|
import numpy as np |
|
from scipy.spatial.distance import cdist |
|
|
|
from ..base import Base |
|
from ..utils.distance import euclidean, haversine |
|
|
|
|
|
class SpatialAverage(Base): |
|
""" |
|
Class to interpolate by fitting a XGBoost Regressor to given |
|
data. |
|
Note that radius you specify must be in kilometres if you are passing latitude and longitude as inputs |
|
""" |
|
|
|
def __init__( |
|
self, |
|
radius=100, |
|
resolution="standard", |
|
coordinate_type="Euclidean", |
|
**kwargs |
|
): |
|
super().__init__(resolution, coordinate_type) |
|
self.radius = radius |
|
if self.coordinate_type == "Geographic": |
|
self.distance = haversine |
|
elif self.coordinate_type == "Euclidean": |
|
self.distance = euclidean |
|
else: |
|
raise NotImplementedError( |
|
"Only Geographic and Euclidean Coordinates are available" |
|
) |
|
|
|
def _fit(self, X, y): |
|
"""Function for fitting. |
|
This function is not supposed to be called directly. |
|
""" |
|
self.X = X |
|
self.y = y |
|
return self |
|
|
|
def _predict_grid(self, x1lim, x2lim): |
|
"""Function for grid interpolation. |
|
This function is not supposed to be called directly. |
|
""" |
|
|
|
x1min, x1max = x1lim |
|
x2min, x2max = x2lim |
|
|
|
|
|
x1 = np.linspace(x1min, x1max, self.resolution) |
|
x2 = np.linspace(x2min, x2max, self.resolution) |
|
X1, X2 = np.meshgrid(x1, x2) |
|
return self._predict(np.asarray([X1.ravel(), X2.ravel()]).T) |
|
|
|
def _predict(self, X): |
|
"""Function for interpolation on specific points. |
|
This function is not supposed to be called directly. |
|
""" |
|
return self._average(X) |
|
|
|
def _average(self, X): |
|
dist = self.distance(X, self.X) |
|
mask = self.radius >= dist |
|
return (self.y * mask).sum(axis=1) / mask.sum(axis=1) |
|
|