dart_llm_tasks / README.md
Yongdong
Initial commit
585dc5e
metadata
language:
  - en
tags:
  - text-generation
  - machine-learning
license: mit
datasets:
  - dart_llm_tasks

DART-LLM Tasks Dataset

Description

DART-LLM Tasks is a dataset designed for evaluating language models in robotic task planning and coordination through few-shot learning. It contains 102 natural language instructions paired with their corresponding structured task decompositions and execution plans.

Dataset Structure

  • Total examples: 102
  • Complexity levels:
    • L1 (Basic): 47 examples
    • L2 (Medium): 33 examples
    • L3 (Complex): 22 examples

Features

  • task_id: Unique identifier for each instruction
  • text: Natural language instruction
  • output: Structured task decomposition and execution plan
    • tasks: List of sub-tasks
      • task: Task name/identifier
      • instruction_function: Function specification
        • name: Function name
        • robot_ids: Involved robots
        • dependencies: Task dependencies
        • object_keywords: Relevant objects/locations

Task Categories

  1. Movement Tasks: Navigation to specific areas
  2. Excavation Tasks: Digging operations
  3. Loading/Unloading: Material transfer
  4. Avoidance Tasks: Obstacle and hazard avoidance
  5. Coordination Tasks: Multi-robot operations

Usage

# Using the dataset for few-shot evaluation
from datasets import load_dataset

# Load the dataset
dataset = load_dataset("path/to/dart_llm_tasks")

# Access examples
print(dataset[0])  # First example