|
from ..base import Base |
|
import numpy as np |
|
import multiprocessing as mp |
|
from GPy.kern import Matern32, Matern52, RBF, ExpQuad |
|
from scipy.optimize import least_squares |
|
|
|
|
|
class NSGP(Base): |
|
""" |
|
A class to learn Nott and Dunsmuir's non-stationary kernel. For more information, refer to |
|
https://academic.oup.com/biomet/article-abstract/89/4/819/242307 |
|
|
|
Parameters |
|
------------ |
|
|
|
N : int, default=10 |
|
Number of nearby points to learn each kernel locally |
|
|
|
eta : int, default=1 |
|
A hyperparameter used in weight function |
|
|
|
loc_kernel : str, default='m32', ('m32', 'm52' or 'rbf') |
|
type of kernel to be used |
|
""" |
|
|
|
def __init__(self, N=10, eta=1, kernel_name="m32", verbose=True): |
|
super().__init__() |
|
self.__N = N + 1 |
|
self.__eta = eta |
|
self.__kernel_name = kernel_name |
|
self.__param_dict = { |
|
"N": self.__N, |
|
"eta": self.__eta, |
|
"kernel_name": self.__kernel_name, |
|
} |
|
self._KX_inv = None |
|
|
|
def get_all_params(self): |
|
""" |
|
Returns class parameters |
|
""" |
|
return self.__param_dict |
|
|
|
def get_param(self, param): |
|
""" |
|
Returns the value of a parameter |
|
""" |
|
return self.__param_dict[param] |
|
|
|
def __calculate_dmat(self): |
|
self.__dmat = np.zeros((self._X.shape[0], self._X.shape[0])) |
|
for i in range(self._X.shape[0]): |
|
for j in range(i, self._X.shape[0]): |
|
self.__dmat[i, j] = np.linalg.norm(self._X[i] - self._X[j]) |
|
self.__dmat[j, i] = self.__dmat[i, j] |
|
|
|
def __get_close_locs(self): |
|
self.__calculate_dmat() |
|
return [ |
|
self.__dmat[i].argsort()[: self.__N] |
|
for i in range(self._X.shape[0]) |
|
] |
|
|
|
def __weight_func(self, S): |
|
return np.exp(-(1 / self.__eta) * ((S - self._X) ** 2).sum(axis=1)) |
|
|
|
def _model(self, loc): |
|
def __D_z(sj): |
|
return self._Gamma[np.ix_(sj, sj)] |
|
|
|
def __obfunc(x): |
|
kernel = kern_dict[self.__kernel_name] |
|
kernel.variance = x[0] |
|
kernel.lengthscale = x[1:] |
|
kern_vals = kernel.K(self._X[self.__close_locs[loc]]) |
|
term = (__D_z(self.__close_locs[loc]) - kern_vals) / kern_vals |
|
return np.sum(term**2) |
|
|
|
|
|
kern_dict = { |
|
"m32": Matern32( |
|
input_dim=self._X.shape[1], |
|
active_dims=list(range(self._X.shape[1])), |
|
ARD=True, |
|
), |
|
"m52": Matern52( |
|
input_dim=self._X.shape[1], |
|
active_dims=list(range(self._X.shape[1])), |
|
ARD=True, |
|
), |
|
"rbf": RBF( |
|
input_dim=self._X.shape[1], |
|
active_dims=list(range(self._X.shape[1])), |
|
ARD=True, |
|
), |
|
"expqd": ExpQuad( |
|
input_dim=self._X.shape[1], |
|
active_dims=list(range(self._X.shape[1])), |
|
ARD=True, |
|
), |
|
} |
|
|
|
kernel = kern_dict[self.__kernel_name] |
|
params = least_squares(__obfunc, np.ones((self._X.shape[1] + 1))).x |
|
kernel.variance = params[0] |
|
kernel.lengthscale = params[1:] |
|
return kernel.K |
|
|
|
def _c_inv(self, kern_func): |
|
return np.linalg.pinv(kern_func(self._X)) |
|
|
|
def __learnLocal(self): |
|
|
|
|
|
job = mp.Pool() |
|
self.__kernels = job.map(self._model, list(range(self._X.shape[0]))) |
|
self.__C_inv = job.map(self._c_inv, self.__kernels) |
|
job.close() |
|
|
|
|
|
|
|
def _Kernel(self, S1, S2=None): |
|
""" |
|
This function is for the NSGP Class. |
|
This is not expected to be called directly. |
|
""" |
|
S2exists = True |
|
if np.all(S1 == S2) or S2 is None: |
|
S2exists = False |
|
S2 = S1 |
|
|
|
assert S1.shape[1] == self._X.shape[1] |
|
assert S2.shape[1] == self._X.shape[1] |
|
|
|
|
|
self.__v_s1 = np.zeros((S1.shape[0], self._X.shape[0])) |
|
self.__v_s2 = np.zeros((S2.shape[0], self._X.shape[0])) |
|
self.__c_mat_s1 = np.zeros( |
|
(self._X.shape[0], S1.shape[0], self._X.shape[0]) |
|
) |
|
self.__c_mat_s2 = np.zeros( |
|
(self._X.shape[0], self._X.shape[0], S2.shape[0]) |
|
) |
|
self.__c_mat_s1s2 = np.zeros( |
|
(self._X.shape[0], S1.shape[0], S2.shape[0]) |
|
) |
|
|
|
for s1i, s1 in enumerate(S1): |
|
s_vec = self.__weight_func(s1) |
|
self.__v_s1[s1i, :] = s_vec / s_vec.sum() |
|
if S2exists: |
|
for s2i, s2 in enumerate(S2): |
|
s_vec = self.__weight_func(s2) |
|
self.__v_s2[s2i, :] = s_vec / s_vec.sum() |
|
for i in range(self._X.shape[0]): |
|
self.__c_mat_s1[i, :, :] = self.__kernels[i](S1, self._X) |
|
self.__c_mat_s2[i, :, :] = self.__kernels[i](self._X, S2) |
|
self.__c_mat_s1s2[i, :, :] = self.__kernels[i](S1, S2) |
|
else: |
|
self.__v_s2 = self.__v_s1 |
|
for i in range(self._X.shape[0]): |
|
self.__c_mat_s1[i, :, :] = self.__kernels[i](S1, self._X) |
|
self.__c_mat_s2[i, :, :] = self.__c_mat_s1[i, :, :].T |
|
self.__c_mat_s1s2[i, :, :] = self.__kernels[i](S1) |
|
|
|
|
|
first_term = np.zeros((S1.shape[0], S2.shape[0]), dtype="float64") |
|
for i in range(self._X.shape[0]): |
|
for j in range(self._X.shape[0]): |
|
first_term += ( |
|
self.__c_mat_s1[i, :, :] |
|
.dot(self.__C_inv[i]) |
|
.dot(self._Gamma) |
|
.dot(self.__C_inv[j]) |
|
.dot(self.__c_mat_s2[j, :, :]) |
|
) * ( |
|
self.__v_s1[:, i] |
|
.reshape(-1, 1) |
|
.dot(self.__v_s2[:, j].reshape(1, -1)) |
|
) |
|
|
|
second_term = np.zeros((S1.shape[0], S2.shape[0])) |
|
for i in range(self._X.shape[0]): |
|
second_term += np.sqrt( |
|
self.__v_s1[:, i] |
|
.reshape(-1, 1) |
|
.dot(self.__v_s2[:, i].reshape(1, -1)) |
|
) * ( |
|
self.__c_mat_s1s2[i, :, :] |
|
- self.__c_mat_s1[i, :, :] |
|
.dot(self.__C_inv[i]) |
|
.dot(self.__c_mat_s2[i, :, :]) |
|
) |
|
|
|
return first_term + second_term |
|
|
|
def _fit(self, X, y, ECM): |
|
""" |
|
This function is for the NSGP Class. |
|
This is not expected to be called directly. |
|
""" |
|
|
|
self._Gamma = ECM |
|
assert type(self._Gamma) == type( |
|
np.zeros((1, 1)) |
|
), "ECM must be a numpy array" |
|
assert self._Gamma.shape[0] == self._Gamma.shape[1] == X.shape[0], ( |
|
"ECM must have (" |
|
+ str(X.shape[0]) |
|
+ ", " |
|
+ str(X.shape[0]) |
|
+ ") shape" |
|
) |
|
|
|
self._X = X |
|
self._y = y |
|
self.__param_dict["X"] = X |
|
self.__param_dict["y"] = y |
|
self.__param_dict["ECM"] = self._Gamma |
|
|
|
|
|
self.__close_locs = self.__get_close_locs() |
|
self.__learnLocal() |
|
return self |
|
|
|
def _predict(self, X, return_cov=False): |
|
""" |
|
This function is for the NSGP Class. |
|
This is not expected to be called directly. |
|
""" |
|
if self._KX_inv is None: |
|
self._KX_inv = np.linalg.pinv(self._Kernel(self._X, self._X)) |
|
KX_test = self._Kernel(X, self._X) |
|
pred_mean = ( |
|
KX_test.dot(self._KX_inv).dot(self._y - self._y.mean()) |
|
+ self._y.mean() |
|
) |
|
if return_cov: |
|
pred_var = self._Kernel(X, X) - KX_test.dot(self._KX_inv).dot( |
|
KX_test.T |
|
) |
|
return (pred_mean, pred_var) |
|
return pred_mean |
|
|