,656,066
import math def get_distance_metres(aLocation1, aLocation2): """ Returns the ground distance in metres between two LocationGlobal objects :param aLocation1: starting location :param aLocation2: ending location :return: """ dlat = aLocation2.lat - aLocation1.lat dlong = aLocation2.lon - aLocation1.lon dlong_c = dlong*math.cos(math.radians(aLocation1.lat)) return math.sqrt((dlat * dlat) + (dlong_c * dlong_c)) * 1.113195e5
5f1428c099f79ba8b41177f87e6a3bffed13e00b
3,656,067
import scipy def merge_components(a,c,corr_img_all_r,U,V,normalize_factor,num_list,patch_size,merge_corr_thr=0.6,merge_overlap_thr=0.6,plot_en=False): """ want to merge components whose correlation images are highly overlapped, and update a and c after merge with region constrain Parameters: ----------- a: np.ndarray matrix of spatial components (d x K) c: np.ndarray matrix of temporal components (T x K) corr_img_all_r: np.ndarray corr image U, V: low rank decomposition of Y normalize_factor: std of Y num_list: indices of components patch_size: dimensions for data merge_corr_thr: scalar between 0 and 1 temporal correlation threshold for truncating corr image (corr(Y,c)) (default 0.6) merge_overlap_thr: scalar between 0 and 1 overlap ratio threshold for two corr images (default 0.6) Returns: -------- a_pri: np.ndarray matrix of merged spatial components (d x K') c_pri: np.ndarray matrix of merged temporal components (T x K') corr_pri: np.ndarray matrix of correlation images for the merged components (d x K') flag: merge or not """ f = np.ones([c.shape[0],1]); ############ calculate overlap area ########### a = csc_matrix(a); a_corr = scipy.sparse.triu(a.T.dot(a),k=1); cor = csc_matrix((corr_img_all_r>merge_corr_thr)*1); temp = cor.sum(axis=0); cor_corr = scipy.sparse.triu(cor.T.dot(cor),k=1); cri = np.asarray((cor_corr/(temp.T)) > merge_overlap_thr)*np.asarray((cor_corr/temp) > merge_overlap_thr)*((a_corr>0).toarray()); a = a.toarray(); connect_comps = np.where(cri > 0); if len(connect_comps[0]) > 0: flag = 1; a_pri = a.copy(); c_pri = c.copy(); G = nx.Graph(); G.add_edges_from(list(zip(connect_comps[0], connect_comps[1]))) comps=list(nx.connected_components(G)) merge_idx = np.unique(np.concatenate([connect_comps[0], connect_comps[1]],axis=0)); a_pri = np.delete(a_pri, merge_idx, axis=1); c_pri = np.delete(c_pri, merge_idx, axis=1); corr_pri = np.delete(corr_img_all_r, merge_idx, axis=1); num_pri = np.delete(num_list,merge_idx); for comp in comps: comp=list(comp); print("merge" + str(num_list[comp]+1)); a_zero = np.zeros([a.shape[0],1]); a_temp = a[:,comp]; if plot_en: spatial_comp_plot(a_temp, corr_img_all_r[:,comp].reshape(patch_size[0],patch_size[1],-1,order="F"),num_list[comp],ini=False); mask_temp = np.where(a_temp.sum(axis=1,keepdims=True) > 0)[0]; a_temp = a_temp[mask_temp,:]; y_temp = np.matmul(a_temp, c[:,comp].T); a_temp = a_temp.mean(axis=1,keepdims=True); c_temp = c[:,comp].mean(axis=1,keepdims=True); model = NMF(n_components=1, init='custom') a_temp = model.fit_transform(y_temp, W=a_temp, H = (c_temp.T)); a_zero[mask_temp] = a_temp; c_temp = model.components_.T; corr_temp = vcorrcoef(U/normalize_factor, V.T, c_temp); a_pri = np.hstack((a_pri,a_zero)); c_pri = np.hstack((c_pri,c_temp)); corr_pri = np.hstack((corr_pri,corr_temp)); num_pri = np.hstack((num_pri,num_list[comp[0]])); return flag, a_pri, c_pri, corr_pri, num_pri else: flag = 0; return flag
e2e15c208ae71ba20cc84d8c0501485c04e41a90
3,656,068
def RenderSubpassStartInputAttachmentsVector(builder, numElems): """This method is deprecated. Please switch to Start.""" return StartInputAttachmentsVector(builder, numElems)
484ba9746f278cfcc7d50a282605ebc9a3a4fb2b
3,656,069
def GetCLInfo(cl_info_str): """Gets CL's repo_name and revision.""" return cl_info_str.split('/')
d077216b2804c249a7d0ffdbff7f992dde106501
3,656,070
def acyclic_run(pipeline): """ @summary: 逆转反向边 @return: """ deformed_flows = {'{}.{}'.format(flow[PWE.source], flow[PWE.target]): flow_id for flow_id, flow in pipeline[PWE.flows].items()} reversed_flows = {} while True: no_circle = validate_graph_without_circle(pipeline) if no_circle['result']: break source = no_circle['error_data'][-2] target = no_circle['error_data'][-1] circle_flow_key = '{}.{}'.format(source, target) flow_id = deformed_flows[circle_flow_key] reversed_flows[flow_id] = deepcopy(pipeline[PWE.flows][flow_id]) pipeline[PWE.flows][flow_id].update({ PWE.source: target, PWE.target: source }) source_node = pipeline['all_nodes'][source] delete_flow_id_from_node_io(source_node, flow_id, PWE.outgoing) add_flow_id_to_node_io(source_node, flow_id, PWE.incoming) target_node = pipeline['all_nodes'][target] delete_flow_id_from_node_io(target_node, flow_id, PWE.incoming) add_flow_id_to_node_io(target_node, flow_id, PWE.outgoing) return reversed_flows
535edb2a7ccd1c0995fe46bff8a931175c353e51
3,656,071
def TextAreaFieldWidget(field, request): # pylint: disable=invalid-name """IFieldWidget factory for TextWidget.""" return FieldWidget(field, TextAreaWidget(request))
0d2431b1274e34978a6869efed0014982aaaa2e2
3,656,072
import os def _cgroup_limit(cpu, memory_size, pid): """Modify 'cgroup' files to set resource limits. Each pod(worker) will have cgroup folders on the host cgroup filesystem, like '/sys/fs/cgroup/<resource_type>/kubepods/<qos_class>/pod<pod_id>/', to limit memory and cpu resources that can be used in pod. For more information about cgroup, please see [1], about sharing PID namespaces in kubernetes, please see also [2]. Return None if successful otherwise a Flask.Response object. [1]https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/resource_management_guide/sec-creating_cgroups [2]https://github.com/kubernetes/kubernetes/pull/51634 """ hostname = os.getenv('HOSTNAME') pod_id = os.getenv('POD_UID') qos_class = None if os.getenv('QOS_CLASS') == 'BestEffort': qos_class = 'besteffort' elif os.getenv('QOS_CLASS') == 'Burstable': qos_class = 'burstable' elif os.getenv('QOS_CLASS') == 'Guaranteed': qos_class = '' if not pod_id or qos_class is None: return make_response("Failed to get current worker information", 500) memory_base_path = os.path.join('/qinling_cgroup', 'memory', 'kubepods', qos_class, 'pod%s' % pod_id) cpu_base_path = os.path.join('/qinling_cgroup', 'cpu', 'kubepods', qos_class, 'pod%s' % pod_id) memory_path = os.path.join(memory_base_path, hostname) cpu_path = os.path.join(cpu_base_path, hostname) if os.path.isdir(memory_base_path): if not os.path.isdir(memory_path): os.makedirs(memory_path) if os.path.isdir(cpu_base_path): if not os.path.isdir(cpu_path): os.makedirs(cpu_path) try: # set cpu and memory resource limits with open('%s/memory.limit_in_bytes' % memory_path, 'w') as f: f.write('%d' % int(memory_size)) with open('%s/cpu.cfs_period_us' % cpu_path, 'w') as f: f.write('%d' % PERIOD) with open('%s/cpu.cfs_quota_us' % cpu_path, 'w') as f: f.write('%d' % ((int(cpu)*PERIOD/1000))) # add pid to 'tasks' files with open('%s/tasks' % memory_path, 'w') as f: f.write('%d' % pid) with open('%s/tasks' % cpu_path, 'w') as f: f.write('%d' % pid) except Exception as e: return make_response("Failed to modify cgroup files: %s" % str(e), 500)
24d0ad0ea9afaa1b0d0c1de9114175014fe7666a
3,656,073
def s_wexler(T_K): """ Calculates slope of saturation vapor pressure curve over water at each temperature based on Wexler 1976, with coefficients from Hardy 1998 (ITS-90). Args: T_K (np.ndarray (dimension<=2), float, list of floats) : Air or Dewpoint Temperatures [K] Returns: s : np.ndarray of slopes [Pa / deg C] """ powers = np.arange(-3, 4).reshape((1, 1, 7)) pow_coeffs = powers.copy() + 1 T_K = np.atleast_3d(T_K).astype(dtype=np.float64) temps = np.repeat(T_K, 8, axis=-1) temps[..., :-1] = pow_coeffs * c.gs[..., :-1] * np.power(temps[..., :-1], powers) temps[..., -1] = -1. * c.gs[..., -1] * temps[..., -1] ** -1 s = np.squeeze(temps.sum(axis=-1)) * es_wexler(T_K) return s
b27b713b6c609115fa36f458c7f72358c001fbd5
3,656,074
from importlib import import_module def get_additional_bases(): """ Looks for additional view bases in settings.REST_EASY_VIEW_BASES. :return: """ resolved_bases = [] for base in getattr(settings, 'REST_EASY_VIEW_BASES', []): mod, cls = base.rsplit('.', 1) resolved_bases.append(getattr(import_module(mod), cls)) return resolved_bases
485c2f0d4778399ff534f40e681706419c3c923a
3,656,075
from pathlib import Path import warnings def load_mask_from_shp(shp_file: Path, metad: dict) -> np.ndarray: """ Load a mask containing geometries from a shapefile, using a reference dataset Parameters ---------- shp_file : str shapefile containing a polygon metad : dict rasterio-style metadata dictionary Returns ------- mask_im : numpy.ndarray mask image Notes ----- 1) Pixels outside of the polygon are assigned as nodata in the mask 2) Exception is raised if no Polygon geometry exists in the shapefile """ sf = gpd.read_file(shp_file).to_crs(metad["crs"]) # extract non-empty polygons from the shapefile geoms = [ g for g in sf.geometry if g.type.lower() == "polygon" and g.is_empty is False ] nshapes = len(geoms) if nshapes == 0: raise Exception("input shapefile does not have any 'Polygon' geometry") if nshapes > 1: warnings.warn( f"{nshapes} Polygons found in shapefile. It is recommended only to have one", UserWarning, stacklevel=1, ) mask_im = rasterio.features.geometry_mask( geoms, out_shape=(metad["height"], metad["width"]), transform=metad["transform"], all_touched=False, invert=True, ) return mask_im
fd8178919b2afec71f69a8a7a00e1b2f224d2509
3,656,076
def est_corner_plot(estimation, settings=None, show=True, save=None): """Wrapper to corner plot of `corner <https://corner.readthedocs.io/en/latest/>`_ module; visualisation of the parameter posterior distribution by all 2-dimensional and 1-dimensional marginals. Parameters ---------- estimation : memocell.estimation.Estimation A memocell estimation object. settings : dict of dict, optional Optional labels for parameters. show : bool, optional Plot is shown if `show=True`. save : None or str, optional Provide a path to save the plot. Returns ------- fig : matplotlib.figure.Figure axes : list or array of matplotlib.axes """ # if not given, create some default settings if settings==None: settings = dict() for theta_id in estimation.net.net_theta_symbolic: param = estimation.net.net_rates_identifier[theta_id] settings[param] = {'label': param} # get plotting information from estimation instance samples, labels = estimation._samples_corner_parameters(settings) # use corner package for this plot fig = corner.corner(samples, labels=labels) # save/show figure if save!=None: plt.savefig(save, bbox_inches='tight') if show: plt.show(fig, block=False) return fig, fig.axes
87f9eda0dc3bf61f66d4ee28f693dad4ef383f24
3,656,077
def voigt_peak_err(peak, A, dA, alphaD, dalphaD): """ Gives the error on the peak of the Voigt profile. \ It assumes no correlation between the parameters and that they are \ normally distributed. :param peak: Peak of the Voigt profile. :type peak: array :param A: Area under the Voigt profile. :param dA: Error on the area `A`. :type dA: array :param alphaD: HWHM of the Gaussian core. :type alphaD: array """ dpeak = abs(peak)*np.sqrt(np.power(dalphaD/alphaD, 2.) + np.power(dA/A, 2.)) return dpeak
52d3fbb7fabe5dfe2e5ab67bcd498d5434f7afc7
3,656,078
import zipfile import os def zip_recursive(destination, source_dir, rootfiles): """ Recursively zips source_dir into destination. rootfiles should contain a list of files in the top level directory that are to be included. Any top level files not in rootfiles will be omitted from the zip file. """ zipped = zipfile.ZipFile(destination, 'w', zipfile.ZIP_DEFLATED) for root, dirs, files in os.walk(source_dir): inRoot = False if root == source_dir: inRoot = True if inRoot: for d in dirs: try: rootfiles.index(d) except ValueError: dirs.remove(d) for f in files[:]: if inRoot: try: rootfiles.index(f) except ValueError: continue fullpath = os.path.join(root, f) zipped.write(fullpath) zipped.close() return destination
267dedb78495e02bbeb2ffaddcfe2278ab72be67
3,656,079
import typing def discord_api_call(method: str, params: typing.Dict, func, data, token: str) -> typing.Any: """ Calls Discord API. """ # This code is from my other repo -> https://gtihub.com/kirillzhosul/python-discord-token-grabber # Calling. return func( f"https://discord.com/api/{method}", params=params, headers={ "Authorization": f"{token}", "Content-Type": "application/json" }, data=data )
84ea201c88dd4260bbc80dbd45654c01cb5a36ee
3,656,080
import logging def get_startup(config: Config) -> Startup: """Extracts and validates startup parameters from the application config file for the active profile """ db_init_schema = config.extract_config_value( ('postgres', 'startup', 'init_schema'), lambda x: x is not None and isinstance(x, bool), lambda x: x, 'bool' ) db_wipe_schema = config.extract_config_value( ('postgres', 'startup', 'wipe_schema'), lambda x: x is not None and isinstance(x, bool), lambda x: x, 'bool' ) if db_wipe_schema and not db_init_schema: logging.getLogger(__name__).warning( "Configuration is set to wipe database schema, but not" " re-initialize it afterward: despite configuration, schema will be" " re-initialized" ) db_init_schema = True return Startup( init_schema=db_init_schema, wipe_schema=db_wipe_schema )
daa3809ed4f8be6c991796c8bbc11ee7b1434ee5
3,656,081
def new_request(request): """Implements view that allows users to create new requests""" user = request.user if user.user_type == 'ADM': return redirect('/admin') if request.method == "POST": request_type = request.POST.get('requestType') if request_type == 'SC' and user.user_object.type == 'PR': schedule = request.POST.getlist('schedule') start_time = request.POST.get('start_time') # Create schedule model monday_start = tuesday_start = wednesday_start = None thursday_start = friday_start = saturday_start = sunday_start = None for day in schedule: if day == 'MO': monday_start = start_time elif day == 'TU': tuesday_start = start_time elif day == 'WE': wednesday_start = start_time elif day == 'TH': thursday_start = start_time elif day == 'FR': friday_start = start_time elif day == 'SA': saturday_start = start_time elif day == 'SU': sunday_start = start_time schedule_model = Schedule.objects.get_or_create(monday_start=monday_start, tuesday_start=tuesday_start, wednesday_start=wednesday_start, thursday_start=thursday_start, friday_start=friday_start, saturday_start=saturday_start, sunday_start=sunday_start)[0] request_change = None else: schedule_model = None request_change = request.POST.get('request_change') request = Request.objects.get_or_create(user_id=user, schedule_id=schedule_model, request_change=request_change, current_request_review_id=None, request_type=request_type)[0] request_review = RequestReview.objects.get_or_create(request_id=request, status='P')[0] request.current_request_review_id = request_review request_review.save() request.save() # create new notification notification = Notification.objects.get_or_create(notification_type='R', is_dismissed=False, request=request)[0] notification.save() # sending emails for this request: email_vendor.email_admin_new_request(request) email_vendor.email_user_new_request(request) return redirect('/requests') else: # GET Request return render(request, 'applications/request_new.html')
d90f72d5f299282709ed8a925569512a81d60591
3,656,082
def get_slice_test(eval_kwargs, test_kwargs, test_dataloader, robustness_testing_datasets): """ Args: test_dataloader: test_kwargs: eval_kwargs (dict): test_dataloader (Dataloader): robustness_testing_datasets (dict): Returns: """ slice_test = None if 'slice' in robustness_testing_datasets: slice_kwargs = {'dataset': robustness_testing_datasets['slice']} if 'sampler' in test_kwargs: slice_kwargs['sampler'] = test_kwargs['sampler'] slice_kwargs.update(eval_kwargs) slice_test = test_dataloader(**slice_kwargs) return slice_test
b995ff26fd743f106115c5d5958dd0654e0d4645
3,656,083
def transform_config(cfg, split_1='search:', split_2='known_papers:'): """Ugly function to make cfg.yml less ugly.""" before_search, after_search = cfg.split(split_1, 1) search_default, papers_default = after_search.split(split_2, 1) search, paper_comment = '', '' for line in search_default.splitlines(): line = line.strip() if line: if line.startswith('-'): search += ' ' elif line.startswith('# List of paper ids'): paper_comment = line continue search += ' ' + line + '\n' ok = papers_default if '-' in papers_default: ok = ' [' for line in papers_default.splitlines(): line = line.strip() if '-' in line: ok += line.split('- ')[1] + ', ' ok = ok[:-2] + ']' return f"{before_search}{split_1}\n{search}{paper_comment}\n{split_2}{ok}"
78d079b6b06c8426be2b65307782129c414a42c4
3,656,084
def filter_coords(raw_lasso, filter_mtx): """Filter the raw data corresponding to the new coordinates.""" filter_mtx_use = filter_mtx.copy() filter_mtx_use["y"] = filter_mtx_use.index lasso_data = pd.melt(filter_mtx_use, id_vars=["y"], value_name="MIDCounts") lasso_data = lasso_data[lasso_data["MIDCounts"] != 0][["x", "y"]] new_lasso = pd.merge(raw_lasso, lasso_data, on=["x", "y"], how="inner") return new_lasso
fce1159db2a2bdb75acbe9b7ccb236af8bade627
3,656,085
def compute_threshold(predictions_list, dev_labels, f1=True): """ Determine the best threshold to use for classification. Inputs: predictions_list: prediction found by running the model dev_labels: ground truth label to be compared with predictions_list f1: True is using F1 score, False if using accuracy score Returns: best_threshold: threshold that yields the best accuracy """ predictions_list = predictions_list.reshape(-1, 1) dev_labels = dev_labels.reshape(-1, 1) both = np.column_stack((predictions_list, dev_labels)) both = both[both[:, 0].argsort()] predictions_list = both[:, 0].ravel() dev_labels = both[:, 1].ravel() accuracies = np.zeros(np.shape(predictions_list)) for i in range(np.shape(predictions_list)[0]): score = predictions_list[i] predictions = (predictions_list >= score) * 2 - 1 accuracy = accuracy_score(predictions, dev_labels) if f1: accuracy = f1_score(dev_labels, predictions) accuracies[i] = accuracy indices = np.argmax(accuracies) best_threshold = np.mean(predictions_list[indices]) return best_threshold
230824c1454978cbe7c5f50ee43fba7b16754922
3,656,086
import torch def color2position(C, min=None, max=None): """ Converts the input points set into colors Parameters ---------- C : Tensor the input color tensor min : float (optional) the minimum value for the points set. If None it will be set to -1 (default is None) max : float (optional) the maximum value for the points set. If None it will be set to +1 (default is None) Returns ------- Tensor the points set tensor """ if min is None: min = -1 if max is None: max = 1 return torch.add(torch.mul(C, max-min), min)
809d8cfd6f24e6abb6d65d5b576cc0b0ccbc3fdf
3,656,087
def is_empty_parsed_graph(graph): """ Checks if graph parsed from web page only contains an "empty" statement, that was not embedded in page namely (<subjectURI>, <http://www.w3.org/ns/md#item>, <http://www.w3.org/1999/02/22-rdf-syntax-ns#nil>) :param graph: an rdflib.Graph :return: True if graph contains no "real" RDF, False otherwise """ if len(graph) > 1: return False for po in graph.predicate_objects(None): if po == (URIRef(u'http://www.w3.org/ns/md#item'), URIRef(u'http://www.w3.org/1999/02/22-rdf-syntax-ns#nil')): return True return False
bf66271bc23f078669bc478a133b67c715fd8fdf
3,656,088
def fillinNaN(var,neighbors): """ replacing masked area using interpolation """ for ii in range(var.shape[0]): a = var[ii,:,:] count = 0 while np.any(a.mask): a_copy = a.copy() for hor_shift,vert_shift in neighbors: if not np.any(a.mask): break a_shifted=np.roll(a_copy,shift=hor_shift,axis=1) a_shifted=np.roll(a_shifted,shift=vert_shift,axis=0) idx=~a_shifted.mask*a.mask #print count, idx[idx==True].shape a[idx]=a_shifted[idx] count+=1 var[ii,:,:] = a return var
a8ffc34dac72cbd4ecdbbc9ad02270a457b0b8d9
3,656,089
from plistlib import loads, FMT_BINARY from bplistlib import loads def parse_plist_from_bytes(data): """ Convert a binary encoded plist to a dictionary. :param data: plist data :return: dictionary """ try: return loads(data, fmt=FMT_BINARY) except ImportError: return loads(data, binary=True)
b9f96ef749af88bdb950d8f3f36b584f6766661d
3,656,090
def projection_standardizer(emb): """Returns an affine transformation to translate an embedding to the centroid of the given set of points.""" return Affine.translation(*(-emb.mean(axis=0)[:2]))
65686636caeac72a16198ac6c7f603836eaedc53
3,656,091
def forward_imputation(X_features, X_time): """ Fill X_features missing values with values, which are the same as its last measurement. :param X_features: time series features for all samples :param X_time: times, when observations were measured :return: X_features, filled with last measurements instead of zeros (missing observations) """ time_length = [np.where(times == 0)[0][1] if np.where(times == 0)[0][0] == 0 else np.where(times == 0)[0][0] for times in X_time] # impute times series features for i, sample in enumerate(X_features): for j, ts in enumerate(sample.T): # note the transposed matrix first_observation = True current_value = -1 for k, observation in enumerate(ts[:time_length[i]]): if X_features[i, k, j] == 0 and first_observation: continue elif X_features[i, k, j] != 0: current_value = X_features[i, k, j] first_observation = False elif X_features[i, k, j] == 0 and not first_observation: X_features[i, k, j] = current_value return X_features
ea0a41bfef02752338dc5384ce7fcd447c95f8c7
3,656,092
def calc_mlevel(ctxstr, cgmap, gtftree, pmtsize=1000): """ Compute the mean methylation level of promoter/gene/exon/intron/IGN in each gene """ inv_ctxs = {'X': 'CG', 'Y': 'CHG', 'Z': 'CHH'} ign = defaultdict(list) mtable = defaultdict(lambda: defaultdict(lambda: defaultdict(float))) counter = defaultdict(lambda: defaultdict(int)) for chr in set(ctxstr) & set(cgmap) & set(gtftree): mask = [1]*len(cgmap[chr]) for (gene_id, strand) in gtftree[chr]: feature_mlevels = defaultdict(lambda: defaultdict(list)) gstart = min(gtftree[chr][(gene_id, strand)])[0] gend = max(gtftree[chr][(gene_id, strand)])[1] mask[gstart:gend] = [0]*(gend - gstart) if strand == '+': for (pos, (tag, mlevel)) in enumerate(izip(ctxstr[chr][gstart-pmtsize:gstart], cgmap[chr][gstart-pmtsize:gstart])): tag = tag.upper() if tag in inv_ctxs and mlevel != '-': feature_mlevels[inv_ctxs[tag]]['pmt'].append(mlevel) elif strand == '-': for (pos, (tag, mlevel)) in enumerate(izip(ctxstr[chr][gend:gend+pmtsize], cgmap[chr][gend:gend+pmtsize])): tag = tag.upper() if tag in inv_ctxs and mlevel != '-': feature_mlevels[inv_ctxs[tag]]['pmt'].append(mlevel) for (pos, (tag, mlevel)) in enumerate(izip(ctxstr[chr][gstart:gend], cgmap[chr][gstart:gend])): tag = tag.upper() inexon = False if tag in inv_ctxs and mlevel != '-': feature_mlevels[inv_ctxs[tag]]['gene'].append(mlevel) for exon in gtftree[chr][(gene_id, strand)]: if exon[0] <= pos+gstart < exon[1]: feature_mlevels[inv_ctxs[tag]]['exon'].append(mlevel) inexon = True break if not inexon: feature_mlevels[inv_ctxs[tag]]['intron'].append(mlevel) for ctx in ['CG', 'CHG', 'CHH']: for feature in feature_mlevels[ctx]: counter[ctx][feature] += len(feature_mlevels[ctx][feature]) mtable[ctx][gene_id][feature] = np.mean(feature_mlevels[ctx][feature]) for (pos, (tag, mlevel)) in enumerate(izip(ctxstr[chr], cgmap[chr])): tag = tag.upper() if (tag in inv_ctxs) and (mask[pos] == 1) and (mlevel != '-'): ign[inv_ctxs[tag]].append(mlevel) for ctx in ign: ign[ctx] = np.mean(ign[ctx]) cg_table = pd.DataFrame(mtable['CG']).T cg_table = cg_table[['pmt', 'gene', 'exon', 'intron']] chg_table = pd.DataFrame(mtable['CHG']).T chg_table = chg_table[['pmt', 'gene', 'exon', 'intron']] chh_table = pd.DataFrame(mtable['CHH']).T chh_table = chh_table[['pmt', 'gene', 'exon', 'intron']] return ign, cg_table, chg_table, chh_table
59b3a36e09e6ea0dd3608da0cf04f14f4d487182
3,656,093
def _get_service(plugin): """ Return a service (ie an instance of a plugin class). :param plugin: any of: the name of a plugin entry point; a plugin class; an instantiated plugin object. :return: the service object """ if isinstance(plugin, basestring): try: (plugin,) = iter_entry_points( group=PLUGINS_ENTRY_POINT_GROUP, name=plugin ) except ValueError: raise PluginNotFoundException(plugin) return plugin.load()() elif isinstance(plugin, _pca_Plugin): return plugin elif isclass(plugin) and issubclass(plugin, _pca_Plugin): return plugin() else: raise TypeError("Expected a plugin name, class or instance", plugin)
a3433521b40861926d9ac3efa6a693d926a7fc94
3,656,094
def taiut1(tai1, tai2, dta): """ Wrapper for ERFA function ``eraTaiut1``. Parameters ---------- tai1 : double array tai2 : double array dta : double array Returns ------- ut11 : double array ut12 : double array Notes ----- The ERFA documentation is below. - - - - - - - - - - e r a T a i u t 1 - - - - - - - - - - Time scale transformation: International Atomic Time, TAI, to Universal Time, UT1. Given: tai1,tai2 double TAI as a 2-part Julian Date dta double UT1-TAI in seconds Returned: ut11,ut12 double UT1 as a 2-part Julian Date Returned (function value): int status: 0 = OK Notes: 1) tai1+tai2 is Julian Date, apportioned in any convenient way between the two arguments, for example where tai1 is the Julian Day Number and tai2 is the fraction of a day. The returned UT11,UT12 follow suit. 2) The argument dta, i.e. UT1-TAI, is an observed quantity, and is available from IERS tabulations. Reference: Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann (ed), University Science Books (1992) Copyright (C) 2013-2017, NumFOCUS Foundation. Derived, with permission, from the SOFA library. See notes at end of file. """ ut11, ut12, c_retval = ufunc.taiut1(tai1, tai2, dta) check_errwarn(c_retval, 'taiut1') return ut11, ut12
c7f9490a5af86de98c89af37cb6ca1bcb92d107a
3,656,095
from SPARQLWrapper import SPARQLWrapper, JSON def fetch_ppn(ppn): """ """ ENDPOINT_URL = 'http://openvirtuoso.kbresearch.nl/sparql' sparql = SPARQLWrapper(ENDPOINT_URL) sqlquery = """ SELECT ?collatie WHERE {{ kbc:{ppn} dcterms:extent ?formaat, ?collatie . FILTER (?formaat != ?collatie ) . FILTER regex(?formaat, "^[0-9]{{1,2}}°", "i") . }} """.format(ppn=ppn) sparql.setQuery(sqlquery) sparql.setReturnFormat(JSON) results = sparql.query().convert() # {'head': {'link': [], 'vars': ['collatie']}, 'results': {'bindings': [{'collatie': {'value': '*`SUP`8`LO` A-S`SUP`8`LO` (S8 blank)', 'type': 'literal'}}], 'distinct': False, 'ordered': True}} result = results['results']['bindings'][0]['collatie']['value'] return result
fd974eccc7f4c099320c50a20b678d36cea7b899
3,656,096
def prepare_link_title( item: feedparser.FeedParserDict) -> feedparser.FeedParserDict: """ Для RSS Item возвращает ссылку, заголовок и описание :param item: :return: """ result = None if item: assert item.title, 'Not found title in item' assert item.link, 'Not found link in item' link = item.link.replace('https://www.google.com/url?rct=j&sa=t&url=', '') ge_ind = link.find('&ct=ga') if ge_ind > -1: link = link[0:ge_ind] title = item.title.replace('<b>', '').replace('</b>', '') item.link = link item.title = title result = item return result
445eccd9855484b65b726a4ee12a3dfa9a9de375
3,656,097
def api_docs_redirect(): """ Redirect to API docs """ return redirect('/api/v1', code=302)
d7ed10aa264d1403325f0b044b4c7b8b20b5989f
3,656,098
from typing import List def print_topics(model, vectorizer, top_n: int=10)-> List: """Print the top n words found by each topic model. Args: model: Sklearn LatentDirichletAllocation model vectorizer: sklearn CountVectorizer top_n (int): Number of words you wish to return Source: https://towardsdatascience.com/end-to-end-topic-modeling-in-python-latent-dirichlet-allocation-lda-35ce4ed6b3e0 """ for idx, topic in enumerate(model.components_): print(f"Topic {idx}:") print([(vectorizer.get_feature_names()[i], topic[i]) for i in topic.argsort()[:-top_n - 1:-1]]) return [vectorizer.get_feature_names()[i] for i in topic.argsort()[:-top_n-1:-1]]
c0477c19c6806c2eaacb4165d332291dc0ba341b
3,656,099