semeval_id
int32
0
319
question
stringlengths
23
161
dataset
stringclasses
16 values
split
stringclasses
1 value
predicted_type
stringclasses
5 values
predicted_columns
stringlengths
6
161
phase
stringclasses
1 value
content
stringlengths
2.99k
55.1k
update_timestamp
stringclasses
15 values
0
Is the most favorited author mainly communicating in Spanish?
050_ING
dev
boolean
['favorites', 'lang']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "id", "type": "int64" }, { "name": "author_id", "type": "int64" }, { "name": "author_name", "type": "category" }, { "name": "author_handler", "type": "category" }, { "name": "author_avatar", "type": "category" }, { "name": "lang", "type": "category" }, { "name": "type", "type": "category" }, { "name": "text", "type": "object" }, { "name": "date", "type": "datetime64[ns, UTC]" }, { "name": "mention_ids", "type": "object" }, { "name": "mention_names", "type": "object" }, { "name": "retweets", "type": "uint8" }, { "name": "favorites", "type": "uint8" }, { "name": "links", "type": "object" }, { "name": "links_first", "type": "category" }, { "name": "image_links", "type": "object" }, { "name": "image_links_first", "type": "category" }, { "name": "rp_user_id", "type": "float64" }, { "name": "rp_user_name", "type": "category" }, { "name": "location", "type": "category" }, { "name": "tweet_link", "type": "category" }, { "name": "search", "type": "category" } ] } # Description of dataframe columns. df_descrption = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: Is the most favorited author mainly communicating in Spanish? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: Is the most favorited author mainly communicating in Spanish? df.columns = ['id', 'author_id', 'author_name', 'author_handler', 'author_avatar', 'lang', 'type', 'text', 'date', 'mention_ids', 'mention_names', 'retweets', 'favorites', 'links', 'links_first', 'image_links', 'image_links_first', 'rp_user_id', 'rp_user_name', 'location', 'tweet_link', 'search'] # Expected output type: is boolean, this will be checked. return
20250129013714
1
Does the author with the longest name post mainly original content?
050_ING
dev
boolean
['author_name', 'type']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "id", "type": "int64" }, { "name": "author_id", "type": "int64" }, { "name": "author_name", "type": "category" }, { "name": "author_handler", "type": "category" }, { "name": "author_avatar", "type": "category" }, { "name": "lang", "type": "category" }, { "name": "type", "type": "category" }, { "name": "text", "type": "object" }, { "name": "date", "type": "datetime64[ns, UTC]" }, { "name": "mention_ids", "type": "object" }, { "name": "mention_names", "type": "object" }, { "name": "retweets", "type": "uint8" }, { "name": "favorites", "type": "uint8" }, { "name": "links", "type": "object" }, { "name": "links_first", "type": "category" }, { "name": "image_links", "type": "object" }, { "name": "image_links_first", "type": "category" }, { "name": "rp_user_id", "type": "float64" }, { "name": "rp_user_name", "type": "category" }, { "name": "location", "type": "category" }, { "name": "tweet_link", "type": "category" }, { "name": "search", "type": "category" } ] } # Description of dataframe columns. df_descrption = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: Does the author with the longest name post mainly original content? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: Does the author with the longest name post mainly original content? df.columns = ['id', 'author_id', 'author_name', 'author_handler', 'author_avatar', 'lang', 'type', 'text', 'date', 'mention_ids', 'mention_names', 'retweets', 'favorites', 'links', 'links_first', 'image_links', 'image_links_first', 'rp_user_id', 'rp_user_name', 'location', 'tweet_link', 'search'] # Expected output type: is boolean, this will be checked. return
20250129013714
2
Is there an author who received no retweets for any of their posts?
050_ING
dev
boolean
['author_name', 'retweets']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "id", "type": "int64" }, { "name": "author_id", "type": "int64" }, { "name": "author_name", "type": "category" }, { "name": "author_handler", "type": "category" }, { "name": "author_avatar", "type": "category" }, { "name": "lang", "type": "category" }, { "name": "type", "type": "category" }, { "name": "text", "type": "object" }, { "name": "date", "type": "datetime64[ns, UTC]" }, { "name": "mention_ids", "type": "object" }, { "name": "mention_names", "type": "object" }, { "name": "retweets", "type": "uint8" }, { "name": "favorites", "type": "uint8" }, { "name": "links", "type": "object" }, { "name": "links_first", "type": "category" }, { "name": "image_links", "type": "object" }, { "name": "image_links_first", "type": "category" }, { "name": "rp_user_id", "type": "float64" }, { "name": "rp_user_name", "type": "category" }, { "name": "location", "type": "category" }, { "name": "tweet_link", "type": "category" }, { "name": "search", "type": "category" } ] } # Description of dataframe columns. df_descrption = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: Is there an author who received no retweets for any of their posts? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: Is there an author who received no retweets for any of their posts? df.columns = ['id', 'author_id', 'author_name', 'author_handler', 'author_avatar', 'lang', 'type', 'text', 'date', 'mention_ids', 'mention_names', 'retweets', 'favorites', 'links', 'links_first', 'image_links', 'image_links_first', 'rp_user_id', 'rp_user_name', 'location', 'tweet_link', 'search'] # Expected output type: is boolean, this will be checked. return
20250129013714
3
Are there any posts that do not contain any links?
050_ING
dev
boolean
['links']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "id", "type": "int64" }, { "name": "author_id", "type": "int64" }, { "name": "author_name", "type": "category" }, { "name": "author_handler", "type": "category" }, { "name": "author_avatar", "type": "category" }, { "name": "lang", "type": "category" }, { "name": "type", "type": "category" }, { "name": "text", "type": "object" }, { "name": "date", "type": "datetime64[ns, UTC]" }, { "name": "mention_ids", "type": "object" }, { "name": "mention_names", "type": "object" }, { "name": "retweets", "type": "uint8" }, { "name": "favorites", "type": "uint8" }, { "name": "links", "type": "object" }, { "name": "links_first", "type": "category" }, { "name": "image_links", "type": "object" }, { "name": "image_links_first", "type": "category" }, { "name": "rp_user_id", "type": "float64" }, { "name": "rp_user_name", "type": "category" }, { "name": "location", "type": "category" }, { "name": "tweet_link", "type": "category" }, { "name": "search", "type": "category" } ] } # Description of dataframe columns. df_descrption = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: Are there any posts that do not contain any links? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: Are there any posts that do not contain any links? df.columns = ['id', 'author_id', 'author_name', 'author_handler', 'author_avatar', 'lang', 'type', 'text', 'date', 'mention_ids', 'mention_names', 'retweets', 'favorites', 'links', 'links_first', 'image_links', 'image_links_first', 'rp_user_id', 'rp_user_name', 'location', 'tweet_link', 'search'] # Expected output type: is boolean, this will be checked. return
20250129013714
4
How many unique authors are in the dataset?
050_ING
dev
number
['author_name']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "id", "type": "int64" }, { "name": "author_id", "type": "int64" }, { "name": "author_name", "type": "category" }, { "name": "author_handler", "type": "category" }, { "name": "author_avatar", "type": "category" }, { "name": "lang", "type": "category" }, { "name": "type", "type": "category" }, { "name": "text", "type": "object" }, { "name": "date", "type": "datetime64[ns, UTC]" }, { "name": "mention_ids", "type": "object" }, { "name": "mention_names", "type": "object" }, { "name": "retweets", "type": "uint8" }, { "name": "favorites", "type": "uint8" }, { "name": "links", "type": "object" }, { "name": "links_first", "type": "category" }, { "name": "image_links", "type": "object" }, { "name": "image_links_first", "type": "category" }, { "name": "rp_user_id", "type": "float64" }, { "name": "rp_user_name", "type": "category" }, { "name": "location", "type": "category" }, { "name": "tweet_link", "type": "category" }, { "name": "search", "type": "category" } ] } # Description of dataframe columns. df_descrption = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: How many unique authors are in the dataset? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: How many unique authors are in the dataset? df.columns = ['id', 'author_id', 'author_name', 'author_handler', 'author_avatar', 'lang', 'type', 'text', 'date', 'mention_ids', 'mention_names', 'retweets', 'favorites', 'links', 'links_first', 'image_links', 'image_links_first', 'rp_user_id', 'rp_user_name', 'location', 'tweet_link', 'search'] # Expected output type: is number, this will be checked. return
20250129013714
5
What is the length of the longest post (based on the number of words)?
050_ING
dev
number
['text']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "id", "type": "int64" }, { "name": "author_id", "type": "int64" }, { "name": "author_name", "type": "category" }, { "name": "author_handler", "type": "category" }, { "name": "author_avatar", "type": "category" }, { "name": "lang", "type": "category" }, { "name": "type", "type": "category" }, { "name": "text", "type": "object" }, { "name": "date", "type": "datetime64[ns, UTC]" }, { "name": "mention_ids", "type": "object" }, { "name": "mention_names", "type": "object" }, { "name": "retweets", "type": "uint8" }, { "name": "favorites", "type": "uint8" }, { "name": "links", "type": "object" }, { "name": "links_first", "type": "category" }, { "name": "image_links", "type": "object" }, { "name": "image_links_first", "type": "category" }, { "name": "rp_user_id", "type": "float64" }, { "name": "rp_user_name", "type": "category" }, { "name": "location", "type": "category" }, { "name": "tweet_link", "type": "category" }, { "name": "search", "type": "category" } ] } # Description of dataframe columns. df_descrption = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: What is the length of the longest post (based on the number of words)? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: What is the length of the longest post (based on the number of words)? df.columns = ['id', 'author_id', 'author_name', 'author_handler', 'author_avatar', 'lang', 'type', 'text', 'date', 'mention_ids', 'mention_names', 'retweets', 'favorites', 'links', 'links_first', 'image_links', 'image_links_first', 'rp_user_id', 'rp_user_name', 'location', 'tweet_link', 'search'] # Expected output type: is number, this will be checked. return
20250129013714
6
What is the total number of retweets received by all authors in the dataset?
050_ING
dev
number
['retweets']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "id", "type": "int64" }, { "name": "author_id", "type": "int64" }, { "name": "author_name", "type": "category" }, { "name": "author_handler", "type": "category" }, { "name": "author_avatar", "type": "category" }, { "name": "lang", "type": "category" }, { "name": "type", "type": "category" }, { "name": "text", "type": "object" }, { "name": "date", "type": "datetime64[ns, UTC]" }, { "name": "mention_ids", "type": "object" }, { "name": "mention_names", "type": "object" }, { "name": "retweets", "type": "uint8" }, { "name": "favorites", "type": "uint8" }, { "name": "links", "type": "object" }, { "name": "links_first", "type": "category" }, { "name": "image_links", "type": "object" }, { "name": "image_links_first", "type": "category" }, { "name": "rp_user_id", "type": "float64" }, { "name": "rp_user_name", "type": "category" }, { "name": "location", "type": "category" }, { "name": "tweet_link", "type": "category" }, { "name": "search", "type": "category" } ] } # Description of dataframe columns. df_descrption = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: What is the total number of retweets received by all authors in the dataset? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: What is the total number of retweets received by all authors in the dataset? df.columns = ['id', 'author_id', 'author_name', 'author_handler', 'author_avatar', 'lang', 'type', 'text', 'date', 'mention_ids', 'mention_names', 'retweets', 'favorites', 'links', 'links_first', 'image_links', 'image_links_first', 'rp_user_id', 'rp_user_name', 'location', 'tweet_link', 'search'] # Expected output type: is number, this will be checked. return
20250129013714
7
How many posts do not contain any mentions of other users?
050_ING
dev
number
['mention_ids']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "id", "type": "int64" }, { "name": "author_id", "type": "int64" }, { "name": "author_name", "type": "category" }, { "name": "author_handler", "type": "category" }, { "name": "author_avatar", "type": "category" }, { "name": "lang", "type": "category" }, { "name": "type", "type": "category" }, { "name": "text", "type": "object" }, { "name": "date", "type": "datetime64[ns, UTC]" }, { "name": "mention_ids", "type": "object" }, { "name": "mention_names", "type": "object" }, { "name": "retweets", "type": "uint8" }, { "name": "favorites", "type": "uint8" }, { "name": "links", "type": "object" }, { "name": "links_first", "type": "category" }, { "name": "image_links", "type": "object" }, { "name": "image_links_first", "type": "category" }, { "name": "rp_user_id", "type": "float64" }, { "name": "rp_user_name", "type": "category" }, { "name": "location", "type": "category" }, { "name": "tweet_link", "type": "category" }, { "name": "search", "type": "category" } ] } # Description of dataframe columns. df_descrption = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: How many posts do not contain any mentions of other users? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: How many posts do not contain any mentions of other users? df.columns = ['id', 'author_id', 'author_name', 'author_handler', 'author_avatar', 'lang', 'type', 'text', 'date', 'mention_ids', 'mention_names', 'retweets', 'favorites', 'links', 'links_first', 'image_links', 'image_links_first', 'rp_user_id', 'rp_user_name', 'location', 'tweet_link', 'search'] # Expected output type: is number, this will be checked. return
20250129013714
8
What is the name of the author with the most retweeted single tweet?
050_ING
dev
category
['author_name', 'retweets']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "id", "type": "int64" }, { "name": "author_id", "type": "int64" }, { "name": "author_name", "type": "category" }, { "name": "author_handler", "type": "category" }, { "name": "author_avatar", "type": "category" }, { "name": "lang", "type": "category" }, { "name": "type", "type": "category" }, { "name": "text", "type": "object" }, { "name": "date", "type": "datetime64[ns, UTC]" }, { "name": "mention_ids", "type": "object" }, { "name": "mention_names", "type": "object" }, { "name": "retweets", "type": "uint8" }, { "name": "favorites", "type": "uint8" }, { "name": "links", "type": "object" }, { "name": "links_first", "type": "category" }, { "name": "image_links", "type": "object" }, { "name": "image_links_first", "type": "category" }, { "name": "rp_user_id", "type": "float64" }, { "name": "rp_user_name", "type": "category" }, { "name": "location", "type": "category" }, { "name": "tweet_link", "type": "category" }, { "name": "search", "type": "category" } ] } # Description of dataframe columns. df_descrption = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: What is the name of the author with the most retweeted single tweet? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: What is the name of the author with the most retweeted single tweet? df.columns = ['id', 'author_id', 'author_name', 'author_handler', 'author_avatar', 'lang', 'type', 'text', 'date', 'mention_ids', 'mention_names', 'retweets', 'favorites', 'links', 'links_first', 'image_links', 'image_links_first', 'rp_user_id', 'rp_user_name', 'location', 'tweet_link', 'search'] # Expected output type: is category, this will be checked. return
20250129013714
9
What is the language of the most favorited post?
050_ING
dev
category
['lang', 'favorites']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "id", "type": "int64" }, { "name": "author_id", "type": "int64" }, { "name": "author_name", "type": "category" }, { "name": "author_handler", "type": "category" }, { "name": "author_avatar", "type": "category" }, { "name": "lang", "type": "category" }, { "name": "type", "type": "category" }, { "name": "text", "type": "object" }, { "name": "date", "type": "datetime64[ns, UTC]" }, { "name": "mention_ids", "type": "object" }, { "name": "mention_names", "type": "object" }, { "name": "retweets", "type": "uint8" }, { "name": "favorites", "type": "uint8" }, { "name": "links", "type": "object" }, { "name": "links_first", "type": "category" }, { "name": "image_links", "type": "object" }, { "name": "image_links_first", "type": "category" }, { "name": "rp_user_id", "type": "float64" }, { "name": "rp_user_name", "type": "category" }, { "name": "location", "type": "category" }, { "name": "tweet_link", "type": "category" }, { "name": "search", "type": "category" } ] } # Description of dataframe columns. df_descrption = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: What is the language of the most favorited post? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: What is the language of the most favorited post? df.columns = ['id', 'author_id', 'author_name', 'author_handler', 'author_avatar', 'lang', 'type', 'text', 'date', 'mention_ids', 'mention_names', 'retweets', 'favorites', 'links', 'links_first', 'image_links', 'image_links_first', 'rp_user_id', 'rp_user_name', 'location', 'tweet_link', 'search'] # Expected output type: is category, this will be checked. return
20250129013714
10
Who is the author of the post with the most words?
050_ING
dev
category
['author_name', 'text']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "id", "type": "int64" }, { "name": "author_id", "type": "int64" }, { "name": "author_name", "type": "category" }, { "name": "author_handler", "type": "category" }, { "name": "author_avatar", "type": "category" }, { "name": "lang", "type": "category" }, { "name": "type", "type": "category" }, { "name": "text", "type": "object" }, { "name": "date", "type": "datetime64[ns, UTC]" }, { "name": "mention_ids", "type": "object" }, { "name": "mention_names", "type": "object" }, { "name": "retweets", "type": "uint8" }, { "name": "favorites", "type": "uint8" }, { "name": "links", "type": "object" }, { "name": "links_first", "type": "category" }, { "name": "image_links", "type": "object" }, { "name": "image_links_first", "type": "category" }, { "name": "rp_user_id", "type": "float64" }, { "name": "rp_user_name", "type": "category" }, { "name": "location", "type": "category" }, { "name": "tweet_link", "type": "category" }, { "name": "search", "type": "category" } ] } # Description of dataframe columns. df_descrption = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: Who is the author of the post with the most words? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: Who is the author of the post with the most words? df.columns = ['id', 'author_id', 'author_name', 'author_handler', 'author_avatar', 'lang', 'type', 'text', 'date', 'mention_ids', 'mention_names', 'retweets', 'favorites', 'links', 'links_first', 'image_links', 'image_links_first', 'rp_user_id', 'rp_user_name', 'location', 'tweet_link', 'search'] # Expected output type: is category, this will be checked. return
20250129013714
11
What type of post (original, reply, or other) is the most common in the dataset?
050_ING
dev
category
['type']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "id", "type": "int64" }, { "name": "author_id", "type": "int64" }, { "name": "author_name", "type": "category" }, { "name": "author_handler", "type": "category" }, { "name": "author_avatar", "type": "category" }, { "name": "lang", "type": "category" }, { "name": "type", "type": "category" }, { "name": "text", "type": "object" }, { "name": "date", "type": "datetime64[ns, UTC]" }, { "name": "mention_ids", "type": "object" }, { "name": "mention_names", "type": "object" }, { "name": "retweets", "type": "uint8" }, { "name": "favorites", "type": "uint8" }, { "name": "links", "type": "object" }, { "name": "links_first", "type": "category" }, { "name": "image_links", "type": "object" }, { "name": "image_links_first", "type": "category" }, { "name": "rp_user_id", "type": "float64" }, { "name": "rp_user_name", "type": "category" }, { "name": "location", "type": "category" }, { "name": "tweet_link", "type": "category" }, { "name": "search", "type": "category" } ] } # Description of dataframe columns. df_descrption = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: What type of post (original, reply, or other) is the most common in the dataset? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: What type of post (original, reply, or other) is the most common in the dataset? df.columns = ['id', 'author_id', 'author_name', 'author_handler', 'author_avatar', 'lang', 'type', 'text', 'date', 'mention_ids', 'mention_names', 'retweets', 'favorites', 'links', 'links_first', 'image_links', 'image_links_first', 'rp_user_id', 'rp_user_name', 'location', 'tweet_link', 'search'] # Expected output type: is category, this will be checked. return
20250129013714
12
Who are the authors of the top 3 most retweeted posts?
050_ING
dev
list[category]
['author_name', 'retweets']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "id", "type": "int64" }, { "name": "author_id", "type": "int64" }, { "name": "author_name", "type": "category" }, { "name": "author_handler", "type": "category" }, { "name": "author_avatar", "type": "category" }, { "name": "lang", "type": "category" }, { "name": "type", "type": "category" }, { "name": "text", "type": "object" }, { "name": "date", "type": "datetime64[ns, UTC]" }, { "name": "mention_ids", "type": "object" }, { "name": "mention_names", "type": "object" }, { "name": "retweets", "type": "uint8" }, { "name": "favorites", "type": "uint8" }, { "name": "links", "type": "object" }, { "name": "links_first", "type": "category" }, { "name": "image_links", "type": "object" }, { "name": "image_links_first", "type": "category" }, { "name": "rp_user_id", "type": "float64" }, { "name": "rp_user_name", "type": "category" }, { "name": "location", "type": "category" }, { "name": "tweet_link", "type": "category" }, { "name": "search", "type": "category" } ] } # Description of dataframe columns. df_descrption = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: Who are the authors of the top 3 most retweeted posts? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: Who are the authors of the top 3 most retweeted posts? df.columns = ['id', 'author_id', 'author_name', 'author_handler', 'author_avatar', 'lang', 'type', 'text', 'date', 'mention_ids', 'mention_names', 'retweets', 'favorites', 'links', 'links_first', 'image_links', 'image_links_first', 'rp_user_id', 'rp_user_name', 'location', 'tweet_link', 'search'] # Expected output type: is list[category], this will be checked. return
20250129013714
13
What are the languages of the 5 least favorited posts?
050_ING
dev
list[category]
['lang', 'favorites']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "id", "type": "int64" }, { "name": "author_id", "type": "int64" }, { "name": "author_name", "type": "category" }, { "name": "author_handler", "type": "category" }, { "name": "author_avatar", "type": "category" }, { "name": "lang", "type": "category" }, { "name": "type", "type": "category" }, { "name": "text", "type": "object" }, { "name": "date", "type": "datetime64[ns, UTC]" }, { "name": "mention_ids", "type": "object" }, { "name": "mention_names", "type": "object" }, { "name": "retweets", "type": "uint8" }, { "name": "favorites", "type": "uint8" }, { "name": "links", "type": "object" }, { "name": "links_first", "type": "category" }, { "name": "image_links", "type": "object" }, { "name": "image_links_first", "type": "category" }, { "name": "rp_user_id", "type": "float64" }, { "name": "rp_user_name", "type": "category" }, { "name": "location", "type": "category" }, { "name": "tweet_link", "type": "category" }, { "name": "search", "type": "category" } ] } # Description of dataframe columns. df_descrption = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: What are the languages of the 5 least favorited posts? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: What are the languages of the 5 least favorited posts? df.columns = ['id', 'author_id', 'author_name', 'author_handler', 'author_avatar', 'lang', 'type', 'text', 'date', 'mention_ids', 'mention_names', 'retweets', 'favorites', 'links', 'links_first', 'image_links', 'image_links_first', 'rp_user_id', 'rp_user_name', 'location', 'tweet_link', 'search'] # Expected output type: is list[category], this will be checked. return
20250129013714
14
Who are the authors of the 4 shortest posts (based on the number of words)?
050_ING
dev
list[category]
['author_name', 'text']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "id", "type": "int64" }, { "name": "author_id", "type": "int64" }, { "name": "author_name", "type": "category" }, { "name": "author_handler", "type": "category" }, { "name": "author_avatar", "type": "category" }, { "name": "lang", "type": "category" }, { "name": "type", "type": "category" }, { "name": "text", "type": "object" }, { "name": "date", "type": "datetime64[ns, UTC]" }, { "name": "mention_ids", "type": "object" }, { "name": "mention_names", "type": "object" }, { "name": "retweets", "type": "uint8" }, { "name": "favorites", "type": "uint8" }, { "name": "links", "type": "object" }, { "name": "links_first", "type": "category" }, { "name": "image_links", "type": "object" }, { "name": "image_links_first", "type": "category" }, { "name": "rp_user_id", "type": "float64" }, { "name": "rp_user_name", "type": "category" }, { "name": "location", "type": "category" }, { "name": "tweet_link", "type": "category" }, { "name": "search", "type": "category" } ] } # Description of dataframe columns. df_descrption = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: Who are the authors of the 4 shortest posts (based on the number of words)? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: Who are the authors of the 4 shortest posts (based on the number of words)? df.columns = ['id', 'author_id', 'author_name', 'author_handler', 'author_avatar', 'lang', 'type', 'text', 'date', 'mention_ids', 'mention_names', 'retweets', 'favorites', 'links', 'links_first', 'image_links', 'image_links_first', 'rp_user_id', 'rp_user_name', 'location', 'tweet_link', 'search'] # Expected output type: is list[category], this will be checked. return
20250129013714
15
What types of posts are the 6 most common in the dataset?
050_ING
dev
list[category]
['type']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "id", "type": "int64" }, { "name": "author_id", "type": "int64" }, { "name": "author_name", "type": "category" }, { "name": "author_handler", "type": "category" }, { "name": "author_avatar", "type": "category" }, { "name": "lang", "type": "category" }, { "name": "type", "type": "category" }, { "name": "text", "type": "object" }, { "name": "date", "type": "datetime64[ns, UTC]" }, { "name": "mention_ids", "type": "object" }, { "name": "mention_names", "type": "object" }, { "name": "retweets", "type": "uint8" }, { "name": "favorites", "type": "uint8" }, { "name": "links", "type": "object" }, { "name": "links_first", "type": "category" }, { "name": "image_links", "type": "object" }, { "name": "image_links_first", "type": "category" }, { "name": "rp_user_id", "type": "float64" }, { "name": "rp_user_name", "type": "category" }, { "name": "location", "type": "category" }, { "name": "tweet_link", "type": "category" }, { "name": "search", "type": "category" } ] } # Description of dataframe columns. df_descrption = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: What types of posts are the 6 most common in the dataset? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: What types of posts are the 6 most common in the dataset? df.columns = ['id', 'author_id', 'author_name', 'author_handler', 'author_avatar', 'lang', 'type', 'text', 'date', 'mention_ids', 'mention_names', 'retweets', 'favorites', 'links', 'links_first', 'image_links', 'image_links_first', 'rp_user_id', 'rp_user_name', 'location', 'tweet_link', 'search'] # Expected output type: is list[category], this will be checked. return
20250129013714
16
What are the retweet counts for the top 5 most favorited posts?
050_ING
dev
list[number]
['retweets', 'favorites']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "id", "type": "int64" }, { "name": "author_id", "type": "int64" }, { "name": "author_name", "type": "category" }, { "name": "author_handler", "type": "category" }, { "name": "author_avatar", "type": "category" }, { "name": "lang", "type": "category" }, { "name": "type", "type": "category" }, { "name": "text", "type": "object" }, { "name": "date", "type": "datetime64[ns, UTC]" }, { "name": "mention_ids", "type": "object" }, { "name": "mention_names", "type": "object" }, { "name": "retweets", "type": "uint8" }, { "name": "favorites", "type": "uint8" }, { "name": "links", "type": "object" }, { "name": "links_first", "type": "category" }, { "name": "image_links", "type": "object" }, { "name": "image_links_first", "type": "category" }, { "name": "rp_user_id", "type": "float64" }, { "name": "rp_user_name", "type": "category" }, { "name": "location", "type": "category" }, { "name": "tweet_link", "type": "category" }, { "name": "search", "type": "category" } ] } # Description of dataframe columns. df_descrption = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: What are the retweet counts for the top 5 most favorited posts? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: What are the retweet counts for the top 5 most favorited posts? df.columns = ['id', 'author_id', 'author_name', 'author_handler', 'author_avatar', 'lang', 'type', 'text', 'date', 'mention_ids', 'mention_names', 'retweets', 'favorites', 'links', 'links_first', 'image_links', 'image_links_first', 'rp_user_id', 'rp_user_name', 'location', 'tweet_link', 'search'] # Expected output type: is list[number], this will be checked. return
20250129013714
17
What are the word counts of the 3 longest posts?
050_ING
dev
list[number]
['text']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "id", "type": "int64" }, { "name": "author_id", "type": "int64" }, { "name": "author_name", "type": "category" }, { "name": "author_handler", "type": "category" }, { "name": "author_avatar", "type": "category" }, { "name": "lang", "type": "category" }, { "name": "type", "type": "category" }, { "name": "text", "type": "object" }, { "name": "date", "type": "datetime64[ns, UTC]" }, { "name": "mention_ids", "type": "object" }, { "name": "mention_names", "type": "object" }, { "name": "retweets", "type": "uint8" }, { "name": "favorites", "type": "uint8" }, { "name": "links", "type": "object" }, { "name": "links_first", "type": "category" }, { "name": "image_links", "type": "object" }, { "name": "image_links_first", "type": "category" }, { "name": "rp_user_id", "type": "float64" }, { "name": "rp_user_name", "type": "category" }, { "name": "location", "type": "category" }, { "name": "tweet_link", "type": "category" }, { "name": "search", "type": "category" } ] } # Description of dataframe columns. df_descrption = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: What are the word counts of the 3 longest posts? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: What are the word counts of the 3 longest posts? df.columns = ['id', 'author_id', 'author_name', 'author_handler', 'author_avatar', 'lang', 'type', 'text', 'date', 'mention_ids', 'mention_names', 'retweets', 'favorites', 'links', 'links_first', 'image_links', 'image_links_first', 'rp_user_id', 'rp_user_name', 'location', 'tweet_link', 'search'] # Expected output type: is list[number], this will be checked. return
20250129013714
18
What are the retweet counts of the 4 least favorited posts?
050_ING
dev
list[number]
['retweets', 'favorites']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "id", "type": "int64" }, { "name": "author_id", "type": "int64" }, { "name": "author_name", "type": "category" }, { "name": "author_handler", "type": "category" }, { "name": "author_avatar", "type": "category" }, { "name": "lang", "type": "category" }, { "name": "type", "type": "category" }, { "name": "text", "type": "object" }, { "name": "date", "type": "datetime64[ns, UTC]" }, { "name": "mention_ids", "type": "object" }, { "name": "mention_names", "type": "object" }, { "name": "retweets", "type": "uint8" }, { "name": "favorites", "type": "uint8" }, { "name": "links", "type": "object" }, { "name": "links_first", "type": "category" }, { "name": "image_links", "type": "object" }, { "name": "image_links_first", "type": "category" }, { "name": "rp_user_id", "type": "float64" }, { "name": "rp_user_name", "type": "category" }, { "name": "location", "type": "category" }, { "name": "tweet_link", "type": "category" }, { "name": "search", "type": "category" } ] } # Description of dataframe columns. df_descrption = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: What are the retweet counts of the 4 least favorited posts? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: What are the retweet counts of the 4 least favorited posts? df.columns = ['id', 'author_id', 'author_name', 'author_handler', 'author_avatar', 'lang', 'type', 'text', 'date', 'mention_ids', 'mention_names', 'retweets', 'favorites', 'links', 'links_first', 'image_links', 'image_links_first', 'rp_user_id', 'rp_user_name', 'location', 'tweet_link', 'search'] # Expected output type: is list[number], this will be checked. return
20250129013714
19
What are the word counts for the 6 shortest posts?
050_ING
dev
list[number]
['text']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "id", "type": "int64" }, { "name": "author_id", "type": "int64" }, { "name": "author_name", "type": "category" }, { "name": "author_handler", "type": "category" }, { "name": "author_avatar", "type": "category" }, { "name": "lang", "type": "category" }, { "name": "type", "type": "category" }, { "name": "text", "type": "object" }, { "name": "date", "type": "datetime64[ns, UTC]" }, { "name": "mention_ids", "type": "object" }, { "name": "mention_names", "type": "object" }, { "name": "retweets", "type": "uint8" }, { "name": "favorites", "type": "uint8" }, { "name": "links", "type": "object" }, { "name": "links_first", "type": "category" }, { "name": "image_links", "type": "object" }, { "name": "image_links_first", "type": "category" }, { "name": "rp_user_id", "type": "float64" }, { "name": "rp_user_name", "type": "category" }, { "name": "location", "type": "category" }, { "name": "tweet_link", "type": "category" }, { "name": "search", "type": "category" } ] } # Description of dataframe columns. df_descrption = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: What are the word counts for the 6 shortest posts? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: What are the word counts for the 6 shortest posts? df.columns = ['id', 'author_id', 'author_name', 'author_handler', 'author_avatar', 'lang', 'type', 'text', 'date', 'mention_ids', 'mention_names', 'retweets', 'favorites', 'links', 'links_first', 'image_links', 'image_links_first', 'rp_user_id', 'rp_user_name', 'location', 'tweet_link', 'search'] # Expected output type: is list[number], this will be checked. return
20250129013714
20
Is there a Pokémon named 'Pikachu' in the dataset?
051_Pokemon
dev
boolean
['name']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "number", "type": "uint16" }, { "name": "name", "type": "category" }, { "name": "type1", "type": "category" }, { "name": "type2", "type": "category" }, { "name": "total", "type": "uint16" }, { "name": "hp", "type": "uint8" }, { "name": "attack", "type": "uint8" }, { "name": "defense", "type": "uint8" }, { "name": "sp_attack", "type": "uint8" }, { "name": "sp_defense", "type": "uint8" }, { "name": "speed", "type": "uint8" }, { "name": "generation", "type": "uint8" }, { "name": "legendary", "type": "bool" } ] } # Description of dataframe columns. df_descrption = { "count":{ "number":1072.0, "total":1072.0, "hp":1072.0, "attack":1072.0, "defense":1072.0, "sp_attack":1072.0, "sp_defense":1072.0, "speed":1072.0, "generation":1072.0 }, "mean":{ "number":445.2192164179, "total":440.885261194, "hp":70.4869402985, "attack":80.9384328358, "defense":74.9682835821, "sp_attack":73.2733208955, "sp_defense":72.4766791045, "speed":68.7929104478, "generation":4.2947761194 }, "std":{ "number":267.77280649, "total":121.3790771926, "hp":26.8680389923, "attack":32.4635820748, "defense":31.2080593873, "sp_attack":32.6431190064, "sp_defense":27.9342534926, "speed":30.0762806451, "generation":2.3464717631 }, "min":{ "number":1.0, "total":175.0, "hp":1.0, "attack":5.0, "defense":5.0, "sp_attack":10.0, "sp_defense":20.0, "speed":5.0, "generation":0.0 }, "25%":{ "number":209.75, "total":330.0, "hp":50.0, "attack":56.0, "defense":52.0, "sp_attack":50.0, "sp_defense":50.0, "speed":45.0, "generation":2.0 }, "50%":{ "number":442.5, "total":460.5, "hp":68.0, "attack":80.0, "defense":70.0, "sp_attack":65.0, "sp_defense":70.0, "speed":65.0, "generation":4.0 }, "75%":{ "number":681.25, "total":519.25, "hp":84.0, "attack":100.0, "defense":90.0, "sp_attack":95.0, "sp_defense":90.0, "speed":90.0, "generation":6.0 }, "max":{ "number":898.0, "total":1125.0, "hp":255.0, "attack":190.0, "defense":250.0, "sp_attack":194.0, "sp_defense":250.0, "speed":200.0, "generation":8.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "number":1072.0, "total":1072.0, "hp":1072.0, "attack":1072.0, "defense":1072.0, "sp_attack":1072.0, "sp_defense":1072.0, "speed":1072.0, "generation":1072.0 }, "mean":{ "number":445.2192164179, "total":440.885261194, "hp":70.4869402985, "attack":80.9384328358, "defense":74.9682835821, "sp_attack":73.2733208955, "sp_defense":72.4766791045, "speed":68.7929104478, "generation":4.2947761194 }, "std":{ "number":267.77280649, "total":121.3790771926, "hp":26.8680389923, "attack":32.4635820748, "defense":31.2080593873, "sp_attack":32.6431190064, "sp_defense":27.9342534926, "speed":30.0762806451, "generation":2.3464717631 }, "min":{ "number":1.0, "total":175.0, "hp":1.0, "attack":5.0, "defense":5.0, "sp_attack":10.0, "sp_defense":20.0, "speed":5.0, "generation":0.0 }, "25%":{ "number":209.75, "total":330.0, "hp":50.0, "attack":56.0, "defense":52.0, "sp_attack":50.0, "sp_defense":50.0, "speed":45.0, "generation":2.0 }, "50%":{ "number":442.5, "total":460.5, "hp":68.0, "attack":80.0, "defense":70.0, "sp_attack":65.0, "sp_defense":70.0, "speed":65.0, "generation":4.0 }, "75%":{ "number":681.25, "total":519.25, "hp":84.0, "attack":100.0, "defense":90.0, "sp_attack":95.0, "sp_defense":90.0, "speed":90.0, "generation":6.0 }, "max":{ "number":898.0, "total":1125.0, "hp":255.0, "attack":190.0, "defense":250.0, "sp_attack":194.0, "sp_defense":250.0, "speed":200.0, "generation":8.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: Is there a Pokémon named 'Pikachu' in the dataset? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: Is there a Pokémon named 'Pikachu' in the dataset? df.columns = ['number', 'name', 'type1', 'type2', 'total', 'hp', 'attack', 'defense', 'sp_attack', 'sp_defense', 'speed', 'generation', 'legendary'] # Expected output type: is boolean, this will be checked. return
20250129013714
21
Are there any Pokémon with a total stat greater than 700?
051_Pokemon
dev
boolean
['total']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "number", "type": "uint16" }, { "name": "name", "type": "category" }, { "name": "type1", "type": "category" }, { "name": "type2", "type": "category" }, { "name": "total", "type": "uint16" }, { "name": "hp", "type": "uint8" }, { "name": "attack", "type": "uint8" }, { "name": "defense", "type": "uint8" }, { "name": "sp_attack", "type": "uint8" }, { "name": "sp_defense", "type": "uint8" }, { "name": "speed", "type": "uint8" }, { "name": "generation", "type": "uint8" }, { "name": "legendary", "type": "bool" } ] } # Description of dataframe columns. df_descrption = { "count":{ "number":1072.0, "total":1072.0, "hp":1072.0, "attack":1072.0, "defense":1072.0, "sp_attack":1072.0, "sp_defense":1072.0, "speed":1072.0, "generation":1072.0 }, "mean":{ "number":445.2192164179, "total":440.885261194, "hp":70.4869402985, "attack":80.9384328358, "defense":74.9682835821, "sp_attack":73.2733208955, "sp_defense":72.4766791045, "speed":68.7929104478, "generation":4.2947761194 }, "std":{ "number":267.77280649, "total":121.3790771926, "hp":26.8680389923, "attack":32.4635820748, "defense":31.2080593873, "sp_attack":32.6431190064, "sp_defense":27.9342534926, "speed":30.0762806451, "generation":2.3464717631 }, "min":{ "number":1.0, "total":175.0, "hp":1.0, "attack":5.0, "defense":5.0, "sp_attack":10.0, "sp_defense":20.0, "speed":5.0, "generation":0.0 }, "25%":{ "number":209.75, "total":330.0, "hp":50.0, "attack":56.0, "defense":52.0, "sp_attack":50.0, "sp_defense":50.0, "speed":45.0, "generation":2.0 }, "50%":{ "number":442.5, "total":460.5, "hp":68.0, "attack":80.0, "defense":70.0, "sp_attack":65.0, "sp_defense":70.0, "speed":65.0, "generation":4.0 }, "75%":{ "number":681.25, "total":519.25, "hp":84.0, "attack":100.0, "defense":90.0, "sp_attack":95.0, "sp_defense":90.0, "speed":90.0, "generation":6.0 }, "max":{ "number":898.0, "total":1125.0, "hp":255.0, "attack":190.0, "defense":250.0, "sp_attack":194.0, "sp_defense":250.0, "speed":200.0, "generation":8.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "number":1072.0, "total":1072.0, "hp":1072.0, "attack":1072.0, "defense":1072.0, "sp_attack":1072.0, "sp_defense":1072.0, "speed":1072.0, "generation":1072.0 }, "mean":{ "number":445.2192164179, "total":440.885261194, "hp":70.4869402985, "attack":80.9384328358, "defense":74.9682835821, "sp_attack":73.2733208955, "sp_defense":72.4766791045, "speed":68.7929104478, "generation":4.2947761194 }, "std":{ "number":267.77280649, "total":121.3790771926, "hp":26.8680389923, "attack":32.4635820748, "defense":31.2080593873, "sp_attack":32.6431190064, "sp_defense":27.9342534926, "speed":30.0762806451, "generation":2.3464717631 }, "min":{ "number":1.0, "total":175.0, "hp":1.0, "attack":5.0, "defense":5.0, "sp_attack":10.0, "sp_defense":20.0, "speed":5.0, "generation":0.0 }, "25%":{ "number":209.75, "total":330.0, "hp":50.0, "attack":56.0, "defense":52.0, "sp_attack":50.0, "sp_defense":50.0, "speed":45.0, "generation":2.0 }, "50%":{ "number":442.5, "total":460.5, "hp":68.0, "attack":80.0, "defense":70.0, "sp_attack":65.0, "sp_defense":70.0, "speed":65.0, "generation":4.0 }, "75%":{ "number":681.25, "total":519.25, "hp":84.0, "attack":100.0, "defense":90.0, "sp_attack":95.0, "sp_defense":90.0, "speed":90.0, "generation":6.0 }, "max":{ "number":898.0, "total":1125.0, "hp":255.0, "attack":190.0, "defense":250.0, "sp_attack":194.0, "sp_defense":250.0, "speed":200.0, "generation":8.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: Are there any Pokémon with a total stat greater than 700? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: Are there any Pokémon with a total stat greater than 700? df.columns = ['number', 'name', 'type1', 'type2', 'total', 'hp', 'attack', 'defense', 'sp_attack', 'sp_defense', 'speed', 'generation', 'legendary'] # Expected output type: is boolean, this will be checked. return
20250129013714
22
Are all Pokémon in the first generation legendary?
051_Pokemon
dev
boolean
['generation', 'legendary']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "number", "type": "uint16" }, { "name": "name", "type": "category" }, { "name": "type1", "type": "category" }, { "name": "type2", "type": "category" }, { "name": "total", "type": "uint16" }, { "name": "hp", "type": "uint8" }, { "name": "attack", "type": "uint8" }, { "name": "defense", "type": "uint8" }, { "name": "sp_attack", "type": "uint8" }, { "name": "sp_defense", "type": "uint8" }, { "name": "speed", "type": "uint8" }, { "name": "generation", "type": "uint8" }, { "name": "legendary", "type": "bool" } ] } # Description of dataframe columns. df_descrption = { "count":{ "number":1072.0, "total":1072.0, "hp":1072.0, "attack":1072.0, "defense":1072.0, "sp_attack":1072.0, "sp_defense":1072.0, "speed":1072.0, "generation":1072.0 }, "mean":{ "number":445.2192164179, "total":440.885261194, "hp":70.4869402985, "attack":80.9384328358, "defense":74.9682835821, "sp_attack":73.2733208955, "sp_defense":72.4766791045, "speed":68.7929104478, "generation":4.2947761194 }, "std":{ "number":267.77280649, "total":121.3790771926, "hp":26.8680389923, "attack":32.4635820748, "defense":31.2080593873, "sp_attack":32.6431190064, "sp_defense":27.9342534926, "speed":30.0762806451, "generation":2.3464717631 }, "min":{ "number":1.0, "total":175.0, "hp":1.0, "attack":5.0, "defense":5.0, "sp_attack":10.0, "sp_defense":20.0, "speed":5.0, "generation":0.0 }, "25%":{ "number":209.75, "total":330.0, "hp":50.0, "attack":56.0, "defense":52.0, "sp_attack":50.0, "sp_defense":50.0, "speed":45.0, "generation":2.0 }, "50%":{ "number":442.5, "total":460.5, "hp":68.0, "attack":80.0, "defense":70.0, "sp_attack":65.0, "sp_defense":70.0, "speed":65.0, "generation":4.0 }, "75%":{ "number":681.25, "total":519.25, "hp":84.0, "attack":100.0, "defense":90.0, "sp_attack":95.0, "sp_defense":90.0, "speed":90.0, "generation":6.0 }, "max":{ "number":898.0, "total":1125.0, "hp":255.0, "attack":190.0, "defense":250.0, "sp_attack":194.0, "sp_defense":250.0, "speed":200.0, "generation":8.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "number":1072.0, "total":1072.0, "hp":1072.0, "attack":1072.0, "defense":1072.0, "sp_attack":1072.0, "sp_defense":1072.0, "speed":1072.0, "generation":1072.0 }, "mean":{ "number":445.2192164179, "total":440.885261194, "hp":70.4869402985, "attack":80.9384328358, "defense":74.9682835821, "sp_attack":73.2733208955, "sp_defense":72.4766791045, "speed":68.7929104478, "generation":4.2947761194 }, "std":{ "number":267.77280649, "total":121.3790771926, "hp":26.8680389923, "attack":32.4635820748, "defense":31.2080593873, "sp_attack":32.6431190064, "sp_defense":27.9342534926, "speed":30.0762806451, "generation":2.3464717631 }, "min":{ "number":1.0, "total":175.0, "hp":1.0, "attack":5.0, "defense":5.0, "sp_attack":10.0, "sp_defense":20.0, "speed":5.0, "generation":0.0 }, "25%":{ "number":209.75, "total":330.0, "hp":50.0, "attack":56.0, "defense":52.0, "sp_attack":50.0, "sp_defense":50.0, "speed":45.0, "generation":2.0 }, "50%":{ "number":442.5, "total":460.5, "hp":68.0, "attack":80.0, "defense":70.0, "sp_attack":65.0, "sp_defense":70.0, "speed":65.0, "generation":4.0 }, "75%":{ "number":681.25, "total":519.25, "hp":84.0, "attack":100.0, "defense":90.0, "sp_attack":95.0, "sp_defense":90.0, "speed":90.0, "generation":6.0 }, "max":{ "number":898.0, "total":1125.0, "hp":255.0, "attack":190.0, "defense":250.0, "sp_attack":194.0, "sp_defense":250.0, "speed":200.0, "generation":8.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: Are all Pokémon in the first generation legendary? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: Are all Pokémon in the first generation legendary? df.columns = ['number', 'name', 'type1', 'type2', 'total', 'hp', 'attack', 'defense', 'sp_attack', 'sp_defense', 'speed', 'generation', 'legendary'] # Expected output type: is boolean, this will be checked. return
20250129013715
23
Is there any Pokémon with a speed greater than 150?
051_Pokemon
dev
boolean
['speed']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "number", "type": "uint16" }, { "name": "name", "type": "category" }, { "name": "type1", "type": "category" }, { "name": "type2", "type": "category" }, { "name": "total", "type": "uint16" }, { "name": "hp", "type": "uint8" }, { "name": "attack", "type": "uint8" }, { "name": "defense", "type": "uint8" }, { "name": "sp_attack", "type": "uint8" }, { "name": "sp_defense", "type": "uint8" }, { "name": "speed", "type": "uint8" }, { "name": "generation", "type": "uint8" }, { "name": "legendary", "type": "bool" } ] } # Description of dataframe columns. df_descrption = { "count":{ "number":1072.0, "total":1072.0, "hp":1072.0, "attack":1072.0, "defense":1072.0, "sp_attack":1072.0, "sp_defense":1072.0, "speed":1072.0, "generation":1072.0 }, "mean":{ "number":445.2192164179, "total":440.885261194, "hp":70.4869402985, "attack":80.9384328358, "defense":74.9682835821, "sp_attack":73.2733208955, "sp_defense":72.4766791045, "speed":68.7929104478, "generation":4.2947761194 }, "std":{ "number":267.77280649, "total":121.3790771926, "hp":26.8680389923, "attack":32.4635820748, "defense":31.2080593873, "sp_attack":32.6431190064, "sp_defense":27.9342534926, "speed":30.0762806451, "generation":2.3464717631 }, "min":{ "number":1.0, "total":175.0, "hp":1.0, "attack":5.0, "defense":5.0, "sp_attack":10.0, "sp_defense":20.0, "speed":5.0, "generation":0.0 }, "25%":{ "number":209.75, "total":330.0, "hp":50.0, "attack":56.0, "defense":52.0, "sp_attack":50.0, "sp_defense":50.0, "speed":45.0, "generation":2.0 }, "50%":{ "number":442.5, "total":460.5, "hp":68.0, "attack":80.0, "defense":70.0, "sp_attack":65.0, "sp_defense":70.0, "speed":65.0, "generation":4.0 }, "75%":{ "number":681.25, "total":519.25, "hp":84.0, "attack":100.0, "defense":90.0, "sp_attack":95.0, "sp_defense":90.0, "speed":90.0, "generation":6.0 }, "max":{ "number":898.0, "total":1125.0, "hp":255.0, "attack":190.0, "defense":250.0, "sp_attack":194.0, "sp_defense":250.0, "speed":200.0, "generation":8.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "number":1072.0, "total":1072.0, "hp":1072.0, "attack":1072.0, "defense":1072.0, "sp_attack":1072.0, "sp_defense":1072.0, "speed":1072.0, "generation":1072.0 }, "mean":{ "number":445.2192164179, "total":440.885261194, "hp":70.4869402985, "attack":80.9384328358, "defense":74.9682835821, "sp_attack":73.2733208955, "sp_defense":72.4766791045, "speed":68.7929104478, "generation":4.2947761194 }, "std":{ "number":267.77280649, "total":121.3790771926, "hp":26.8680389923, "attack":32.4635820748, "defense":31.2080593873, "sp_attack":32.6431190064, "sp_defense":27.9342534926, "speed":30.0762806451, "generation":2.3464717631 }, "min":{ "number":1.0, "total":175.0, "hp":1.0, "attack":5.0, "defense":5.0, "sp_attack":10.0, "sp_defense":20.0, "speed":5.0, "generation":0.0 }, "25%":{ "number":209.75, "total":330.0, "hp":50.0, "attack":56.0, "defense":52.0, "sp_attack":50.0, "sp_defense":50.0, "speed":45.0, "generation":2.0 }, "50%":{ "number":442.5, "total":460.5, "hp":68.0, "attack":80.0, "defense":70.0, "sp_attack":65.0, "sp_defense":70.0, "speed":65.0, "generation":4.0 }, "75%":{ "number":681.25, "total":519.25, "hp":84.0, "attack":100.0, "defense":90.0, "sp_attack":95.0, "sp_defense":90.0, "speed":90.0, "generation":6.0 }, "max":{ "number":898.0, "total":1125.0, "hp":255.0, "attack":190.0, "defense":250.0, "sp_attack":194.0, "sp_defense":250.0, "speed":200.0, "generation":8.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: Is there any Pokémon with a speed greater than 150? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: Is there any Pokémon with a speed greater than 150? df.columns = ['number', 'name', 'type1', 'type2', 'total', 'hp', 'attack', 'defense', 'sp_attack', 'sp_defense', 'speed', 'generation', 'legendary'] # Expected output type: is boolean, this will be checked. return
20250129013715
24
How many unique Pokémon types are there in the 'type1' column?
051_Pokemon
dev
number
['type1']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "number", "type": "uint16" }, { "name": "name", "type": "category" }, { "name": "type1", "type": "category" }, { "name": "type2", "type": "category" }, { "name": "total", "type": "uint16" }, { "name": "hp", "type": "uint8" }, { "name": "attack", "type": "uint8" }, { "name": "defense", "type": "uint8" }, { "name": "sp_attack", "type": "uint8" }, { "name": "sp_defense", "type": "uint8" }, { "name": "speed", "type": "uint8" }, { "name": "generation", "type": "uint8" }, { "name": "legendary", "type": "bool" } ] } # Description of dataframe columns. df_descrption = { "count":{ "number":1072.0, "total":1072.0, "hp":1072.0, "attack":1072.0, "defense":1072.0, "sp_attack":1072.0, "sp_defense":1072.0, "speed":1072.0, "generation":1072.0 }, "mean":{ "number":445.2192164179, "total":440.885261194, "hp":70.4869402985, "attack":80.9384328358, "defense":74.9682835821, "sp_attack":73.2733208955, "sp_defense":72.4766791045, "speed":68.7929104478, "generation":4.2947761194 }, "std":{ "number":267.77280649, "total":121.3790771926, "hp":26.8680389923, "attack":32.4635820748, "defense":31.2080593873, "sp_attack":32.6431190064, "sp_defense":27.9342534926, "speed":30.0762806451, "generation":2.3464717631 }, "min":{ "number":1.0, "total":175.0, "hp":1.0, "attack":5.0, "defense":5.0, "sp_attack":10.0, "sp_defense":20.0, "speed":5.0, "generation":0.0 }, "25%":{ "number":209.75, "total":330.0, "hp":50.0, "attack":56.0, "defense":52.0, "sp_attack":50.0, "sp_defense":50.0, "speed":45.0, "generation":2.0 }, "50%":{ "number":442.5, "total":460.5, "hp":68.0, "attack":80.0, "defense":70.0, "sp_attack":65.0, "sp_defense":70.0, "speed":65.0, "generation":4.0 }, "75%":{ "number":681.25, "total":519.25, "hp":84.0, "attack":100.0, "defense":90.0, "sp_attack":95.0, "sp_defense":90.0, "speed":90.0, "generation":6.0 }, "max":{ "number":898.0, "total":1125.0, "hp":255.0, "attack":190.0, "defense":250.0, "sp_attack":194.0, "sp_defense":250.0, "speed":200.0, "generation":8.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "number":1072.0, "total":1072.0, "hp":1072.0, "attack":1072.0, "defense":1072.0, "sp_attack":1072.0, "sp_defense":1072.0, "speed":1072.0, "generation":1072.0 }, "mean":{ "number":445.2192164179, "total":440.885261194, "hp":70.4869402985, "attack":80.9384328358, "defense":74.9682835821, "sp_attack":73.2733208955, "sp_defense":72.4766791045, "speed":68.7929104478, "generation":4.2947761194 }, "std":{ "number":267.77280649, "total":121.3790771926, "hp":26.8680389923, "attack":32.4635820748, "defense":31.2080593873, "sp_attack":32.6431190064, "sp_defense":27.9342534926, "speed":30.0762806451, "generation":2.3464717631 }, "min":{ "number":1.0, "total":175.0, "hp":1.0, "attack":5.0, "defense":5.0, "sp_attack":10.0, "sp_defense":20.0, "speed":5.0, "generation":0.0 }, "25%":{ "number":209.75, "total":330.0, "hp":50.0, "attack":56.0, "defense":52.0, "sp_attack":50.0, "sp_defense":50.0, "speed":45.0, "generation":2.0 }, "50%":{ "number":442.5, "total":460.5, "hp":68.0, "attack":80.0, "defense":70.0, "sp_attack":65.0, "sp_defense":70.0, "speed":65.0, "generation":4.0 }, "75%":{ "number":681.25, "total":519.25, "hp":84.0, "attack":100.0, "defense":90.0, "sp_attack":95.0, "sp_defense":90.0, "speed":90.0, "generation":6.0 }, "max":{ "number":898.0, "total":1125.0, "hp":255.0, "attack":190.0, "defense":250.0, "sp_attack":194.0, "sp_defense":250.0, "speed":200.0, "generation":8.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: How many unique Pokémon types are there in the 'type1' column? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: How many unique Pokémon types are there in the 'type1' column? df.columns = ['number', 'name', 'type1', 'type2', 'total', 'hp', 'attack', 'defense', 'sp_attack', 'sp_defense', 'speed', 'generation', 'legendary'] # Expected output type: is number, this will be checked. return
20250129013715
25
What's the highest total stat value found in the dataset?
051_Pokemon
dev
number
['total']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "number", "type": "uint16" }, { "name": "name", "type": "category" }, { "name": "type1", "type": "category" }, { "name": "type2", "type": "category" }, { "name": "total", "type": "uint16" }, { "name": "hp", "type": "uint8" }, { "name": "attack", "type": "uint8" }, { "name": "defense", "type": "uint8" }, { "name": "sp_attack", "type": "uint8" }, { "name": "sp_defense", "type": "uint8" }, { "name": "speed", "type": "uint8" }, { "name": "generation", "type": "uint8" }, { "name": "legendary", "type": "bool" } ] } # Description of dataframe columns. df_descrption = { "count":{ "number":1072.0, "total":1072.0, "hp":1072.0, "attack":1072.0, "defense":1072.0, "sp_attack":1072.0, "sp_defense":1072.0, "speed":1072.0, "generation":1072.0 }, "mean":{ "number":445.2192164179, "total":440.885261194, "hp":70.4869402985, "attack":80.9384328358, "defense":74.9682835821, "sp_attack":73.2733208955, "sp_defense":72.4766791045, "speed":68.7929104478, "generation":4.2947761194 }, "std":{ "number":267.77280649, "total":121.3790771926, "hp":26.8680389923, "attack":32.4635820748, "defense":31.2080593873, "sp_attack":32.6431190064, "sp_defense":27.9342534926, "speed":30.0762806451, "generation":2.3464717631 }, "min":{ "number":1.0, "total":175.0, "hp":1.0, "attack":5.0, "defense":5.0, "sp_attack":10.0, "sp_defense":20.0, "speed":5.0, "generation":0.0 }, "25%":{ "number":209.75, "total":330.0, "hp":50.0, "attack":56.0, "defense":52.0, "sp_attack":50.0, "sp_defense":50.0, "speed":45.0, "generation":2.0 }, "50%":{ "number":442.5, "total":460.5, "hp":68.0, "attack":80.0, "defense":70.0, "sp_attack":65.0, "sp_defense":70.0, "speed":65.0, "generation":4.0 }, "75%":{ "number":681.25, "total":519.25, "hp":84.0, "attack":100.0, "defense":90.0, "sp_attack":95.0, "sp_defense":90.0, "speed":90.0, "generation":6.0 }, "max":{ "number":898.0, "total":1125.0, "hp":255.0, "attack":190.0, "defense":250.0, "sp_attack":194.0, "sp_defense":250.0, "speed":200.0, "generation":8.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "number":1072.0, "total":1072.0, "hp":1072.0, "attack":1072.0, "defense":1072.0, "sp_attack":1072.0, "sp_defense":1072.0, "speed":1072.0, "generation":1072.0 }, "mean":{ "number":445.2192164179, "total":440.885261194, "hp":70.4869402985, "attack":80.9384328358, "defense":74.9682835821, "sp_attack":73.2733208955, "sp_defense":72.4766791045, "speed":68.7929104478, "generation":4.2947761194 }, "std":{ "number":267.77280649, "total":121.3790771926, "hp":26.8680389923, "attack":32.4635820748, "defense":31.2080593873, "sp_attack":32.6431190064, "sp_defense":27.9342534926, "speed":30.0762806451, "generation":2.3464717631 }, "min":{ "number":1.0, "total":175.0, "hp":1.0, "attack":5.0, "defense":5.0, "sp_attack":10.0, "sp_defense":20.0, "speed":5.0, "generation":0.0 }, "25%":{ "number":209.75, "total":330.0, "hp":50.0, "attack":56.0, "defense":52.0, "sp_attack":50.0, "sp_defense":50.0, "speed":45.0, "generation":2.0 }, "50%":{ "number":442.5, "total":460.5, "hp":68.0, "attack":80.0, "defense":70.0, "sp_attack":65.0, "sp_defense":70.0, "speed":65.0, "generation":4.0 }, "75%":{ "number":681.25, "total":519.25, "hp":84.0, "attack":100.0, "defense":90.0, "sp_attack":95.0, "sp_defense":90.0, "speed":90.0, "generation":6.0 }, "max":{ "number":898.0, "total":1125.0, "hp":255.0, "attack":190.0, "defense":250.0, "sp_attack":194.0, "sp_defense":250.0, "speed":200.0, "generation":8.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: What's the highest total stat value found in the dataset? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: What's the highest total stat value found in the dataset? df.columns = ['number', 'name', 'type1', 'type2', 'total', 'hp', 'attack', 'defense', 'sp_attack', 'sp_defense', 'speed', 'generation', 'legendary'] # Expected output type: is number, this will be checked. return
20250129013715
26
How many Pokémon are there in the third generation?
051_Pokemon
dev
number
['generation']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "number", "type": "uint16" }, { "name": "name", "type": "category" }, { "name": "type1", "type": "category" }, { "name": "type2", "type": "category" }, { "name": "total", "type": "uint16" }, { "name": "hp", "type": "uint8" }, { "name": "attack", "type": "uint8" }, { "name": "defense", "type": "uint8" }, { "name": "sp_attack", "type": "uint8" }, { "name": "sp_defense", "type": "uint8" }, { "name": "speed", "type": "uint8" }, { "name": "generation", "type": "uint8" }, { "name": "legendary", "type": "bool" } ] } # Description of dataframe columns. df_descrption = { "count":{ "number":1072.0, "total":1072.0, "hp":1072.0, "attack":1072.0, "defense":1072.0, "sp_attack":1072.0, "sp_defense":1072.0, "speed":1072.0, "generation":1072.0 }, "mean":{ "number":445.2192164179, "total":440.885261194, "hp":70.4869402985, "attack":80.9384328358, "defense":74.9682835821, "sp_attack":73.2733208955, "sp_defense":72.4766791045, "speed":68.7929104478, "generation":4.2947761194 }, "std":{ "number":267.77280649, "total":121.3790771926, "hp":26.8680389923, "attack":32.4635820748, "defense":31.2080593873, "sp_attack":32.6431190064, "sp_defense":27.9342534926, "speed":30.0762806451, "generation":2.3464717631 }, "min":{ "number":1.0, "total":175.0, "hp":1.0, "attack":5.0, "defense":5.0, "sp_attack":10.0, "sp_defense":20.0, "speed":5.0, "generation":0.0 }, "25%":{ "number":209.75, "total":330.0, "hp":50.0, "attack":56.0, "defense":52.0, "sp_attack":50.0, "sp_defense":50.0, "speed":45.0, "generation":2.0 }, "50%":{ "number":442.5, "total":460.5, "hp":68.0, "attack":80.0, "defense":70.0, "sp_attack":65.0, "sp_defense":70.0, "speed":65.0, "generation":4.0 }, "75%":{ "number":681.25, "total":519.25, "hp":84.0, "attack":100.0, "defense":90.0, "sp_attack":95.0, "sp_defense":90.0, "speed":90.0, "generation":6.0 }, "max":{ "number":898.0, "total":1125.0, "hp":255.0, "attack":190.0, "defense":250.0, "sp_attack":194.0, "sp_defense":250.0, "speed":200.0, "generation":8.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "number":1072.0, "total":1072.0, "hp":1072.0, "attack":1072.0, "defense":1072.0, "sp_attack":1072.0, "sp_defense":1072.0, "speed":1072.0, "generation":1072.0 }, "mean":{ "number":445.2192164179, "total":440.885261194, "hp":70.4869402985, "attack":80.9384328358, "defense":74.9682835821, "sp_attack":73.2733208955, "sp_defense":72.4766791045, "speed":68.7929104478, "generation":4.2947761194 }, "std":{ "number":267.77280649, "total":121.3790771926, "hp":26.8680389923, "attack":32.4635820748, "defense":31.2080593873, "sp_attack":32.6431190064, "sp_defense":27.9342534926, "speed":30.0762806451, "generation":2.3464717631 }, "min":{ "number":1.0, "total":175.0, "hp":1.0, "attack":5.0, "defense":5.0, "sp_attack":10.0, "sp_defense":20.0, "speed":5.0, "generation":0.0 }, "25%":{ "number":209.75, "total":330.0, "hp":50.0, "attack":56.0, "defense":52.0, "sp_attack":50.0, "sp_defense":50.0, "speed":45.0, "generation":2.0 }, "50%":{ "number":442.5, "total":460.5, "hp":68.0, "attack":80.0, "defense":70.0, "sp_attack":65.0, "sp_defense":70.0, "speed":65.0, "generation":4.0 }, "75%":{ "number":681.25, "total":519.25, "hp":84.0, "attack":100.0, "defense":90.0, "sp_attack":95.0, "sp_defense":90.0, "speed":90.0, "generation":6.0 }, "max":{ "number":898.0, "total":1125.0, "hp":255.0, "attack":190.0, "defense":250.0, "sp_attack":194.0, "sp_defense":250.0, "speed":200.0, "generation":8.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: How many Pokémon are there in the third generation? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: How many Pokémon are there in the third generation? df.columns = ['number', 'name', 'type1', 'type2', 'total', 'hp', 'attack', 'defense', 'sp_attack', 'sp_defense', 'speed', 'generation', 'legendary'] # Expected output type: is number, this will be checked. return
20250129013715
27
What is the average attack stat for all Pokémon?
051_Pokemon
dev
number
['attack']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "number", "type": "uint16" }, { "name": "name", "type": "category" }, { "name": "type1", "type": "category" }, { "name": "type2", "type": "category" }, { "name": "total", "type": "uint16" }, { "name": "hp", "type": "uint8" }, { "name": "attack", "type": "uint8" }, { "name": "defense", "type": "uint8" }, { "name": "sp_attack", "type": "uint8" }, { "name": "sp_defense", "type": "uint8" }, { "name": "speed", "type": "uint8" }, { "name": "generation", "type": "uint8" }, { "name": "legendary", "type": "bool" } ] } # Description of dataframe columns. df_descrption = { "count":{ "number":1072.0, "total":1072.0, "hp":1072.0, "attack":1072.0, "defense":1072.0, "sp_attack":1072.0, "sp_defense":1072.0, "speed":1072.0, "generation":1072.0 }, "mean":{ "number":445.2192164179, "total":440.885261194, "hp":70.4869402985, "attack":80.9384328358, "defense":74.9682835821, "sp_attack":73.2733208955, "sp_defense":72.4766791045, "speed":68.7929104478, "generation":4.2947761194 }, "std":{ "number":267.77280649, "total":121.3790771926, "hp":26.8680389923, "attack":32.4635820748, "defense":31.2080593873, "sp_attack":32.6431190064, "sp_defense":27.9342534926, "speed":30.0762806451, "generation":2.3464717631 }, "min":{ "number":1.0, "total":175.0, "hp":1.0, "attack":5.0, "defense":5.0, "sp_attack":10.0, "sp_defense":20.0, "speed":5.0, "generation":0.0 }, "25%":{ "number":209.75, "total":330.0, "hp":50.0, "attack":56.0, "defense":52.0, "sp_attack":50.0, "sp_defense":50.0, "speed":45.0, "generation":2.0 }, "50%":{ "number":442.5, "total":460.5, "hp":68.0, "attack":80.0, "defense":70.0, "sp_attack":65.0, "sp_defense":70.0, "speed":65.0, "generation":4.0 }, "75%":{ "number":681.25, "total":519.25, "hp":84.0, "attack":100.0, "defense":90.0, "sp_attack":95.0, "sp_defense":90.0, "speed":90.0, "generation":6.0 }, "max":{ "number":898.0, "total":1125.0, "hp":255.0, "attack":190.0, "defense":250.0, "sp_attack":194.0, "sp_defense":250.0, "speed":200.0, "generation":8.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "number":1072.0, "total":1072.0, "hp":1072.0, "attack":1072.0, "defense":1072.0, "sp_attack":1072.0, "sp_defense":1072.0, "speed":1072.0, "generation":1072.0 }, "mean":{ "number":445.2192164179, "total":440.885261194, "hp":70.4869402985, "attack":80.9384328358, "defense":74.9682835821, "sp_attack":73.2733208955, "sp_defense":72.4766791045, "speed":68.7929104478, "generation":4.2947761194 }, "std":{ "number":267.77280649, "total":121.3790771926, "hp":26.8680389923, "attack":32.4635820748, "defense":31.2080593873, "sp_attack":32.6431190064, "sp_defense":27.9342534926, "speed":30.0762806451, "generation":2.3464717631 }, "min":{ "number":1.0, "total":175.0, "hp":1.0, "attack":5.0, "defense":5.0, "sp_attack":10.0, "sp_defense":20.0, "speed":5.0, "generation":0.0 }, "25%":{ "number":209.75, "total":330.0, "hp":50.0, "attack":56.0, "defense":52.0, "sp_attack":50.0, "sp_defense":50.0, "speed":45.0, "generation":2.0 }, "50%":{ "number":442.5, "total":460.5, "hp":68.0, "attack":80.0, "defense":70.0, "sp_attack":65.0, "sp_defense":70.0, "speed":65.0, "generation":4.0 }, "75%":{ "number":681.25, "total":519.25, "hp":84.0, "attack":100.0, "defense":90.0, "sp_attack":95.0, "sp_defense":90.0, "speed":90.0, "generation":6.0 }, "max":{ "number":898.0, "total":1125.0, "hp":255.0, "attack":190.0, "defense":250.0, "sp_attack":194.0, "sp_defense":250.0, "speed":200.0, "generation":8.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: What is the average attack stat for all Pokémon? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: What is the average attack stat for all Pokémon? df.columns = ['number', 'name', 'type1', 'type2', 'total', 'hp', 'attack', 'defense', 'sp_attack', 'sp_defense', 'speed', 'generation', 'legendary'] # Expected output type: is number, this will be checked. return
20250129013715
28
What is the primary type of the Pokémon with the highest defense stat?
051_Pokemon
dev
category
['defense', 'type1']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "number", "type": "uint16" }, { "name": "name", "type": "category" }, { "name": "type1", "type": "category" }, { "name": "type2", "type": "category" }, { "name": "total", "type": "uint16" }, { "name": "hp", "type": "uint8" }, { "name": "attack", "type": "uint8" }, { "name": "defense", "type": "uint8" }, { "name": "sp_attack", "type": "uint8" }, { "name": "sp_defense", "type": "uint8" }, { "name": "speed", "type": "uint8" }, { "name": "generation", "type": "uint8" }, { "name": "legendary", "type": "bool" } ] } # Description of dataframe columns. df_descrption = { "count":{ "number":1072.0, "total":1072.0, "hp":1072.0, "attack":1072.0, "defense":1072.0, "sp_attack":1072.0, "sp_defense":1072.0, "speed":1072.0, "generation":1072.0 }, "mean":{ "number":445.2192164179, "total":440.885261194, "hp":70.4869402985, "attack":80.9384328358, "defense":74.9682835821, "sp_attack":73.2733208955, "sp_defense":72.4766791045, "speed":68.7929104478, "generation":4.2947761194 }, "std":{ "number":267.77280649, "total":121.3790771926, "hp":26.8680389923, "attack":32.4635820748, "defense":31.2080593873, "sp_attack":32.6431190064, "sp_defense":27.9342534926, "speed":30.0762806451, "generation":2.3464717631 }, "min":{ "number":1.0, "total":175.0, "hp":1.0, "attack":5.0, "defense":5.0, "sp_attack":10.0, "sp_defense":20.0, "speed":5.0, "generation":0.0 }, "25%":{ "number":209.75, "total":330.0, "hp":50.0, "attack":56.0, "defense":52.0, "sp_attack":50.0, "sp_defense":50.0, "speed":45.0, "generation":2.0 }, "50%":{ "number":442.5, "total":460.5, "hp":68.0, "attack":80.0, "defense":70.0, "sp_attack":65.0, "sp_defense":70.0, "speed":65.0, "generation":4.0 }, "75%":{ "number":681.25, "total":519.25, "hp":84.0, "attack":100.0, "defense":90.0, "sp_attack":95.0, "sp_defense":90.0, "speed":90.0, "generation":6.0 }, "max":{ "number":898.0, "total":1125.0, "hp":255.0, "attack":190.0, "defense":250.0, "sp_attack":194.0, "sp_defense":250.0, "speed":200.0, "generation":8.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "number":1072.0, "total":1072.0, "hp":1072.0, "attack":1072.0, "defense":1072.0, "sp_attack":1072.0, "sp_defense":1072.0, "speed":1072.0, "generation":1072.0 }, "mean":{ "number":445.2192164179, "total":440.885261194, "hp":70.4869402985, "attack":80.9384328358, "defense":74.9682835821, "sp_attack":73.2733208955, "sp_defense":72.4766791045, "speed":68.7929104478, "generation":4.2947761194 }, "std":{ "number":267.77280649, "total":121.3790771926, "hp":26.8680389923, "attack":32.4635820748, "defense":31.2080593873, "sp_attack":32.6431190064, "sp_defense":27.9342534926, "speed":30.0762806451, "generation":2.3464717631 }, "min":{ "number":1.0, "total":175.0, "hp":1.0, "attack":5.0, "defense":5.0, "sp_attack":10.0, "sp_defense":20.0, "speed":5.0, "generation":0.0 }, "25%":{ "number":209.75, "total":330.0, "hp":50.0, "attack":56.0, "defense":52.0, "sp_attack":50.0, "sp_defense":50.0, "speed":45.0, "generation":2.0 }, "50%":{ "number":442.5, "total":460.5, "hp":68.0, "attack":80.0, "defense":70.0, "sp_attack":65.0, "sp_defense":70.0, "speed":65.0, "generation":4.0 }, "75%":{ "number":681.25, "total":519.25, "hp":84.0, "attack":100.0, "defense":90.0, "sp_attack":95.0, "sp_defense":90.0, "speed":90.0, "generation":6.0 }, "max":{ "number":898.0, "total":1125.0, "hp":255.0, "attack":190.0, "defense":250.0, "sp_attack":194.0, "sp_defense":250.0, "speed":200.0, "generation":8.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: What is the primary type of the Pokémon with the highest defense stat? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: What is the primary type of the Pokémon with the highest defense stat? df.columns = ['number', 'name', 'type1', 'type2', 'total', 'hp', 'attack', 'defense', 'sp_attack', 'sp_defense', 'speed', 'generation', 'legendary'] # Expected output type: is category, this will be checked. return
20250129013715
29
Which Pokémon has the lowest speed stat?
051_Pokemon
dev
category
['speed', 'name']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "number", "type": "uint16" }, { "name": "name", "type": "category" }, { "name": "type1", "type": "category" }, { "name": "type2", "type": "category" }, { "name": "total", "type": "uint16" }, { "name": "hp", "type": "uint8" }, { "name": "attack", "type": "uint8" }, { "name": "defense", "type": "uint8" }, { "name": "sp_attack", "type": "uint8" }, { "name": "sp_defense", "type": "uint8" }, { "name": "speed", "type": "uint8" }, { "name": "generation", "type": "uint8" }, { "name": "legendary", "type": "bool" } ] } # Description of dataframe columns. df_descrption = { "count":{ "number":1072.0, "total":1072.0, "hp":1072.0, "attack":1072.0, "defense":1072.0, "sp_attack":1072.0, "sp_defense":1072.0, "speed":1072.0, "generation":1072.0 }, "mean":{ "number":445.2192164179, "total":440.885261194, "hp":70.4869402985, "attack":80.9384328358, "defense":74.9682835821, "sp_attack":73.2733208955, "sp_defense":72.4766791045, "speed":68.7929104478, "generation":4.2947761194 }, "std":{ "number":267.77280649, "total":121.3790771926, "hp":26.8680389923, "attack":32.4635820748, "defense":31.2080593873, "sp_attack":32.6431190064, "sp_defense":27.9342534926, "speed":30.0762806451, "generation":2.3464717631 }, "min":{ "number":1.0, "total":175.0, "hp":1.0, "attack":5.0, "defense":5.0, "sp_attack":10.0, "sp_defense":20.0, "speed":5.0, "generation":0.0 }, "25%":{ "number":209.75, "total":330.0, "hp":50.0, "attack":56.0, "defense":52.0, "sp_attack":50.0, "sp_defense":50.0, "speed":45.0, "generation":2.0 }, "50%":{ "number":442.5, "total":460.5, "hp":68.0, "attack":80.0, "defense":70.0, "sp_attack":65.0, "sp_defense":70.0, "speed":65.0, "generation":4.0 }, "75%":{ "number":681.25, "total":519.25, "hp":84.0, "attack":100.0, "defense":90.0, "sp_attack":95.0, "sp_defense":90.0, "speed":90.0, "generation":6.0 }, "max":{ "number":898.0, "total":1125.0, "hp":255.0, "attack":190.0, "defense":250.0, "sp_attack":194.0, "sp_defense":250.0, "speed":200.0, "generation":8.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "number":1072.0, "total":1072.0, "hp":1072.0, "attack":1072.0, "defense":1072.0, "sp_attack":1072.0, "sp_defense":1072.0, "speed":1072.0, "generation":1072.0 }, "mean":{ "number":445.2192164179, "total":440.885261194, "hp":70.4869402985, "attack":80.9384328358, "defense":74.9682835821, "sp_attack":73.2733208955, "sp_defense":72.4766791045, "speed":68.7929104478, "generation":4.2947761194 }, "std":{ "number":267.77280649, "total":121.3790771926, "hp":26.8680389923, "attack":32.4635820748, "defense":31.2080593873, "sp_attack":32.6431190064, "sp_defense":27.9342534926, "speed":30.0762806451, "generation":2.3464717631 }, "min":{ "number":1.0, "total":175.0, "hp":1.0, "attack":5.0, "defense":5.0, "sp_attack":10.0, "sp_defense":20.0, "speed":5.0, "generation":0.0 }, "25%":{ "number":209.75, "total":330.0, "hp":50.0, "attack":56.0, "defense":52.0, "sp_attack":50.0, "sp_defense":50.0, "speed":45.0, "generation":2.0 }, "50%":{ "number":442.5, "total":460.5, "hp":68.0, "attack":80.0, "defense":70.0, "sp_attack":65.0, "sp_defense":70.0, "speed":65.0, "generation":4.0 }, "75%":{ "number":681.25, "total":519.25, "hp":84.0, "attack":100.0, "defense":90.0, "sp_attack":95.0, "sp_defense":90.0, "speed":90.0, "generation":6.0 }, "max":{ "number":898.0, "total":1125.0, "hp":255.0, "attack":190.0, "defense":250.0, "sp_attack":194.0, "sp_defense":250.0, "speed":200.0, "generation":8.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: Which Pokémon has the lowest speed stat? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: Which Pokémon has the lowest speed stat? df.columns = ['number', 'name', 'type1', 'type2', 'total', 'hp', 'attack', 'defense', 'sp_attack', 'sp_defense', 'speed', 'generation', 'legendary'] # Expected output type: is category, this will be checked. return
20250129013715
30
What primary type is the most common among legendary Pokémon?
051_Pokemon
dev
category
['legendary', 'type1']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "number", "type": "uint16" }, { "name": "name", "type": "category" }, { "name": "type1", "type": "category" }, { "name": "type2", "type": "category" }, { "name": "total", "type": "uint16" }, { "name": "hp", "type": "uint8" }, { "name": "attack", "type": "uint8" }, { "name": "defense", "type": "uint8" }, { "name": "sp_attack", "type": "uint8" }, { "name": "sp_defense", "type": "uint8" }, { "name": "speed", "type": "uint8" }, { "name": "generation", "type": "uint8" }, { "name": "legendary", "type": "bool" } ] } # Description of dataframe columns. df_descrption = { "count":{ "number":1072.0, "total":1072.0, "hp":1072.0, "attack":1072.0, "defense":1072.0, "sp_attack":1072.0, "sp_defense":1072.0, "speed":1072.0, "generation":1072.0 }, "mean":{ "number":445.2192164179, "total":440.885261194, "hp":70.4869402985, "attack":80.9384328358, "defense":74.9682835821, "sp_attack":73.2733208955, "sp_defense":72.4766791045, "speed":68.7929104478, "generation":4.2947761194 }, "std":{ "number":267.77280649, "total":121.3790771926, "hp":26.8680389923, "attack":32.4635820748, "defense":31.2080593873, "sp_attack":32.6431190064, "sp_defense":27.9342534926, "speed":30.0762806451, "generation":2.3464717631 }, "min":{ "number":1.0, "total":175.0, "hp":1.0, "attack":5.0, "defense":5.0, "sp_attack":10.0, "sp_defense":20.0, "speed":5.0, "generation":0.0 }, "25%":{ "number":209.75, "total":330.0, "hp":50.0, "attack":56.0, "defense":52.0, "sp_attack":50.0, "sp_defense":50.0, "speed":45.0, "generation":2.0 }, "50%":{ "number":442.5, "total":460.5, "hp":68.0, "attack":80.0, "defense":70.0, "sp_attack":65.0, "sp_defense":70.0, "speed":65.0, "generation":4.0 }, "75%":{ "number":681.25, "total":519.25, "hp":84.0, "attack":100.0, "defense":90.0, "sp_attack":95.0, "sp_defense":90.0, "speed":90.0, "generation":6.0 }, "max":{ "number":898.0, "total":1125.0, "hp":255.0, "attack":190.0, "defense":250.0, "sp_attack":194.0, "sp_defense":250.0, "speed":200.0, "generation":8.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "number":1072.0, "total":1072.0, "hp":1072.0, "attack":1072.0, "defense":1072.0, "sp_attack":1072.0, "sp_defense":1072.0, "speed":1072.0, "generation":1072.0 }, "mean":{ "number":445.2192164179, "total":440.885261194, "hp":70.4869402985, "attack":80.9384328358, "defense":74.9682835821, "sp_attack":73.2733208955, "sp_defense":72.4766791045, "speed":68.7929104478, "generation":4.2947761194 }, "std":{ "number":267.77280649, "total":121.3790771926, "hp":26.8680389923, "attack":32.4635820748, "defense":31.2080593873, "sp_attack":32.6431190064, "sp_defense":27.9342534926, "speed":30.0762806451, "generation":2.3464717631 }, "min":{ "number":1.0, "total":175.0, "hp":1.0, "attack":5.0, "defense":5.0, "sp_attack":10.0, "sp_defense":20.0, "speed":5.0, "generation":0.0 }, "25%":{ "number":209.75, "total":330.0, "hp":50.0, "attack":56.0, "defense":52.0, "sp_attack":50.0, "sp_defense":50.0, "speed":45.0, "generation":2.0 }, "50%":{ "number":442.5, "total":460.5, "hp":68.0, "attack":80.0, "defense":70.0, "sp_attack":65.0, "sp_defense":70.0, "speed":65.0, "generation":4.0 }, "75%":{ "number":681.25, "total":519.25, "hp":84.0, "attack":100.0, "defense":90.0, "sp_attack":95.0, "sp_defense":90.0, "speed":90.0, "generation":6.0 }, "max":{ "number":898.0, "total":1125.0, "hp":255.0, "attack":190.0, "defense":250.0, "sp_attack":194.0, "sp_defense":250.0, "speed":200.0, "generation":8.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: What primary type is the most common among legendary Pokémon? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: What primary type is the most common among legendary Pokémon? df.columns = ['number', 'name', 'type1', 'type2', 'total', 'hp', 'attack', 'defense', 'sp_attack', 'sp_defense', 'speed', 'generation', 'legendary'] # Expected output type: is category, this will be checked. return
20250129013715
31
Which Pokémon has the highest special attack?
051_Pokemon
dev
category
['sp_attack', 'name']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "number", "type": "uint16" }, { "name": "name", "type": "category" }, { "name": "type1", "type": "category" }, { "name": "type2", "type": "category" }, { "name": "total", "type": "uint16" }, { "name": "hp", "type": "uint8" }, { "name": "attack", "type": "uint8" }, { "name": "defense", "type": "uint8" }, { "name": "sp_attack", "type": "uint8" }, { "name": "sp_defense", "type": "uint8" }, { "name": "speed", "type": "uint8" }, { "name": "generation", "type": "uint8" }, { "name": "legendary", "type": "bool" } ] } # Description of dataframe columns. df_descrption = { "count":{ "number":1072.0, "total":1072.0, "hp":1072.0, "attack":1072.0, "defense":1072.0, "sp_attack":1072.0, "sp_defense":1072.0, "speed":1072.0, "generation":1072.0 }, "mean":{ "number":445.2192164179, "total":440.885261194, "hp":70.4869402985, "attack":80.9384328358, "defense":74.9682835821, "sp_attack":73.2733208955, "sp_defense":72.4766791045, "speed":68.7929104478, "generation":4.2947761194 }, "std":{ "number":267.77280649, "total":121.3790771926, "hp":26.8680389923, "attack":32.4635820748, "defense":31.2080593873, "sp_attack":32.6431190064, "sp_defense":27.9342534926, "speed":30.0762806451, "generation":2.3464717631 }, "min":{ "number":1.0, "total":175.0, "hp":1.0, "attack":5.0, "defense":5.0, "sp_attack":10.0, "sp_defense":20.0, "speed":5.0, "generation":0.0 }, "25%":{ "number":209.75, "total":330.0, "hp":50.0, "attack":56.0, "defense":52.0, "sp_attack":50.0, "sp_defense":50.0, "speed":45.0, "generation":2.0 }, "50%":{ "number":442.5, "total":460.5, "hp":68.0, "attack":80.0, "defense":70.0, "sp_attack":65.0, "sp_defense":70.0, "speed":65.0, "generation":4.0 }, "75%":{ "number":681.25, "total":519.25, "hp":84.0, "attack":100.0, "defense":90.0, "sp_attack":95.0, "sp_defense":90.0, "speed":90.0, "generation":6.0 }, "max":{ "number":898.0, "total":1125.0, "hp":255.0, "attack":190.0, "defense":250.0, "sp_attack":194.0, "sp_defense":250.0, "speed":200.0, "generation":8.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "number":1072.0, "total":1072.0, "hp":1072.0, "attack":1072.0, "defense":1072.0, "sp_attack":1072.0, "sp_defense":1072.0, "speed":1072.0, "generation":1072.0 }, "mean":{ "number":445.2192164179, "total":440.885261194, "hp":70.4869402985, "attack":80.9384328358, "defense":74.9682835821, "sp_attack":73.2733208955, "sp_defense":72.4766791045, "speed":68.7929104478, "generation":4.2947761194 }, "std":{ "number":267.77280649, "total":121.3790771926, "hp":26.8680389923, "attack":32.4635820748, "defense":31.2080593873, "sp_attack":32.6431190064, "sp_defense":27.9342534926, "speed":30.0762806451, "generation":2.3464717631 }, "min":{ "number":1.0, "total":175.0, "hp":1.0, "attack":5.0, "defense":5.0, "sp_attack":10.0, "sp_defense":20.0, "speed":5.0, "generation":0.0 }, "25%":{ "number":209.75, "total":330.0, "hp":50.0, "attack":56.0, "defense":52.0, "sp_attack":50.0, "sp_defense":50.0, "speed":45.0, "generation":2.0 }, "50%":{ "number":442.5, "total":460.5, "hp":68.0, "attack":80.0, "defense":70.0, "sp_attack":65.0, "sp_defense":70.0, "speed":65.0, "generation":4.0 }, "75%":{ "number":681.25, "total":519.25, "hp":84.0, "attack":100.0, "defense":90.0, "sp_attack":95.0, "sp_defense":90.0, "speed":90.0, "generation":6.0 }, "max":{ "number":898.0, "total":1125.0, "hp":255.0, "attack":190.0, "defense":250.0, "sp_attack":194.0, "sp_defense":250.0, "speed":200.0, "generation":8.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: Which Pokémon has the highest special attack? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: Which Pokémon has the highest special attack? df.columns = ['number', 'name', 'type1', 'type2', 'total', 'hp', 'attack', 'defense', 'sp_attack', 'sp_defense', 'speed', 'generation', 'legendary'] # Expected output type: is category, this will be checked. return
20250129013715
32
Name the top 3 Pokémon with the highest total stats.
051_Pokemon
dev
list[category]
['total', 'name']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "number", "type": "uint16" }, { "name": "name", "type": "category" }, { "name": "type1", "type": "category" }, { "name": "type2", "type": "category" }, { "name": "total", "type": "uint16" }, { "name": "hp", "type": "uint8" }, { "name": "attack", "type": "uint8" }, { "name": "defense", "type": "uint8" }, { "name": "sp_attack", "type": "uint8" }, { "name": "sp_defense", "type": "uint8" }, { "name": "speed", "type": "uint8" }, { "name": "generation", "type": "uint8" }, { "name": "legendary", "type": "bool" } ] } # Description of dataframe columns. df_descrption = { "count":{ "number":1072.0, "total":1072.0, "hp":1072.0, "attack":1072.0, "defense":1072.0, "sp_attack":1072.0, "sp_defense":1072.0, "speed":1072.0, "generation":1072.0 }, "mean":{ "number":445.2192164179, "total":440.885261194, "hp":70.4869402985, "attack":80.9384328358, "defense":74.9682835821, "sp_attack":73.2733208955, "sp_defense":72.4766791045, "speed":68.7929104478, "generation":4.2947761194 }, "std":{ "number":267.77280649, "total":121.3790771926, "hp":26.8680389923, "attack":32.4635820748, "defense":31.2080593873, "sp_attack":32.6431190064, "sp_defense":27.9342534926, "speed":30.0762806451, "generation":2.3464717631 }, "min":{ "number":1.0, "total":175.0, "hp":1.0, "attack":5.0, "defense":5.0, "sp_attack":10.0, "sp_defense":20.0, "speed":5.0, "generation":0.0 }, "25%":{ "number":209.75, "total":330.0, "hp":50.0, "attack":56.0, "defense":52.0, "sp_attack":50.0, "sp_defense":50.0, "speed":45.0, "generation":2.0 }, "50%":{ "number":442.5, "total":460.5, "hp":68.0, "attack":80.0, "defense":70.0, "sp_attack":65.0, "sp_defense":70.0, "speed":65.0, "generation":4.0 }, "75%":{ "number":681.25, "total":519.25, "hp":84.0, "attack":100.0, "defense":90.0, "sp_attack":95.0, "sp_defense":90.0, "speed":90.0, "generation":6.0 }, "max":{ "number":898.0, "total":1125.0, "hp":255.0, "attack":190.0, "defense":250.0, "sp_attack":194.0, "sp_defense":250.0, "speed":200.0, "generation":8.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "number":1072.0, "total":1072.0, "hp":1072.0, "attack":1072.0, "defense":1072.0, "sp_attack":1072.0, "sp_defense":1072.0, "speed":1072.0, "generation":1072.0 }, "mean":{ "number":445.2192164179, "total":440.885261194, "hp":70.4869402985, "attack":80.9384328358, "defense":74.9682835821, "sp_attack":73.2733208955, "sp_defense":72.4766791045, "speed":68.7929104478, "generation":4.2947761194 }, "std":{ "number":267.77280649, "total":121.3790771926, "hp":26.8680389923, "attack":32.4635820748, "defense":31.2080593873, "sp_attack":32.6431190064, "sp_defense":27.9342534926, "speed":30.0762806451, "generation":2.3464717631 }, "min":{ "number":1.0, "total":175.0, "hp":1.0, "attack":5.0, "defense":5.0, "sp_attack":10.0, "sp_defense":20.0, "speed":5.0, "generation":0.0 }, "25%":{ "number":209.75, "total":330.0, "hp":50.0, "attack":56.0, "defense":52.0, "sp_attack":50.0, "sp_defense":50.0, "speed":45.0, "generation":2.0 }, "50%":{ "number":442.5, "total":460.5, "hp":68.0, "attack":80.0, "defense":70.0, "sp_attack":65.0, "sp_defense":70.0, "speed":65.0, "generation":4.0 }, "75%":{ "number":681.25, "total":519.25, "hp":84.0, "attack":100.0, "defense":90.0, "sp_attack":95.0, "sp_defense":90.0, "speed":90.0, "generation":6.0 }, "max":{ "number":898.0, "total":1125.0, "hp":255.0, "attack":190.0, "defense":250.0, "sp_attack":194.0, "sp_defense":250.0, "speed":200.0, "generation":8.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: Name the top 3 Pokémon with the highest total stats. # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: Name the top 3 Pokémon with the highest total stats. df.columns = ['number', 'name', 'type1', 'type2', 'total', 'hp', 'attack', 'defense', 'sp_attack', 'sp_defense', 'speed', 'generation', 'legendary'] # Expected output type: is list[category], this will be checked. return
20250129013715
33
Which 5 Pokémon have the lowest hp stats?
051_Pokemon
dev
list[category]
['hp', 'name']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "number", "type": "uint16" }, { "name": "name", "type": "category" }, { "name": "type1", "type": "category" }, { "name": "type2", "type": "category" }, { "name": "total", "type": "uint16" }, { "name": "hp", "type": "uint8" }, { "name": "attack", "type": "uint8" }, { "name": "defense", "type": "uint8" }, { "name": "sp_attack", "type": "uint8" }, { "name": "sp_defense", "type": "uint8" }, { "name": "speed", "type": "uint8" }, { "name": "generation", "type": "uint8" }, { "name": "legendary", "type": "bool" } ] } # Description of dataframe columns. df_descrption = { "count":{ "number":1072.0, "total":1072.0, "hp":1072.0, "attack":1072.0, "defense":1072.0, "sp_attack":1072.0, "sp_defense":1072.0, "speed":1072.0, "generation":1072.0 }, "mean":{ "number":445.2192164179, "total":440.885261194, "hp":70.4869402985, "attack":80.9384328358, "defense":74.9682835821, "sp_attack":73.2733208955, "sp_defense":72.4766791045, "speed":68.7929104478, "generation":4.2947761194 }, "std":{ "number":267.77280649, "total":121.3790771926, "hp":26.8680389923, "attack":32.4635820748, "defense":31.2080593873, "sp_attack":32.6431190064, "sp_defense":27.9342534926, "speed":30.0762806451, "generation":2.3464717631 }, "min":{ "number":1.0, "total":175.0, "hp":1.0, "attack":5.0, "defense":5.0, "sp_attack":10.0, "sp_defense":20.0, "speed":5.0, "generation":0.0 }, "25%":{ "number":209.75, "total":330.0, "hp":50.0, "attack":56.0, "defense":52.0, "sp_attack":50.0, "sp_defense":50.0, "speed":45.0, "generation":2.0 }, "50%":{ "number":442.5, "total":460.5, "hp":68.0, "attack":80.0, "defense":70.0, "sp_attack":65.0, "sp_defense":70.0, "speed":65.0, "generation":4.0 }, "75%":{ "number":681.25, "total":519.25, "hp":84.0, "attack":100.0, "defense":90.0, "sp_attack":95.0, "sp_defense":90.0, "speed":90.0, "generation":6.0 }, "max":{ "number":898.0, "total":1125.0, "hp":255.0, "attack":190.0, "defense":250.0, "sp_attack":194.0, "sp_defense":250.0, "speed":200.0, "generation":8.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "number":1072.0, "total":1072.0, "hp":1072.0, "attack":1072.0, "defense":1072.0, "sp_attack":1072.0, "sp_defense":1072.0, "speed":1072.0, "generation":1072.0 }, "mean":{ "number":445.2192164179, "total":440.885261194, "hp":70.4869402985, "attack":80.9384328358, "defense":74.9682835821, "sp_attack":73.2733208955, "sp_defense":72.4766791045, "speed":68.7929104478, "generation":4.2947761194 }, "std":{ "number":267.77280649, "total":121.3790771926, "hp":26.8680389923, "attack":32.4635820748, "defense":31.2080593873, "sp_attack":32.6431190064, "sp_defense":27.9342534926, "speed":30.0762806451, "generation":2.3464717631 }, "min":{ "number":1.0, "total":175.0, "hp":1.0, "attack":5.0, "defense":5.0, "sp_attack":10.0, "sp_defense":20.0, "speed":5.0, "generation":0.0 }, "25%":{ "number":209.75, "total":330.0, "hp":50.0, "attack":56.0, "defense":52.0, "sp_attack":50.0, "sp_defense":50.0, "speed":45.0, "generation":2.0 }, "50%":{ "number":442.5, "total":460.5, "hp":68.0, "attack":80.0, "defense":70.0, "sp_attack":65.0, "sp_defense":70.0, "speed":65.0, "generation":4.0 }, "75%":{ "number":681.25, "total":519.25, "hp":84.0, "attack":100.0, "defense":90.0, "sp_attack":95.0, "sp_defense":90.0, "speed":90.0, "generation":6.0 }, "max":{ "number":898.0, "total":1125.0, "hp":255.0, "attack":190.0, "defense":250.0, "sp_attack":194.0, "sp_defense":250.0, "speed":200.0, "generation":8.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: Which 5 Pokémon have the lowest hp stats? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: Which 5 Pokémon have the lowest hp stats? df.columns = ['number', 'name', 'type1', 'type2', 'total', 'hp', 'attack', 'defense', 'sp_attack', 'sp_defense', 'speed', 'generation', 'legendary'] # Expected output type: is list[category], this will be checked. return
20250129013715
34
Name the top 2 primary categories that have the most Pokémon.
051_Pokemon
dev
list[category]
['type1']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "number", "type": "uint16" }, { "name": "name", "type": "category" }, { "name": "type1", "type": "category" }, { "name": "type2", "type": "category" }, { "name": "total", "type": "uint16" }, { "name": "hp", "type": "uint8" }, { "name": "attack", "type": "uint8" }, { "name": "defense", "type": "uint8" }, { "name": "sp_attack", "type": "uint8" }, { "name": "sp_defense", "type": "uint8" }, { "name": "speed", "type": "uint8" }, { "name": "generation", "type": "uint8" }, { "name": "legendary", "type": "bool" } ] } # Description of dataframe columns. df_descrption = { "count":{ "number":1072.0, "total":1072.0, "hp":1072.0, "attack":1072.0, "defense":1072.0, "sp_attack":1072.0, "sp_defense":1072.0, "speed":1072.0, "generation":1072.0 }, "mean":{ "number":445.2192164179, "total":440.885261194, "hp":70.4869402985, "attack":80.9384328358, "defense":74.9682835821, "sp_attack":73.2733208955, "sp_defense":72.4766791045, "speed":68.7929104478, "generation":4.2947761194 }, "std":{ "number":267.77280649, "total":121.3790771926, "hp":26.8680389923, "attack":32.4635820748, "defense":31.2080593873, "sp_attack":32.6431190064, "sp_defense":27.9342534926, "speed":30.0762806451, "generation":2.3464717631 }, "min":{ "number":1.0, "total":175.0, "hp":1.0, "attack":5.0, "defense":5.0, "sp_attack":10.0, "sp_defense":20.0, "speed":5.0, "generation":0.0 }, "25%":{ "number":209.75, "total":330.0, "hp":50.0, "attack":56.0, "defense":52.0, "sp_attack":50.0, "sp_defense":50.0, "speed":45.0, "generation":2.0 }, "50%":{ "number":442.5, "total":460.5, "hp":68.0, "attack":80.0, "defense":70.0, "sp_attack":65.0, "sp_defense":70.0, "speed":65.0, "generation":4.0 }, "75%":{ "number":681.25, "total":519.25, "hp":84.0, "attack":100.0, "defense":90.0, "sp_attack":95.0, "sp_defense":90.0, "speed":90.0, "generation":6.0 }, "max":{ "number":898.0, "total":1125.0, "hp":255.0, "attack":190.0, "defense":250.0, "sp_attack":194.0, "sp_defense":250.0, "speed":200.0, "generation":8.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "number":1072.0, "total":1072.0, "hp":1072.0, "attack":1072.0, "defense":1072.0, "sp_attack":1072.0, "sp_defense":1072.0, "speed":1072.0, "generation":1072.0 }, "mean":{ "number":445.2192164179, "total":440.885261194, "hp":70.4869402985, "attack":80.9384328358, "defense":74.9682835821, "sp_attack":73.2733208955, "sp_defense":72.4766791045, "speed":68.7929104478, "generation":4.2947761194 }, "std":{ "number":267.77280649, "total":121.3790771926, "hp":26.8680389923, "attack":32.4635820748, "defense":31.2080593873, "sp_attack":32.6431190064, "sp_defense":27.9342534926, "speed":30.0762806451, "generation":2.3464717631 }, "min":{ "number":1.0, "total":175.0, "hp":1.0, "attack":5.0, "defense":5.0, "sp_attack":10.0, "sp_defense":20.0, "speed":5.0, "generation":0.0 }, "25%":{ "number":209.75, "total":330.0, "hp":50.0, "attack":56.0, "defense":52.0, "sp_attack":50.0, "sp_defense":50.0, "speed":45.0, "generation":2.0 }, "50%":{ "number":442.5, "total":460.5, "hp":68.0, "attack":80.0, "defense":70.0, "sp_attack":65.0, "sp_defense":70.0, "speed":65.0, "generation":4.0 }, "75%":{ "number":681.25, "total":519.25, "hp":84.0, "attack":100.0, "defense":90.0, "sp_attack":95.0, "sp_defense":90.0, "speed":90.0, "generation":6.0 }, "max":{ "number":898.0, "total":1125.0, "hp":255.0, "attack":190.0, "defense":250.0, "sp_attack":194.0, "sp_defense":250.0, "speed":200.0, "generation":8.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: Name the top 2 primary categories that have the most Pokémon. # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: Name the top 2 primary categories that have the most Pokémon. df.columns = ['number', 'name', 'type1', 'type2', 'total', 'hp', 'attack', 'defense', 'sp_attack', 'sp_defense', 'speed', 'generation', 'legendary'] # Expected output type: is list[category], this will be checked. return
20250129013715
35
Which 6 Pokémon from the second generation have the highest attack stats?
051_Pokemon
dev
list[category]
['generation', 'attack', 'name']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "number", "type": "uint16" }, { "name": "name", "type": "category" }, { "name": "type1", "type": "category" }, { "name": "type2", "type": "category" }, { "name": "total", "type": "uint16" }, { "name": "hp", "type": "uint8" }, { "name": "attack", "type": "uint8" }, { "name": "defense", "type": "uint8" }, { "name": "sp_attack", "type": "uint8" }, { "name": "sp_defense", "type": "uint8" }, { "name": "speed", "type": "uint8" }, { "name": "generation", "type": "uint8" }, { "name": "legendary", "type": "bool" } ] } # Description of dataframe columns. df_descrption = { "count":{ "number":1072.0, "total":1072.0, "hp":1072.0, "attack":1072.0, "defense":1072.0, "sp_attack":1072.0, "sp_defense":1072.0, "speed":1072.0, "generation":1072.0 }, "mean":{ "number":445.2192164179, "total":440.885261194, "hp":70.4869402985, "attack":80.9384328358, "defense":74.9682835821, "sp_attack":73.2733208955, "sp_defense":72.4766791045, "speed":68.7929104478, "generation":4.2947761194 }, "std":{ "number":267.77280649, "total":121.3790771926, "hp":26.8680389923, "attack":32.4635820748, "defense":31.2080593873, "sp_attack":32.6431190064, "sp_defense":27.9342534926, "speed":30.0762806451, "generation":2.3464717631 }, "min":{ "number":1.0, "total":175.0, "hp":1.0, "attack":5.0, "defense":5.0, "sp_attack":10.0, "sp_defense":20.0, "speed":5.0, "generation":0.0 }, "25%":{ "number":209.75, "total":330.0, "hp":50.0, "attack":56.0, "defense":52.0, "sp_attack":50.0, "sp_defense":50.0, "speed":45.0, "generation":2.0 }, "50%":{ "number":442.5, "total":460.5, "hp":68.0, "attack":80.0, "defense":70.0, "sp_attack":65.0, "sp_defense":70.0, "speed":65.0, "generation":4.0 }, "75%":{ "number":681.25, "total":519.25, "hp":84.0, "attack":100.0, "defense":90.0, "sp_attack":95.0, "sp_defense":90.0, "speed":90.0, "generation":6.0 }, "max":{ "number":898.0, "total":1125.0, "hp":255.0, "attack":190.0, "defense":250.0, "sp_attack":194.0, "sp_defense":250.0, "speed":200.0, "generation":8.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "number":1072.0, "total":1072.0, "hp":1072.0, "attack":1072.0, "defense":1072.0, "sp_attack":1072.0, "sp_defense":1072.0, "speed":1072.0, "generation":1072.0 }, "mean":{ "number":445.2192164179, "total":440.885261194, "hp":70.4869402985, "attack":80.9384328358, "defense":74.9682835821, "sp_attack":73.2733208955, "sp_defense":72.4766791045, "speed":68.7929104478, "generation":4.2947761194 }, "std":{ "number":267.77280649, "total":121.3790771926, "hp":26.8680389923, "attack":32.4635820748, "defense":31.2080593873, "sp_attack":32.6431190064, "sp_defense":27.9342534926, "speed":30.0762806451, "generation":2.3464717631 }, "min":{ "number":1.0, "total":175.0, "hp":1.0, "attack":5.0, "defense":5.0, "sp_attack":10.0, "sp_defense":20.0, "speed":5.0, "generation":0.0 }, "25%":{ "number":209.75, "total":330.0, "hp":50.0, "attack":56.0, "defense":52.0, "sp_attack":50.0, "sp_defense":50.0, "speed":45.0, "generation":2.0 }, "50%":{ "number":442.5, "total":460.5, "hp":68.0, "attack":80.0, "defense":70.0, "sp_attack":65.0, "sp_defense":70.0, "speed":65.0, "generation":4.0 }, "75%":{ "number":681.25, "total":519.25, "hp":84.0, "attack":100.0, "defense":90.0, "sp_attack":95.0, "sp_defense":90.0, "speed":90.0, "generation":6.0 }, "max":{ "number":898.0, "total":1125.0, "hp":255.0, "attack":190.0, "defense":250.0, "sp_attack":194.0, "sp_defense":250.0, "speed":200.0, "generation":8.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: Which 6 Pokémon from the second generation have the highest attack stats? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: Which 6 Pokémon from the second generation have the highest attack stats? df.columns = ['number', 'name', 'type1', 'type2', 'total', 'hp', 'attack', 'defense', 'sp_attack', 'sp_defense', 'speed', 'generation', 'legendary'] # Expected output type: is list[category], this will be checked. return
20250129013715
36
What are the top 5 special defense stats in the dataset?
051_Pokemon
dev
list[number]
['sp_defense']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "number", "type": "uint16" }, { "name": "name", "type": "category" }, { "name": "type1", "type": "category" }, { "name": "type2", "type": "category" }, { "name": "total", "type": "uint16" }, { "name": "hp", "type": "uint8" }, { "name": "attack", "type": "uint8" }, { "name": "defense", "type": "uint8" }, { "name": "sp_attack", "type": "uint8" }, { "name": "sp_defense", "type": "uint8" }, { "name": "speed", "type": "uint8" }, { "name": "generation", "type": "uint8" }, { "name": "legendary", "type": "bool" } ] } # Description of dataframe columns. df_descrption = { "count":{ "number":1072.0, "total":1072.0, "hp":1072.0, "attack":1072.0, "defense":1072.0, "sp_attack":1072.0, "sp_defense":1072.0, "speed":1072.0, "generation":1072.0 }, "mean":{ "number":445.2192164179, "total":440.885261194, "hp":70.4869402985, "attack":80.9384328358, "defense":74.9682835821, "sp_attack":73.2733208955, "sp_defense":72.4766791045, "speed":68.7929104478, "generation":4.2947761194 }, "std":{ "number":267.77280649, "total":121.3790771926, "hp":26.8680389923, "attack":32.4635820748, "defense":31.2080593873, "sp_attack":32.6431190064, "sp_defense":27.9342534926, "speed":30.0762806451, "generation":2.3464717631 }, "min":{ "number":1.0, "total":175.0, "hp":1.0, "attack":5.0, "defense":5.0, "sp_attack":10.0, "sp_defense":20.0, "speed":5.0, "generation":0.0 }, "25%":{ "number":209.75, "total":330.0, "hp":50.0, "attack":56.0, "defense":52.0, "sp_attack":50.0, "sp_defense":50.0, "speed":45.0, "generation":2.0 }, "50%":{ "number":442.5, "total":460.5, "hp":68.0, "attack":80.0, "defense":70.0, "sp_attack":65.0, "sp_defense":70.0, "speed":65.0, "generation":4.0 }, "75%":{ "number":681.25, "total":519.25, "hp":84.0, "attack":100.0, "defense":90.0, "sp_attack":95.0, "sp_defense":90.0, "speed":90.0, "generation":6.0 }, "max":{ "number":898.0, "total":1125.0, "hp":255.0, "attack":190.0, "defense":250.0, "sp_attack":194.0, "sp_defense":250.0, "speed":200.0, "generation":8.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "number":1072.0, "total":1072.0, "hp":1072.0, "attack":1072.0, "defense":1072.0, "sp_attack":1072.0, "sp_defense":1072.0, "speed":1072.0, "generation":1072.0 }, "mean":{ "number":445.2192164179, "total":440.885261194, "hp":70.4869402985, "attack":80.9384328358, "defense":74.9682835821, "sp_attack":73.2733208955, "sp_defense":72.4766791045, "speed":68.7929104478, "generation":4.2947761194 }, "std":{ "number":267.77280649, "total":121.3790771926, "hp":26.8680389923, "attack":32.4635820748, "defense":31.2080593873, "sp_attack":32.6431190064, "sp_defense":27.9342534926, "speed":30.0762806451, "generation":2.3464717631 }, "min":{ "number":1.0, "total":175.0, "hp":1.0, "attack":5.0, "defense":5.0, "sp_attack":10.0, "sp_defense":20.0, "speed":5.0, "generation":0.0 }, "25%":{ "number":209.75, "total":330.0, "hp":50.0, "attack":56.0, "defense":52.0, "sp_attack":50.0, "sp_defense":50.0, "speed":45.0, "generation":2.0 }, "50%":{ "number":442.5, "total":460.5, "hp":68.0, "attack":80.0, "defense":70.0, "sp_attack":65.0, "sp_defense":70.0, "speed":65.0, "generation":4.0 }, "75%":{ "number":681.25, "total":519.25, "hp":84.0, "attack":100.0, "defense":90.0, "sp_attack":95.0, "sp_defense":90.0, "speed":90.0, "generation":6.0 }, "max":{ "number":898.0, "total":1125.0, "hp":255.0, "attack":190.0, "defense":250.0, "sp_attack":194.0, "sp_defense":250.0, "speed":200.0, "generation":8.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: What are the top 5 special defense stats in the dataset? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: What are the top 5 special defense stats in the dataset? df.columns = ['number', 'name', 'type1', 'type2', 'total', 'hp', 'attack', 'defense', 'sp_attack', 'sp_defense', 'speed', 'generation', 'legendary'] # Expected output type: is list[number], this will be checked. return
20250129013715
37
List the lowest 2 defense stats of legendary Pokémon.
051_Pokemon
dev
list[number]
['legendary', 'defense']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "number", "type": "uint16" }, { "name": "name", "type": "category" }, { "name": "type1", "type": "category" }, { "name": "type2", "type": "category" }, { "name": "total", "type": "uint16" }, { "name": "hp", "type": "uint8" }, { "name": "attack", "type": "uint8" }, { "name": "defense", "type": "uint8" }, { "name": "sp_attack", "type": "uint8" }, { "name": "sp_defense", "type": "uint8" }, { "name": "speed", "type": "uint8" }, { "name": "generation", "type": "uint8" }, { "name": "legendary", "type": "bool" } ] } # Description of dataframe columns. df_descrption = { "count":{ "number":1072.0, "total":1072.0, "hp":1072.0, "attack":1072.0, "defense":1072.0, "sp_attack":1072.0, "sp_defense":1072.0, "speed":1072.0, "generation":1072.0 }, "mean":{ "number":445.2192164179, "total":440.885261194, "hp":70.4869402985, "attack":80.9384328358, "defense":74.9682835821, "sp_attack":73.2733208955, "sp_defense":72.4766791045, "speed":68.7929104478, "generation":4.2947761194 }, "std":{ "number":267.77280649, "total":121.3790771926, "hp":26.8680389923, "attack":32.4635820748, "defense":31.2080593873, "sp_attack":32.6431190064, "sp_defense":27.9342534926, "speed":30.0762806451, "generation":2.3464717631 }, "min":{ "number":1.0, "total":175.0, "hp":1.0, "attack":5.0, "defense":5.0, "sp_attack":10.0, "sp_defense":20.0, "speed":5.0, "generation":0.0 }, "25%":{ "number":209.75, "total":330.0, "hp":50.0, "attack":56.0, "defense":52.0, "sp_attack":50.0, "sp_defense":50.0, "speed":45.0, "generation":2.0 }, "50%":{ "number":442.5, "total":460.5, "hp":68.0, "attack":80.0, "defense":70.0, "sp_attack":65.0, "sp_defense":70.0, "speed":65.0, "generation":4.0 }, "75%":{ "number":681.25, "total":519.25, "hp":84.0, "attack":100.0, "defense":90.0, "sp_attack":95.0, "sp_defense":90.0, "speed":90.0, "generation":6.0 }, "max":{ "number":898.0, "total":1125.0, "hp":255.0, "attack":190.0, "defense":250.0, "sp_attack":194.0, "sp_defense":250.0, "speed":200.0, "generation":8.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "number":1072.0, "total":1072.0, "hp":1072.0, "attack":1072.0, "defense":1072.0, "sp_attack":1072.0, "sp_defense":1072.0, "speed":1072.0, "generation":1072.0 }, "mean":{ "number":445.2192164179, "total":440.885261194, "hp":70.4869402985, "attack":80.9384328358, "defense":74.9682835821, "sp_attack":73.2733208955, "sp_defense":72.4766791045, "speed":68.7929104478, "generation":4.2947761194 }, "std":{ "number":267.77280649, "total":121.3790771926, "hp":26.8680389923, "attack":32.4635820748, "defense":31.2080593873, "sp_attack":32.6431190064, "sp_defense":27.9342534926, "speed":30.0762806451, "generation":2.3464717631 }, "min":{ "number":1.0, "total":175.0, "hp":1.0, "attack":5.0, "defense":5.0, "sp_attack":10.0, "sp_defense":20.0, "speed":5.0, "generation":0.0 }, "25%":{ "number":209.75, "total":330.0, "hp":50.0, "attack":56.0, "defense":52.0, "sp_attack":50.0, "sp_defense":50.0, "speed":45.0, "generation":2.0 }, "50%":{ "number":442.5, "total":460.5, "hp":68.0, "attack":80.0, "defense":70.0, "sp_attack":65.0, "sp_defense":70.0, "speed":65.0, "generation":4.0 }, "75%":{ "number":681.25, "total":519.25, "hp":84.0, "attack":100.0, "defense":90.0, "sp_attack":95.0, "sp_defense":90.0, "speed":90.0, "generation":6.0 }, "max":{ "number":898.0, "total":1125.0, "hp":255.0, "attack":190.0, "defense":250.0, "sp_attack":194.0, "sp_defense":250.0, "speed":200.0, "generation":8.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: List the lowest 2 defense stats of legendary Pokémon. # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: List the lowest 2 defense stats of legendary Pokémon. df.columns = ['number', 'name', 'type1', 'type2', 'total', 'hp', 'attack', 'defense', 'sp_attack', 'sp_defense', 'speed', 'generation', 'legendary'] # Expected output type: is list[number], this will be checked. return
20250129013715
38
What are the 2 highest speed stats of Pokémon in the fourth generation?
051_Pokemon
dev
list[number]
['generation', 'speed']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "number", "type": "uint16" }, { "name": "name", "type": "category" }, { "name": "type1", "type": "category" }, { "name": "type2", "type": "category" }, { "name": "total", "type": "uint16" }, { "name": "hp", "type": "uint8" }, { "name": "attack", "type": "uint8" }, { "name": "defense", "type": "uint8" }, { "name": "sp_attack", "type": "uint8" }, { "name": "sp_defense", "type": "uint8" }, { "name": "speed", "type": "uint8" }, { "name": "generation", "type": "uint8" }, { "name": "legendary", "type": "bool" } ] } # Description of dataframe columns. df_descrption = { "count":{ "number":1072.0, "total":1072.0, "hp":1072.0, "attack":1072.0, "defense":1072.0, "sp_attack":1072.0, "sp_defense":1072.0, "speed":1072.0, "generation":1072.0 }, "mean":{ "number":445.2192164179, "total":440.885261194, "hp":70.4869402985, "attack":80.9384328358, "defense":74.9682835821, "sp_attack":73.2733208955, "sp_defense":72.4766791045, "speed":68.7929104478, "generation":4.2947761194 }, "std":{ "number":267.77280649, "total":121.3790771926, "hp":26.8680389923, "attack":32.4635820748, "defense":31.2080593873, "sp_attack":32.6431190064, "sp_defense":27.9342534926, "speed":30.0762806451, "generation":2.3464717631 }, "min":{ "number":1.0, "total":175.0, "hp":1.0, "attack":5.0, "defense":5.0, "sp_attack":10.0, "sp_defense":20.0, "speed":5.0, "generation":0.0 }, "25%":{ "number":209.75, "total":330.0, "hp":50.0, "attack":56.0, "defense":52.0, "sp_attack":50.0, "sp_defense":50.0, "speed":45.0, "generation":2.0 }, "50%":{ "number":442.5, "total":460.5, "hp":68.0, "attack":80.0, "defense":70.0, "sp_attack":65.0, "sp_defense":70.0, "speed":65.0, "generation":4.0 }, "75%":{ "number":681.25, "total":519.25, "hp":84.0, "attack":100.0, "defense":90.0, "sp_attack":95.0, "sp_defense":90.0, "speed":90.0, "generation":6.0 }, "max":{ "number":898.0, "total":1125.0, "hp":255.0, "attack":190.0, "defense":250.0, "sp_attack":194.0, "sp_defense":250.0, "speed":200.0, "generation":8.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "number":1072.0, "total":1072.0, "hp":1072.0, "attack":1072.0, "defense":1072.0, "sp_attack":1072.0, "sp_defense":1072.0, "speed":1072.0, "generation":1072.0 }, "mean":{ "number":445.2192164179, "total":440.885261194, "hp":70.4869402985, "attack":80.9384328358, "defense":74.9682835821, "sp_attack":73.2733208955, "sp_defense":72.4766791045, "speed":68.7929104478, "generation":4.2947761194 }, "std":{ "number":267.77280649, "total":121.3790771926, "hp":26.8680389923, "attack":32.4635820748, "defense":31.2080593873, "sp_attack":32.6431190064, "sp_defense":27.9342534926, "speed":30.0762806451, "generation":2.3464717631 }, "min":{ "number":1.0, "total":175.0, "hp":1.0, "attack":5.0, "defense":5.0, "sp_attack":10.0, "sp_defense":20.0, "speed":5.0, "generation":0.0 }, "25%":{ "number":209.75, "total":330.0, "hp":50.0, "attack":56.0, "defense":52.0, "sp_attack":50.0, "sp_defense":50.0, "speed":45.0, "generation":2.0 }, "50%":{ "number":442.5, "total":460.5, "hp":68.0, "attack":80.0, "defense":70.0, "sp_attack":65.0, "sp_defense":70.0, "speed":65.0, "generation":4.0 }, "75%":{ "number":681.25, "total":519.25, "hp":84.0, "attack":100.0, "defense":90.0, "sp_attack":95.0, "sp_defense":90.0, "speed":90.0, "generation":6.0 }, "max":{ "number":898.0, "total":1125.0, "hp":255.0, "attack":190.0, "defense":250.0, "sp_attack":194.0, "sp_defense":250.0, "speed":200.0, "generation":8.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: What are the 2 highest speed stats of Pokémon in the fourth generation? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: What are the 2 highest speed stats of Pokémon in the fourth generation? df.columns = ['number', 'name', 'type1', 'type2', 'total', 'hp', 'attack', 'defense', 'sp_attack', 'sp_defense', 'speed', 'generation', 'legendary'] # Expected output type: is list[number], this will be checked. return
20250129013715
39
list the 6 lowest total stats of non-legendary Pokémon.
051_Pokemon
dev
list[number]
['legendary', 'total']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "number", "type": "uint16" }, { "name": "name", "type": "category" }, { "name": "type1", "type": "category" }, { "name": "type2", "type": "category" }, { "name": "total", "type": "uint16" }, { "name": "hp", "type": "uint8" }, { "name": "attack", "type": "uint8" }, { "name": "defense", "type": "uint8" }, { "name": "sp_attack", "type": "uint8" }, { "name": "sp_defense", "type": "uint8" }, { "name": "speed", "type": "uint8" }, { "name": "generation", "type": "uint8" }, { "name": "legendary", "type": "bool" } ] } # Description of dataframe columns. df_descrption = { "count":{ "number":1072.0, "total":1072.0, "hp":1072.0, "attack":1072.0, "defense":1072.0, "sp_attack":1072.0, "sp_defense":1072.0, "speed":1072.0, "generation":1072.0 }, "mean":{ "number":445.2192164179, "total":440.885261194, "hp":70.4869402985, "attack":80.9384328358, "defense":74.9682835821, "sp_attack":73.2733208955, "sp_defense":72.4766791045, "speed":68.7929104478, "generation":4.2947761194 }, "std":{ "number":267.77280649, "total":121.3790771926, "hp":26.8680389923, "attack":32.4635820748, "defense":31.2080593873, "sp_attack":32.6431190064, "sp_defense":27.9342534926, "speed":30.0762806451, "generation":2.3464717631 }, "min":{ "number":1.0, "total":175.0, "hp":1.0, "attack":5.0, "defense":5.0, "sp_attack":10.0, "sp_defense":20.0, "speed":5.0, "generation":0.0 }, "25%":{ "number":209.75, "total":330.0, "hp":50.0, "attack":56.0, "defense":52.0, "sp_attack":50.0, "sp_defense":50.0, "speed":45.0, "generation":2.0 }, "50%":{ "number":442.5, "total":460.5, "hp":68.0, "attack":80.0, "defense":70.0, "sp_attack":65.0, "sp_defense":70.0, "speed":65.0, "generation":4.0 }, "75%":{ "number":681.25, "total":519.25, "hp":84.0, "attack":100.0, "defense":90.0, "sp_attack":95.0, "sp_defense":90.0, "speed":90.0, "generation":6.0 }, "max":{ "number":898.0, "total":1125.0, "hp":255.0, "attack":190.0, "defense":250.0, "sp_attack":194.0, "sp_defense":250.0, "speed":200.0, "generation":8.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "number":1072.0, "total":1072.0, "hp":1072.0, "attack":1072.0, "defense":1072.0, "sp_attack":1072.0, "sp_defense":1072.0, "speed":1072.0, "generation":1072.0 }, "mean":{ "number":445.2192164179, "total":440.885261194, "hp":70.4869402985, "attack":80.9384328358, "defense":74.9682835821, "sp_attack":73.2733208955, "sp_defense":72.4766791045, "speed":68.7929104478, "generation":4.2947761194 }, "std":{ "number":267.77280649, "total":121.3790771926, "hp":26.8680389923, "attack":32.4635820748, "defense":31.2080593873, "sp_attack":32.6431190064, "sp_defense":27.9342534926, "speed":30.0762806451, "generation":2.3464717631 }, "min":{ "number":1.0, "total":175.0, "hp":1.0, "attack":5.0, "defense":5.0, "sp_attack":10.0, "sp_defense":20.0, "speed":5.0, "generation":0.0 }, "25%":{ "number":209.75, "total":330.0, "hp":50.0, "attack":56.0, "defense":52.0, "sp_attack":50.0, "sp_defense":50.0, "speed":45.0, "generation":2.0 }, "50%":{ "number":442.5, "total":460.5, "hp":68.0, "attack":80.0, "defense":70.0, "sp_attack":65.0, "sp_defense":70.0, "speed":65.0, "generation":4.0 }, "75%":{ "number":681.25, "total":519.25, "hp":84.0, "attack":100.0, "defense":90.0, "sp_attack":95.0, "sp_defense":90.0, "speed":90.0, "generation":6.0 }, "max":{ "number":898.0, "total":1125.0, "hp":255.0, "attack":190.0, "defense":250.0, "sp_attack":194.0, "sp_defense":250.0, "speed":200.0, "generation":8.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: list the 6 lowest total stats of non-legendary Pokémon. # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: list the 6 lowest total stats of non-legendary Pokémon. df.columns = ['number', 'name', 'type1', 'type2', 'total', 'hp', 'attack', 'defense', 'sp_attack', 'sp_defense', 'speed', 'generation', 'legendary'] # Expected output type: is list[number], this will be checked. return
20250129013715
40
Is the maximum level of Extraversion greater than the maximum level of Agreeableness?
052_Professional
dev
boolean
['Extraversion', 'Agreeableness']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "Profession", "type": "category" }, { "name": "Openness", "type": "float64" }, { "name": "Conscientousness", "type": "float64" }, { "name": "Extraversion", "type": "float64" }, { "name": "Agreeableness", "type": "float64" }, { "name": "Emotional_Range", "type": "float64" }, { "name": "Conversation", "type": "float64" }, { "name": "Openness to Change", "type": "float64" }, { "name": "Hedonism", "type": "float64" }, { "name": "Self-enhancement", "type": "float64" }, { "name": "Self-transcendence", "type": "float64" }, { "name": "n", "type": "uint16" } ] } # Description of dataframe columns. df_descrption = { "count":{ "Openness":1227.0, "Conscientousness":1227.0, "Extraversion":1227.0, "Agreeableness":1227.0, "Emotional_Range":1227.0, "Conversation":1227.0, "Openness to Change":1227.0, "Hedonism":1227.0, "Self-enhancement":1227.0, "Self-transcendence":1227.0, "n":1227.0 }, "mean":{ "Openness":0.6818599599, "Conscientousness":0.5494864934, "Extraversion":0.5999407609, "Agreeableness":0.3300650815, "Emotional_Range":0.6150157566, "Conversation":0.1954283756, "Openness to Change":0.4297269623, "Hedonism":0.1854087597, "Self-enhancement":0.3530469421, "Self-transcendence":0.2674535075, "n":82.4392828036 }, "std":{ "Openness":0.1062055359, "Conscientousness":0.1504663216, "Extraversion":0.1730540692, "Agreeableness":0.1775762646, "Emotional_Range":0.1320494061, "Conversation":0.1168313736, "Openness to Change":0.0884607635, "Hedonism":0.101973799, "Self-enhancement":0.1235634015, "Self-transcendence":0.098292791, "n":25.8098237833 }, "min":{ "Openness":0.2152542646, "Conscientousness":0.1085605602, "Extraversion":0.1022540075, "Agreeableness":0.017733368, "Emotional_Range":0.165238157, "Conversation":0.0124883557, "Openness to Change":0.1470387283, "Hedonism":0.0290857203, "Self-enhancement":0.0298680791, "Self-transcendence":0.0353641396, "n":50.0 }, "25%":{ "Openness":0.6159645036, "Conscientousness":0.453015216, "Extraversion":0.5015413749, "Agreeableness":0.1927662685, "Emotional_Range":0.5281815531, "Conversation":0.1087056755, "Openness to Change":0.3720593776, "Hedonism":0.1141935636, "Self-enhancement":0.2732188024, "Self-transcendence":0.2014597353, "n":72.0 }, "50%":{ "Openness":0.6877670374, "Conscientousness":0.5529477526, "Extraversion":0.6337253665, "Agreeableness":0.3236347592, "Emotional_Range":0.6168124863, "Conversation":0.1734567056, "Openness to Change":0.430397799, "Hedonism":0.158430861, "Self-enhancement":0.3399782773, "Self-transcendence":0.2556183242, "n":76.0 }, "75%":{ "Openness":0.7561884082, "Conscientousness":0.6510142733, "Extraversion":0.7274713099, "Agreeableness":0.4492181284, "Emotional_Range":0.7010886899, "Conversation":0.2547882803, "Openness to Change":0.4846609371, "Hedonism":0.2265744616, "Self-enhancement":0.4299178279, "Self-transcendence":0.3220190548, "n":80.0 }, "max":{ "Openness":0.95992792, "Conscientousness":0.960118167, "Extraversion":0.9794365923, "Agreeableness":0.8993661095, "Emotional_Range":0.9415769334, "Conversation":0.7793932512, "Openness to Change":0.7557249986, "Hedonism":0.680102991, "Self-enhancement":0.7826336181, "Self-transcendence":0.6273682888, "n":313.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "Openness":1227.0, "Conscientousness":1227.0, "Extraversion":1227.0, "Agreeableness":1227.0, "Emotional_Range":1227.0, "Conversation":1227.0, "Openness to Change":1227.0, "Hedonism":1227.0, "Self-enhancement":1227.0, "Self-transcendence":1227.0, "n":1227.0 }, "mean":{ "Openness":0.6818599599, "Conscientousness":0.5494864934, "Extraversion":0.5999407609, "Agreeableness":0.3300650815, "Emotional_Range":0.6150157566, "Conversation":0.1954283756, "Openness to Change":0.4297269623, "Hedonism":0.1854087597, "Self-enhancement":0.3530469421, "Self-transcendence":0.2674535075, "n":82.4392828036 }, "std":{ "Openness":0.1062055359, "Conscientousness":0.1504663216, "Extraversion":0.1730540692, "Agreeableness":0.1775762646, "Emotional_Range":0.1320494061, "Conversation":0.1168313736, "Openness to Change":0.0884607635, "Hedonism":0.101973799, "Self-enhancement":0.1235634015, "Self-transcendence":0.098292791, "n":25.8098237833 }, "min":{ "Openness":0.2152542646, "Conscientousness":0.1085605602, "Extraversion":0.1022540075, "Agreeableness":0.017733368, "Emotional_Range":0.165238157, "Conversation":0.0124883557, "Openness to Change":0.1470387283, "Hedonism":0.0290857203, "Self-enhancement":0.0298680791, "Self-transcendence":0.0353641396, "n":50.0 }, "25%":{ "Openness":0.6159645036, "Conscientousness":0.453015216, "Extraversion":0.5015413749, "Agreeableness":0.1927662685, "Emotional_Range":0.5281815531, "Conversation":0.1087056755, "Openness to Change":0.3720593776, "Hedonism":0.1141935636, "Self-enhancement":0.2732188024, "Self-transcendence":0.2014597353, "n":72.0 }, "50%":{ "Openness":0.6877670374, "Conscientousness":0.5529477526, "Extraversion":0.6337253665, "Agreeableness":0.3236347592, "Emotional_Range":0.6168124863, "Conversation":0.1734567056, "Openness to Change":0.430397799, "Hedonism":0.158430861, "Self-enhancement":0.3399782773, "Self-transcendence":0.2556183242, "n":76.0 }, "75%":{ "Openness":0.7561884082, "Conscientousness":0.6510142733, "Extraversion":0.7274713099, "Agreeableness":0.4492181284, "Emotional_Range":0.7010886899, "Conversation":0.2547882803, "Openness to Change":0.4846609371, "Hedonism":0.2265744616, "Self-enhancement":0.4299178279, "Self-transcendence":0.3220190548, "n":80.0 }, "max":{ "Openness":0.95992792, "Conscientousness":0.960118167, "Extraversion":0.9794365923, "Agreeableness":0.8993661095, "Emotional_Range":0.9415769334, "Conversation":0.7793932512, "Openness to Change":0.7557249986, "Hedonism":0.680102991, "Self-enhancement":0.7826336181, "Self-transcendence":0.6273682888, "n":313.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: Is the maximum level of Extraversion greater than the maximum level of Agreeableness? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: Is the maximum level of Extraversion greater than the maximum level of Agreeableness? df.columns = ['Profession', 'Openness', 'Conscientousness', 'Extraversion', 'Agreeableness', 'Emotional_Range', 'Conversation', 'Openness to Change', 'Hedonism', 'Self-enhancement', 'Self-transcendence', 'n'] # Expected output type: is boolean, this will be checked. return
20250129013715
41
Is the profession with the highest Openness the same as the profession with the highest Conscientousness?
052_Professional
dev
boolean
['Profession', 'Openness', 'Conscientousness']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "Profession", "type": "category" }, { "name": "Openness", "type": "float64" }, { "name": "Conscientousness", "type": "float64" }, { "name": "Extraversion", "type": "float64" }, { "name": "Agreeableness", "type": "float64" }, { "name": "Emotional_Range", "type": "float64" }, { "name": "Conversation", "type": "float64" }, { "name": "Openness to Change", "type": "float64" }, { "name": "Hedonism", "type": "float64" }, { "name": "Self-enhancement", "type": "float64" }, { "name": "Self-transcendence", "type": "float64" }, { "name": "n", "type": "uint16" } ] } # Description of dataframe columns. df_descrption = { "count":{ "Openness":1227.0, "Conscientousness":1227.0, "Extraversion":1227.0, "Agreeableness":1227.0, "Emotional_Range":1227.0, "Conversation":1227.0, "Openness to Change":1227.0, "Hedonism":1227.0, "Self-enhancement":1227.0, "Self-transcendence":1227.0, "n":1227.0 }, "mean":{ "Openness":0.6818599599, "Conscientousness":0.5494864934, "Extraversion":0.5999407609, "Agreeableness":0.3300650815, "Emotional_Range":0.6150157566, "Conversation":0.1954283756, "Openness to Change":0.4297269623, "Hedonism":0.1854087597, "Self-enhancement":0.3530469421, "Self-transcendence":0.2674535075, "n":82.4392828036 }, "std":{ "Openness":0.1062055359, "Conscientousness":0.1504663216, "Extraversion":0.1730540692, "Agreeableness":0.1775762646, "Emotional_Range":0.1320494061, "Conversation":0.1168313736, "Openness to Change":0.0884607635, "Hedonism":0.101973799, "Self-enhancement":0.1235634015, "Self-transcendence":0.098292791, "n":25.8098237833 }, "min":{ "Openness":0.2152542646, "Conscientousness":0.1085605602, "Extraversion":0.1022540075, "Agreeableness":0.017733368, "Emotional_Range":0.165238157, "Conversation":0.0124883557, "Openness to Change":0.1470387283, "Hedonism":0.0290857203, "Self-enhancement":0.0298680791, "Self-transcendence":0.0353641396, "n":50.0 }, "25%":{ "Openness":0.6159645036, "Conscientousness":0.453015216, "Extraversion":0.5015413749, "Agreeableness":0.1927662685, "Emotional_Range":0.5281815531, "Conversation":0.1087056755, "Openness to Change":0.3720593776, "Hedonism":0.1141935636, "Self-enhancement":0.2732188024, "Self-transcendence":0.2014597353, "n":72.0 }, "50%":{ "Openness":0.6877670374, "Conscientousness":0.5529477526, "Extraversion":0.6337253665, "Agreeableness":0.3236347592, "Emotional_Range":0.6168124863, "Conversation":0.1734567056, "Openness to Change":0.430397799, "Hedonism":0.158430861, "Self-enhancement":0.3399782773, "Self-transcendence":0.2556183242, "n":76.0 }, "75%":{ "Openness":0.7561884082, "Conscientousness":0.6510142733, "Extraversion":0.7274713099, "Agreeableness":0.4492181284, "Emotional_Range":0.7010886899, "Conversation":0.2547882803, "Openness to Change":0.4846609371, "Hedonism":0.2265744616, "Self-enhancement":0.4299178279, "Self-transcendence":0.3220190548, "n":80.0 }, "max":{ "Openness":0.95992792, "Conscientousness":0.960118167, "Extraversion":0.9794365923, "Agreeableness":0.8993661095, "Emotional_Range":0.9415769334, "Conversation":0.7793932512, "Openness to Change":0.7557249986, "Hedonism":0.680102991, "Self-enhancement":0.7826336181, "Self-transcendence":0.6273682888, "n":313.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "Openness":1227.0, "Conscientousness":1227.0, "Extraversion":1227.0, "Agreeableness":1227.0, "Emotional_Range":1227.0, "Conversation":1227.0, "Openness to Change":1227.0, "Hedonism":1227.0, "Self-enhancement":1227.0, "Self-transcendence":1227.0, "n":1227.0 }, "mean":{ "Openness":0.6818599599, "Conscientousness":0.5494864934, "Extraversion":0.5999407609, "Agreeableness":0.3300650815, "Emotional_Range":0.6150157566, "Conversation":0.1954283756, "Openness to Change":0.4297269623, "Hedonism":0.1854087597, "Self-enhancement":0.3530469421, "Self-transcendence":0.2674535075, "n":82.4392828036 }, "std":{ "Openness":0.1062055359, "Conscientousness":0.1504663216, "Extraversion":0.1730540692, "Agreeableness":0.1775762646, "Emotional_Range":0.1320494061, "Conversation":0.1168313736, "Openness to Change":0.0884607635, "Hedonism":0.101973799, "Self-enhancement":0.1235634015, "Self-transcendence":0.098292791, "n":25.8098237833 }, "min":{ "Openness":0.2152542646, "Conscientousness":0.1085605602, "Extraversion":0.1022540075, "Agreeableness":0.017733368, "Emotional_Range":0.165238157, "Conversation":0.0124883557, "Openness to Change":0.1470387283, "Hedonism":0.0290857203, "Self-enhancement":0.0298680791, "Self-transcendence":0.0353641396, "n":50.0 }, "25%":{ "Openness":0.6159645036, "Conscientousness":0.453015216, "Extraversion":0.5015413749, "Agreeableness":0.1927662685, "Emotional_Range":0.5281815531, "Conversation":0.1087056755, "Openness to Change":0.3720593776, "Hedonism":0.1141935636, "Self-enhancement":0.2732188024, "Self-transcendence":0.2014597353, "n":72.0 }, "50%":{ "Openness":0.6877670374, "Conscientousness":0.5529477526, "Extraversion":0.6337253665, "Agreeableness":0.3236347592, "Emotional_Range":0.6168124863, "Conversation":0.1734567056, "Openness to Change":0.430397799, "Hedonism":0.158430861, "Self-enhancement":0.3399782773, "Self-transcendence":0.2556183242, "n":76.0 }, "75%":{ "Openness":0.7561884082, "Conscientousness":0.6510142733, "Extraversion":0.7274713099, "Agreeableness":0.4492181284, "Emotional_Range":0.7010886899, "Conversation":0.2547882803, "Openness to Change":0.4846609371, "Hedonism":0.2265744616, "Self-enhancement":0.4299178279, "Self-transcendence":0.3220190548, "n":80.0 }, "max":{ "Openness":0.95992792, "Conscientousness":0.960118167, "Extraversion":0.9794365923, "Agreeableness":0.8993661095, "Emotional_Range":0.9415769334, "Conversation":0.7793932512, "Openness to Change":0.7557249986, "Hedonism":0.680102991, "Self-enhancement":0.7826336181, "Self-transcendence":0.6273682888, "n":313.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: Is the profession with the highest Openness the same as the profession with the highest Conscientousness? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: Is the profession with the highest Openness the same as the profession with the highest Conscientousness? df.columns = ['Profession', 'Openness', 'Conscientousness', 'Extraversion', 'Agreeableness', 'Emotional_Range', 'Conversation', 'Openness to Change', 'Hedonism', 'Self-enhancement', 'Self-transcendence', 'n'] # Expected output type: is boolean, this will be checked. return
20250129013715
42
Does the profession with the lowest Emotional_Range also have the lowest level of Conversation?
052_Professional
dev
boolean
['Profession', 'Emotional_Range', 'Conversation']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "Profession", "type": "category" }, { "name": "Openness", "type": "float64" }, { "name": "Conscientousness", "type": "float64" }, { "name": "Extraversion", "type": "float64" }, { "name": "Agreeableness", "type": "float64" }, { "name": "Emotional_Range", "type": "float64" }, { "name": "Conversation", "type": "float64" }, { "name": "Openness to Change", "type": "float64" }, { "name": "Hedonism", "type": "float64" }, { "name": "Self-enhancement", "type": "float64" }, { "name": "Self-transcendence", "type": "float64" }, { "name": "n", "type": "uint16" } ] } # Description of dataframe columns. df_descrption = { "count":{ "Openness":1227.0, "Conscientousness":1227.0, "Extraversion":1227.0, "Agreeableness":1227.0, "Emotional_Range":1227.0, "Conversation":1227.0, "Openness to Change":1227.0, "Hedonism":1227.0, "Self-enhancement":1227.0, "Self-transcendence":1227.0, "n":1227.0 }, "mean":{ "Openness":0.6818599599, "Conscientousness":0.5494864934, "Extraversion":0.5999407609, "Agreeableness":0.3300650815, "Emotional_Range":0.6150157566, "Conversation":0.1954283756, "Openness to Change":0.4297269623, "Hedonism":0.1854087597, "Self-enhancement":0.3530469421, "Self-transcendence":0.2674535075, "n":82.4392828036 }, "std":{ "Openness":0.1062055359, "Conscientousness":0.1504663216, "Extraversion":0.1730540692, "Agreeableness":0.1775762646, "Emotional_Range":0.1320494061, "Conversation":0.1168313736, "Openness to Change":0.0884607635, "Hedonism":0.101973799, "Self-enhancement":0.1235634015, "Self-transcendence":0.098292791, "n":25.8098237833 }, "min":{ "Openness":0.2152542646, "Conscientousness":0.1085605602, "Extraversion":0.1022540075, "Agreeableness":0.017733368, "Emotional_Range":0.165238157, "Conversation":0.0124883557, "Openness to Change":0.1470387283, "Hedonism":0.0290857203, "Self-enhancement":0.0298680791, "Self-transcendence":0.0353641396, "n":50.0 }, "25%":{ "Openness":0.6159645036, "Conscientousness":0.453015216, "Extraversion":0.5015413749, "Agreeableness":0.1927662685, "Emotional_Range":0.5281815531, "Conversation":0.1087056755, "Openness to Change":0.3720593776, "Hedonism":0.1141935636, "Self-enhancement":0.2732188024, "Self-transcendence":0.2014597353, "n":72.0 }, "50%":{ "Openness":0.6877670374, "Conscientousness":0.5529477526, "Extraversion":0.6337253665, "Agreeableness":0.3236347592, "Emotional_Range":0.6168124863, "Conversation":0.1734567056, "Openness to Change":0.430397799, "Hedonism":0.158430861, "Self-enhancement":0.3399782773, "Self-transcendence":0.2556183242, "n":76.0 }, "75%":{ "Openness":0.7561884082, "Conscientousness":0.6510142733, "Extraversion":0.7274713099, "Agreeableness":0.4492181284, "Emotional_Range":0.7010886899, "Conversation":0.2547882803, "Openness to Change":0.4846609371, "Hedonism":0.2265744616, "Self-enhancement":0.4299178279, "Self-transcendence":0.3220190548, "n":80.0 }, "max":{ "Openness":0.95992792, "Conscientousness":0.960118167, "Extraversion":0.9794365923, "Agreeableness":0.8993661095, "Emotional_Range":0.9415769334, "Conversation":0.7793932512, "Openness to Change":0.7557249986, "Hedonism":0.680102991, "Self-enhancement":0.7826336181, "Self-transcendence":0.6273682888, "n":313.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "Openness":1227.0, "Conscientousness":1227.0, "Extraversion":1227.0, "Agreeableness":1227.0, "Emotional_Range":1227.0, "Conversation":1227.0, "Openness to Change":1227.0, "Hedonism":1227.0, "Self-enhancement":1227.0, "Self-transcendence":1227.0, "n":1227.0 }, "mean":{ "Openness":0.6818599599, "Conscientousness":0.5494864934, "Extraversion":0.5999407609, "Agreeableness":0.3300650815, "Emotional_Range":0.6150157566, "Conversation":0.1954283756, "Openness to Change":0.4297269623, "Hedonism":0.1854087597, "Self-enhancement":0.3530469421, "Self-transcendence":0.2674535075, "n":82.4392828036 }, "std":{ "Openness":0.1062055359, "Conscientousness":0.1504663216, "Extraversion":0.1730540692, "Agreeableness":0.1775762646, "Emotional_Range":0.1320494061, "Conversation":0.1168313736, "Openness to Change":0.0884607635, "Hedonism":0.101973799, "Self-enhancement":0.1235634015, "Self-transcendence":0.098292791, "n":25.8098237833 }, "min":{ "Openness":0.2152542646, "Conscientousness":0.1085605602, "Extraversion":0.1022540075, "Agreeableness":0.017733368, "Emotional_Range":0.165238157, "Conversation":0.0124883557, "Openness to Change":0.1470387283, "Hedonism":0.0290857203, "Self-enhancement":0.0298680791, "Self-transcendence":0.0353641396, "n":50.0 }, "25%":{ "Openness":0.6159645036, "Conscientousness":0.453015216, "Extraversion":0.5015413749, "Agreeableness":0.1927662685, "Emotional_Range":0.5281815531, "Conversation":0.1087056755, "Openness to Change":0.3720593776, "Hedonism":0.1141935636, "Self-enhancement":0.2732188024, "Self-transcendence":0.2014597353, "n":72.0 }, "50%":{ "Openness":0.6877670374, "Conscientousness":0.5529477526, "Extraversion":0.6337253665, "Agreeableness":0.3236347592, "Emotional_Range":0.6168124863, "Conversation":0.1734567056, "Openness to Change":0.430397799, "Hedonism":0.158430861, "Self-enhancement":0.3399782773, "Self-transcendence":0.2556183242, "n":76.0 }, "75%":{ "Openness":0.7561884082, "Conscientousness":0.6510142733, "Extraversion":0.7274713099, "Agreeableness":0.4492181284, "Emotional_Range":0.7010886899, "Conversation":0.2547882803, "Openness to Change":0.4846609371, "Hedonism":0.2265744616, "Self-enhancement":0.4299178279, "Self-transcendence":0.3220190548, "n":80.0 }, "max":{ "Openness":0.95992792, "Conscientousness":0.960118167, "Extraversion":0.9794365923, "Agreeableness":0.8993661095, "Emotional_Range":0.9415769334, "Conversation":0.7793932512, "Openness to Change":0.7557249986, "Hedonism":0.680102991, "Self-enhancement":0.7826336181, "Self-transcendence":0.6273682888, "n":313.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: Does the profession with the lowest Emotional_Range also have the lowest level of Conversation? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: Does the profession with the lowest Emotional_Range also have the lowest level of Conversation? df.columns = ['Profession', 'Openness', 'Conscientousness', 'Extraversion', 'Agreeableness', 'Emotional_Range', 'Conversation', 'Openness to Change', 'Hedonism', 'Self-enhancement', 'Self-transcendence', 'n'] # Expected output type: is boolean, this will be checked. return
20250129013715
43
Is the average level of Openness to Change higher than the average level of Hedonism?
052_Professional
dev
boolean
['Openness to Change', 'Hedonism']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "Profession", "type": "category" }, { "name": "Openness", "type": "float64" }, { "name": "Conscientousness", "type": "float64" }, { "name": "Extraversion", "type": "float64" }, { "name": "Agreeableness", "type": "float64" }, { "name": "Emotional_Range", "type": "float64" }, { "name": "Conversation", "type": "float64" }, { "name": "Openness to Change", "type": "float64" }, { "name": "Hedonism", "type": "float64" }, { "name": "Self-enhancement", "type": "float64" }, { "name": "Self-transcendence", "type": "float64" }, { "name": "n", "type": "uint16" } ] } # Description of dataframe columns. df_descrption = { "count":{ "Openness":1227.0, "Conscientousness":1227.0, "Extraversion":1227.0, "Agreeableness":1227.0, "Emotional_Range":1227.0, "Conversation":1227.0, "Openness to Change":1227.0, "Hedonism":1227.0, "Self-enhancement":1227.0, "Self-transcendence":1227.0, "n":1227.0 }, "mean":{ "Openness":0.6818599599, "Conscientousness":0.5494864934, "Extraversion":0.5999407609, "Agreeableness":0.3300650815, "Emotional_Range":0.6150157566, "Conversation":0.1954283756, "Openness to Change":0.4297269623, "Hedonism":0.1854087597, "Self-enhancement":0.3530469421, "Self-transcendence":0.2674535075, "n":82.4392828036 }, "std":{ "Openness":0.1062055359, "Conscientousness":0.1504663216, "Extraversion":0.1730540692, "Agreeableness":0.1775762646, "Emotional_Range":0.1320494061, "Conversation":0.1168313736, "Openness to Change":0.0884607635, "Hedonism":0.101973799, "Self-enhancement":0.1235634015, "Self-transcendence":0.098292791, "n":25.8098237833 }, "min":{ "Openness":0.2152542646, "Conscientousness":0.1085605602, "Extraversion":0.1022540075, "Agreeableness":0.017733368, "Emotional_Range":0.165238157, "Conversation":0.0124883557, "Openness to Change":0.1470387283, "Hedonism":0.0290857203, "Self-enhancement":0.0298680791, "Self-transcendence":0.0353641396, "n":50.0 }, "25%":{ "Openness":0.6159645036, "Conscientousness":0.453015216, "Extraversion":0.5015413749, "Agreeableness":0.1927662685, "Emotional_Range":0.5281815531, "Conversation":0.1087056755, "Openness to Change":0.3720593776, "Hedonism":0.1141935636, "Self-enhancement":0.2732188024, "Self-transcendence":0.2014597353, "n":72.0 }, "50%":{ "Openness":0.6877670374, "Conscientousness":0.5529477526, "Extraversion":0.6337253665, "Agreeableness":0.3236347592, "Emotional_Range":0.6168124863, "Conversation":0.1734567056, "Openness to Change":0.430397799, "Hedonism":0.158430861, "Self-enhancement":0.3399782773, "Self-transcendence":0.2556183242, "n":76.0 }, "75%":{ "Openness":0.7561884082, "Conscientousness":0.6510142733, "Extraversion":0.7274713099, "Agreeableness":0.4492181284, "Emotional_Range":0.7010886899, "Conversation":0.2547882803, "Openness to Change":0.4846609371, "Hedonism":0.2265744616, "Self-enhancement":0.4299178279, "Self-transcendence":0.3220190548, "n":80.0 }, "max":{ "Openness":0.95992792, "Conscientousness":0.960118167, "Extraversion":0.9794365923, "Agreeableness":0.8993661095, "Emotional_Range":0.9415769334, "Conversation":0.7793932512, "Openness to Change":0.7557249986, "Hedonism":0.680102991, "Self-enhancement":0.7826336181, "Self-transcendence":0.6273682888, "n":313.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "Openness":1227.0, "Conscientousness":1227.0, "Extraversion":1227.0, "Agreeableness":1227.0, "Emotional_Range":1227.0, "Conversation":1227.0, "Openness to Change":1227.0, "Hedonism":1227.0, "Self-enhancement":1227.0, "Self-transcendence":1227.0, "n":1227.0 }, "mean":{ "Openness":0.6818599599, "Conscientousness":0.5494864934, "Extraversion":0.5999407609, "Agreeableness":0.3300650815, "Emotional_Range":0.6150157566, "Conversation":0.1954283756, "Openness to Change":0.4297269623, "Hedonism":0.1854087597, "Self-enhancement":0.3530469421, "Self-transcendence":0.2674535075, "n":82.4392828036 }, "std":{ "Openness":0.1062055359, "Conscientousness":0.1504663216, "Extraversion":0.1730540692, "Agreeableness":0.1775762646, "Emotional_Range":0.1320494061, "Conversation":0.1168313736, "Openness to Change":0.0884607635, "Hedonism":0.101973799, "Self-enhancement":0.1235634015, "Self-transcendence":0.098292791, "n":25.8098237833 }, "min":{ "Openness":0.2152542646, "Conscientousness":0.1085605602, "Extraversion":0.1022540075, "Agreeableness":0.017733368, "Emotional_Range":0.165238157, "Conversation":0.0124883557, "Openness to Change":0.1470387283, "Hedonism":0.0290857203, "Self-enhancement":0.0298680791, "Self-transcendence":0.0353641396, "n":50.0 }, "25%":{ "Openness":0.6159645036, "Conscientousness":0.453015216, "Extraversion":0.5015413749, "Agreeableness":0.1927662685, "Emotional_Range":0.5281815531, "Conversation":0.1087056755, "Openness to Change":0.3720593776, "Hedonism":0.1141935636, "Self-enhancement":0.2732188024, "Self-transcendence":0.2014597353, "n":72.0 }, "50%":{ "Openness":0.6877670374, "Conscientousness":0.5529477526, "Extraversion":0.6337253665, "Agreeableness":0.3236347592, "Emotional_Range":0.6168124863, "Conversation":0.1734567056, "Openness to Change":0.430397799, "Hedonism":0.158430861, "Self-enhancement":0.3399782773, "Self-transcendence":0.2556183242, "n":76.0 }, "75%":{ "Openness":0.7561884082, "Conscientousness":0.6510142733, "Extraversion":0.7274713099, "Agreeableness":0.4492181284, "Emotional_Range":0.7010886899, "Conversation":0.2547882803, "Openness to Change":0.4846609371, "Hedonism":0.2265744616, "Self-enhancement":0.4299178279, "Self-transcendence":0.3220190548, "n":80.0 }, "max":{ "Openness":0.95992792, "Conscientousness":0.960118167, "Extraversion":0.9794365923, "Agreeableness":0.8993661095, "Emotional_Range":0.9415769334, "Conversation":0.7793932512, "Openness to Change":0.7557249986, "Hedonism":0.680102991, "Self-enhancement":0.7826336181, "Self-transcendence":0.6273682888, "n":313.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: Is the average level of Openness to Change higher than the average level of Hedonism? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: Is the average level of Openness to Change higher than the average level of Hedonism? df.columns = ['Profession', 'Openness', 'Conscientousness', 'Extraversion', 'Agreeableness', 'Emotional_Range', 'Conversation', 'Openness to Change', 'Hedonism', 'Self-enhancement', 'Self-transcendence', 'n'] # Expected output type: is boolean, this will be checked. return
20250129013715
44
What is the maximum value of Self-enhancement across all professions?
052_Professional
dev
number
['Self-enhancement']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "Profession", "type": "category" }, { "name": "Openness", "type": "float64" }, { "name": "Conscientousness", "type": "float64" }, { "name": "Extraversion", "type": "float64" }, { "name": "Agreeableness", "type": "float64" }, { "name": "Emotional_Range", "type": "float64" }, { "name": "Conversation", "type": "float64" }, { "name": "Openness to Change", "type": "float64" }, { "name": "Hedonism", "type": "float64" }, { "name": "Self-enhancement", "type": "float64" }, { "name": "Self-transcendence", "type": "float64" }, { "name": "n", "type": "uint16" } ] } # Description of dataframe columns. df_descrption = { "count":{ "Openness":1227.0, "Conscientousness":1227.0, "Extraversion":1227.0, "Agreeableness":1227.0, "Emotional_Range":1227.0, "Conversation":1227.0, "Openness to Change":1227.0, "Hedonism":1227.0, "Self-enhancement":1227.0, "Self-transcendence":1227.0, "n":1227.0 }, "mean":{ "Openness":0.6818599599, "Conscientousness":0.5494864934, "Extraversion":0.5999407609, "Agreeableness":0.3300650815, "Emotional_Range":0.6150157566, "Conversation":0.1954283756, "Openness to Change":0.4297269623, "Hedonism":0.1854087597, "Self-enhancement":0.3530469421, "Self-transcendence":0.2674535075, "n":82.4392828036 }, "std":{ "Openness":0.1062055359, "Conscientousness":0.1504663216, "Extraversion":0.1730540692, "Agreeableness":0.1775762646, "Emotional_Range":0.1320494061, "Conversation":0.1168313736, "Openness to Change":0.0884607635, "Hedonism":0.101973799, "Self-enhancement":0.1235634015, "Self-transcendence":0.098292791, "n":25.8098237833 }, "min":{ "Openness":0.2152542646, "Conscientousness":0.1085605602, "Extraversion":0.1022540075, "Agreeableness":0.017733368, "Emotional_Range":0.165238157, "Conversation":0.0124883557, "Openness to Change":0.1470387283, "Hedonism":0.0290857203, "Self-enhancement":0.0298680791, "Self-transcendence":0.0353641396, "n":50.0 }, "25%":{ "Openness":0.6159645036, "Conscientousness":0.453015216, "Extraversion":0.5015413749, "Agreeableness":0.1927662685, "Emotional_Range":0.5281815531, "Conversation":0.1087056755, "Openness to Change":0.3720593776, "Hedonism":0.1141935636, "Self-enhancement":0.2732188024, "Self-transcendence":0.2014597353, "n":72.0 }, "50%":{ "Openness":0.6877670374, "Conscientousness":0.5529477526, "Extraversion":0.6337253665, "Agreeableness":0.3236347592, "Emotional_Range":0.6168124863, "Conversation":0.1734567056, "Openness to Change":0.430397799, "Hedonism":0.158430861, "Self-enhancement":0.3399782773, "Self-transcendence":0.2556183242, "n":76.0 }, "75%":{ "Openness":0.7561884082, "Conscientousness":0.6510142733, "Extraversion":0.7274713099, "Agreeableness":0.4492181284, "Emotional_Range":0.7010886899, "Conversation":0.2547882803, "Openness to Change":0.4846609371, "Hedonism":0.2265744616, "Self-enhancement":0.4299178279, "Self-transcendence":0.3220190548, "n":80.0 }, "max":{ "Openness":0.95992792, "Conscientousness":0.960118167, "Extraversion":0.9794365923, "Agreeableness":0.8993661095, "Emotional_Range":0.9415769334, "Conversation":0.7793932512, "Openness to Change":0.7557249986, "Hedonism":0.680102991, "Self-enhancement":0.7826336181, "Self-transcendence":0.6273682888, "n":313.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "Openness":1227.0, "Conscientousness":1227.0, "Extraversion":1227.0, "Agreeableness":1227.0, "Emotional_Range":1227.0, "Conversation":1227.0, "Openness to Change":1227.0, "Hedonism":1227.0, "Self-enhancement":1227.0, "Self-transcendence":1227.0, "n":1227.0 }, "mean":{ "Openness":0.6818599599, "Conscientousness":0.5494864934, "Extraversion":0.5999407609, "Agreeableness":0.3300650815, "Emotional_Range":0.6150157566, "Conversation":0.1954283756, "Openness to Change":0.4297269623, "Hedonism":0.1854087597, "Self-enhancement":0.3530469421, "Self-transcendence":0.2674535075, "n":82.4392828036 }, "std":{ "Openness":0.1062055359, "Conscientousness":0.1504663216, "Extraversion":0.1730540692, "Agreeableness":0.1775762646, "Emotional_Range":0.1320494061, "Conversation":0.1168313736, "Openness to Change":0.0884607635, "Hedonism":0.101973799, "Self-enhancement":0.1235634015, "Self-transcendence":0.098292791, "n":25.8098237833 }, "min":{ "Openness":0.2152542646, "Conscientousness":0.1085605602, "Extraversion":0.1022540075, "Agreeableness":0.017733368, "Emotional_Range":0.165238157, "Conversation":0.0124883557, "Openness to Change":0.1470387283, "Hedonism":0.0290857203, "Self-enhancement":0.0298680791, "Self-transcendence":0.0353641396, "n":50.0 }, "25%":{ "Openness":0.6159645036, "Conscientousness":0.453015216, "Extraversion":0.5015413749, "Agreeableness":0.1927662685, "Emotional_Range":0.5281815531, "Conversation":0.1087056755, "Openness to Change":0.3720593776, "Hedonism":0.1141935636, "Self-enhancement":0.2732188024, "Self-transcendence":0.2014597353, "n":72.0 }, "50%":{ "Openness":0.6877670374, "Conscientousness":0.5529477526, "Extraversion":0.6337253665, "Agreeableness":0.3236347592, "Emotional_Range":0.6168124863, "Conversation":0.1734567056, "Openness to Change":0.430397799, "Hedonism":0.158430861, "Self-enhancement":0.3399782773, "Self-transcendence":0.2556183242, "n":76.0 }, "75%":{ "Openness":0.7561884082, "Conscientousness":0.6510142733, "Extraversion":0.7274713099, "Agreeableness":0.4492181284, "Emotional_Range":0.7010886899, "Conversation":0.2547882803, "Openness to Change":0.4846609371, "Hedonism":0.2265744616, "Self-enhancement":0.4299178279, "Self-transcendence":0.3220190548, "n":80.0 }, "max":{ "Openness":0.95992792, "Conscientousness":0.960118167, "Extraversion":0.9794365923, "Agreeableness":0.8993661095, "Emotional_Range":0.9415769334, "Conversation":0.7793932512, "Openness to Change":0.7557249986, "Hedonism":0.680102991, "Self-enhancement":0.7826336181, "Self-transcendence":0.6273682888, "n":313.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: What is the maximum value of Self-enhancement across all professions? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: What is the maximum value of Self-enhancement across all professions? df.columns = ['Profession', 'Openness', 'Conscientousness', 'Extraversion', 'Agreeableness', 'Emotional_Range', 'Conversation', 'Openness to Change', 'Hedonism', 'Self-enhancement', 'Self-transcendence', 'n'] # Expected output type: is number, this will be checked. return
20250129013715
45
How many professions have an Emotional_Range above 0.5?
052_Professional
dev
number
['Emotional_Range']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "Profession", "type": "category" }, { "name": "Openness", "type": "float64" }, { "name": "Conscientousness", "type": "float64" }, { "name": "Extraversion", "type": "float64" }, { "name": "Agreeableness", "type": "float64" }, { "name": "Emotional_Range", "type": "float64" }, { "name": "Conversation", "type": "float64" }, { "name": "Openness to Change", "type": "float64" }, { "name": "Hedonism", "type": "float64" }, { "name": "Self-enhancement", "type": "float64" }, { "name": "Self-transcendence", "type": "float64" }, { "name": "n", "type": "uint16" } ] } # Description of dataframe columns. df_descrption = { "count":{ "Openness":1227.0, "Conscientousness":1227.0, "Extraversion":1227.0, "Agreeableness":1227.0, "Emotional_Range":1227.0, "Conversation":1227.0, "Openness to Change":1227.0, "Hedonism":1227.0, "Self-enhancement":1227.0, "Self-transcendence":1227.0, "n":1227.0 }, "mean":{ "Openness":0.6818599599, "Conscientousness":0.5494864934, "Extraversion":0.5999407609, "Agreeableness":0.3300650815, "Emotional_Range":0.6150157566, "Conversation":0.1954283756, "Openness to Change":0.4297269623, "Hedonism":0.1854087597, "Self-enhancement":0.3530469421, "Self-transcendence":0.2674535075, "n":82.4392828036 }, "std":{ "Openness":0.1062055359, "Conscientousness":0.1504663216, "Extraversion":0.1730540692, "Agreeableness":0.1775762646, "Emotional_Range":0.1320494061, "Conversation":0.1168313736, "Openness to Change":0.0884607635, "Hedonism":0.101973799, "Self-enhancement":0.1235634015, "Self-transcendence":0.098292791, "n":25.8098237833 }, "min":{ "Openness":0.2152542646, "Conscientousness":0.1085605602, "Extraversion":0.1022540075, "Agreeableness":0.017733368, "Emotional_Range":0.165238157, "Conversation":0.0124883557, "Openness to Change":0.1470387283, "Hedonism":0.0290857203, "Self-enhancement":0.0298680791, "Self-transcendence":0.0353641396, "n":50.0 }, "25%":{ "Openness":0.6159645036, "Conscientousness":0.453015216, "Extraversion":0.5015413749, "Agreeableness":0.1927662685, "Emotional_Range":0.5281815531, "Conversation":0.1087056755, "Openness to Change":0.3720593776, "Hedonism":0.1141935636, "Self-enhancement":0.2732188024, "Self-transcendence":0.2014597353, "n":72.0 }, "50%":{ "Openness":0.6877670374, "Conscientousness":0.5529477526, "Extraversion":0.6337253665, "Agreeableness":0.3236347592, "Emotional_Range":0.6168124863, "Conversation":0.1734567056, "Openness to Change":0.430397799, "Hedonism":0.158430861, "Self-enhancement":0.3399782773, "Self-transcendence":0.2556183242, "n":76.0 }, "75%":{ "Openness":0.7561884082, "Conscientousness":0.6510142733, "Extraversion":0.7274713099, "Agreeableness":0.4492181284, "Emotional_Range":0.7010886899, "Conversation":0.2547882803, "Openness to Change":0.4846609371, "Hedonism":0.2265744616, "Self-enhancement":0.4299178279, "Self-transcendence":0.3220190548, "n":80.0 }, "max":{ "Openness":0.95992792, "Conscientousness":0.960118167, "Extraversion":0.9794365923, "Agreeableness":0.8993661095, "Emotional_Range":0.9415769334, "Conversation":0.7793932512, "Openness to Change":0.7557249986, "Hedonism":0.680102991, "Self-enhancement":0.7826336181, "Self-transcendence":0.6273682888, "n":313.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "Openness":1227.0, "Conscientousness":1227.0, "Extraversion":1227.0, "Agreeableness":1227.0, "Emotional_Range":1227.0, "Conversation":1227.0, "Openness to Change":1227.0, "Hedonism":1227.0, "Self-enhancement":1227.0, "Self-transcendence":1227.0, "n":1227.0 }, "mean":{ "Openness":0.6818599599, "Conscientousness":0.5494864934, "Extraversion":0.5999407609, "Agreeableness":0.3300650815, "Emotional_Range":0.6150157566, "Conversation":0.1954283756, "Openness to Change":0.4297269623, "Hedonism":0.1854087597, "Self-enhancement":0.3530469421, "Self-transcendence":0.2674535075, "n":82.4392828036 }, "std":{ "Openness":0.1062055359, "Conscientousness":0.1504663216, "Extraversion":0.1730540692, "Agreeableness":0.1775762646, "Emotional_Range":0.1320494061, "Conversation":0.1168313736, "Openness to Change":0.0884607635, "Hedonism":0.101973799, "Self-enhancement":0.1235634015, "Self-transcendence":0.098292791, "n":25.8098237833 }, "min":{ "Openness":0.2152542646, "Conscientousness":0.1085605602, "Extraversion":0.1022540075, "Agreeableness":0.017733368, "Emotional_Range":0.165238157, "Conversation":0.0124883557, "Openness to Change":0.1470387283, "Hedonism":0.0290857203, "Self-enhancement":0.0298680791, "Self-transcendence":0.0353641396, "n":50.0 }, "25%":{ "Openness":0.6159645036, "Conscientousness":0.453015216, "Extraversion":0.5015413749, "Agreeableness":0.1927662685, "Emotional_Range":0.5281815531, "Conversation":0.1087056755, "Openness to Change":0.3720593776, "Hedonism":0.1141935636, "Self-enhancement":0.2732188024, "Self-transcendence":0.2014597353, "n":72.0 }, "50%":{ "Openness":0.6877670374, "Conscientousness":0.5529477526, "Extraversion":0.6337253665, "Agreeableness":0.3236347592, "Emotional_Range":0.6168124863, "Conversation":0.1734567056, "Openness to Change":0.430397799, "Hedonism":0.158430861, "Self-enhancement":0.3399782773, "Self-transcendence":0.2556183242, "n":76.0 }, "75%":{ "Openness":0.7561884082, "Conscientousness":0.6510142733, "Extraversion":0.7274713099, "Agreeableness":0.4492181284, "Emotional_Range":0.7010886899, "Conversation":0.2547882803, "Openness to Change":0.4846609371, "Hedonism":0.2265744616, "Self-enhancement":0.4299178279, "Self-transcendence":0.3220190548, "n":80.0 }, "max":{ "Openness":0.95992792, "Conscientousness":0.960118167, "Extraversion":0.9794365923, "Agreeableness":0.8993661095, "Emotional_Range":0.9415769334, "Conversation":0.7793932512, "Openness to Change":0.7557249986, "Hedonism":0.680102991, "Self-enhancement":0.7826336181, "Self-transcendence":0.6273682888, "n":313.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: How many professions have an Emotional_Range above 0.5? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: How many professions have an Emotional_Range above 0.5? df.columns = ['Profession', 'Openness', 'Conscientousness', 'Extraversion', 'Agreeableness', 'Emotional_Range', 'Conversation', 'Openness to Change', 'Hedonism', 'Self-enhancement', 'Self-transcendence', 'n'] # Expected output type: is number, this will be checked. return
20250129013715
46
What is the average Extraversion level for the profession with the highest number of records (n)?
052_Professional
dev
number
['Profession', 'Extraversion', 'n']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "Profession", "type": "category" }, { "name": "Openness", "type": "float64" }, { "name": "Conscientousness", "type": "float64" }, { "name": "Extraversion", "type": "float64" }, { "name": "Agreeableness", "type": "float64" }, { "name": "Emotional_Range", "type": "float64" }, { "name": "Conversation", "type": "float64" }, { "name": "Openness to Change", "type": "float64" }, { "name": "Hedonism", "type": "float64" }, { "name": "Self-enhancement", "type": "float64" }, { "name": "Self-transcendence", "type": "float64" }, { "name": "n", "type": "uint16" } ] } # Description of dataframe columns. df_descrption = { "count":{ "Openness":1227.0, "Conscientousness":1227.0, "Extraversion":1227.0, "Agreeableness":1227.0, "Emotional_Range":1227.0, "Conversation":1227.0, "Openness to Change":1227.0, "Hedonism":1227.0, "Self-enhancement":1227.0, "Self-transcendence":1227.0, "n":1227.0 }, "mean":{ "Openness":0.6818599599, "Conscientousness":0.5494864934, "Extraversion":0.5999407609, "Agreeableness":0.3300650815, "Emotional_Range":0.6150157566, "Conversation":0.1954283756, "Openness to Change":0.4297269623, "Hedonism":0.1854087597, "Self-enhancement":0.3530469421, "Self-transcendence":0.2674535075, "n":82.4392828036 }, "std":{ "Openness":0.1062055359, "Conscientousness":0.1504663216, "Extraversion":0.1730540692, "Agreeableness":0.1775762646, "Emotional_Range":0.1320494061, "Conversation":0.1168313736, "Openness to Change":0.0884607635, "Hedonism":0.101973799, "Self-enhancement":0.1235634015, "Self-transcendence":0.098292791, "n":25.8098237833 }, "min":{ "Openness":0.2152542646, "Conscientousness":0.1085605602, "Extraversion":0.1022540075, "Agreeableness":0.017733368, "Emotional_Range":0.165238157, "Conversation":0.0124883557, "Openness to Change":0.1470387283, "Hedonism":0.0290857203, "Self-enhancement":0.0298680791, "Self-transcendence":0.0353641396, "n":50.0 }, "25%":{ "Openness":0.6159645036, "Conscientousness":0.453015216, "Extraversion":0.5015413749, "Agreeableness":0.1927662685, "Emotional_Range":0.5281815531, "Conversation":0.1087056755, "Openness to Change":0.3720593776, "Hedonism":0.1141935636, "Self-enhancement":0.2732188024, "Self-transcendence":0.2014597353, "n":72.0 }, "50%":{ "Openness":0.6877670374, "Conscientousness":0.5529477526, "Extraversion":0.6337253665, "Agreeableness":0.3236347592, "Emotional_Range":0.6168124863, "Conversation":0.1734567056, "Openness to Change":0.430397799, "Hedonism":0.158430861, "Self-enhancement":0.3399782773, "Self-transcendence":0.2556183242, "n":76.0 }, "75%":{ "Openness":0.7561884082, "Conscientousness":0.6510142733, "Extraversion":0.7274713099, "Agreeableness":0.4492181284, "Emotional_Range":0.7010886899, "Conversation":0.2547882803, "Openness to Change":0.4846609371, "Hedonism":0.2265744616, "Self-enhancement":0.4299178279, "Self-transcendence":0.3220190548, "n":80.0 }, "max":{ "Openness":0.95992792, "Conscientousness":0.960118167, "Extraversion":0.9794365923, "Agreeableness":0.8993661095, "Emotional_Range":0.9415769334, "Conversation":0.7793932512, "Openness to Change":0.7557249986, "Hedonism":0.680102991, "Self-enhancement":0.7826336181, "Self-transcendence":0.6273682888, "n":313.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "Openness":1227.0, "Conscientousness":1227.0, "Extraversion":1227.0, "Agreeableness":1227.0, "Emotional_Range":1227.0, "Conversation":1227.0, "Openness to Change":1227.0, "Hedonism":1227.0, "Self-enhancement":1227.0, "Self-transcendence":1227.0, "n":1227.0 }, "mean":{ "Openness":0.6818599599, "Conscientousness":0.5494864934, "Extraversion":0.5999407609, "Agreeableness":0.3300650815, "Emotional_Range":0.6150157566, "Conversation":0.1954283756, "Openness to Change":0.4297269623, "Hedonism":0.1854087597, "Self-enhancement":0.3530469421, "Self-transcendence":0.2674535075, "n":82.4392828036 }, "std":{ "Openness":0.1062055359, "Conscientousness":0.1504663216, "Extraversion":0.1730540692, "Agreeableness":0.1775762646, "Emotional_Range":0.1320494061, "Conversation":0.1168313736, "Openness to Change":0.0884607635, "Hedonism":0.101973799, "Self-enhancement":0.1235634015, "Self-transcendence":0.098292791, "n":25.8098237833 }, "min":{ "Openness":0.2152542646, "Conscientousness":0.1085605602, "Extraversion":0.1022540075, "Agreeableness":0.017733368, "Emotional_Range":0.165238157, "Conversation":0.0124883557, "Openness to Change":0.1470387283, "Hedonism":0.0290857203, "Self-enhancement":0.0298680791, "Self-transcendence":0.0353641396, "n":50.0 }, "25%":{ "Openness":0.6159645036, "Conscientousness":0.453015216, "Extraversion":0.5015413749, "Agreeableness":0.1927662685, "Emotional_Range":0.5281815531, "Conversation":0.1087056755, "Openness to Change":0.3720593776, "Hedonism":0.1141935636, "Self-enhancement":0.2732188024, "Self-transcendence":0.2014597353, "n":72.0 }, "50%":{ "Openness":0.6877670374, "Conscientousness":0.5529477526, "Extraversion":0.6337253665, "Agreeableness":0.3236347592, "Emotional_Range":0.6168124863, "Conversation":0.1734567056, "Openness to Change":0.430397799, "Hedonism":0.158430861, "Self-enhancement":0.3399782773, "Self-transcendence":0.2556183242, "n":76.0 }, "75%":{ "Openness":0.7561884082, "Conscientousness":0.6510142733, "Extraversion":0.7274713099, "Agreeableness":0.4492181284, "Emotional_Range":0.7010886899, "Conversation":0.2547882803, "Openness to Change":0.4846609371, "Hedonism":0.2265744616, "Self-enhancement":0.4299178279, "Self-transcendence":0.3220190548, "n":80.0 }, "max":{ "Openness":0.95992792, "Conscientousness":0.960118167, "Extraversion":0.9794365923, "Agreeableness":0.8993661095, "Emotional_Range":0.9415769334, "Conversation":0.7793932512, "Openness to Change":0.7557249986, "Hedonism":0.680102991, "Self-enhancement":0.7826336181, "Self-transcendence":0.6273682888, "n":313.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: What is the average Extraversion level for the profession with the highest number of records (n)? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: What is the average Extraversion level for the profession with the highest number of records (n)? df.columns = ['Profession', 'Openness', 'Conscientousness', 'Extraversion', 'Agreeableness', 'Emotional_Range', 'Conversation', 'Openness to Change', 'Hedonism', 'Self-enhancement', 'Self-transcendence', 'n'] # Expected output type: is number, this will be checked. return
20250129013715
47
What is the minimum level of Self-transcendence?
052_Professional
dev
number
['Self-transcendence']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "Profession", "type": "category" }, { "name": "Openness", "type": "float64" }, { "name": "Conscientousness", "type": "float64" }, { "name": "Extraversion", "type": "float64" }, { "name": "Agreeableness", "type": "float64" }, { "name": "Emotional_Range", "type": "float64" }, { "name": "Conversation", "type": "float64" }, { "name": "Openness to Change", "type": "float64" }, { "name": "Hedonism", "type": "float64" }, { "name": "Self-enhancement", "type": "float64" }, { "name": "Self-transcendence", "type": "float64" }, { "name": "n", "type": "uint16" } ] } # Description of dataframe columns. df_descrption = { "count":{ "Openness":1227.0, "Conscientousness":1227.0, "Extraversion":1227.0, "Agreeableness":1227.0, "Emotional_Range":1227.0, "Conversation":1227.0, "Openness to Change":1227.0, "Hedonism":1227.0, "Self-enhancement":1227.0, "Self-transcendence":1227.0, "n":1227.0 }, "mean":{ "Openness":0.6818599599, "Conscientousness":0.5494864934, "Extraversion":0.5999407609, "Agreeableness":0.3300650815, "Emotional_Range":0.6150157566, "Conversation":0.1954283756, "Openness to Change":0.4297269623, "Hedonism":0.1854087597, "Self-enhancement":0.3530469421, "Self-transcendence":0.2674535075, "n":82.4392828036 }, "std":{ "Openness":0.1062055359, "Conscientousness":0.1504663216, "Extraversion":0.1730540692, "Agreeableness":0.1775762646, "Emotional_Range":0.1320494061, "Conversation":0.1168313736, "Openness to Change":0.0884607635, "Hedonism":0.101973799, "Self-enhancement":0.1235634015, "Self-transcendence":0.098292791, "n":25.8098237833 }, "min":{ "Openness":0.2152542646, "Conscientousness":0.1085605602, "Extraversion":0.1022540075, "Agreeableness":0.017733368, "Emotional_Range":0.165238157, "Conversation":0.0124883557, "Openness to Change":0.1470387283, "Hedonism":0.0290857203, "Self-enhancement":0.0298680791, "Self-transcendence":0.0353641396, "n":50.0 }, "25%":{ "Openness":0.6159645036, "Conscientousness":0.453015216, "Extraversion":0.5015413749, "Agreeableness":0.1927662685, "Emotional_Range":0.5281815531, "Conversation":0.1087056755, "Openness to Change":0.3720593776, "Hedonism":0.1141935636, "Self-enhancement":0.2732188024, "Self-transcendence":0.2014597353, "n":72.0 }, "50%":{ "Openness":0.6877670374, "Conscientousness":0.5529477526, "Extraversion":0.6337253665, "Agreeableness":0.3236347592, "Emotional_Range":0.6168124863, "Conversation":0.1734567056, "Openness to Change":0.430397799, "Hedonism":0.158430861, "Self-enhancement":0.3399782773, "Self-transcendence":0.2556183242, "n":76.0 }, "75%":{ "Openness":0.7561884082, "Conscientousness":0.6510142733, "Extraversion":0.7274713099, "Agreeableness":0.4492181284, "Emotional_Range":0.7010886899, "Conversation":0.2547882803, "Openness to Change":0.4846609371, "Hedonism":0.2265744616, "Self-enhancement":0.4299178279, "Self-transcendence":0.3220190548, "n":80.0 }, "max":{ "Openness":0.95992792, "Conscientousness":0.960118167, "Extraversion":0.9794365923, "Agreeableness":0.8993661095, "Emotional_Range":0.9415769334, "Conversation":0.7793932512, "Openness to Change":0.7557249986, "Hedonism":0.680102991, "Self-enhancement":0.7826336181, "Self-transcendence":0.6273682888, "n":313.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "Openness":1227.0, "Conscientousness":1227.0, "Extraversion":1227.0, "Agreeableness":1227.0, "Emotional_Range":1227.0, "Conversation":1227.0, "Openness to Change":1227.0, "Hedonism":1227.0, "Self-enhancement":1227.0, "Self-transcendence":1227.0, "n":1227.0 }, "mean":{ "Openness":0.6818599599, "Conscientousness":0.5494864934, "Extraversion":0.5999407609, "Agreeableness":0.3300650815, "Emotional_Range":0.6150157566, "Conversation":0.1954283756, "Openness to Change":0.4297269623, "Hedonism":0.1854087597, "Self-enhancement":0.3530469421, "Self-transcendence":0.2674535075, "n":82.4392828036 }, "std":{ "Openness":0.1062055359, "Conscientousness":0.1504663216, "Extraversion":0.1730540692, "Agreeableness":0.1775762646, "Emotional_Range":0.1320494061, "Conversation":0.1168313736, "Openness to Change":0.0884607635, "Hedonism":0.101973799, "Self-enhancement":0.1235634015, "Self-transcendence":0.098292791, "n":25.8098237833 }, "min":{ "Openness":0.2152542646, "Conscientousness":0.1085605602, "Extraversion":0.1022540075, "Agreeableness":0.017733368, "Emotional_Range":0.165238157, "Conversation":0.0124883557, "Openness to Change":0.1470387283, "Hedonism":0.0290857203, "Self-enhancement":0.0298680791, "Self-transcendence":0.0353641396, "n":50.0 }, "25%":{ "Openness":0.6159645036, "Conscientousness":0.453015216, "Extraversion":0.5015413749, "Agreeableness":0.1927662685, "Emotional_Range":0.5281815531, "Conversation":0.1087056755, "Openness to Change":0.3720593776, "Hedonism":0.1141935636, "Self-enhancement":0.2732188024, "Self-transcendence":0.2014597353, "n":72.0 }, "50%":{ "Openness":0.6877670374, "Conscientousness":0.5529477526, "Extraversion":0.6337253665, "Agreeableness":0.3236347592, "Emotional_Range":0.6168124863, "Conversation":0.1734567056, "Openness to Change":0.430397799, "Hedonism":0.158430861, "Self-enhancement":0.3399782773, "Self-transcendence":0.2556183242, "n":76.0 }, "75%":{ "Openness":0.7561884082, "Conscientousness":0.6510142733, "Extraversion":0.7274713099, "Agreeableness":0.4492181284, "Emotional_Range":0.7010886899, "Conversation":0.2547882803, "Openness to Change":0.4846609371, "Hedonism":0.2265744616, "Self-enhancement":0.4299178279, "Self-transcendence":0.3220190548, "n":80.0 }, "max":{ "Openness":0.95992792, "Conscientousness":0.960118167, "Extraversion":0.9794365923, "Agreeableness":0.8993661095, "Emotional_Range":0.9415769334, "Conversation":0.7793932512, "Openness to Change":0.7557249986, "Hedonism":0.680102991, "Self-enhancement":0.7826336181, "Self-transcendence":0.6273682888, "n":313.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: What is the minimum level of Self-transcendence? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: What is the minimum level of Self-transcendence? df.columns = ['Profession', 'Openness', 'Conscientousness', 'Extraversion', 'Agreeableness', 'Emotional_Range', 'Conversation', 'Openness to Change', 'Hedonism', 'Self-enhancement', 'Self-transcendence', 'n'] # Expected output type: is number, this will be checked. return
20250129013715
48
What profession has the highest level of Conscientiousness?
052_Professional
dev
category
['Profession', 'Conscientousness']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "Profession", "type": "category" }, { "name": "Openness", "type": "float64" }, { "name": "Conscientousness", "type": "float64" }, { "name": "Extraversion", "type": "float64" }, { "name": "Agreeableness", "type": "float64" }, { "name": "Emotional_Range", "type": "float64" }, { "name": "Conversation", "type": "float64" }, { "name": "Openness to Change", "type": "float64" }, { "name": "Hedonism", "type": "float64" }, { "name": "Self-enhancement", "type": "float64" }, { "name": "Self-transcendence", "type": "float64" }, { "name": "n", "type": "uint16" } ] } # Description of dataframe columns. df_descrption = { "count":{ "Openness":1227.0, "Conscientousness":1227.0, "Extraversion":1227.0, "Agreeableness":1227.0, "Emotional_Range":1227.0, "Conversation":1227.0, "Openness to Change":1227.0, "Hedonism":1227.0, "Self-enhancement":1227.0, "Self-transcendence":1227.0, "n":1227.0 }, "mean":{ "Openness":0.6818599599, "Conscientousness":0.5494864934, "Extraversion":0.5999407609, "Agreeableness":0.3300650815, "Emotional_Range":0.6150157566, "Conversation":0.1954283756, "Openness to Change":0.4297269623, "Hedonism":0.1854087597, "Self-enhancement":0.3530469421, "Self-transcendence":0.2674535075, "n":82.4392828036 }, "std":{ "Openness":0.1062055359, "Conscientousness":0.1504663216, "Extraversion":0.1730540692, "Agreeableness":0.1775762646, "Emotional_Range":0.1320494061, "Conversation":0.1168313736, "Openness to Change":0.0884607635, "Hedonism":0.101973799, "Self-enhancement":0.1235634015, "Self-transcendence":0.098292791, "n":25.8098237833 }, "min":{ "Openness":0.2152542646, "Conscientousness":0.1085605602, "Extraversion":0.1022540075, "Agreeableness":0.017733368, "Emotional_Range":0.165238157, "Conversation":0.0124883557, "Openness to Change":0.1470387283, "Hedonism":0.0290857203, "Self-enhancement":0.0298680791, "Self-transcendence":0.0353641396, "n":50.0 }, "25%":{ "Openness":0.6159645036, "Conscientousness":0.453015216, "Extraversion":0.5015413749, "Agreeableness":0.1927662685, "Emotional_Range":0.5281815531, "Conversation":0.1087056755, "Openness to Change":0.3720593776, "Hedonism":0.1141935636, "Self-enhancement":0.2732188024, "Self-transcendence":0.2014597353, "n":72.0 }, "50%":{ "Openness":0.6877670374, "Conscientousness":0.5529477526, "Extraversion":0.6337253665, "Agreeableness":0.3236347592, "Emotional_Range":0.6168124863, "Conversation":0.1734567056, "Openness to Change":0.430397799, "Hedonism":0.158430861, "Self-enhancement":0.3399782773, "Self-transcendence":0.2556183242, "n":76.0 }, "75%":{ "Openness":0.7561884082, "Conscientousness":0.6510142733, "Extraversion":0.7274713099, "Agreeableness":0.4492181284, "Emotional_Range":0.7010886899, "Conversation":0.2547882803, "Openness to Change":0.4846609371, "Hedonism":0.2265744616, "Self-enhancement":0.4299178279, "Self-transcendence":0.3220190548, "n":80.0 }, "max":{ "Openness":0.95992792, "Conscientousness":0.960118167, "Extraversion":0.9794365923, "Agreeableness":0.8993661095, "Emotional_Range":0.9415769334, "Conversation":0.7793932512, "Openness to Change":0.7557249986, "Hedonism":0.680102991, "Self-enhancement":0.7826336181, "Self-transcendence":0.6273682888, "n":313.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "Openness":1227.0, "Conscientousness":1227.0, "Extraversion":1227.0, "Agreeableness":1227.0, "Emotional_Range":1227.0, "Conversation":1227.0, "Openness to Change":1227.0, "Hedonism":1227.0, "Self-enhancement":1227.0, "Self-transcendence":1227.0, "n":1227.0 }, "mean":{ "Openness":0.6818599599, "Conscientousness":0.5494864934, "Extraversion":0.5999407609, "Agreeableness":0.3300650815, "Emotional_Range":0.6150157566, "Conversation":0.1954283756, "Openness to Change":0.4297269623, "Hedonism":0.1854087597, "Self-enhancement":0.3530469421, "Self-transcendence":0.2674535075, "n":82.4392828036 }, "std":{ "Openness":0.1062055359, "Conscientousness":0.1504663216, "Extraversion":0.1730540692, "Agreeableness":0.1775762646, "Emotional_Range":0.1320494061, "Conversation":0.1168313736, "Openness to Change":0.0884607635, "Hedonism":0.101973799, "Self-enhancement":0.1235634015, "Self-transcendence":0.098292791, "n":25.8098237833 }, "min":{ "Openness":0.2152542646, "Conscientousness":0.1085605602, "Extraversion":0.1022540075, "Agreeableness":0.017733368, "Emotional_Range":0.165238157, "Conversation":0.0124883557, "Openness to Change":0.1470387283, "Hedonism":0.0290857203, "Self-enhancement":0.0298680791, "Self-transcendence":0.0353641396, "n":50.0 }, "25%":{ "Openness":0.6159645036, "Conscientousness":0.453015216, "Extraversion":0.5015413749, "Agreeableness":0.1927662685, "Emotional_Range":0.5281815531, "Conversation":0.1087056755, "Openness to Change":0.3720593776, "Hedonism":0.1141935636, "Self-enhancement":0.2732188024, "Self-transcendence":0.2014597353, "n":72.0 }, "50%":{ "Openness":0.6877670374, "Conscientousness":0.5529477526, "Extraversion":0.6337253665, "Agreeableness":0.3236347592, "Emotional_Range":0.6168124863, "Conversation":0.1734567056, "Openness to Change":0.430397799, "Hedonism":0.158430861, "Self-enhancement":0.3399782773, "Self-transcendence":0.2556183242, "n":76.0 }, "75%":{ "Openness":0.7561884082, "Conscientousness":0.6510142733, "Extraversion":0.7274713099, "Agreeableness":0.4492181284, "Emotional_Range":0.7010886899, "Conversation":0.2547882803, "Openness to Change":0.4846609371, "Hedonism":0.2265744616, "Self-enhancement":0.4299178279, "Self-transcendence":0.3220190548, "n":80.0 }, "max":{ "Openness":0.95992792, "Conscientousness":0.960118167, "Extraversion":0.9794365923, "Agreeableness":0.8993661095, "Emotional_Range":0.9415769334, "Conversation":0.7793932512, "Openness to Change":0.7557249986, "Hedonism":0.680102991, "Self-enhancement":0.7826336181, "Self-transcendence":0.6273682888, "n":313.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: What profession has the highest level of Conscientiousness? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: What profession has the highest level of Conscientiousness? df.columns = ['Profession', 'Openness', 'Conscientousness', 'Extraversion', 'Agreeableness', 'Emotional_Range', 'Conversation', 'Openness to Change', 'Hedonism', 'Self-enhancement', 'Self-transcendence', 'n'] # Expected output type: is category, this will be checked. return
20250129013715
49
What is the profession with the lowest level of Hedonism?
052_Professional
dev
category
['Profession', 'Hedonism']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "Profession", "type": "category" }, { "name": "Openness", "type": "float64" }, { "name": "Conscientousness", "type": "float64" }, { "name": "Extraversion", "type": "float64" }, { "name": "Agreeableness", "type": "float64" }, { "name": "Emotional_Range", "type": "float64" }, { "name": "Conversation", "type": "float64" }, { "name": "Openness to Change", "type": "float64" }, { "name": "Hedonism", "type": "float64" }, { "name": "Self-enhancement", "type": "float64" }, { "name": "Self-transcendence", "type": "float64" }, { "name": "n", "type": "uint16" } ] } # Description of dataframe columns. df_descrption = { "count":{ "Openness":1227.0, "Conscientousness":1227.0, "Extraversion":1227.0, "Agreeableness":1227.0, "Emotional_Range":1227.0, "Conversation":1227.0, "Openness to Change":1227.0, "Hedonism":1227.0, "Self-enhancement":1227.0, "Self-transcendence":1227.0, "n":1227.0 }, "mean":{ "Openness":0.6818599599, "Conscientousness":0.5494864934, "Extraversion":0.5999407609, "Agreeableness":0.3300650815, "Emotional_Range":0.6150157566, "Conversation":0.1954283756, "Openness to Change":0.4297269623, "Hedonism":0.1854087597, "Self-enhancement":0.3530469421, "Self-transcendence":0.2674535075, "n":82.4392828036 }, "std":{ "Openness":0.1062055359, "Conscientousness":0.1504663216, "Extraversion":0.1730540692, "Agreeableness":0.1775762646, "Emotional_Range":0.1320494061, "Conversation":0.1168313736, "Openness to Change":0.0884607635, "Hedonism":0.101973799, "Self-enhancement":0.1235634015, "Self-transcendence":0.098292791, "n":25.8098237833 }, "min":{ "Openness":0.2152542646, "Conscientousness":0.1085605602, "Extraversion":0.1022540075, "Agreeableness":0.017733368, "Emotional_Range":0.165238157, "Conversation":0.0124883557, "Openness to Change":0.1470387283, "Hedonism":0.0290857203, "Self-enhancement":0.0298680791, "Self-transcendence":0.0353641396, "n":50.0 }, "25%":{ "Openness":0.6159645036, "Conscientousness":0.453015216, "Extraversion":0.5015413749, "Agreeableness":0.1927662685, "Emotional_Range":0.5281815531, "Conversation":0.1087056755, "Openness to Change":0.3720593776, "Hedonism":0.1141935636, "Self-enhancement":0.2732188024, "Self-transcendence":0.2014597353, "n":72.0 }, "50%":{ "Openness":0.6877670374, "Conscientousness":0.5529477526, "Extraversion":0.6337253665, "Agreeableness":0.3236347592, "Emotional_Range":0.6168124863, "Conversation":0.1734567056, "Openness to Change":0.430397799, "Hedonism":0.158430861, "Self-enhancement":0.3399782773, "Self-transcendence":0.2556183242, "n":76.0 }, "75%":{ "Openness":0.7561884082, "Conscientousness":0.6510142733, "Extraversion":0.7274713099, "Agreeableness":0.4492181284, "Emotional_Range":0.7010886899, "Conversation":0.2547882803, "Openness to Change":0.4846609371, "Hedonism":0.2265744616, "Self-enhancement":0.4299178279, "Self-transcendence":0.3220190548, "n":80.0 }, "max":{ "Openness":0.95992792, "Conscientousness":0.960118167, "Extraversion":0.9794365923, "Agreeableness":0.8993661095, "Emotional_Range":0.9415769334, "Conversation":0.7793932512, "Openness to Change":0.7557249986, "Hedonism":0.680102991, "Self-enhancement":0.7826336181, "Self-transcendence":0.6273682888, "n":313.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "Openness":1227.0, "Conscientousness":1227.0, "Extraversion":1227.0, "Agreeableness":1227.0, "Emotional_Range":1227.0, "Conversation":1227.0, "Openness to Change":1227.0, "Hedonism":1227.0, "Self-enhancement":1227.0, "Self-transcendence":1227.0, "n":1227.0 }, "mean":{ "Openness":0.6818599599, "Conscientousness":0.5494864934, "Extraversion":0.5999407609, "Agreeableness":0.3300650815, "Emotional_Range":0.6150157566, "Conversation":0.1954283756, "Openness to Change":0.4297269623, "Hedonism":0.1854087597, "Self-enhancement":0.3530469421, "Self-transcendence":0.2674535075, "n":82.4392828036 }, "std":{ "Openness":0.1062055359, "Conscientousness":0.1504663216, "Extraversion":0.1730540692, "Agreeableness":0.1775762646, "Emotional_Range":0.1320494061, "Conversation":0.1168313736, "Openness to Change":0.0884607635, "Hedonism":0.101973799, "Self-enhancement":0.1235634015, "Self-transcendence":0.098292791, "n":25.8098237833 }, "min":{ "Openness":0.2152542646, "Conscientousness":0.1085605602, "Extraversion":0.1022540075, "Agreeableness":0.017733368, "Emotional_Range":0.165238157, "Conversation":0.0124883557, "Openness to Change":0.1470387283, "Hedonism":0.0290857203, "Self-enhancement":0.0298680791, "Self-transcendence":0.0353641396, "n":50.0 }, "25%":{ "Openness":0.6159645036, "Conscientousness":0.453015216, "Extraversion":0.5015413749, "Agreeableness":0.1927662685, "Emotional_Range":0.5281815531, "Conversation":0.1087056755, "Openness to Change":0.3720593776, "Hedonism":0.1141935636, "Self-enhancement":0.2732188024, "Self-transcendence":0.2014597353, "n":72.0 }, "50%":{ "Openness":0.6877670374, "Conscientousness":0.5529477526, "Extraversion":0.6337253665, "Agreeableness":0.3236347592, "Emotional_Range":0.6168124863, "Conversation":0.1734567056, "Openness to Change":0.430397799, "Hedonism":0.158430861, "Self-enhancement":0.3399782773, "Self-transcendence":0.2556183242, "n":76.0 }, "75%":{ "Openness":0.7561884082, "Conscientousness":0.6510142733, "Extraversion":0.7274713099, "Agreeableness":0.4492181284, "Emotional_Range":0.7010886899, "Conversation":0.2547882803, "Openness to Change":0.4846609371, "Hedonism":0.2265744616, "Self-enhancement":0.4299178279, "Self-transcendence":0.3220190548, "n":80.0 }, "max":{ "Openness":0.95992792, "Conscientousness":0.960118167, "Extraversion":0.9794365923, "Agreeableness":0.8993661095, "Emotional_Range":0.9415769334, "Conversation":0.7793932512, "Openness to Change":0.7557249986, "Hedonism":0.680102991, "Self-enhancement":0.7826336181, "Self-transcendence":0.6273682888, "n":313.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: What is the profession with the lowest level of Hedonism? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: What is the profession with the lowest level of Hedonism? df.columns = ['Profession', 'Openness', 'Conscientousness', 'Extraversion', 'Agreeableness', 'Emotional_Range', 'Conversation', 'Openness to Change', 'Hedonism', 'Self-enhancement', 'Self-transcendence', 'n'] # Expected output type: is category, this will be checked. return
20250129013715
50
Which profession has the highest Emotional_Range?
052_Professional
dev
category
['Profession', 'Emotional_Range']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "Profession", "type": "category" }, { "name": "Openness", "type": "float64" }, { "name": "Conscientousness", "type": "float64" }, { "name": "Extraversion", "type": "float64" }, { "name": "Agreeableness", "type": "float64" }, { "name": "Emotional_Range", "type": "float64" }, { "name": "Conversation", "type": "float64" }, { "name": "Openness to Change", "type": "float64" }, { "name": "Hedonism", "type": "float64" }, { "name": "Self-enhancement", "type": "float64" }, { "name": "Self-transcendence", "type": "float64" }, { "name": "n", "type": "uint16" } ] } # Description of dataframe columns. df_descrption = { "count":{ "Openness":1227.0, "Conscientousness":1227.0, "Extraversion":1227.0, "Agreeableness":1227.0, "Emotional_Range":1227.0, "Conversation":1227.0, "Openness to Change":1227.0, "Hedonism":1227.0, "Self-enhancement":1227.0, "Self-transcendence":1227.0, "n":1227.0 }, "mean":{ "Openness":0.6818599599, "Conscientousness":0.5494864934, "Extraversion":0.5999407609, "Agreeableness":0.3300650815, "Emotional_Range":0.6150157566, "Conversation":0.1954283756, "Openness to Change":0.4297269623, "Hedonism":0.1854087597, "Self-enhancement":0.3530469421, "Self-transcendence":0.2674535075, "n":82.4392828036 }, "std":{ "Openness":0.1062055359, "Conscientousness":0.1504663216, "Extraversion":0.1730540692, "Agreeableness":0.1775762646, "Emotional_Range":0.1320494061, "Conversation":0.1168313736, "Openness to Change":0.0884607635, "Hedonism":0.101973799, "Self-enhancement":0.1235634015, "Self-transcendence":0.098292791, "n":25.8098237833 }, "min":{ "Openness":0.2152542646, "Conscientousness":0.1085605602, "Extraversion":0.1022540075, "Agreeableness":0.017733368, "Emotional_Range":0.165238157, "Conversation":0.0124883557, "Openness to Change":0.1470387283, "Hedonism":0.0290857203, "Self-enhancement":0.0298680791, "Self-transcendence":0.0353641396, "n":50.0 }, "25%":{ "Openness":0.6159645036, "Conscientousness":0.453015216, "Extraversion":0.5015413749, "Agreeableness":0.1927662685, "Emotional_Range":0.5281815531, "Conversation":0.1087056755, "Openness to Change":0.3720593776, "Hedonism":0.1141935636, "Self-enhancement":0.2732188024, "Self-transcendence":0.2014597353, "n":72.0 }, "50%":{ "Openness":0.6877670374, "Conscientousness":0.5529477526, "Extraversion":0.6337253665, "Agreeableness":0.3236347592, "Emotional_Range":0.6168124863, "Conversation":0.1734567056, "Openness to Change":0.430397799, "Hedonism":0.158430861, "Self-enhancement":0.3399782773, "Self-transcendence":0.2556183242, "n":76.0 }, "75%":{ "Openness":0.7561884082, "Conscientousness":0.6510142733, "Extraversion":0.7274713099, "Agreeableness":0.4492181284, "Emotional_Range":0.7010886899, "Conversation":0.2547882803, "Openness to Change":0.4846609371, "Hedonism":0.2265744616, "Self-enhancement":0.4299178279, "Self-transcendence":0.3220190548, "n":80.0 }, "max":{ "Openness":0.95992792, "Conscientousness":0.960118167, "Extraversion":0.9794365923, "Agreeableness":0.8993661095, "Emotional_Range":0.9415769334, "Conversation":0.7793932512, "Openness to Change":0.7557249986, "Hedonism":0.680102991, "Self-enhancement":0.7826336181, "Self-transcendence":0.6273682888, "n":313.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "Openness":1227.0, "Conscientousness":1227.0, "Extraversion":1227.0, "Agreeableness":1227.0, "Emotional_Range":1227.0, "Conversation":1227.0, "Openness to Change":1227.0, "Hedonism":1227.0, "Self-enhancement":1227.0, "Self-transcendence":1227.0, "n":1227.0 }, "mean":{ "Openness":0.6818599599, "Conscientousness":0.5494864934, "Extraversion":0.5999407609, "Agreeableness":0.3300650815, "Emotional_Range":0.6150157566, "Conversation":0.1954283756, "Openness to Change":0.4297269623, "Hedonism":0.1854087597, "Self-enhancement":0.3530469421, "Self-transcendence":0.2674535075, "n":82.4392828036 }, "std":{ "Openness":0.1062055359, "Conscientousness":0.1504663216, "Extraversion":0.1730540692, "Agreeableness":0.1775762646, "Emotional_Range":0.1320494061, "Conversation":0.1168313736, "Openness to Change":0.0884607635, "Hedonism":0.101973799, "Self-enhancement":0.1235634015, "Self-transcendence":0.098292791, "n":25.8098237833 }, "min":{ "Openness":0.2152542646, "Conscientousness":0.1085605602, "Extraversion":0.1022540075, "Agreeableness":0.017733368, "Emotional_Range":0.165238157, "Conversation":0.0124883557, "Openness to Change":0.1470387283, "Hedonism":0.0290857203, "Self-enhancement":0.0298680791, "Self-transcendence":0.0353641396, "n":50.0 }, "25%":{ "Openness":0.6159645036, "Conscientousness":0.453015216, "Extraversion":0.5015413749, "Agreeableness":0.1927662685, "Emotional_Range":0.5281815531, "Conversation":0.1087056755, "Openness to Change":0.3720593776, "Hedonism":0.1141935636, "Self-enhancement":0.2732188024, "Self-transcendence":0.2014597353, "n":72.0 }, "50%":{ "Openness":0.6877670374, "Conscientousness":0.5529477526, "Extraversion":0.6337253665, "Agreeableness":0.3236347592, "Emotional_Range":0.6168124863, "Conversation":0.1734567056, "Openness to Change":0.430397799, "Hedonism":0.158430861, "Self-enhancement":0.3399782773, "Self-transcendence":0.2556183242, "n":76.0 }, "75%":{ "Openness":0.7561884082, "Conscientousness":0.6510142733, "Extraversion":0.7274713099, "Agreeableness":0.4492181284, "Emotional_Range":0.7010886899, "Conversation":0.2547882803, "Openness to Change":0.4846609371, "Hedonism":0.2265744616, "Self-enhancement":0.4299178279, "Self-transcendence":0.3220190548, "n":80.0 }, "max":{ "Openness":0.95992792, "Conscientousness":0.960118167, "Extraversion":0.9794365923, "Agreeableness":0.8993661095, "Emotional_Range":0.9415769334, "Conversation":0.7793932512, "Openness to Change":0.7557249986, "Hedonism":0.680102991, "Self-enhancement":0.7826336181, "Self-transcendence":0.6273682888, "n":313.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: Which profession has the highest Emotional_Range? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: Which profession has the highest Emotional_Range? df.columns = ['Profession', 'Openness', 'Conscientousness', 'Extraversion', 'Agreeableness', 'Emotional_Range', 'Conversation', 'Openness to Change', 'Hedonism', 'Self-enhancement', 'Self-transcendence', 'n'] # Expected output type: is category, this will be checked. return
20250129013715
51
What is the profession with the highest number of records (n)?
052_Professional
dev
category
['Profession', 'n']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "Profession", "type": "category" }, { "name": "Openness", "type": "float64" }, { "name": "Conscientousness", "type": "float64" }, { "name": "Extraversion", "type": "float64" }, { "name": "Agreeableness", "type": "float64" }, { "name": "Emotional_Range", "type": "float64" }, { "name": "Conversation", "type": "float64" }, { "name": "Openness to Change", "type": "float64" }, { "name": "Hedonism", "type": "float64" }, { "name": "Self-enhancement", "type": "float64" }, { "name": "Self-transcendence", "type": "float64" }, { "name": "n", "type": "uint16" } ] } # Description of dataframe columns. df_descrption = { "count":{ "Openness":1227.0, "Conscientousness":1227.0, "Extraversion":1227.0, "Agreeableness":1227.0, "Emotional_Range":1227.0, "Conversation":1227.0, "Openness to Change":1227.0, "Hedonism":1227.0, "Self-enhancement":1227.0, "Self-transcendence":1227.0, "n":1227.0 }, "mean":{ "Openness":0.6818599599, "Conscientousness":0.5494864934, "Extraversion":0.5999407609, "Agreeableness":0.3300650815, "Emotional_Range":0.6150157566, "Conversation":0.1954283756, "Openness to Change":0.4297269623, "Hedonism":0.1854087597, "Self-enhancement":0.3530469421, "Self-transcendence":0.2674535075, "n":82.4392828036 }, "std":{ "Openness":0.1062055359, "Conscientousness":0.1504663216, "Extraversion":0.1730540692, "Agreeableness":0.1775762646, "Emotional_Range":0.1320494061, "Conversation":0.1168313736, "Openness to Change":0.0884607635, "Hedonism":0.101973799, "Self-enhancement":0.1235634015, "Self-transcendence":0.098292791, "n":25.8098237833 }, "min":{ "Openness":0.2152542646, "Conscientousness":0.1085605602, "Extraversion":0.1022540075, "Agreeableness":0.017733368, "Emotional_Range":0.165238157, "Conversation":0.0124883557, "Openness to Change":0.1470387283, "Hedonism":0.0290857203, "Self-enhancement":0.0298680791, "Self-transcendence":0.0353641396, "n":50.0 }, "25%":{ "Openness":0.6159645036, "Conscientousness":0.453015216, "Extraversion":0.5015413749, "Agreeableness":0.1927662685, "Emotional_Range":0.5281815531, "Conversation":0.1087056755, "Openness to Change":0.3720593776, "Hedonism":0.1141935636, "Self-enhancement":0.2732188024, "Self-transcendence":0.2014597353, "n":72.0 }, "50%":{ "Openness":0.6877670374, "Conscientousness":0.5529477526, "Extraversion":0.6337253665, "Agreeableness":0.3236347592, "Emotional_Range":0.6168124863, "Conversation":0.1734567056, "Openness to Change":0.430397799, "Hedonism":0.158430861, "Self-enhancement":0.3399782773, "Self-transcendence":0.2556183242, "n":76.0 }, "75%":{ "Openness":0.7561884082, "Conscientousness":0.6510142733, "Extraversion":0.7274713099, "Agreeableness":0.4492181284, "Emotional_Range":0.7010886899, "Conversation":0.2547882803, "Openness to Change":0.4846609371, "Hedonism":0.2265744616, "Self-enhancement":0.4299178279, "Self-transcendence":0.3220190548, "n":80.0 }, "max":{ "Openness":0.95992792, "Conscientousness":0.960118167, "Extraversion":0.9794365923, "Agreeableness":0.8993661095, "Emotional_Range":0.9415769334, "Conversation":0.7793932512, "Openness to Change":0.7557249986, "Hedonism":0.680102991, "Self-enhancement":0.7826336181, "Self-transcendence":0.6273682888, "n":313.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "Openness":1227.0, "Conscientousness":1227.0, "Extraversion":1227.0, "Agreeableness":1227.0, "Emotional_Range":1227.0, "Conversation":1227.0, "Openness to Change":1227.0, "Hedonism":1227.0, "Self-enhancement":1227.0, "Self-transcendence":1227.0, "n":1227.0 }, "mean":{ "Openness":0.6818599599, "Conscientousness":0.5494864934, "Extraversion":0.5999407609, "Agreeableness":0.3300650815, "Emotional_Range":0.6150157566, "Conversation":0.1954283756, "Openness to Change":0.4297269623, "Hedonism":0.1854087597, "Self-enhancement":0.3530469421, "Self-transcendence":0.2674535075, "n":82.4392828036 }, "std":{ "Openness":0.1062055359, "Conscientousness":0.1504663216, "Extraversion":0.1730540692, "Agreeableness":0.1775762646, "Emotional_Range":0.1320494061, "Conversation":0.1168313736, "Openness to Change":0.0884607635, "Hedonism":0.101973799, "Self-enhancement":0.1235634015, "Self-transcendence":0.098292791, "n":25.8098237833 }, "min":{ "Openness":0.2152542646, "Conscientousness":0.1085605602, "Extraversion":0.1022540075, "Agreeableness":0.017733368, "Emotional_Range":0.165238157, "Conversation":0.0124883557, "Openness to Change":0.1470387283, "Hedonism":0.0290857203, "Self-enhancement":0.0298680791, "Self-transcendence":0.0353641396, "n":50.0 }, "25%":{ "Openness":0.6159645036, "Conscientousness":0.453015216, "Extraversion":0.5015413749, "Agreeableness":0.1927662685, "Emotional_Range":0.5281815531, "Conversation":0.1087056755, "Openness to Change":0.3720593776, "Hedonism":0.1141935636, "Self-enhancement":0.2732188024, "Self-transcendence":0.2014597353, "n":72.0 }, "50%":{ "Openness":0.6877670374, "Conscientousness":0.5529477526, "Extraversion":0.6337253665, "Agreeableness":0.3236347592, "Emotional_Range":0.6168124863, "Conversation":0.1734567056, "Openness to Change":0.430397799, "Hedonism":0.158430861, "Self-enhancement":0.3399782773, "Self-transcendence":0.2556183242, "n":76.0 }, "75%":{ "Openness":0.7561884082, "Conscientousness":0.6510142733, "Extraversion":0.7274713099, "Agreeableness":0.4492181284, "Emotional_Range":0.7010886899, "Conversation":0.2547882803, "Openness to Change":0.4846609371, "Hedonism":0.2265744616, "Self-enhancement":0.4299178279, "Self-transcendence":0.3220190548, "n":80.0 }, "max":{ "Openness":0.95992792, "Conscientousness":0.960118167, "Extraversion":0.9794365923, "Agreeableness":0.8993661095, "Emotional_Range":0.9415769334, "Conversation":0.7793932512, "Openness to Change":0.7557249986, "Hedonism":0.680102991, "Self-enhancement":0.7826336181, "Self-transcendence":0.6273682888, "n":313.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: What is the profession with the highest number of records (n)? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: What is the profession with the highest number of records (n)? df.columns = ['Profession', 'Openness', 'Conscientousness', 'Extraversion', 'Agreeableness', 'Emotional_Range', 'Conversation', 'Openness to Change', 'Hedonism', 'Self-enhancement', 'Self-transcendence', 'n'] # Expected output type: is category, this will be checked. return
20250129013715
52
What are the top 3 professions with the highest Openness?
052_Professional
dev
list[category]
['Profession', 'Openness']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "Profession", "type": "category" }, { "name": "Openness", "type": "float64" }, { "name": "Conscientousness", "type": "float64" }, { "name": "Extraversion", "type": "float64" }, { "name": "Agreeableness", "type": "float64" }, { "name": "Emotional_Range", "type": "float64" }, { "name": "Conversation", "type": "float64" }, { "name": "Openness to Change", "type": "float64" }, { "name": "Hedonism", "type": "float64" }, { "name": "Self-enhancement", "type": "float64" }, { "name": "Self-transcendence", "type": "float64" }, { "name": "n", "type": "uint16" } ] } # Description of dataframe columns. df_descrption = { "count":{ "Openness":1227.0, "Conscientousness":1227.0, "Extraversion":1227.0, "Agreeableness":1227.0, "Emotional_Range":1227.0, "Conversation":1227.0, "Openness to Change":1227.0, "Hedonism":1227.0, "Self-enhancement":1227.0, "Self-transcendence":1227.0, "n":1227.0 }, "mean":{ "Openness":0.6818599599, "Conscientousness":0.5494864934, "Extraversion":0.5999407609, "Agreeableness":0.3300650815, "Emotional_Range":0.6150157566, "Conversation":0.1954283756, "Openness to Change":0.4297269623, "Hedonism":0.1854087597, "Self-enhancement":0.3530469421, "Self-transcendence":0.2674535075, "n":82.4392828036 }, "std":{ "Openness":0.1062055359, "Conscientousness":0.1504663216, "Extraversion":0.1730540692, "Agreeableness":0.1775762646, "Emotional_Range":0.1320494061, "Conversation":0.1168313736, "Openness to Change":0.0884607635, "Hedonism":0.101973799, "Self-enhancement":0.1235634015, "Self-transcendence":0.098292791, "n":25.8098237833 }, "min":{ "Openness":0.2152542646, "Conscientousness":0.1085605602, "Extraversion":0.1022540075, "Agreeableness":0.017733368, "Emotional_Range":0.165238157, "Conversation":0.0124883557, "Openness to Change":0.1470387283, "Hedonism":0.0290857203, "Self-enhancement":0.0298680791, "Self-transcendence":0.0353641396, "n":50.0 }, "25%":{ "Openness":0.6159645036, "Conscientousness":0.453015216, "Extraversion":0.5015413749, "Agreeableness":0.1927662685, "Emotional_Range":0.5281815531, "Conversation":0.1087056755, "Openness to Change":0.3720593776, "Hedonism":0.1141935636, "Self-enhancement":0.2732188024, "Self-transcendence":0.2014597353, "n":72.0 }, "50%":{ "Openness":0.6877670374, "Conscientousness":0.5529477526, "Extraversion":0.6337253665, "Agreeableness":0.3236347592, "Emotional_Range":0.6168124863, "Conversation":0.1734567056, "Openness to Change":0.430397799, "Hedonism":0.158430861, "Self-enhancement":0.3399782773, "Self-transcendence":0.2556183242, "n":76.0 }, "75%":{ "Openness":0.7561884082, "Conscientousness":0.6510142733, "Extraversion":0.7274713099, "Agreeableness":0.4492181284, "Emotional_Range":0.7010886899, "Conversation":0.2547882803, "Openness to Change":0.4846609371, "Hedonism":0.2265744616, "Self-enhancement":0.4299178279, "Self-transcendence":0.3220190548, "n":80.0 }, "max":{ "Openness":0.95992792, "Conscientousness":0.960118167, "Extraversion":0.9794365923, "Agreeableness":0.8993661095, "Emotional_Range":0.9415769334, "Conversation":0.7793932512, "Openness to Change":0.7557249986, "Hedonism":0.680102991, "Self-enhancement":0.7826336181, "Self-transcendence":0.6273682888, "n":313.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "Openness":1227.0, "Conscientousness":1227.0, "Extraversion":1227.0, "Agreeableness":1227.0, "Emotional_Range":1227.0, "Conversation":1227.0, "Openness to Change":1227.0, "Hedonism":1227.0, "Self-enhancement":1227.0, "Self-transcendence":1227.0, "n":1227.0 }, "mean":{ "Openness":0.6818599599, "Conscientousness":0.5494864934, "Extraversion":0.5999407609, "Agreeableness":0.3300650815, "Emotional_Range":0.6150157566, "Conversation":0.1954283756, "Openness to Change":0.4297269623, "Hedonism":0.1854087597, "Self-enhancement":0.3530469421, "Self-transcendence":0.2674535075, "n":82.4392828036 }, "std":{ "Openness":0.1062055359, "Conscientousness":0.1504663216, "Extraversion":0.1730540692, "Agreeableness":0.1775762646, "Emotional_Range":0.1320494061, "Conversation":0.1168313736, "Openness to Change":0.0884607635, "Hedonism":0.101973799, "Self-enhancement":0.1235634015, "Self-transcendence":0.098292791, "n":25.8098237833 }, "min":{ "Openness":0.2152542646, "Conscientousness":0.1085605602, "Extraversion":0.1022540075, "Agreeableness":0.017733368, "Emotional_Range":0.165238157, "Conversation":0.0124883557, "Openness to Change":0.1470387283, "Hedonism":0.0290857203, "Self-enhancement":0.0298680791, "Self-transcendence":0.0353641396, "n":50.0 }, "25%":{ "Openness":0.6159645036, "Conscientousness":0.453015216, "Extraversion":0.5015413749, "Agreeableness":0.1927662685, "Emotional_Range":0.5281815531, "Conversation":0.1087056755, "Openness to Change":0.3720593776, "Hedonism":0.1141935636, "Self-enhancement":0.2732188024, "Self-transcendence":0.2014597353, "n":72.0 }, "50%":{ "Openness":0.6877670374, "Conscientousness":0.5529477526, "Extraversion":0.6337253665, "Agreeableness":0.3236347592, "Emotional_Range":0.6168124863, "Conversation":0.1734567056, "Openness to Change":0.430397799, "Hedonism":0.158430861, "Self-enhancement":0.3399782773, "Self-transcendence":0.2556183242, "n":76.0 }, "75%":{ "Openness":0.7561884082, "Conscientousness":0.6510142733, "Extraversion":0.7274713099, "Agreeableness":0.4492181284, "Emotional_Range":0.7010886899, "Conversation":0.2547882803, "Openness to Change":0.4846609371, "Hedonism":0.2265744616, "Self-enhancement":0.4299178279, "Self-transcendence":0.3220190548, "n":80.0 }, "max":{ "Openness":0.95992792, "Conscientousness":0.960118167, "Extraversion":0.9794365923, "Agreeableness":0.8993661095, "Emotional_Range":0.9415769334, "Conversation":0.7793932512, "Openness to Change":0.7557249986, "Hedonism":0.680102991, "Self-enhancement":0.7826336181, "Self-transcendence":0.6273682888, "n":313.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: What are the top 3 professions with the highest Openness? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: What are the top 3 professions with the highest Openness? df.columns = ['Profession', 'Openness', 'Conscientousness', 'Extraversion', 'Agreeableness', 'Emotional_Range', 'Conversation', 'Openness to Change', 'Hedonism', 'Self-enhancement', 'Self-transcendence', 'n'] # Expected output type: is list[category], this will be checked. return
20250129013716
53
Which are the bottom 4 professions in terms of Agreeableness?
052_Professional
dev
list[category]
['Profession', 'Agreeableness']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "Profession", "type": "category" }, { "name": "Openness", "type": "float64" }, { "name": "Conscientousness", "type": "float64" }, { "name": "Extraversion", "type": "float64" }, { "name": "Agreeableness", "type": "float64" }, { "name": "Emotional_Range", "type": "float64" }, { "name": "Conversation", "type": "float64" }, { "name": "Openness to Change", "type": "float64" }, { "name": "Hedonism", "type": "float64" }, { "name": "Self-enhancement", "type": "float64" }, { "name": "Self-transcendence", "type": "float64" }, { "name": "n", "type": "uint16" } ] } # Description of dataframe columns. df_descrption = { "count":{ "Openness":1227.0, "Conscientousness":1227.0, "Extraversion":1227.0, "Agreeableness":1227.0, "Emotional_Range":1227.0, "Conversation":1227.0, "Openness to Change":1227.0, "Hedonism":1227.0, "Self-enhancement":1227.0, "Self-transcendence":1227.0, "n":1227.0 }, "mean":{ "Openness":0.6818599599, "Conscientousness":0.5494864934, "Extraversion":0.5999407609, "Agreeableness":0.3300650815, "Emotional_Range":0.6150157566, "Conversation":0.1954283756, "Openness to Change":0.4297269623, "Hedonism":0.1854087597, "Self-enhancement":0.3530469421, "Self-transcendence":0.2674535075, "n":82.4392828036 }, "std":{ "Openness":0.1062055359, "Conscientousness":0.1504663216, "Extraversion":0.1730540692, "Agreeableness":0.1775762646, "Emotional_Range":0.1320494061, "Conversation":0.1168313736, "Openness to Change":0.0884607635, "Hedonism":0.101973799, "Self-enhancement":0.1235634015, "Self-transcendence":0.098292791, "n":25.8098237833 }, "min":{ "Openness":0.2152542646, "Conscientousness":0.1085605602, "Extraversion":0.1022540075, "Agreeableness":0.017733368, "Emotional_Range":0.165238157, "Conversation":0.0124883557, "Openness to Change":0.1470387283, "Hedonism":0.0290857203, "Self-enhancement":0.0298680791, "Self-transcendence":0.0353641396, "n":50.0 }, "25%":{ "Openness":0.6159645036, "Conscientousness":0.453015216, "Extraversion":0.5015413749, "Agreeableness":0.1927662685, "Emotional_Range":0.5281815531, "Conversation":0.1087056755, "Openness to Change":0.3720593776, "Hedonism":0.1141935636, "Self-enhancement":0.2732188024, "Self-transcendence":0.2014597353, "n":72.0 }, "50%":{ "Openness":0.6877670374, "Conscientousness":0.5529477526, "Extraversion":0.6337253665, "Agreeableness":0.3236347592, "Emotional_Range":0.6168124863, "Conversation":0.1734567056, "Openness to Change":0.430397799, "Hedonism":0.158430861, "Self-enhancement":0.3399782773, "Self-transcendence":0.2556183242, "n":76.0 }, "75%":{ "Openness":0.7561884082, "Conscientousness":0.6510142733, "Extraversion":0.7274713099, "Agreeableness":0.4492181284, "Emotional_Range":0.7010886899, "Conversation":0.2547882803, "Openness to Change":0.4846609371, "Hedonism":0.2265744616, "Self-enhancement":0.4299178279, "Self-transcendence":0.3220190548, "n":80.0 }, "max":{ "Openness":0.95992792, "Conscientousness":0.960118167, "Extraversion":0.9794365923, "Agreeableness":0.8993661095, "Emotional_Range":0.9415769334, "Conversation":0.7793932512, "Openness to Change":0.7557249986, "Hedonism":0.680102991, "Self-enhancement":0.7826336181, "Self-transcendence":0.6273682888, "n":313.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "Openness":1227.0, "Conscientousness":1227.0, "Extraversion":1227.0, "Agreeableness":1227.0, "Emotional_Range":1227.0, "Conversation":1227.0, "Openness to Change":1227.0, "Hedonism":1227.0, "Self-enhancement":1227.0, "Self-transcendence":1227.0, "n":1227.0 }, "mean":{ "Openness":0.6818599599, "Conscientousness":0.5494864934, "Extraversion":0.5999407609, "Agreeableness":0.3300650815, "Emotional_Range":0.6150157566, "Conversation":0.1954283756, "Openness to Change":0.4297269623, "Hedonism":0.1854087597, "Self-enhancement":0.3530469421, "Self-transcendence":0.2674535075, "n":82.4392828036 }, "std":{ "Openness":0.1062055359, "Conscientousness":0.1504663216, "Extraversion":0.1730540692, "Agreeableness":0.1775762646, "Emotional_Range":0.1320494061, "Conversation":0.1168313736, "Openness to Change":0.0884607635, "Hedonism":0.101973799, "Self-enhancement":0.1235634015, "Self-transcendence":0.098292791, "n":25.8098237833 }, "min":{ "Openness":0.2152542646, "Conscientousness":0.1085605602, "Extraversion":0.1022540075, "Agreeableness":0.017733368, "Emotional_Range":0.165238157, "Conversation":0.0124883557, "Openness to Change":0.1470387283, "Hedonism":0.0290857203, "Self-enhancement":0.0298680791, "Self-transcendence":0.0353641396, "n":50.0 }, "25%":{ "Openness":0.6159645036, "Conscientousness":0.453015216, "Extraversion":0.5015413749, "Agreeableness":0.1927662685, "Emotional_Range":0.5281815531, "Conversation":0.1087056755, "Openness to Change":0.3720593776, "Hedonism":0.1141935636, "Self-enhancement":0.2732188024, "Self-transcendence":0.2014597353, "n":72.0 }, "50%":{ "Openness":0.6877670374, "Conscientousness":0.5529477526, "Extraversion":0.6337253665, "Agreeableness":0.3236347592, "Emotional_Range":0.6168124863, "Conversation":0.1734567056, "Openness to Change":0.430397799, "Hedonism":0.158430861, "Self-enhancement":0.3399782773, "Self-transcendence":0.2556183242, "n":76.0 }, "75%":{ "Openness":0.7561884082, "Conscientousness":0.6510142733, "Extraversion":0.7274713099, "Agreeableness":0.4492181284, "Emotional_Range":0.7010886899, "Conversation":0.2547882803, "Openness to Change":0.4846609371, "Hedonism":0.2265744616, "Self-enhancement":0.4299178279, "Self-transcendence":0.3220190548, "n":80.0 }, "max":{ "Openness":0.95992792, "Conscientousness":0.960118167, "Extraversion":0.9794365923, "Agreeableness":0.8993661095, "Emotional_Range":0.9415769334, "Conversation":0.7793932512, "Openness to Change":0.7557249986, "Hedonism":0.680102991, "Self-enhancement":0.7826336181, "Self-transcendence":0.6273682888, "n":313.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: Which are the bottom 4 professions in terms of Agreeableness? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: Which are the bottom 4 professions in terms of Agreeableness? df.columns = ['Profession', 'Openness', 'Conscientousness', 'Extraversion', 'Agreeableness', 'Emotional_Range', 'Conversation', 'Openness to Change', 'Hedonism', 'Self-enhancement', 'Self-transcendence', 'n'] # Expected output type: is list[category], this will be checked. return
20250129013716
54
List the top 5 professions with the highest Conversation levels.
052_Professional
dev
list[category]
['Profession', 'Conversation']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "Profession", "type": "category" }, { "name": "Openness", "type": "float64" }, { "name": "Conscientousness", "type": "float64" }, { "name": "Extraversion", "type": "float64" }, { "name": "Agreeableness", "type": "float64" }, { "name": "Emotional_Range", "type": "float64" }, { "name": "Conversation", "type": "float64" }, { "name": "Openness to Change", "type": "float64" }, { "name": "Hedonism", "type": "float64" }, { "name": "Self-enhancement", "type": "float64" }, { "name": "Self-transcendence", "type": "float64" }, { "name": "n", "type": "uint16" } ] } # Description of dataframe columns. df_descrption = { "count":{ "Openness":1227.0, "Conscientousness":1227.0, "Extraversion":1227.0, "Agreeableness":1227.0, "Emotional_Range":1227.0, "Conversation":1227.0, "Openness to Change":1227.0, "Hedonism":1227.0, "Self-enhancement":1227.0, "Self-transcendence":1227.0, "n":1227.0 }, "mean":{ "Openness":0.6818599599, "Conscientousness":0.5494864934, "Extraversion":0.5999407609, "Agreeableness":0.3300650815, "Emotional_Range":0.6150157566, "Conversation":0.1954283756, "Openness to Change":0.4297269623, "Hedonism":0.1854087597, "Self-enhancement":0.3530469421, "Self-transcendence":0.2674535075, "n":82.4392828036 }, "std":{ "Openness":0.1062055359, "Conscientousness":0.1504663216, "Extraversion":0.1730540692, "Agreeableness":0.1775762646, "Emotional_Range":0.1320494061, "Conversation":0.1168313736, "Openness to Change":0.0884607635, "Hedonism":0.101973799, "Self-enhancement":0.1235634015, "Self-transcendence":0.098292791, "n":25.8098237833 }, "min":{ "Openness":0.2152542646, "Conscientousness":0.1085605602, "Extraversion":0.1022540075, "Agreeableness":0.017733368, "Emotional_Range":0.165238157, "Conversation":0.0124883557, "Openness to Change":0.1470387283, "Hedonism":0.0290857203, "Self-enhancement":0.0298680791, "Self-transcendence":0.0353641396, "n":50.0 }, "25%":{ "Openness":0.6159645036, "Conscientousness":0.453015216, "Extraversion":0.5015413749, "Agreeableness":0.1927662685, "Emotional_Range":0.5281815531, "Conversation":0.1087056755, "Openness to Change":0.3720593776, "Hedonism":0.1141935636, "Self-enhancement":0.2732188024, "Self-transcendence":0.2014597353, "n":72.0 }, "50%":{ "Openness":0.6877670374, "Conscientousness":0.5529477526, "Extraversion":0.6337253665, "Agreeableness":0.3236347592, "Emotional_Range":0.6168124863, "Conversation":0.1734567056, "Openness to Change":0.430397799, "Hedonism":0.158430861, "Self-enhancement":0.3399782773, "Self-transcendence":0.2556183242, "n":76.0 }, "75%":{ "Openness":0.7561884082, "Conscientousness":0.6510142733, "Extraversion":0.7274713099, "Agreeableness":0.4492181284, "Emotional_Range":0.7010886899, "Conversation":0.2547882803, "Openness to Change":0.4846609371, "Hedonism":0.2265744616, "Self-enhancement":0.4299178279, "Self-transcendence":0.3220190548, "n":80.0 }, "max":{ "Openness":0.95992792, "Conscientousness":0.960118167, "Extraversion":0.9794365923, "Agreeableness":0.8993661095, "Emotional_Range":0.9415769334, "Conversation":0.7793932512, "Openness to Change":0.7557249986, "Hedonism":0.680102991, "Self-enhancement":0.7826336181, "Self-transcendence":0.6273682888, "n":313.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "Openness":1227.0, "Conscientousness":1227.0, "Extraversion":1227.0, "Agreeableness":1227.0, "Emotional_Range":1227.0, "Conversation":1227.0, "Openness to Change":1227.0, "Hedonism":1227.0, "Self-enhancement":1227.0, "Self-transcendence":1227.0, "n":1227.0 }, "mean":{ "Openness":0.6818599599, "Conscientousness":0.5494864934, "Extraversion":0.5999407609, "Agreeableness":0.3300650815, "Emotional_Range":0.6150157566, "Conversation":0.1954283756, "Openness to Change":0.4297269623, "Hedonism":0.1854087597, "Self-enhancement":0.3530469421, "Self-transcendence":0.2674535075, "n":82.4392828036 }, "std":{ "Openness":0.1062055359, "Conscientousness":0.1504663216, "Extraversion":0.1730540692, "Agreeableness":0.1775762646, "Emotional_Range":0.1320494061, "Conversation":0.1168313736, "Openness to Change":0.0884607635, "Hedonism":0.101973799, "Self-enhancement":0.1235634015, "Self-transcendence":0.098292791, "n":25.8098237833 }, "min":{ "Openness":0.2152542646, "Conscientousness":0.1085605602, "Extraversion":0.1022540075, "Agreeableness":0.017733368, "Emotional_Range":0.165238157, "Conversation":0.0124883557, "Openness to Change":0.1470387283, "Hedonism":0.0290857203, "Self-enhancement":0.0298680791, "Self-transcendence":0.0353641396, "n":50.0 }, "25%":{ "Openness":0.6159645036, "Conscientousness":0.453015216, "Extraversion":0.5015413749, "Agreeableness":0.1927662685, "Emotional_Range":0.5281815531, "Conversation":0.1087056755, "Openness to Change":0.3720593776, "Hedonism":0.1141935636, "Self-enhancement":0.2732188024, "Self-transcendence":0.2014597353, "n":72.0 }, "50%":{ "Openness":0.6877670374, "Conscientousness":0.5529477526, "Extraversion":0.6337253665, "Agreeableness":0.3236347592, "Emotional_Range":0.6168124863, "Conversation":0.1734567056, "Openness to Change":0.430397799, "Hedonism":0.158430861, "Self-enhancement":0.3399782773, "Self-transcendence":0.2556183242, "n":76.0 }, "75%":{ "Openness":0.7561884082, "Conscientousness":0.6510142733, "Extraversion":0.7274713099, "Agreeableness":0.4492181284, "Emotional_Range":0.7010886899, "Conversation":0.2547882803, "Openness to Change":0.4846609371, "Hedonism":0.2265744616, "Self-enhancement":0.4299178279, "Self-transcendence":0.3220190548, "n":80.0 }, "max":{ "Openness":0.95992792, "Conscientousness":0.960118167, "Extraversion":0.9794365923, "Agreeableness":0.8993661095, "Emotional_Range":0.9415769334, "Conversation":0.7793932512, "Openness to Change":0.7557249986, "Hedonism":0.680102991, "Self-enhancement":0.7826336181, "Self-transcendence":0.6273682888, "n":313.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: List the top 5 professions with the highest Conversation levels. # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: List the top 5 professions with the highest Conversation levels. df.columns = ['Profession', 'Openness', 'Conscientousness', 'Extraversion', 'Agreeableness', 'Emotional_Range', 'Conversation', 'Openness to Change', 'Hedonism', 'Self-enhancement', 'Self-transcendence', 'n'] # Expected output type: is list[category], this will be checked. return
20250129013716
55
Name the bottom 2 professions in terms of Self-enhancement.
052_Professional
dev
list[category]
['Profession', 'Self-enhancement']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "Profession", "type": "category" }, { "name": "Openness", "type": "float64" }, { "name": "Conscientousness", "type": "float64" }, { "name": "Extraversion", "type": "float64" }, { "name": "Agreeableness", "type": "float64" }, { "name": "Emotional_Range", "type": "float64" }, { "name": "Conversation", "type": "float64" }, { "name": "Openness to Change", "type": "float64" }, { "name": "Hedonism", "type": "float64" }, { "name": "Self-enhancement", "type": "float64" }, { "name": "Self-transcendence", "type": "float64" }, { "name": "n", "type": "uint16" } ] } # Description of dataframe columns. df_descrption = { "count":{ "Openness":1227.0, "Conscientousness":1227.0, "Extraversion":1227.0, "Agreeableness":1227.0, "Emotional_Range":1227.0, "Conversation":1227.0, "Openness to Change":1227.0, "Hedonism":1227.0, "Self-enhancement":1227.0, "Self-transcendence":1227.0, "n":1227.0 }, "mean":{ "Openness":0.6818599599, "Conscientousness":0.5494864934, "Extraversion":0.5999407609, "Agreeableness":0.3300650815, "Emotional_Range":0.6150157566, "Conversation":0.1954283756, "Openness to Change":0.4297269623, "Hedonism":0.1854087597, "Self-enhancement":0.3530469421, "Self-transcendence":0.2674535075, "n":82.4392828036 }, "std":{ "Openness":0.1062055359, "Conscientousness":0.1504663216, "Extraversion":0.1730540692, "Agreeableness":0.1775762646, "Emotional_Range":0.1320494061, "Conversation":0.1168313736, "Openness to Change":0.0884607635, "Hedonism":0.101973799, "Self-enhancement":0.1235634015, "Self-transcendence":0.098292791, "n":25.8098237833 }, "min":{ "Openness":0.2152542646, "Conscientousness":0.1085605602, "Extraversion":0.1022540075, "Agreeableness":0.017733368, "Emotional_Range":0.165238157, "Conversation":0.0124883557, "Openness to Change":0.1470387283, "Hedonism":0.0290857203, "Self-enhancement":0.0298680791, "Self-transcendence":0.0353641396, "n":50.0 }, "25%":{ "Openness":0.6159645036, "Conscientousness":0.453015216, "Extraversion":0.5015413749, "Agreeableness":0.1927662685, "Emotional_Range":0.5281815531, "Conversation":0.1087056755, "Openness to Change":0.3720593776, "Hedonism":0.1141935636, "Self-enhancement":0.2732188024, "Self-transcendence":0.2014597353, "n":72.0 }, "50%":{ "Openness":0.6877670374, "Conscientousness":0.5529477526, "Extraversion":0.6337253665, "Agreeableness":0.3236347592, "Emotional_Range":0.6168124863, "Conversation":0.1734567056, "Openness to Change":0.430397799, "Hedonism":0.158430861, "Self-enhancement":0.3399782773, "Self-transcendence":0.2556183242, "n":76.0 }, "75%":{ "Openness":0.7561884082, "Conscientousness":0.6510142733, "Extraversion":0.7274713099, "Agreeableness":0.4492181284, "Emotional_Range":0.7010886899, "Conversation":0.2547882803, "Openness to Change":0.4846609371, "Hedonism":0.2265744616, "Self-enhancement":0.4299178279, "Self-transcendence":0.3220190548, "n":80.0 }, "max":{ "Openness":0.95992792, "Conscientousness":0.960118167, "Extraversion":0.9794365923, "Agreeableness":0.8993661095, "Emotional_Range":0.9415769334, "Conversation":0.7793932512, "Openness to Change":0.7557249986, "Hedonism":0.680102991, "Self-enhancement":0.7826336181, "Self-transcendence":0.6273682888, "n":313.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "Openness":1227.0, "Conscientousness":1227.0, "Extraversion":1227.0, "Agreeableness":1227.0, "Emotional_Range":1227.0, "Conversation":1227.0, "Openness to Change":1227.0, "Hedonism":1227.0, "Self-enhancement":1227.0, "Self-transcendence":1227.0, "n":1227.0 }, "mean":{ "Openness":0.6818599599, "Conscientousness":0.5494864934, "Extraversion":0.5999407609, "Agreeableness":0.3300650815, "Emotional_Range":0.6150157566, "Conversation":0.1954283756, "Openness to Change":0.4297269623, "Hedonism":0.1854087597, "Self-enhancement":0.3530469421, "Self-transcendence":0.2674535075, "n":82.4392828036 }, "std":{ "Openness":0.1062055359, "Conscientousness":0.1504663216, "Extraversion":0.1730540692, "Agreeableness":0.1775762646, "Emotional_Range":0.1320494061, "Conversation":0.1168313736, "Openness to Change":0.0884607635, "Hedonism":0.101973799, "Self-enhancement":0.1235634015, "Self-transcendence":0.098292791, "n":25.8098237833 }, "min":{ "Openness":0.2152542646, "Conscientousness":0.1085605602, "Extraversion":0.1022540075, "Agreeableness":0.017733368, "Emotional_Range":0.165238157, "Conversation":0.0124883557, "Openness to Change":0.1470387283, "Hedonism":0.0290857203, "Self-enhancement":0.0298680791, "Self-transcendence":0.0353641396, "n":50.0 }, "25%":{ "Openness":0.6159645036, "Conscientousness":0.453015216, "Extraversion":0.5015413749, "Agreeableness":0.1927662685, "Emotional_Range":0.5281815531, "Conversation":0.1087056755, "Openness to Change":0.3720593776, "Hedonism":0.1141935636, "Self-enhancement":0.2732188024, "Self-transcendence":0.2014597353, "n":72.0 }, "50%":{ "Openness":0.6877670374, "Conscientousness":0.5529477526, "Extraversion":0.6337253665, "Agreeableness":0.3236347592, "Emotional_Range":0.6168124863, "Conversation":0.1734567056, "Openness to Change":0.430397799, "Hedonism":0.158430861, "Self-enhancement":0.3399782773, "Self-transcendence":0.2556183242, "n":76.0 }, "75%":{ "Openness":0.7561884082, "Conscientousness":0.6510142733, "Extraversion":0.7274713099, "Agreeableness":0.4492181284, "Emotional_Range":0.7010886899, "Conversation":0.2547882803, "Openness to Change":0.4846609371, "Hedonism":0.2265744616, "Self-enhancement":0.4299178279, "Self-transcendence":0.3220190548, "n":80.0 }, "max":{ "Openness":0.95992792, "Conscientousness":0.960118167, "Extraversion":0.9794365923, "Agreeableness":0.8993661095, "Emotional_Range":0.9415769334, "Conversation":0.7793932512, "Openness to Change":0.7557249986, "Hedonism":0.680102991, "Self-enhancement":0.7826336181, "Self-transcendence":0.6273682888, "n":313.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: Name the bottom 2 professions in terms of Self-enhancement. # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: Name the bottom 2 professions in terms of Self-enhancement. df.columns = ['Profession', 'Openness', 'Conscientousness', 'Extraversion', 'Agreeableness', 'Emotional_Range', 'Conversation', 'Openness to Change', 'Hedonism', 'Self-enhancement', 'Self-transcendence', 'n'] # Expected output type: is list[category], this will be checked. return
20250129013716
56
What are the top 3 values of Openness to Change across all professions?
052_Professional
dev
list[number]
['Openness to Change']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "Profession", "type": "category" }, { "name": "Openness", "type": "float64" }, { "name": "Conscientousness", "type": "float64" }, { "name": "Extraversion", "type": "float64" }, { "name": "Agreeableness", "type": "float64" }, { "name": "Emotional_Range", "type": "float64" }, { "name": "Conversation", "type": "float64" }, { "name": "Openness to Change", "type": "float64" }, { "name": "Hedonism", "type": "float64" }, { "name": "Self-enhancement", "type": "float64" }, { "name": "Self-transcendence", "type": "float64" }, { "name": "n", "type": "uint16" } ] } # Description of dataframe columns. df_descrption = { "count":{ "Openness":1227.0, "Conscientousness":1227.0, "Extraversion":1227.0, "Agreeableness":1227.0, "Emotional_Range":1227.0, "Conversation":1227.0, "Openness to Change":1227.0, "Hedonism":1227.0, "Self-enhancement":1227.0, "Self-transcendence":1227.0, "n":1227.0 }, "mean":{ "Openness":0.6818599599, "Conscientousness":0.5494864934, "Extraversion":0.5999407609, "Agreeableness":0.3300650815, "Emotional_Range":0.6150157566, "Conversation":0.1954283756, "Openness to Change":0.4297269623, "Hedonism":0.1854087597, "Self-enhancement":0.3530469421, "Self-transcendence":0.2674535075, "n":82.4392828036 }, "std":{ "Openness":0.1062055359, "Conscientousness":0.1504663216, "Extraversion":0.1730540692, "Agreeableness":0.1775762646, "Emotional_Range":0.1320494061, "Conversation":0.1168313736, "Openness to Change":0.0884607635, "Hedonism":0.101973799, "Self-enhancement":0.1235634015, "Self-transcendence":0.098292791, "n":25.8098237833 }, "min":{ "Openness":0.2152542646, "Conscientousness":0.1085605602, "Extraversion":0.1022540075, "Agreeableness":0.017733368, "Emotional_Range":0.165238157, "Conversation":0.0124883557, "Openness to Change":0.1470387283, "Hedonism":0.0290857203, "Self-enhancement":0.0298680791, "Self-transcendence":0.0353641396, "n":50.0 }, "25%":{ "Openness":0.6159645036, "Conscientousness":0.453015216, "Extraversion":0.5015413749, "Agreeableness":0.1927662685, "Emotional_Range":0.5281815531, "Conversation":0.1087056755, "Openness to Change":0.3720593776, "Hedonism":0.1141935636, "Self-enhancement":0.2732188024, "Self-transcendence":0.2014597353, "n":72.0 }, "50%":{ "Openness":0.6877670374, "Conscientousness":0.5529477526, "Extraversion":0.6337253665, "Agreeableness":0.3236347592, "Emotional_Range":0.6168124863, "Conversation":0.1734567056, "Openness to Change":0.430397799, "Hedonism":0.158430861, "Self-enhancement":0.3399782773, "Self-transcendence":0.2556183242, "n":76.0 }, "75%":{ "Openness":0.7561884082, "Conscientousness":0.6510142733, "Extraversion":0.7274713099, "Agreeableness":0.4492181284, "Emotional_Range":0.7010886899, "Conversation":0.2547882803, "Openness to Change":0.4846609371, "Hedonism":0.2265744616, "Self-enhancement":0.4299178279, "Self-transcendence":0.3220190548, "n":80.0 }, "max":{ "Openness":0.95992792, "Conscientousness":0.960118167, "Extraversion":0.9794365923, "Agreeableness":0.8993661095, "Emotional_Range":0.9415769334, "Conversation":0.7793932512, "Openness to Change":0.7557249986, "Hedonism":0.680102991, "Self-enhancement":0.7826336181, "Self-transcendence":0.6273682888, "n":313.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "Openness":1227.0, "Conscientousness":1227.0, "Extraversion":1227.0, "Agreeableness":1227.0, "Emotional_Range":1227.0, "Conversation":1227.0, "Openness to Change":1227.0, "Hedonism":1227.0, "Self-enhancement":1227.0, "Self-transcendence":1227.0, "n":1227.0 }, "mean":{ "Openness":0.6818599599, "Conscientousness":0.5494864934, "Extraversion":0.5999407609, "Agreeableness":0.3300650815, "Emotional_Range":0.6150157566, "Conversation":0.1954283756, "Openness to Change":0.4297269623, "Hedonism":0.1854087597, "Self-enhancement":0.3530469421, "Self-transcendence":0.2674535075, "n":82.4392828036 }, "std":{ "Openness":0.1062055359, "Conscientousness":0.1504663216, "Extraversion":0.1730540692, "Agreeableness":0.1775762646, "Emotional_Range":0.1320494061, "Conversation":0.1168313736, "Openness to Change":0.0884607635, "Hedonism":0.101973799, "Self-enhancement":0.1235634015, "Self-transcendence":0.098292791, "n":25.8098237833 }, "min":{ "Openness":0.2152542646, "Conscientousness":0.1085605602, "Extraversion":0.1022540075, "Agreeableness":0.017733368, "Emotional_Range":0.165238157, "Conversation":0.0124883557, "Openness to Change":0.1470387283, "Hedonism":0.0290857203, "Self-enhancement":0.0298680791, "Self-transcendence":0.0353641396, "n":50.0 }, "25%":{ "Openness":0.6159645036, "Conscientousness":0.453015216, "Extraversion":0.5015413749, "Agreeableness":0.1927662685, "Emotional_Range":0.5281815531, "Conversation":0.1087056755, "Openness to Change":0.3720593776, "Hedonism":0.1141935636, "Self-enhancement":0.2732188024, "Self-transcendence":0.2014597353, "n":72.0 }, "50%":{ "Openness":0.6877670374, "Conscientousness":0.5529477526, "Extraversion":0.6337253665, "Agreeableness":0.3236347592, "Emotional_Range":0.6168124863, "Conversation":0.1734567056, "Openness to Change":0.430397799, "Hedonism":0.158430861, "Self-enhancement":0.3399782773, "Self-transcendence":0.2556183242, "n":76.0 }, "75%":{ "Openness":0.7561884082, "Conscientousness":0.6510142733, "Extraversion":0.7274713099, "Agreeableness":0.4492181284, "Emotional_Range":0.7010886899, "Conversation":0.2547882803, "Openness to Change":0.4846609371, "Hedonism":0.2265744616, "Self-enhancement":0.4299178279, "Self-transcendence":0.3220190548, "n":80.0 }, "max":{ "Openness":0.95992792, "Conscientousness":0.960118167, "Extraversion":0.9794365923, "Agreeableness":0.8993661095, "Emotional_Range":0.9415769334, "Conversation":0.7793932512, "Openness to Change":0.7557249986, "Hedonism":0.680102991, "Self-enhancement":0.7826336181, "Self-transcendence":0.6273682888, "n":313.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: What are the top 3 values of Openness to Change across all professions? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: What are the top 3 values of Openness to Change across all professions? df.columns = ['Profession', 'Openness', 'Conscientousness', 'Extraversion', 'Agreeableness', 'Emotional_Range', 'Conversation', 'Openness to Change', 'Hedonism', 'Self-enhancement', 'Self-transcendence', 'n'] # Expected output type: is list[number], this will be checked. return
20250129013716
57
List the bottom 4 Emotional_Range values.
052_Professional
dev
list[number]
['Emotional_Range']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "Profession", "type": "category" }, { "name": "Openness", "type": "float64" }, { "name": "Conscientousness", "type": "float64" }, { "name": "Extraversion", "type": "float64" }, { "name": "Agreeableness", "type": "float64" }, { "name": "Emotional_Range", "type": "float64" }, { "name": "Conversation", "type": "float64" }, { "name": "Openness to Change", "type": "float64" }, { "name": "Hedonism", "type": "float64" }, { "name": "Self-enhancement", "type": "float64" }, { "name": "Self-transcendence", "type": "float64" }, { "name": "n", "type": "uint16" } ] } # Description of dataframe columns. df_descrption = { "count":{ "Openness":1227.0, "Conscientousness":1227.0, "Extraversion":1227.0, "Agreeableness":1227.0, "Emotional_Range":1227.0, "Conversation":1227.0, "Openness to Change":1227.0, "Hedonism":1227.0, "Self-enhancement":1227.0, "Self-transcendence":1227.0, "n":1227.0 }, "mean":{ "Openness":0.6818599599, "Conscientousness":0.5494864934, "Extraversion":0.5999407609, "Agreeableness":0.3300650815, "Emotional_Range":0.6150157566, "Conversation":0.1954283756, "Openness to Change":0.4297269623, "Hedonism":0.1854087597, "Self-enhancement":0.3530469421, "Self-transcendence":0.2674535075, "n":82.4392828036 }, "std":{ "Openness":0.1062055359, "Conscientousness":0.1504663216, "Extraversion":0.1730540692, "Agreeableness":0.1775762646, "Emotional_Range":0.1320494061, "Conversation":0.1168313736, "Openness to Change":0.0884607635, "Hedonism":0.101973799, "Self-enhancement":0.1235634015, "Self-transcendence":0.098292791, "n":25.8098237833 }, "min":{ "Openness":0.2152542646, "Conscientousness":0.1085605602, "Extraversion":0.1022540075, "Agreeableness":0.017733368, "Emotional_Range":0.165238157, "Conversation":0.0124883557, "Openness to Change":0.1470387283, "Hedonism":0.0290857203, "Self-enhancement":0.0298680791, "Self-transcendence":0.0353641396, "n":50.0 }, "25%":{ "Openness":0.6159645036, "Conscientousness":0.453015216, "Extraversion":0.5015413749, "Agreeableness":0.1927662685, "Emotional_Range":0.5281815531, "Conversation":0.1087056755, "Openness to Change":0.3720593776, "Hedonism":0.1141935636, "Self-enhancement":0.2732188024, "Self-transcendence":0.2014597353, "n":72.0 }, "50%":{ "Openness":0.6877670374, "Conscientousness":0.5529477526, "Extraversion":0.6337253665, "Agreeableness":0.3236347592, "Emotional_Range":0.6168124863, "Conversation":0.1734567056, "Openness to Change":0.430397799, "Hedonism":0.158430861, "Self-enhancement":0.3399782773, "Self-transcendence":0.2556183242, "n":76.0 }, "75%":{ "Openness":0.7561884082, "Conscientousness":0.6510142733, "Extraversion":0.7274713099, "Agreeableness":0.4492181284, "Emotional_Range":0.7010886899, "Conversation":0.2547882803, "Openness to Change":0.4846609371, "Hedonism":0.2265744616, "Self-enhancement":0.4299178279, "Self-transcendence":0.3220190548, "n":80.0 }, "max":{ "Openness":0.95992792, "Conscientousness":0.960118167, "Extraversion":0.9794365923, "Agreeableness":0.8993661095, "Emotional_Range":0.9415769334, "Conversation":0.7793932512, "Openness to Change":0.7557249986, "Hedonism":0.680102991, "Self-enhancement":0.7826336181, "Self-transcendence":0.6273682888, "n":313.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "Openness":1227.0, "Conscientousness":1227.0, "Extraversion":1227.0, "Agreeableness":1227.0, "Emotional_Range":1227.0, "Conversation":1227.0, "Openness to Change":1227.0, "Hedonism":1227.0, "Self-enhancement":1227.0, "Self-transcendence":1227.0, "n":1227.0 }, "mean":{ "Openness":0.6818599599, "Conscientousness":0.5494864934, "Extraversion":0.5999407609, "Agreeableness":0.3300650815, "Emotional_Range":0.6150157566, "Conversation":0.1954283756, "Openness to Change":0.4297269623, "Hedonism":0.1854087597, "Self-enhancement":0.3530469421, "Self-transcendence":0.2674535075, "n":82.4392828036 }, "std":{ "Openness":0.1062055359, "Conscientousness":0.1504663216, "Extraversion":0.1730540692, "Agreeableness":0.1775762646, "Emotional_Range":0.1320494061, "Conversation":0.1168313736, "Openness to Change":0.0884607635, "Hedonism":0.101973799, "Self-enhancement":0.1235634015, "Self-transcendence":0.098292791, "n":25.8098237833 }, "min":{ "Openness":0.2152542646, "Conscientousness":0.1085605602, "Extraversion":0.1022540075, "Agreeableness":0.017733368, "Emotional_Range":0.165238157, "Conversation":0.0124883557, "Openness to Change":0.1470387283, "Hedonism":0.0290857203, "Self-enhancement":0.0298680791, "Self-transcendence":0.0353641396, "n":50.0 }, "25%":{ "Openness":0.6159645036, "Conscientousness":0.453015216, "Extraversion":0.5015413749, "Agreeableness":0.1927662685, "Emotional_Range":0.5281815531, "Conversation":0.1087056755, "Openness to Change":0.3720593776, "Hedonism":0.1141935636, "Self-enhancement":0.2732188024, "Self-transcendence":0.2014597353, "n":72.0 }, "50%":{ "Openness":0.6877670374, "Conscientousness":0.5529477526, "Extraversion":0.6337253665, "Agreeableness":0.3236347592, "Emotional_Range":0.6168124863, "Conversation":0.1734567056, "Openness to Change":0.430397799, "Hedonism":0.158430861, "Self-enhancement":0.3399782773, "Self-transcendence":0.2556183242, "n":76.0 }, "75%":{ "Openness":0.7561884082, "Conscientousness":0.6510142733, "Extraversion":0.7274713099, "Agreeableness":0.4492181284, "Emotional_Range":0.7010886899, "Conversation":0.2547882803, "Openness to Change":0.4846609371, "Hedonism":0.2265744616, "Self-enhancement":0.4299178279, "Self-transcendence":0.3220190548, "n":80.0 }, "max":{ "Openness":0.95992792, "Conscientousness":0.960118167, "Extraversion":0.9794365923, "Agreeableness":0.8993661095, "Emotional_Range":0.9415769334, "Conversation":0.7793932512, "Openness to Change":0.7557249986, "Hedonism":0.680102991, "Self-enhancement":0.7826336181, "Self-transcendence":0.6273682888, "n":313.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: List the bottom 4 Emotional_Range values. # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: List the bottom 4 Emotional_Range values. df.columns = ['Profession', 'Openness', 'Conscientousness', 'Extraversion', 'Agreeableness', 'Emotional_Range', 'Conversation', 'Openness to Change', 'Hedonism', 'Self-enhancement', 'Self-transcendence', 'n'] # Expected output type: is list[number], this will be checked. return
20250129013716
58
What are the highest 5 levels of Extraversion?
052_Professional
dev
list[number]
['Extraversion']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "Profession", "type": "category" }, { "name": "Openness", "type": "float64" }, { "name": "Conscientousness", "type": "float64" }, { "name": "Extraversion", "type": "float64" }, { "name": "Agreeableness", "type": "float64" }, { "name": "Emotional_Range", "type": "float64" }, { "name": "Conversation", "type": "float64" }, { "name": "Openness to Change", "type": "float64" }, { "name": "Hedonism", "type": "float64" }, { "name": "Self-enhancement", "type": "float64" }, { "name": "Self-transcendence", "type": "float64" }, { "name": "n", "type": "uint16" } ] } # Description of dataframe columns. df_descrption = { "count":{ "Openness":1227.0, "Conscientousness":1227.0, "Extraversion":1227.0, "Agreeableness":1227.0, "Emotional_Range":1227.0, "Conversation":1227.0, "Openness to Change":1227.0, "Hedonism":1227.0, "Self-enhancement":1227.0, "Self-transcendence":1227.0, "n":1227.0 }, "mean":{ "Openness":0.6818599599, "Conscientousness":0.5494864934, "Extraversion":0.5999407609, "Agreeableness":0.3300650815, "Emotional_Range":0.6150157566, "Conversation":0.1954283756, "Openness to Change":0.4297269623, "Hedonism":0.1854087597, "Self-enhancement":0.3530469421, "Self-transcendence":0.2674535075, "n":82.4392828036 }, "std":{ "Openness":0.1062055359, "Conscientousness":0.1504663216, "Extraversion":0.1730540692, "Agreeableness":0.1775762646, "Emotional_Range":0.1320494061, "Conversation":0.1168313736, "Openness to Change":0.0884607635, "Hedonism":0.101973799, "Self-enhancement":0.1235634015, "Self-transcendence":0.098292791, "n":25.8098237833 }, "min":{ "Openness":0.2152542646, "Conscientousness":0.1085605602, "Extraversion":0.1022540075, "Agreeableness":0.017733368, "Emotional_Range":0.165238157, "Conversation":0.0124883557, "Openness to Change":0.1470387283, "Hedonism":0.0290857203, "Self-enhancement":0.0298680791, "Self-transcendence":0.0353641396, "n":50.0 }, "25%":{ "Openness":0.6159645036, "Conscientousness":0.453015216, "Extraversion":0.5015413749, "Agreeableness":0.1927662685, "Emotional_Range":0.5281815531, "Conversation":0.1087056755, "Openness to Change":0.3720593776, "Hedonism":0.1141935636, "Self-enhancement":0.2732188024, "Self-transcendence":0.2014597353, "n":72.0 }, "50%":{ "Openness":0.6877670374, "Conscientousness":0.5529477526, "Extraversion":0.6337253665, "Agreeableness":0.3236347592, "Emotional_Range":0.6168124863, "Conversation":0.1734567056, "Openness to Change":0.430397799, "Hedonism":0.158430861, "Self-enhancement":0.3399782773, "Self-transcendence":0.2556183242, "n":76.0 }, "75%":{ "Openness":0.7561884082, "Conscientousness":0.6510142733, "Extraversion":0.7274713099, "Agreeableness":0.4492181284, "Emotional_Range":0.7010886899, "Conversation":0.2547882803, "Openness to Change":0.4846609371, "Hedonism":0.2265744616, "Self-enhancement":0.4299178279, "Self-transcendence":0.3220190548, "n":80.0 }, "max":{ "Openness":0.95992792, "Conscientousness":0.960118167, "Extraversion":0.9794365923, "Agreeableness":0.8993661095, "Emotional_Range":0.9415769334, "Conversation":0.7793932512, "Openness to Change":0.7557249986, "Hedonism":0.680102991, "Self-enhancement":0.7826336181, "Self-transcendence":0.6273682888, "n":313.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "Openness":1227.0, "Conscientousness":1227.0, "Extraversion":1227.0, "Agreeableness":1227.0, "Emotional_Range":1227.0, "Conversation":1227.0, "Openness to Change":1227.0, "Hedonism":1227.0, "Self-enhancement":1227.0, "Self-transcendence":1227.0, "n":1227.0 }, "mean":{ "Openness":0.6818599599, "Conscientousness":0.5494864934, "Extraversion":0.5999407609, "Agreeableness":0.3300650815, "Emotional_Range":0.6150157566, "Conversation":0.1954283756, "Openness to Change":0.4297269623, "Hedonism":0.1854087597, "Self-enhancement":0.3530469421, "Self-transcendence":0.2674535075, "n":82.4392828036 }, "std":{ "Openness":0.1062055359, "Conscientousness":0.1504663216, "Extraversion":0.1730540692, "Agreeableness":0.1775762646, "Emotional_Range":0.1320494061, "Conversation":0.1168313736, "Openness to Change":0.0884607635, "Hedonism":0.101973799, "Self-enhancement":0.1235634015, "Self-transcendence":0.098292791, "n":25.8098237833 }, "min":{ "Openness":0.2152542646, "Conscientousness":0.1085605602, "Extraversion":0.1022540075, "Agreeableness":0.017733368, "Emotional_Range":0.165238157, "Conversation":0.0124883557, "Openness to Change":0.1470387283, "Hedonism":0.0290857203, "Self-enhancement":0.0298680791, "Self-transcendence":0.0353641396, "n":50.0 }, "25%":{ "Openness":0.6159645036, "Conscientousness":0.453015216, "Extraversion":0.5015413749, "Agreeableness":0.1927662685, "Emotional_Range":0.5281815531, "Conversation":0.1087056755, "Openness to Change":0.3720593776, "Hedonism":0.1141935636, "Self-enhancement":0.2732188024, "Self-transcendence":0.2014597353, "n":72.0 }, "50%":{ "Openness":0.6877670374, "Conscientousness":0.5529477526, "Extraversion":0.6337253665, "Agreeableness":0.3236347592, "Emotional_Range":0.6168124863, "Conversation":0.1734567056, "Openness to Change":0.430397799, "Hedonism":0.158430861, "Self-enhancement":0.3399782773, "Self-transcendence":0.2556183242, "n":76.0 }, "75%":{ "Openness":0.7561884082, "Conscientousness":0.6510142733, "Extraversion":0.7274713099, "Agreeableness":0.4492181284, "Emotional_Range":0.7010886899, "Conversation":0.2547882803, "Openness to Change":0.4846609371, "Hedonism":0.2265744616, "Self-enhancement":0.4299178279, "Self-transcendence":0.3220190548, "n":80.0 }, "max":{ "Openness":0.95992792, "Conscientousness":0.960118167, "Extraversion":0.9794365923, "Agreeableness":0.8993661095, "Emotional_Range":0.9415769334, "Conversation":0.7793932512, "Openness to Change":0.7557249986, "Hedonism":0.680102991, "Self-enhancement":0.7826336181, "Self-transcendence":0.6273682888, "n":313.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: What are the highest 5 levels of Extraversion? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: What are the highest 5 levels of Extraversion? df.columns = ['Profession', 'Openness', 'Conscientousness', 'Extraversion', 'Agreeableness', 'Emotional_Range', 'Conversation', 'Openness to Change', 'Hedonism', 'Self-enhancement', 'Self-transcendence', 'n'] # Expected output type: is list[number], this will be checked. return
20250129013716
59
Name the lowest 6 levels of Self-transcendence.
052_Professional
dev
list[number]
['Self-transcendence']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "Profession", "type": "category" }, { "name": "Openness", "type": "float64" }, { "name": "Conscientousness", "type": "float64" }, { "name": "Extraversion", "type": "float64" }, { "name": "Agreeableness", "type": "float64" }, { "name": "Emotional_Range", "type": "float64" }, { "name": "Conversation", "type": "float64" }, { "name": "Openness to Change", "type": "float64" }, { "name": "Hedonism", "type": "float64" }, { "name": "Self-enhancement", "type": "float64" }, { "name": "Self-transcendence", "type": "float64" }, { "name": "n", "type": "uint16" } ] } # Description of dataframe columns. df_descrption = { "count":{ "Openness":1227.0, "Conscientousness":1227.0, "Extraversion":1227.0, "Agreeableness":1227.0, "Emotional_Range":1227.0, "Conversation":1227.0, "Openness to Change":1227.0, "Hedonism":1227.0, "Self-enhancement":1227.0, "Self-transcendence":1227.0, "n":1227.0 }, "mean":{ "Openness":0.6818599599, "Conscientousness":0.5494864934, "Extraversion":0.5999407609, "Agreeableness":0.3300650815, "Emotional_Range":0.6150157566, "Conversation":0.1954283756, "Openness to Change":0.4297269623, "Hedonism":0.1854087597, "Self-enhancement":0.3530469421, "Self-transcendence":0.2674535075, "n":82.4392828036 }, "std":{ "Openness":0.1062055359, "Conscientousness":0.1504663216, "Extraversion":0.1730540692, "Agreeableness":0.1775762646, "Emotional_Range":0.1320494061, "Conversation":0.1168313736, "Openness to Change":0.0884607635, "Hedonism":0.101973799, "Self-enhancement":0.1235634015, "Self-transcendence":0.098292791, "n":25.8098237833 }, "min":{ "Openness":0.2152542646, "Conscientousness":0.1085605602, "Extraversion":0.1022540075, "Agreeableness":0.017733368, "Emotional_Range":0.165238157, "Conversation":0.0124883557, "Openness to Change":0.1470387283, "Hedonism":0.0290857203, "Self-enhancement":0.0298680791, "Self-transcendence":0.0353641396, "n":50.0 }, "25%":{ "Openness":0.6159645036, "Conscientousness":0.453015216, "Extraversion":0.5015413749, "Agreeableness":0.1927662685, "Emotional_Range":0.5281815531, "Conversation":0.1087056755, "Openness to Change":0.3720593776, "Hedonism":0.1141935636, "Self-enhancement":0.2732188024, "Self-transcendence":0.2014597353, "n":72.0 }, "50%":{ "Openness":0.6877670374, "Conscientousness":0.5529477526, "Extraversion":0.6337253665, "Agreeableness":0.3236347592, "Emotional_Range":0.6168124863, "Conversation":0.1734567056, "Openness to Change":0.430397799, "Hedonism":0.158430861, "Self-enhancement":0.3399782773, "Self-transcendence":0.2556183242, "n":76.0 }, "75%":{ "Openness":0.7561884082, "Conscientousness":0.6510142733, "Extraversion":0.7274713099, "Agreeableness":0.4492181284, "Emotional_Range":0.7010886899, "Conversation":0.2547882803, "Openness to Change":0.4846609371, "Hedonism":0.2265744616, "Self-enhancement":0.4299178279, "Self-transcendence":0.3220190548, "n":80.0 }, "max":{ "Openness":0.95992792, "Conscientousness":0.960118167, "Extraversion":0.9794365923, "Agreeableness":0.8993661095, "Emotional_Range":0.9415769334, "Conversation":0.7793932512, "Openness to Change":0.7557249986, "Hedonism":0.680102991, "Self-enhancement":0.7826336181, "Self-transcendence":0.6273682888, "n":313.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "Openness":1227.0, "Conscientousness":1227.0, "Extraversion":1227.0, "Agreeableness":1227.0, "Emotional_Range":1227.0, "Conversation":1227.0, "Openness to Change":1227.0, "Hedonism":1227.0, "Self-enhancement":1227.0, "Self-transcendence":1227.0, "n":1227.0 }, "mean":{ "Openness":0.6818599599, "Conscientousness":0.5494864934, "Extraversion":0.5999407609, "Agreeableness":0.3300650815, "Emotional_Range":0.6150157566, "Conversation":0.1954283756, "Openness to Change":0.4297269623, "Hedonism":0.1854087597, "Self-enhancement":0.3530469421, "Self-transcendence":0.2674535075, "n":82.4392828036 }, "std":{ "Openness":0.1062055359, "Conscientousness":0.1504663216, "Extraversion":0.1730540692, "Agreeableness":0.1775762646, "Emotional_Range":0.1320494061, "Conversation":0.1168313736, "Openness to Change":0.0884607635, "Hedonism":0.101973799, "Self-enhancement":0.1235634015, "Self-transcendence":0.098292791, "n":25.8098237833 }, "min":{ "Openness":0.2152542646, "Conscientousness":0.1085605602, "Extraversion":0.1022540075, "Agreeableness":0.017733368, "Emotional_Range":0.165238157, "Conversation":0.0124883557, "Openness to Change":0.1470387283, "Hedonism":0.0290857203, "Self-enhancement":0.0298680791, "Self-transcendence":0.0353641396, "n":50.0 }, "25%":{ "Openness":0.6159645036, "Conscientousness":0.453015216, "Extraversion":0.5015413749, "Agreeableness":0.1927662685, "Emotional_Range":0.5281815531, "Conversation":0.1087056755, "Openness to Change":0.3720593776, "Hedonism":0.1141935636, "Self-enhancement":0.2732188024, "Self-transcendence":0.2014597353, "n":72.0 }, "50%":{ "Openness":0.6877670374, "Conscientousness":0.5529477526, "Extraversion":0.6337253665, "Agreeableness":0.3236347592, "Emotional_Range":0.6168124863, "Conversation":0.1734567056, "Openness to Change":0.430397799, "Hedonism":0.158430861, "Self-enhancement":0.3399782773, "Self-transcendence":0.2556183242, "n":76.0 }, "75%":{ "Openness":0.7561884082, "Conscientousness":0.6510142733, "Extraversion":0.7274713099, "Agreeableness":0.4492181284, "Emotional_Range":0.7010886899, "Conversation":0.2547882803, "Openness to Change":0.4846609371, "Hedonism":0.2265744616, "Self-enhancement":0.4299178279, "Self-transcendence":0.3220190548, "n":80.0 }, "max":{ "Openness":0.95992792, "Conscientousness":0.960118167, "Extraversion":0.9794365923, "Agreeableness":0.8993661095, "Emotional_Range":0.9415769334, "Conversation":0.7793932512, "Openness to Change":0.7557249986, "Hedonism":0.680102991, "Self-enhancement":0.7826336181, "Self-transcendence":0.6273682888, "n":313.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: Name the lowest 6 levels of Self-transcendence. # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: Name the lowest 6 levels of Self-transcendence. df.columns = ['Profession', 'Openness', 'Conscientousness', 'Extraversion', 'Agreeableness', 'Emotional_Range', 'Conversation', 'Openness to Change', 'Hedonism', 'Self-enhancement', 'Self-transcendence', 'n'] # Expected output type: is list[number], this will be checked. return
20250129013716
60
Is there a patent containing the word 'communication' in the title?
053_Patents
dev
boolean
['title']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "num_claims", "type": "uint8" }, { "name": "organization", "type": "category" }, { "name": "kind", "type": "category" }, { "name": "type", "type": "category" }, { "name": "graphext_cluster", "type": "category" }, { "name": "date", "type": "datetime64[ns, UTC]" }, { "name": "abstract", "type": "object" }, { "name": "title", "type": "object" }, { "name": "lang", "type": "category" }, { "name": "abstract_gx_ADJ", "type": "object" }, { "name": "grp_title", "type": "object" }, { "name": "abstract_gx_products", "type": "object" }, { "name": "abstract_gx_organizations", "type": "object" }, { "name": "abstract_gx_NOUN", "type": "object" }, { "name": "abstract_gx_ngrams", "type": "object" }, { "name": "id", "type": "float64" }, { "name": "target", "type": "object" }, { "name": "weight", "type": "object" }, { "name": "x", "type": "float64" }, { "name": "y", "type": "float64" } ] } # Description of dataframe columns. df_descrption = { "count":{ "num_claims":9999.0, "id":8848.0, "x":9999.0, "y":9999.0 }, "mean":{ "num_claims":14.7459745975, "id":9317464.8445976488, "x":-21.058669389, "y":-18.042839032 }, "std":{ "num_claims":9.4629164059, "id":58501.3326715985, "x":2061.5828151519, "y":2228.8382538597 }, "min":{ "num_claims":1.0, "id":9245593.0, "x":-5218.812, "y":-4434.756 }, "25%":{ "num_claims":8.0, "id":9320245.75, "x":-1388.8531, "y":-2154.51215 }, "50%":{ "num_claims":15.0, "id":9322341.5, "x":-77.67177, "y":558.54065 }, "75%":{ "num_claims":20.0, "id":9324494.25, "x":1270.54565, "y":1802.24125 }, "max":{ "num_claims":100.0, "id":9480195.0, "x":4113.4414, "y":3986.0618 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "num_claims":9999.0, "id":8848.0, "x":9999.0, "y":9999.0 }, "mean":{ "num_claims":14.7459745975, "id":9317464.8445976488, "x":-21.058669389, "y":-18.042839032 }, "std":{ "num_claims":9.4629164059, "id":58501.3326715985, "x":2061.5828151519, "y":2228.8382538597 }, "min":{ "num_claims":1.0, "id":9245593.0, "x":-5218.812, "y":-4434.756 }, "25%":{ "num_claims":8.0, "id":9320245.75, "x":-1388.8531, "y":-2154.51215 }, "50%":{ "num_claims":15.0, "id":9322341.5, "x":-77.67177, "y":558.54065 }, "75%":{ "num_claims":20.0, "id":9324494.25, "x":1270.54565, "y":1802.24125 }, "max":{ "num_claims":100.0, "id":9480195.0, "x":4113.4414, "y":3986.0618 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: Is there a patent containing the word 'communication' in the title? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: Is there a patent containing the word 'communication' in the title? df.columns = ['num_claims', 'organization', 'kind', 'type', 'graphext_cluster', 'date', 'abstract', 'title', 'lang', 'abstract_gx_ADJ', 'grp_title', 'abstract_gx_products', 'abstract_gx_organizations', 'abstract_gx_NOUN', 'abstract_gx_ngrams', 'id', 'target', 'weight', 'x', 'y'] # Expected output type: is boolean, this will be checked. return
20250129013716
61
Are there patents associated with the organization 'IBM'?
053_Patents
dev
boolean
['organization']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "num_claims", "type": "uint8" }, { "name": "organization", "type": "category" }, { "name": "kind", "type": "category" }, { "name": "type", "type": "category" }, { "name": "graphext_cluster", "type": "category" }, { "name": "date", "type": "datetime64[ns, UTC]" }, { "name": "abstract", "type": "object" }, { "name": "title", "type": "object" }, { "name": "lang", "type": "category" }, { "name": "abstract_gx_ADJ", "type": "object" }, { "name": "grp_title", "type": "object" }, { "name": "abstract_gx_products", "type": "object" }, { "name": "abstract_gx_organizations", "type": "object" }, { "name": "abstract_gx_NOUN", "type": "object" }, { "name": "abstract_gx_ngrams", "type": "object" }, { "name": "id", "type": "float64" }, { "name": "target", "type": "object" }, { "name": "weight", "type": "object" }, { "name": "x", "type": "float64" }, { "name": "y", "type": "float64" } ] } # Description of dataframe columns. df_descrption = { "count":{ "num_claims":9999.0, "id":8848.0, "x":9999.0, "y":9999.0 }, "mean":{ "num_claims":14.7459745975, "id":9317464.8445976488, "x":-21.058669389, "y":-18.042839032 }, "std":{ "num_claims":9.4629164059, "id":58501.3326715985, "x":2061.5828151519, "y":2228.8382538597 }, "min":{ "num_claims":1.0, "id":9245593.0, "x":-5218.812, "y":-4434.756 }, "25%":{ "num_claims":8.0, "id":9320245.75, "x":-1388.8531, "y":-2154.51215 }, "50%":{ "num_claims":15.0, "id":9322341.5, "x":-77.67177, "y":558.54065 }, "75%":{ "num_claims":20.0, "id":9324494.25, "x":1270.54565, "y":1802.24125 }, "max":{ "num_claims":100.0, "id":9480195.0, "x":4113.4414, "y":3986.0618 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "num_claims":9999.0, "id":8848.0, "x":9999.0, "y":9999.0 }, "mean":{ "num_claims":14.7459745975, "id":9317464.8445976488, "x":-21.058669389, "y":-18.042839032 }, "std":{ "num_claims":9.4629164059, "id":58501.3326715985, "x":2061.5828151519, "y":2228.8382538597 }, "min":{ "num_claims":1.0, "id":9245593.0, "x":-5218.812, "y":-4434.756 }, "25%":{ "num_claims":8.0, "id":9320245.75, "x":-1388.8531, "y":-2154.51215 }, "50%":{ "num_claims":15.0, "id":9322341.5, "x":-77.67177, "y":558.54065 }, "75%":{ "num_claims":20.0, "id":9324494.25, "x":1270.54565, "y":1802.24125 }, "max":{ "num_claims":100.0, "id":9480195.0, "x":4113.4414, "y":3986.0618 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: Are there patents associated with the organization 'IBM'? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: Are there patents associated with the organization 'IBM'? df.columns = ['num_claims', 'organization', 'kind', 'type', 'graphext_cluster', 'date', 'abstract', 'title', 'lang', 'abstract_gx_ADJ', 'grp_title', 'abstract_gx_products', 'abstract_gx_organizations', 'abstract_gx_NOUN', 'abstract_gx_ngrams', 'id', 'target', 'weight', 'x', 'y'] # Expected output type: is boolean, this will be checked. return
20250129013716
62
Is there a patent abstract that mentions 'software'?
053_Patents
dev
boolean
['abstract']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "num_claims", "type": "uint8" }, { "name": "organization", "type": "category" }, { "name": "kind", "type": "category" }, { "name": "type", "type": "category" }, { "name": "graphext_cluster", "type": "category" }, { "name": "date", "type": "datetime64[ns, UTC]" }, { "name": "abstract", "type": "object" }, { "name": "title", "type": "object" }, { "name": "lang", "type": "category" }, { "name": "abstract_gx_ADJ", "type": "object" }, { "name": "grp_title", "type": "object" }, { "name": "abstract_gx_products", "type": "object" }, { "name": "abstract_gx_organizations", "type": "object" }, { "name": "abstract_gx_NOUN", "type": "object" }, { "name": "abstract_gx_ngrams", "type": "object" }, { "name": "id", "type": "float64" }, { "name": "target", "type": "object" }, { "name": "weight", "type": "object" }, { "name": "x", "type": "float64" }, { "name": "y", "type": "float64" } ] } # Description of dataframe columns. df_descrption = { "count":{ "num_claims":9999.0, "id":8848.0, "x":9999.0, "y":9999.0 }, "mean":{ "num_claims":14.7459745975, "id":9317464.8445976488, "x":-21.058669389, "y":-18.042839032 }, "std":{ "num_claims":9.4629164059, "id":58501.3326715985, "x":2061.5828151519, "y":2228.8382538597 }, "min":{ "num_claims":1.0, "id":9245593.0, "x":-5218.812, "y":-4434.756 }, "25%":{ "num_claims":8.0, "id":9320245.75, "x":-1388.8531, "y":-2154.51215 }, "50%":{ "num_claims":15.0, "id":9322341.5, "x":-77.67177, "y":558.54065 }, "75%":{ "num_claims":20.0, "id":9324494.25, "x":1270.54565, "y":1802.24125 }, "max":{ "num_claims":100.0, "id":9480195.0, "x":4113.4414, "y":3986.0618 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "num_claims":9999.0, "id":8848.0, "x":9999.0, "y":9999.0 }, "mean":{ "num_claims":14.7459745975, "id":9317464.8445976488, "x":-21.058669389, "y":-18.042839032 }, "std":{ "num_claims":9.4629164059, "id":58501.3326715985, "x":2061.5828151519, "y":2228.8382538597 }, "min":{ "num_claims":1.0, "id":9245593.0, "x":-5218.812, "y":-4434.756 }, "25%":{ "num_claims":8.0, "id":9320245.75, "x":-1388.8531, "y":-2154.51215 }, "50%":{ "num_claims":15.0, "id":9322341.5, "x":-77.67177, "y":558.54065 }, "75%":{ "num_claims":20.0, "id":9324494.25, "x":1270.54565, "y":1802.24125 }, "max":{ "num_claims":100.0, "id":9480195.0, "x":4113.4414, "y":3986.0618 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: Is there a patent abstract that mentions 'software'? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: Is there a patent abstract that mentions 'software'? df.columns = ['num_claims', 'organization', 'kind', 'type', 'graphext_cluster', 'date', 'abstract', 'title', 'lang', 'abstract_gx_ADJ', 'grp_title', 'abstract_gx_products', 'abstract_gx_organizations', 'abstract_gx_NOUN', 'abstract_gx_ngrams', 'id', 'target', 'weight', 'x', 'y'] # Expected output type: is boolean, this will be checked. return
20250129013716
63
Are there patents of the 'design' type?
053_Patents
dev
boolean
['type']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "num_claims", "type": "uint8" }, { "name": "organization", "type": "category" }, { "name": "kind", "type": "category" }, { "name": "type", "type": "category" }, { "name": "graphext_cluster", "type": "category" }, { "name": "date", "type": "datetime64[ns, UTC]" }, { "name": "abstract", "type": "object" }, { "name": "title", "type": "object" }, { "name": "lang", "type": "category" }, { "name": "abstract_gx_ADJ", "type": "object" }, { "name": "grp_title", "type": "object" }, { "name": "abstract_gx_products", "type": "object" }, { "name": "abstract_gx_organizations", "type": "object" }, { "name": "abstract_gx_NOUN", "type": "object" }, { "name": "abstract_gx_ngrams", "type": "object" }, { "name": "id", "type": "float64" }, { "name": "target", "type": "object" }, { "name": "weight", "type": "object" }, { "name": "x", "type": "float64" }, { "name": "y", "type": "float64" } ] } # Description of dataframe columns. df_descrption = { "count":{ "num_claims":9999.0, "id":8848.0, "x":9999.0, "y":9999.0 }, "mean":{ "num_claims":14.7459745975, "id":9317464.8445976488, "x":-21.058669389, "y":-18.042839032 }, "std":{ "num_claims":9.4629164059, "id":58501.3326715985, "x":2061.5828151519, "y":2228.8382538597 }, "min":{ "num_claims":1.0, "id":9245593.0, "x":-5218.812, "y":-4434.756 }, "25%":{ "num_claims":8.0, "id":9320245.75, "x":-1388.8531, "y":-2154.51215 }, "50%":{ "num_claims":15.0, "id":9322341.5, "x":-77.67177, "y":558.54065 }, "75%":{ "num_claims":20.0, "id":9324494.25, "x":1270.54565, "y":1802.24125 }, "max":{ "num_claims":100.0, "id":9480195.0, "x":4113.4414, "y":3986.0618 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "num_claims":9999.0, "id":8848.0, "x":9999.0, "y":9999.0 }, "mean":{ "num_claims":14.7459745975, "id":9317464.8445976488, "x":-21.058669389, "y":-18.042839032 }, "std":{ "num_claims":9.4629164059, "id":58501.3326715985, "x":2061.5828151519, "y":2228.8382538597 }, "min":{ "num_claims":1.0, "id":9245593.0, "x":-5218.812, "y":-4434.756 }, "25%":{ "num_claims":8.0, "id":9320245.75, "x":-1388.8531, "y":-2154.51215 }, "50%":{ "num_claims":15.0, "id":9322341.5, "x":-77.67177, "y":558.54065 }, "75%":{ "num_claims":20.0, "id":9324494.25, "x":1270.54565, "y":1802.24125 }, "max":{ "num_claims":100.0, "id":9480195.0, "x":4113.4414, "y":3986.0618 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: Are there patents of the 'design' type? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: Are there patents of the 'design' type? df.columns = ['num_claims', 'organization', 'kind', 'type', 'graphext_cluster', 'date', 'abstract', 'title', 'lang', 'abstract_gx_ADJ', 'grp_title', 'abstract_gx_products', 'abstract_gx_organizations', 'abstract_gx_NOUN', 'abstract_gx_ngrams', 'id', 'target', 'weight', 'x', 'y'] # Expected output type: is boolean, this will be checked. return
20250129013716
64
How many unique organizations have patents listed?
053_Patents
dev
number
['organization']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "num_claims", "type": "uint8" }, { "name": "organization", "type": "category" }, { "name": "kind", "type": "category" }, { "name": "type", "type": "category" }, { "name": "graphext_cluster", "type": "category" }, { "name": "date", "type": "datetime64[ns, UTC]" }, { "name": "abstract", "type": "object" }, { "name": "title", "type": "object" }, { "name": "lang", "type": "category" }, { "name": "abstract_gx_ADJ", "type": "object" }, { "name": "grp_title", "type": "object" }, { "name": "abstract_gx_products", "type": "object" }, { "name": "abstract_gx_organizations", "type": "object" }, { "name": "abstract_gx_NOUN", "type": "object" }, { "name": "abstract_gx_ngrams", "type": "object" }, { "name": "id", "type": "float64" }, { "name": "target", "type": "object" }, { "name": "weight", "type": "object" }, { "name": "x", "type": "float64" }, { "name": "y", "type": "float64" } ] } # Description of dataframe columns. df_descrption = { "count":{ "num_claims":9999.0, "id":8848.0, "x":9999.0, "y":9999.0 }, "mean":{ "num_claims":14.7459745975, "id":9317464.8445976488, "x":-21.058669389, "y":-18.042839032 }, "std":{ "num_claims":9.4629164059, "id":58501.3326715985, "x":2061.5828151519, "y":2228.8382538597 }, "min":{ "num_claims":1.0, "id":9245593.0, "x":-5218.812, "y":-4434.756 }, "25%":{ "num_claims":8.0, "id":9320245.75, "x":-1388.8531, "y":-2154.51215 }, "50%":{ "num_claims":15.0, "id":9322341.5, "x":-77.67177, "y":558.54065 }, "75%":{ "num_claims":20.0, "id":9324494.25, "x":1270.54565, "y":1802.24125 }, "max":{ "num_claims":100.0, "id":9480195.0, "x":4113.4414, "y":3986.0618 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "num_claims":9999.0, "id":8848.0, "x":9999.0, "y":9999.0 }, "mean":{ "num_claims":14.7459745975, "id":9317464.8445976488, "x":-21.058669389, "y":-18.042839032 }, "std":{ "num_claims":9.4629164059, "id":58501.3326715985, "x":2061.5828151519, "y":2228.8382538597 }, "min":{ "num_claims":1.0, "id":9245593.0, "x":-5218.812, "y":-4434.756 }, "25%":{ "num_claims":8.0, "id":9320245.75, "x":-1388.8531, "y":-2154.51215 }, "50%":{ "num_claims":15.0, "id":9322341.5, "x":-77.67177, "y":558.54065 }, "75%":{ "num_claims":20.0, "id":9324494.25, "x":1270.54565, "y":1802.24125 }, "max":{ "num_claims":100.0, "id":9480195.0, "x":4113.4414, "y":3986.0618 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: How many unique organizations have patents listed? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: How many unique organizations have patents listed? df.columns = ['num_claims', 'organization', 'kind', 'type', 'graphext_cluster', 'date', 'abstract', 'title', 'lang', 'abstract_gx_ADJ', 'grp_title', 'abstract_gx_products', 'abstract_gx_organizations', 'abstract_gx_NOUN', 'abstract_gx_ngrams', 'id', 'target', 'weight', 'x', 'y'] # Expected output type: is number, this will be checked. return
20250129013716
65
On average, how many claims do the patents have?
053_Patents
dev
number
['num_claims']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "num_claims", "type": "uint8" }, { "name": "organization", "type": "category" }, { "name": "kind", "type": "category" }, { "name": "type", "type": "category" }, { "name": "graphext_cluster", "type": "category" }, { "name": "date", "type": "datetime64[ns, UTC]" }, { "name": "abstract", "type": "object" }, { "name": "title", "type": "object" }, { "name": "lang", "type": "category" }, { "name": "abstract_gx_ADJ", "type": "object" }, { "name": "grp_title", "type": "object" }, { "name": "abstract_gx_products", "type": "object" }, { "name": "abstract_gx_organizations", "type": "object" }, { "name": "abstract_gx_NOUN", "type": "object" }, { "name": "abstract_gx_ngrams", "type": "object" }, { "name": "id", "type": "float64" }, { "name": "target", "type": "object" }, { "name": "weight", "type": "object" }, { "name": "x", "type": "float64" }, { "name": "y", "type": "float64" } ] } # Description of dataframe columns. df_descrption = { "count":{ "num_claims":9999.0, "id":8848.0, "x":9999.0, "y":9999.0 }, "mean":{ "num_claims":14.7459745975, "id":9317464.8445976488, "x":-21.058669389, "y":-18.042839032 }, "std":{ "num_claims":9.4629164059, "id":58501.3326715985, "x":2061.5828151519, "y":2228.8382538597 }, "min":{ "num_claims":1.0, "id":9245593.0, "x":-5218.812, "y":-4434.756 }, "25%":{ "num_claims":8.0, "id":9320245.75, "x":-1388.8531, "y":-2154.51215 }, "50%":{ "num_claims":15.0, "id":9322341.5, "x":-77.67177, "y":558.54065 }, "75%":{ "num_claims":20.0, "id":9324494.25, "x":1270.54565, "y":1802.24125 }, "max":{ "num_claims":100.0, "id":9480195.0, "x":4113.4414, "y":3986.0618 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "num_claims":9999.0, "id":8848.0, "x":9999.0, "y":9999.0 }, "mean":{ "num_claims":14.7459745975, "id":9317464.8445976488, "x":-21.058669389, "y":-18.042839032 }, "std":{ "num_claims":9.4629164059, "id":58501.3326715985, "x":2061.5828151519, "y":2228.8382538597 }, "min":{ "num_claims":1.0, "id":9245593.0, "x":-5218.812, "y":-4434.756 }, "25%":{ "num_claims":8.0, "id":9320245.75, "x":-1388.8531, "y":-2154.51215 }, "50%":{ "num_claims":15.0, "id":9322341.5, "x":-77.67177, "y":558.54065 }, "75%":{ "num_claims":20.0, "id":9324494.25, "x":1270.54565, "y":1802.24125 }, "max":{ "num_claims":100.0, "id":9480195.0, "x":4113.4414, "y":3986.0618 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: On average, how many claims do the patents have? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: On average, how many claims do the patents have? df.columns = ['num_claims', 'organization', 'kind', 'type', 'graphext_cluster', 'date', 'abstract', 'title', 'lang', 'abstract_gx_ADJ', 'grp_title', 'abstract_gx_products', 'abstract_gx_organizations', 'abstract_gx_NOUN', 'abstract_gx_ngrams', 'id', 'target', 'weight', 'x', 'y'] # Expected output type: is number, this will be checked. return
20250129013716
66
What's the highest number of claims a patent has?
053_Patents
dev
number
['num_claims']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "num_claims", "type": "uint8" }, { "name": "organization", "type": "category" }, { "name": "kind", "type": "category" }, { "name": "type", "type": "category" }, { "name": "graphext_cluster", "type": "category" }, { "name": "date", "type": "datetime64[ns, UTC]" }, { "name": "abstract", "type": "object" }, { "name": "title", "type": "object" }, { "name": "lang", "type": "category" }, { "name": "abstract_gx_ADJ", "type": "object" }, { "name": "grp_title", "type": "object" }, { "name": "abstract_gx_products", "type": "object" }, { "name": "abstract_gx_organizations", "type": "object" }, { "name": "abstract_gx_NOUN", "type": "object" }, { "name": "abstract_gx_ngrams", "type": "object" }, { "name": "id", "type": "float64" }, { "name": "target", "type": "object" }, { "name": "weight", "type": "object" }, { "name": "x", "type": "float64" }, { "name": "y", "type": "float64" } ] } # Description of dataframe columns. df_descrption = { "count":{ "num_claims":9999.0, "id":8848.0, "x":9999.0, "y":9999.0 }, "mean":{ "num_claims":14.7459745975, "id":9317464.8445976488, "x":-21.058669389, "y":-18.042839032 }, "std":{ "num_claims":9.4629164059, "id":58501.3326715985, "x":2061.5828151519, "y":2228.8382538597 }, "min":{ "num_claims":1.0, "id":9245593.0, "x":-5218.812, "y":-4434.756 }, "25%":{ "num_claims":8.0, "id":9320245.75, "x":-1388.8531, "y":-2154.51215 }, "50%":{ "num_claims":15.0, "id":9322341.5, "x":-77.67177, "y":558.54065 }, "75%":{ "num_claims":20.0, "id":9324494.25, "x":1270.54565, "y":1802.24125 }, "max":{ "num_claims":100.0, "id":9480195.0, "x":4113.4414, "y":3986.0618 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "num_claims":9999.0, "id":8848.0, "x":9999.0, "y":9999.0 }, "mean":{ "num_claims":14.7459745975, "id":9317464.8445976488, "x":-21.058669389, "y":-18.042839032 }, "std":{ "num_claims":9.4629164059, "id":58501.3326715985, "x":2061.5828151519, "y":2228.8382538597 }, "min":{ "num_claims":1.0, "id":9245593.0, "x":-5218.812, "y":-4434.756 }, "25%":{ "num_claims":8.0, "id":9320245.75, "x":-1388.8531, "y":-2154.51215 }, "50%":{ "num_claims":15.0, "id":9322341.5, "x":-77.67177, "y":558.54065 }, "75%":{ "num_claims":20.0, "id":9324494.25, "x":1270.54565, "y":1802.24125 }, "max":{ "num_claims":100.0, "id":9480195.0, "x":4113.4414, "y":3986.0618 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: What's the highest number of claims a patent has? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: What's the highest number of claims a patent has? df.columns = ['num_claims', 'organization', 'kind', 'type', 'graphext_cluster', 'date', 'abstract', 'title', 'lang', 'abstract_gx_ADJ', 'grp_title', 'abstract_gx_products', 'abstract_gx_organizations', 'abstract_gx_NOUN', 'abstract_gx_ngrams', 'id', 'target', 'weight', 'x', 'y'] # Expected output type: is number, this will be checked. return
20250129013716
67
How many patents are of 'utility' type?
053_Patents
dev
number
['type']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "num_claims", "type": "uint8" }, { "name": "organization", "type": "category" }, { "name": "kind", "type": "category" }, { "name": "type", "type": "category" }, { "name": "graphext_cluster", "type": "category" }, { "name": "date", "type": "datetime64[ns, UTC]" }, { "name": "abstract", "type": "object" }, { "name": "title", "type": "object" }, { "name": "lang", "type": "category" }, { "name": "abstract_gx_ADJ", "type": "object" }, { "name": "grp_title", "type": "object" }, { "name": "abstract_gx_products", "type": "object" }, { "name": "abstract_gx_organizations", "type": "object" }, { "name": "abstract_gx_NOUN", "type": "object" }, { "name": "abstract_gx_ngrams", "type": "object" }, { "name": "id", "type": "float64" }, { "name": "target", "type": "object" }, { "name": "weight", "type": "object" }, { "name": "x", "type": "float64" }, { "name": "y", "type": "float64" } ] } # Description of dataframe columns. df_descrption = { "count":{ "num_claims":9999.0, "id":8848.0, "x":9999.0, "y":9999.0 }, "mean":{ "num_claims":14.7459745975, "id":9317464.8445976488, "x":-21.058669389, "y":-18.042839032 }, "std":{ "num_claims":9.4629164059, "id":58501.3326715985, "x":2061.5828151519, "y":2228.8382538597 }, "min":{ "num_claims":1.0, "id":9245593.0, "x":-5218.812, "y":-4434.756 }, "25%":{ "num_claims":8.0, "id":9320245.75, "x":-1388.8531, "y":-2154.51215 }, "50%":{ "num_claims":15.0, "id":9322341.5, "x":-77.67177, "y":558.54065 }, "75%":{ "num_claims":20.0, "id":9324494.25, "x":1270.54565, "y":1802.24125 }, "max":{ "num_claims":100.0, "id":9480195.0, "x":4113.4414, "y":3986.0618 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "num_claims":9999.0, "id":8848.0, "x":9999.0, "y":9999.0 }, "mean":{ "num_claims":14.7459745975, "id":9317464.8445976488, "x":-21.058669389, "y":-18.042839032 }, "std":{ "num_claims":9.4629164059, "id":58501.3326715985, "x":2061.5828151519, "y":2228.8382538597 }, "min":{ "num_claims":1.0, "id":9245593.0, "x":-5218.812, "y":-4434.756 }, "25%":{ "num_claims":8.0, "id":9320245.75, "x":-1388.8531, "y":-2154.51215 }, "50%":{ "num_claims":15.0, "id":9322341.5, "x":-77.67177, "y":558.54065 }, "75%":{ "num_claims":20.0, "id":9324494.25, "x":1270.54565, "y":1802.24125 }, "max":{ "num_claims":100.0, "id":9480195.0, "x":4113.4414, "y":3986.0618 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: How many patents are of 'utility' type? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: How many patents are of 'utility' type? df.columns = ['num_claims', 'organization', 'kind', 'type', 'graphext_cluster', 'date', 'abstract', 'title', 'lang', 'abstract_gx_ADJ', 'grp_title', 'abstract_gx_products', 'abstract_gx_organizations', 'abstract_gx_NOUN', 'abstract_gx_ngrams', 'id', 'target', 'weight', 'x', 'y'] # Expected output type: is number, this will be checked. return
20250129013716
68
Which organization has the patent with the highest number of claims?
053_Patents
dev
category
['organization', 'num_claims']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "num_claims", "type": "uint8" }, { "name": "organization", "type": "category" }, { "name": "kind", "type": "category" }, { "name": "type", "type": "category" }, { "name": "graphext_cluster", "type": "category" }, { "name": "date", "type": "datetime64[ns, UTC]" }, { "name": "abstract", "type": "object" }, { "name": "title", "type": "object" }, { "name": "lang", "type": "category" }, { "name": "abstract_gx_ADJ", "type": "object" }, { "name": "grp_title", "type": "object" }, { "name": "abstract_gx_products", "type": "object" }, { "name": "abstract_gx_organizations", "type": "object" }, { "name": "abstract_gx_NOUN", "type": "object" }, { "name": "abstract_gx_ngrams", "type": "object" }, { "name": "id", "type": "float64" }, { "name": "target", "type": "object" }, { "name": "weight", "type": "object" }, { "name": "x", "type": "float64" }, { "name": "y", "type": "float64" } ] } # Description of dataframe columns. df_descrption = { "count":{ "num_claims":9999.0, "id":8848.0, "x":9999.0, "y":9999.0 }, "mean":{ "num_claims":14.7459745975, "id":9317464.8445976488, "x":-21.058669389, "y":-18.042839032 }, "std":{ "num_claims":9.4629164059, "id":58501.3326715985, "x":2061.5828151519, "y":2228.8382538597 }, "min":{ "num_claims":1.0, "id":9245593.0, "x":-5218.812, "y":-4434.756 }, "25%":{ "num_claims":8.0, "id":9320245.75, "x":-1388.8531, "y":-2154.51215 }, "50%":{ "num_claims":15.0, "id":9322341.5, "x":-77.67177, "y":558.54065 }, "75%":{ "num_claims":20.0, "id":9324494.25, "x":1270.54565, "y":1802.24125 }, "max":{ "num_claims":100.0, "id":9480195.0, "x":4113.4414, "y":3986.0618 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "num_claims":9999.0, "id":8848.0, "x":9999.0, "y":9999.0 }, "mean":{ "num_claims":14.7459745975, "id":9317464.8445976488, "x":-21.058669389, "y":-18.042839032 }, "std":{ "num_claims":9.4629164059, "id":58501.3326715985, "x":2061.5828151519, "y":2228.8382538597 }, "min":{ "num_claims":1.0, "id":9245593.0, "x":-5218.812, "y":-4434.756 }, "25%":{ "num_claims":8.0, "id":9320245.75, "x":-1388.8531, "y":-2154.51215 }, "50%":{ "num_claims":15.0, "id":9322341.5, "x":-77.67177, "y":558.54065 }, "75%":{ "num_claims":20.0, "id":9324494.25, "x":1270.54565, "y":1802.24125 }, "max":{ "num_claims":100.0, "id":9480195.0, "x":4113.4414, "y":3986.0618 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: Which organization has the patent with the highest number of claims? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: Which organization has the patent with the highest number of claims? df.columns = ['num_claims', 'organization', 'kind', 'type', 'graphext_cluster', 'date', 'abstract', 'title', 'lang', 'abstract_gx_ADJ', 'grp_title', 'abstract_gx_products', 'abstract_gx_organizations', 'abstract_gx_NOUN', 'abstract_gx_ngrams', 'id', 'target', 'weight', 'x', 'y'] # Expected output type: is category, this will be checked. return
20250129013716
69
Which kind of patent is the most common?
053_Patents
dev
category
['kind']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "num_claims", "type": "uint8" }, { "name": "organization", "type": "category" }, { "name": "kind", "type": "category" }, { "name": "type", "type": "category" }, { "name": "graphext_cluster", "type": "category" }, { "name": "date", "type": "datetime64[ns, UTC]" }, { "name": "abstract", "type": "object" }, { "name": "title", "type": "object" }, { "name": "lang", "type": "category" }, { "name": "abstract_gx_ADJ", "type": "object" }, { "name": "grp_title", "type": "object" }, { "name": "abstract_gx_products", "type": "object" }, { "name": "abstract_gx_organizations", "type": "object" }, { "name": "abstract_gx_NOUN", "type": "object" }, { "name": "abstract_gx_ngrams", "type": "object" }, { "name": "id", "type": "float64" }, { "name": "target", "type": "object" }, { "name": "weight", "type": "object" }, { "name": "x", "type": "float64" }, { "name": "y", "type": "float64" } ] } # Description of dataframe columns. df_descrption = { "count":{ "num_claims":9999.0, "id":8848.0, "x":9999.0, "y":9999.0 }, "mean":{ "num_claims":14.7459745975, "id":9317464.8445976488, "x":-21.058669389, "y":-18.042839032 }, "std":{ "num_claims":9.4629164059, "id":58501.3326715985, "x":2061.5828151519, "y":2228.8382538597 }, "min":{ "num_claims":1.0, "id":9245593.0, "x":-5218.812, "y":-4434.756 }, "25%":{ "num_claims":8.0, "id":9320245.75, "x":-1388.8531, "y":-2154.51215 }, "50%":{ "num_claims":15.0, "id":9322341.5, "x":-77.67177, "y":558.54065 }, "75%":{ "num_claims":20.0, "id":9324494.25, "x":1270.54565, "y":1802.24125 }, "max":{ "num_claims":100.0, "id":9480195.0, "x":4113.4414, "y":3986.0618 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "num_claims":9999.0, "id":8848.0, "x":9999.0, "y":9999.0 }, "mean":{ "num_claims":14.7459745975, "id":9317464.8445976488, "x":-21.058669389, "y":-18.042839032 }, "std":{ "num_claims":9.4629164059, "id":58501.3326715985, "x":2061.5828151519, "y":2228.8382538597 }, "min":{ "num_claims":1.0, "id":9245593.0, "x":-5218.812, "y":-4434.756 }, "25%":{ "num_claims":8.0, "id":9320245.75, "x":-1388.8531, "y":-2154.51215 }, "50%":{ "num_claims":15.0, "id":9322341.5, "x":-77.67177, "y":558.54065 }, "75%":{ "num_claims":20.0, "id":9324494.25, "x":1270.54565, "y":1802.24125 }, "max":{ "num_claims":100.0, "id":9480195.0, "x":4113.4414, "y":3986.0618 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: Which kind of patent is the most common? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: Which kind of patent is the most common? df.columns = ['num_claims', 'organization', 'kind', 'type', 'graphext_cluster', 'date', 'abstract', 'title', 'lang', 'abstract_gx_ADJ', 'grp_title', 'abstract_gx_products', 'abstract_gx_organizations', 'abstract_gx_NOUN', 'abstract_gx_ngrams', 'id', 'target', 'weight', 'x', 'y'] # Expected output type: is category, this will be checked. return
20250129013716
70
In which language are the patents written?
053_Patents
dev
category
['lang']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "num_claims", "type": "uint8" }, { "name": "organization", "type": "category" }, { "name": "kind", "type": "category" }, { "name": "type", "type": "category" }, { "name": "graphext_cluster", "type": "category" }, { "name": "date", "type": "datetime64[ns, UTC]" }, { "name": "abstract", "type": "object" }, { "name": "title", "type": "object" }, { "name": "lang", "type": "category" }, { "name": "abstract_gx_ADJ", "type": "object" }, { "name": "grp_title", "type": "object" }, { "name": "abstract_gx_products", "type": "object" }, { "name": "abstract_gx_organizations", "type": "object" }, { "name": "abstract_gx_NOUN", "type": "object" }, { "name": "abstract_gx_ngrams", "type": "object" }, { "name": "id", "type": "float64" }, { "name": "target", "type": "object" }, { "name": "weight", "type": "object" }, { "name": "x", "type": "float64" }, { "name": "y", "type": "float64" } ] } # Description of dataframe columns. df_descrption = { "count":{ "num_claims":9999.0, "id":8848.0, "x":9999.0, "y":9999.0 }, "mean":{ "num_claims":14.7459745975, "id":9317464.8445976488, "x":-21.058669389, "y":-18.042839032 }, "std":{ "num_claims":9.4629164059, "id":58501.3326715985, "x":2061.5828151519, "y":2228.8382538597 }, "min":{ "num_claims":1.0, "id":9245593.0, "x":-5218.812, "y":-4434.756 }, "25%":{ "num_claims":8.0, "id":9320245.75, "x":-1388.8531, "y":-2154.51215 }, "50%":{ "num_claims":15.0, "id":9322341.5, "x":-77.67177, "y":558.54065 }, "75%":{ "num_claims":20.0, "id":9324494.25, "x":1270.54565, "y":1802.24125 }, "max":{ "num_claims":100.0, "id":9480195.0, "x":4113.4414, "y":3986.0618 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "num_claims":9999.0, "id":8848.0, "x":9999.0, "y":9999.0 }, "mean":{ "num_claims":14.7459745975, "id":9317464.8445976488, "x":-21.058669389, "y":-18.042839032 }, "std":{ "num_claims":9.4629164059, "id":58501.3326715985, "x":2061.5828151519, "y":2228.8382538597 }, "min":{ "num_claims":1.0, "id":9245593.0, "x":-5218.812, "y":-4434.756 }, "25%":{ "num_claims":8.0, "id":9320245.75, "x":-1388.8531, "y":-2154.51215 }, "50%":{ "num_claims":15.0, "id":9322341.5, "x":-77.67177, "y":558.54065 }, "75%":{ "num_claims":20.0, "id":9324494.25, "x":1270.54565, "y":1802.24125 }, "max":{ "num_claims":100.0, "id":9480195.0, "x":4113.4414, "y":3986.0618 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: In which language are the patents written? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: In which language are the patents written? df.columns = ['num_claims', 'organization', 'kind', 'type', 'graphext_cluster', 'date', 'abstract', 'title', 'lang', 'abstract_gx_ADJ', 'grp_title', 'abstract_gx_products', 'abstract_gx_organizations', 'abstract_gx_NOUN', 'abstract_gx_ngrams', 'id', 'target', 'weight', 'x', 'y'] # Expected output type: is category, this will be checked. return
20250129013716
71
Which graphext cluster is the most common among the patents?
053_Patents
dev
category
['graphext_cluster']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "num_claims", "type": "uint8" }, { "name": "organization", "type": "category" }, { "name": "kind", "type": "category" }, { "name": "type", "type": "category" }, { "name": "graphext_cluster", "type": "category" }, { "name": "date", "type": "datetime64[ns, UTC]" }, { "name": "abstract", "type": "object" }, { "name": "title", "type": "object" }, { "name": "lang", "type": "category" }, { "name": "abstract_gx_ADJ", "type": "object" }, { "name": "grp_title", "type": "object" }, { "name": "abstract_gx_products", "type": "object" }, { "name": "abstract_gx_organizations", "type": "object" }, { "name": "abstract_gx_NOUN", "type": "object" }, { "name": "abstract_gx_ngrams", "type": "object" }, { "name": "id", "type": "float64" }, { "name": "target", "type": "object" }, { "name": "weight", "type": "object" }, { "name": "x", "type": "float64" }, { "name": "y", "type": "float64" } ] } # Description of dataframe columns. df_descrption = { "count":{ "num_claims":9999.0, "id":8848.0, "x":9999.0, "y":9999.0 }, "mean":{ "num_claims":14.7459745975, "id":9317464.8445976488, "x":-21.058669389, "y":-18.042839032 }, "std":{ "num_claims":9.4629164059, "id":58501.3326715985, "x":2061.5828151519, "y":2228.8382538597 }, "min":{ "num_claims":1.0, "id":9245593.0, "x":-5218.812, "y":-4434.756 }, "25%":{ "num_claims":8.0, "id":9320245.75, "x":-1388.8531, "y":-2154.51215 }, "50%":{ "num_claims":15.0, "id":9322341.5, "x":-77.67177, "y":558.54065 }, "75%":{ "num_claims":20.0, "id":9324494.25, "x":1270.54565, "y":1802.24125 }, "max":{ "num_claims":100.0, "id":9480195.0, "x":4113.4414, "y":3986.0618 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "num_claims":9999.0, "id":8848.0, "x":9999.0, "y":9999.0 }, "mean":{ "num_claims":14.7459745975, "id":9317464.8445976488, "x":-21.058669389, "y":-18.042839032 }, "std":{ "num_claims":9.4629164059, "id":58501.3326715985, "x":2061.5828151519, "y":2228.8382538597 }, "min":{ "num_claims":1.0, "id":9245593.0, "x":-5218.812, "y":-4434.756 }, "25%":{ "num_claims":8.0, "id":9320245.75, "x":-1388.8531, "y":-2154.51215 }, "50%":{ "num_claims":15.0, "id":9322341.5, "x":-77.67177, "y":558.54065 }, "75%":{ "num_claims":20.0, "id":9324494.25, "x":1270.54565, "y":1802.24125 }, "max":{ "num_claims":100.0, "id":9480195.0, "x":4113.4414, "y":3986.0618 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: Which graphext cluster is the most common among the patents? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: Which graphext cluster is the most common among the patents? df.columns = ['num_claims', 'organization', 'kind', 'type', 'graphext_cluster', 'date', 'abstract', 'title', 'lang', 'abstract_gx_ADJ', 'grp_title', 'abstract_gx_products', 'abstract_gx_organizations', 'abstract_gx_NOUN', 'abstract_gx_ngrams', 'id', 'target', 'weight', 'x', 'y'] # Expected output type: is category, this will be checked. return
20250129013716
72
Which are the top 3 organizations with the most patents? Use alphabetical order to break any ties.
053_Patents
dev
list[category]
['organization']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "num_claims", "type": "uint8" }, { "name": "organization", "type": "category" }, { "name": "kind", "type": "category" }, { "name": "type", "type": "category" }, { "name": "graphext_cluster", "type": "category" }, { "name": "date", "type": "datetime64[ns, UTC]" }, { "name": "abstract", "type": "object" }, { "name": "title", "type": "object" }, { "name": "lang", "type": "category" }, { "name": "abstract_gx_ADJ", "type": "object" }, { "name": "grp_title", "type": "object" }, { "name": "abstract_gx_products", "type": "object" }, { "name": "abstract_gx_organizations", "type": "object" }, { "name": "abstract_gx_NOUN", "type": "object" }, { "name": "abstract_gx_ngrams", "type": "object" }, { "name": "id", "type": "float64" }, { "name": "target", "type": "object" }, { "name": "weight", "type": "object" }, { "name": "x", "type": "float64" }, { "name": "y", "type": "float64" } ] } # Description of dataframe columns. df_descrption = { "count":{ "num_claims":9999.0, "id":8848.0, "x":9999.0, "y":9999.0 }, "mean":{ "num_claims":14.7459745975, "id":9317464.8445976488, "x":-21.058669389, "y":-18.042839032 }, "std":{ "num_claims":9.4629164059, "id":58501.3326715985, "x":2061.5828151519, "y":2228.8382538597 }, "min":{ "num_claims":1.0, "id":9245593.0, "x":-5218.812, "y":-4434.756 }, "25%":{ "num_claims":8.0, "id":9320245.75, "x":-1388.8531, "y":-2154.51215 }, "50%":{ "num_claims":15.0, "id":9322341.5, "x":-77.67177, "y":558.54065 }, "75%":{ "num_claims":20.0, "id":9324494.25, "x":1270.54565, "y":1802.24125 }, "max":{ "num_claims":100.0, "id":9480195.0, "x":4113.4414, "y":3986.0618 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "num_claims":9999.0, "id":8848.0, "x":9999.0, "y":9999.0 }, "mean":{ "num_claims":14.7459745975, "id":9317464.8445976488, "x":-21.058669389, "y":-18.042839032 }, "std":{ "num_claims":9.4629164059, "id":58501.3326715985, "x":2061.5828151519, "y":2228.8382538597 }, "min":{ "num_claims":1.0, "id":9245593.0, "x":-5218.812, "y":-4434.756 }, "25%":{ "num_claims":8.0, "id":9320245.75, "x":-1388.8531, "y":-2154.51215 }, "50%":{ "num_claims":15.0, "id":9322341.5, "x":-77.67177, "y":558.54065 }, "75%":{ "num_claims":20.0, "id":9324494.25, "x":1270.54565, "y":1802.24125 }, "max":{ "num_claims":100.0, "id":9480195.0, "x":4113.4414, "y":3986.0618 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: Which are the top 3 organizations with the most patents? Use alphabetical order to break any ties. # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: Which are the top 3 organizations with the most patents? Use alphabetical order to break any ties. df.columns = ['num_claims', 'organization', 'kind', 'type', 'graphext_cluster', 'date', 'abstract', 'title', 'lang', 'abstract_gx_ADJ', 'grp_title', 'abstract_gx_products', 'abstract_gx_organizations', 'abstract_gx_NOUN', 'abstract_gx_ngrams', 'id', 'target', 'weight', 'x', 'y'] # Expected output type: is list[category], this will be checked. return
20250129013716
73
List the 2 most common types of patents in the dataset.
053_Patents
dev
list[category]
['type']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "num_claims", "type": "uint8" }, { "name": "organization", "type": "category" }, { "name": "kind", "type": "category" }, { "name": "type", "type": "category" }, { "name": "graphext_cluster", "type": "category" }, { "name": "date", "type": "datetime64[ns, UTC]" }, { "name": "abstract", "type": "object" }, { "name": "title", "type": "object" }, { "name": "lang", "type": "category" }, { "name": "abstract_gx_ADJ", "type": "object" }, { "name": "grp_title", "type": "object" }, { "name": "abstract_gx_products", "type": "object" }, { "name": "abstract_gx_organizations", "type": "object" }, { "name": "abstract_gx_NOUN", "type": "object" }, { "name": "abstract_gx_ngrams", "type": "object" }, { "name": "id", "type": "float64" }, { "name": "target", "type": "object" }, { "name": "weight", "type": "object" }, { "name": "x", "type": "float64" }, { "name": "y", "type": "float64" } ] } # Description of dataframe columns. df_descrption = { "count":{ "num_claims":9999.0, "id":8848.0, "x":9999.0, "y":9999.0 }, "mean":{ "num_claims":14.7459745975, "id":9317464.8445976488, "x":-21.058669389, "y":-18.042839032 }, "std":{ "num_claims":9.4629164059, "id":58501.3326715985, "x":2061.5828151519, "y":2228.8382538597 }, "min":{ "num_claims":1.0, "id":9245593.0, "x":-5218.812, "y":-4434.756 }, "25%":{ "num_claims":8.0, "id":9320245.75, "x":-1388.8531, "y":-2154.51215 }, "50%":{ "num_claims":15.0, "id":9322341.5, "x":-77.67177, "y":558.54065 }, "75%":{ "num_claims":20.0, "id":9324494.25, "x":1270.54565, "y":1802.24125 }, "max":{ "num_claims":100.0, "id":9480195.0, "x":4113.4414, "y":3986.0618 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "num_claims":9999.0, "id":8848.0, "x":9999.0, "y":9999.0 }, "mean":{ "num_claims":14.7459745975, "id":9317464.8445976488, "x":-21.058669389, "y":-18.042839032 }, "std":{ "num_claims":9.4629164059, "id":58501.3326715985, "x":2061.5828151519, "y":2228.8382538597 }, "min":{ "num_claims":1.0, "id":9245593.0, "x":-5218.812, "y":-4434.756 }, "25%":{ "num_claims":8.0, "id":9320245.75, "x":-1388.8531, "y":-2154.51215 }, "50%":{ "num_claims":15.0, "id":9322341.5, "x":-77.67177, "y":558.54065 }, "75%":{ "num_claims":20.0, "id":9324494.25, "x":1270.54565, "y":1802.24125 }, "max":{ "num_claims":100.0, "id":9480195.0, "x":4113.4414, "y":3986.0618 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: List the 2 most common types of patents in the dataset. # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: List the 2 most common types of patents in the dataset. df.columns = ['num_claims', 'organization', 'kind', 'type', 'graphext_cluster', 'date', 'abstract', 'title', 'lang', 'abstract_gx_ADJ', 'grp_title', 'abstract_gx_products', 'abstract_gx_organizations', 'abstract_gx_NOUN', 'abstract_gx_ngrams', 'id', 'target', 'weight', 'x', 'y'] # Expected output type: is list[category], this will be checked. return
20250129013716
74
Which 2 kinds of patents are the most prevalent?
053_Patents
dev
list[category]
['kind']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "num_claims", "type": "uint8" }, { "name": "organization", "type": "category" }, { "name": "kind", "type": "category" }, { "name": "type", "type": "category" }, { "name": "graphext_cluster", "type": "category" }, { "name": "date", "type": "datetime64[ns, UTC]" }, { "name": "abstract", "type": "object" }, { "name": "title", "type": "object" }, { "name": "lang", "type": "category" }, { "name": "abstract_gx_ADJ", "type": "object" }, { "name": "grp_title", "type": "object" }, { "name": "abstract_gx_products", "type": "object" }, { "name": "abstract_gx_organizations", "type": "object" }, { "name": "abstract_gx_NOUN", "type": "object" }, { "name": "abstract_gx_ngrams", "type": "object" }, { "name": "id", "type": "float64" }, { "name": "target", "type": "object" }, { "name": "weight", "type": "object" }, { "name": "x", "type": "float64" }, { "name": "y", "type": "float64" } ] } # Description of dataframe columns. df_descrption = { "count":{ "num_claims":9999.0, "id":8848.0, "x":9999.0, "y":9999.0 }, "mean":{ "num_claims":14.7459745975, "id":9317464.8445976488, "x":-21.058669389, "y":-18.042839032 }, "std":{ "num_claims":9.4629164059, "id":58501.3326715985, "x":2061.5828151519, "y":2228.8382538597 }, "min":{ "num_claims":1.0, "id":9245593.0, "x":-5218.812, "y":-4434.756 }, "25%":{ "num_claims":8.0, "id":9320245.75, "x":-1388.8531, "y":-2154.51215 }, "50%":{ "num_claims":15.0, "id":9322341.5, "x":-77.67177, "y":558.54065 }, "75%":{ "num_claims":20.0, "id":9324494.25, "x":1270.54565, "y":1802.24125 }, "max":{ "num_claims":100.0, "id":9480195.0, "x":4113.4414, "y":3986.0618 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "num_claims":9999.0, "id":8848.0, "x":9999.0, "y":9999.0 }, "mean":{ "num_claims":14.7459745975, "id":9317464.8445976488, "x":-21.058669389, "y":-18.042839032 }, "std":{ "num_claims":9.4629164059, "id":58501.3326715985, "x":2061.5828151519, "y":2228.8382538597 }, "min":{ "num_claims":1.0, "id":9245593.0, "x":-5218.812, "y":-4434.756 }, "25%":{ "num_claims":8.0, "id":9320245.75, "x":-1388.8531, "y":-2154.51215 }, "50%":{ "num_claims":15.0, "id":9322341.5, "x":-77.67177, "y":558.54065 }, "75%":{ "num_claims":20.0, "id":9324494.25, "x":1270.54565, "y":1802.24125 }, "max":{ "num_claims":100.0, "id":9480195.0, "x":4113.4414, "y":3986.0618 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: Which 2 kinds of patents are the most prevalent? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: Which 2 kinds of patents are the most prevalent? df.columns = ['num_claims', 'organization', 'kind', 'type', 'graphext_cluster', 'date', 'abstract', 'title', 'lang', 'abstract_gx_ADJ', 'grp_title', 'abstract_gx_products', 'abstract_gx_organizations', 'abstract_gx_NOUN', 'abstract_gx_ngrams', 'id', 'target', 'weight', 'x', 'y'] # Expected output type: is list[category], this will be checked. return
20250129013716
75
List the 2 least common graphext clusters among the patents. If there is a tie go by reverse alphabetical order
053_Patents
dev
list[category]
['graphext_cluster']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "num_claims", "type": "uint8" }, { "name": "organization", "type": "category" }, { "name": "kind", "type": "category" }, { "name": "type", "type": "category" }, { "name": "graphext_cluster", "type": "category" }, { "name": "date", "type": "datetime64[ns, UTC]" }, { "name": "abstract", "type": "object" }, { "name": "title", "type": "object" }, { "name": "lang", "type": "category" }, { "name": "abstract_gx_ADJ", "type": "object" }, { "name": "grp_title", "type": "object" }, { "name": "abstract_gx_products", "type": "object" }, { "name": "abstract_gx_organizations", "type": "object" }, { "name": "abstract_gx_NOUN", "type": "object" }, { "name": "abstract_gx_ngrams", "type": "object" }, { "name": "id", "type": "float64" }, { "name": "target", "type": "object" }, { "name": "weight", "type": "object" }, { "name": "x", "type": "float64" }, { "name": "y", "type": "float64" } ] } # Description of dataframe columns. df_descrption = { "count":{ "num_claims":9999.0, "id":8848.0, "x":9999.0, "y":9999.0 }, "mean":{ "num_claims":14.7459745975, "id":9317464.8445976488, "x":-21.058669389, "y":-18.042839032 }, "std":{ "num_claims":9.4629164059, "id":58501.3326715985, "x":2061.5828151519, "y":2228.8382538597 }, "min":{ "num_claims":1.0, "id":9245593.0, "x":-5218.812, "y":-4434.756 }, "25%":{ "num_claims":8.0, "id":9320245.75, "x":-1388.8531, "y":-2154.51215 }, "50%":{ "num_claims":15.0, "id":9322341.5, "x":-77.67177, "y":558.54065 }, "75%":{ "num_claims":20.0, "id":9324494.25, "x":1270.54565, "y":1802.24125 }, "max":{ "num_claims":100.0, "id":9480195.0, "x":4113.4414, "y":3986.0618 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "num_claims":9999.0, "id":8848.0, "x":9999.0, "y":9999.0 }, "mean":{ "num_claims":14.7459745975, "id":9317464.8445976488, "x":-21.058669389, "y":-18.042839032 }, "std":{ "num_claims":9.4629164059, "id":58501.3326715985, "x":2061.5828151519, "y":2228.8382538597 }, "min":{ "num_claims":1.0, "id":9245593.0, "x":-5218.812, "y":-4434.756 }, "25%":{ "num_claims":8.0, "id":9320245.75, "x":-1388.8531, "y":-2154.51215 }, "50%":{ "num_claims":15.0, "id":9322341.5, "x":-77.67177, "y":558.54065 }, "75%":{ "num_claims":20.0, "id":9324494.25, "x":1270.54565, "y":1802.24125 }, "max":{ "num_claims":100.0, "id":9480195.0, "x":4113.4414, "y":3986.0618 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: List the 2 least common graphext clusters among the patents. If there is a tie go by reverse alphabetical order # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: List the 2 least common graphext clusters among the patents. If there is a tie go by reverse alphabetical order df.columns = ['num_claims', 'organization', 'kind', 'type', 'graphext_cluster', 'date', 'abstract', 'title', 'lang', 'abstract_gx_ADJ', 'grp_title', 'abstract_gx_products', 'abstract_gx_organizations', 'abstract_gx_NOUN', 'abstract_gx_ngrams', 'id', 'target', 'weight', 'x', 'y'] # Expected output type: is list[category], this will be checked. return
20250129013716
76
What are the top 4 numbers of claims in the patents?
053_Patents
dev
list[number]
['num_claims']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "num_claims", "type": "uint8" }, { "name": "organization", "type": "category" }, { "name": "kind", "type": "category" }, { "name": "type", "type": "category" }, { "name": "graphext_cluster", "type": "category" }, { "name": "date", "type": "datetime64[ns, UTC]" }, { "name": "abstract", "type": "object" }, { "name": "title", "type": "object" }, { "name": "lang", "type": "category" }, { "name": "abstract_gx_ADJ", "type": "object" }, { "name": "grp_title", "type": "object" }, { "name": "abstract_gx_products", "type": "object" }, { "name": "abstract_gx_organizations", "type": "object" }, { "name": "abstract_gx_NOUN", "type": "object" }, { "name": "abstract_gx_ngrams", "type": "object" }, { "name": "id", "type": "float64" }, { "name": "target", "type": "object" }, { "name": "weight", "type": "object" }, { "name": "x", "type": "float64" }, { "name": "y", "type": "float64" } ] } # Description of dataframe columns. df_descrption = { "count":{ "num_claims":9999.0, "id":8848.0, "x":9999.0, "y":9999.0 }, "mean":{ "num_claims":14.7459745975, "id":9317464.8445976488, "x":-21.058669389, "y":-18.042839032 }, "std":{ "num_claims":9.4629164059, "id":58501.3326715985, "x":2061.5828151519, "y":2228.8382538597 }, "min":{ "num_claims":1.0, "id":9245593.0, "x":-5218.812, "y":-4434.756 }, "25%":{ "num_claims":8.0, "id":9320245.75, "x":-1388.8531, "y":-2154.51215 }, "50%":{ "num_claims":15.0, "id":9322341.5, "x":-77.67177, "y":558.54065 }, "75%":{ "num_claims":20.0, "id":9324494.25, "x":1270.54565, "y":1802.24125 }, "max":{ "num_claims":100.0, "id":9480195.0, "x":4113.4414, "y":3986.0618 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "num_claims":9999.0, "id":8848.0, "x":9999.0, "y":9999.0 }, "mean":{ "num_claims":14.7459745975, "id":9317464.8445976488, "x":-21.058669389, "y":-18.042839032 }, "std":{ "num_claims":9.4629164059, "id":58501.3326715985, "x":2061.5828151519, "y":2228.8382538597 }, "min":{ "num_claims":1.0, "id":9245593.0, "x":-5218.812, "y":-4434.756 }, "25%":{ "num_claims":8.0, "id":9320245.75, "x":-1388.8531, "y":-2154.51215 }, "50%":{ "num_claims":15.0, "id":9322341.5, "x":-77.67177, "y":558.54065 }, "75%":{ "num_claims":20.0, "id":9324494.25, "x":1270.54565, "y":1802.24125 }, "max":{ "num_claims":100.0, "id":9480195.0, "x":4113.4414, "y":3986.0618 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: What are the top 4 numbers of claims in the patents? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: What are the top 4 numbers of claims in the patents? df.columns = ['num_claims', 'organization', 'kind', 'type', 'graphext_cluster', 'date', 'abstract', 'title', 'lang', 'abstract_gx_ADJ', 'grp_title', 'abstract_gx_products', 'abstract_gx_organizations', 'abstract_gx_NOUN', 'abstract_gx_ngrams', 'id', 'target', 'weight', 'x', 'y'] # Expected output type: is list[number], this will be checked. return
20250129013716
77
List the 3 patents (by ID) with the most number of claims.
053_Patents
dev
list[number]
['id', 'num_claims']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "num_claims", "type": "uint8" }, { "name": "organization", "type": "category" }, { "name": "kind", "type": "category" }, { "name": "type", "type": "category" }, { "name": "graphext_cluster", "type": "category" }, { "name": "date", "type": "datetime64[ns, UTC]" }, { "name": "abstract", "type": "object" }, { "name": "title", "type": "object" }, { "name": "lang", "type": "category" }, { "name": "abstract_gx_ADJ", "type": "object" }, { "name": "grp_title", "type": "object" }, { "name": "abstract_gx_products", "type": "object" }, { "name": "abstract_gx_organizations", "type": "object" }, { "name": "abstract_gx_NOUN", "type": "object" }, { "name": "abstract_gx_ngrams", "type": "object" }, { "name": "id", "type": "float64" }, { "name": "target", "type": "object" }, { "name": "weight", "type": "object" }, { "name": "x", "type": "float64" }, { "name": "y", "type": "float64" } ] } # Description of dataframe columns. df_descrption = { "count":{ "num_claims":9999.0, "id":8848.0, "x":9999.0, "y":9999.0 }, "mean":{ "num_claims":14.7459745975, "id":9317464.8445976488, "x":-21.058669389, "y":-18.042839032 }, "std":{ "num_claims":9.4629164059, "id":58501.3326715985, "x":2061.5828151519, "y":2228.8382538597 }, "min":{ "num_claims":1.0, "id":9245593.0, "x":-5218.812, "y":-4434.756 }, "25%":{ "num_claims":8.0, "id":9320245.75, "x":-1388.8531, "y":-2154.51215 }, "50%":{ "num_claims":15.0, "id":9322341.5, "x":-77.67177, "y":558.54065 }, "75%":{ "num_claims":20.0, "id":9324494.25, "x":1270.54565, "y":1802.24125 }, "max":{ "num_claims":100.0, "id":9480195.0, "x":4113.4414, "y":3986.0618 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "num_claims":9999.0, "id":8848.0, "x":9999.0, "y":9999.0 }, "mean":{ "num_claims":14.7459745975, "id":9317464.8445976488, "x":-21.058669389, "y":-18.042839032 }, "std":{ "num_claims":9.4629164059, "id":58501.3326715985, "x":2061.5828151519, "y":2228.8382538597 }, "min":{ "num_claims":1.0, "id":9245593.0, "x":-5218.812, "y":-4434.756 }, "25%":{ "num_claims":8.0, "id":9320245.75, "x":-1388.8531, "y":-2154.51215 }, "50%":{ "num_claims":15.0, "id":9322341.5, "x":-77.67177, "y":558.54065 }, "75%":{ "num_claims":20.0, "id":9324494.25, "x":1270.54565, "y":1802.24125 }, "max":{ "num_claims":100.0, "id":9480195.0, "x":4113.4414, "y":3986.0618 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: List the 3 patents (by ID) with the most number of claims. # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: List the 3 patents (by ID) with the most number of claims. df.columns = ['num_claims', 'organization', 'kind', 'type', 'graphext_cluster', 'date', 'abstract', 'title', 'lang', 'abstract_gx_ADJ', 'grp_title', 'abstract_gx_products', 'abstract_gx_organizations', 'abstract_gx_NOUN', 'abstract_gx_ngrams', 'id', 'target', 'weight', 'x', 'y'] # Expected output type: is list[number], this will be checked. return
20250129013716
78
Provide a list with the median number of claims for the B2 and S1 kinds separately.
053_Patents
dev
list[number]
['num_claim', 'kind']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "num_claims", "type": "uint8" }, { "name": "organization", "type": "category" }, { "name": "kind", "type": "category" }, { "name": "type", "type": "category" }, { "name": "graphext_cluster", "type": "category" }, { "name": "date", "type": "datetime64[ns, UTC]" }, { "name": "abstract", "type": "object" }, { "name": "title", "type": "object" }, { "name": "lang", "type": "category" }, { "name": "abstract_gx_ADJ", "type": "object" }, { "name": "grp_title", "type": "object" }, { "name": "abstract_gx_products", "type": "object" }, { "name": "abstract_gx_organizations", "type": "object" }, { "name": "abstract_gx_NOUN", "type": "object" }, { "name": "abstract_gx_ngrams", "type": "object" }, { "name": "id", "type": "float64" }, { "name": "target", "type": "object" }, { "name": "weight", "type": "object" }, { "name": "x", "type": "float64" }, { "name": "y", "type": "float64" } ] } # Description of dataframe columns. df_descrption = { "count":{ "num_claims":9999.0, "id":8848.0, "x":9999.0, "y":9999.0 }, "mean":{ "num_claims":14.7459745975, "id":9317464.8445976488, "x":-21.058669389, "y":-18.042839032 }, "std":{ "num_claims":9.4629164059, "id":58501.3326715985, "x":2061.5828151519, "y":2228.8382538597 }, "min":{ "num_claims":1.0, "id":9245593.0, "x":-5218.812, "y":-4434.756 }, "25%":{ "num_claims":8.0, "id":9320245.75, "x":-1388.8531, "y":-2154.51215 }, "50%":{ "num_claims":15.0, "id":9322341.5, "x":-77.67177, "y":558.54065 }, "75%":{ "num_claims":20.0, "id":9324494.25, "x":1270.54565, "y":1802.24125 }, "max":{ "num_claims":100.0, "id":9480195.0, "x":4113.4414, "y":3986.0618 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "num_claims":9999.0, "id":8848.0, "x":9999.0, "y":9999.0 }, "mean":{ "num_claims":14.7459745975, "id":9317464.8445976488, "x":-21.058669389, "y":-18.042839032 }, "std":{ "num_claims":9.4629164059, "id":58501.3326715985, "x":2061.5828151519, "y":2228.8382538597 }, "min":{ "num_claims":1.0, "id":9245593.0, "x":-5218.812, "y":-4434.756 }, "25%":{ "num_claims":8.0, "id":9320245.75, "x":-1388.8531, "y":-2154.51215 }, "50%":{ "num_claims":15.0, "id":9322341.5, "x":-77.67177, "y":558.54065 }, "75%":{ "num_claims":20.0, "id":9324494.25, "x":1270.54565, "y":1802.24125 }, "max":{ "num_claims":100.0, "id":9480195.0, "x":4113.4414, "y":3986.0618 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: Provide a list with the median number of claims for the B2 and S1 kinds separately. # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: Provide a list with the median number of claims for the B2 and S1 kinds separately. df.columns = ['num_claims', 'organization', 'kind', 'type', 'graphext_cluster', 'date', 'abstract', 'title', 'lang', 'abstract_gx_ADJ', 'grp_title', 'abstract_gx_products', 'abstract_gx_organizations', 'abstract_gx_NOUN', 'abstract_gx_ngrams', 'id', 'target', 'weight', 'x', 'y'] # Expected output type: is list[number], this will be checked. return
20250129013716
79
List the 3 most recent patents by their ID.
053_Patents
dev
list[number]
['id', 'date']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "num_claims", "type": "uint8" }, { "name": "organization", "type": "category" }, { "name": "kind", "type": "category" }, { "name": "type", "type": "category" }, { "name": "graphext_cluster", "type": "category" }, { "name": "date", "type": "datetime64[ns, UTC]" }, { "name": "abstract", "type": "object" }, { "name": "title", "type": "object" }, { "name": "lang", "type": "category" }, { "name": "abstract_gx_ADJ", "type": "object" }, { "name": "grp_title", "type": "object" }, { "name": "abstract_gx_products", "type": "object" }, { "name": "abstract_gx_organizations", "type": "object" }, { "name": "abstract_gx_NOUN", "type": "object" }, { "name": "abstract_gx_ngrams", "type": "object" }, { "name": "id", "type": "float64" }, { "name": "target", "type": "object" }, { "name": "weight", "type": "object" }, { "name": "x", "type": "float64" }, { "name": "y", "type": "float64" } ] } # Description of dataframe columns. df_descrption = { "count":{ "num_claims":9999.0, "id":8848.0, "x":9999.0, "y":9999.0 }, "mean":{ "num_claims":14.7459745975, "id":9317464.8445976488, "x":-21.058669389, "y":-18.042839032 }, "std":{ "num_claims":9.4629164059, "id":58501.3326715985, "x":2061.5828151519, "y":2228.8382538597 }, "min":{ "num_claims":1.0, "id":9245593.0, "x":-5218.812, "y":-4434.756 }, "25%":{ "num_claims":8.0, "id":9320245.75, "x":-1388.8531, "y":-2154.51215 }, "50%":{ "num_claims":15.0, "id":9322341.5, "x":-77.67177, "y":558.54065 }, "75%":{ "num_claims":20.0, "id":9324494.25, "x":1270.54565, "y":1802.24125 }, "max":{ "num_claims":100.0, "id":9480195.0, "x":4113.4414, "y":3986.0618 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "num_claims":9999.0, "id":8848.0, "x":9999.0, "y":9999.0 }, "mean":{ "num_claims":14.7459745975, "id":9317464.8445976488, "x":-21.058669389, "y":-18.042839032 }, "std":{ "num_claims":9.4629164059, "id":58501.3326715985, "x":2061.5828151519, "y":2228.8382538597 }, "min":{ "num_claims":1.0, "id":9245593.0, "x":-5218.812, "y":-4434.756 }, "25%":{ "num_claims":8.0, "id":9320245.75, "x":-1388.8531, "y":-2154.51215 }, "50%":{ "num_claims":15.0, "id":9322341.5, "x":-77.67177, "y":558.54065 }, "75%":{ "num_claims":20.0, "id":9324494.25, "x":1270.54565, "y":1802.24125 }, "max":{ "num_claims":100.0, "id":9480195.0, "x":4113.4414, "y":3986.0618 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: List the 3 most recent patents by their ID. # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: List the 3 most recent patents by their ID. df.columns = ['num_claims', 'organization', 'kind', 'type', 'graphext_cluster', 'date', 'abstract', 'title', 'lang', 'abstract_gx_ADJ', 'grp_title', 'abstract_gx_products', 'abstract_gx_organizations', 'abstract_gx_NOUN', 'abstract_gx_ngrams', 'id', 'target', 'weight', 'x', 'y'] # Expected output type: is list[number], this will be checked. return
20250129013716
80
Has the author with the highest number of followers ever been verified?
054_Joe
dev
boolean
['author_id<gx:category>', 'user_followers_count<gx:number>', 'user_verified<gx:boolean>']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "id<gx:category>", "type": "int64" }, { "name": "author_id<gx:category>", "type": "uint32" }, { "name": "author_name<gx:category>", "type": "category" }, { "name": "author_handler<gx:category>", "type": "category" }, { "name": "author_avatar<gx:url>", "type": "category" }, { "name": "user_created_at<gx:date>", "type": "datetime64[ns, UTC]" }, { "name": "user_description<gx:text>", "type": "category" }, { "name": "user_favourites_count<gx:number>", "type": "uint8" }, { "name": "user_followers_count<gx:number>", "type": "uint32" }, { "name": "user_following_count<gx:number>", "type": "uint8" }, { "name": "user_listed_count<gx:number>", "type": "uint16" }, { "name": "user_tweets_count<gx:number>", "type": "uint16" }, { "name": "user_verified<gx:boolean>", "type": "bool" }, { "name": "user_location<gx:text>", "type": "category" }, { "name": "lang<gx:category>", "type": "category" }, { "name": "type<gx:category>", "type": "category" }, { "name": "text<gx:text>", "type": "object" }, { "name": "date<gx:date>", "type": "datetime64[ns, UTC]" }, { "name": "mention_ids<gx:list[category]>", "type": "object" }, { "name": "mention_names<gx:list[category]>", "type": "object" }, { "name": "retweets<gx:number>", "type": "uint32" }, { "name": "favorites<gx:number>", "type": "uint32" }, { "name": "replies<gx:number>", "type": "uint16" }, { "name": "quotes<gx:number>", "type": "uint16" }, { "name": "links<gx:list[url]>", "type": "object" }, { "name": "links_first<gx:url>", "type": "category" }, { "name": "image_links<gx:list[url]>", "type": "object" }, { "name": "image_links_first<gx:url>", "type": "category" }, { "name": "rp_user_id<gx:category>", "type": "category" }, { "name": "rp_user_name<gx:category>", "type": "category" }, { "name": "location<gx:text>", "type": "category" }, { "name": "tweet_link<gx:url>", "type": "category" }, { "name": "source<gx:text>", "type": "category" }, { "name": "search<gx:category>", "type": "category" } ] } # Description of dataframe columns. df_descrption = { "count":{ "id<gx:category>":491.0, "author_id<gx:category>":491.0, "user_favourites_count<gx:number>":491.0, "user_followers_count<gx:number>":491.0, "user_following_count<gx:number>":491.0, "user_listed_count<gx:number>":491.0, "user_tweets_count<gx:number>":491.0, "retweets<gx:number>":491.0, "favorites<gx:number>":491.0, "replies<gx:number>":491.0, "quotes<gx:number>":491.0 }, "mean":{ "id<gx:category>":1.230895609e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30218726.7454175167, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0590631365, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":5200.4623217923, "favorites<gx:number>":41536.8635437882, "replies<gx:number>":2056.5600814664, "quotes<gx:number>":754.8859470468 }, "std":{ "id<gx:category>":7.194010391e+16, "author_id<gx:category>":0.0, "user_favourites_count<gx:number>":0.0, "user_followers_count<gx:number>":23210.2101437425, "user_following_count<gx:number>":0.0, "user_listed_count<gx:number>":0.2526882771, "user_tweets_count<gx:number>":0.0, "retweets<gx:number>":13471.3749539952, "favorites<gx:number>":99344.577018021, "replies<gx:number>":3666.4962808525, "quotes<gx:number>":3078.002195837 }, "min":{ "id<gx:category>":1.100456021e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212691.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36166.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":85.0, "favorites<gx:number>":393.0, "replies<gx:number>":22.0, "quotes<gx:number>":0.0 }, "25%":{ "id<gx:category>":1.16465648e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212703.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":249.0, "favorites<gx:number>":1245.5, "replies<gx:number>":156.0, "quotes<gx:number>":22.0 }, "50%":{ "id<gx:category>":1.229553614e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212708.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":1218.0, "favorites<gx:number>":5730.0, "replies<gx:number>":552.0, "quotes<gx:number>":90.0 }, "75%":{ "id<gx:category>":1.296563283e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212712.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":4589.5, "favorites<gx:number>":28466.5, "replies<gx:number>":2210.0, "quotes<gx:number>":444.0 }, "max":{ "id<gx:category>":1.391422726e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30308047.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36168.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":205169.0, "favorites<gx:number>":889245.0, "replies<gx:number>":29351.0, "quotes<gx:number>":57012.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "id<gx:category>":491.0, "author_id<gx:category>":491.0, "user_favourites_count<gx:number>":491.0, "user_followers_count<gx:number>":491.0, "user_following_count<gx:number>":491.0, "user_listed_count<gx:number>":491.0, "user_tweets_count<gx:number>":491.0, "retweets<gx:number>":491.0, "favorites<gx:number>":491.0, "replies<gx:number>":491.0, "quotes<gx:number>":491.0 }, "mean":{ "id<gx:category>":1.230895609e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30218726.7454175167, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0590631365, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":5200.4623217923, "favorites<gx:number>":41536.8635437882, "replies<gx:number>":2056.5600814664, "quotes<gx:number>":754.8859470468 }, "std":{ "id<gx:category>":7.194010391e+16, "author_id<gx:category>":0.0, "user_favourites_count<gx:number>":0.0, "user_followers_count<gx:number>":23210.2101437425, "user_following_count<gx:number>":0.0, "user_listed_count<gx:number>":0.2526882771, "user_tweets_count<gx:number>":0.0, "retweets<gx:number>":13471.3749539952, "favorites<gx:number>":99344.577018021, "replies<gx:number>":3666.4962808525, "quotes<gx:number>":3078.002195837 }, "min":{ "id<gx:category>":1.100456021e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212691.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36166.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":85.0, "favorites<gx:number>":393.0, "replies<gx:number>":22.0, "quotes<gx:number>":0.0 }, "25%":{ "id<gx:category>":1.16465648e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212703.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":249.0, "favorites<gx:number>":1245.5, "replies<gx:number>":156.0, "quotes<gx:number>":22.0 }, "50%":{ "id<gx:category>":1.229553614e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212708.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":1218.0, "favorites<gx:number>":5730.0, "replies<gx:number>":552.0, "quotes<gx:number>":90.0 }, "75%":{ "id<gx:category>":1.296563283e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212712.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":4589.5, "favorites<gx:number>":28466.5, "replies<gx:number>":2210.0, "quotes<gx:number>":444.0 }, "max":{ "id<gx:category>":1.391422726e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30308047.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36168.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":205169.0, "favorites<gx:number>":889245.0, "replies<gx:number>":29351.0, "quotes<gx:number>":57012.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: Has the author with the highest number of followers ever been verified? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: Has the author with the highest number of followers ever been verified? df.columns = ['id<gx:category>', 'author_id<gx:category>', 'author_name<gx:category>', 'author_handler<gx:category>', 'author_avatar<gx:url>', 'user_created_at<gx:date>', 'user_description<gx:text>', 'user_favourites_count<gx:number>', 'user_followers_count<gx:number>', 'user_following_count<gx:number>', 'user_listed_count<gx:number>', 'user_tweets_count<gx:number>', 'user_verified<gx:boolean>', 'user_location<gx:text>', 'lang<gx:category>', 'type<gx:category>', 'text<gx:text>', 'date<gx:date>', 'mention_ids<gx:list[category]>', 'mention_names<gx:list[category]>', 'retweets<gx:number>', 'favorites<gx:number>', 'replies<gx:number>', 'quotes<gx:number>', 'links<gx:list[url]>', 'links_first<gx:url>', 'image_links<gx:list[url]>', 'image_links_first<gx:url>', 'rp_user_id<gx:category>', 'rp_user_name<gx:category>', 'location<gx:text>', 'tweet_link<gx:url>', 'source<gx:text>', 'search<gx:category>'] # Expected output type: is boolean, this will be checked. return
20250129013716
81
Is the author who has the most favourites also the one with the most retweets?
054_Joe
dev
boolean
['author_id<gx:category>', 'user_favourites_count<gx:number>', 'retweets<gx:number>']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "id<gx:category>", "type": "int64" }, { "name": "author_id<gx:category>", "type": "uint32" }, { "name": "author_name<gx:category>", "type": "category" }, { "name": "author_handler<gx:category>", "type": "category" }, { "name": "author_avatar<gx:url>", "type": "category" }, { "name": "user_created_at<gx:date>", "type": "datetime64[ns, UTC]" }, { "name": "user_description<gx:text>", "type": "category" }, { "name": "user_favourites_count<gx:number>", "type": "uint8" }, { "name": "user_followers_count<gx:number>", "type": "uint32" }, { "name": "user_following_count<gx:number>", "type": "uint8" }, { "name": "user_listed_count<gx:number>", "type": "uint16" }, { "name": "user_tweets_count<gx:number>", "type": "uint16" }, { "name": "user_verified<gx:boolean>", "type": "bool" }, { "name": "user_location<gx:text>", "type": "category" }, { "name": "lang<gx:category>", "type": "category" }, { "name": "type<gx:category>", "type": "category" }, { "name": "text<gx:text>", "type": "object" }, { "name": "date<gx:date>", "type": "datetime64[ns, UTC]" }, { "name": "mention_ids<gx:list[category]>", "type": "object" }, { "name": "mention_names<gx:list[category]>", "type": "object" }, { "name": "retweets<gx:number>", "type": "uint32" }, { "name": "favorites<gx:number>", "type": "uint32" }, { "name": "replies<gx:number>", "type": "uint16" }, { "name": "quotes<gx:number>", "type": "uint16" }, { "name": "links<gx:list[url]>", "type": "object" }, { "name": "links_first<gx:url>", "type": "category" }, { "name": "image_links<gx:list[url]>", "type": "object" }, { "name": "image_links_first<gx:url>", "type": "category" }, { "name": "rp_user_id<gx:category>", "type": "category" }, { "name": "rp_user_name<gx:category>", "type": "category" }, { "name": "location<gx:text>", "type": "category" }, { "name": "tweet_link<gx:url>", "type": "category" }, { "name": "source<gx:text>", "type": "category" }, { "name": "search<gx:category>", "type": "category" } ] } # Description of dataframe columns. df_descrption = { "count":{ "id<gx:category>":491.0, "author_id<gx:category>":491.0, "user_favourites_count<gx:number>":491.0, "user_followers_count<gx:number>":491.0, "user_following_count<gx:number>":491.0, "user_listed_count<gx:number>":491.0, "user_tweets_count<gx:number>":491.0, "retweets<gx:number>":491.0, "favorites<gx:number>":491.0, "replies<gx:number>":491.0, "quotes<gx:number>":491.0 }, "mean":{ "id<gx:category>":1.230895609e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30218726.7454175167, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0590631365, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":5200.4623217923, "favorites<gx:number>":41536.8635437882, "replies<gx:number>":2056.5600814664, "quotes<gx:number>":754.8859470468 }, "std":{ "id<gx:category>":7.194010391e+16, "author_id<gx:category>":0.0, "user_favourites_count<gx:number>":0.0, "user_followers_count<gx:number>":23210.2101437425, "user_following_count<gx:number>":0.0, "user_listed_count<gx:number>":0.2526882771, "user_tweets_count<gx:number>":0.0, "retweets<gx:number>":13471.3749539952, "favorites<gx:number>":99344.577018021, "replies<gx:number>":3666.4962808525, "quotes<gx:number>":3078.002195837 }, "min":{ "id<gx:category>":1.100456021e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212691.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36166.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":85.0, "favorites<gx:number>":393.0, "replies<gx:number>":22.0, "quotes<gx:number>":0.0 }, "25%":{ "id<gx:category>":1.16465648e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212703.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":249.0, "favorites<gx:number>":1245.5, "replies<gx:number>":156.0, "quotes<gx:number>":22.0 }, "50%":{ "id<gx:category>":1.229553614e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212708.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":1218.0, "favorites<gx:number>":5730.0, "replies<gx:number>":552.0, "quotes<gx:number>":90.0 }, "75%":{ "id<gx:category>":1.296563283e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212712.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":4589.5, "favorites<gx:number>":28466.5, "replies<gx:number>":2210.0, "quotes<gx:number>":444.0 }, "max":{ "id<gx:category>":1.391422726e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30308047.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36168.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":205169.0, "favorites<gx:number>":889245.0, "replies<gx:number>":29351.0, "quotes<gx:number>":57012.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "id<gx:category>":491.0, "author_id<gx:category>":491.0, "user_favourites_count<gx:number>":491.0, "user_followers_count<gx:number>":491.0, "user_following_count<gx:number>":491.0, "user_listed_count<gx:number>":491.0, "user_tweets_count<gx:number>":491.0, "retweets<gx:number>":491.0, "favorites<gx:number>":491.0, "replies<gx:number>":491.0, "quotes<gx:number>":491.0 }, "mean":{ "id<gx:category>":1.230895609e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30218726.7454175167, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0590631365, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":5200.4623217923, "favorites<gx:number>":41536.8635437882, "replies<gx:number>":2056.5600814664, "quotes<gx:number>":754.8859470468 }, "std":{ "id<gx:category>":7.194010391e+16, "author_id<gx:category>":0.0, "user_favourites_count<gx:number>":0.0, "user_followers_count<gx:number>":23210.2101437425, "user_following_count<gx:number>":0.0, "user_listed_count<gx:number>":0.2526882771, "user_tweets_count<gx:number>":0.0, "retweets<gx:number>":13471.3749539952, "favorites<gx:number>":99344.577018021, "replies<gx:number>":3666.4962808525, "quotes<gx:number>":3078.002195837 }, "min":{ "id<gx:category>":1.100456021e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212691.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36166.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":85.0, "favorites<gx:number>":393.0, "replies<gx:number>":22.0, "quotes<gx:number>":0.0 }, "25%":{ "id<gx:category>":1.16465648e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212703.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":249.0, "favorites<gx:number>":1245.5, "replies<gx:number>":156.0, "quotes<gx:number>":22.0 }, "50%":{ "id<gx:category>":1.229553614e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212708.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":1218.0, "favorites<gx:number>":5730.0, "replies<gx:number>":552.0, "quotes<gx:number>":90.0 }, "75%":{ "id<gx:category>":1.296563283e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212712.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":4589.5, "favorites<gx:number>":28466.5, "replies<gx:number>":2210.0, "quotes<gx:number>":444.0 }, "max":{ "id<gx:category>":1.391422726e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30308047.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36168.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":205169.0, "favorites<gx:number>":889245.0, "replies<gx:number>":29351.0, "quotes<gx:number>":57012.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: Is the author who has the most favourites also the one with the most retweets? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: Is the author who has the most favourites also the one with the most retweets? df.columns = ['id<gx:category>', 'author_id<gx:category>', 'author_name<gx:category>', 'author_handler<gx:category>', 'author_avatar<gx:url>', 'user_created_at<gx:date>', 'user_description<gx:text>', 'user_favourites_count<gx:number>', 'user_followers_count<gx:number>', 'user_following_count<gx:number>', 'user_listed_count<gx:number>', 'user_tweets_count<gx:number>', 'user_verified<gx:boolean>', 'user_location<gx:text>', 'lang<gx:category>', 'type<gx:category>', 'text<gx:text>', 'date<gx:date>', 'mention_ids<gx:list[category]>', 'mention_names<gx:list[category]>', 'retweets<gx:number>', 'favorites<gx:number>', 'replies<gx:number>', 'quotes<gx:number>', 'links<gx:list[url]>', 'links_first<gx:url>', 'image_links<gx:list[url]>', 'image_links_first<gx:url>', 'rp_user_id<gx:category>', 'rp_user_name<gx:category>', 'location<gx:text>', 'tweet_link<gx:url>', 'source<gx:text>', 'search<gx:category>'] # Expected output type: is boolean, this will be checked. return
20250129013716
82
Is the most mentioned user also the most retweeted mentioned user?
054_Joe
dev
boolean
['author_id<gx:category>', 'mention_names<gx:list[category]>', 'retweets<gx:number>']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "id<gx:category>", "type": "int64" }, { "name": "author_id<gx:category>", "type": "uint32" }, { "name": "author_name<gx:category>", "type": "category" }, { "name": "author_handler<gx:category>", "type": "category" }, { "name": "author_avatar<gx:url>", "type": "category" }, { "name": "user_created_at<gx:date>", "type": "datetime64[ns, UTC]" }, { "name": "user_description<gx:text>", "type": "category" }, { "name": "user_favourites_count<gx:number>", "type": "uint8" }, { "name": "user_followers_count<gx:number>", "type": "uint32" }, { "name": "user_following_count<gx:number>", "type": "uint8" }, { "name": "user_listed_count<gx:number>", "type": "uint16" }, { "name": "user_tweets_count<gx:number>", "type": "uint16" }, { "name": "user_verified<gx:boolean>", "type": "bool" }, { "name": "user_location<gx:text>", "type": "category" }, { "name": "lang<gx:category>", "type": "category" }, { "name": "type<gx:category>", "type": "category" }, { "name": "text<gx:text>", "type": "object" }, { "name": "date<gx:date>", "type": "datetime64[ns, UTC]" }, { "name": "mention_ids<gx:list[category]>", "type": "object" }, { "name": "mention_names<gx:list[category]>", "type": "object" }, { "name": "retweets<gx:number>", "type": "uint32" }, { "name": "favorites<gx:number>", "type": "uint32" }, { "name": "replies<gx:number>", "type": "uint16" }, { "name": "quotes<gx:number>", "type": "uint16" }, { "name": "links<gx:list[url]>", "type": "object" }, { "name": "links_first<gx:url>", "type": "category" }, { "name": "image_links<gx:list[url]>", "type": "object" }, { "name": "image_links_first<gx:url>", "type": "category" }, { "name": "rp_user_id<gx:category>", "type": "category" }, { "name": "rp_user_name<gx:category>", "type": "category" }, { "name": "location<gx:text>", "type": "category" }, { "name": "tweet_link<gx:url>", "type": "category" }, { "name": "source<gx:text>", "type": "category" }, { "name": "search<gx:category>", "type": "category" } ] } # Description of dataframe columns. df_descrption = { "count":{ "id<gx:category>":491.0, "author_id<gx:category>":491.0, "user_favourites_count<gx:number>":491.0, "user_followers_count<gx:number>":491.0, "user_following_count<gx:number>":491.0, "user_listed_count<gx:number>":491.0, "user_tweets_count<gx:number>":491.0, "retweets<gx:number>":491.0, "favorites<gx:number>":491.0, "replies<gx:number>":491.0, "quotes<gx:number>":491.0 }, "mean":{ "id<gx:category>":1.230895609e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30218726.7454175167, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0590631365, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":5200.4623217923, "favorites<gx:number>":41536.8635437882, "replies<gx:number>":2056.5600814664, "quotes<gx:number>":754.8859470468 }, "std":{ "id<gx:category>":7.194010391e+16, "author_id<gx:category>":0.0, "user_favourites_count<gx:number>":0.0, "user_followers_count<gx:number>":23210.2101437425, "user_following_count<gx:number>":0.0, "user_listed_count<gx:number>":0.2526882771, "user_tweets_count<gx:number>":0.0, "retweets<gx:number>":13471.3749539952, "favorites<gx:number>":99344.577018021, "replies<gx:number>":3666.4962808525, "quotes<gx:number>":3078.002195837 }, "min":{ "id<gx:category>":1.100456021e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212691.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36166.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":85.0, "favorites<gx:number>":393.0, "replies<gx:number>":22.0, "quotes<gx:number>":0.0 }, "25%":{ "id<gx:category>":1.16465648e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212703.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":249.0, "favorites<gx:number>":1245.5, "replies<gx:number>":156.0, "quotes<gx:number>":22.0 }, "50%":{ "id<gx:category>":1.229553614e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212708.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":1218.0, "favorites<gx:number>":5730.0, "replies<gx:number>":552.0, "quotes<gx:number>":90.0 }, "75%":{ "id<gx:category>":1.296563283e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212712.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":4589.5, "favorites<gx:number>":28466.5, "replies<gx:number>":2210.0, "quotes<gx:number>":444.0 }, "max":{ "id<gx:category>":1.391422726e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30308047.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36168.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":205169.0, "favorites<gx:number>":889245.0, "replies<gx:number>":29351.0, "quotes<gx:number>":57012.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "id<gx:category>":491.0, "author_id<gx:category>":491.0, "user_favourites_count<gx:number>":491.0, "user_followers_count<gx:number>":491.0, "user_following_count<gx:number>":491.0, "user_listed_count<gx:number>":491.0, "user_tweets_count<gx:number>":491.0, "retweets<gx:number>":491.0, "favorites<gx:number>":491.0, "replies<gx:number>":491.0, "quotes<gx:number>":491.0 }, "mean":{ "id<gx:category>":1.230895609e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30218726.7454175167, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0590631365, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":5200.4623217923, "favorites<gx:number>":41536.8635437882, "replies<gx:number>":2056.5600814664, "quotes<gx:number>":754.8859470468 }, "std":{ "id<gx:category>":7.194010391e+16, "author_id<gx:category>":0.0, "user_favourites_count<gx:number>":0.0, "user_followers_count<gx:number>":23210.2101437425, "user_following_count<gx:number>":0.0, "user_listed_count<gx:number>":0.2526882771, "user_tweets_count<gx:number>":0.0, "retweets<gx:number>":13471.3749539952, "favorites<gx:number>":99344.577018021, "replies<gx:number>":3666.4962808525, "quotes<gx:number>":3078.002195837 }, "min":{ "id<gx:category>":1.100456021e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212691.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36166.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":85.0, "favorites<gx:number>":393.0, "replies<gx:number>":22.0, "quotes<gx:number>":0.0 }, "25%":{ "id<gx:category>":1.16465648e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212703.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":249.0, "favorites<gx:number>":1245.5, "replies<gx:number>":156.0, "quotes<gx:number>":22.0 }, "50%":{ "id<gx:category>":1.229553614e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212708.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":1218.0, "favorites<gx:number>":5730.0, "replies<gx:number>":552.0, "quotes<gx:number>":90.0 }, "75%":{ "id<gx:category>":1.296563283e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212712.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":4589.5, "favorites<gx:number>":28466.5, "replies<gx:number>":2210.0, "quotes<gx:number>":444.0 }, "max":{ "id<gx:category>":1.391422726e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30308047.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36168.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":205169.0, "favorites<gx:number>":889245.0, "replies<gx:number>":29351.0, "quotes<gx:number>":57012.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: Is the most mentioned user also the most retweeted mentioned user? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: Is the most mentioned user also the most retweeted mentioned user? df.columns = ['id<gx:category>', 'author_id<gx:category>', 'author_name<gx:category>', 'author_handler<gx:category>', 'author_avatar<gx:url>', 'user_created_at<gx:date>', 'user_description<gx:text>', 'user_favourites_count<gx:number>', 'user_followers_count<gx:number>', 'user_following_count<gx:number>', 'user_listed_count<gx:number>', 'user_tweets_count<gx:number>', 'user_verified<gx:boolean>', 'user_location<gx:text>', 'lang<gx:category>', 'type<gx:category>', 'text<gx:text>', 'date<gx:date>', 'mention_ids<gx:list[category]>', 'mention_names<gx:list[category]>', 'retweets<gx:number>', 'favorites<gx:number>', 'replies<gx:number>', 'quotes<gx:number>', 'links<gx:list[url]>', 'links_first<gx:url>', 'image_links<gx:list[url]>', 'image_links_first<gx:url>', 'rp_user_id<gx:category>', 'rp_user_name<gx:category>', 'location<gx:text>', 'tweet_link<gx:url>', 'source<gx:text>', 'search<gx:category>'] # Expected output type: is boolean, this will be checked. return
20250129013716
83
Does the author with the most retweets also have the most replies?
054_Joe
dev
boolean
['author_id<gx:category>', 'retweets<gx:number>', 'replies<gx:number>']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "id<gx:category>", "type": "int64" }, { "name": "author_id<gx:category>", "type": "uint32" }, { "name": "author_name<gx:category>", "type": "category" }, { "name": "author_handler<gx:category>", "type": "category" }, { "name": "author_avatar<gx:url>", "type": "category" }, { "name": "user_created_at<gx:date>", "type": "datetime64[ns, UTC]" }, { "name": "user_description<gx:text>", "type": "category" }, { "name": "user_favourites_count<gx:number>", "type": "uint8" }, { "name": "user_followers_count<gx:number>", "type": "uint32" }, { "name": "user_following_count<gx:number>", "type": "uint8" }, { "name": "user_listed_count<gx:number>", "type": "uint16" }, { "name": "user_tweets_count<gx:number>", "type": "uint16" }, { "name": "user_verified<gx:boolean>", "type": "bool" }, { "name": "user_location<gx:text>", "type": "category" }, { "name": "lang<gx:category>", "type": "category" }, { "name": "type<gx:category>", "type": "category" }, { "name": "text<gx:text>", "type": "object" }, { "name": "date<gx:date>", "type": "datetime64[ns, UTC]" }, { "name": "mention_ids<gx:list[category]>", "type": "object" }, { "name": "mention_names<gx:list[category]>", "type": "object" }, { "name": "retweets<gx:number>", "type": "uint32" }, { "name": "favorites<gx:number>", "type": "uint32" }, { "name": "replies<gx:number>", "type": "uint16" }, { "name": "quotes<gx:number>", "type": "uint16" }, { "name": "links<gx:list[url]>", "type": "object" }, { "name": "links_first<gx:url>", "type": "category" }, { "name": "image_links<gx:list[url]>", "type": "object" }, { "name": "image_links_first<gx:url>", "type": "category" }, { "name": "rp_user_id<gx:category>", "type": "category" }, { "name": "rp_user_name<gx:category>", "type": "category" }, { "name": "location<gx:text>", "type": "category" }, { "name": "tweet_link<gx:url>", "type": "category" }, { "name": "source<gx:text>", "type": "category" }, { "name": "search<gx:category>", "type": "category" } ] } # Description of dataframe columns. df_descrption = { "count":{ "id<gx:category>":491.0, "author_id<gx:category>":491.0, "user_favourites_count<gx:number>":491.0, "user_followers_count<gx:number>":491.0, "user_following_count<gx:number>":491.0, "user_listed_count<gx:number>":491.0, "user_tweets_count<gx:number>":491.0, "retweets<gx:number>":491.0, "favorites<gx:number>":491.0, "replies<gx:number>":491.0, "quotes<gx:number>":491.0 }, "mean":{ "id<gx:category>":1.230895609e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30218726.7454175167, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0590631365, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":5200.4623217923, "favorites<gx:number>":41536.8635437882, "replies<gx:number>":2056.5600814664, "quotes<gx:number>":754.8859470468 }, "std":{ "id<gx:category>":7.194010391e+16, "author_id<gx:category>":0.0, "user_favourites_count<gx:number>":0.0, "user_followers_count<gx:number>":23210.2101437425, "user_following_count<gx:number>":0.0, "user_listed_count<gx:number>":0.2526882771, "user_tweets_count<gx:number>":0.0, "retweets<gx:number>":13471.3749539952, "favorites<gx:number>":99344.577018021, "replies<gx:number>":3666.4962808525, "quotes<gx:number>":3078.002195837 }, "min":{ "id<gx:category>":1.100456021e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212691.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36166.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":85.0, "favorites<gx:number>":393.0, "replies<gx:number>":22.0, "quotes<gx:number>":0.0 }, "25%":{ "id<gx:category>":1.16465648e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212703.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":249.0, "favorites<gx:number>":1245.5, "replies<gx:number>":156.0, "quotes<gx:number>":22.0 }, "50%":{ "id<gx:category>":1.229553614e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212708.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":1218.0, "favorites<gx:number>":5730.0, "replies<gx:number>":552.0, "quotes<gx:number>":90.0 }, "75%":{ "id<gx:category>":1.296563283e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212712.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":4589.5, "favorites<gx:number>":28466.5, "replies<gx:number>":2210.0, "quotes<gx:number>":444.0 }, "max":{ "id<gx:category>":1.391422726e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30308047.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36168.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":205169.0, "favorites<gx:number>":889245.0, "replies<gx:number>":29351.0, "quotes<gx:number>":57012.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "id<gx:category>":491.0, "author_id<gx:category>":491.0, "user_favourites_count<gx:number>":491.0, "user_followers_count<gx:number>":491.0, "user_following_count<gx:number>":491.0, "user_listed_count<gx:number>":491.0, "user_tweets_count<gx:number>":491.0, "retweets<gx:number>":491.0, "favorites<gx:number>":491.0, "replies<gx:number>":491.0, "quotes<gx:number>":491.0 }, "mean":{ "id<gx:category>":1.230895609e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30218726.7454175167, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0590631365, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":5200.4623217923, "favorites<gx:number>":41536.8635437882, "replies<gx:number>":2056.5600814664, "quotes<gx:number>":754.8859470468 }, "std":{ "id<gx:category>":7.194010391e+16, "author_id<gx:category>":0.0, "user_favourites_count<gx:number>":0.0, "user_followers_count<gx:number>":23210.2101437425, "user_following_count<gx:number>":0.0, "user_listed_count<gx:number>":0.2526882771, "user_tweets_count<gx:number>":0.0, "retweets<gx:number>":13471.3749539952, "favorites<gx:number>":99344.577018021, "replies<gx:number>":3666.4962808525, "quotes<gx:number>":3078.002195837 }, "min":{ "id<gx:category>":1.100456021e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212691.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36166.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":85.0, "favorites<gx:number>":393.0, "replies<gx:number>":22.0, "quotes<gx:number>":0.0 }, "25%":{ "id<gx:category>":1.16465648e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212703.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":249.0, "favorites<gx:number>":1245.5, "replies<gx:number>":156.0, "quotes<gx:number>":22.0 }, "50%":{ "id<gx:category>":1.229553614e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212708.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":1218.0, "favorites<gx:number>":5730.0, "replies<gx:number>":552.0, "quotes<gx:number>":90.0 }, "75%":{ "id<gx:category>":1.296563283e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212712.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":4589.5, "favorites<gx:number>":28466.5, "replies<gx:number>":2210.0, "quotes<gx:number>":444.0 }, "max":{ "id<gx:category>":1.391422726e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30308047.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36168.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":205169.0, "favorites<gx:number>":889245.0, "replies<gx:number>":29351.0, "quotes<gx:number>":57012.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: Does the author with the most retweets also have the most replies? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: Does the author with the most retweets also have the most replies? df.columns = ['id<gx:category>', 'author_id<gx:category>', 'author_name<gx:category>', 'author_handler<gx:category>', 'author_avatar<gx:url>', 'user_created_at<gx:date>', 'user_description<gx:text>', 'user_favourites_count<gx:number>', 'user_followers_count<gx:number>', 'user_following_count<gx:number>', 'user_listed_count<gx:number>', 'user_tweets_count<gx:number>', 'user_verified<gx:boolean>', 'user_location<gx:text>', 'lang<gx:category>', 'type<gx:category>', 'text<gx:text>', 'date<gx:date>', 'mention_ids<gx:list[category]>', 'mention_names<gx:list[category]>', 'retweets<gx:number>', 'favorites<gx:number>', 'replies<gx:number>', 'quotes<gx:number>', 'links<gx:list[url]>', 'links_first<gx:url>', 'image_links<gx:list[url]>', 'image_links_first<gx:url>', 'rp_user_id<gx:category>', 'rp_user_name<gx:category>', 'location<gx:text>', 'tweet_link<gx:url>', 'source<gx:text>', 'search<gx:category>'] # Expected output type: is boolean, this will be checked. return
20250129013716
84
What is the maximum number of followers an author in the dataset has?
054_Joe
dev
number
['user_followers_count<gx:number>']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "id<gx:category>", "type": "int64" }, { "name": "author_id<gx:category>", "type": "uint32" }, { "name": "author_name<gx:category>", "type": "category" }, { "name": "author_handler<gx:category>", "type": "category" }, { "name": "author_avatar<gx:url>", "type": "category" }, { "name": "user_created_at<gx:date>", "type": "datetime64[ns, UTC]" }, { "name": "user_description<gx:text>", "type": "category" }, { "name": "user_favourites_count<gx:number>", "type": "uint8" }, { "name": "user_followers_count<gx:number>", "type": "uint32" }, { "name": "user_following_count<gx:number>", "type": "uint8" }, { "name": "user_listed_count<gx:number>", "type": "uint16" }, { "name": "user_tweets_count<gx:number>", "type": "uint16" }, { "name": "user_verified<gx:boolean>", "type": "bool" }, { "name": "user_location<gx:text>", "type": "category" }, { "name": "lang<gx:category>", "type": "category" }, { "name": "type<gx:category>", "type": "category" }, { "name": "text<gx:text>", "type": "object" }, { "name": "date<gx:date>", "type": "datetime64[ns, UTC]" }, { "name": "mention_ids<gx:list[category]>", "type": "object" }, { "name": "mention_names<gx:list[category]>", "type": "object" }, { "name": "retweets<gx:number>", "type": "uint32" }, { "name": "favorites<gx:number>", "type": "uint32" }, { "name": "replies<gx:number>", "type": "uint16" }, { "name": "quotes<gx:number>", "type": "uint16" }, { "name": "links<gx:list[url]>", "type": "object" }, { "name": "links_first<gx:url>", "type": "category" }, { "name": "image_links<gx:list[url]>", "type": "object" }, { "name": "image_links_first<gx:url>", "type": "category" }, { "name": "rp_user_id<gx:category>", "type": "category" }, { "name": "rp_user_name<gx:category>", "type": "category" }, { "name": "location<gx:text>", "type": "category" }, { "name": "tweet_link<gx:url>", "type": "category" }, { "name": "source<gx:text>", "type": "category" }, { "name": "search<gx:category>", "type": "category" } ] } # Description of dataframe columns. df_descrption = { "count":{ "id<gx:category>":491.0, "author_id<gx:category>":491.0, "user_favourites_count<gx:number>":491.0, "user_followers_count<gx:number>":491.0, "user_following_count<gx:number>":491.0, "user_listed_count<gx:number>":491.0, "user_tweets_count<gx:number>":491.0, "retweets<gx:number>":491.0, "favorites<gx:number>":491.0, "replies<gx:number>":491.0, "quotes<gx:number>":491.0 }, "mean":{ "id<gx:category>":1.230895609e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30218726.7454175167, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0590631365, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":5200.4623217923, "favorites<gx:number>":41536.8635437882, "replies<gx:number>":2056.5600814664, "quotes<gx:number>":754.8859470468 }, "std":{ "id<gx:category>":7.194010391e+16, "author_id<gx:category>":0.0, "user_favourites_count<gx:number>":0.0, "user_followers_count<gx:number>":23210.2101437425, "user_following_count<gx:number>":0.0, "user_listed_count<gx:number>":0.2526882771, "user_tweets_count<gx:number>":0.0, "retweets<gx:number>":13471.3749539952, "favorites<gx:number>":99344.577018021, "replies<gx:number>":3666.4962808525, "quotes<gx:number>":3078.002195837 }, "min":{ "id<gx:category>":1.100456021e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212691.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36166.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":85.0, "favorites<gx:number>":393.0, "replies<gx:number>":22.0, "quotes<gx:number>":0.0 }, "25%":{ "id<gx:category>":1.16465648e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212703.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":249.0, "favorites<gx:number>":1245.5, "replies<gx:number>":156.0, "quotes<gx:number>":22.0 }, "50%":{ "id<gx:category>":1.229553614e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212708.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":1218.0, "favorites<gx:number>":5730.0, "replies<gx:number>":552.0, "quotes<gx:number>":90.0 }, "75%":{ "id<gx:category>":1.296563283e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212712.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":4589.5, "favorites<gx:number>":28466.5, "replies<gx:number>":2210.0, "quotes<gx:number>":444.0 }, "max":{ "id<gx:category>":1.391422726e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30308047.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36168.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":205169.0, "favorites<gx:number>":889245.0, "replies<gx:number>":29351.0, "quotes<gx:number>":57012.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "id<gx:category>":491.0, "author_id<gx:category>":491.0, "user_favourites_count<gx:number>":491.0, "user_followers_count<gx:number>":491.0, "user_following_count<gx:number>":491.0, "user_listed_count<gx:number>":491.0, "user_tweets_count<gx:number>":491.0, "retweets<gx:number>":491.0, "favorites<gx:number>":491.0, "replies<gx:number>":491.0, "quotes<gx:number>":491.0 }, "mean":{ "id<gx:category>":1.230895609e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30218726.7454175167, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0590631365, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":5200.4623217923, "favorites<gx:number>":41536.8635437882, "replies<gx:number>":2056.5600814664, "quotes<gx:number>":754.8859470468 }, "std":{ "id<gx:category>":7.194010391e+16, "author_id<gx:category>":0.0, "user_favourites_count<gx:number>":0.0, "user_followers_count<gx:number>":23210.2101437425, "user_following_count<gx:number>":0.0, "user_listed_count<gx:number>":0.2526882771, "user_tweets_count<gx:number>":0.0, "retweets<gx:number>":13471.3749539952, "favorites<gx:number>":99344.577018021, "replies<gx:number>":3666.4962808525, "quotes<gx:number>":3078.002195837 }, "min":{ "id<gx:category>":1.100456021e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212691.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36166.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":85.0, "favorites<gx:number>":393.0, "replies<gx:number>":22.0, "quotes<gx:number>":0.0 }, "25%":{ "id<gx:category>":1.16465648e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212703.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":249.0, "favorites<gx:number>":1245.5, "replies<gx:number>":156.0, "quotes<gx:number>":22.0 }, "50%":{ "id<gx:category>":1.229553614e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212708.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":1218.0, "favorites<gx:number>":5730.0, "replies<gx:number>":552.0, "quotes<gx:number>":90.0 }, "75%":{ "id<gx:category>":1.296563283e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212712.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":4589.5, "favorites<gx:number>":28466.5, "replies<gx:number>":2210.0, "quotes<gx:number>":444.0 }, "max":{ "id<gx:category>":1.391422726e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30308047.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36168.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":205169.0, "favorites<gx:number>":889245.0, "replies<gx:number>":29351.0, "quotes<gx:number>":57012.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: What is the maximum number of followers an author in the dataset has? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: What is the maximum number of followers an author in the dataset has? df.columns = ['id<gx:category>', 'author_id<gx:category>', 'author_name<gx:category>', 'author_handler<gx:category>', 'author_avatar<gx:url>', 'user_created_at<gx:date>', 'user_description<gx:text>', 'user_favourites_count<gx:number>', 'user_followers_count<gx:number>', 'user_following_count<gx:number>', 'user_listed_count<gx:number>', 'user_tweets_count<gx:number>', 'user_verified<gx:boolean>', 'user_location<gx:text>', 'lang<gx:category>', 'type<gx:category>', 'text<gx:text>', 'date<gx:date>', 'mention_ids<gx:list[category]>', 'mention_names<gx:list[category]>', 'retweets<gx:number>', 'favorites<gx:number>', 'replies<gx:number>', 'quotes<gx:number>', 'links<gx:list[url]>', 'links_first<gx:url>', 'image_links<gx:list[url]>', 'image_links_first<gx:url>', 'rp_user_id<gx:category>', 'rp_user_name<gx:category>', 'location<gx:text>', 'tweet_link<gx:url>', 'source<gx:text>', 'search<gx:category>'] # Expected output type: is number, this will be checked. return
20250129013716
85
How many authors have tweets which have received more than 10,000 favourites?
054_Joe
dev
number
['favorites<gx:number>']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "id<gx:category>", "type": "int64" }, { "name": "author_id<gx:category>", "type": "uint32" }, { "name": "author_name<gx:category>", "type": "category" }, { "name": "author_handler<gx:category>", "type": "category" }, { "name": "author_avatar<gx:url>", "type": "category" }, { "name": "user_created_at<gx:date>", "type": "datetime64[ns, UTC]" }, { "name": "user_description<gx:text>", "type": "category" }, { "name": "user_favourites_count<gx:number>", "type": "uint8" }, { "name": "user_followers_count<gx:number>", "type": "uint32" }, { "name": "user_following_count<gx:number>", "type": "uint8" }, { "name": "user_listed_count<gx:number>", "type": "uint16" }, { "name": "user_tweets_count<gx:number>", "type": "uint16" }, { "name": "user_verified<gx:boolean>", "type": "bool" }, { "name": "user_location<gx:text>", "type": "category" }, { "name": "lang<gx:category>", "type": "category" }, { "name": "type<gx:category>", "type": "category" }, { "name": "text<gx:text>", "type": "object" }, { "name": "date<gx:date>", "type": "datetime64[ns, UTC]" }, { "name": "mention_ids<gx:list[category]>", "type": "object" }, { "name": "mention_names<gx:list[category]>", "type": "object" }, { "name": "retweets<gx:number>", "type": "uint32" }, { "name": "favorites<gx:number>", "type": "uint32" }, { "name": "replies<gx:number>", "type": "uint16" }, { "name": "quotes<gx:number>", "type": "uint16" }, { "name": "links<gx:list[url]>", "type": "object" }, { "name": "links_first<gx:url>", "type": "category" }, { "name": "image_links<gx:list[url]>", "type": "object" }, { "name": "image_links_first<gx:url>", "type": "category" }, { "name": "rp_user_id<gx:category>", "type": "category" }, { "name": "rp_user_name<gx:category>", "type": "category" }, { "name": "location<gx:text>", "type": "category" }, { "name": "tweet_link<gx:url>", "type": "category" }, { "name": "source<gx:text>", "type": "category" }, { "name": "search<gx:category>", "type": "category" } ] } # Description of dataframe columns. df_descrption = { "count":{ "id<gx:category>":491.0, "author_id<gx:category>":491.0, "user_favourites_count<gx:number>":491.0, "user_followers_count<gx:number>":491.0, "user_following_count<gx:number>":491.0, "user_listed_count<gx:number>":491.0, "user_tweets_count<gx:number>":491.0, "retweets<gx:number>":491.0, "favorites<gx:number>":491.0, "replies<gx:number>":491.0, "quotes<gx:number>":491.0 }, "mean":{ "id<gx:category>":1.230895609e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30218726.7454175167, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0590631365, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":5200.4623217923, "favorites<gx:number>":41536.8635437882, "replies<gx:number>":2056.5600814664, "quotes<gx:number>":754.8859470468 }, "std":{ "id<gx:category>":7.194010391e+16, "author_id<gx:category>":0.0, "user_favourites_count<gx:number>":0.0, "user_followers_count<gx:number>":23210.2101437425, "user_following_count<gx:number>":0.0, "user_listed_count<gx:number>":0.2526882771, "user_tweets_count<gx:number>":0.0, "retweets<gx:number>":13471.3749539952, "favorites<gx:number>":99344.577018021, "replies<gx:number>":3666.4962808525, "quotes<gx:number>":3078.002195837 }, "min":{ "id<gx:category>":1.100456021e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212691.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36166.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":85.0, "favorites<gx:number>":393.0, "replies<gx:number>":22.0, "quotes<gx:number>":0.0 }, "25%":{ "id<gx:category>":1.16465648e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212703.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":249.0, "favorites<gx:number>":1245.5, "replies<gx:number>":156.0, "quotes<gx:number>":22.0 }, "50%":{ "id<gx:category>":1.229553614e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212708.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":1218.0, "favorites<gx:number>":5730.0, "replies<gx:number>":552.0, "quotes<gx:number>":90.0 }, "75%":{ "id<gx:category>":1.296563283e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212712.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":4589.5, "favorites<gx:number>":28466.5, "replies<gx:number>":2210.0, "quotes<gx:number>":444.0 }, "max":{ "id<gx:category>":1.391422726e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30308047.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36168.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":205169.0, "favorites<gx:number>":889245.0, "replies<gx:number>":29351.0, "quotes<gx:number>":57012.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "id<gx:category>":491.0, "author_id<gx:category>":491.0, "user_favourites_count<gx:number>":491.0, "user_followers_count<gx:number>":491.0, "user_following_count<gx:number>":491.0, "user_listed_count<gx:number>":491.0, "user_tweets_count<gx:number>":491.0, "retweets<gx:number>":491.0, "favorites<gx:number>":491.0, "replies<gx:number>":491.0, "quotes<gx:number>":491.0 }, "mean":{ "id<gx:category>":1.230895609e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30218726.7454175167, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0590631365, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":5200.4623217923, "favorites<gx:number>":41536.8635437882, "replies<gx:number>":2056.5600814664, "quotes<gx:number>":754.8859470468 }, "std":{ "id<gx:category>":7.194010391e+16, "author_id<gx:category>":0.0, "user_favourites_count<gx:number>":0.0, "user_followers_count<gx:number>":23210.2101437425, "user_following_count<gx:number>":0.0, "user_listed_count<gx:number>":0.2526882771, "user_tweets_count<gx:number>":0.0, "retweets<gx:number>":13471.3749539952, "favorites<gx:number>":99344.577018021, "replies<gx:number>":3666.4962808525, "quotes<gx:number>":3078.002195837 }, "min":{ "id<gx:category>":1.100456021e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212691.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36166.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":85.0, "favorites<gx:number>":393.0, "replies<gx:number>":22.0, "quotes<gx:number>":0.0 }, "25%":{ "id<gx:category>":1.16465648e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212703.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":249.0, "favorites<gx:number>":1245.5, "replies<gx:number>":156.0, "quotes<gx:number>":22.0 }, "50%":{ "id<gx:category>":1.229553614e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212708.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":1218.0, "favorites<gx:number>":5730.0, "replies<gx:number>":552.0, "quotes<gx:number>":90.0 }, "75%":{ "id<gx:category>":1.296563283e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212712.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":4589.5, "favorites<gx:number>":28466.5, "replies<gx:number>":2210.0, "quotes<gx:number>":444.0 }, "max":{ "id<gx:category>":1.391422726e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30308047.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36168.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":205169.0, "favorites<gx:number>":889245.0, "replies<gx:number>":29351.0, "quotes<gx:number>":57012.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: How many authors have tweets which have received more than 10,000 favourites? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: How many authors have tweets which have received more than 10,000 favourites? df.columns = ['id<gx:category>', 'author_id<gx:category>', 'author_name<gx:category>', 'author_handler<gx:category>', 'author_avatar<gx:url>', 'user_created_at<gx:date>', 'user_description<gx:text>', 'user_favourites_count<gx:number>', 'user_followers_count<gx:number>', 'user_following_count<gx:number>', 'user_listed_count<gx:number>', 'user_tweets_count<gx:number>', 'user_verified<gx:boolean>', 'user_location<gx:text>', 'lang<gx:category>', 'type<gx:category>', 'text<gx:text>', 'date<gx:date>', 'mention_ids<gx:list[category]>', 'mention_names<gx:list[category]>', 'retweets<gx:number>', 'favorites<gx:number>', 'replies<gx:number>', 'quotes<gx:number>', 'links<gx:list[url]>', 'links_first<gx:url>', 'image_links<gx:list[url]>', 'image_links_first<gx:url>', 'rp_user_id<gx:category>', 'rp_user_name<gx:category>', 'location<gx:text>', 'tweet_link<gx:url>', 'source<gx:text>', 'search<gx:category>'] # Expected output type: is number, this will be checked. return
20250129013716
86
How many retweets does the most retweeted tweet have?
054_Joe
dev
number
['retweets<gx:number>']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "id<gx:category>", "type": "int64" }, { "name": "author_id<gx:category>", "type": "uint32" }, { "name": "author_name<gx:category>", "type": "category" }, { "name": "author_handler<gx:category>", "type": "category" }, { "name": "author_avatar<gx:url>", "type": "category" }, { "name": "user_created_at<gx:date>", "type": "datetime64[ns, UTC]" }, { "name": "user_description<gx:text>", "type": "category" }, { "name": "user_favourites_count<gx:number>", "type": "uint8" }, { "name": "user_followers_count<gx:number>", "type": "uint32" }, { "name": "user_following_count<gx:number>", "type": "uint8" }, { "name": "user_listed_count<gx:number>", "type": "uint16" }, { "name": "user_tweets_count<gx:number>", "type": "uint16" }, { "name": "user_verified<gx:boolean>", "type": "bool" }, { "name": "user_location<gx:text>", "type": "category" }, { "name": "lang<gx:category>", "type": "category" }, { "name": "type<gx:category>", "type": "category" }, { "name": "text<gx:text>", "type": "object" }, { "name": "date<gx:date>", "type": "datetime64[ns, UTC]" }, { "name": "mention_ids<gx:list[category]>", "type": "object" }, { "name": "mention_names<gx:list[category]>", "type": "object" }, { "name": "retweets<gx:number>", "type": "uint32" }, { "name": "favorites<gx:number>", "type": "uint32" }, { "name": "replies<gx:number>", "type": "uint16" }, { "name": "quotes<gx:number>", "type": "uint16" }, { "name": "links<gx:list[url]>", "type": "object" }, { "name": "links_first<gx:url>", "type": "category" }, { "name": "image_links<gx:list[url]>", "type": "object" }, { "name": "image_links_first<gx:url>", "type": "category" }, { "name": "rp_user_id<gx:category>", "type": "category" }, { "name": "rp_user_name<gx:category>", "type": "category" }, { "name": "location<gx:text>", "type": "category" }, { "name": "tweet_link<gx:url>", "type": "category" }, { "name": "source<gx:text>", "type": "category" }, { "name": "search<gx:category>", "type": "category" } ] } # Description of dataframe columns. df_descrption = { "count":{ "id<gx:category>":491.0, "author_id<gx:category>":491.0, "user_favourites_count<gx:number>":491.0, "user_followers_count<gx:number>":491.0, "user_following_count<gx:number>":491.0, "user_listed_count<gx:number>":491.0, "user_tweets_count<gx:number>":491.0, "retweets<gx:number>":491.0, "favorites<gx:number>":491.0, "replies<gx:number>":491.0, "quotes<gx:number>":491.0 }, "mean":{ "id<gx:category>":1.230895609e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30218726.7454175167, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0590631365, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":5200.4623217923, "favorites<gx:number>":41536.8635437882, "replies<gx:number>":2056.5600814664, "quotes<gx:number>":754.8859470468 }, "std":{ "id<gx:category>":7.194010391e+16, "author_id<gx:category>":0.0, "user_favourites_count<gx:number>":0.0, "user_followers_count<gx:number>":23210.2101437425, "user_following_count<gx:number>":0.0, "user_listed_count<gx:number>":0.2526882771, "user_tweets_count<gx:number>":0.0, "retweets<gx:number>":13471.3749539952, "favorites<gx:number>":99344.577018021, "replies<gx:number>":3666.4962808525, "quotes<gx:number>":3078.002195837 }, "min":{ "id<gx:category>":1.100456021e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212691.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36166.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":85.0, "favorites<gx:number>":393.0, "replies<gx:number>":22.0, "quotes<gx:number>":0.0 }, "25%":{ "id<gx:category>":1.16465648e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212703.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":249.0, "favorites<gx:number>":1245.5, "replies<gx:number>":156.0, "quotes<gx:number>":22.0 }, "50%":{ "id<gx:category>":1.229553614e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212708.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":1218.0, "favorites<gx:number>":5730.0, "replies<gx:number>":552.0, "quotes<gx:number>":90.0 }, "75%":{ "id<gx:category>":1.296563283e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212712.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":4589.5, "favorites<gx:number>":28466.5, "replies<gx:number>":2210.0, "quotes<gx:number>":444.0 }, "max":{ "id<gx:category>":1.391422726e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30308047.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36168.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":205169.0, "favorites<gx:number>":889245.0, "replies<gx:number>":29351.0, "quotes<gx:number>":57012.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "id<gx:category>":491.0, "author_id<gx:category>":491.0, "user_favourites_count<gx:number>":491.0, "user_followers_count<gx:number>":491.0, "user_following_count<gx:number>":491.0, "user_listed_count<gx:number>":491.0, "user_tweets_count<gx:number>":491.0, "retweets<gx:number>":491.0, "favorites<gx:number>":491.0, "replies<gx:number>":491.0, "quotes<gx:number>":491.0 }, "mean":{ "id<gx:category>":1.230895609e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30218726.7454175167, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0590631365, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":5200.4623217923, "favorites<gx:number>":41536.8635437882, "replies<gx:number>":2056.5600814664, "quotes<gx:number>":754.8859470468 }, "std":{ "id<gx:category>":7.194010391e+16, "author_id<gx:category>":0.0, "user_favourites_count<gx:number>":0.0, "user_followers_count<gx:number>":23210.2101437425, "user_following_count<gx:number>":0.0, "user_listed_count<gx:number>":0.2526882771, "user_tweets_count<gx:number>":0.0, "retweets<gx:number>":13471.3749539952, "favorites<gx:number>":99344.577018021, "replies<gx:number>":3666.4962808525, "quotes<gx:number>":3078.002195837 }, "min":{ "id<gx:category>":1.100456021e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212691.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36166.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":85.0, "favorites<gx:number>":393.0, "replies<gx:number>":22.0, "quotes<gx:number>":0.0 }, "25%":{ "id<gx:category>":1.16465648e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212703.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":249.0, "favorites<gx:number>":1245.5, "replies<gx:number>":156.0, "quotes<gx:number>":22.0 }, "50%":{ "id<gx:category>":1.229553614e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212708.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":1218.0, "favorites<gx:number>":5730.0, "replies<gx:number>":552.0, "quotes<gx:number>":90.0 }, "75%":{ "id<gx:category>":1.296563283e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212712.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":4589.5, "favorites<gx:number>":28466.5, "replies<gx:number>":2210.0, "quotes<gx:number>":444.0 }, "max":{ "id<gx:category>":1.391422726e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30308047.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36168.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":205169.0, "favorites<gx:number>":889245.0, "replies<gx:number>":29351.0, "quotes<gx:number>":57012.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: How many retweets does the most retweeted tweet have? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: How many retweets does the most retweeted tweet have? df.columns = ['id<gx:category>', 'author_id<gx:category>', 'author_name<gx:category>', 'author_handler<gx:category>', 'author_avatar<gx:url>', 'user_created_at<gx:date>', 'user_description<gx:text>', 'user_favourites_count<gx:number>', 'user_followers_count<gx:number>', 'user_following_count<gx:number>', 'user_listed_count<gx:number>', 'user_tweets_count<gx:number>', 'user_verified<gx:boolean>', 'user_location<gx:text>', 'lang<gx:category>', 'type<gx:category>', 'text<gx:text>', 'date<gx:date>', 'mention_ids<gx:list[category]>', 'mention_names<gx:list[category]>', 'retweets<gx:number>', 'favorites<gx:number>', 'replies<gx:number>', 'quotes<gx:number>', 'links<gx:list[url]>', 'links_first<gx:url>', 'image_links<gx:list[url]>', 'image_links_first<gx:url>', 'rp_user_id<gx:category>', 'rp_user_name<gx:category>', 'location<gx:text>', 'tweet_link<gx:url>', 'source<gx:text>', 'search<gx:category>'] # Expected output type: is number, this will be checked. return
20250129013716
87
How many times has the most mentioned user been mentioned?
054_Joe
dev
number
['mention_names<gx:list[category]>']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "id<gx:category>", "type": "int64" }, { "name": "author_id<gx:category>", "type": "uint32" }, { "name": "author_name<gx:category>", "type": "category" }, { "name": "author_handler<gx:category>", "type": "category" }, { "name": "author_avatar<gx:url>", "type": "category" }, { "name": "user_created_at<gx:date>", "type": "datetime64[ns, UTC]" }, { "name": "user_description<gx:text>", "type": "category" }, { "name": "user_favourites_count<gx:number>", "type": "uint8" }, { "name": "user_followers_count<gx:number>", "type": "uint32" }, { "name": "user_following_count<gx:number>", "type": "uint8" }, { "name": "user_listed_count<gx:number>", "type": "uint16" }, { "name": "user_tweets_count<gx:number>", "type": "uint16" }, { "name": "user_verified<gx:boolean>", "type": "bool" }, { "name": "user_location<gx:text>", "type": "category" }, { "name": "lang<gx:category>", "type": "category" }, { "name": "type<gx:category>", "type": "category" }, { "name": "text<gx:text>", "type": "object" }, { "name": "date<gx:date>", "type": "datetime64[ns, UTC]" }, { "name": "mention_ids<gx:list[category]>", "type": "object" }, { "name": "mention_names<gx:list[category]>", "type": "object" }, { "name": "retweets<gx:number>", "type": "uint32" }, { "name": "favorites<gx:number>", "type": "uint32" }, { "name": "replies<gx:number>", "type": "uint16" }, { "name": "quotes<gx:number>", "type": "uint16" }, { "name": "links<gx:list[url]>", "type": "object" }, { "name": "links_first<gx:url>", "type": "category" }, { "name": "image_links<gx:list[url]>", "type": "object" }, { "name": "image_links_first<gx:url>", "type": "category" }, { "name": "rp_user_id<gx:category>", "type": "category" }, { "name": "rp_user_name<gx:category>", "type": "category" }, { "name": "location<gx:text>", "type": "category" }, { "name": "tweet_link<gx:url>", "type": "category" }, { "name": "source<gx:text>", "type": "category" }, { "name": "search<gx:category>", "type": "category" } ] } # Description of dataframe columns. df_descrption = { "count":{ "id<gx:category>":491.0, "author_id<gx:category>":491.0, "user_favourites_count<gx:number>":491.0, "user_followers_count<gx:number>":491.0, "user_following_count<gx:number>":491.0, "user_listed_count<gx:number>":491.0, "user_tweets_count<gx:number>":491.0, "retweets<gx:number>":491.0, "favorites<gx:number>":491.0, "replies<gx:number>":491.0, "quotes<gx:number>":491.0 }, "mean":{ "id<gx:category>":1.230895609e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30218726.7454175167, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0590631365, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":5200.4623217923, "favorites<gx:number>":41536.8635437882, "replies<gx:number>":2056.5600814664, "quotes<gx:number>":754.8859470468 }, "std":{ "id<gx:category>":7.194010391e+16, "author_id<gx:category>":0.0, "user_favourites_count<gx:number>":0.0, "user_followers_count<gx:number>":23210.2101437425, "user_following_count<gx:number>":0.0, "user_listed_count<gx:number>":0.2526882771, "user_tweets_count<gx:number>":0.0, "retweets<gx:number>":13471.3749539952, "favorites<gx:number>":99344.577018021, "replies<gx:number>":3666.4962808525, "quotes<gx:number>":3078.002195837 }, "min":{ "id<gx:category>":1.100456021e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212691.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36166.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":85.0, "favorites<gx:number>":393.0, "replies<gx:number>":22.0, "quotes<gx:number>":0.0 }, "25%":{ "id<gx:category>":1.16465648e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212703.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":249.0, "favorites<gx:number>":1245.5, "replies<gx:number>":156.0, "quotes<gx:number>":22.0 }, "50%":{ "id<gx:category>":1.229553614e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212708.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":1218.0, "favorites<gx:number>":5730.0, "replies<gx:number>":552.0, "quotes<gx:number>":90.0 }, "75%":{ "id<gx:category>":1.296563283e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212712.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":4589.5, "favorites<gx:number>":28466.5, "replies<gx:number>":2210.0, "quotes<gx:number>":444.0 }, "max":{ "id<gx:category>":1.391422726e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30308047.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36168.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":205169.0, "favorites<gx:number>":889245.0, "replies<gx:number>":29351.0, "quotes<gx:number>":57012.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "id<gx:category>":491.0, "author_id<gx:category>":491.0, "user_favourites_count<gx:number>":491.0, "user_followers_count<gx:number>":491.0, "user_following_count<gx:number>":491.0, "user_listed_count<gx:number>":491.0, "user_tweets_count<gx:number>":491.0, "retweets<gx:number>":491.0, "favorites<gx:number>":491.0, "replies<gx:number>":491.0, "quotes<gx:number>":491.0 }, "mean":{ "id<gx:category>":1.230895609e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30218726.7454175167, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0590631365, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":5200.4623217923, "favorites<gx:number>":41536.8635437882, "replies<gx:number>":2056.5600814664, "quotes<gx:number>":754.8859470468 }, "std":{ "id<gx:category>":7.194010391e+16, "author_id<gx:category>":0.0, "user_favourites_count<gx:number>":0.0, "user_followers_count<gx:number>":23210.2101437425, "user_following_count<gx:number>":0.0, "user_listed_count<gx:number>":0.2526882771, "user_tweets_count<gx:number>":0.0, "retweets<gx:number>":13471.3749539952, "favorites<gx:number>":99344.577018021, "replies<gx:number>":3666.4962808525, "quotes<gx:number>":3078.002195837 }, "min":{ "id<gx:category>":1.100456021e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212691.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36166.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":85.0, "favorites<gx:number>":393.0, "replies<gx:number>":22.0, "quotes<gx:number>":0.0 }, "25%":{ "id<gx:category>":1.16465648e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212703.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":249.0, "favorites<gx:number>":1245.5, "replies<gx:number>":156.0, "quotes<gx:number>":22.0 }, "50%":{ "id<gx:category>":1.229553614e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212708.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":1218.0, "favorites<gx:number>":5730.0, "replies<gx:number>":552.0, "quotes<gx:number>":90.0 }, "75%":{ "id<gx:category>":1.296563283e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212712.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":4589.5, "favorites<gx:number>":28466.5, "replies<gx:number>":2210.0, "quotes<gx:number>":444.0 }, "max":{ "id<gx:category>":1.391422726e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30308047.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36168.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":205169.0, "favorites<gx:number>":889245.0, "replies<gx:number>":29351.0, "quotes<gx:number>":57012.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: How many times has the most mentioned user been mentioned? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: How many times has the most mentioned user been mentioned? df.columns = ['id<gx:category>', 'author_id<gx:category>', 'author_name<gx:category>', 'author_handler<gx:category>', 'author_avatar<gx:url>', 'user_created_at<gx:date>', 'user_description<gx:text>', 'user_favourites_count<gx:number>', 'user_followers_count<gx:number>', 'user_following_count<gx:number>', 'user_listed_count<gx:number>', 'user_tweets_count<gx:number>', 'user_verified<gx:boolean>', 'user_location<gx:text>', 'lang<gx:category>', 'type<gx:category>', 'text<gx:text>', 'date<gx:date>', 'mention_ids<gx:list[category]>', 'mention_names<gx:list[category]>', 'retweets<gx:number>', 'favorites<gx:number>', 'replies<gx:number>', 'quotes<gx:number>', 'links<gx:list[url]>', 'links_first<gx:url>', 'image_links<gx:list[url]>', 'image_links_first<gx:url>', 'rp_user_id<gx:category>', 'rp_user_name<gx:category>', 'location<gx:text>', 'tweet_link<gx:url>', 'source<gx:text>', 'search<gx:category>'] # Expected output type: is number, this will be checked. return
20250129013716
88
Who is the author with the most followers?
054_Joe
dev
category
['author_name<gx:category>', 'user_followers_count<gx:number>']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "id<gx:category>", "type": "int64" }, { "name": "author_id<gx:category>", "type": "uint32" }, { "name": "author_name<gx:category>", "type": "category" }, { "name": "author_handler<gx:category>", "type": "category" }, { "name": "author_avatar<gx:url>", "type": "category" }, { "name": "user_created_at<gx:date>", "type": "datetime64[ns, UTC]" }, { "name": "user_description<gx:text>", "type": "category" }, { "name": "user_favourites_count<gx:number>", "type": "uint8" }, { "name": "user_followers_count<gx:number>", "type": "uint32" }, { "name": "user_following_count<gx:number>", "type": "uint8" }, { "name": "user_listed_count<gx:number>", "type": "uint16" }, { "name": "user_tweets_count<gx:number>", "type": "uint16" }, { "name": "user_verified<gx:boolean>", "type": "bool" }, { "name": "user_location<gx:text>", "type": "category" }, { "name": "lang<gx:category>", "type": "category" }, { "name": "type<gx:category>", "type": "category" }, { "name": "text<gx:text>", "type": "object" }, { "name": "date<gx:date>", "type": "datetime64[ns, UTC]" }, { "name": "mention_ids<gx:list[category]>", "type": "object" }, { "name": "mention_names<gx:list[category]>", "type": "object" }, { "name": "retweets<gx:number>", "type": "uint32" }, { "name": "favorites<gx:number>", "type": "uint32" }, { "name": "replies<gx:number>", "type": "uint16" }, { "name": "quotes<gx:number>", "type": "uint16" }, { "name": "links<gx:list[url]>", "type": "object" }, { "name": "links_first<gx:url>", "type": "category" }, { "name": "image_links<gx:list[url]>", "type": "object" }, { "name": "image_links_first<gx:url>", "type": "category" }, { "name": "rp_user_id<gx:category>", "type": "category" }, { "name": "rp_user_name<gx:category>", "type": "category" }, { "name": "location<gx:text>", "type": "category" }, { "name": "tweet_link<gx:url>", "type": "category" }, { "name": "source<gx:text>", "type": "category" }, { "name": "search<gx:category>", "type": "category" } ] } # Description of dataframe columns. df_descrption = { "count":{ "id<gx:category>":491.0, "author_id<gx:category>":491.0, "user_favourites_count<gx:number>":491.0, "user_followers_count<gx:number>":491.0, "user_following_count<gx:number>":491.0, "user_listed_count<gx:number>":491.0, "user_tweets_count<gx:number>":491.0, "retweets<gx:number>":491.0, "favorites<gx:number>":491.0, "replies<gx:number>":491.0, "quotes<gx:number>":491.0 }, "mean":{ "id<gx:category>":1.230895609e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30218726.7454175167, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0590631365, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":5200.4623217923, "favorites<gx:number>":41536.8635437882, "replies<gx:number>":2056.5600814664, "quotes<gx:number>":754.8859470468 }, "std":{ "id<gx:category>":7.194010391e+16, "author_id<gx:category>":0.0, "user_favourites_count<gx:number>":0.0, "user_followers_count<gx:number>":23210.2101437425, "user_following_count<gx:number>":0.0, "user_listed_count<gx:number>":0.2526882771, "user_tweets_count<gx:number>":0.0, "retweets<gx:number>":13471.3749539952, "favorites<gx:number>":99344.577018021, "replies<gx:number>":3666.4962808525, "quotes<gx:number>":3078.002195837 }, "min":{ "id<gx:category>":1.100456021e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212691.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36166.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":85.0, "favorites<gx:number>":393.0, "replies<gx:number>":22.0, "quotes<gx:number>":0.0 }, "25%":{ "id<gx:category>":1.16465648e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212703.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":249.0, "favorites<gx:number>":1245.5, "replies<gx:number>":156.0, "quotes<gx:number>":22.0 }, "50%":{ "id<gx:category>":1.229553614e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212708.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":1218.0, "favorites<gx:number>":5730.0, "replies<gx:number>":552.0, "quotes<gx:number>":90.0 }, "75%":{ "id<gx:category>":1.296563283e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212712.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":4589.5, "favorites<gx:number>":28466.5, "replies<gx:number>":2210.0, "quotes<gx:number>":444.0 }, "max":{ "id<gx:category>":1.391422726e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30308047.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36168.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":205169.0, "favorites<gx:number>":889245.0, "replies<gx:number>":29351.0, "quotes<gx:number>":57012.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "id<gx:category>":491.0, "author_id<gx:category>":491.0, "user_favourites_count<gx:number>":491.0, "user_followers_count<gx:number>":491.0, "user_following_count<gx:number>":491.0, "user_listed_count<gx:number>":491.0, "user_tweets_count<gx:number>":491.0, "retweets<gx:number>":491.0, "favorites<gx:number>":491.0, "replies<gx:number>":491.0, "quotes<gx:number>":491.0 }, "mean":{ "id<gx:category>":1.230895609e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30218726.7454175167, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0590631365, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":5200.4623217923, "favorites<gx:number>":41536.8635437882, "replies<gx:number>":2056.5600814664, "quotes<gx:number>":754.8859470468 }, "std":{ "id<gx:category>":7.194010391e+16, "author_id<gx:category>":0.0, "user_favourites_count<gx:number>":0.0, "user_followers_count<gx:number>":23210.2101437425, "user_following_count<gx:number>":0.0, "user_listed_count<gx:number>":0.2526882771, "user_tweets_count<gx:number>":0.0, "retweets<gx:number>":13471.3749539952, "favorites<gx:number>":99344.577018021, "replies<gx:number>":3666.4962808525, "quotes<gx:number>":3078.002195837 }, "min":{ "id<gx:category>":1.100456021e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212691.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36166.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":85.0, "favorites<gx:number>":393.0, "replies<gx:number>":22.0, "quotes<gx:number>":0.0 }, "25%":{ "id<gx:category>":1.16465648e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212703.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":249.0, "favorites<gx:number>":1245.5, "replies<gx:number>":156.0, "quotes<gx:number>":22.0 }, "50%":{ "id<gx:category>":1.229553614e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212708.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":1218.0, "favorites<gx:number>":5730.0, "replies<gx:number>":552.0, "quotes<gx:number>":90.0 }, "75%":{ "id<gx:category>":1.296563283e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212712.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":4589.5, "favorites<gx:number>":28466.5, "replies<gx:number>":2210.0, "quotes<gx:number>":444.0 }, "max":{ "id<gx:category>":1.391422726e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30308047.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36168.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":205169.0, "favorites<gx:number>":889245.0, "replies<gx:number>":29351.0, "quotes<gx:number>":57012.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: Who is the author with the most followers? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: Who is the author with the most followers? df.columns = ['id<gx:category>', 'author_id<gx:category>', 'author_name<gx:category>', 'author_handler<gx:category>', 'author_avatar<gx:url>', 'user_created_at<gx:date>', 'user_description<gx:text>', 'user_favourites_count<gx:number>', 'user_followers_count<gx:number>', 'user_following_count<gx:number>', 'user_listed_count<gx:number>', 'user_tweets_count<gx:number>', 'user_verified<gx:boolean>', 'user_location<gx:text>', 'lang<gx:category>', 'type<gx:category>', 'text<gx:text>', 'date<gx:date>', 'mention_ids<gx:list[category]>', 'mention_names<gx:list[category]>', 'retweets<gx:number>', 'favorites<gx:number>', 'replies<gx:number>', 'quotes<gx:number>', 'links<gx:list[url]>', 'links_first<gx:url>', 'image_links<gx:list[url]>', 'image_links_first<gx:url>', 'rp_user_id<gx:category>', 'rp_user_name<gx:category>', 'location<gx:text>', 'tweet_link<gx:url>', 'source<gx:text>', 'search<gx:category>'] # Expected output type: is category, this will be checked. return
20250129013716
89
Who is the author with the highest number of user favourites?
054_Joe
dev
category
['author_name<gx:category>', 'user_favourites_count<gx:number>']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "id<gx:category>", "type": "int64" }, { "name": "author_id<gx:category>", "type": "uint32" }, { "name": "author_name<gx:category>", "type": "category" }, { "name": "author_handler<gx:category>", "type": "category" }, { "name": "author_avatar<gx:url>", "type": "category" }, { "name": "user_created_at<gx:date>", "type": "datetime64[ns, UTC]" }, { "name": "user_description<gx:text>", "type": "category" }, { "name": "user_favourites_count<gx:number>", "type": "uint8" }, { "name": "user_followers_count<gx:number>", "type": "uint32" }, { "name": "user_following_count<gx:number>", "type": "uint8" }, { "name": "user_listed_count<gx:number>", "type": "uint16" }, { "name": "user_tweets_count<gx:number>", "type": "uint16" }, { "name": "user_verified<gx:boolean>", "type": "bool" }, { "name": "user_location<gx:text>", "type": "category" }, { "name": "lang<gx:category>", "type": "category" }, { "name": "type<gx:category>", "type": "category" }, { "name": "text<gx:text>", "type": "object" }, { "name": "date<gx:date>", "type": "datetime64[ns, UTC]" }, { "name": "mention_ids<gx:list[category]>", "type": "object" }, { "name": "mention_names<gx:list[category]>", "type": "object" }, { "name": "retweets<gx:number>", "type": "uint32" }, { "name": "favorites<gx:number>", "type": "uint32" }, { "name": "replies<gx:number>", "type": "uint16" }, { "name": "quotes<gx:number>", "type": "uint16" }, { "name": "links<gx:list[url]>", "type": "object" }, { "name": "links_first<gx:url>", "type": "category" }, { "name": "image_links<gx:list[url]>", "type": "object" }, { "name": "image_links_first<gx:url>", "type": "category" }, { "name": "rp_user_id<gx:category>", "type": "category" }, { "name": "rp_user_name<gx:category>", "type": "category" }, { "name": "location<gx:text>", "type": "category" }, { "name": "tweet_link<gx:url>", "type": "category" }, { "name": "source<gx:text>", "type": "category" }, { "name": "search<gx:category>", "type": "category" } ] } # Description of dataframe columns. df_descrption = { "count":{ "id<gx:category>":491.0, "author_id<gx:category>":491.0, "user_favourites_count<gx:number>":491.0, "user_followers_count<gx:number>":491.0, "user_following_count<gx:number>":491.0, "user_listed_count<gx:number>":491.0, "user_tweets_count<gx:number>":491.0, "retweets<gx:number>":491.0, "favorites<gx:number>":491.0, "replies<gx:number>":491.0, "quotes<gx:number>":491.0 }, "mean":{ "id<gx:category>":1.230895609e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30218726.7454175167, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0590631365, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":5200.4623217923, "favorites<gx:number>":41536.8635437882, "replies<gx:number>":2056.5600814664, "quotes<gx:number>":754.8859470468 }, "std":{ "id<gx:category>":7.194010391e+16, "author_id<gx:category>":0.0, "user_favourites_count<gx:number>":0.0, "user_followers_count<gx:number>":23210.2101437425, "user_following_count<gx:number>":0.0, "user_listed_count<gx:number>":0.2526882771, "user_tweets_count<gx:number>":0.0, "retweets<gx:number>":13471.3749539952, "favorites<gx:number>":99344.577018021, "replies<gx:number>":3666.4962808525, "quotes<gx:number>":3078.002195837 }, "min":{ "id<gx:category>":1.100456021e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212691.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36166.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":85.0, "favorites<gx:number>":393.0, "replies<gx:number>":22.0, "quotes<gx:number>":0.0 }, "25%":{ "id<gx:category>":1.16465648e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212703.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":249.0, "favorites<gx:number>":1245.5, "replies<gx:number>":156.0, "quotes<gx:number>":22.0 }, "50%":{ "id<gx:category>":1.229553614e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212708.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":1218.0, "favorites<gx:number>":5730.0, "replies<gx:number>":552.0, "quotes<gx:number>":90.0 }, "75%":{ "id<gx:category>":1.296563283e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212712.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":4589.5, "favorites<gx:number>":28466.5, "replies<gx:number>":2210.0, "quotes<gx:number>":444.0 }, "max":{ "id<gx:category>":1.391422726e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30308047.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36168.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":205169.0, "favorites<gx:number>":889245.0, "replies<gx:number>":29351.0, "quotes<gx:number>":57012.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "id<gx:category>":491.0, "author_id<gx:category>":491.0, "user_favourites_count<gx:number>":491.0, "user_followers_count<gx:number>":491.0, "user_following_count<gx:number>":491.0, "user_listed_count<gx:number>":491.0, "user_tweets_count<gx:number>":491.0, "retweets<gx:number>":491.0, "favorites<gx:number>":491.0, "replies<gx:number>":491.0, "quotes<gx:number>":491.0 }, "mean":{ "id<gx:category>":1.230895609e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30218726.7454175167, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0590631365, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":5200.4623217923, "favorites<gx:number>":41536.8635437882, "replies<gx:number>":2056.5600814664, "quotes<gx:number>":754.8859470468 }, "std":{ "id<gx:category>":7.194010391e+16, "author_id<gx:category>":0.0, "user_favourites_count<gx:number>":0.0, "user_followers_count<gx:number>":23210.2101437425, "user_following_count<gx:number>":0.0, "user_listed_count<gx:number>":0.2526882771, "user_tweets_count<gx:number>":0.0, "retweets<gx:number>":13471.3749539952, "favorites<gx:number>":99344.577018021, "replies<gx:number>":3666.4962808525, "quotes<gx:number>":3078.002195837 }, "min":{ "id<gx:category>":1.100456021e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212691.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36166.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":85.0, "favorites<gx:number>":393.0, "replies<gx:number>":22.0, "quotes<gx:number>":0.0 }, "25%":{ "id<gx:category>":1.16465648e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212703.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":249.0, "favorites<gx:number>":1245.5, "replies<gx:number>":156.0, "quotes<gx:number>":22.0 }, "50%":{ "id<gx:category>":1.229553614e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212708.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":1218.0, "favorites<gx:number>":5730.0, "replies<gx:number>":552.0, "quotes<gx:number>":90.0 }, "75%":{ "id<gx:category>":1.296563283e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212712.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":4589.5, "favorites<gx:number>":28466.5, "replies<gx:number>":2210.0, "quotes<gx:number>":444.0 }, "max":{ "id<gx:category>":1.391422726e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30308047.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36168.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":205169.0, "favorites<gx:number>":889245.0, "replies<gx:number>":29351.0, "quotes<gx:number>":57012.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: Who is the author with the highest number of user favourites? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: Who is the author with the highest number of user favourites? df.columns = ['id<gx:category>', 'author_id<gx:category>', 'author_name<gx:category>', 'author_handler<gx:category>', 'author_avatar<gx:url>', 'user_created_at<gx:date>', 'user_description<gx:text>', 'user_favourites_count<gx:number>', 'user_followers_count<gx:number>', 'user_following_count<gx:number>', 'user_listed_count<gx:number>', 'user_tweets_count<gx:number>', 'user_verified<gx:boolean>', 'user_location<gx:text>', 'lang<gx:category>', 'type<gx:category>', 'text<gx:text>', 'date<gx:date>', 'mention_ids<gx:list[category]>', 'mention_names<gx:list[category]>', 'retweets<gx:number>', 'favorites<gx:number>', 'replies<gx:number>', 'quotes<gx:number>', 'links<gx:list[url]>', 'links_first<gx:url>', 'image_links<gx:list[url]>', 'image_links_first<gx:url>', 'rp_user_id<gx:category>', 'rp_user_name<gx:category>', 'location<gx:text>', 'tweet_link<gx:url>', 'source<gx:text>', 'search<gx:category>'] # Expected output type: is category, this will be checked. return
20250129013716
90
What is the name of the user who is most often named in the dataset?
054_Joe
dev
category
['author_name<gx:category>', 'mention_names<gx:list[category]>']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "id<gx:category>", "type": "int64" }, { "name": "author_id<gx:category>", "type": "uint32" }, { "name": "author_name<gx:category>", "type": "category" }, { "name": "author_handler<gx:category>", "type": "category" }, { "name": "author_avatar<gx:url>", "type": "category" }, { "name": "user_created_at<gx:date>", "type": "datetime64[ns, UTC]" }, { "name": "user_description<gx:text>", "type": "category" }, { "name": "user_favourites_count<gx:number>", "type": "uint8" }, { "name": "user_followers_count<gx:number>", "type": "uint32" }, { "name": "user_following_count<gx:number>", "type": "uint8" }, { "name": "user_listed_count<gx:number>", "type": "uint16" }, { "name": "user_tweets_count<gx:number>", "type": "uint16" }, { "name": "user_verified<gx:boolean>", "type": "bool" }, { "name": "user_location<gx:text>", "type": "category" }, { "name": "lang<gx:category>", "type": "category" }, { "name": "type<gx:category>", "type": "category" }, { "name": "text<gx:text>", "type": "object" }, { "name": "date<gx:date>", "type": "datetime64[ns, UTC]" }, { "name": "mention_ids<gx:list[category]>", "type": "object" }, { "name": "mention_names<gx:list[category]>", "type": "object" }, { "name": "retweets<gx:number>", "type": "uint32" }, { "name": "favorites<gx:number>", "type": "uint32" }, { "name": "replies<gx:number>", "type": "uint16" }, { "name": "quotes<gx:number>", "type": "uint16" }, { "name": "links<gx:list[url]>", "type": "object" }, { "name": "links_first<gx:url>", "type": "category" }, { "name": "image_links<gx:list[url]>", "type": "object" }, { "name": "image_links_first<gx:url>", "type": "category" }, { "name": "rp_user_id<gx:category>", "type": "category" }, { "name": "rp_user_name<gx:category>", "type": "category" }, { "name": "location<gx:text>", "type": "category" }, { "name": "tweet_link<gx:url>", "type": "category" }, { "name": "source<gx:text>", "type": "category" }, { "name": "search<gx:category>", "type": "category" } ] } # Description of dataframe columns. df_descrption = { "count":{ "id<gx:category>":491.0, "author_id<gx:category>":491.0, "user_favourites_count<gx:number>":491.0, "user_followers_count<gx:number>":491.0, "user_following_count<gx:number>":491.0, "user_listed_count<gx:number>":491.0, "user_tweets_count<gx:number>":491.0, "retweets<gx:number>":491.0, "favorites<gx:number>":491.0, "replies<gx:number>":491.0, "quotes<gx:number>":491.0 }, "mean":{ "id<gx:category>":1.230895609e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30218726.7454175167, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0590631365, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":5200.4623217923, "favorites<gx:number>":41536.8635437882, "replies<gx:number>":2056.5600814664, "quotes<gx:number>":754.8859470468 }, "std":{ "id<gx:category>":7.194010391e+16, "author_id<gx:category>":0.0, "user_favourites_count<gx:number>":0.0, "user_followers_count<gx:number>":23210.2101437425, "user_following_count<gx:number>":0.0, "user_listed_count<gx:number>":0.2526882771, "user_tweets_count<gx:number>":0.0, "retweets<gx:number>":13471.3749539952, "favorites<gx:number>":99344.577018021, "replies<gx:number>":3666.4962808525, "quotes<gx:number>":3078.002195837 }, "min":{ "id<gx:category>":1.100456021e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212691.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36166.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":85.0, "favorites<gx:number>":393.0, "replies<gx:number>":22.0, "quotes<gx:number>":0.0 }, "25%":{ "id<gx:category>":1.16465648e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212703.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":249.0, "favorites<gx:number>":1245.5, "replies<gx:number>":156.0, "quotes<gx:number>":22.0 }, "50%":{ "id<gx:category>":1.229553614e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212708.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":1218.0, "favorites<gx:number>":5730.0, "replies<gx:number>":552.0, "quotes<gx:number>":90.0 }, "75%":{ "id<gx:category>":1.296563283e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212712.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":4589.5, "favorites<gx:number>":28466.5, "replies<gx:number>":2210.0, "quotes<gx:number>":444.0 }, "max":{ "id<gx:category>":1.391422726e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30308047.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36168.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":205169.0, "favorites<gx:number>":889245.0, "replies<gx:number>":29351.0, "quotes<gx:number>":57012.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "id<gx:category>":491.0, "author_id<gx:category>":491.0, "user_favourites_count<gx:number>":491.0, "user_followers_count<gx:number>":491.0, "user_following_count<gx:number>":491.0, "user_listed_count<gx:number>":491.0, "user_tweets_count<gx:number>":491.0, "retweets<gx:number>":491.0, "favorites<gx:number>":491.0, "replies<gx:number>":491.0, "quotes<gx:number>":491.0 }, "mean":{ "id<gx:category>":1.230895609e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30218726.7454175167, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0590631365, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":5200.4623217923, "favorites<gx:number>":41536.8635437882, "replies<gx:number>":2056.5600814664, "quotes<gx:number>":754.8859470468 }, "std":{ "id<gx:category>":7.194010391e+16, "author_id<gx:category>":0.0, "user_favourites_count<gx:number>":0.0, "user_followers_count<gx:number>":23210.2101437425, "user_following_count<gx:number>":0.0, "user_listed_count<gx:number>":0.2526882771, "user_tweets_count<gx:number>":0.0, "retweets<gx:number>":13471.3749539952, "favorites<gx:number>":99344.577018021, "replies<gx:number>":3666.4962808525, "quotes<gx:number>":3078.002195837 }, "min":{ "id<gx:category>":1.100456021e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212691.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36166.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":85.0, "favorites<gx:number>":393.0, "replies<gx:number>":22.0, "quotes<gx:number>":0.0 }, "25%":{ "id<gx:category>":1.16465648e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212703.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":249.0, "favorites<gx:number>":1245.5, "replies<gx:number>":156.0, "quotes<gx:number>":22.0 }, "50%":{ "id<gx:category>":1.229553614e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212708.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":1218.0, "favorites<gx:number>":5730.0, "replies<gx:number>":552.0, "quotes<gx:number>":90.0 }, "75%":{ "id<gx:category>":1.296563283e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212712.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":4589.5, "favorites<gx:number>":28466.5, "replies<gx:number>":2210.0, "quotes<gx:number>":444.0 }, "max":{ "id<gx:category>":1.391422726e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30308047.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36168.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":205169.0, "favorites<gx:number>":889245.0, "replies<gx:number>":29351.0, "quotes<gx:number>":57012.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: What is the name of the user who is most often named in the dataset? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: What is the name of the user who is most often named in the dataset? df.columns = ['id<gx:category>', 'author_id<gx:category>', 'author_name<gx:category>', 'author_handler<gx:category>', 'author_avatar<gx:url>', 'user_created_at<gx:date>', 'user_description<gx:text>', 'user_favourites_count<gx:number>', 'user_followers_count<gx:number>', 'user_following_count<gx:number>', 'user_listed_count<gx:number>', 'user_tweets_count<gx:number>', 'user_verified<gx:boolean>', 'user_location<gx:text>', 'lang<gx:category>', 'type<gx:category>', 'text<gx:text>', 'date<gx:date>', 'mention_ids<gx:list[category]>', 'mention_names<gx:list[category]>', 'retweets<gx:number>', 'favorites<gx:number>', 'replies<gx:number>', 'quotes<gx:number>', 'links<gx:list[url]>', 'links_first<gx:url>', 'image_links<gx:list[url]>', 'image_links_first<gx:url>', 'rp_user_id<gx:category>', 'rp_user_name<gx:category>', 'location<gx:text>', 'tweet_link<gx:url>', 'source<gx:text>', 'search<gx:category>'] # Expected output type: is category, this will be checked. return
20250129013717
91
Who is the author of the tweet with the most retweets?
054_Joe
dev
category
['author_name<gx:category>', 'retweets<gx:number>']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "id<gx:category>", "type": "int64" }, { "name": "author_id<gx:category>", "type": "uint32" }, { "name": "author_name<gx:category>", "type": "category" }, { "name": "author_handler<gx:category>", "type": "category" }, { "name": "author_avatar<gx:url>", "type": "category" }, { "name": "user_created_at<gx:date>", "type": "datetime64[ns, UTC]" }, { "name": "user_description<gx:text>", "type": "category" }, { "name": "user_favourites_count<gx:number>", "type": "uint8" }, { "name": "user_followers_count<gx:number>", "type": "uint32" }, { "name": "user_following_count<gx:number>", "type": "uint8" }, { "name": "user_listed_count<gx:number>", "type": "uint16" }, { "name": "user_tweets_count<gx:number>", "type": "uint16" }, { "name": "user_verified<gx:boolean>", "type": "bool" }, { "name": "user_location<gx:text>", "type": "category" }, { "name": "lang<gx:category>", "type": "category" }, { "name": "type<gx:category>", "type": "category" }, { "name": "text<gx:text>", "type": "object" }, { "name": "date<gx:date>", "type": "datetime64[ns, UTC]" }, { "name": "mention_ids<gx:list[category]>", "type": "object" }, { "name": "mention_names<gx:list[category]>", "type": "object" }, { "name": "retweets<gx:number>", "type": "uint32" }, { "name": "favorites<gx:number>", "type": "uint32" }, { "name": "replies<gx:number>", "type": "uint16" }, { "name": "quotes<gx:number>", "type": "uint16" }, { "name": "links<gx:list[url]>", "type": "object" }, { "name": "links_first<gx:url>", "type": "category" }, { "name": "image_links<gx:list[url]>", "type": "object" }, { "name": "image_links_first<gx:url>", "type": "category" }, { "name": "rp_user_id<gx:category>", "type": "category" }, { "name": "rp_user_name<gx:category>", "type": "category" }, { "name": "location<gx:text>", "type": "category" }, { "name": "tweet_link<gx:url>", "type": "category" }, { "name": "source<gx:text>", "type": "category" }, { "name": "search<gx:category>", "type": "category" } ] } # Description of dataframe columns. df_descrption = { "count":{ "id<gx:category>":491.0, "author_id<gx:category>":491.0, "user_favourites_count<gx:number>":491.0, "user_followers_count<gx:number>":491.0, "user_following_count<gx:number>":491.0, "user_listed_count<gx:number>":491.0, "user_tweets_count<gx:number>":491.0, "retweets<gx:number>":491.0, "favorites<gx:number>":491.0, "replies<gx:number>":491.0, "quotes<gx:number>":491.0 }, "mean":{ "id<gx:category>":1.230895609e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30218726.7454175167, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0590631365, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":5200.4623217923, "favorites<gx:number>":41536.8635437882, "replies<gx:number>":2056.5600814664, "quotes<gx:number>":754.8859470468 }, "std":{ "id<gx:category>":7.194010391e+16, "author_id<gx:category>":0.0, "user_favourites_count<gx:number>":0.0, "user_followers_count<gx:number>":23210.2101437425, "user_following_count<gx:number>":0.0, "user_listed_count<gx:number>":0.2526882771, "user_tweets_count<gx:number>":0.0, "retweets<gx:number>":13471.3749539952, "favorites<gx:number>":99344.577018021, "replies<gx:number>":3666.4962808525, "quotes<gx:number>":3078.002195837 }, "min":{ "id<gx:category>":1.100456021e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212691.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36166.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":85.0, "favorites<gx:number>":393.0, "replies<gx:number>":22.0, "quotes<gx:number>":0.0 }, "25%":{ "id<gx:category>":1.16465648e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212703.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":249.0, "favorites<gx:number>":1245.5, "replies<gx:number>":156.0, "quotes<gx:number>":22.0 }, "50%":{ "id<gx:category>":1.229553614e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212708.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":1218.0, "favorites<gx:number>":5730.0, "replies<gx:number>":552.0, "quotes<gx:number>":90.0 }, "75%":{ "id<gx:category>":1.296563283e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212712.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":4589.5, "favorites<gx:number>":28466.5, "replies<gx:number>":2210.0, "quotes<gx:number>":444.0 }, "max":{ "id<gx:category>":1.391422726e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30308047.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36168.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":205169.0, "favorites<gx:number>":889245.0, "replies<gx:number>":29351.0, "quotes<gx:number>":57012.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "id<gx:category>":491.0, "author_id<gx:category>":491.0, "user_favourites_count<gx:number>":491.0, "user_followers_count<gx:number>":491.0, "user_following_count<gx:number>":491.0, "user_listed_count<gx:number>":491.0, "user_tweets_count<gx:number>":491.0, "retweets<gx:number>":491.0, "favorites<gx:number>":491.0, "replies<gx:number>":491.0, "quotes<gx:number>":491.0 }, "mean":{ "id<gx:category>":1.230895609e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30218726.7454175167, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0590631365, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":5200.4623217923, "favorites<gx:number>":41536.8635437882, "replies<gx:number>":2056.5600814664, "quotes<gx:number>":754.8859470468 }, "std":{ "id<gx:category>":7.194010391e+16, "author_id<gx:category>":0.0, "user_favourites_count<gx:number>":0.0, "user_followers_count<gx:number>":23210.2101437425, "user_following_count<gx:number>":0.0, "user_listed_count<gx:number>":0.2526882771, "user_tweets_count<gx:number>":0.0, "retweets<gx:number>":13471.3749539952, "favorites<gx:number>":99344.577018021, "replies<gx:number>":3666.4962808525, "quotes<gx:number>":3078.002195837 }, "min":{ "id<gx:category>":1.100456021e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212691.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36166.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":85.0, "favorites<gx:number>":393.0, "replies<gx:number>":22.0, "quotes<gx:number>":0.0 }, "25%":{ "id<gx:category>":1.16465648e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212703.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":249.0, "favorites<gx:number>":1245.5, "replies<gx:number>":156.0, "quotes<gx:number>":22.0 }, "50%":{ "id<gx:category>":1.229553614e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212708.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":1218.0, "favorites<gx:number>":5730.0, "replies<gx:number>":552.0, "quotes<gx:number>":90.0 }, "75%":{ "id<gx:category>":1.296563283e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212712.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":4589.5, "favorites<gx:number>":28466.5, "replies<gx:number>":2210.0, "quotes<gx:number>":444.0 }, "max":{ "id<gx:category>":1.391422726e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30308047.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36168.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":205169.0, "favorites<gx:number>":889245.0, "replies<gx:number>":29351.0, "quotes<gx:number>":57012.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: Who is the author of the tweet with the most retweets? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: Who is the author of the tweet with the most retweets? df.columns = ['id<gx:category>', 'author_id<gx:category>', 'author_name<gx:category>', 'author_handler<gx:category>', 'author_avatar<gx:url>', 'user_created_at<gx:date>', 'user_description<gx:text>', 'user_favourites_count<gx:number>', 'user_followers_count<gx:number>', 'user_following_count<gx:number>', 'user_listed_count<gx:number>', 'user_tweets_count<gx:number>', 'user_verified<gx:boolean>', 'user_location<gx:text>', 'lang<gx:category>', 'type<gx:category>', 'text<gx:text>', 'date<gx:date>', 'mention_ids<gx:list[category]>', 'mention_names<gx:list[category]>', 'retweets<gx:number>', 'favorites<gx:number>', 'replies<gx:number>', 'quotes<gx:number>', 'links<gx:list[url]>', 'links_first<gx:url>', 'image_links<gx:list[url]>', 'image_links_first<gx:url>', 'rp_user_id<gx:category>', 'rp_user_name<gx:category>', 'location<gx:text>', 'tweet_link<gx:url>', 'source<gx:text>', 'search<gx:category>'] # Expected output type: is category, this will be checked. return
20250129013717
92
Who are the top 3 authors with the most followers?
054_Joe
dev
list[category]
['author_name<gx:category>', 'user_followers_count<gx:number>']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "id<gx:category>", "type": "int64" }, { "name": "author_id<gx:category>", "type": "uint32" }, { "name": "author_name<gx:category>", "type": "category" }, { "name": "author_handler<gx:category>", "type": "category" }, { "name": "author_avatar<gx:url>", "type": "category" }, { "name": "user_created_at<gx:date>", "type": "datetime64[ns, UTC]" }, { "name": "user_description<gx:text>", "type": "category" }, { "name": "user_favourites_count<gx:number>", "type": "uint8" }, { "name": "user_followers_count<gx:number>", "type": "uint32" }, { "name": "user_following_count<gx:number>", "type": "uint8" }, { "name": "user_listed_count<gx:number>", "type": "uint16" }, { "name": "user_tweets_count<gx:number>", "type": "uint16" }, { "name": "user_verified<gx:boolean>", "type": "bool" }, { "name": "user_location<gx:text>", "type": "category" }, { "name": "lang<gx:category>", "type": "category" }, { "name": "type<gx:category>", "type": "category" }, { "name": "text<gx:text>", "type": "object" }, { "name": "date<gx:date>", "type": "datetime64[ns, UTC]" }, { "name": "mention_ids<gx:list[category]>", "type": "object" }, { "name": "mention_names<gx:list[category]>", "type": "object" }, { "name": "retweets<gx:number>", "type": "uint32" }, { "name": "favorites<gx:number>", "type": "uint32" }, { "name": "replies<gx:number>", "type": "uint16" }, { "name": "quotes<gx:number>", "type": "uint16" }, { "name": "links<gx:list[url]>", "type": "object" }, { "name": "links_first<gx:url>", "type": "category" }, { "name": "image_links<gx:list[url]>", "type": "object" }, { "name": "image_links_first<gx:url>", "type": "category" }, { "name": "rp_user_id<gx:category>", "type": "category" }, { "name": "rp_user_name<gx:category>", "type": "category" }, { "name": "location<gx:text>", "type": "category" }, { "name": "tweet_link<gx:url>", "type": "category" }, { "name": "source<gx:text>", "type": "category" }, { "name": "search<gx:category>", "type": "category" } ] } # Description of dataframe columns. df_descrption = { "count":{ "id<gx:category>":491.0, "author_id<gx:category>":491.0, "user_favourites_count<gx:number>":491.0, "user_followers_count<gx:number>":491.0, "user_following_count<gx:number>":491.0, "user_listed_count<gx:number>":491.0, "user_tweets_count<gx:number>":491.0, "retweets<gx:number>":491.0, "favorites<gx:number>":491.0, "replies<gx:number>":491.0, "quotes<gx:number>":491.0 }, "mean":{ "id<gx:category>":1.230895609e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30218726.7454175167, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0590631365, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":5200.4623217923, "favorites<gx:number>":41536.8635437882, "replies<gx:number>":2056.5600814664, "quotes<gx:number>":754.8859470468 }, "std":{ "id<gx:category>":7.194010391e+16, "author_id<gx:category>":0.0, "user_favourites_count<gx:number>":0.0, "user_followers_count<gx:number>":23210.2101437425, "user_following_count<gx:number>":0.0, "user_listed_count<gx:number>":0.2526882771, "user_tweets_count<gx:number>":0.0, "retweets<gx:number>":13471.3749539952, "favorites<gx:number>":99344.577018021, "replies<gx:number>":3666.4962808525, "quotes<gx:number>":3078.002195837 }, "min":{ "id<gx:category>":1.100456021e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212691.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36166.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":85.0, "favorites<gx:number>":393.0, "replies<gx:number>":22.0, "quotes<gx:number>":0.0 }, "25%":{ "id<gx:category>":1.16465648e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212703.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":249.0, "favorites<gx:number>":1245.5, "replies<gx:number>":156.0, "quotes<gx:number>":22.0 }, "50%":{ "id<gx:category>":1.229553614e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212708.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":1218.0, "favorites<gx:number>":5730.0, "replies<gx:number>":552.0, "quotes<gx:number>":90.0 }, "75%":{ "id<gx:category>":1.296563283e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212712.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":4589.5, "favorites<gx:number>":28466.5, "replies<gx:number>":2210.0, "quotes<gx:number>":444.0 }, "max":{ "id<gx:category>":1.391422726e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30308047.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36168.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":205169.0, "favorites<gx:number>":889245.0, "replies<gx:number>":29351.0, "quotes<gx:number>":57012.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "id<gx:category>":491.0, "author_id<gx:category>":491.0, "user_favourites_count<gx:number>":491.0, "user_followers_count<gx:number>":491.0, "user_following_count<gx:number>":491.0, "user_listed_count<gx:number>":491.0, "user_tweets_count<gx:number>":491.0, "retweets<gx:number>":491.0, "favorites<gx:number>":491.0, "replies<gx:number>":491.0, "quotes<gx:number>":491.0 }, "mean":{ "id<gx:category>":1.230895609e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30218726.7454175167, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0590631365, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":5200.4623217923, "favorites<gx:number>":41536.8635437882, "replies<gx:number>":2056.5600814664, "quotes<gx:number>":754.8859470468 }, "std":{ "id<gx:category>":7.194010391e+16, "author_id<gx:category>":0.0, "user_favourites_count<gx:number>":0.0, "user_followers_count<gx:number>":23210.2101437425, "user_following_count<gx:number>":0.0, "user_listed_count<gx:number>":0.2526882771, "user_tweets_count<gx:number>":0.0, "retweets<gx:number>":13471.3749539952, "favorites<gx:number>":99344.577018021, "replies<gx:number>":3666.4962808525, "quotes<gx:number>":3078.002195837 }, "min":{ "id<gx:category>":1.100456021e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212691.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36166.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":85.0, "favorites<gx:number>":393.0, "replies<gx:number>":22.0, "quotes<gx:number>":0.0 }, "25%":{ "id<gx:category>":1.16465648e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212703.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":249.0, "favorites<gx:number>":1245.5, "replies<gx:number>":156.0, "quotes<gx:number>":22.0 }, "50%":{ "id<gx:category>":1.229553614e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212708.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":1218.0, "favorites<gx:number>":5730.0, "replies<gx:number>":552.0, "quotes<gx:number>":90.0 }, "75%":{ "id<gx:category>":1.296563283e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212712.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":4589.5, "favorites<gx:number>":28466.5, "replies<gx:number>":2210.0, "quotes<gx:number>":444.0 }, "max":{ "id<gx:category>":1.391422726e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30308047.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36168.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":205169.0, "favorites<gx:number>":889245.0, "replies<gx:number>":29351.0, "quotes<gx:number>":57012.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: Who are the top 3 authors with the most followers? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: Who are the top 3 authors with the most followers? df.columns = ['id<gx:category>', 'author_id<gx:category>', 'author_name<gx:category>', 'author_handler<gx:category>', 'author_avatar<gx:url>', 'user_created_at<gx:date>', 'user_description<gx:text>', 'user_favourites_count<gx:number>', 'user_followers_count<gx:number>', 'user_following_count<gx:number>', 'user_listed_count<gx:number>', 'user_tweets_count<gx:number>', 'user_verified<gx:boolean>', 'user_location<gx:text>', 'lang<gx:category>', 'type<gx:category>', 'text<gx:text>', 'date<gx:date>', 'mention_ids<gx:list[category]>', 'mention_names<gx:list[category]>', 'retweets<gx:number>', 'favorites<gx:number>', 'replies<gx:number>', 'quotes<gx:number>', 'links<gx:list[url]>', 'links_first<gx:url>', 'image_links<gx:list[url]>', 'image_links_first<gx:url>', 'rp_user_id<gx:category>', 'rp_user_name<gx:category>', 'location<gx:text>', 'tweet_link<gx:url>', 'source<gx:text>', 'search<gx:category>'] # Expected output type: is list[category], this will be checked. return
20250129013717
93
Who are the top 4 authors with the most favourites?
054_Joe
dev
list[category]
['author_name<gx:category>', 'user_favourites_count<gx:number>']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "id<gx:category>", "type": "int64" }, { "name": "author_id<gx:category>", "type": "uint32" }, { "name": "author_name<gx:category>", "type": "category" }, { "name": "author_handler<gx:category>", "type": "category" }, { "name": "author_avatar<gx:url>", "type": "category" }, { "name": "user_created_at<gx:date>", "type": "datetime64[ns, UTC]" }, { "name": "user_description<gx:text>", "type": "category" }, { "name": "user_favourites_count<gx:number>", "type": "uint8" }, { "name": "user_followers_count<gx:number>", "type": "uint32" }, { "name": "user_following_count<gx:number>", "type": "uint8" }, { "name": "user_listed_count<gx:number>", "type": "uint16" }, { "name": "user_tweets_count<gx:number>", "type": "uint16" }, { "name": "user_verified<gx:boolean>", "type": "bool" }, { "name": "user_location<gx:text>", "type": "category" }, { "name": "lang<gx:category>", "type": "category" }, { "name": "type<gx:category>", "type": "category" }, { "name": "text<gx:text>", "type": "object" }, { "name": "date<gx:date>", "type": "datetime64[ns, UTC]" }, { "name": "mention_ids<gx:list[category]>", "type": "object" }, { "name": "mention_names<gx:list[category]>", "type": "object" }, { "name": "retweets<gx:number>", "type": "uint32" }, { "name": "favorites<gx:number>", "type": "uint32" }, { "name": "replies<gx:number>", "type": "uint16" }, { "name": "quotes<gx:number>", "type": "uint16" }, { "name": "links<gx:list[url]>", "type": "object" }, { "name": "links_first<gx:url>", "type": "category" }, { "name": "image_links<gx:list[url]>", "type": "object" }, { "name": "image_links_first<gx:url>", "type": "category" }, { "name": "rp_user_id<gx:category>", "type": "category" }, { "name": "rp_user_name<gx:category>", "type": "category" }, { "name": "location<gx:text>", "type": "category" }, { "name": "tweet_link<gx:url>", "type": "category" }, { "name": "source<gx:text>", "type": "category" }, { "name": "search<gx:category>", "type": "category" } ] } # Description of dataframe columns. df_descrption = { "count":{ "id<gx:category>":491.0, "author_id<gx:category>":491.0, "user_favourites_count<gx:number>":491.0, "user_followers_count<gx:number>":491.0, "user_following_count<gx:number>":491.0, "user_listed_count<gx:number>":491.0, "user_tweets_count<gx:number>":491.0, "retweets<gx:number>":491.0, "favorites<gx:number>":491.0, "replies<gx:number>":491.0, "quotes<gx:number>":491.0 }, "mean":{ "id<gx:category>":1.230895609e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30218726.7454175167, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0590631365, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":5200.4623217923, "favorites<gx:number>":41536.8635437882, "replies<gx:number>":2056.5600814664, "quotes<gx:number>":754.8859470468 }, "std":{ "id<gx:category>":7.194010391e+16, "author_id<gx:category>":0.0, "user_favourites_count<gx:number>":0.0, "user_followers_count<gx:number>":23210.2101437425, "user_following_count<gx:number>":0.0, "user_listed_count<gx:number>":0.2526882771, "user_tweets_count<gx:number>":0.0, "retweets<gx:number>":13471.3749539952, "favorites<gx:number>":99344.577018021, "replies<gx:number>":3666.4962808525, "quotes<gx:number>":3078.002195837 }, "min":{ "id<gx:category>":1.100456021e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212691.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36166.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":85.0, "favorites<gx:number>":393.0, "replies<gx:number>":22.0, "quotes<gx:number>":0.0 }, "25%":{ "id<gx:category>":1.16465648e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212703.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":249.0, "favorites<gx:number>":1245.5, "replies<gx:number>":156.0, "quotes<gx:number>":22.0 }, "50%":{ "id<gx:category>":1.229553614e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212708.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":1218.0, "favorites<gx:number>":5730.0, "replies<gx:number>":552.0, "quotes<gx:number>":90.0 }, "75%":{ "id<gx:category>":1.296563283e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212712.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":4589.5, "favorites<gx:number>":28466.5, "replies<gx:number>":2210.0, "quotes<gx:number>":444.0 }, "max":{ "id<gx:category>":1.391422726e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30308047.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36168.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":205169.0, "favorites<gx:number>":889245.0, "replies<gx:number>":29351.0, "quotes<gx:number>":57012.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "id<gx:category>":491.0, "author_id<gx:category>":491.0, "user_favourites_count<gx:number>":491.0, "user_followers_count<gx:number>":491.0, "user_following_count<gx:number>":491.0, "user_listed_count<gx:number>":491.0, "user_tweets_count<gx:number>":491.0, "retweets<gx:number>":491.0, "favorites<gx:number>":491.0, "replies<gx:number>":491.0, "quotes<gx:number>":491.0 }, "mean":{ "id<gx:category>":1.230895609e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30218726.7454175167, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0590631365, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":5200.4623217923, "favorites<gx:number>":41536.8635437882, "replies<gx:number>":2056.5600814664, "quotes<gx:number>":754.8859470468 }, "std":{ "id<gx:category>":7.194010391e+16, "author_id<gx:category>":0.0, "user_favourites_count<gx:number>":0.0, "user_followers_count<gx:number>":23210.2101437425, "user_following_count<gx:number>":0.0, "user_listed_count<gx:number>":0.2526882771, "user_tweets_count<gx:number>":0.0, "retweets<gx:number>":13471.3749539952, "favorites<gx:number>":99344.577018021, "replies<gx:number>":3666.4962808525, "quotes<gx:number>":3078.002195837 }, "min":{ "id<gx:category>":1.100456021e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212691.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36166.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":85.0, "favorites<gx:number>":393.0, "replies<gx:number>":22.0, "quotes<gx:number>":0.0 }, "25%":{ "id<gx:category>":1.16465648e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212703.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":249.0, "favorites<gx:number>":1245.5, "replies<gx:number>":156.0, "quotes<gx:number>":22.0 }, "50%":{ "id<gx:category>":1.229553614e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212708.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":1218.0, "favorites<gx:number>":5730.0, "replies<gx:number>":552.0, "quotes<gx:number>":90.0 }, "75%":{ "id<gx:category>":1.296563283e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212712.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":4589.5, "favorites<gx:number>":28466.5, "replies<gx:number>":2210.0, "quotes<gx:number>":444.0 }, "max":{ "id<gx:category>":1.391422726e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30308047.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36168.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":205169.0, "favorites<gx:number>":889245.0, "replies<gx:number>":29351.0, "quotes<gx:number>":57012.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: Who are the top 4 authors with the most favourites? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: Who are the top 4 authors with the most favourites? df.columns = ['id<gx:category>', 'author_id<gx:category>', 'author_name<gx:category>', 'author_handler<gx:category>', 'author_avatar<gx:url>', 'user_created_at<gx:date>', 'user_description<gx:text>', 'user_favourites_count<gx:number>', 'user_followers_count<gx:number>', 'user_following_count<gx:number>', 'user_listed_count<gx:number>', 'user_tweets_count<gx:number>', 'user_verified<gx:boolean>', 'user_location<gx:text>', 'lang<gx:category>', 'type<gx:category>', 'text<gx:text>', 'date<gx:date>', 'mention_ids<gx:list[category]>', 'mention_names<gx:list[category]>', 'retweets<gx:number>', 'favorites<gx:number>', 'replies<gx:number>', 'quotes<gx:number>', 'links<gx:list[url]>', 'links_first<gx:url>', 'image_links<gx:list[url]>', 'image_links_first<gx:url>', 'rp_user_id<gx:category>', 'rp_user_name<gx:category>', 'location<gx:text>', 'tweet_link<gx:url>', 'source<gx:text>', 'search<gx:category>'] # Expected output type: is list[category], this will be checked. return
20250129013717
94
Who are the 4 users by name apart from the author who are mentioned the most often?
054_Joe
dev
list[category]
['author_name<gx:category>', 'mention_names<gx:list[category]>']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "id<gx:category>", "type": "int64" }, { "name": "author_id<gx:category>", "type": "uint32" }, { "name": "author_name<gx:category>", "type": "category" }, { "name": "author_handler<gx:category>", "type": "category" }, { "name": "author_avatar<gx:url>", "type": "category" }, { "name": "user_created_at<gx:date>", "type": "datetime64[ns, UTC]" }, { "name": "user_description<gx:text>", "type": "category" }, { "name": "user_favourites_count<gx:number>", "type": "uint8" }, { "name": "user_followers_count<gx:number>", "type": "uint32" }, { "name": "user_following_count<gx:number>", "type": "uint8" }, { "name": "user_listed_count<gx:number>", "type": "uint16" }, { "name": "user_tweets_count<gx:number>", "type": "uint16" }, { "name": "user_verified<gx:boolean>", "type": "bool" }, { "name": "user_location<gx:text>", "type": "category" }, { "name": "lang<gx:category>", "type": "category" }, { "name": "type<gx:category>", "type": "category" }, { "name": "text<gx:text>", "type": "object" }, { "name": "date<gx:date>", "type": "datetime64[ns, UTC]" }, { "name": "mention_ids<gx:list[category]>", "type": "object" }, { "name": "mention_names<gx:list[category]>", "type": "object" }, { "name": "retweets<gx:number>", "type": "uint32" }, { "name": "favorites<gx:number>", "type": "uint32" }, { "name": "replies<gx:number>", "type": "uint16" }, { "name": "quotes<gx:number>", "type": "uint16" }, { "name": "links<gx:list[url]>", "type": "object" }, { "name": "links_first<gx:url>", "type": "category" }, { "name": "image_links<gx:list[url]>", "type": "object" }, { "name": "image_links_first<gx:url>", "type": "category" }, { "name": "rp_user_id<gx:category>", "type": "category" }, { "name": "rp_user_name<gx:category>", "type": "category" }, { "name": "location<gx:text>", "type": "category" }, { "name": "tweet_link<gx:url>", "type": "category" }, { "name": "source<gx:text>", "type": "category" }, { "name": "search<gx:category>", "type": "category" } ] } # Description of dataframe columns. df_descrption = { "count":{ "id<gx:category>":491.0, "author_id<gx:category>":491.0, "user_favourites_count<gx:number>":491.0, "user_followers_count<gx:number>":491.0, "user_following_count<gx:number>":491.0, "user_listed_count<gx:number>":491.0, "user_tweets_count<gx:number>":491.0, "retweets<gx:number>":491.0, "favorites<gx:number>":491.0, "replies<gx:number>":491.0, "quotes<gx:number>":491.0 }, "mean":{ "id<gx:category>":1.230895609e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30218726.7454175167, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0590631365, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":5200.4623217923, "favorites<gx:number>":41536.8635437882, "replies<gx:number>":2056.5600814664, "quotes<gx:number>":754.8859470468 }, "std":{ "id<gx:category>":7.194010391e+16, "author_id<gx:category>":0.0, "user_favourites_count<gx:number>":0.0, "user_followers_count<gx:number>":23210.2101437425, "user_following_count<gx:number>":0.0, "user_listed_count<gx:number>":0.2526882771, "user_tweets_count<gx:number>":0.0, "retweets<gx:number>":13471.3749539952, "favorites<gx:number>":99344.577018021, "replies<gx:number>":3666.4962808525, "quotes<gx:number>":3078.002195837 }, "min":{ "id<gx:category>":1.100456021e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212691.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36166.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":85.0, "favorites<gx:number>":393.0, "replies<gx:number>":22.0, "quotes<gx:number>":0.0 }, "25%":{ "id<gx:category>":1.16465648e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212703.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":249.0, "favorites<gx:number>":1245.5, "replies<gx:number>":156.0, "quotes<gx:number>":22.0 }, "50%":{ "id<gx:category>":1.229553614e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212708.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":1218.0, "favorites<gx:number>":5730.0, "replies<gx:number>":552.0, "quotes<gx:number>":90.0 }, "75%":{ "id<gx:category>":1.296563283e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212712.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":4589.5, "favorites<gx:number>":28466.5, "replies<gx:number>":2210.0, "quotes<gx:number>":444.0 }, "max":{ "id<gx:category>":1.391422726e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30308047.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36168.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":205169.0, "favorites<gx:number>":889245.0, "replies<gx:number>":29351.0, "quotes<gx:number>":57012.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "id<gx:category>":491.0, "author_id<gx:category>":491.0, "user_favourites_count<gx:number>":491.0, "user_followers_count<gx:number>":491.0, "user_following_count<gx:number>":491.0, "user_listed_count<gx:number>":491.0, "user_tweets_count<gx:number>":491.0, "retweets<gx:number>":491.0, "favorites<gx:number>":491.0, "replies<gx:number>":491.0, "quotes<gx:number>":491.0 }, "mean":{ "id<gx:category>":1.230895609e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30218726.7454175167, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0590631365, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":5200.4623217923, "favorites<gx:number>":41536.8635437882, "replies<gx:number>":2056.5600814664, "quotes<gx:number>":754.8859470468 }, "std":{ "id<gx:category>":7.194010391e+16, "author_id<gx:category>":0.0, "user_favourites_count<gx:number>":0.0, "user_followers_count<gx:number>":23210.2101437425, "user_following_count<gx:number>":0.0, "user_listed_count<gx:number>":0.2526882771, "user_tweets_count<gx:number>":0.0, "retweets<gx:number>":13471.3749539952, "favorites<gx:number>":99344.577018021, "replies<gx:number>":3666.4962808525, "quotes<gx:number>":3078.002195837 }, "min":{ "id<gx:category>":1.100456021e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212691.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36166.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":85.0, "favorites<gx:number>":393.0, "replies<gx:number>":22.0, "quotes<gx:number>":0.0 }, "25%":{ "id<gx:category>":1.16465648e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212703.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":249.0, "favorites<gx:number>":1245.5, "replies<gx:number>":156.0, "quotes<gx:number>":22.0 }, "50%":{ "id<gx:category>":1.229553614e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212708.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":1218.0, "favorites<gx:number>":5730.0, "replies<gx:number>":552.0, "quotes<gx:number>":90.0 }, "75%":{ "id<gx:category>":1.296563283e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212712.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":4589.5, "favorites<gx:number>":28466.5, "replies<gx:number>":2210.0, "quotes<gx:number>":444.0 }, "max":{ "id<gx:category>":1.391422726e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30308047.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36168.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":205169.0, "favorites<gx:number>":889245.0, "replies<gx:number>":29351.0, "quotes<gx:number>":57012.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: Who are the 4 users by name apart from the author who are mentioned the most often? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: Who are the 4 users by name apart from the author who are mentioned the most often? df.columns = ['id<gx:category>', 'author_id<gx:category>', 'author_name<gx:category>', 'author_handler<gx:category>', 'author_avatar<gx:url>', 'user_created_at<gx:date>', 'user_description<gx:text>', 'user_favourites_count<gx:number>', 'user_followers_count<gx:number>', 'user_following_count<gx:number>', 'user_listed_count<gx:number>', 'user_tweets_count<gx:number>', 'user_verified<gx:boolean>', 'user_location<gx:text>', 'lang<gx:category>', 'type<gx:category>', 'text<gx:text>', 'date<gx:date>', 'mention_ids<gx:list[category]>', 'mention_names<gx:list[category]>', 'retweets<gx:number>', 'favorites<gx:number>', 'replies<gx:number>', 'quotes<gx:number>', 'links<gx:list[url]>', 'links_first<gx:url>', 'image_links<gx:list[url]>', 'image_links_first<gx:url>', 'rp_user_id<gx:category>', 'rp_user_name<gx:category>', 'location<gx:text>', 'tweet_link<gx:url>', 'source<gx:text>', 'search<gx:category>'] # Expected output type: is list[category], this will be checked. return
20250129013717
95
Who are the top 2 authors of the tweets with the most retweets?
054_Joe
dev
list[category]
['author_name<gx:category>', 'retweets<gx:number>']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "id<gx:category>", "type": "int64" }, { "name": "author_id<gx:category>", "type": "uint32" }, { "name": "author_name<gx:category>", "type": "category" }, { "name": "author_handler<gx:category>", "type": "category" }, { "name": "author_avatar<gx:url>", "type": "category" }, { "name": "user_created_at<gx:date>", "type": "datetime64[ns, UTC]" }, { "name": "user_description<gx:text>", "type": "category" }, { "name": "user_favourites_count<gx:number>", "type": "uint8" }, { "name": "user_followers_count<gx:number>", "type": "uint32" }, { "name": "user_following_count<gx:number>", "type": "uint8" }, { "name": "user_listed_count<gx:number>", "type": "uint16" }, { "name": "user_tweets_count<gx:number>", "type": "uint16" }, { "name": "user_verified<gx:boolean>", "type": "bool" }, { "name": "user_location<gx:text>", "type": "category" }, { "name": "lang<gx:category>", "type": "category" }, { "name": "type<gx:category>", "type": "category" }, { "name": "text<gx:text>", "type": "object" }, { "name": "date<gx:date>", "type": "datetime64[ns, UTC]" }, { "name": "mention_ids<gx:list[category]>", "type": "object" }, { "name": "mention_names<gx:list[category]>", "type": "object" }, { "name": "retweets<gx:number>", "type": "uint32" }, { "name": "favorites<gx:number>", "type": "uint32" }, { "name": "replies<gx:number>", "type": "uint16" }, { "name": "quotes<gx:number>", "type": "uint16" }, { "name": "links<gx:list[url]>", "type": "object" }, { "name": "links_first<gx:url>", "type": "category" }, { "name": "image_links<gx:list[url]>", "type": "object" }, { "name": "image_links_first<gx:url>", "type": "category" }, { "name": "rp_user_id<gx:category>", "type": "category" }, { "name": "rp_user_name<gx:category>", "type": "category" }, { "name": "location<gx:text>", "type": "category" }, { "name": "tweet_link<gx:url>", "type": "category" }, { "name": "source<gx:text>", "type": "category" }, { "name": "search<gx:category>", "type": "category" } ] } # Description of dataframe columns. df_descrption = { "count":{ "id<gx:category>":491.0, "author_id<gx:category>":491.0, "user_favourites_count<gx:number>":491.0, "user_followers_count<gx:number>":491.0, "user_following_count<gx:number>":491.0, "user_listed_count<gx:number>":491.0, "user_tweets_count<gx:number>":491.0, "retweets<gx:number>":491.0, "favorites<gx:number>":491.0, "replies<gx:number>":491.0, "quotes<gx:number>":491.0 }, "mean":{ "id<gx:category>":1.230895609e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30218726.7454175167, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0590631365, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":5200.4623217923, "favorites<gx:number>":41536.8635437882, "replies<gx:number>":2056.5600814664, "quotes<gx:number>":754.8859470468 }, "std":{ "id<gx:category>":7.194010391e+16, "author_id<gx:category>":0.0, "user_favourites_count<gx:number>":0.0, "user_followers_count<gx:number>":23210.2101437425, "user_following_count<gx:number>":0.0, "user_listed_count<gx:number>":0.2526882771, "user_tweets_count<gx:number>":0.0, "retweets<gx:number>":13471.3749539952, "favorites<gx:number>":99344.577018021, "replies<gx:number>":3666.4962808525, "quotes<gx:number>":3078.002195837 }, "min":{ "id<gx:category>":1.100456021e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212691.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36166.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":85.0, "favorites<gx:number>":393.0, "replies<gx:number>":22.0, "quotes<gx:number>":0.0 }, "25%":{ "id<gx:category>":1.16465648e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212703.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":249.0, "favorites<gx:number>":1245.5, "replies<gx:number>":156.0, "quotes<gx:number>":22.0 }, "50%":{ "id<gx:category>":1.229553614e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212708.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":1218.0, "favorites<gx:number>":5730.0, "replies<gx:number>":552.0, "quotes<gx:number>":90.0 }, "75%":{ "id<gx:category>":1.296563283e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212712.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":4589.5, "favorites<gx:number>":28466.5, "replies<gx:number>":2210.0, "quotes<gx:number>":444.0 }, "max":{ "id<gx:category>":1.391422726e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30308047.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36168.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":205169.0, "favorites<gx:number>":889245.0, "replies<gx:number>":29351.0, "quotes<gx:number>":57012.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "id<gx:category>":491.0, "author_id<gx:category>":491.0, "user_favourites_count<gx:number>":491.0, "user_followers_count<gx:number>":491.0, "user_following_count<gx:number>":491.0, "user_listed_count<gx:number>":491.0, "user_tweets_count<gx:number>":491.0, "retweets<gx:number>":491.0, "favorites<gx:number>":491.0, "replies<gx:number>":491.0, "quotes<gx:number>":491.0 }, "mean":{ "id<gx:category>":1.230895609e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30218726.7454175167, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0590631365, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":5200.4623217923, "favorites<gx:number>":41536.8635437882, "replies<gx:number>":2056.5600814664, "quotes<gx:number>":754.8859470468 }, "std":{ "id<gx:category>":7.194010391e+16, "author_id<gx:category>":0.0, "user_favourites_count<gx:number>":0.0, "user_followers_count<gx:number>":23210.2101437425, "user_following_count<gx:number>":0.0, "user_listed_count<gx:number>":0.2526882771, "user_tweets_count<gx:number>":0.0, "retweets<gx:number>":13471.3749539952, "favorites<gx:number>":99344.577018021, "replies<gx:number>":3666.4962808525, "quotes<gx:number>":3078.002195837 }, "min":{ "id<gx:category>":1.100456021e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212691.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36166.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":85.0, "favorites<gx:number>":393.0, "replies<gx:number>":22.0, "quotes<gx:number>":0.0 }, "25%":{ "id<gx:category>":1.16465648e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212703.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":249.0, "favorites<gx:number>":1245.5, "replies<gx:number>":156.0, "quotes<gx:number>":22.0 }, "50%":{ "id<gx:category>":1.229553614e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212708.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":1218.0, "favorites<gx:number>":5730.0, "replies<gx:number>":552.0, "quotes<gx:number>":90.0 }, "75%":{ "id<gx:category>":1.296563283e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212712.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":4589.5, "favorites<gx:number>":28466.5, "replies<gx:number>":2210.0, "quotes<gx:number>":444.0 }, "max":{ "id<gx:category>":1.391422726e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30308047.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36168.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":205169.0, "favorites<gx:number>":889245.0, "replies<gx:number>":29351.0, "quotes<gx:number>":57012.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: Who are the top 2 authors of the tweets with the most retweets? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: Who are the top 2 authors of the tweets with the most retweets? df.columns = ['id<gx:category>', 'author_id<gx:category>', 'author_name<gx:category>', 'author_handler<gx:category>', 'author_avatar<gx:url>', 'user_created_at<gx:date>', 'user_description<gx:text>', 'user_favourites_count<gx:number>', 'user_followers_count<gx:number>', 'user_following_count<gx:number>', 'user_listed_count<gx:number>', 'user_tweets_count<gx:number>', 'user_verified<gx:boolean>', 'user_location<gx:text>', 'lang<gx:category>', 'type<gx:category>', 'text<gx:text>', 'date<gx:date>', 'mention_ids<gx:list[category]>', 'mention_names<gx:list[category]>', 'retweets<gx:number>', 'favorites<gx:number>', 'replies<gx:number>', 'quotes<gx:number>', 'links<gx:list[url]>', 'links_first<gx:url>', 'image_links<gx:list[url]>', 'image_links_first<gx:url>', 'rp_user_id<gx:category>', 'rp_user_name<gx:category>', 'location<gx:text>', 'tweet_link<gx:url>', 'source<gx:text>', 'search<gx:category>'] # Expected output type: is list[category], this will be checked. return
20250129013717
96
What are the top 3 numbers of followers in the dataset?
054_Joe
dev
list[number]
['user_followers_count<gx:number>']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "id<gx:category>", "type": "int64" }, { "name": "author_id<gx:category>", "type": "uint32" }, { "name": "author_name<gx:category>", "type": "category" }, { "name": "author_handler<gx:category>", "type": "category" }, { "name": "author_avatar<gx:url>", "type": "category" }, { "name": "user_created_at<gx:date>", "type": "datetime64[ns, UTC]" }, { "name": "user_description<gx:text>", "type": "category" }, { "name": "user_favourites_count<gx:number>", "type": "uint8" }, { "name": "user_followers_count<gx:number>", "type": "uint32" }, { "name": "user_following_count<gx:number>", "type": "uint8" }, { "name": "user_listed_count<gx:number>", "type": "uint16" }, { "name": "user_tweets_count<gx:number>", "type": "uint16" }, { "name": "user_verified<gx:boolean>", "type": "bool" }, { "name": "user_location<gx:text>", "type": "category" }, { "name": "lang<gx:category>", "type": "category" }, { "name": "type<gx:category>", "type": "category" }, { "name": "text<gx:text>", "type": "object" }, { "name": "date<gx:date>", "type": "datetime64[ns, UTC]" }, { "name": "mention_ids<gx:list[category]>", "type": "object" }, { "name": "mention_names<gx:list[category]>", "type": "object" }, { "name": "retweets<gx:number>", "type": "uint32" }, { "name": "favorites<gx:number>", "type": "uint32" }, { "name": "replies<gx:number>", "type": "uint16" }, { "name": "quotes<gx:number>", "type": "uint16" }, { "name": "links<gx:list[url]>", "type": "object" }, { "name": "links_first<gx:url>", "type": "category" }, { "name": "image_links<gx:list[url]>", "type": "object" }, { "name": "image_links_first<gx:url>", "type": "category" }, { "name": "rp_user_id<gx:category>", "type": "category" }, { "name": "rp_user_name<gx:category>", "type": "category" }, { "name": "location<gx:text>", "type": "category" }, { "name": "tweet_link<gx:url>", "type": "category" }, { "name": "source<gx:text>", "type": "category" }, { "name": "search<gx:category>", "type": "category" } ] } # Description of dataframe columns. df_descrption = { "count":{ "id<gx:category>":491.0, "author_id<gx:category>":491.0, "user_favourites_count<gx:number>":491.0, "user_followers_count<gx:number>":491.0, "user_following_count<gx:number>":491.0, "user_listed_count<gx:number>":491.0, "user_tweets_count<gx:number>":491.0, "retweets<gx:number>":491.0, "favorites<gx:number>":491.0, "replies<gx:number>":491.0, "quotes<gx:number>":491.0 }, "mean":{ "id<gx:category>":1.230895609e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30218726.7454175167, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0590631365, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":5200.4623217923, "favorites<gx:number>":41536.8635437882, "replies<gx:number>":2056.5600814664, "quotes<gx:number>":754.8859470468 }, "std":{ "id<gx:category>":7.194010391e+16, "author_id<gx:category>":0.0, "user_favourites_count<gx:number>":0.0, "user_followers_count<gx:number>":23210.2101437425, "user_following_count<gx:number>":0.0, "user_listed_count<gx:number>":0.2526882771, "user_tweets_count<gx:number>":0.0, "retweets<gx:number>":13471.3749539952, "favorites<gx:number>":99344.577018021, "replies<gx:number>":3666.4962808525, "quotes<gx:number>":3078.002195837 }, "min":{ "id<gx:category>":1.100456021e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212691.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36166.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":85.0, "favorites<gx:number>":393.0, "replies<gx:number>":22.0, "quotes<gx:number>":0.0 }, "25%":{ "id<gx:category>":1.16465648e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212703.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":249.0, "favorites<gx:number>":1245.5, "replies<gx:number>":156.0, "quotes<gx:number>":22.0 }, "50%":{ "id<gx:category>":1.229553614e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212708.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":1218.0, "favorites<gx:number>":5730.0, "replies<gx:number>":552.0, "quotes<gx:number>":90.0 }, "75%":{ "id<gx:category>":1.296563283e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212712.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":4589.5, "favorites<gx:number>":28466.5, "replies<gx:number>":2210.0, "quotes<gx:number>":444.0 }, "max":{ "id<gx:category>":1.391422726e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30308047.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36168.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":205169.0, "favorites<gx:number>":889245.0, "replies<gx:number>":29351.0, "quotes<gx:number>":57012.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "id<gx:category>":491.0, "author_id<gx:category>":491.0, "user_favourites_count<gx:number>":491.0, "user_followers_count<gx:number>":491.0, "user_following_count<gx:number>":491.0, "user_listed_count<gx:number>":491.0, "user_tweets_count<gx:number>":491.0, "retweets<gx:number>":491.0, "favorites<gx:number>":491.0, "replies<gx:number>":491.0, "quotes<gx:number>":491.0 }, "mean":{ "id<gx:category>":1.230895609e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30218726.7454175167, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0590631365, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":5200.4623217923, "favorites<gx:number>":41536.8635437882, "replies<gx:number>":2056.5600814664, "quotes<gx:number>":754.8859470468 }, "std":{ "id<gx:category>":7.194010391e+16, "author_id<gx:category>":0.0, "user_favourites_count<gx:number>":0.0, "user_followers_count<gx:number>":23210.2101437425, "user_following_count<gx:number>":0.0, "user_listed_count<gx:number>":0.2526882771, "user_tweets_count<gx:number>":0.0, "retweets<gx:number>":13471.3749539952, "favorites<gx:number>":99344.577018021, "replies<gx:number>":3666.4962808525, "quotes<gx:number>":3078.002195837 }, "min":{ "id<gx:category>":1.100456021e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212691.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36166.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":85.0, "favorites<gx:number>":393.0, "replies<gx:number>":22.0, "quotes<gx:number>":0.0 }, "25%":{ "id<gx:category>":1.16465648e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212703.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":249.0, "favorites<gx:number>":1245.5, "replies<gx:number>":156.0, "quotes<gx:number>":22.0 }, "50%":{ "id<gx:category>":1.229553614e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212708.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":1218.0, "favorites<gx:number>":5730.0, "replies<gx:number>":552.0, "quotes<gx:number>":90.0 }, "75%":{ "id<gx:category>":1.296563283e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212712.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":4589.5, "favorites<gx:number>":28466.5, "replies<gx:number>":2210.0, "quotes<gx:number>":444.0 }, "max":{ "id<gx:category>":1.391422726e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30308047.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36168.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":205169.0, "favorites<gx:number>":889245.0, "replies<gx:number>":29351.0, "quotes<gx:number>":57012.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: What are the top 3 numbers of followers in the dataset? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: What are the top 3 numbers of followers in the dataset? df.columns = ['id<gx:category>', 'author_id<gx:category>', 'author_name<gx:category>', 'author_handler<gx:category>', 'author_avatar<gx:url>', 'user_created_at<gx:date>', 'user_description<gx:text>', 'user_favourites_count<gx:number>', 'user_followers_count<gx:number>', 'user_following_count<gx:number>', 'user_listed_count<gx:number>', 'user_tweets_count<gx:number>', 'user_verified<gx:boolean>', 'user_location<gx:text>', 'lang<gx:category>', 'type<gx:category>', 'text<gx:text>', 'date<gx:date>', 'mention_ids<gx:list[category]>', 'mention_names<gx:list[category]>', 'retweets<gx:number>', 'favorites<gx:number>', 'replies<gx:number>', 'quotes<gx:number>', 'links<gx:list[url]>', 'links_first<gx:url>', 'image_links<gx:list[url]>', 'image_links_first<gx:url>', 'rp_user_id<gx:category>', 'rp_user_name<gx:category>', 'location<gx:text>', 'tweet_link<gx:url>', 'source<gx:text>', 'search<gx:category>'] # Expected output type: is list[number], this will be checked. return
20250129013717
97
What are the top 3 numbers of favourites a tweet in the dataset has?
054_Joe
dev
list[number]
['favorites<gx:number>']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "id<gx:category>", "type": "int64" }, { "name": "author_id<gx:category>", "type": "uint32" }, { "name": "author_name<gx:category>", "type": "category" }, { "name": "author_handler<gx:category>", "type": "category" }, { "name": "author_avatar<gx:url>", "type": "category" }, { "name": "user_created_at<gx:date>", "type": "datetime64[ns, UTC]" }, { "name": "user_description<gx:text>", "type": "category" }, { "name": "user_favourites_count<gx:number>", "type": "uint8" }, { "name": "user_followers_count<gx:number>", "type": "uint32" }, { "name": "user_following_count<gx:number>", "type": "uint8" }, { "name": "user_listed_count<gx:number>", "type": "uint16" }, { "name": "user_tweets_count<gx:number>", "type": "uint16" }, { "name": "user_verified<gx:boolean>", "type": "bool" }, { "name": "user_location<gx:text>", "type": "category" }, { "name": "lang<gx:category>", "type": "category" }, { "name": "type<gx:category>", "type": "category" }, { "name": "text<gx:text>", "type": "object" }, { "name": "date<gx:date>", "type": "datetime64[ns, UTC]" }, { "name": "mention_ids<gx:list[category]>", "type": "object" }, { "name": "mention_names<gx:list[category]>", "type": "object" }, { "name": "retweets<gx:number>", "type": "uint32" }, { "name": "favorites<gx:number>", "type": "uint32" }, { "name": "replies<gx:number>", "type": "uint16" }, { "name": "quotes<gx:number>", "type": "uint16" }, { "name": "links<gx:list[url]>", "type": "object" }, { "name": "links_first<gx:url>", "type": "category" }, { "name": "image_links<gx:list[url]>", "type": "object" }, { "name": "image_links_first<gx:url>", "type": "category" }, { "name": "rp_user_id<gx:category>", "type": "category" }, { "name": "rp_user_name<gx:category>", "type": "category" }, { "name": "location<gx:text>", "type": "category" }, { "name": "tweet_link<gx:url>", "type": "category" }, { "name": "source<gx:text>", "type": "category" }, { "name": "search<gx:category>", "type": "category" } ] } # Description of dataframe columns. df_descrption = { "count":{ "id<gx:category>":491.0, "author_id<gx:category>":491.0, "user_favourites_count<gx:number>":491.0, "user_followers_count<gx:number>":491.0, "user_following_count<gx:number>":491.0, "user_listed_count<gx:number>":491.0, "user_tweets_count<gx:number>":491.0, "retweets<gx:number>":491.0, "favorites<gx:number>":491.0, "replies<gx:number>":491.0, "quotes<gx:number>":491.0 }, "mean":{ "id<gx:category>":1.230895609e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30218726.7454175167, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0590631365, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":5200.4623217923, "favorites<gx:number>":41536.8635437882, "replies<gx:number>":2056.5600814664, "quotes<gx:number>":754.8859470468 }, "std":{ "id<gx:category>":7.194010391e+16, "author_id<gx:category>":0.0, "user_favourites_count<gx:number>":0.0, "user_followers_count<gx:number>":23210.2101437425, "user_following_count<gx:number>":0.0, "user_listed_count<gx:number>":0.2526882771, "user_tweets_count<gx:number>":0.0, "retweets<gx:number>":13471.3749539952, "favorites<gx:number>":99344.577018021, "replies<gx:number>":3666.4962808525, "quotes<gx:number>":3078.002195837 }, "min":{ "id<gx:category>":1.100456021e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212691.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36166.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":85.0, "favorites<gx:number>":393.0, "replies<gx:number>":22.0, "quotes<gx:number>":0.0 }, "25%":{ "id<gx:category>":1.16465648e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212703.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":249.0, "favorites<gx:number>":1245.5, "replies<gx:number>":156.0, "quotes<gx:number>":22.0 }, "50%":{ "id<gx:category>":1.229553614e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212708.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":1218.0, "favorites<gx:number>":5730.0, "replies<gx:number>":552.0, "quotes<gx:number>":90.0 }, "75%":{ "id<gx:category>":1.296563283e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212712.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":4589.5, "favorites<gx:number>":28466.5, "replies<gx:number>":2210.0, "quotes<gx:number>":444.0 }, "max":{ "id<gx:category>":1.391422726e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30308047.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36168.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":205169.0, "favorites<gx:number>":889245.0, "replies<gx:number>":29351.0, "quotes<gx:number>":57012.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "id<gx:category>":491.0, "author_id<gx:category>":491.0, "user_favourites_count<gx:number>":491.0, "user_followers_count<gx:number>":491.0, "user_following_count<gx:number>":491.0, "user_listed_count<gx:number>":491.0, "user_tweets_count<gx:number>":491.0, "retweets<gx:number>":491.0, "favorites<gx:number>":491.0, "replies<gx:number>":491.0, "quotes<gx:number>":491.0 }, "mean":{ "id<gx:category>":1.230895609e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30218726.7454175167, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0590631365, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":5200.4623217923, "favorites<gx:number>":41536.8635437882, "replies<gx:number>":2056.5600814664, "quotes<gx:number>":754.8859470468 }, "std":{ "id<gx:category>":7.194010391e+16, "author_id<gx:category>":0.0, "user_favourites_count<gx:number>":0.0, "user_followers_count<gx:number>":23210.2101437425, "user_following_count<gx:number>":0.0, "user_listed_count<gx:number>":0.2526882771, "user_tweets_count<gx:number>":0.0, "retweets<gx:number>":13471.3749539952, "favorites<gx:number>":99344.577018021, "replies<gx:number>":3666.4962808525, "quotes<gx:number>":3078.002195837 }, "min":{ "id<gx:category>":1.100456021e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212691.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36166.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":85.0, "favorites<gx:number>":393.0, "replies<gx:number>":22.0, "quotes<gx:number>":0.0 }, "25%":{ "id<gx:category>":1.16465648e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212703.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":249.0, "favorites<gx:number>":1245.5, "replies<gx:number>":156.0, "quotes<gx:number>":22.0 }, "50%":{ "id<gx:category>":1.229553614e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212708.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":1218.0, "favorites<gx:number>":5730.0, "replies<gx:number>":552.0, "quotes<gx:number>":90.0 }, "75%":{ "id<gx:category>":1.296563283e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212712.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":4589.5, "favorites<gx:number>":28466.5, "replies<gx:number>":2210.0, "quotes<gx:number>":444.0 }, "max":{ "id<gx:category>":1.391422726e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30308047.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36168.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":205169.0, "favorites<gx:number>":889245.0, "replies<gx:number>":29351.0, "quotes<gx:number>":57012.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: What are the top 3 numbers of favourites a tweet in the dataset has? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: What are the top 3 numbers of favourites a tweet in the dataset has? df.columns = ['id<gx:category>', 'author_id<gx:category>', 'author_name<gx:category>', 'author_handler<gx:category>', 'author_avatar<gx:url>', 'user_created_at<gx:date>', 'user_description<gx:text>', 'user_favourites_count<gx:number>', 'user_followers_count<gx:number>', 'user_following_count<gx:number>', 'user_listed_count<gx:number>', 'user_tweets_count<gx:number>', 'user_verified<gx:boolean>', 'user_location<gx:text>', 'lang<gx:category>', 'type<gx:category>', 'text<gx:text>', 'date<gx:date>', 'mention_ids<gx:list[category]>', 'mention_names<gx:list[category]>', 'retweets<gx:number>', 'favorites<gx:number>', 'replies<gx:number>', 'quotes<gx:number>', 'links<gx:list[url]>', 'links_first<gx:url>', 'image_links<gx:list[url]>', 'image_links_first<gx:url>', 'rp_user_id<gx:category>', 'rp_user_name<gx:category>', 'location<gx:text>', 'tweet_link<gx:url>', 'source<gx:text>', 'search<gx:category>'] # Expected output type: is list[number], this will be checked. return
20250129013717
98
What are the 5 highest unique number of times a user is mentioned? Exclude empty references.
054_Joe
dev
list[number]
['mention_names<gx:list[category]>']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "id<gx:category>", "type": "int64" }, { "name": "author_id<gx:category>", "type": "uint32" }, { "name": "author_name<gx:category>", "type": "category" }, { "name": "author_handler<gx:category>", "type": "category" }, { "name": "author_avatar<gx:url>", "type": "category" }, { "name": "user_created_at<gx:date>", "type": "datetime64[ns, UTC]" }, { "name": "user_description<gx:text>", "type": "category" }, { "name": "user_favourites_count<gx:number>", "type": "uint8" }, { "name": "user_followers_count<gx:number>", "type": "uint32" }, { "name": "user_following_count<gx:number>", "type": "uint8" }, { "name": "user_listed_count<gx:number>", "type": "uint16" }, { "name": "user_tweets_count<gx:number>", "type": "uint16" }, { "name": "user_verified<gx:boolean>", "type": "bool" }, { "name": "user_location<gx:text>", "type": "category" }, { "name": "lang<gx:category>", "type": "category" }, { "name": "type<gx:category>", "type": "category" }, { "name": "text<gx:text>", "type": "object" }, { "name": "date<gx:date>", "type": "datetime64[ns, UTC]" }, { "name": "mention_ids<gx:list[category]>", "type": "object" }, { "name": "mention_names<gx:list[category]>", "type": "object" }, { "name": "retweets<gx:number>", "type": "uint32" }, { "name": "favorites<gx:number>", "type": "uint32" }, { "name": "replies<gx:number>", "type": "uint16" }, { "name": "quotes<gx:number>", "type": "uint16" }, { "name": "links<gx:list[url]>", "type": "object" }, { "name": "links_first<gx:url>", "type": "category" }, { "name": "image_links<gx:list[url]>", "type": "object" }, { "name": "image_links_first<gx:url>", "type": "category" }, { "name": "rp_user_id<gx:category>", "type": "category" }, { "name": "rp_user_name<gx:category>", "type": "category" }, { "name": "location<gx:text>", "type": "category" }, { "name": "tweet_link<gx:url>", "type": "category" }, { "name": "source<gx:text>", "type": "category" }, { "name": "search<gx:category>", "type": "category" } ] } # Description of dataframe columns. df_descrption = { "count":{ "id<gx:category>":491.0, "author_id<gx:category>":491.0, "user_favourites_count<gx:number>":491.0, "user_followers_count<gx:number>":491.0, "user_following_count<gx:number>":491.0, "user_listed_count<gx:number>":491.0, "user_tweets_count<gx:number>":491.0, "retweets<gx:number>":491.0, "favorites<gx:number>":491.0, "replies<gx:number>":491.0, "quotes<gx:number>":491.0 }, "mean":{ "id<gx:category>":1.230895609e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30218726.7454175167, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0590631365, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":5200.4623217923, "favorites<gx:number>":41536.8635437882, "replies<gx:number>":2056.5600814664, "quotes<gx:number>":754.8859470468 }, "std":{ "id<gx:category>":7.194010391e+16, "author_id<gx:category>":0.0, "user_favourites_count<gx:number>":0.0, "user_followers_count<gx:number>":23210.2101437425, "user_following_count<gx:number>":0.0, "user_listed_count<gx:number>":0.2526882771, "user_tweets_count<gx:number>":0.0, "retweets<gx:number>":13471.3749539952, "favorites<gx:number>":99344.577018021, "replies<gx:number>":3666.4962808525, "quotes<gx:number>":3078.002195837 }, "min":{ "id<gx:category>":1.100456021e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212691.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36166.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":85.0, "favorites<gx:number>":393.0, "replies<gx:number>":22.0, "quotes<gx:number>":0.0 }, "25%":{ "id<gx:category>":1.16465648e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212703.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":249.0, "favorites<gx:number>":1245.5, "replies<gx:number>":156.0, "quotes<gx:number>":22.0 }, "50%":{ "id<gx:category>":1.229553614e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212708.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":1218.0, "favorites<gx:number>":5730.0, "replies<gx:number>":552.0, "quotes<gx:number>":90.0 }, "75%":{ "id<gx:category>":1.296563283e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212712.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":4589.5, "favorites<gx:number>":28466.5, "replies<gx:number>":2210.0, "quotes<gx:number>":444.0 }, "max":{ "id<gx:category>":1.391422726e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30308047.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36168.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":205169.0, "favorites<gx:number>":889245.0, "replies<gx:number>":29351.0, "quotes<gx:number>":57012.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "id<gx:category>":491.0, "author_id<gx:category>":491.0, "user_favourites_count<gx:number>":491.0, "user_followers_count<gx:number>":491.0, "user_following_count<gx:number>":491.0, "user_listed_count<gx:number>":491.0, "user_tweets_count<gx:number>":491.0, "retweets<gx:number>":491.0, "favorites<gx:number>":491.0, "replies<gx:number>":491.0, "quotes<gx:number>":491.0 }, "mean":{ "id<gx:category>":1.230895609e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30218726.7454175167, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0590631365, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":5200.4623217923, "favorites<gx:number>":41536.8635437882, "replies<gx:number>":2056.5600814664, "quotes<gx:number>":754.8859470468 }, "std":{ "id<gx:category>":7.194010391e+16, "author_id<gx:category>":0.0, "user_favourites_count<gx:number>":0.0, "user_followers_count<gx:number>":23210.2101437425, "user_following_count<gx:number>":0.0, "user_listed_count<gx:number>":0.2526882771, "user_tweets_count<gx:number>":0.0, "retweets<gx:number>":13471.3749539952, "favorites<gx:number>":99344.577018021, "replies<gx:number>":3666.4962808525, "quotes<gx:number>":3078.002195837 }, "min":{ "id<gx:category>":1.100456021e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212691.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36166.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":85.0, "favorites<gx:number>":393.0, "replies<gx:number>":22.0, "quotes<gx:number>":0.0 }, "25%":{ "id<gx:category>":1.16465648e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212703.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":249.0, "favorites<gx:number>":1245.5, "replies<gx:number>":156.0, "quotes<gx:number>":22.0 }, "50%":{ "id<gx:category>":1.229553614e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212708.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":1218.0, "favorites<gx:number>":5730.0, "replies<gx:number>":552.0, "quotes<gx:number>":90.0 }, "75%":{ "id<gx:category>":1.296563283e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212712.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":4589.5, "favorites<gx:number>":28466.5, "replies<gx:number>":2210.0, "quotes<gx:number>":444.0 }, "max":{ "id<gx:category>":1.391422726e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30308047.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36168.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":205169.0, "favorites<gx:number>":889245.0, "replies<gx:number>":29351.0, "quotes<gx:number>":57012.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: What are the 5 highest unique number of times a user is mentioned? Exclude empty references. # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: What are the 5 highest unique number of times a user is mentioned? Exclude empty references. df.columns = ['id<gx:category>', 'author_id<gx:category>', 'author_name<gx:category>', 'author_handler<gx:category>', 'author_avatar<gx:url>', 'user_created_at<gx:date>', 'user_description<gx:text>', 'user_favourites_count<gx:number>', 'user_followers_count<gx:number>', 'user_following_count<gx:number>', 'user_listed_count<gx:number>', 'user_tweets_count<gx:number>', 'user_verified<gx:boolean>', 'user_location<gx:text>', 'lang<gx:category>', 'type<gx:category>', 'text<gx:text>', 'date<gx:date>', 'mention_ids<gx:list[category]>', 'mention_names<gx:list[category]>', 'retweets<gx:number>', 'favorites<gx:number>', 'replies<gx:number>', 'quotes<gx:number>', 'links<gx:list[url]>', 'links_first<gx:url>', 'image_links<gx:list[url]>', 'image_links_first<gx:url>', 'rp_user_id<gx:category>', 'rp_user_name<gx:category>', 'location<gx:text>', 'tweet_link<gx:url>', 'source<gx:text>', 'search<gx:category>'] # Expected output type: is list[number], this will be checked. return
20250129013717
99
What are the 2 highest numbers of retweets a tweet in the dataset has?
054_Joe
dev
list[number]
['retweets<gx:number>']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "id<gx:category>", "type": "int64" }, { "name": "author_id<gx:category>", "type": "uint32" }, { "name": "author_name<gx:category>", "type": "category" }, { "name": "author_handler<gx:category>", "type": "category" }, { "name": "author_avatar<gx:url>", "type": "category" }, { "name": "user_created_at<gx:date>", "type": "datetime64[ns, UTC]" }, { "name": "user_description<gx:text>", "type": "category" }, { "name": "user_favourites_count<gx:number>", "type": "uint8" }, { "name": "user_followers_count<gx:number>", "type": "uint32" }, { "name": "user_following_count<gx:number>", "type": "uint8" }, { "name": "user_listed_count<gx:number>", "type": "uint16" }, { "name": "user_tweets_count<gx:number>", "type": "uint16" }, { "name": "user_verified<gx:boolean>", "type": "bool" }, { "name": "user_location<gx:text>", "type": "category" }, { "name": "lang<gx:category>", "type": "category" }, { "name": "type<gx:category>", "type": "category" }, { "name": "text<gx:text>", "type": "object" }, { "name": "date<gx:date>", "type": "datetime64[ns, UTC]" }, { "name": "mention_ids<gx:list[category]>", "type": "object" }, { "name": "mention_names<gx:list[category]>", "type": "object" }, { "name": "retweets<gx:number>", "type": "uint32" }, { "name": "favorites<gx:number>", "type": "uint32" }, { "name": "replies<gx:number>", "type": "uint16" }, { "name": "quotes<gx:number>", "type": "uint16" }, { "name": "links<gx:list[url]>", "type": "object" }, { "name": "links_first<gx:url>", "type": "category" }, { "name": "image_links<gx:list[url]>", "type": "object" }, { "name": "image_links_first<gx:url>", "type": "category" }, { "name": "rp_user_id<gx:category>", "type": "category" }, { "name": "rp_user_name<gx:category>", "type": "category" }, { "name": "location<gx:text>", "type": "category" }, { "name": "tweet_link<gx:url>", "type": "category" }, { "name": "source<gx:text>", "type": "category" }, { "name": "search<gx:category>", "type": "category" } ] } # Description of dataframe columns. df_descrption = { "count":{ "id<gx:category>":491.0, "author_id<gx:category>":491.0, "user_favourites_count<gx:number>":491.0, "user_followers_count<gx:number>":491.0, "user_following_count<gx:number>":491.0, "user_listed_count<gx:number>":491.0, "user_tweets_count<gx:number>":491.0, "retweets<gx:number>":491.0, "favorites<gx:number>":491.0, "replies<gx:number>":491.0, "quotes<gx:number>":491.0 }, "mean":{ "id<gx:category>":1.230895609e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30218726.7454175167, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0590631365, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":5200.4623217923, "favorites<gx:number>":41536.8635437882, "replies<gx:number>":2056.5600814664, "quotes<gx:number>":754.8859470468 }, "std":{ "id<gx:category>":7.194010391e+16, "author_id<gx:category>":0.0, "user_favourites_count<gx:number>":0.0, "user_followers_count<gx:number>":23210.2101437425, "user_following_count<gx:number>":0.0, "user_listed_count<gx:number>":0.2526882771, "user_tweets_count<gx:number>":0.0, "retweets<gx:number>":13471.3749539952, "favorites<gx:number>":99344.577018021, "replies<gx:number>":3666.4962808525, "quotes<gx:number>":3078.002195837 }, "min":{ "id<gx:category>":1.100456021e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212691.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36166.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":85.0, "favorites<gx:number>":393.0, "replies<gx:number>":22.0, "quotes<gx:number>":0.0 }, "25%":{ "id<gx:category>":1.16465648e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212703.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":249.0, "favorites<gx:number>":1245.5, "replies<gx:number>":156.0, "quotes<gx:number>":22.0 }, "50%":{ "id<gx:category>":1.229553614e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212708.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":1218.0, "favorites<gx:number>":5730.0, "replies<gx:number>":552.0, "quotes<gx:number>":90.0 }, "75%":{ "id<gx:category>":1.296563283e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212712.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":4589.5, "favorites<gx:number>":28466.5, "replies<gx:number>":2210.0, "quotes<gx:number>":444.0 }, "max":{ "id<gx:category>":1.391422726e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30308047.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36168.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":205169.0, "favorites<gx:number>":889245.0, "replies<gx:number>":29351.0, "quotes<gx:number>":57012.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "id<gx:category>":491.0, "author_id<gx:category>":491.0, "user_favourites_count<gx:number>":491.0, "user_followers_count<gx:number>":491.0, "user_following_count<gx:number>":491.0, "user_listed_count<gx:number>":491.0, "user_tweets_count<gx:number>":491.0, "retweets<gx:number>":491.0, "favorites<gx:number>":491.0, "replies<gx:number>":491.0, "quotes<gx:number>":491.0 }, "mean":{ "id<gx:category>":1.230895609e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30218726.7454175167, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0590631365, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":5200.4623217923, "favorites<gx:number>":41536.8635437882, "replies<gx:number>":2056.5600814664, "quotes<gx:number>":754.8859470468 }, "std":{ "id<gx:category>":7.194010391e+16, "author_id<gx:category>":0.0, "user_favourites_count<gx:number>":0.0, "user_followers_count<gx:number>":23210.2101437425, "user_following_count<gx:number>":0.0, "user_listed_count<gx:number>":0.2526882771, "user_tweets_count<gx:number>":0.0, "retweets<gx:number>":13471.3749539952, "favorites<gx:number>":99344.577018021, "replies<gx:number>":3666.4962808525, "quotes<gx:number>":3078.002195837 }, "min":{ "id<gx:category>":1.100456021e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212691.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36166.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":85.0, "favorites<gx:number>":393.0, "replies<gx:number>":22.0, "quotes<gx:number>":0.0 }, "25%":{ "id<gx:category>":1.16465648e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212703.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":249.0, "favorites<gx:number>":1245.5, "replies<gx:number>":156.0, "quotes<gx:number>":22.0 }, "50%":{ "id<gx:category>":1.229553614e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212708.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":1218.0, "favorites<gx:number>":5730.0, "replies<gx:number>":552.0, "quotes<gx:number>":90.0 }, "75%":{ "id<gx:category>":1.296563283e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30212712.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36167.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":4589.5, "favorites<gx:number>":28466.5, "replies<gx:number>":2210.0, "quotes<gx:number>":444.0 }, "max":{ "id<gx:category>":1.391422726e+18, "author_id<gx:category>":939091.0, "user_favourites_count<gx:number>":20.0, "user_followers_count<gx:number>":30308047.0, "user_following_count<gx:number>":47.0, "user_listed_count<gx:number>":36168.0, "user_tweets_count<gx:number>":7340.0, "retweets<gx:number>":205169.0, "favorites<gx:number>":889245.0, "replies<gx:number>":29351.0, "quotes<gx:number>":57012.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: What are the 2 highest numbers of retweets a tweet in the dataset has? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: What are the 2 highest numbers of retweets a tweet in the dataset has? df.columns = ['id<gx:category>', 'author_id<gx:category>', 'author_name<gx:category>', 'author_handler<gx:category>', 'author_avatar<gx:url>', 'user_created_at<gx:date>', 'user_description<gx:text>', 'user_favourites_count<gx:number>', 'user_followers_count<gx:number>', 'user_following_count<gx:number>', 'user_listed_count<gx:number>', 'user_tweets_count<gx:number>', 'user_verified<gx:boolean>', 'user_location<gx:text>', 'lang<gx:category>', 'type<gx:category>', 'text<gx:text>', 'date<gx:date>', 'mention_ids<gx:list[category]>', 'mention_names<gx:list[category]>', 'retweets<gx:number>', 'favorites<gx:number>', 'replies<gx:number>', 'quotes<gx:number>', 'links<gx:list[url]>', 'links_first<gx:url>', 'image_links<gx:list[url]>', 'image_links_first<gx:url>', 'rp_user_id<gx:category>', 'rp_user_name<gx:category>', 'location<gx:text>', 'tweet_link<gx:url>', 'source<gx:text>', 'search<gx:category>'] # Expected output type: is list[number], this will be checked. return
20250129013717