|
// This contract is part of Zellic’s smart contract dataset, which is a collection of publicly available contract code gathered as of March 2023. |
|
|
|
// SPDX-License-Identifier: Apache-2.0 |
|
|
|
pragma solidity 0.8.17; |
|
|
|
uint256 constant n = 4; |
|
uint256 constant N = 1 << n; |
|
uint256 constant m = 5; |
|
uint256 constant M = 1 << m; |
|
|
|
library Utils { |
|
uint256 constant GROUP_ORDER = 0x30644e72e131a029b85045b68181585d2833e84879b9709143e1f593f0000001; |
|
uint256 constant FIELD_ORDER = 0x30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47; |
|
uint256 constant PPLUS1DIV4 = 0x0c19139cb84c680a6e14116da060561765e05aa45a1c72a34f082305b61f3f52; |
|
|
|
function add(uint256 x, uint256 y) internal pure returns (uint256) { |
|
return addmod(x, y, GROUP_ORDER); |
|
} |
|
|
|
function mul(uint256 x, uint256 y) internal pure returns (uint256) { |
|
return mulmod(x, y, GROUP_ORDER); |
|
} |
|
|
|
function inv(uint256 x) internal view returns (uint256) { |
|
return exp(x, GROUP_ORDER - 2); |
|
} |
|
|
|
function mod(uint256 x) internal pure returns (uint256) { |
|
return x % GROUP_ORDER; |
|
} |
|
|
|
function sub(uint256 x, uint256 y) internal pure returns (uint256) { |
|
return x >= y ? x - y : GROUP_ORDER - y + x; |
|
} |
|
|
|
function neg(uint256 x) internal pure returns (uint256) { |
|
return GROUP_ORDER - x; |
|
} |
|
|
|
function exp(uint256 base, uint256 exponent) internal view returns (uint256 output) { |
|
uint256 order = GROUP_ORDER; |
|
assembly { |
|
let location := mload(0x40) |
|
mstore(location, 0x20) |
|
mstore(add(location, 0x20), 0x20) |
|
mstore(add(location, 0x40), 0x20) |
|
mstore(add(location, 0x60), base) |
|
mstore(add(location, 0x80), exponent) |
|
mstore(add(location, 0xa0), order) |
|
if iszero(staticcall(gas(), 0x05, location, 0xc0, location, 0x20)) { |
|
revert(0, 0) |
|
} |
|
output := mload(location) |
|
} |
|
} |
|
|
|
function fieldExp(uint256 base, uint256 exponent) internal view returns (uint256 output) { // warning: mod p, not q |
|
uint256 order = FIELD_ORDER; |
|
assembly { |
|
let location := mload(0x40) |
|
mstore(location, 0x20) |
|
mstore(add(location, 0x20), 0x20) |
|
mstore(add(location, 0x40), 0x20) |
|
mstore(add(location, 0x60), base) |
|
mstore(add(location, 0x80), exponent) |
|
mstore(add(location, 0xa0), order) |
|
if iszero(staticcall(gas(), 0x05, location, 0xc0, location, 0x20)) { |
|
revert(0, 0) |
|
} |
|
output := mload(location) |
|
} |
|
} |
|
|
|
struct Point { |
|
bytes32 x; |
|
bytes32 y; |
|
} |
|
|
|
function add(Point memory p1, Point memory p2) internal view returns (Point memory r) { |
|
assembly { |
|
let location := mload(0x40) |
|
mstore(location, mload(p1)) |
|
mstore(add(location, 0x20), mload(add(p1, 0x20))) |
|
mstore(add(location, 0x40), mload(p2)) |
|
mstore(add(location, 0x60), mload(add(p2, 0x20))) |
|
if iszero(staticcall(gas(), 0x06, location, 0x80, r, 0x40)) { |
|
revert(0, 0) |
|
} |
|
} |
|
} |
|
|
|
function mul(Point memory p, uint256 s) internal view returns (Point memory r) { |
|
assembly { |
|
let location := mload(0x40) |
|
mstore(location, mload(p)) |
|
mstore(add(location, 0x20), mload(add(p, 0x20))) |
|
mstore(add(location, 0x40), s) |
|
if iszero(staticcall(gas(), 0x07, location, 0x60, r, 0x40)) { |
|
revert(0, 0) |
|
} |
|
} |
|
} |
|
|
|
function neg(Point memory p) internal pure returns (Point memory) { |
|
return Point(p.x, bytes32(FIELD_ORDER - uint256(p.y))); // p.y should already be reduced mod P? |
|
} |
|
|
|
function eq(Point memory p1, Point memory p2) internal pure returns (bool) { |
|
return p1.x == p2.x && p1.y == p2.y; |
|
} |
|
|
|
function decompress(bytes32 input) internal view returns (Point memory) { |
|
if (input == 0x00) return Point(0x00, 0x00); |
|
uint256 x = uint256(input); |
|
uint256 sign = (x & 0x8000000000000000000000000000000000000000000000000000000000000000) >> 255; |
|
x &= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; |
|
uint256 ySquared = fieldExp(x, 3) + 3; |
|
uint256 y = fieldExp(ySquared, PPLUS1DIV4); |
|
Point memory result = Point(bytes32(x), bytes32(y)); |
|
if (sign != y & 0x01) return neg(result); |
|
return result; |
|
} |
|
|
|
function compress(Point memory input) internal pure returns (bytes32) { |
|
uint256 result = uint256(input.x); |
|
if (uint256(input.y) & 0x01 == 0x01) result |= 0x8000000000000000000000000000000000000000000000000000000000000000; |
|
return bytes32(result); |
|
} |
|
|
|
function mapInto(uint256 seed) internal view returns (Point memory) { |
|
uint256 y; |
|
while (true) { |
|
uint256 ySquared = fieldExp(seed, 3) + 3; // addmod instead of add: waste of gas, plus function overhead cost |
|
y = fieldExp(ySquared, PPLUS1DIV4); |
|
if (fieldExp(y, 2) == ySquared) { |
|
break; |
|
} |
|
seed += 1; |
|
} |
|
return Point(bytes32(seed), bytes32(y)); |
|
} |
|
|
|
function mapInto(string memory input) internal view returns (Point memory) { |
|
return mapInto(uint256(keccak256(abi.encodePacked(input))) % FIELD_ORDER); |
|
} |
|
|
|
function mapInto(string memory input, uint256 i) internal view returns (Point memory) { |
|
return mapInto(uint256(keccak256(abi.encodePacked(input, i))) % FIELD_ORDER); |
|
} |
|
|
|
function slice(bytes memory input, uint256 start) internal pure returns (bytes32 result) { |
|
assembly { |
|
result := mload(add(add(input, 0x20), start)) |
|
} |
|
} |
|
|
|
struct Statement { |
|
Point[N] Y; |
|
Point[N] CLn; |
|
Point[N] CRn; |
|
Point[N] C; |
|
Point D; |
|
uint256 epoch; |
|
Point u; |
|
uint256 fee; |
|
} |
|
|
|
struct DepositProof { |
|
Point A; |
|
Point B; |
|
|
|
Point[n] C_XG; |
|
Point[n] y_XG; |
|
|
|
uint256[n] f; |
|
uint256 z_A; |
|
|
|
uint256 c; |
|
uint256 s_r; |
|
} |
|
|
|
function deserializeDeposit(bytes memory arr) internal view returns (DepositProof memory proof) { |
|
proof.A = decompress(slice(arr, 0)); |
|
proof.B = decompress(slice(arr, 32)); |
|
|
|
for (uint256 k = 0; k < n; k++) { |
|
proof.C_XG[k] = decompress(slice(arr, 64 + k * 32)); |
|
proof.y_XG[k] = decompress(slice(arr, 64 + (k + n) * 32)); |
|
proof.f[k] = uint256(slice(arr, 64 + n * 64 + k * 32)); |
|
} |
|
uint256 starting = n * 96; |
|
proof.z_A = uint256(slice(arr, 64 + starting)); |
|
|
|
proof.c = uint256(slice(arr, 96 + starting)); |
|
proof.s_r = uint256(slice(arr, 128 + starting)); |
|
|
|
return proof; |
|
} |
|
|
|
struct TransferProof { |
|
Point BA; |
|
Point BS; |
|
Point A; |
|
Point B; |
|
|
|
Point[n] CLnG; |
|
Point[n] CRnG; |
|
Point[n] C_0G; |
|
Point[n] DG; |
|
Point[n] y_0G; |
|
Point[n] gG; |
|
Point[n] C_XG; |
|
Point[n] y_XG; |
|
|
|
uint256[n][2] f; |
|
uint256 z_A; |
|
|
|
Point T_1; |
|
Point T_2; |
|
uint256 tHat; |
|
uint256 mu; |
|
|
|
uint256 c; |
|
uint256 s_sk; |
|
uint256 s_r; |
|
uint256 s_b; |
|
uint256 s_tau; |
|
|
|
InnerProductProof ip; |
|
} |
|
|
|
function deserializeTransfer(bytes memory arr) internal view returns (TransferProof memory proof) { |
|
proof.BA = decompress(slice(arr, 0)); |
|
proof.BS = decompress(slice(arr, 32)); |
|
proof.A = decompress(slice(arr, 64)); |
|
proof.B = decompress(slice(arr, 96)); |
|
|
|
for (uint256 k = 0; k < n; k++) { |
|
proof.CLnG[k] = decompress(slice(arr, 128 + k * 32)); |
|
proof.CRnG[k] = decompress(slice(arr, 128 + (k + n) * 32)); |
|
proof.C_0G[k] = decompress(slice(arr, 128 + n * 64 + k * 32)); |
|
proof.DG[k] = decompress(slice(arr, 128 + n * 96 + k * 32)); |
|
proof.y_0G[k] = decompress(slice(arr, 128 + n * 128 + k * 32)); |
|
proof.gG[k] = decompress(slice(arr, 128 + n * 160 + k * 32)); |
|
proof.C_XG[k] = decompress(slice(arr, 128 + n * 192 + k * 32)); |
|
proof.y_XG[k] = decompress(slice(arr, 128 + n * 224 + k * 32)); |
|
proof.f[0][k] = uint256(slice(arr, 128 + n * 256 + k * 32)); |
|
proof.f[1][k] = uint256(slice(arr, 128 + n * 288 + k * 32)); |
|
} |
|
|
|
uint256 starting = n * 320; |
|
proof.z_A = uint256(slice(arr, 128 + starting)); |
|
|
|
proof.T_1 = decompress(slice(arr, 160 + starting)); |
|
proof.T_2 = decompress(slice(arr, 192 + starting)); |
|
proof.tHat = uint256(slice(arr, 224 + starting)); |
|
proof.mu = uint256(slice(arr, 256 + starting)); |
|
|
|
proof.c = uint256(slice(arr, 288 + starting)); |
|
proof.s_sk = uint256(slice(arr, 320 + starting)); |
|
proof.s_r = uint256(slice(arr, 352 + starting)); |
|
proof.s_b = uint256(slice(arr, 384 + starting)); |
|
proof.s_tau = uint256(slice(arr, 416 + starting)); |
|
|
|
for (uint256 i = 0; i < m + 1; i++) { |
|
proof.ip.L[i] = decompress(slice(arr, 448 + starting + i * 32)); |
|
proof.ip.R[i] = decompress(slice(arr, 448 + starting + (i + m + 1) * 32)); |
|
} |
|
proof.ip.a = uint256(slice(arr, 448 + starting + (m + 1) * 64)); |
|
proof.ip.b = uint256(slice(arr, 480 + starting + (m + 1) * 64)); |
|
|
|
return proof; |
|
} |
|
|
|
struct WithdrawalProof { |
|
Point BA; |
|
Point BS; |
|
Point A; |
|
Point B; |
|
|
|
Point[n] CLnG; |
|
Point[n] CRnG; |
|
Point[n] y_0G; |
|
Point[n] gG; |
|
Point[n] C_XG; |
|
Point[n] y_XG; |
|
|
|
uint256[n] f; |
|
uint256 z_A; |
|
|
|
Point T_1; |
|
Point T_2; |
|
uint256 tHat; |
|
uint256 mu; |
|
|
|
uint256 c; |
|
uint256 s_sk; |
|
uint256 s_r; |
|
uint256 s_b; |
|
uint256 s_tau; |
|
|
|
InnerProductProof ip; |
|
} |
|
|
|
function deserializeWithdrawal(bytes memory arr) internal view returns (WithdrawalProof memory proof) { |
|
proof.BA = decompress(slice(arr, 0)); |
|
proof.BS = decompress(slice(arr, 32)); |
|
proof.A = decompress(slice(arr, 64)); |
|
proof.B = decompress(slice(arr, 96)); |
|
|
|
for (uint256 k = 0; k < n; k++) { |
|
proof.CLnG[k] = decompress(slice(arr, 128 + k * 32)); |
|
proof.CRnG[k] = decompress(slice(arr, 128 + (k + n) * 32)); |
|
proof.y_0G[k] = decompress(slice(arr, 128 + n * 64 + k * 32)); |
|
proof.gG[k] = decompress(slice(arr, 128 + n * 96 + k * 32)); |
|
proof.C_XG[k] = decompress(slice(arr, 128 + n * 128 + k * 32)); |
|
proof.y_XG[k] = decompress(slice(arr, 128 + n * 160 + k * 32)); |
|
proof.f[k] = uint256(slice(arr, 128 + n * 192 + k * 32)); |
|
} |
|
uint256 starting = n * 224; |
|
proof.z_A = uint256(slice(arr, 128 + starting)); |
|
|
|
proof.T_1 = decompress(slice(arr, 160 + starting)); |
|
proof.T_2 = decompress(slice(arr, 192 + starting)); |
|
proof.tHat = uint256(slice(arr, 224 + starting)); |
|
proof.mu = uint256(slice(arr, 256 + starting)); |
|
|
|
proof.c = uint256(slice(arr, 288 + starting)); |
|
proof.s_sk = uint256(slice(arr, 320 + starting)); |
|
proof.s_r = uint256(slice(arr, 352 + starting)); |
|
proof.s_b = uint256(slice(arr, 384 + starting)); |
|
proof.s_tau = uint256(slice(arr, 416 + starting)); |
|
|
|
for (uint256 i = 0; i < m; i++) { // will leave the `m`th element empty |
|
proof.ip.L[i] = decompress(slice(arr, 448 + starting + i * 32)); |
|
proof.ip.R[i] = decompress(slice(arr, 448 + starting + (i + m) * 32)); |
|
} |
|
proof.ip.a = uint256(slice(arr, 448 + starting + m * 64)); |
|
proof.ip.b = uint256(slice(arr, 480 + starting + m * 64)); |
|
|
|
return proof; |
|
} |
|
|
|
struct InnerProductStatement { |
|
uint256 salt; |
|
Point[M << 1] hs; // "overridden" parameters. |
|
Point u; |
|
Point P; |
|
} |
|
|
|
struct InnerProductProof { |
|
Point[m + 1] L; |
|
Point[m + 1] R; |
|
uint256 a; |
|
uint256 b; |
|
} |
|
|
|
function assemblePolynomials(uint256[n][2] memory f) internal pure returns (uint256[N] memory result) { |
|
// f is a 2m-by-2 array... containing the f's and x - f's, twice (i.e., concatenated). |
|
// output contains two "rows", each of length N. |
|
result[0] = 1; |
|
for (uint256 k = 0; k < n; k++) { |
|
for (uint256 i = 0; i < N; i += 1 << n - k) { |
|
result[i + (1 << n - 1 - k)] = mul(result[i], f[1][n - 1 - k]); |
|
result[i] = mul(result[i], f[0][n - 1 - k]); |
|
} |
|
} |
|
} |
|
} |