semeval_id
int32
0
319
question
stringlengths
23
161
dataset
stringclasses
16 values
split
stringclasses
1 value
predicted_type
stringclasses
5 values
predicted_columns
stringlengths
6
161
phase
stringclasses
1 value
content
stringlengths
2.99k
55.1k
update_timestamp
stringclasses
15 values
0
Is the most favorited author mainly communicating in Spanish?
050_ING
dev
boolean
['favorites', 'lang']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "id", "type": "int64" }, { "name": "author_id", "type": "int64" }, { "name": "author_name", "type": "category" }, { "name": "author_handler", "type": "category" }, { "name": "author_avatar", "type": "category" }, { "name": "lang", "type": "category" }, { "name": "type", "type": "category" }, { "name": "text", "type": "object" }, { "name": "date", "type": "datetime64[ns, UTC]" }, { "name": "mention_ids", "type": "object" }, { "name": "mention_names", "type": "object" }, { "name": "retweets", "type": "uint8" }, { "name": "favorites", "type": "uint8" }, { "name": "links", "type": "object" }, { "name": "links_first", "type": "category" }, { "name": "image_links", "type": "object" }, { "name": "image_links_first", "type": "category" }, { "name": "rp_user_id", "type": "float64" }, { "name": "rp_user_name", "type": "category" }, { "name": "location", "type": "category" }, { "name": "tweet_link", "type": "category" }, { "name": "search", "type": "category" } ] } # Description of dataframe columns. df_descrption = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: Is the most favorited author mainly communicating in Spanish? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: Is the most favorited author mainly communicating in Spanish? df.columns = ['id', 'author_id', 'author_name', 'author_handler', 'author_avatar', 'lang', 'type', 'text', 'date', 'mention_ids', 'mention_names', 'retweets', 'favorites', 'links', 'links_first', 'image_links', 'image_links_first', 'rp_user_id', 'rp_user_name', 'location', 'tweet_link', 'search'] # Expected output type: is boolean, this will be checked. return
20250129013714
1
Does the author with the longest name post mainly original content?
050_ING
dev
boolean
['author_name', 'type']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "id", "type": "int64" }, { "name": "author_id", "type": "int64" }, { "name": "author_name", "type": "category" }, { "name": "author_handler", "type": "category" }, { "name": "author_avatar", "type": "category" }, { "name": "lang", "type": "category" }, { "name": "type", "type": "category" }, { "name": "text", "type": "object" }, { "name": "date", "type": "datetime64[ns, UTC]" }, { "name": "mention_ids", "type": "object" }, { "name": "mention_names", "type": "object" }, { "name": "retweets", "type": "uint8" }, { "name": "favorites", "type": "uint8" }, { "name": "links", "type": "object" }, { "name": "links_first", "type": "category" }, { "name": "image_links", "type": "object" }, { "name": "image_links_first", "type": "category" }, { "name": "rp_user_id", "type": "float64" }, { "name": "rp_user_name", "type": "category" }, { "name": "location", "type": "category" }, { "name": "tweet_link", "type": "category" }, { "name": "search", "type": "category" } ] } # Description of dataframe columns. df_descrption = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: Does the author with the longest name post mainly original content? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: Does the author with the longest name post mainly original content? df.columns = ['id', 'author_id', 'author_name', 'author_handler', 'author_avatar', 'lang', 'type', 'text', 'date', 'mention_ids', 'mention_names', 'retweets', 'favorites', 'links', 'links_first', 'image_links', 'image_links_first', 'rp_user_id', 'rp_user_name', 'location', 'tweet_link', 'search'] # Expected output type: is boolean, this will be checked. return
20250129013714
2
Is there an author who received no retweets for any of their posts?
050_ING
dev
boolean
['author_name', 'retweets']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "id", "type": "int64" }, { "name": "author_id", "type": "int64" }, { "name": "author_name", "type": "category" }, { "name": "author_handler", "type": "category" }, { "name": "author_avatar", "type": "category" }, { "name": "lang", "type": "category" }, { "name": "type", "type": "category" }, { "name": "text", "type": "object" }, { "name": "date", "type": "datetime64[ns, UTC]" }, { "name": "mention_ids", "type": "object" }, { "name": "mention_names", "type": "object" }, { "name": "retweets", "type": "uint8" }, { "name": "favorites", "type": "uint8" }, { "name": "links", "type": "object" }, { "name": "links_first", "type": "category" }, { "name": "image_links", "type": "object" }, { "name": "image_links_first", "type": "category" }, { "name": "rp_user_id", "type": "float64" }, { "name": "rp_user_name", "type": "category" }, { "name": "location", "type": "category" }, { "name": "tweet_link", "type": "category" }, { "name": "search", "type": "category" } ] } # Description of dataframe columns. df_descrption = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: Is there an author who received no retweets for any of their posts? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: Is there an author who received no retweets for any of their posts? df.columns = ['id', 'author_id', 'author_name', 'author_handler', 'author_avatar', 'lang', 'type', 'text', 'date', 'mention_ids', 'mention_names', 'retweets', 'favorites', 'links', 'links_first', 'image_links', 'image_links_first', 'rp_user_id', 'rp_user_name', 'location', 'tweet_link', 'search'] # Expected output type: is boolean, this will be checked. return
20250129013714
3
Are there any posts that do not contain any links?
050_ING
dev
boolean
['links']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "id", "type": "int64" }, { "name": "author_id", "type": "int64" }, { "name": "author_name", "type": "category" }, { "name": "author_handler", "type": "category" }, { "name": "author_avatar", "type": "category" }, { "name": "lang", "type": "category" }, { "name": "type", "type": "category" }, { "name": "text", "type": "object" }, { "name": "date", "type": "datetime64[ns, UTC]" }, { "name": "mention_ids", "type": "object" }, { "name": "mention_names", "type": "object" }, { "name": "retweets", "type": "uint8" }, { "name": "favorites", "type": "uint8" }, { "name": "links", "type": "object" }, { "name": "links_first", "type": "category" }, { "name": "image_links", "type": "object" }, { "name": "image_links_first", "type": "category" }, { "name": "rp_user_id", "type": "float64" }, { "name": "rp_user_name", "type": "category" }, { "name": "location", "type": "category" }, { "name": "tweet_link", "type": "category" }, { "name": "search", "type": "category" } ] } # Description of dataframe columns. df_descrption = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: Are there any posts that do not contain any links? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: Are there any posts that do not contain any links? df.columns = ['id', 'author_id', 'author_name', 'author_handler', 'author_avatar', 'lang', 'type', 'text', 'date', 'mention_ids', 'mention_names', 'retweets', 'favorites', 'links', 'links_first', 'image_links', 'image_links_first', 'rp_user_id', 'rp_user_name', 'location', 'tweet_link', 'search'] # Expected output type: is boolean, this will be checked. return
20250129013714
4
How many unique authors are in the dataset?
050_ING
dev
number
['author_name']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "id", "type": "int64" }, { "name": "author_id", "type": "int64" }, { "name": "author_name", "type": "category" }, { "name": "author_handler", "type": "category" }, { "name": "author_avatar", "type": "category" }, { "name": "lang", "type": "category" }, { "name": "type", "type": "category" }, { "name": "text", "type": "object" }, { "name": "date", "type": "datetime64[ns, UTC]" }, { "name": "mention_ids", "type": "object" }, { "name": "mention_names", "type": "object" }, { "name": "retweets", "type": "uint8" }, { "name": "favorites", "type": "uint8" }, { "name": "links", "type": "object" }, { "name": "links_first", "type": "category" }, { "name": "image_links", "type": "object" }, { "name": "image_links_first", "type": "category" }, { "name": "rp_user_id", "type": "float64" }, { "name": "rp_user_name", "type": "category" }, { "name": "location", "type": "category" }, { "name": "tweet_link", "type": "category" }, { "name": "search", "type": "category" } ] } # Description of dataframe columns. df_descrption = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: How many unique authors are in the dataset? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: How many unique authors are in the dataset? df.columns = ['id', 'author_id', 'author_name', 'author_handler', 'author_avatar', 'lang', 'type', 'text', 'date', 'mention_ids', 'mention_names', 'retweets', 'favorites', 'links', 'links_first', 'image_links', 'image_links_first', 'rp_user_id', 'rp_user_name', 'location', 'tweet_link', 'search'] # Expected output type: is number, this will be checked. return
20250129013714
5
What is the length of the longest post (based on the number of words)?
050_ING
dev
number
['text']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "id", "type": "int64" }, { "name": "author_id", "type": "int64" }, { "name": "author_name", "type": "category" }, { "name": "author_handler", "type": "category" }, { "name": "author_avatar", "type": "category" }, { "name": "lang", "type": "category" }, { "name": "type", "type": "category" }, { "name": "text", "type": "object" }, { "name": "date", "type": "datetime64[ns, UTC]" }, { "name": "mention_ids", "type": "object" }, { "name": "mention_names", "type": "object" }, { "name": "retweets", "type": "uint8" }, { "name": "favorites", "type": "uint8" }, { "name": "links", "type": "object" }, { "name": "links_first", "type": "category" }, { "name": "image_links", "type": "object" }, { "name": "image_links_first", "type": "category" }, { "name": "rp_user_id", "type": "float64" }, { "name": "rp_user_name", "type": "category" }, { "name": "location", "type": "category" }, { "name": "tweet_link", "type": "category" }, { "name": "search", "type": "category" } ] } # Description of dataframe columns. df_descrption = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: What is the length of the longest post (based on the number of words)? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: What is the length of the longest post (based on the number of words)? df.columns = ['id', 'author_id', 'author_name', 'author_handler', 'author_avatar', 'lang', 'type', 'text', 'date', 'mention_ids', 'mention_names', 'retweets', 'favorites', 'links', 'links_first', 'image_links', 'image_links_first', 'rp_user_id', 'rp_user_name', 'location', 'tweet_link', 'search'] # Expected output type: is number, this will be checked. return
20250129013714
6
What is the total number of retweets received by all authors in the dataset?
050_ING
dev
number
['retweets']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "id", "type": "int64" }, { "name": "author_id", "type": "int64" }, { "name": "author_name", "type": "category" }, { "name": "author_handler", "type": "category" }, { "name": "author_avatar", "type": "category" }, { "name": "lang", "type": "category" }, { "name": "type", "type": "category" }, { "name": "text", "type": "object" }, { "name": "date", "type": "datetime64[ns, UTC]" }, { "name": "mention_ids", "type": "object" }, { "name": "mention_names", "type": "object" }, { "name": "retweets", "type": "uint8" }, { "name": "favorites", "type": "uint8" }, { "name": "links", "type": "object" }, { "name": "links_first", "type": "category" }, { "name": "image_links", "type": "object" }, { "name": "image_links_first", "type": "category" }, { "name": "rp_user_id", "type": "float64" }, { "name": "rp_user_name", "type": "category" }, { "name": "location", "type": "category" }, { "name": "tweet_link", "type": "category" }, { "name": "search", "type": "category" } ] } # Description of dataframe columns. df_descrption = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: What is the total number of retweets received by all authors in the dataset? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: What is the total number of retweets received by all authors in the dataset? df.columns = ['id', 'author_id', 'author_name', 'author_handler', 'author_avatar', 'lang', 'type', 'text', 'date', 'mention_ids', 'mention_names', 'retweets', 'favorites', 'links', 'links_first', 'image_links', 'image_links_first', 'rp_user_id', 'rp_user_name', 'location', 'tweet_link', 'search'] # Expected output type: is number, this will be checked. return
20250129013714
7
How many posts do not contain any mentions of other users?
050_ING
dev
number
['mention_ids']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "id", "type": "int64" }, { "name": "author_id", "type": "int64" }, { "name": "author_name", "type": "category" }, { "name": "author_handler", "type": "category" }, { "name": "author_avatar", "type": "category" }, { "name": "lang", "type": "category" }, { "name": "type", "type": "category" }, { "name": "text", "type": "object" }, { "name": "date", "type": "datetime64[ns, UTC]" }, { "name": "mention_ids", "type": "object" }, { "name": "mention_names", "type": "object" }, { "name": "retweets", "type": "uint8" }, { "name": "favorites", "type": "uint8" }, { "name": "links", "type": "object" }, { "name": "links_first", "type": "category" }, { "name": "image_links", "type": "object" }, { "name": "image_links_first", "type": "category" }, { "name": "rp_user_id", "type": "float64" }, { "name": "rp_user_name", "type": "category" }, { "name": "location", "type": "category" }, { "name": "tweet_link", "type": "category" }, { "name": "search", "type": "category" } ] } # Description of dataframe columns. df_descrption = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: How many posts do not contain any mentions of other users? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: How many posts do not contain any mentions of other users? df.columns = ['id', 'author_id', 'author_name', 'author_handler', 'author_avatar', 'lang', 'type', 'text', 'date', 'mention_ids', 'mention_names', 'retweets', 'favorites', 'links', 'links_first', 'image_links', 'image_links_first', 'rp_user_id', 'rp_user_name', 'location', 'tweet_link', 'search'] # Expected output type: is number, this will be checked. return
20250129013714
8
What is the name of the author with the most retweeted single tweet?
050_ING
dev
category
['author_name', 'retweets']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "id", "type": "int64" }, { "name": "author_id", "type": "int64" }, { "name": "author_name", "type": "category" }, { "name": "author_handler", "type": "category" }, { "name": "author_avatar", "type": "category" }, { "name": "lang", "type": "category" }, { "name": "type", "type": "category" }, { "name": "text", "type": "object" }, { "name": "date", "type": "datetime64[ns, UTC]" }, { "name": "mention_ids", "type": "object" }, { "name": "mention_names", "type": "object" }, { "name": "retweets", "type": "uint8" }, { "name": "favorites", "type": "uint8" }, { "name": "links", "type": "object" }, { "name": "links_first", "type": "category" }, { "name": "image_links", "type": "object" }, { "name": "image_links_first", "type": "category" }, { "name": "rp_user_id", "type": "float64" }, { "name": "rp_user_name", "type": "category" }, { "name": "location", "type": "category" }, { "name": "tweet_link", "type": "category" }, { "name": "search", "type": "category" } ] } # Description of dataframe columns. df_descrption = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: What is the name of the author with the most retweeted single tweet? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: What is the name of the author with the most retweeted single tweet? df.columns = ['id', 'author_id', 'author_name', 'author_handler', 'author_avatar', 'lang', 'type', 'text', 'date', 'mention_ids', 'mention_names', 'retweets', 'favorites', 'links', 'links_first', 'image_links', 'image_links_first', 'rp_user_id', 'rp_user_name', 'location', 'tweet_link', 'search'] # Expected output type: is category, this will be checked. return
20250129013714
9
What is the language of the most favorited post?
050_ING
dev
category
['lang', 'favorites']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "id", "type": "int64" }, { "name": "author_id", "type": "int64" }, { "name": "author_name", "type": "category" }, { "name": "author_handler", "type": "category" }, { "name": "author_avatar", "type": "category" }, { "name": "lang", "type": "category" }, { "name": "type", "type": "category" }, { "name": "text", "type": "object" }, { "name": "date", "type": "datetime64[ns, UTC]" }, { "name": "mention_ids", "type": "object" }, { "name": "mention_names", "type": "object" }, { "name": "retweets", "type": "uint8" }, { "name": "favorites", "type": "uint8" }, { "name": "links", "type": "object" }, { "name": "links_first", "type": "category" }, { "name": "image_links", "type": "object" }, { "name": "image_links_first", "type": "category" }, { "name": "rp_user_id", "type": "float64" }, { "name": "rp_user_name", "type": "category" }, { "name": "location", "type": "category" }, { "name": "tweet_link", "type": "category" }, { "name": "search", "type": "category" } ] } # Description of dataframe columns. df_descrption = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: What is the language of the most favorited post? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: What is the language of the most favorited post? df.columns = ['id', 'author_id', 'author_name', 'author_handler', 'author_avatar', 'lang', 'type', 'text', 'date', 'mention_ids', 'mention_names', 'retweets', 'favorites', 'links', 'links_first', 'image_links', 'image_links_first', 'rp_user_id', 'rp_user_name', 'location', 'tweet_link', 'search'] # Expected output type: is category, this will be checked. return
20250129013714
10
Who is the author of the post with the most words?
050_ING
dev
category
['author_name', 'text']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "id", "type": "int64" }, { "name": "author_id", "type": "int64" }, { "name": "author_name", "type": "category" }, { "name": "author_handler", "type": "category" }, { "name": "author_avatar", "type": "category" }, { "name": "lang", "type": "category" }, { "name": "type", "type": "category" }, { "name": "text", "type": "object" }, { "name": "date", "type": "datetime64[ns, UTC]" }, { "name": "mention_ids", "type": "object" }, { "name": "mention_names", "type": "object" }, { "name": "retweets", "type": "uint8" }, { "name": "favorites", "type": "uint8" }, { "name": "links", "type": "object" }, { "name": "links_first", "type": "category" }, { "name": "image_links", "type": "object" }, { "name": "image_links_first", "type": "category" }, { "name": "rp_user_id", "type": "float64" }, { "name": "rp_user_name", "type": "category" }, { "name": "location", "type": "category" }, { "name": "tweet_link", "type": "category" }, { "name": "search", "type": "category" } ] } # Description of dataframe columns. df_descrption = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: Who is the author of the post with the most words? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: Who is the author of the post with the most words? df.columns = ['id', 'author_id', 'author_name', 'author_handler', 'author_avatar', 'lang', 'type', 'text', 'date', 'mention_ids', 'mention_names', 'retweets', 'favorites', 'links', 'links_first', 'image_links', 'image_links_first', 'rp_user_id', 'rp_user_name', 'location', 'tweet_link', 'search'] # Expected output type: is category, this will be checked. return
20250129013714
11
What type of post (original, reply, or other) is the most common in the dataset?
050_ING
dev
category
['type']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "id", "type": "int64" }, { "name": "author_id", "type": "int64" }, { "name": "author_name", "type": "category" }, { "name": "author_handler", "type": "category" }, { "name": "author_avatar", "type": "category" }, { "name": "lang", "type": "category" }, { "name": "type", "type": "category" }, { "name": "text", "type": "object" }, { "name": "date", "type": "datetime64[ns, UTC]" }, { "name": "mention_ids", "type": "object" }, { "name": "mention_names", "type": "object" }, { "name": "retweets", "type": "uint8" }, { "name": "favorites", "type": "uint8" }, { "name": "links", "type": "object" }, { "name": "links_first", "type": "category" }, { "name": "image_links", "type": "object" }, { "name": "image_links_first", "type": "category" }, { "name": "rp_user_id", "type": "float64" }, { "name": "rp_user_name", "type": "category" }, { "name": "location", "type": "category" }, { "name": "tweet_link", "type": "category" }, { "name": "search", "type": "category" } ] } # Description of dataframe columns. df_descrption = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: What type of post (original, reply, or other) is the most common in the dataset? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: What type of post (original, reply, or other) is the most common in the dataset? df.columns = ['id', 'author_id', 'author_name', 'author_handler', 'author_avatar', 'lang', 'type', 'text', 'date', 'mention_ids', 'mention_names', 'retweets', 'favorites', 'links', 'links_first', 'image_links', 'image_links_first', 'rp_user_id', 'rp_user_name', 'location', 'tweet_link', 'search'] # Expected output type: is category, this will be checked. return
20250129013714
12
Who are the authors of the top 3 most retweeted posts?
050_ING
dev
list[category]
['author_name', 'retweets']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "id", "type": "int64" }, { "name": "author_id", "type": "int64" }, { "name": "author_name", "type": "category" }, { "name": "author_handler", "type": "category" }, { "name": "author_avatar", "type": "category" }, { "name": "lang", "type": "category" }, { "name": "type", "type": "category" }, { "name": "text", "type": "object" }, { "name": "date", "type": "datetime64[ns, UTC]" }, { "name": "mention_ids", "type": "object" }, { "name": "mention_names", "type": "object" }, { "name": "retweets", "type": "uint8" }, { "name": "favorites", "type": "uint8" }, { "name": "links", "type": "object" }, { "name": "links_first", "type": "category" }, { "name": "image_links", "type": "object" }, { "name": "image_links_first", "type": "category" }, { "name": "rp_user_id", "type": "float64" }, { "name": "rp_user_name", "type": "category" }, { "name": "location", "type": "category" }, { "name": "tweet_link", "type": "category" }, { "name": "search", "type": "category" } ] } # Description of dataframe columns. df_descrption = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: Who are the authors of the top 3 most retweeted posts? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: Who are the authors of the top 3 most retweeted posts? df.columns = ['id', 'author_id', 'author_name', 'author_handler', 'author_avatar', 'lang', 'type', 'text', 'date', 'mention_ids', 'mention_names', 'retweets', 'favorites', 'links', 'links_first', 'image_links', 'image_links_first', 'rp_user_id', 'rp_user_name', 'location', 'tweet_link', 'search'] # Expected output type: is list[category], this will be checked. return
20250129013714
13
What are the languages of the 5 least favorited posts?
050_ING
dev
list[category]
['lang', 'favorites']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "id", "type": "int64" }, { "name": "author_id", "type": "int64" }, { "name": "author_name", "type": "category" }, { "name": "author_handler", "type": "category" }, { "name": "author_avatar", "type": "category" }, { "name": "lang", "type": "category" }, { "name": "type", "type": "category" }, { "name": "text", "type": "object" }, { "name": "date", "type": "datetime64[ns, UTC]" }, { "name": "mention_ids", "type": "object" }, { "name": "mention_names", "type": "object" }, { "name": "retweets", "type": "uint8" }, { "name": "favorites", "type": "uint8" }, { "name": "links", "type": "object" }, { "name": "links_first", "type": "category" }, { "name": "image_links", "type": "object" }, { "name": "image_links_first", "type": "category" }, { "name": "rp_user_id", "type": "float64" }, { "name": "rp_user_name", "type": "category" }, { "name": "location", "type": "category" }, { "name": "tweet_link", "type": "category" }, { "name": "search", "type": "category" } ] } # Description of dataframe columns. df_descrption = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: What are the languages of the 5 least favorited posts? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: What are the languages of the 5 least favorited posts? df.columns = ['id', 'author_id', 'author_name', 'author_handler', 'author_avatar', 'lang', 'type', 'text', 'date', 'mention_ids', 'mention_names', 'retweets', 'favorites', 'links', 'links_first', 'image_links', 'image_links_first', 'rp_user_id', 'rp_user_name', 'location', 'tweet_link', 'search'] # Expected output type: is list[category], this will be checked. return
20250129013714
14
Who are the authors of the 4 shortest posts (based on the number of words)?
050_ING
dev
list[category]
['author_name', 'text']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "id", "type": "int64" }, { "name": "author_id", "type": "int64" }, { "name": "author_name", "type": "category" }, { "name": "author_handler", "type": "category" }, { "name": "author_avatar", "type": "category" }, { "name": "lang", "type": "category" }, { "name": "type", "type": "category" }, { "name": "text", "type": "object" }, { "name": "date", "type": "datetime64[ns, UTC]" }, { "name": "mention_ids", "type": "object" }, { "name": "mention_names", "type": "object" }, { "name": "retweets", "type": "uint8" }, { "name": "favorites", "type": "uint8" }, { "name": "links", "type": "object" }, { "name": "links_first", "type": "category" }, { "name": "image_links", "type": "object" }, { "name": "image_links_first", "type": "category" }, { "name": "rp_user_id", "type": "float64" }, { "name": "rp_user_name", "type": "category" }, { "name": "location", "type": "category" }, { "name": "tweet_link", "type": "category" }, { "name": "search", "type": "category" } ] } # Description of dataframe columns. df_descrption = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: Who are the authors of the 4 shortest posts (based on the number of words)? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: Who are the authors of the 4 shortest posts (based on the number of words)? df.columns = ['id', 'author_id', 'author_name', 'author_handler', 'author_avatar', 'lang', 'type', 'text', 'date', 'mention_ids', 'mention_names', 'retweets', 'favorites', 'links', 'links_first', 'image_links', 'image_links_first', 'rp_user_id', 'rp_user_name', 'location', 'tweet_link', 'search'] # Expected output type: is list[category], this will be checked. return
20250129013714
15
What types of posts are the 6 most common in the dataset?
050_ING
dev
list[category]
['type']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "id", "type": "int64" }, { "name": "author_id", "type": "int64" }, { "name": "author_name", "type": "category" }, { "name": "author_handler", "type": "category" }, { "name": "author_avatar", "type": "category" }, { "name": "lang", "type": "category" }, { "name": "type", "type": "category" }, { "name": "text", "type": "object" }, { "name": "date", "type": "datetime64[ns, UTC]" }, { "name": "mention_ids", "type": "object" }, { "name": "mention_names", "type": "object" }, { "name": "retweets", "type": "uint8" }, { "name": "favorites", "type": "uint8" }, { "name": "links", "type": "object" }, { "name": "links_first", "type": "category" }, { "name": "image_links", "type": "object" }, { "name": "image_links_first", "type": "category" }, { "name": "rp_user_id", "type": "float64" }, { "name": "rp_user_name", "type": "category" }, { "name": "location", "type": "category" }, { "name": "tweet_link", "type": "category" }, { "name": "search", "type": "category" } ] } # Description of dataframe columns. df_descrption = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: What types of posts are the 6 most common in the dataset? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: What types of posts are the 6 most common in the dataset? df.columns = ['id', 'author_id', 'author_name', 'author_handler', 'author_avatar', 'lang', 'type', 'text', 'date', 'mention_ids', 'mention_names', 'retweets', 'favorites', 'links', 'links_first', 'image_links', 'image_links_first', 'rp_user_id', 'rp_user_name', 'location', 'tweet_link', 'search'] # Expected output type: is list[category], this will be checked. return
20250129013714
16
What are the retweet counts for the top 5 most favorited posts?
050_ING
dev
list[number]
['retweets', 'favorites']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "id", "type": "int64" }, { "name": "author_id", "type": "int64" }, { "name": "author_name", "type": "category" }, { "name": "author_handler", "type": "category" }, { "name": "author_avatar", "type": "category" }, { "name": "lang", "type": "category" }, { "name": "type", "type": "category" }, { "name": "text", "type": "object" }, { "name": "date", "type": "datetime64[ns, UTC]" }, { "name": "mention_ids", "type": "object" }, { "name": "mention_names", "type": "object" }, { "name": "retweets", "type": "uint8" }, { "name": "favorites", "type": "uint8" }, { "name": "links", "type": "object" }, { "name": "links_first", "type": "category" }, { "name": "image_links", "type": "object" }, { "name": "image_links_first", "type": "category" }, { "name": "rp_user_id", "type": "float64" }, { "name": "rp_user_name", "type": "category" }, { "name": "location", "type": "category" }, { "name": "tweet_link", "type": "category" }, { "name": "search", "type": "category" } ] } # Description of dataframe columns. df_descrption = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: What are the retweet counts for the top 5 most favorited posts? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: What are the retweet counts for the top 5 most favorited posts? df.columns = ['id', 'author_id', 'author_name', 'author_handler', 'author_avatar', 'lang', 'type', 'text', 'date', 'mention_ids', 'mention_names', 'retweets', 'favorites', 'links', 'links_first', 'image_links', 'image_links_first', 'rp_user_id', 'rp_user_name', 'location', 'tweet_link', 'search'] # Expected output type: is list[number], this will be checked. return
20250129013714
17
What are the word counts of the 3 longest posts?
050_ING
dev
list[number]
['text']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "id", "type": "int64" }, { "name": "author_id", "type": "int64" }, { "name": "author_name", "type": "category" }, { "name": "author_handler", "type": "category" }, { "name": "author_avatar", "type": "category" }, { "name": "lang", "type": "category" }, { "name": "type", "type": "category" }, { "name": "text", "type": "object" }, { "name": "date", "type": "datetime64[ns, UTC]" }, { "name": "mention_ids", "type": "object" }, { "name": "mention_names", "type": "object" }, { "name": "retweets", "type": "uint8" }, { "name": "favorites", "type": "uint8" }, { "name": "links", "type": "object" }, { "name": "links_first", "type": "category" }, { "name": "image_links", "type": "object" }, { "name": "image_links_first", "type": "category" }, { "name": "rp_user_id", "type": "float64" }, { "name": "rp_user_name", "type": "category" }, { "name": "location", "type": "category" }, { "name": "tweet_link", "type": "category" }, { "name": "search", "type": "category" } ] } # Description of dataframe columns. df_descrption = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: What are the word counts of the 3 longest posts? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: What are the word counts of the 3 longest posts? df.columns = ['id', 'author_id', 'author_name', 'author_handler', 'author_avatar', 'lang', 'type', 'text', 'date', 'mention_ids', 'mention_names', 'retweets', 'favorites', 'links', 'links_first', 'image_links', 'image_links_first', 'rp_user_id', 'rp_user_name', 'location', 'tweet_link', 'search'] # Expected output type: is list[number], this will be checked. return
20250129013714
18
What are the retweet counts of the 4 least favorited posts?
050_ING
dev
list[number]
['retweets', 'favorites']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "id", "type": "int64" }, { "name": "author_id", "type": "int64" }, { "name": "author_name", "type": "category" }, { "name": "author_handler", "type": "category" }, { "name": "author_avatar", "type": "category" }, { "name": "lang", "type": "category" }, { "name": "type", "type": "category" }, { "name": "text", "type": "object" }, { "name": "date", "type": "datetime64[ns, UTC]" }, { "name": "mention_ids", "type": "object" }, { "name": "mention_names", "type": "object" }, { "name": "retweets", "type": "uint8" }, { "name": "favorites", "type": "uint8" }, { "name": "links", "type": "object" }, { "name": "links_first", "type": "category" }, { "name": "image_links", "type": "object" }, { "name": "image_links_first", "type": "category" }, { "name": "rp_user_id", "type": "float64" }, { "name": "rp_user_name", "type": "category" }, { "name": "location", "type": "category" }, { "name": "tweet_link", "type": "category" }, { "name": "search", "type": "category" } ] } # Description of dataframe columns. df_descrption = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: What are the retweet counts of the 4 least favorited posts? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: What are the retweet counts of the 4 least favorited posts? df.columns = ['id', 'author_id', 'author_name', 'author_handler', 'author_avatar', 'lang', 'type', 'text', 'date', 'mention_ids', 'mention_names', 'retweets', 'favorites', 'links', 'links_first', 'image_links', 'image_links_first', 'rp_user_id', 'rp_user_name', 'location', 'tweet_link', 'search'] # Expected output type: is list[number], this will be checked. return
20250129013714
19
What are the word counts for the 6 shortest posts?
050_ING
dev
list[number]
['text']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "id", "type": "int64" }, { "name": "author_id", "type": "int64" }, { "name": "author_name", "type": "category" }, { "name": "author_handler", "type": "category" }, { "name": "author_avatar", "type": "category" }, { "name": "lang", "type": "category" }, { "name": "type", "type": "category" }, { "name": "text", "type": "object" }, { "name": "date", "type": "datetime64[ns, UTC]" }, { "name": "mention_ids", "type": "object" }, { "name": "mention_names", "type": "object" }, { "name": "retweets", "type": "uint8" }, { "name": "favorites", "type": "uint8" }, { "name": "links", "type": "object" }, { "name": "links_first", "type": "category" }, { "name": "image_links", "type": "object" }, { "name": "image_links_first", "type": "category" }, { "name": "rp_user_id", "type": "float64" }, { "name": "rp_user_name", "type": "category" }, { "name": "location", "type": "category" }, { "name": "tweet_link", "type": "category" }, { "name": "search", "type": "category" } ] } # Description of dataframe columns. df_descrption = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "id":7244.0, "author_id":7244.0, "retweets":7244.0, "favorites":7244.0, "rp_user_id":4094.0 }, "mean":{ "id":1.129999764e+18, "author_id":1.456169002e+17, "retweets":0.1715902816, "favorites":0.6188569851, "rp_user_id":270815203.0 }, "std":{ "id":2.920544101e+16, "author_id":3.490773128e+17, "retweets":0.7395750951, "favorites":1.8434020668, "rp_user_id":0.0 }, "min":{ "id":1.079908205e+18, "author_id":7007.0, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "25%":{ "id":1.10505894e+18, "author_id":140041809.75, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "50%":{ "id":1.124196559e+18, "author_id":318183125.5, "retweets":0.0, "favorites":0.0, "rp_user_id":270815203.0 }, "75%":{ "id":1.158378457e+18, "author_id":1901654083.0, "retweets":0.0, "favorites":1.0, "rp_user_id":270815203.0 }, "max":{ "id":1.176868218e+18, "author_id":1.175435395e+18, "retweets":17.0, "favorites":41.0, "rp_user_id":270815203.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: What are the word counts for the 6 shortest posts? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: What are the word counts for the 6 shortest posts? df.columns = ['id', 'author_id', 'author_name', 'author_handler', 'author_avatar', 'lang', 'type', 'text', 'date', 'mention_ids', 'mention_names', 'retweets', 'favorites', 'links', 'links_first', 'image_links', 'image_links_first', 'rp_user_id', 'rp_user_name', 'location', 'tweet_link', 'search'] # Expected output type: is list[number], this will be checked. return
20250129013714
20
Is there a Pokémon named 'Pikachu' in the dataset?
051_Pokemon
dev
boolean
['name']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "number", "type": "uint16" }, { "name": "name", "type": "category" }, { "name": "type1", "type": "category" }, { "name": "type2", "type": "category" }, { "name": "total", "type": "uint16" }, { "name": "hp", "type": "uint8" }, { "name": "attack", "type": "uint8" }, { "name": "defense", "type": "uint8" }, { "name": "sp_attack", "type": "uint8" }, { "name": "sp_defense", "type": "uint8" }, { "name": "speed", "type": "uint8" }, { "name": "generation", "type": "uint8" }, { "name": "legendary", "type": "bool" } ] } # Description of dataframe columns. df_descrption = { "count":{ "number":1072.0, "total":1072.0, "hp":1072.0, "attack":1072.0, "defense":1072.0, "sp_attack":1072.0, "sp_defense":1072.0, "speed":1072.0, "generation":1072.0 }, "mean":{ "number":445.2192164179, "total":440.885261194, "hp":70.4869402985, "attack":80.9384328358, "defense":74.9682835821, "sp_attack":73.2733208955, "sp_defense":72.4766791045, "speed":68.7929104478, "generation":4.2947761194 }, "std":{ "number":267.77280649, "total":121.3790771926, "hp":26.8680389923, "attack":32.4635820748, "defense":31.2080593873, "sp_attack":32.6431190064, "sp_defense":27.9342534926, "speed":30.0762806451, "generation":2.3464717631 }, "min":{ "number":1.0, "total":175.0, "hp":1.0, "attack":5.0, "defense":5.0, "sp_attack":10.0, "sp_defense":20.0, "speed":5.0, "generation":0.0 }, "25%":{ "number":209.75, "total":330.0, "hp":50.0, "attack":56.0, "defense":52.0, "sp_attack":50.0, "sp_defense":50.0, "speed":45.0, "generation":2.0 }, "50%":{ "number":442.5, "total":460.5, "hp":68.0, "attack":80.0, "defense":70.0, "sp_attack":65.0, "sp_defense":70.0, "speed":65.0, "generation":4.0 }, "75%":{ "number":681.25, "total":519.25, "hp":84.0, "attack":100.0, "defense":90.0, "sp_attack":95.0, "sp_defense":90.0, "speed":90.0, "generation":6.0 }, "max":{ "number":898.0, "total":1125.0, "hp":255.0, "attack":190.0, "defense":250.0, "sp_attack":194.0, "sp_defense":250.0, "speed":200.0, "generation":8.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "number":1072.0, "total":1072.0, "hp":1072.0, "attack":1072.0, "defense":1072.0, "sp_attack":1072.0, "sp_defense":1072.0, "speed":1072.0, "generation":1072.0 }, "mean":{ "number":445.2192164179, "total":440.885261194, "hp":70.4869402985, "attack":80.9384328358, "defense":74.9682835821, "sp_attack":73.2733208955, "sp_defense":72.4766791045, "speed":68.7929104478, "generation":4.2947761194 }, "std":{ "number":267.77280649, "total":121.3790771926, "hp":26.8680389923, "attack":32.4635820748, "defense":31.2080593873, "sp_attack":32.6431190064, "sp_defense":27.9342534926, "speed":30.0762806451, "generation":2.3464717631 }, "min":{ "number":1.0, "total":175.0, "hp":1.0, "attack":5.0, "defense":5.0, "sp_attack":10.0, "sp_defense":20.0, "speed":5.0, "generation":0.0 }, "25%":{ "number":209.75, "total":330.0, "hp":50.0, "attack":56.0, "defense":52.0, "sp_attack":50.0, "sp_defense":50.0, "speed":45.0, "generation":2.0 }, "50%":{ "number":442.5, "total":460.5, "hp":68.0, "attack":80.0, "defense":70.0, "sp_attack":65.0, "sp_defense":70.0, "speed":65.0, "generation":4.0 }, "75%":{ "number":681.25, "total":519.25, "hp":84.0, "attack":100.0, "defense":90.0, "sp_attack":95.0, "sp_defense":90.0, "speed":90.0, "generation":6.0 }, "max":{ "number":898.0, "total":1125.0, "hp":255.0, "attack":190.0, "defense":250.0, "sp_attack":194.0, "sp_defense":250.0, "speed":200.0, "generation":8.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: Is there a Pokémon named 'Pikachu' in the dataset? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: Is there a Pokémon named 'Pikachu' in the dataset? df.columns = ['number', 'name', 'type1', 'type2', 'total', 'hp', 'attack', 'defense', 'sp_attack', 'sp_defense', 'speed', 'generation', 'legendary'] # Expected output type: is boolean, this will be checked. return
20250129013714
21
Are there any Pokémon with a total stat greater than 700?
051_Pokemon
dev
boolean
['total']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "number", "type": "uint16" }, { "name": "name", "type": "category" }, { "name": "type1", "type": "category" }, { "name": "type2", "type": "category" }, { "name": "total", "type": "uint16" }, { "name": "hp", "type": "uint8" }, { "name": "attack", "type": "uint8" }, { "name": "defense", "type": "uint8" }, { "name": "sp_attack", "type": "uint8" }, { "name": "sp_defense", "type": "uint8" }, { "name": "speed", "type": "uint8" }, { "name": "generation", "type": "uint8" }, { "name": "legendary", "type": "bool" } ] } # Description of dataframe columns. df_descrption = { "count":{ "number":1072.0, "total":1072.0, "hp":1072.0, "attack":1072.0, "defense":1072.0, "sp_attack":1072.0, "sp_defense":1072.0, "speed":1072.0, "generation":1072.0 }, "mean":{ "number":445.2192164179, "total":440.885261194, "hp":70.4869402985, "attack":80.9384328358, "defense":74.9682835821, "sp_attack":73.2733208955, "sp_defense":72.4766791045, "speed":68.7929104478, "generation":4.2947761194 }, "std":{ "number":267.77280649, "total":121.3790771926, "hp":26.8680389923, "attack":32.4635820748, "defense":31.2080593873, "sp_attack":32.6431190064, "sp_defense":27.9342534926, "speed":30.0762806451, "generation":2.3464717631 }, "min":{ "number":1.0, "total":175.0, "hp":1.0, "attack":5.0, "defense":5.0, "sp_attack":10.0, "sp_defense":20.0, "speed":5.0, "generation":0.0 }, "25%":{ "number":209.75, "total":330.0, "hp":50.0, "attack":56.0, "defense":52.0, "sp_attack":50.0, "sp_defense":50.0, "speed":45.0, "generation":2.0 }, "50%":{ "number":442.5, "total":460.5, "hp":68.0, "attack":80.0, "defense":70.0, "sp_attack":65.0, "sp_defense":70.0, "speed":65.0, "generation":4.0 }, "75%":{ "number":681.25, "total":519.25, "hp":84.0, "attack":100.0, "defense":90.0, "sp_attack":95.0, "sp_defense":90.0, "speed":90.0, "generation":6.0 }, "max":{ "number":898.0, "total":1125.0, "hp":255.0, "attack":190.0, "defense":250.0, "sp_attack":194.0, "sp_defense":250.0, "speed":200.0, "generation":8.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "number":1072.0, "total":1072.0, "hp":1072.0, "attack":1072.0, "defense":1072.0, "sp_attack":1072.0, "sp_defense":1072.0, "speed":1072.0, "generation":1072.0 }, "mean":{ "number":445.2192164179, "total":440.885261194, "hp":70.4869402985, "attack":80.9384328358, "defense":74.9682835821, "sp_attack":73.2733208955, "sp_defense":72.4766791045, "speed":68.7929104478, "generation":4.2947761194 }, "std":{ "number":267.77280649, "total":121.3790771926, "hp":26.8680389923, "attack":32.4635820748, "defense":31.2080593873, "sp_attack":32.6431190064, "sp_defense":27.9342534926, "speed":30.0762806451, "generation":2.3464717631 }, "min":{ "number":1.0, "total":175.0, "hp":1.0, "attack":5.0, "defense":5.0, "sp_attack":10.0, "sp_defense":20.0, "speed":5.0, "generation":0.0 }, "25%":{ "number":209.75, "total":330.0, "hp":50.0, "attack":56.0, "defense":52.0, "sp_attack":50.0, "sp_defense":50.0, "speed":45.0, "generation":2.0 }, "50%":{ "number":442.5, "total":460.5, "hp":68.0, "attack":80.0, "defense":70.0, "sp_attack":65.0, "sp_defense":70.0, "speed":65.0, "generation":4.0 }, "75%":{ "number":681.25, "total":519.25, "hp":84.0, "attack":100.0, "defense":90.0, "sp_attack":95.0, "sp_defense":90.0, "speed":90.0, "generation":6.0 }, "max":{ "number":898.0, "total":1125.0, "hp":255.0, "attack":190.0, "defense":250.0, "sp_attack":194.0, "sp_defense":250.0, "speed":200.0, "generation":8.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: Are there any Pokémon with a total stat greater than 700? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: Are there any Pokémon with a total stat greater than 700? df.columns = ['number', 'name', 'type1', 'type2', 'total', 'hp', 'attack', 'defense', 'sp_attack', 'sp_defense', 'speed', 'generation', 'legendary'] # Expected output type: is boolean, this will be checked. return
20250129013714
22
Are all Pokémon in the first generation legendary?
051_Pokemon
dev
boolean
['generation', 'legendary']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "number", "type": "uint16" }, { "name": "name", "type": "category" }, { "name": "type1", "type": "category" }, { "name": "type2", "type": "category" }, { "name": "total", "type": "uint16" }, { "name": "hp", "type": "uint8" }, { "name": "attack", "type": "uint8" }, { "name": "defense", "type": "uint8" }, { "name": "sp_attack", "type": "uint8" }, { "name": "sp_defense", "type": "uint8" }, { "name": "speed", "type": "uint8" }, { "name": "generation", "type": "uint8" }, { "name": "legendary", "type": "bool" } ] } # Description of dataframe columns. df_descrption = { "count":{ "number":1072.0, "total":1072.0, "hp":1072.0, "attack":1072.0, "defense":1072.0, "sp_attack":1072.0, "sp_defense":1072.0, "speed":1072.0, "generation":1072.0 }, "mean":{ "number":445.2192164179, "total":440.885261194, "hp":70.4869402985, "attack":80.9384328358, "defense":74.9682835821, "sp_attack":73.2733208955, "sp_defense":72.4766791045, "speed":68.7929104478, "generation":4.2947761194 }, "std":{ "number":267.77280649, "total":121.3790771926, "hp":26.8680389923, "attack":32.4635820748, "defense":31.2080593873, "sp_attack":32.6431190064, "sp_defense":27.9342534926, "speed":30.0762806451, "generation":2.3464717631 }, "min":{ "number":1.0, "total":175.0, "hp":1.0, "attack":5.0, "defense":5.0, "sp_attack":10.0, "sp_defense":20.0, "speed":5.0, "generation":0.0 }, "25%":{ "number":209.75, "total":330.0, "hp":50.0, "attack":56.0, "defense":52.0, "sp_attack":50.0, "sp_defense":50.0, "speed":45.0, "generation":2.0 }, "50%":{ "number":442.5, "total":460.5, "hp":68.0, "attack":80.0, "defense":70.0, "sp_attack":65.0, "sp_defense":70.0, "speed":65.0, "generation":4.0 }, "75%":{ "number":681.25, "total":519.25, "hp":84.0, "attack":100.0, "defense":90.0, "sp_attack":95.0, "sp_defense":90.0, "speed":90.0, "generation":6.0 }, "max":{ "number":898.0, "total":1125.0, "hp":255.0, "attack":190.0, "defense":250.0, "sp_attack":194.0, "sp_defense":250.0, "speed":200.0, "generation":8.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "number":1072.0, "total":1072.0, "hp":1072.0, "attack":1072.0, "defense":1072.0, "sp_attack":1072.0, "sp_defense":1072.0, "speed":1072.0, "generation":1072.0 }, "mean":{ "number":445.2192164179, "total":440.885261194, "hp":70.4869402985, "attack":80.9384328358, "defense":74.9682835821, "sp_attack":73.2733208955, "sp_defense":72.4766791045, "speed":68.7929104478, "generation":4.2947761194 }, "std":{ "number":267.77280649, "total":121.3790771926, "hp":26.8680389923, "attack":32.4635820748, "defense":31.2080593873, "sp_attack":32.6431190064, "sp_defense":27.9342534926, "speed":30.0762806451, "generation":2.3464717631 }, "min":{ "number":1.0, "total":175.0, "hp":1.0, "attack":5.0, "defense":5.0, "sp_attack":10.0, "sp_defense":20.0, "speed":5.0, "generation":0.0 }, "25%":{ "number":209.75, "total":330.0, "hp":50.0, "attack":56.0, "defense":52.0, "sp_attack":50.0, "sp_defense":50.0, "speed":45.0, "generation":2.0 }, "50%":{ "number":442.5, "total":460.5, "hp":68.0, "attack":80.0, "defense":70.0, "sp_attack":65.0, "sp_defense":70.0, "speed":65.0, "generation":4.0 }, "75%":{ "number":681.25, "total":519.25, "hp":84.0, "attack":100.0, "defense":90.0, "sp_attack":95.0, "sp_defense":90.0, "speed":90.0, "generation":6.0 }, "max":{ "number":898.0, "total":1125.0, "hp":255.0, "attack":190.0, "defense":250.0, "sp_attack":194.0, "sp_defense":250.0, "speed":200.0, "generation":8.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: Are all Pokémon in the first generation legendary? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: Are all Pokémon in the first generation legendary? df.columns = ['number', 'name', 'type1', 'type2', 'total', 'hp', 'attack', 'defense', 'sp_attack', 'sp_defense', 'speed', 'generation', 'legendary'] # Expected output type: is boolean, this will be checked. return
20250129013715
23
Is there any Pokémon with a speed greater than 150?
051_Pokemon
dev
boolean
['speed']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "number", "type": "uint16" }, { "name": "name", "type": "category" }, { "name": "type1", "type": "category" }, { "name": "type2", "type": "category" }, { "name": "total", "type": "uint16" }, { "name": "hp", "type": "uint8" }, { "name": "attack", "type": "uint8" }, { "name": "defense", "type": "uint8" }, { "name": "sp_attack", "type": "uint8" }, { "name": "sp_defense", "type": "uint8" }, { "name": "speed", "type": "uint8" }, { "name": "generation", "type": "uint8" }, { "name": "legendary", "type": "bool" } ] } # Description of dataframe columns. df_descrption = { "count":{ "number":1072.0, "total":1072.0, "hp":1072.0, "attack":1072.0, "defense":1072.0, "sp_attack":1072.0, "sp_defense":1072.0, "speed":1072.0, "generation":1072.0 }, "mean":{ "number":445.2192164179, "total":440.885261194, "hp":70.4869402985, "attack":80.9384328358, "defense":74.9682835821, "sp_attack":73.2733208955, "sp_defense":72.4766791045, "speed":68.7929104478, "generation":4.2947761194 }, "std":{ "number":267.77280649, "total":121.3790771926, "hp":26.8680389923, "attack":32.4635820748, "defense":31.2080593873, "sp_attack":32.6431190064, "sp_defense":27.9342534926, "speed":30.0762806451, "generation":2.3464717631 }, "min":{ "number":1.0, "total":175.0, "hp":1.0, "attack":5.0, "defense":5.0, "sp_attack":10.0, "sp_defense":20.0, "speed":5.0, "generation":0.0 }, "25%":{ "number":209.75, "total":330.0, "hp":50.0, "attack":56.0, "defense":52.0, "sp_attack":50.0, "sp_defense":50.0, "speed":45.0, "generation":2.0 }, "50%":{ "number":442.5, "total":460.5, "hp":68.0, "attack":80.0, "defense":70.0, "sp_attack":65.0, "sp_defense":70.0, "speed":65.0, "generation":4.0 }, "75%":{ "number":681.25, "total":519.25, "hp":84.0, "attack":100.0, "defense":90.0, "sp_attack":95.0, "sp_defense":90.0, "speed":90.0, "generation":6.0 }, "max":{ "number":898.0, "total":1125.0, "hp":255.0, "attack":190.0, "defense":250.0, "sp_attack":194.0, "sp_defense":250.0, "speed":200.0, "generation":8.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "number":1072.0, "total":1072.0, "hp":1072.0, "attack":1072.0, "defense":1072.0, "sp_attack":1072.0, "sp_defense":1072.0, "speed":1072.0, "generation":1072.0 }, "mean":{ "number":445.2192164179, "total":440.885261194, "hp":70.4869402985, "attack":80.9384328358, "defense":74.9682835821, "sp_attack":73.2733208955, "sp_defense":72.4766791045, "speed":68.7929104478, "generation":4.2947761194 }, "std":{ "number":267.77280649, "total":121.3790771926, "hp":26.8680389923, "attack":32.4635820748, "defense":31.2080593873, "sp_attack":32.6431190064, "sp_defense":27.9342534926, "speed":30.0762806451, "generation":2.3464717631 }, "min":{ "number":1.0, "total":175.0, "hp":1.0, "attack":5.0, "defense":5.0, "sp_attack":10.0, "sp_defense":20.0, "speed":5.0, "generation":0.0 }, "25%":{ "number":209.75, "total":330.0, "hp":50.0, "attack":56.0, "defense":52.0, "sp_attack":50.0, "sp_defense":50.0, "speed":45.0, "generation":2.0 }, "50%":{ "number":442.5, "total":460.5, "hp":68.0, "attack":80.0, "defense":70.0, "sp_attack":65.0, "sp_defense":70.0, "speed":65.0, "generation":4.0 }, "75%":{ "number":681.25, "total":519.25, "hp":84.0, "attack":100.0, "defense":90.0, "sp_attack":95.0, "sp_defense":90.0, "speed":90.0, "generation":6.0 }, "max":{ "number":898.0, "total":1125.0, "hp":255.0, "attack":190.0, "defense":250.0, "sp_attack":194.0, "sp_defense":250.0, "speed":200.0, "generation":8.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: Is there any Pokémon with a speed greater than 150? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: Is there any Pokémon with a speed greater than 150? df.columns = ['number', 'name', 'type1', 'type2', 'total', 'hp', 'attack', 'defense', 'sp_attack', 'sp_defense', 'speed', 'generation', 'legendary'] # Expected output type: is boolean, this will be checked. return
20250129013715
24
How many unique Pokémon types are there in the 'type1' column?
051_Pokemon
dev
number
['type1']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "number", "type": "uint16" }, { "name": "name", "type": "category" }, { "name": "type1", "type": "category" }, { "name": "type2", "type": "category" }, { "name": "total", "type": "uint16" }, { "name": "hp", "type": "uint8" }, { "name": "attack", "type": "uint8" }, { "name": "defense", "type": "uint8" }, { "name": "sp_attack", "type": "uint8" }, { "name": "sp_defense", "type": "uint8" }, { "name": "speed", "type": "uint8" }, { "name": "generation", "type": "uint8" }, { "name": "legendary", "type": "bool" } ] } # Description of dataframe columns. df_descrption = { "count":{ "number":1072.0, "total":1072.0, "hp":1072.0, "attack":1072.0, "defense":1072.0, "sp_attack":1072.0, "sp_defense":1072.0, "speed":1072.0, "generation":1072.0 }, "mean":{ "number":445.2192164179, "total":440.885261194, "hp":70.4869402985, "attack":80.9384328358, "defense":74.9682835821, "sp_attack":73.2733208955, "sp_defense":72.4766791045, "speed":68.7929104478, "generation":4.2947761194 }, "std":{ "number":267.77280649, "total":121.3790771926, "hp":26.8680389923, "attack":32.4635820748, "defense":31.2080593873, "sp_attack":32.6431190064, "sp_defense":27.9342534926, "speed":30.0762806451, "generation":2.3464717631 }, "min":{ "number":1.0, "total":175.0, "hp":1.0, "attack":5.0, "defense":5.0, "sp_attack":10.0, "sp_defense":20.0, "speed":5.0, "generation":0.0 }, "25%":{ "number":209.75, "total":330.0, "hp":50.0, "attack":56.0, "defense":52.0, "sp_attack":50.0, "sp_defense":50.0, "speed":45.0, "generation":2.0 }, "50%":{ "number":442.5, "total":460.5, "hp":68.0, "attack":80.0, "defense":70.0, "sp_attack":65.0, "sp_defense":70.0, "speed":65.0, "generation":4.0 }, "75%":{ "number":681.25, "total":519.25, "hp":84.0, "attack":100.0, "defense":90.0, "sp_attack":95.0, "sp_defense":90.0, "speed":90.0, "generation":6.0 }, "max":{ "number":898.0, "total":1125.0, "hp":255.0, "attack":190.0, "defense":250.0, "sp_attack":194.0, "sp_defense":250.0, "speed":200.0, "generation":8.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "number":1072.0, "total":1072.0, "hp":1072.0, "attack":1072.0, "defense":1072.0, "sp_attack":1072.0, "sp_defense":1072.0, "speed":1072.0, "generation":1072.0 }, "mean":{ "number":445.2192164179, "total":440.885261194, "hp":70.4869402985, "attack":80.9384328358, "defense":74.9682835821, "sp_attack":73.2733208955, "sp_defense":72.4766791045, "speed":68.7929104478, "generation":4.2947761194 }, "std":{ "number":267.77280649, "total":121.3790771926, "hp":26.8680389923, "attack":32.4635820748, "defense":31.2080593873, "sp_attack":32.6431190064, "sp_defense":27.9342534926, "speed":30.0762806451, "generation":2.3464717631 }, "min":{ "number":1.0, "total":175.0, "hp":1.0, "attack":5.0, "defense":5.0, "sp_attack":10.0, "sp_defense":20.0, "speed":5.0, "generation":0.0 }, "25%":{ "number":209.75, "total":330.0, "hp":50.0, "attack":56.0, "defense":52.0, "sp_attack":50.0, "sp_defense":50.0, "speed":45.0, "generation":2.0 }, "50%":{ "number":442.5, "total":460.5, "hp":68.0, "attack":80.0, "defense":70.0, "sp_attack":65.0, "sp_defense":70.0, "speed":65.0, "generation":4.0 }, "75%":{ "number":681.25, "total":519.25, "hp":84.0, "attack":100.0, "defense":90.0, "sp_attack":95.0, "sp_defense":90.0, "speed":90.0, "generation":6.0 }, "max":{ "number":898.0, "total":1125.0, "hp":255.0, "attack":190.0, "defense":250.0, "sp_attack":194.0, "sp_defense":250.0, "speed":200.0, "generation":8.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: How many unique Pokémon types are there in the 'type1' column? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: How many unique Pokémon types are there in the 'type1' column? df.columns = ['number', 'name', 'type1', 'type2', 'total', 'hp', 'attack', 'defense', 'sp_attack', 'sp_defense', 'speed', 'generation', 'legendary'] # Expected output type: is number, this will be checked. return
20250129013715
25
What's the highest total stat value found in the dataset?
051_Pokemon
dev
number
['total']
dev
# Instructions: Generate ONLY python code. Do not include explanations. # you can use pandas and numpy. Use the meta data information from df_schema, df_descprtion. import pandas as pd import numpy as np # Description of dataframe schema. df_schema = { "columns": [ { "name": "number", "type": "uint16" }, { "name": "name", "type": "category" }, { "name": "type1", "type": "category" }, { "name": "type2", "type": "category" }, { "name": "total", "type": "uint16" }, { "name": "hp", "type": "uint8" }, { "name": "attack", "type": "uint8" }, { "name": "defense", "type": "uint8" }, { "name": "sp_attack", "type": "uint8" }, { "name": "sp_defense", "type": "uint8" }, { "name": "speed", "type": "uint8" }, { "name": "generation", "type": "uint8" }, { "name": "legendary", "type": "bool" } ] } # Description of dataframe columns. df_descrption = { "count":{ "number":1072.0, "total":1072.0, "hp":1072.0, "attack":1072.0, "defense":1072.0, "sp_attack":1072.0, "sp_defense":1072.0, "speed":1072.0, "generation":1072.0 }, "mean":{ "number":445.2192164179, "total":440.885261194, "hp":70.4869402985, "attack":80.9384328358, "defense":74.9682835821, "sp_attack":73.2733208955, "sp_defense":72.4766791045, "speed":68.7929104478, "generation":4.2947761194 }, "std":{ "number":267.77280649, "total":121.3790771926, "hp":26.8680389923, "attack":32.4635820748, "defense":31.2080593873, "sp_attack":32.6431190064, "sp_defense":27.9342534926, "speed":30.0762806451, "generation":2.3464717631 }, "min":{ "number":1.0, "total":175.0, "hp":1.0, "attack":5.0, "defense":5.0, "sp_attack":10.0, "sp_defense":20.0, "speed":5.0, "generation":0.0 }, "25%":{ "number":209.75, "total":330.0, "hp":50.0, "attack":56.0, "defense":52.0, "sp_attack":50.0, "sp_defense":50.0, "speed":45.0, "generation":2.0 }, "50%":{ "number":442.5, "total":460.5, "hp":68.0, "attack":80.0, "defense":70.0, "sp_attack":65.0, "sp_defense":70.0, "speed":65.0, "generation":4.0 }, "75%":{ "number":681.25, "total":519.25, "hp":84.0, "attack":100.0, "defense":90.0, "sp_attack":95.0, "sp_defense":90.0, "speed":90.0, "generation":6.0 }, "max":{ "number":898.0, "total":1125.0, "hp":255.0, "attack":190.0, "defense":250.0, "sp_attack":194.0, "sp_defense":250.0, "speed":200.0, "generation":8.0 } } # Randome sample of 10 rows from the dataframe. df_random_sample = { "count":{ "number":1072.0, "total":1072.0, "hp":1072.0, "attack":1072.0, "defense":1072.0, "sp_attack":1072.0, "sp_defense":1072.0, "speed":1072.0, "generation":1072.0 }, "mean":{ "number":445.2192164179, "total":440.885261194, "hp":70.4869402985, "attack":80.9384328358, "defense":74.9682835821, "sp_attack":73.2733208955, "sp_defense":72.4766791045, "speed":68.7929104478, "generation":4.2947761194 }, "std":{ "number":267.77280649, "total":121.3790771926, "hp":26.8680389923, "attack":32.4635820748, "defense":31.2080593873, "sp_attack":32.6431190064, "sp_defense":27.9342534926, "speed":30.0762806451, "generation":2.3464717631 }, "min":{ "number":1.0, "total":175.0, "hp":1.0, "attack":5.0, "defense":5.0, "sp_attack":10.0, "sp_defense":20.0, "speed":5.0, "generation":0.0 }, "25%":{ "number":209.75, "total":330.0, "hp":50.0, "attack":56.0, "defense":52.0, "sp_attack":50.0, "sp_defense":50.0, "speed":45.0, "generation":2.0 }, "50%":{ "number":442.5, "total":460.5, "hp":68.0, "attack":80.0, "defense":70.0, "sp_attack":65.0, "sp_defense":70.0, "speed":65.0, "generation":4.0 }, "75%":{ "number":681.25, "total":519.25, "hp":84.0, "attack":100.0, "defense":90.0, "sp_attack":95.0, "sp_defense":90.0, "speed":90.0, "generation":6.0 }, "max":{ "number":898.0, "total":1125.0, "hp":255.0, "attack":190.0, "defense":250.0, "sp_attack":194.0, "sp_defense":250.0, "speed":200.0, "generation":8.0 } } ''' The question categories are: - boolean: Valid answers include True/False, Y/N, Yes/No (all case insensitive). - category: A value from a cell (or a substring of a cell) in the dataset. - number: A numerical value from a cell in the dataset, which may represent a computed statistic (e.g., average, maximum, minimum). - list[category]: A list containing a fixed number of categories. The expected format is: "['cat', 'dog']". Pay attention to the wording of the question to determine if uniqueness is required or if repeated values are allowed. - list[number]: Similar to list[category], but with numbers as its elements. ''' # TODO: complete the following function in one line, by completing the return statement. It should give the answer to: How many rows are there in this dataframe? def example(df: pd.DataFrame): df.columns=["A"] # Expected output type: is number, this will be checked. return df.shape[0] # It should give the answer to: What's the highest total stat value found in the dataset? # The answer should only contain python code, you are not allowed leave any TODO undone. def answer(df: pd.DataFrame): # Use df to answer: What's the highest total stat value found in the dataset? df.columns = ['number', 'name', 'type1', 'type2', 'total', 'hp', 'attack', 'defense', 'sp_attack', 'sp_defense', 'speed', 'generation', 'legendary'] # Expected output type: is number, this will be checked. return
20250129013715
README.md exists but content is empty.
Downloads last month
45