zellic-audit
Initial commit
f998fcd
raw
history blame
95.2 kB
// This contract is part of Zellic’s smart contract dataset, which is a collection of publicly available contract code gathered as of March 2023.
//SPDX-License-Identifier: MIT
pragma solidity 0.6.12;
pragma experimental ABIEncoderV2;
/**
Mainnet instances:
- Uniswap V2 Router: 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D
- Sushiswap V1 Router: 0xd9e1cE17f2641f24aE83637ab66a2cca9C378B9F
- Shibaswap V1 Router: 0x03f7724180AA6b939894B5Ca4314783B0b36b329
- UNI: 0x1f9840a85d5aF5bf1D1762F925BDADdC4201F984 // exists on Sushi
- USDT: 0xdAC17F958D2ee523a2206206994597C13D831ec7
- DAI: 0x6B175474E89094C44Da98b954EedeAC495271d0F // Triangular 1000000000
- WETH: 0xB4FBF271143F4FBf7B91A5ded31805e42b2208d6 // Simple 10000000000000
- Aave LendingPoolAddressesProvider(Mainnet):0xB53C1a33016B2DC2fF3653530bfF1848a515c8c5
*/
/**
Goerli instances:
- Uniswap V2 Router: 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D
- Sushiswap V1 Router: 0x1b02dA8Cb0d097eB8D57A175b88c7D8b47997506
- Shibaswap V1 Router: 0x03f7724180AA6b939894B5Ca4314783B0b36b329
- UNI: 0x1f9840a85d5aF5bf1D1762F925BDADdC4201F984 // exists on Sushi
- USDT: 0xaa34a2eE8Be136f0eeD223C9Ec8D4F2d0BC472dd
- DAI: 0xdc31Ee1784292379Fbb2964b3B9C4124D8F89C60 // Triangular 1000000000
- WETH: 0xB4FBF271143F4FBf7B91A5ded31805e42b2208d6 // Simple 10000000000000
- Aave LendingPoolAddressesProvider(kovan): 0x5E52dEc931FFb32f609681B8438A51c675cc232d
*/
/**
Kovan instances:
- Uniswap V2 Router: 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D
- Sushiswap V1 Router: 0x1b02dA8Cb0d097eB8D57A175b88c7D8b47997506
- UNI: 0x075A36BA8846C6B6F53644fDd3bf17E5151789DC // exists on Sushi
- USDT: 0x13512979ADE267AB5100878E2e0f485B568328a4
- BUSD: 0x4c6E1EFC12FDfD568186b7BAEc0A43fFfb4bCcCf
- DAI: 0xFf795577d9AC8bD7D90Ee22b6C1703490b6512FD // Triangular 1000000000
- WETH: 0xd0A1E359811322d97991E03f863a0C30C2cF029C // Simple 10000000000000
- Aave LendingPoolAddressesProvider(kovan): 0x88757f2f99175387aB4C6a4b3067c77A695b0349
*/
// File: @uniswap/v2-periphery/contracts/interfaces/IUniswapV2Router01.sol
interface IUniswapV2Router01 {
function factory() external pure returns (address);
function WETH() external pure returns (address);
function addLiquidity(
address tokenA,
address tokenB,
uint amountADesired,
uint amountBDesired,
uint amountAMin,
uint amountBMin,
address to,
uint deadline
) external returns (uint amountA, uint amountB, uint liquidity);
function addLiquidityETH(
address token,
uint amountTokenDesired,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline
) external payable returns (uint amountToken, uint amountETH, uint liquidity);
function removeLiquidity(
address tokenA,
address tokenB,
uint liquidity,
uint amountAMin,
uint amountBMin,
address to,
uint deadline
) external returns (uint amountA, uint amountB);
function removeLiquidityETH(
address token,
uint liquidity,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline
) external returns (uint amountToken, uint amountETH);
function removeLiquidityWithPermit(
address tokenA,
address tokenB,
uint liquidity,
uint amountAMin,
uint amountBMin,
address to,
uint deadline,
bool approveMax, uint8 v, bytes32 r, bytes32 s
) external returns (uint amountA, uint amountB);
function removeLiquidityETHWithPermit(
address token,
uint liquidity,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline,
bool approveMax, uint8 v, bytes32 r, bytes32 s
) external returns (uint amountToken, uint amountETH);
function swapExactTokensForTokens(
uint amountIn,
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external returns (uint[] memory amounts);
function swapTokensForExactTokens(
uint amountOut,
uint amountInMax,
address[] calldata path,
address to,
uint deadline
) external returns (uint[] memory amounts);
function swapExactETHForTokens(uint amountOutMin, address[] calldata path, address to, uint deadline)
external
payable
returns (uint[] memory amounts);
function swapTokensForExactETH(uint amountOut, uint amountInMax, address[] calldata path, address to, uint deadline)
external
returns (uint[] memory amounts);
function swapExactTokensForETH(uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline)
external
returns (uint[] memory amounts);
function swapETHForExactTokens(uint amountOut, address[] calldata path, address to, uint deadline)
external
payable
returns (uint[] memory amounts);
function quote(uint amountA, uint reserveA, uint reserveB) external pure returns (uint amountB);
function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut) external pure returns (uint amountOut);
function getAmountIn(uint amountOut, uint reserveIn, uint reserveOut) external pure returns (uint amountIn);
function getAmountsOut(uint amountIn, address[] calldata path) external view returns (uint[] memory amounts);
function getAmountsIn(uint amountOut, address[] calldata path) external view returns (uint[] memory amounts);
}
// File: @uniswap/v2-periphery/contracts/interfaces/IUniswapV2Router02.sol
interface IUniswapV2Router02 is IUniswapV2Router01 {
function removeLiquidityETHSupportingFeeOnTransferTokens(
address token,
uint liquidity,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline
) external returns (uint amountETH);
function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens(
address token,
uint liquidity,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline,
bool approveMax, uint8 v, bytes32 r, bytes32 s
) external returns (uint amountETH);
function swapExactTokensForTokensSupportingFeeOnTransferTokens(
uint amountIn,
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external;
function swapExactETHForTokensSupportingFeeOnTransferTokens(
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external payable;
function swapExactTokensForETHSupportingFeeOnTransferTokens(
uint amountIn,
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external;
}
// File: https://github.com/aave/protocol-v2/blob/master/contracts/protocol/libraries/types/DataTypes.sol
library DataTypes {
// refer to the whitepaper, section 1.1 basic concepts for a formal description of these properties.
struct ReserveData {
//stores the reserve configuration
ReserveConfigurationMap configuration;
//the liquidity index. Expressed in ray
uint128 liquidityIndex;
//variable borrow index. Expressed in ray
uint128 variableBorrowIndex;
//the current supply rate. Expressed in ray
uint128 currentLiquidityRate;
//the current variable borrow rate. Expressed in ray
uint128 currentVariableBorrowRate;
//the current stable borrow rate. Expressed in ray
uint128 currentStableBorrowRate;
uint40 lastUpdateTimestamp;
//tokens addresses
address aTokenAddress;
address stableDebtTokenAddress;
address variableDebtTokenAddress;
//address of the interest rate strategy
address interestRateStrategyAddress;
//the id of the reserve. Represents the position in the list of the active reserves
uint8 id;
}
struct ReserveConfigurationMap {
//bit 0-15: LTV
//bit 16-31: Liq. threshold
//bit 32-47: Liq. bonus
//bit 48-55: Decimals
//bit 56: Reserve is active
//bit 57: reserve is frozen
//bit 58: borrowing is enabled
//bit 59: stable rate borrowing enabled
//bit 60-63: reserved
//bit 64-79: reserve factor
uint256 data;
}
struct UserConfigurationMap {
uint256 data;
}
enum InterestRateMode {NONE, STABLE, VARIABLE}
}
// File: https://github.com/aave/protocol-v2/blob/master/contracts/interfaces/ILendingPoolAddressesProvider.sol
/**
* @title LendingPoolAddressesProvider contract
* @dev Main registry of addresses part of or connected to the protocol, including permissioned roles
* - Acting also as factory of proxies and admin of those, so with right to change its implementations
* - Owned by the Aave Governance
* @author Aave
**/
interface ILendingPoolAddressesProvider {
event MarketIdSet(string newMarketId);
event LendingPoolUpdated(address indexed newAddress);
event ConfigurationAdminUpdated(address indexed newAddress);
event EmergencyAdminUpdated(address indexed newAddress);
event LendingPoolConfiguratorUpdated(address indexed newAddress);
event LendingPoolCollateralManagerUpdated(address indexed newAddress);
event PriceOracleUpdated(address indexed newAddress);
event LendingRateOracleUpdated(address indexed newAddress);
event ProxyCreated(bytes32 id, address indexed newAddress);
event AddressSet(bytes32 id, address indexed newAddress, bool hasProxy);
function getMarketId() external view returns (string memory);
function setMarketId(string calldata marketId) external;
function setAddress(bytes32 id, address newAddress) external;
function setAddressAsProxy(bytes32 id, address impl) external;
function getAddress(bytes32 id) external view returns (address);
function getLendingPool() external view returns (address);
function setLendingPoolImpl(address pool) external;
function getLendingPoolConfigurator() external view returns (address);
function setLendingPoolConfiguratorImpl(address configurator) external;
function getLendingPoolCollateralManager() external view returns (address);
function setLendingPoolCollateralManager(address manager) external;
function getPoolAdmin() external view returns (address);
function setPoolAdmin(address admin) external;
function getEmergencyAdmin() external view returns (address);
function setEmergencyAdmin(address admin) external;
function getPriceOracle() external view returns (address);
function setPriceOracle(address priceOracle) external;
function getLendingRateOracle() external view returns (address);
function setLendingRateOracle(address lendingRateOracle) external;
}
// File: https://github.com/aave/protocol-v2/blob/master/contracts/interfaces/ILendingPool.solpragma experimental ABIEncoderV2;
interface ILendingPool {
/**
* @dev Emitted on deposit()
* @param reserve The address of the underlying asset of the reserve
* @param user The address initiating the deposit
* @param onBehalfOf The beneficiary of the deposit, receiving the aTokens
* @param amount The amount deposited
* @param referral The referral code used
**/
event Deposit(
address indexed reserve,
address user,
address indexed onBehalfOf,
uint256 amount,
uint16 indexed referral
);
/**
* @dev Emitted on withdraw()
* @param reserve The address of the underlyng asset being withdrawn
* @param user The address initiating the withdrawal, owner of aTokens
* @param to Address that will receive the underlying
* @param amount The amount to be withdrawn
**/
event Withdraw(address indexed reserve, address indexed user, address indexed to, uint256 amount);
/**
* @dev Emitted on borrow() and flashLoan() when debt needs to be opened
* @param reserve The address of the underlying asset being borrowed
* @param user The address of the user initiating the borrow(), receiving the funds on borrow() or just
* initiator of the transaction on flashLoan()
* @param onBehalfOf The address that will be getting the debt
* @param amount The amount borrowed out
* @param borrowRateMode The rate mode: 1 for Stable, 2 for Variable
* @param borrowRate The numeric rate at which the user has borrowed
* @param referral The referral code used
**/
event Borrow(
address indexed reserve,
address user,
address indexed onBehalfOf,
uint256 amount,
uint256 borrowRateMode,
uint256 borrowRate,
uint16 indexed referral
);
/**
* @dev Emitted on repay()
* @param reserve The address of the underlying asset of the reserve
* @param user The beneficiary of the repayment, getting his debt reduced
* @param repayer The address of the user initiating the repay(), providing the funds
* @param amount The amount repaid
**/
event Repay(
address indexed reserve,
address indexed user,
address indexed repayer,
uint256 amount
);
/**
* @dev Emitted on swapBorrowRateMode()
* @param reserve The address of the underlying asset of the reserve
* @param user The address of the user swapping his rate mode
* @param rateMode The rate mode that the user wants to swap to
**/
event Swap(address indexed reserve, address indexed user, uint256 rateMode);
/**
* @dev Emitted on setUserUseReserveAsCollateral()
* @param reserve The address of the underlying asset of the reserve
* @param user The address of the user enabling the usage as collateral
**/
event ReserveUsedAsCollateralEnabled(address indexed reserve, address indexed user);
/**
* @dev Emitted on setUserUseReserveAsCollateral()
* @param reserve The address of the underlying asset of the reserve
* @param user The address of the user enabling the usage as collateral
**/
event ReserveUsedAsCollateralDisabled(address indexed reserve, address indexed user);
/**
* @dev Emitted on rebalanceStableBorrowRate()
* @param reserve The address of the underlying asset of the reserve
* @param user The address of the user for which the rebalance has been executed
**/
event RebalanceStableBorrowRate(address indexed reserve, address indexed user);
/**
* @dev Emitted on flashLoan()
* @param target The address of the flash loan receiver contract
* @param initiator The address initiating the flash loan
* @param asset The address of the asset being flash borrowed
* @param amount The amount flash borrowed
* @param premium The fee flash borrowed
* @param referralCode The referral code used
**/
event FlashLoan(
address indexed target,
address indexed initiator,
address indexed asset,
uint256 amount,
uint256 premium,
uint16 referralCode
);
/**
* @dev Emitted when the pause is triggered.
*/
event Paused();
/**
* @dev Emitted when the pause is lifted.
*/
event Unpaused();
/**
* @dev Emitted when a borrower is liquidated. This event is emitted by the LendingPool via
* LendingPoolCollateral manager using a DELEGATECALL
* This allows to have the events in the generated ABI for LendingPool.
* @param collateralAsset The address of the underlying asset used as collateral, to receive as result of the liquidation
* @param debtAsset The address of the underlying borrowed asset to be repaid with the liquidation
* @param user The address of the borrower getting liquidated
* @param debtToCover The debt amount of borrowed `asset` the liquidator wants to cover
* @param liquidatedCollateralAmount The amount of collateral received by the liiquidator
* @param liquidator The address of the liquidator
* @param receiveAToken `true` if the liquidators wants to receive the collateral aTokens, `false` if he wants
* to receive the underlying collateral asset directly
**/
event LiquidationCall(
address indexed collateralAsset,
address indexed debtAsset,
address indexed user,
uint256 debtToCover,
uint256 liquidatedCollateralAmount,
address liquidator,
bool receiveAToken
);
/**
* @dev Emitted when the state of a reserve is updated. NOTE: This event is actually declared
* in the ReserveLogic library and emitted in the updateInterestRates() function. Since the function is internal,
* the event will actually be fired by the LendingPool contract. The event is therefore replicated here so it
* gets added to the LendingPool ABI
* @param reserve The address of the underlying asset of the reserve
* @param liquidityRate The new liquidity rate
* @param stableBorrowRate The new stable borrow rate
* @param variableBorrowRate The new variable borrow rate
* @param liquidityIndex The new liquidity index
* @param variableBorrowIndex The new variable borrow index
**/
event ReserveDataUpdated(
address indexed reserve,
uint256 liquidityRate,
uint256 stableBorrowRate,
uint256 variableBorrowRate,
uint256 liquidityIndex,
uint256 variableBorrowIndex
);
/**
* @dev Deposits an `amount` of underlying asset into the reserve, receiving in return overlying aTokens.
* - E.g. User deposits 100 USDC and gets in return 100 aUSDC
* @param asset The address of the underlying asset to deposit
* @param amount The amount to be deposited
* @param onBehalfOf The address that will receive the aTokens, same as msg.sender if the user
* wants to receive them on his own wallet, or a different address if the beneficiary of aTokens
* is a different wallet
* @param referralCode Code used to register the integrator originating the operation, for potential rewards.
* 0 if the action is executed directly by the user, without any middle-man
**/
function deposit(
address asset,
uint256 amount,
address onBehalfOf,
uint16 referralCode
) external;
/**
* @dev Withdraws an `amount` of underlying asset from the reserve, burning the equivalent aTokens owned
* E.g. User has 100 aUSDC, calls withdraw() and receives 100 USDC, burning the 100 aUSDC
* @param asset The address of the underlying asset to withdraw
* @param amount The underlying amount to be withdrawn
* - Send the value type(uint256).max in order to withdraw the whole aToken balance
* @param to Address that will receive the underlying, same as msg.sender if the user
* wants to receive it on his own wallet, or a different address if the beneficiary is a
* different wallet
* @return The final amount withdrawn
**/
function withdraw(
address asset,
uint256 amount,
address to
) external returns (uint256);
/**
* @dev Allows users to borrow a specific `amount` of the reserve underlying asset, provided that the borrower
* already deposited enough collateral, or he was given enough allowance by a credit delegator on the
* corresponding debt token (StableDebtToken or VariableDebtToken)
* - E.g. User borrows 100 USDC passing as `onBehalfOf` his own address, receiving the 100 USDC in his wallet
* and 100 stable/variable debt tokens, depending on the `interestRateMode`
* @param asset The address of the underlying asset to borrow
* @param amount The amount to be borrowed
* @param interestRateMode The interest rate mode at which the user wants to borrow: 1 for Stable, 2 for Variable
* @param referralCode Code used to register the integrator originating the operation, for potential rewards.
* 0 if the action is executed directly by the user, without any middle-man
* @param onBehalfOf Address of the user who will receive the debt. Should be the address of the borrower itself
* calling the function if he wants to borrow against his own collateral, or the address of the credit delegator
* if he has been given credit delegation allowance
**/
function borrow(
address asset,
uint256 amount,
uint256 interestRateMode,
uint16 referralCode,
address onBehalfOf
) external;
/**
* @notice Repays a borrowed `amount` on a specific reserve, burning the equivalent debt tokens owned
* - E.g. User repays 100 USDC, burning 100 variable/stable debt tokens of the `onBehalfOf` address
* @param asset The address of the borrowed underlying asset previously borrowed
* @param amount The amount to repay
* - Send the value type(uint256).max in order to repay the whole debt for `asset` on the specific `debtMode`
* @param rateMode The interest rate mode at of the debt the user wants to repay: 1 for Stable, 2 for Variable
* @param onBehalfOf Address of the user who will get his debt reduced/removed. Should be the address of the
* user calling the function if he wants to reduce/remove his own debt, or the address of any other
* other borrower whose debt should be removed
* @return The final amount repaid
**/
function repay(
address asset,
uint256 amount,
uint256 rateMode,
address onBehalfOf
) external returns (uint256);
/**
* @dev Allows a borrower to swap his debt between stable and variable mode, or viceversa
* @param asset The address of the underlying asset borrowed
* @param rateMode The rate mode that the user wants to swap to
**/
function swapBorrowRateMode(address asset, uint256 rateMode) external;
/**
* @dev Rebalances the stable interest rate of a user to the current stable rate defined on the reserve.
* - Users can be rebalanced if the following conditions are satisfied:
* 1. Usage ratio is above 95%
* 2. the current deposit APY is below REBALANCE_UP_THRESHOLD * maxVariableBorrowRate, which means that too much has been
* borrowed at a stable rate and depositors are not earning enough
* @param asset The address of the underlying asset borrowed
* @param user The address of the user to be rebalanced
**/
function rebalanceStableBorrowRate(address asset, address user) external;
/**
* @dev Allows depositors to enable/disable a specific deposited asset as collateral
* @param asset The address of the underlying asset deposited
* @param useAsCollateral `true` if the user wants to use the deposit as collateral, `false` otherwise
**/
function setUserUseReserveAsCollateral(address asset, bool useAsCollateral) external;
/**
* @dev Function to liquidate a non-healthy position collateral-wise, with Health Factor below 1
* - The caller (liquidator) covers `debtToCover` amount of debt of the user getting liquidated, and receives
* a proportionally amount of the `collateralAsset` plus a bonus to cover market risk
* @param collateralAsset The address of the underlying asset used as collateral, to receive as result of the liquidation
* @param debtAsset The address of the underlying borrowed asset to be repaid with the liquidation
* @param user The address of the borrower getting liquidated
* @param debtToCover The debt amount of borrowed `asset` the liquidator wants to cover
* @param receiveAToken `true` if the liquidators wants to receive the collateral aTokens, `false` if he wants
* to receive the underlying collateral asset directly
**/
function liquidationCall(
address collateralAsset,
address debtAsset,
address user,
uint256 debtToCover,
bool receiveAToken
) external;
/**
* @dev Allows smartcontracts to access the liquidity of the pool within one transaction,
* as long as the amount taken plus a fee is returned.
* IMPORTANT There are security concerns for developers of flashloan receiver contracts that must be kept into consideration.
* For further details please visit https://developers.aave.com
* @param receiverAddress The address of the contract receiving the funds, implementing the IFlashLoanReceiver interface
* @param assets The addresses of the assets being flash-borrowed
* @param amounts The amounts amounts being flash-borrowed
* @param modes Types of the debt to open if the flash loan is not returned:
* 0 -> Don't open any debt, just revert if funds can't be transferred from the receiver
* 1 -> Open debt at stable rate for the value of the amount flash-borrowed to the `onBehalfOf` address
* 2 -> Open debt at variable rate for the value of the amount flash-borrowed to the `onBehalfOf` address
* @param onBehalfOf The address that will receive the debt in the case of using on `modes` 1 or 2
* @param params Variadic packed params to pass to the receiver as extra information
* @param referralCode Code used to register the integrator originating the operation, for potential rewards.
* 0 if the action is executed directly by the user, without any middle-man
**/
function flashLoan(
address receiverAddress,
address[] calldata assets,
uint256[] calldata amounts,
uint256[] calldata modes,
address onBehalfOf,
bytes calldata params,
uint16 referralCode
) external;
/**
* @dev Returns the user account data across all the reserves
* @param user The address of the user
* @return totalCollateralETH the total collateral in ETH of the user
* @return totalDebtETH the total debt in ETH of the user
* @return availableBorrowsETH the borrowing power left of the user
* @return currentLiquidationThreshold the liquidation threshold of the user
* @return ltv the loan to value of the user
* @return healthFactor the current health factor of the user
**/
function getUserAccountData(address user)
external
view
returns (
uint256 totalCollateralETH,
uint256 totalDebtETH,
uint256 availableBorrowsETH,
uint256 currentLiquidationThreshold,
uint256 ltv,
uint256 healthFactor
);
function initReserve(
address reserve,
address aTokenAddress,
address stableDebtAddress,
address variableDebtAddress,
address interestRateStrategyAddress
) external;
function setReserveInterestRateStrategyAddress(address reserve, address rateStrategyAddress)
external;
function setConfiguration(address reserve, uint256 configuration) external;
/**
* @dev Returns the configuration of the reserve
* @param asset The address of the underlying asset of the reserve
* @return The configuration of the reserve
**/
function getConfiguration(address asset)
external
view
returns (DataTypes.ReserveConfigurationMap memory);
/**
* @dev Returns the configuration of the user across all the reserves
* @param user The user address
* @return The configuration of the user
**/
function getUserConfiguration(address user)
external
view
returns (DataTypes.UserConfigurationMap memory);
/**
* @dev Returns the normalized income normalized income of the reserve
* @param asset The address of the underlying asset of the reserve
* @return The reserve's normalized income
*/
function getReserveNormalizedIncome(address asset) external view returns (uint256);
/**
* @dev Returns the normalized variable debt per unit of asset
* @param asset The address of the underlying asset of the reserve
* @return The reserve normalized variable debt
*/
function getReserveNormalizedVariableDebt(address asset) external view returns (uint256);
/**
* @dev Returns the state and configuration of the reserve
* @param asset The address of the underlying asset of the reserve
* @return The state of the reserve
**/
function getReserveData(address asset) external view returns (DataTypes.ReserveData memory);
function finalizeTransfer(
address asset,
address from,
address to,
uint256 amount,
uint256 balanceFromAfter,
uint256 balanceToBefore
) external;
function getReservesList() external view returns (address[] memory);
function getAddressesProvider() external view returns (ILendingPoolAddressesProvider);
function setPause(bool val) external;
function paused() external view returns (bool);
}
// File: https://github.com/aave/protocol-v2/blob/master/contracts/flashloan/interfaces/IFlashLoanReceiver.sol
/**
* @title IFlashLoanReceiver interface
* @notice Interface for the Aave fee IFlashLoanReceiver.
* @author Aave
* @dev implement this interface to develop a flashloan-compatible flashLoanReceiver contract
**/
interface IFlashLoanReceiver {
function executeOperation(
address[] calldata assets,
uint256[] calldata amounts,
uint256[] calldata premiums,
address initiator,
bytes calldata params
) external returns (bool);
function ADDRESSES_PROVIDER() external view returns (ILendingPoolAddressesProvider);
function LENDING_POOL() external view returns (ILendingPool);
}
// File: https://github.com/aave/protocol-v2/blob/master/contracts/dependencies/openzeppelin/contracts/Address.sol
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*/
function isContract(address account) internal view returns (bool) {
// According to EIP-1052, 0x0 is the value returned for not-yet created accounts
// and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned
// for accounts without code, i.e. `keccak256('')`
bytes32 codehash;
bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
// solhint-disable-next-line no-inline-assembly
assembly {
codehash := extcodehash(account)
}
return (codehash != accountHash && codehash != 0x0);
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, 'Address: insufficient balance');
// solhint-disable-next-line avoid-low-level-calls, avoid-call-value
(bool success, ) = recipient.call{value: amount}('');
require(success, 'Address: unable to send value, recipient may have reverted');
}
}
// File: https://github.com/aave/protocol-v2/blob/master/contracts/dependencies/openzeppelin/contracts/IERC20.sol
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address sender,
address recipient,
uint256 amount
) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
// File: https://github.com/aave/protocol-v2/blob/master/contracts/dependencies/openzeppelin/contracts/SafeMath.sol
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, 'SafeMath: addition overflow');
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return sub(a, b, 'SafeMath: subtraction overflow');
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
* - Subtraction cannot overflow.
*/
function sub(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
require(b <= a, errorMessage);
uint256 c = a - b;
return c;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, 'SafeMath: multiplication overflow');
return c;
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return div(a, b, 'SafeMath: division by zero');
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts with custom message on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function div(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
// Solidity only automatically asserts when dividing by 0
require(b > 0, errorMessage);
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return c;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return mod(a, b, 'SafeMath: modulo by zero');
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts with custom message when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function mod(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
require(b != 0, errorMessage);
return a % b;
}
}
// File: https://github.com/aave/protocol-v2/blob/master/contracts/dependencies/openzeppelin/contracts/SafeERC20.sol
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using SafeMath for uint256;
using Address for address;
function safeTransfer(
IERC20 token,
address to,
uint256 value
) internal {
callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(
IERC20 token,
address from,
address to,
uint256 value
) internal {
callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
function safeApprove(
IERC20 token,
address spender,
uint256 value
) internal {
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
'SafeERC20: approve from non-zero to non-zero allowance'
);
callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function callOptionalReturn(IERC20 token, bytes memory data) private {
require(address(token).isContract(), 'SafeERC20: call to non-contract');
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = address(token).call(data);
require(success, 'SafeERC20: low-level call failed');
if (returndata.length > 0) {
// Return data is optional
// solhint-disable-next-line max-line-length
require(abi.decode(returndata, (bool)), 'SafeERC20: ERC20 operation did not succeed');
}
}
}
// File: https://github.com/aave/protocol-v2/blob/master/contracts/flashloan/base/FlashLoanReceiverBase.sol
abstract contract FlashLoanReceiverBase is IFlashLoanReceiver {
using SafeERC20 for IERC20;
using SafeMath for uint256;
ILendingPoolAddressesProvider public immutable override ADDRESSES_PROVIDER;
ILendingPool public immutable override LENDING_POOL;
constructor(ILendingPoolAddressesProvider provider) public {
ADDRESSES_PROVIDER = provider;
LENDING_POOL = ILendingPool(provider.getLendingPool());
}
}
/*
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with GSN meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address payable) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes memory) {
this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
return msg.data;
}
}
// File: Arbitrage_flat.sol
contract Ownable {
address public owner;
event OwnershipTransferred(
address indexed previousOwner,
address indexed newOwner
);
/**
* @dev The Ownable constructor sets the original `owner` of the contract to the sender
* account.
*/
constructor()public {
owner = msg.sender;
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(msg.sender == owner,"Ownable: caller is not the owner");
_;
}
/**
* @dev Allows the current owner to transfer control of the contract to a newOwner.
* @param newOwner The address to transfer ownership to.
*/
function transferOwnership(address newOwner) public onlyOwner {
require(newOwner != address(0));
emit OwnershipTransferred(owner, newOwner);
owner = newOwner;
}
}
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
* For a generic mechanism see {ERC20PresetMinterPauser}.
*
* TIP: For a detailed writeup see our guide
* https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* We have followed general OpenZeppelin guidelines: functions revert instead
* of returning `false` on failure. This behavior is nonetheless conventional
* and does not conflict with the expectations of ERC20 applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {IERC20-approve}.
*/
contract ERC20 is Context, IERC20 {
using SafeMath for uint256;
mapping (address => uint256) private _balances;
mapping (address => mapping (address => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
uint8 private _decimals;
/**
* @dev Sets the values for {name} and {symbol}, initializes {decimals} with
* a default value of 18.
*
* To select a different value for {decimals}, use {_setupDecimals}.
*
* All three of these values are immutable: they can only be set once during
* construction.
*/
constructor (string memory name_, string memory symbol_) public {
_name = name_;
_symbol = symbol_;
_decimals = 18;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5,05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is
* called.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual returns (uint8) {
return _decimals;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual override returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view virtual override returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `recipient` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
_transfer(_msgSender(), recipient, amount);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual override returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 amount) public virtual override returns (bool) {
_approve(_msgSender(), spender, amount);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20}.
*
* Requirements:
*
* - `sender` and `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
* - the caller must have allowance for ``sender``'s tokens of at least
* `amount`.
*/
function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) {
_transfer(sender, recipient, amount);
_approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
return true;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
return true;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
return true;
}
/**
* @dev Moves tokens `amount` from `sender` to `recipient`.
*
* This is internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `sender` cannot be the zero address.
* - `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
*/
function _transfer(address sender, address recipient, uint256 amount) internal virtual {
require(sender != address(0), "ERC20: transfer from the zero address");
require(recipient != address(0), "ERC20: transfer to the zero address");
_beforeTokenTransfer(sender, recipient, amount);
_balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
_balances[recipient] = _balances[recipient].add(amount);
emit Transfer(sender, recipient, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements:
*
* - `to` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: mint to the zero address");
_beforeTokenTransfer(address(0), account, amount);
_totalSupply = _totalSupply.add(amount);
_balances[account] = _balances[account].add(amount);
emit Transfer(address(0), account, amount);
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: burn from the zero address");
_beforeTokenTransfer(account, address(0), amount);
_balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
_totalSupply = _totalSupply.sub(amount);
emit Transfer(account, address(0), amount);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(address owner, address spender, uint256 amount) internal virtual {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @dev Sets {decimals} to a value other than the default one of 18.
*
* WARNING: This function should only be called from the constructor. Most
* applications that interact with token contracts will not expect
* {decimals} to ever change, and may work incorrectly if it does.
*/
function _setupDecimals(uint8 decimals_) internal virtual {
_decimals = decimals_;
}
/**
* @dev Hook that is called before any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* will be to transferred to `to`.
* - when `from` is zero, `amount` tokens will be minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { }
}
contract WBNB is ERC20 {
// string public name = "Wrapped BNB";
// string public symbol = "WBNB";
// uint8 public decimals = 18;
event Deposit(address indexed account, uint256 amount);
event Withdrawal(address indexed account, uint256 amount);
constructor() public ERC20("Wrapped BNB", "WBNB") {}
function deposit() external payable {
_mint(msg.sender, msg.value);
emit Deposit(msg.sender, msg.value);
}
function withdraw(uint256 _amount) external {
_burn(msg.sender, _amount);
payable(msg.sender).transfer(_amount);
emit Withdrawal(msg.sender, _amount);
}
}
contract FlashLoanSimpleArbitrage is FlashLoanReceiverBase {
//--------------------------------------------------------------------
// VARIABLES
address public owner;
address public exchangeA;
address public exchangeB;
address public tokenA;
address public tokenB;
address public devAddr;
enum Exchange {
EXCA,
EXCB,
NONE
}
//--------------------------------------------------------------------
// MODIFIERS
modifier onlyOwner() {
require(msg.sender == owner, "only owner can call this");
_;
}
//--------------------------------------------------------------------
// CONSTRUCTOR
constructor(
address _addressProvider, // 0x5E52dEc931FFb32f609681B8438A51c675cc232d
address _exchangeA, // 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D
address _exchangeB, // 0x1b02dA8Cb0d097eB8D57A175b88c7D8b47997506
address _tokenA,
address _tokenB,
address _devAddr
)
public
FlashLoanReceiverBase(ILendingPoolAddressesProvider(_addressProvider))
{
owner = msg.sender;
exchangeA = _exchangeA;
exchangeB = _exchangeB;
tokenA = _tokenA;
tokenB = _tokenB;
devAddr = _devAddr;
}
//--------------------------------------------------------------------
// ARBITRAGE FUNCTIONS/LOGIC
function withdrawERC(address _tokenAddress, uint256 amount) public onlyOwner {
uint256 erc20Balance = getTokenBalance(_tokenAddress);
require(amount <= erc20Balance, "Not enough balance");
IERC20(_tokenAddress).transfer(msg.sender, amount);
}
function withdrawETH(uint256 amount) public onlyOwner {
uint256 ethBalance = getETHBalance();
require(amount <= ethBalance, "Not enough balance");
payable(owner).transfer(amount);
}
function simpleArbitrage(uint256 _amountIn) public payable {
uint256 amountIn = 0;
if(tokenA == address(0)) {
amountIn = msg.value;
} else {
amountIn = _amountIn;
}
uint256 amountOut = 0;
uint256 amountOut_ = 0;
Exchange result = _comparePrice(tokenA, tokenB, amountIn); // loan amountIn
if (result == Exchange.EXCA) {
// sell loanToken in uniswap for swapToken with high price and buy loanToken from sushiswap with lower price
amountOut = _swap(
amountIn,
exchangeA,
tokenA,
tokenB
);
} else if (result == Exchange.EXCB) {
// sell loanToken in sushiswap for swapToken with high price and buy loanToken from uniswap with lower price
amountOut = _swap(
amountIn,
exchangeB,
tokenA,
tokenB
);
} else {
revert("No Arbitrage Found");
}
Exchange result_ = _comparePrice(tokenB, tokenA, amountOut); // loan amountIn
if (result_ == Exchange.EXCA) {
// sell loanToken in uniswap for swapToken with high price and buy loanToken from sushiswap with lower price
amountOut_ = _swap(
amountOut,
exchangeA,
tokenB,
tokenA
);
} else if (result_ == Exchange.EXCB) {
// sell loanToken in sushiswap for swapToken with high price and buy loanToken from uniswap with lower price
amountOut_ = _swap(
amountOut,
exchangeB,
tokenB,
tokenA
);
} else {
revert("No Arbitrage Found");
}
require(amountOut_ > amountIn, "Trade Reverted, Arbitrage not profitable");
if(tokenA == address(0)) {
payable(devAddr).transfer(amountOut_);
} else {
IERC20(tokenA).transfer(devAddr, amountOut_);
}
}
function simpleArbitrageFlashloan(uint256 _amountIn) internal returns(uint256){
address _tokenA;
if(tokenA == address(0)) {
// amountIn = msg.value;
address WETH = IUniswapV2Router02(exchangeB).WETH();
_tokenA = WETH;
} else {
_tokenA = tokenA;
// amountIn = _amountIn;
}
uint256 amountOut = 0;
uint256 amountOut_ = 0;
Exchange result = _comparePrice(_tokenA, tokenB, _amountIn); // loan _amountIn
if (result == Exchange.EXCA) {
// sell loanToken in uniswap for swapToken with high price and buy loanToken from sushiswap with lower price
amountOut = _swap(
_amountIn,
exchangeA,
_tokenA,
tokenB
);
} else if (result == Exchange.EXCB) {
// sell loanToken in sushiswap for swapToken with high price and buy loanToken from uniswap with lower price
amountOut = _swap(
_amountIn,
exchangeB,
_tokenA,
tokenB
);
} else {
revert("No Arbitrage Found");
}
Exchange result_ = _comparePrice(tokenB, _tokenA, amountOut); // loan amountIn
if (result_ == Exchange.EXCA) {
// sell loanToken in uniswap for swapToken with high price and buy loanToken from sushiswap with lower price
amountOut_ = _swap(
amountOut,
exchangeA,
tokenB,
_tokenA
);
} else if (result_ == Exchange.EXCB) {
// sell loanToken in sushiswap for swapToken with high price and buy loanToken from uniswap with lower price
amountOut_ = _swap(
amountOut,
exchangeB,
tokenB,
_tokenA
);
} else {
revert("No Arbitrage Found");
}
require(amountOut_ > _amountIn, "Trade Reverted, Arbitrage not profitable");
return amountOut_;
}
function _swap(
uint256 amountIn,
address routerAddress,
address sell_token,
address buy_token
) internal returns (uint256) {
address WETH = IUniswapV2Router02(routerAddress).WETH();
if(sell_token == address(0)) {
sell_token = WETH;
// IERC20(sell_token).approve(routerAddress, amountIn);
uint256 amountOutMin = (_getAmountOut(
routerAddress,
sell_token,
buy_token,
amountIn
) * 95) / 100;
address[] memory path = new address[](2);
path[0] = sell_token;
path[1] = buy_token;
uint256 amountOut = IUniswapV2Router02(routerAddress)
.swapExactETHForTokens{value : amountIn}(
amountOutMin,
path,
address(this),
block.timestamp + 15 minutes
)[1];
return amountOut;
} else if(buy_token == address(0)) {
buy_token = WETH;
IERC20(sell_token).approve(routerAddress, amountIn);
uint256 amountOutMin = (_getAmountOut(
routerAddress,
sell_token,
buy_token,
amountIn
) * 95) / 100;
address[] memory path = new address[](2);
path[0] = sell_token;
path[1] = buy_token;
uint256 amountOut = IUniswapV2Router02(routerAddress)
.swapExactTokensForETH(
amountIn,
amountOutMin,
path,
address(this),
block.timestamp + 15 minutes
)[1];
return amountOut;
} else {
IERC20(sell_token).approve(routerAddress, amountIn);
uint256 amountOutMin = (_getAmountOut(
routerAddress,
sell_token,
buy_token,
amountIn
) * 95) / 100;
address[] memory path = new address[](2);
path[0] = sell_token;
path[1] = buy_token;
uint256 amountOut = IUniswapV2Router02(routerAddress)
.swapExactTokensForTokens(
amountIn,
amountOutMin,
path,
address(this),
block.timestamp + 15 minutes
)[1];
return amountOut;
}
}
function _comparePrice(address _tokenA, address _tokenB, uint256 amount) internal view returns (Exchange) {
address WETH = IUniswapV2Router02(exchangeA).WETH();
if(_tokenA == address(0)) _tokenA = WETH;
else if(_tokenB == address(0)) _tokenB = WETH;
uint256 exchangeAPrice = _getAmountOut(
exchangeA,
_tokenA,
_tokenB,
amount
);
uint256 exchangeBPrice = _getAmountOut(
exchangeB,
_tokenA,
_tokenB,
amount
);
// we try to sell ETH with higher price and buy it back with low price to make profit
if (exchangeAPrice > exchangeBPrice) {
require(
_checkIfArbitrageIsProfitable(
amount,
exchangeAPrice,
exchangeBPrice
),
"Arbitrage not profitable"
);
return Exchange.EXCA;
} else if (exchangeAPrice < exchangeBPrice) {
require(
_checkIfArbitrageIsProfitable(
amount,
exchangeBPrice,
exchangeAPrice
),
"Arbitrage not profitable"
);
return Exchange.EXCB;
} else {
return Exchange.NONE;
}
}
function _checkIfArbitrageIsProfitable(
uint256 amountIn,
uint256 higherPrice,
uint256 lowerPrice
) internal pure returns (bool) {
// uniswap & sushiswap have 0.3% fee for every exchange
// so gain made must be greater than 2 * 0.3% * arbitrage_amount
// difference in ETH
uint256 difference = ((higherPrice - lowerPrice) * 10**18) /
higherPrice;
uint256 payed_fee = (amountIn * 3) / 1000;
if (difference > payed_fee) {
return true;
} else {
return false;
}
}
function _getAmountOut(
address routerAddress,
address sell_token,
address buy_token,
uint256 amount
) internal view returns (uint256) {
address[] memory pairs = new address[](2);
pairs[0] = sell_token;
pairs[1] = buy_token;
uint256 price = IUniswapV2Router02(routerAddress).getAmountsOut(
amount,
pairs
)[1];
return price;
}
//--------------------------------------------------------------------
// FLASHLOAN FUNCTIONS
/**
* @dev This function must be called only be the LENDING_POOL and takes care of repaying
* active debt positions, migrating collateral and incurring new V2 debt token debt.
*
* @param assets The array of flash loaned assets used to repay debts.
* @param amounts The array of flash loaned asset amounts used to repay debts.
* @param premiums The array of premiums incurred as additional debts.
* @param initiator The address that initiated the flash loan, unused.
* @param params The byte array containing, in this case, the arrays of aTokens and aTokenAmounts.
*/
function executeOperation(
address[] calldata assets,
uint256[] calldata amounts,
uint256[] calldata premiums,
address initiator,
bytes calldata params
) external override returns (bool) {
//
// Try to do arbitrage with the flashloan amount.
//
uint256 amountOut = simpleArbitrageFlashloan(amounts[0]);
// At the end of your logic above, this contract owes
// the flashloaned amounts + premiums.
// Therefore ensure your contract has enough to repay
// these amounts.
uint256 amountOwing = 0;
// Approve the LendingPool contract allowance to *pull* the owed amount
for (uint256 i = 0; i < assets.length; i++) {
amountOwing = amounts[i].add(premiums[i]);
IERC20(assets[i]).approve(address(LENDING_POOL), amountOwing);
}
if(tokenA == address(0)) {
address WETH = IUniswapV2Router02(exchangeA).WETH();
WBNB(WETH).withdraw(amountOut.sub(amountOwing));
payable(devAddr).transfer(amountOut.sub(amountOwing));
} else {
IERC20(tokenA).transfer(devAddr, amountOut.sub(amountOwing));
}
return true;
}
function flashloanArbitrage(uint256 _amountIn) public payable {
address receiverAddress = address(this);
uint256 amountIn = 0;
address _tokenA;
if(tokenA == address(0)) {
address WETH = IUniswapV2Router02(exchangeA).WETH();
_tokenA = WETH;
amountIn = msg.value;
WBNB(WETH).deposit{value: amountIn}();
} else {
_tokenA = tokenA;
amountIn = _amountIn;
}
address[] memory assets = new address[](1);
assets[0] = address(_tokenA);
// assets[1] = address(_tokenB);
uint256[] memory amounts = new uint256[](1);
amounts[0] = amountIn;
// amounts[0] = getERC20Balance(wethAddress);
// 0 = no debt, 1 = stable, 2 = variable
uint256[] memory modes = new uint256[](1);
modes[0] = 0;
// modes[1] = INSERT_ASSET_TWO_MODE;
address onBehalfOf = address(this);
bytes memory params = "";
uint16 referralCode = 0;
LENDING_POOL.flashLoan(
receiverAddress,
assets,
amounts,
modes,
onBehalfOf,
params,
referralCode
);
}
function getTokenBalance(address _erc20Address)
public
view
returns (uint256)
{
return IERC20(_erc20Address).balanceOf(address(this));
}
function getETHBalance()
public
view
returns (uint256)
{
return address(this).balance;
}
function checkProbability(address _tokenA, address _tokenB, uint256 _amountIn) public view returns(string memory){
Exchange result = _comparePrice(_tokenA, _tokenB, _amountIn);
if (result == Exchange.EXCA) {
return "Arbitrage Chances in ExchangeA";
}else if(result == Exchange.EXCB){
return "Arbitrage Chances in ExchangeB";
}else{
return "No Availabe Arbitrage";
}
}
receive() external payable {}
fallback() external payable { }
}
contract FlashLoanTriangularArbitrage is FlashLoanReceiverBase {
//--------------------------------------------------------------------
// VARIABLES
address public owner;
address public exchangeA;
address public exchangeB;
address public tokenA;
address public tokenB;
address public tokenC;
address public devAddr;
enum Exchange {
EXCA,
EXCB,
NONE
}
//--------------------------------------------------------------------
// MODIFIERS
modifier onlyOwner() {
require(devAddr == owner, "only owner can call this");
_;
}
//--------------------------------------------------------------------
// CONSTRUCTOR
constructor(
address _addressProvider, // 0x5E52dEc931FFb32f609681B8438A51c675cc232d
address _exchangeA, // 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D
address _exchangeB, // 0x1b02dA8Cb0d097eB8D57A175b88c7D8b47997506
address _tokenA,
address _tokenB,
address _tokenC,
address _devAddr
)
public
FlashLoanReceiverBase(ILendingPoolAddressesProvider(_addressProvider))
{
owner = devAddr;
exchangeA = _exchangeA;
exchangeB = _exchangeB;
tokenA = _tokenA;
tokenB = _tokenB;
tokenC = _tokenC;
devAddr = _devAddr;
}
//--------------------------------------------------------------------
// ARBITRAGE FUNCTIONS/LOGIC
function withdrawERC(address _tokenAddress, uint256 amount) public onlyOwner {
uint256 erc20Balance = getTokenBalance(_tokenAddress);
require(amount <= erc20Balance, "Not enough balance");
IERC20(_tokenAddress).transfer(devAddr, amount);
}
function withdrawETH(uint256 amount) public onlyOwner {
uint256 ethBalance = getETHBalance();
require(amount <= ethBalance, "Not enough balance");
payable(owner).transfer(amount);
}
function triangularArbitrage(uint256 _amountIn) public payable {
// address WETH = IUniswapV2Router02(exchangeB).WETH();
uint256 amountIn = 0;
if(tokenA == address(0)) {
amountIn = msg.value;
} else {
amountIn = _amountIn;
}
uint256 amountOut = 0;
uint256 amountOut_ = 0;
uint256 _amountOut_ = 0;
Exchange result = _comparePrice(tokenA, tokenB, amountIn); // loan amountIn
if (result == Exchange.EXCA) {
// sell loanToken in uniswap for swapToken with high price and buy loanToken from sushiswap with lower price
amountOut = _swap(
amountIn,
exchangeA,
tokenA,
tokenB
);
} else if (result == Exchange.EXCB) {
// sell loanToken in sushiswap for swapToken with high price and buy loanToken from uniswap with lower price
amountOut = _swap(
amountIn,
exchangeB,
tokenA,
tokenB
);
} else {
revert("No Arbitrage Found");
}
Exchange result_ = _comparePrice(tokenB, tokenC, amountOut); // loan amountIn
if (result_ == Exchange.EXCA) {
// sell loanToken in uniswap for swapToken with high price and buy loanToken from sushiswap with lower price
amountOut_ = _swap(
amountOut,
exchangeA,
tokenB,
tokenC
);
} else if (result_ == Exchange.EXCB) {
// sell loanToken in sushiswap for swapToken with high price and buy loanToken from uniswap with lower price
amountOut_ = _swap(
amountOut,
exchangeB,
tokenB,
tokenC
);
} else {
revert("No Arbitrage Found");
}
Exchange _result_ = _comparePrice(tokenC, tokenA, amountOut_); // loan amountIn
if (_result_ == Exchange.EXCA) {
// sell loanToken in uniswap for swapToken with high price and buy loanToken from sushiswap with lower price
_amountOut_ = _swap(
amountOut_,
exchangeA,
tokenC,
tokenA
);
} else if (_result_ == Exchange.EXCB) {
// sell loanToken in sushiswap for swapToken with high price and buy loanToken from uniswap with lower price
_amountOut_ = _swap(
amountOut_,
exchangeB,
tokenC,
tokenA
);
} else {
revert("No Arbitrage Found");
}
require(_amountOut_ > amountIn, "Trade Reverted, Arbitrage not profitable");
if(tokenA == address(0)) {
payable(devAddr).transfer(_amountOut_);
} else {
IERC20(tokenA).transfer(devAddr, _amountOut_);
}
}
function triangularArbitrageFlashloan(uint256 _amountIn) internal returns(uint256){
address WETH = IUniswapV2Router02(exchangeB).WETH();
// uint256 amountIn = 0;
address _tokenA;
if(tokenA == address(0)) {
// amountIn = msg.value;
_tokenA = WETH;
} else {
// amountIn = _amountIn;
_tokenA = tokenA;
}
uint256 amountOut = 0;
uint256 amountOut_ = 0;
uint256 _amountOut_ = 0;
Exchange result = _comparePrice(_tokenA, tokenB, _amountIn); // loan _amountIn
if (result == Exchange.EXCA) {
// sell loanToken in uniswap for swapToken with high price and buy loanToken from sushiswap with lower price
amountOut = _swap(
_amountIn,
exchangeA,
_tokenA,
tokenB
);
} else if (result == Exchange.EXCB) {
// sell loanToken in sushiswap for swapToken with high price and buy loanToken from uniswap with lower price
amountOut = _swap(
_amountIn,
exchangeB,
_tokenA,
tokenB
);
} else {
revert("No Arbitrage Found");
}
Exchange result_ = _comparePrice(tokenB, tokenC, amountOut); // loan amountIn
if (result_ == Exchange.EXCA) {
// sell loanToken in uniswap for swapToken with high price and buy loanToken from sushiswap with lower price
amountOut_ = _swap(
amountOut,
exchangeA,
tokenB,
tokenC
);
} else if (result_ == Exchange.EXCB) {
// sell loanToken in sushiswap for swapToken with high price and buy loanToken from uniswap with lower price
amountOut_ = _swap(
amountOut,
exchangeB,
tokenB,
tokenC
);
} else {
revert("No Arbitrage Found");
}
Exchange _result_ = _comparePrice(tokenC, _tokenA, amountOut_); // loan amountIn
if (_result_ == Exchange.EXCA) {
// sell loanToken in uniswap for swapToken with high price and buy loanToken from sushiswap with lower price
_amountOut_ = _swap(
amountOut_,
exchangeA,
tokenC,
_tokenA
);
} else if (_result_ == Exchange.EXCB) {
// sell loanToken in sushiswap for swapToken with high price and buy loanToken from uniswap with lower price
_amountOut_ = _swap(
amountOut_,
exchangeB,
tokenC,
_tokenA
);
} else {
revert("No Arbitrage Found");
}
require(_amountOut_ > _amountIn, "Trade Reverted, Arbitrage not profitable");
return _amountOut_;
}
function _swap(
uint256 amountIn,
address routerAddress,
address sell_token,
address buy_token
) internal returns (uint256) {
address WETH = IUniswapV2Router02(routerAddress).WETH();
if(sell_token == address(0)) {
sell_token = WETH;
// IERC20(sell_token).approve(routerAddress, amountIn);
uint256 amountOutMin = (_getAmountOut(
routerAddress,
sell_token,
buy_token,
amountIn
) * 95) / 100;
address[] memory path = new address[](2);
path[0] = sell_token;
path[1] = buy_token;
uint256 amountOut = IUniswapV2Router02(routerAddress)
.swapExactETHForTokens{value : amountIn}(
amountOutMin,
path,
address(this),
block.timestamp + 15 minutes
)[1];
return amountOut;
} else if(buy_token == address(0)) {
buy_token = WETH;
IERC20(sell_token).approve(routerAddress, amountIn);
uint256 amountOutMin = (_getAmountOut(
routerAddress,
sell_token,
buy_token,
amountIn
) * 95) / 100;
address[] memory path = new address[](2);
path[0] = sell_token;
path[1] = buy_token;
uint256 amountOut = IUniswapV2Router02(routerAddress)
.swapExactTokensForETH(
amountIn,
amountOutMin,
path,
address(this),
block.timestamp + 15 minutes
)[1];
return amountOut;
} else {
IERC20(sell_token).approve(routerAddress, amountIn);
uint256 amountOutMin = (_getAmountOut(
routerAddress,
sell_token,
buy_token,
amountIn
) * 95) / 100;
address[] memory path = new address[](2);
path[0] = sell_token;
path[1] = buy_token;
uint256 amountOut = IUniswapV2Router02(routerAddress)
.swapExactTokensForTokens(
amountIn,
amountOutMin,
path,
address(this),
block.timestamp + 15 minutes
)[1];
return amountOut;
}
}
function _comparePrice(address _tokenA, address _tokenB, uint256 amount) internal view returns (Exchange) {
// else if(tokenC == address(0)) tokenC = WETH;
address WETH = IUniswapV2Router02(exchangeA).WETH();
if(_tokenA == address(0)) _tokenA = WETH;
else if(_tokenB == address(0)) _tokenB = WETH;
uint256 uniswapPrice = _getAmountOut(
exchangeA,
_tokenA,
_tokenB,
amount
);
uint256 sushiswapPrice = _getAmountOut(
exchangeB,
_tokenA,
_tokenB,
amount
);
// we try to sell ETH with higher price and buy it back with low price to make profit
if (uniswapPrice > sushiswapPrice) {
require(
_checkIfArbitrageIsProfitable(
amount,
uniswapPrice,
sushiswapPrice
),
"Arbitrage not profitable"
);
return Exchange.EXCA;
} else if (uniswapPrice < sushiswapPrice) {
require(
_checkIfArbitrageIsProfitable(
amount,
sushiswapPrice,
uniswapPrice
),
"Arbitrage not profitable"
);
return Exchange.EXCB;
} else {
return Exchange.NONE;
}
}
function _checkIfArbitrageIsProfitable(
uint256 amountIn,
uint256 higherPrice,
uint256 lowerPrice
) internal pure returns (bool) {
// uniswap & sushiswap have 0.3% fee for every exchange
// so gain made must be greater than 2 * 0.3% * arbitrage_amount
// difference in ETH
uint256 difference = ((higherPrice - lowerPrice) * 10**18) /
higherPrice;
uint256 payed_fee = (amountIn * 3) / 1000;
if (difference > payed_fee) {
return true;
} else {
return false;
}
}
function _getAmountOut(
address routerAddress,
address sell_token,
address buy_token,
uint256 amount
) internal view returns (uint256) {
address[] memory pairs = new address[](2);
pairs[0] = sell_token;
pairs[1] = buy_token;
uint256 price = IUniswapV2Router02(routerAddress).getAmountsOut(
amount,
pairs
)[1];
return price;
}
/**
* @dev This function must be called only be the LENDING_POOL and takes care of repaying
* active debt positions, migrating collateral and incurring new V2 debt token debt.
*
* @param assets The array of flash loaned assets used to repay debts.
* @param amounts The array of flash loaned asset amounts used to repay debts.
* @param premiums The array of premiums incurred as additional debts.
* @param initiator The address that initiated the flash loan, unused.
* @param params The byte array containing, in this case, the arrays of aTokens and aTokenAmounts.
*/
function executeOperation(
address[] calldata assets,
uint256[] calldata amounts,
uint256[] calldata premiums,
address initiator,
bytes calldata params
) external override returns (bool) {
//
// Try to do arbitrage with the flashloan amount.
//
uint256 amountOut = triangularArbitrageFlashloan(amounts[0]);
// At the end of your logic above, this contract owes
// the flashloaned amounts + premiums.
// Therefore ensure your contract has enough to repay
// these amounts.
uint256 amountOwing = 0;
// Approve the LendingPool contract allowance to *pull* the owed amount
for (uint256 i = 0; i < assets.length; i++) {
amountOwing = amounts[i].add(premiums[i]);
IERC20(assets[i]).approve(address(LENDING_POOL), amountOwing);
}
if(tokenA == address(0)) {
address WETH = IUniswapV2Router02(exchangeA).WETH();
WBNB(WETH).withdraw(amountOut.sub(amountOwing));
payable(devAddr).transfer(amountOut.sub(amountOwing));
} else {
IERC20(tokenA).transfer(devAddr, amountOut.sub(amountOwing));
}
return true;
}
function flashloanArbitrage(uint256 _amountIn) public payable {
address receiverAddress = address(this);
uint256 amountIn = 0;
address _tokenA;
if(tokenA == address(0)) {
address WETH = IUniswapV2Router02(exchangeA).WETH();
_tokenA = WETH;
amountIn = msg.value;
WBNB(WETH).deposit{value: amountIn}();
} else {
_tokenA = tokenA;
amountIn = _amountIn;
}
address[] memory assets = new address[](1);
assets[0] = address(_tokenA);
// assets[1] = address(_tokenB);
// assets[2] = address(_tokenC);
uint256[] memory amounts = new uint256[](1);
amounts[0] = amountIn;
// amounts[0] = getERC20Balance(wethAddress);
// 0 = no debt, 1 = stable, 2 = variable
uint256[] memory modes = new uint256[](1);
modes[0] = 0;
// modes[1] = INSERT_ASSET_TWO_MODE;
address onBehalfOf = address(this);
bytes memory params = "";
uint16 referralCode = 0;
LENDING_POOL.flashLoan(
receiverAddress,
assets,
amounts,
modes,
onBehalfOf,
params,
referralCode
);
}
function getTokenBalance(address _erc20Address)
public
view
returns (uint256)
{
return IERC20(_erc20Address).balanceOf(address(this));
}
function getETHBalance()
public
view
returns (uint256)
{
return address(this).balance;
}
function checkProbability(address _tokenA, address _tokenB, uint256 _amountIn) public view returns(string memory){
Exchange result = _comparePrice(_tokenA, _tokenB, _amountIn);
if (result == Exchange.EXCA) {
return "Arbitrage Chances in ExchangeA";
}else if(result == Exchange.EXCB){
return "Arbitrage Chances in ExchangeB";
}else{
return "No Availabe Arbitrage";
}
}
receive() external payable {}
fallback() external payable { }
}
contract ArbitrageMain is Ownable {
using SafeMath for uint256;
address public providerAddress = 0xB53C1a33016B2DC2fF3653530bfF1848a515c8c5; // Mainnet
enum Exchange {
EXCA,
EXCB,
NONE
}
event SimpleArbitrageDeployed(address user, address arbitrage);
event SimpleFlashLoanArbitrageDeployed(address user, address arbitrage);
event TriangularArbitrageDeployed(address user, address arbitrage);
event TriangularFlashLoanArbitrageDeployed(address user, address arbitrage);
constructor() public {
}
function modifyProviderAddress(address _providerAddress) external onlyOwner {
providerAddress = _providerAddress;
}
function callSimpleArbitrage(address _user, address _exchangeA, address _exchangeB, address _tokenA, address _tokenB, uint256 _amountIn) public payable {
address payable contractA = address(new FlashLoanSimpleArbitrage(providerAddress, _exchangeA, _exchangeB, _tokenA, _tokenB, _user));
uint256 amountIn;
if(_tokenA == address(0)) {
amountIn = msg.value;
FlashLoanSimpleArbitrage(contractA).simpleArbitrage{value:amountIn}(0);
} else {
amountIn = _amountIn;
IERC20(_tokenA).transferFrom(_user, address(this), amountIn);
IERC20(_tokenA).transfer(contractA, amountIn);
FlashLoanSimpleArbitrage(contractA).simpleArbitrage(amountIn);
}
// IERC20(_tokenA).approve(contractA, amountIn);
// IERC20(_tokenB).approve(contractA, amountIn);
emit SimpleArbitrageDeployed(_user, contractA);
}
function callSimpleFlashLoan(address _user, address _exchangeA, address _exchangeB, address _tokenA, address _tokenB, uint256 _amountIn) public payable {
address payable contractA = address(new FlashLoanSimpleArbitrage(providerAddress, _exchangeA, _exchangeB, _tokenA, _tokenB, _user));
uint256 amountIn;
if(_tokenA == address(0)) {
amountIn = msg.value;
FlashLoanSimpleArbitrage(contractA).flashloanArbitrage{value:amountIn}(0);
} else {
amountIn = _amountIn;
FlashLoanSimpleArbitrage(contractA).flashloanArbitrage(amountIn);
}
emit SimpleFlashLoanArbitrageDeployed(_user, contractA);
}
function callTriangularArbitrage(address _user, address _exchangeA, address _exchangeB, address _tokenA, address _tokenB, address _tokenC, uint256 _amountIn) public payable {
address payable contractA = address(new FlashLoanTriangularArbitrage(providerAddress, _exchangeA, _exchangeB, _tokenA, _tokenB, _tokenC, _user));
uint256 amountIn;
if(_tokenA == address(0)) {
amountIn = msg.value;
FlashLoanTriangularArbitrage(contractA).triangularArbitrage{value:amountIn}(0);
} else {
amountIn = _amountIn;
IERC20(_tokenA).transferFrom(_user, address(this), amountIn);
IERC20(_tokenA).transfer(contractA, amountIn);
FlashLoanTriangularArbitrage(contractA).triangularArbitrage(amountIn);
}
emit TriangularArbitrageDeployed(_user, contractA);
}
function callTriangularFlashLoan(address _user, address _exchangeA, address _exchangeB, address _tokenA, address _tokenB, address _tokenC, uint256 _amountIn) public payable {
address payable contractA = address(new FlashLoanTriangularArbitrage(providerAddress, _exchangeA, _exchangeB, _tokenA, _tokenB, _tokenC, _user));
uint256 amountIn;
if(_tokenA == address(0)) {
amountIn = msg.value;
FlashLoanTriangularArbitrage(contractA).flashloanArbitrage{value:amountIn}(0);
} else {
amountIn = _amountIn;
FlashLoanTriangularArbitrage(contractA).flashloanArbitrage(amountIn);
}
emit TriangularFlashLoanArbitrageDeployed(_user, contractA);
}
function getTokenBalance(address _erc20Address)
public
view
returns (uint256)
{
return IERC20(_erc20Address).balanceOf(address(this));
}
function getETHBalance()
public
view
returns (uint256)
{
return address(this).balance;
}
function withdrawERC(address _tokenAddress, uint256 amount) public onlyOwner {
uint256 erc20Balance = getTokenBalance(_tokenAddress);
require(amount <= erc20Balance, "Not enough balance");
IERC20(_tokenAddress).transfer(msg.sender, amount);
}
function withdrawETH(uint256 amount) public onlyOwner {
uint256 ethBalance = getETHBalance();
require(amount <= ethBalance, "Not enough balance");
payable(owner).transfer(amount);
}
receive() external payable {}
fallback() external payable { }
}