text
stringlengths
5
22M
id
stringlengths
12
177
metadata
dict
__index_level_0__
int64
0
1.37k
import torch from torch import nn from modules.BinaryTreeLstmCell import BinaryTreeLstmCell from modules.LstmRnn import LstmRnn class BinaryTreeBasedModule(nn.Module): no_transformation = "no_transformation" lstm_transformation = "lstm_transformation" bi_lstm_transformation = "bi_lstm_transformation" conv_transformation = "conv_transformation" def __init__(self, input_dim, hidden_dim, leaf_transformation, trans_hidden_dim, dropout_prob): super().__init__() self.leaf_transformation = leaf_transformation if leaf_transformation == BinaryTreeBasedModule.no_transformation: self.linear = nn.Linear(in_features=input_dim, out_features=2 * hidden_dim) elif leaf_transformation == BinaryTreeBasedModule.lstm_transformation: self.lstm = LstmRnn(input_dim, trans_hidden_dim) self.linear = nn.Linear(in_features=trans_hidden_dim, out_features=2 * hidden_dim) elif leaf_transformation == BinaryTreeBasedModule.bi_lstm_transformation: self.lstm_f = LstmRnn(input_dim, trans_hidden_dim) self.lstm_b = LstmRnn(input_dim, trans_hidden_dim) self.linear = nn.Linear(in_features=2 * trans_hidden_dim, out_features=2 * hidden_dim) elif leaf_transformation == BinaryTreeBasedModule.conv_transformation: self.conv1 = nn.Conv1d(input_dim, trans_hidden_dim, kernel_size=5, padding=2) self.conv2 = nn.Conv1d(trans_hidden_dim, trans_hidden_dim, kernel_size=3, padding=1) self.linear = nn.Linear(in_features=trans_hidden_dim, out_features=2 * hidden_dim) else: raise ValueError(f'"{leaf_transformation}" is not in the list of possible transformations!') self.tree_lstm_cell = BinaryTreeLstmCell(hidden_dim, dropout_prob) BinaryTreeBasedModule.reset_parameters(self) def reset_parameters(self): nn.init.orthogonal_(self.linear.weight) nn.init.constant_(self.linear.bias, val=0) self.tree_lstm_cell.reset_parameters() if self.leaf_transformation == BinaryTreeBasedModule.lstm_transformation: self.lstm.reset_parameters() elif self.leaf_transformation == BinaryTreeBasedModule.bi_lstm_transformation: self.lstm_f.reset_parameters() self.lstm_b.reset_parameters() elif self.leaf_transformation == BinaryTreeBasedModule.conv_transformation: self.conv1.reset_parameters() self.conv2.reset_parameters() def forward(self, *inputs): raise NotImplementedError def _transform_leafs(self, x, mask): if self.leaf_transformation == BinaryTreeBasedModule.no_transformation: pass elif self.leaf_transformation == BinaryTreeBasedModule.lstm_transformation: x = self.lstm(x, mask) elif self.leaf_transformation == BinaryTreeBasedModule.bi_lstm_transformation: h_f = self.lstm_f(x, mask) h_b = self.lstm_b(x, mask, backward=True) x = torch.cat([h_f, h_b], dim=-1) elif self.leaf_transformation == BinaryTreeBasedModule.conv_transformation: x = x.permute(0, 2, 1) x = self.conv1(x) x = torch.relu(x) x = self.conv2(x) x = torch.tanh(x) x = x.permute(0, 2, 1) return self.linear(x).tanh().chunk(chunks=2, dim=-1) @staticmethod def _merge(actions, h_l, c_l, h_r, c_r, h_p, c_p, mask): """ This method merges left and right TreeLSTM states. It reuses already precomputed states for the parent node, but still, has to apply correct masking. """ cumsum = torch.cumsum(actions, dim=-1) mask_l = (1.0 - cumsum)[..., None] mask_r = (cumsum - actions)[..., None] mask = mask[..., None] actions = actions[..., None] h_p = (mask_l * h_l + actions * h_p + mask_r * h_r) * mask + h_l * (1. - mask) c_p = (mask_l * c_l + actions * c_p + mask_r * c_r) * mask + c_l * (1. - mask) return h_p, c_p
ContextualSP/compositional_generalization/modules/BinaryTreeBasedModule.py/0
{ "file_path": "ContextualSP/compositional_generalization/modules/BinaryTreeBasedModule.py", "repo_id": "ContextualSP", "token_count": 1832 }
239
{ "random_seed": 42, "numpy_seed": 42, "pytorch_seed": 42, "dataset_reader": { "type": "rewrite", "lazy": false, "super_mode": "before", "joint_encoding": true, "extra_stop_words": [ "'s", "besides", "the", "in", "of" ] }, "model": { "type": "rewrite", "word_embedder": { "tokens": { "type": "embedding", "embedding_dim": 100, "trainable": true, "padding_index": 0 } }, "text_encoder": { "type": "lstm", "input_size": 100, "hidden_size": 200, "bidirectional": true, "num_layers": 1 }, "inp_drop_rate": 0.2, "out_drop_rate": 0.2, "feature_sel": 115, "loss_weights": [ 0.1, 0.4, 0.5 ], "super_mode": "before", "unet_down_channel": 128, "enable_training_log": false }, "iterator": { "type": "basic", "batch_size": 4 }, "validation_iterator": { "type": "basic", "batch_size": 4 }, "trainer": { "num_epochs": 100, "cuda_device": 0, "patience": 10, "validation_metric": "+BLEU4", "optimizer": { "type": "adam", "lr": 2e-4 }, "learning_rate_scheduler": { "type": "reduce_on_plateau", "factor": 0.5, "mode": "max", "patience": 5 }, "num_serialized_models_to_keep": 10, "should_log_learning_rate": true } }
ContextualSP/incomplete_utterance_rewriting/configs/canard.jsonnet/0
{ "file_path": "ContextualSP/incomplete_utterance_rewriting/configs/canard.jsonnet", "repo_id": "ContextualSP", "token_count": 655 }
240
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import argparse import json import random import re import jieba import spacy from tqdm import tqdm random.seed(42) nlp_en = spacy.load('en_core_web_sm') def is_all_chinese(word): # identify whether all chinese characters for _char in word: if not '\u4e00' <= _char <= '\u9fa5': return False return True def cut_mixed_sentence(text): # for chinese, return character; for english, return word; jieba_words = list(jieba.cut(text)) ret_chars = [] for word in jieba_words: if is_all_chinese(word): ret_chars.extend(list(word)) else: ret_chars.append(word) return ' '.join(ret_chars) def cut_english_sentence(text): text = re.sub('\t\t', ' ', text) doc = nlp_en(text) ret_words = [] for word in doc: if word.text.strip(): ret_words.append(word.text.lower()) return ' '.join(ret_words) def unified_dataset_format(dataset_id): if dataset_id == 'Rewrite': origin_file = "corpus.txt" with open(origin_file, "r", encoding="utf8") as f: total_lines = [line.strip() for line in f.readlines()] total_len = len(total_lines) border = int(0.9 * total_len) train_data = total_lines[:border] dev_data = total_lines[border:] for train_ind in range(len(train_data)): sentences = train_data[train_ind].split('\t\t') new_sen = [] for sentence in sentences: new_sen.append(cut_mixed_sentence(sentence)) train_data[train_ind] = '\t\t'.join(new_sen) for dev_ind in range(len(dev_data)): sentences = dev_data[dev_ind].split('\t\t') new_sen = [] for sentence in sentences: new_sen.append(cut_mixed_sentence(sentence)) dev_data[dev_ind] = '\t\t'.join(new_sen) with open("train.txt", "w", encoding="utf8") as train_f: train_f.write('\n'.join(train_data)) with open("dev.txt", "w", encoding="utf8") as dev_f: dev_f.write('\n'.join(dev_data)) elif dataset_id == 'Multi': src_files = ["train.sr", "valid.sr", "test.sr"] tgt_files = ["train.tr", "valid.tr", "test.tr"] for src_file, tgt_file in zip(src_files, tgt_files): src_f = open(src_file, "r", encoding="utf8") tgt_f = open(tgt_file, "r", encoding="utf8") src_lines = src_f.readlines() tgt_lines = tgt_f.readlines() # WARNING: there is an annotation bug in test.sr 3224 if 'test' in src_file: actual_line = src_lines[3222].split("\t")[0] src_lines[3222] = actual_line + ' 已 经 玩 过 了 |\n' del src_lines[3223] dataset = [] for src_line, tgt_line in zip(src_lines, tgt_lines): src_line = src_line.strip('\n') tgt_line = tgt_line.strip() valid_sen = src_line[:src_line.rfind('|')].strip() border_pos = valid_sen.rfind(' || ') context_str, cur_str = valid_sen[:border_pos], valid_sen[border_pos + 4:] context_str = context_str.replace(' <split> ', '\t\t') context_str += '\t\t' + cur_str + '\t\t' + tgt_line dataset.append(context_str) modes = ['train', 'valid', 'test'] write_path = None for sample_mode in modes: if sample_mode in src_file: write_path = sample_mode + ".txt" break with open(write_path, "w", encoding="utf8") as write_f: write_f.write('\n'.join(dataset)) write_f.close() elif dataset_id == 'CANARD': src_files = ["train.json", "dev.json", "test.json"] for src_file in src_files: content = json.load(open(src_file, "r", encoding="utf8")) dataset = [] for example in tqdm(content): sent_history = '\t\t'.join([cut_english_sentence(sen) for sen in example['History']]) incomplete_sent = cut_english_sentence(example['Question']) rewrite_sent = cut_english_sentence(example['Rewrite']) context_str = sent_history + '\t\t' + incomplete_sent + '\t\t' + rewrite_sent dataset.append(context_str) modes = ['train', 'dev', 'test'] write_path = None for sample_mode in modes: if sample_mode in src_file: write_path = sample_mode + ".txt" break with open(write_path, "w", encoding="utf8") as write_f: write_f.write('\n'.join(dataset)) write_f.close() elif dataset_id == 'Task': src_file = "CamRest676_annotated.json" with open(src_file, "r", encoding="utf8") as f: content = json.load(f) dataset = [] example_border = 0 for dialogue in tqdm(content): sent_history = [] for example in dialogue['dial']: context_str = '\t\t'.join(sent_history[-2:]) if context_str == '': # Just a placeholder context_str = 'hello' complete_str = cut_english_sentence(example['usr']['transcript_complete']) cur_is_incomplete = False case_number = 0 if example['usr']['transcript_with_ellipsis'] != "": cur_is_incomplete = True dataset.append('\t\t'.join([context_str, cut_english_sentence(example['usr']['transcript_with_ellipsis']), complete_str])) case_number += 1 # TODO: follow the original setting which only considers part of corpus elif example['usr']['transcript_with_coreference'] != "": cur_is_incomplete = True dataset.append('\t\t'.join([context_str, cut_english_sentence(example['usr']['transcript_with_coreference']), complete_str])) case_number += 1 if not cur_is_incomplete: dataset.append('\t\t'.join([context_str, complete_str, complete_str])) case_number += 1 sent_history.append(cut_english_sentence(complete_str)) sent_history.append(cut_english_sentence(example['sys']['sent'])) if dialogue['dialogue_id'] < 540: example_border += case_number # shuffle dataset train_data = dataset[:example_border] dev_data = dataset[example_border:] with open("train.txt", "w", encoding="utf8") as train_f: train_f.write('\n'.join(train_data)) with open("dev.txt", "w", encoding="utf8") as dev_f: dev_f.write('\n'.join(dev_data)) else: raise Exception("We do not support it currently!") if __name__ == '__main__': # arg_parser = argparse.ArgumentParser() # arg_parser.add_argument("--dataset", required=True, # choices=['Task', 'Rewrite', 'Multi', "CANARD"], type=str, # help="Please specify a dataset you want to process") # parsed_args = arg_parser.parse_args() # unified_dataset_format(parsed_args.dataset) unified_dataset_format("Multi")
ContextualSP/incomplete_utterance_rewriting/preprocess.py/0
{ "file_path": "ContextualSP/incomplete_utterance_rewriting/preprocess.py", "repo_id": "ContextualSP", "token_count": 4424 }
241
#!/usr/bin/env bash export model_file=../checkpoints/run_rewrite_bert_ export config_file=../configs/rewrite_bert.jsonnet export train_data_path=../dataset/Rewrite/train.txt export validation_data_path=../dataset/Rewrite/dev.txt export seed=1 allennlp train -s ${model_file} ${config_file} \ --include-package data_reader \ --include-package model \ -o "{\"random_seed\":\"${seed}\",\"numpy_seed\":\"${seed}\",\"pytorch_seed\":\"${seed}\", \"train_data_path\":\"${train_data_path}\",\"validation_data_path\":\"${validation_data_path}\"}"
ContextualSP/incomplete_utterance_rewriting/src/train_rewrite_bert.sh/0
{ "file_path": "ContextualSP/incomplete_utterance_rewriting/src/train_rewrite_bert.sh", "repo_id": "ContextualSP", "token_count": 191 }
242
from typing import Dict, Set from context.db_context import SparcDBContext from context.utils import Table, TableColumn Keywords = ['limit', 'des', 'asc', 'and', 'or', 'sum', 'min', 'max', 'avg', 'none', '=', '!=', '<', '>', '<=', '>=', 'between', 'like', 'not_like', 'in', 'not_in', 'intersect', 'union', 'except', 'none', 'count', 'ins'] class GrammarType: """ Filter Grammar Type """ FilterBetween = 1 FilterEqual = 2 FilterGreater = 3 FilterLess = 4 FilterGeq = 5 FilterLeq = 6 FilterNeq = 7 FilterInNes = 8 FilterNotInNes = 9 FilterLike = 10 FilterNotLike = 11 FilterIs = 12 FilterExist = 13 # TODO: in and like does not have a nested version FilterNotNes = 14 FilterBetweenNes = 15 FilterEqualNes = 16 FilterGreaterNes = 17 FilterLessNes = 18 FilterGeqNes = 19 FilterLeqNes = 20 FilterNeqNes = 21 FilterIsNes = 22 FilterExistNes = 23 FilterAnd = 24 FilterOr = 25 # FilterNone = 26 """ Statement Grammar Type """ StateInter = 1 StateUnion = 2 StateExcept = 3 StateNone = 4 """ Root Grammar Type """ RootSFO = 1 RootSO = 2 RootSF = 3 RootS = 4 """ Select Grammar Type depends on the length of A """ """ A Grammar Type """ ANone = 1 AMax = 2 AMin = 3 ACount = 4 ASum = 5 AAvg = 6 """ Order Grammar Type """ OrderNone = 1 OrderAsc = 2 OrderDes = 3 OrderAscLim = 4 OrderDesLim = 5 class Grammar(object): # static property, production rule to id productions = None def __init__(self, db_context: SparcDBContext): self._pro_counter = 0 self._type_counter = 0 # lazy loading, init the production if self.productions is None: # new self.productions self.productions = [] # C and T only contain one rule so they do not need initialization self.build_production_map(Statement) self.build_production_map(Root) self.build_production_map(Select) self.build_production_map(A) self.build_production_map(Filter) self.build_production_map(Order) self.db_context = db_context self.local_grammar = self.build_instance_production() def build_production_map(self, cls): """ Record the production rules of class cls into self :param cls: son class of Action """ # (note) the values could provide a fixed order # only when the dictionary is built on prod_ids = cls.grammar_dict.keys() for prod_id in prod_ids: cls_obj = cls(prod_id) self.productions.append(cls_obj) def build_instance_production(self): """ Instance all possible column and table production rules using db schema """ db_schema: Dict[str, Table] = self.db_context.schema # fetch table name(id) table_names = sorted([db_schema[table_ind].name for table_ind in list(db_schema.keys())], reverse=True) local_grammars = [T(table_name) for table_name in table_names] all_columns = set() for table in db_schema.values(): # use name(id) as standard grammar all_columns.update([C(column.name) for column in table.columns]) column_grammars = list(all_columns) local_grammars.extend(column_grammars) # convert into set and sorted local_grammars = set(local_grammars) # sorted local grammars local_grammars = sorted(local_grammars) return local_grammars @property def global_grammar(self): return sorted(self.productions) @staticmethod def default_sql_clause() -> Dict: default_sql = { "orderBy": [], "from": { "table_units": [ [ "table_unit", 1 ] ], "conds": [] }, "union": None, "except": None, "groupBy": None, "limit": None, "intersect": None, "where": [], "having": [], "select": [ False, [ [ 3, [ 0, [ 0, 5, False ], None ] ] ] ] } return default_sql class Action(object): grammar_dict = {} def __init__(self): self.ins_id = None self.production = None def get_next_action(self, is_sketch=False): actions = list() for x in self.production.split(' ')[1:]: if x not in Keywords: rule_type = eval(x) if is_sketch: if rule_type is not A and rule_type is not T: actions.append(rule_type) else: actions.append(rule_type) return actions def __repr__(self): space_ind = self.production.find(' ') return f'{self.production[:space_ind]} -> {self.production[space_ind + 1:]}' def is_global(self): """ Actions are global means they fit for the whole dataset, while others only fit for specific instances :return: """ if self.__class__ in [C, T]: return False else: return True def __lt__(self, other): return self.__repr__() < other.__repr__() def __hash__(self): return hash(self.__repr__()) def __eq__(self, other): return self.__repr__() == other.__repr__() @staticmethod def from_str(action_repr: str): """ Build an action object from string :param action_repr: the representation of action :return: Action object """ lhs, rhs = action_repr.split(' -> ') # eval class object cls_obj = eval(lhs) if cls_obj in [C, T]: return cls_obj(rhs) else: # find the rule id rule_str = ' '.join([lhs, rhs]) grammar_dict: Dict = cls_obj.grammar_dict rule_id = list(grammar_dict.keys())[list(grammar_dict.values()).index(rule_str)] return cls_obj(rule_id) class Statement(Action): grammar_dict = { GrammarType.StateInter: 'Statement intersect Root Root', GrammarType.StateUnion: 'Statement union Root Root', GrammarType.StateExcept: 'Statement except Root Root', GrammarType.StateNone: 'Statement Root' } def __init__(self, id_c): super().__init__() self.ins_id = id_c self.production = self.grammar_dict[id_c] class Root(Action): grammar_dict = { GrammarType.RootSFO: 'Root Select Filter Order', GrammarType.RootSF: 'Root Select Filter', GrammarType.RootSO: 'Root Select Order', GrammarType.RootS: 'Root Select' } def __init__(self, id_c): super().__init__() self.ins_id = id_c self.production = self.grammar_dict[id_c] class Select(Action): grammar_dict = { 0: 'Select A', 1: 'Select A A', 2: 'Select A A A', 3: 'Select A A A A', 4: 'Select A A A A A', 5: 'Select A A A A A A' } def __init__(self, id_c): super().__init__() self.ins_id = id_c self.production = self.grammar_dict[id_c] class A(Action): grammar_dict = { GrammarType.ANone: 'A none C T', GrammarType.AMax: 'A max C T', GrammarType.AMin: 'A min C T', GrammarType.ACount: 'A count C T', GrammarType.ASum: 'A sum C T', GrammarType.AAvg: 'A avg C T' } def __init__(self, id_c): super().__init__() self.ins_id = id_c self.production = self.grammar_dict[id_c] class Filter(Action): # TODO: why not directly predict the number of Filters grammar_dict = { GrammarType.FilterAnd: 'Filter Filter and Filter', GrammarType.FilterOr: 'Filter Filter or Filter', GrammarType.FilterEqual: 'Filter = A', GrammarType.FilterGreater: 'Filter > A', GrammarType.FilterLess: 'Filter < A', GrammarType.FilterGeq: 'Filter >= A', GrammarType.FilterLeq: 'Filter <= A', GrammarType.FilterNeq: 'Filter != A', GrammarType.FilterBetween: 'Filter between A', # TODO: like/not_like only apply to string type GrammarType.FilterLike: 'Filter like A', GrammarType.FilterNotLike: 'Filter not_like A', GrammarType.FilterEqualNes: 'Filter = A Root', GrammarType.FilterGreaterNes: 'Filter > A Root', GrammarType.FilterLessNes: 'Filter < A Root', GrammarType.FilterGeqNes: 'Filter >= A Root', GrammarType.FilterLeqNes: 'Filter <= A Root', GrammarType.FilterNeqNes: 'Filter != A Root', GrammarType.FilterBetweenNes: 'Filter between A Root', GrammarType.FilterInNes: 'Filter in A Root', GrammarType.FilterNotInNes: 'Filter not_in A Root', } def __init__(self, id_c): super().__init__() self.ins_id = id_c self.production = self.grammar_dict[id_c] class Order(Action): grammar_dict = { GrammarType.OrderAsc: 'Order asc A', GrammarType.OrderDes: 'Order des A', GrammarType.OrderAscLim: 'Order asc A limit', GrammarType.OrderDesLim: 'Order des A limit' } def __init__(self, ins_id): super().__init__() self.ins_id = ins_id self.production = self.grammar_dict[ins_id] # class Ref(Action): # # grammar_dict = { # GrammarType.RefStar: 'Ref *', # GrammarType.RefCol: 'Ref C', # } # # def __init__(self, ins_id): # super().__init__() # self.ins_id = ins_id # self.production = self.grammar_dict[ins_id] class C(Action): def __init__(self, ins_id): super().__init__() # TODO: here we lower it because the col -> id (entities_names) in SparcWorld is the lower key-value pair. self.ins_id = ins_id.lower() self.production = f'C {self.ins_id}' class T(Action): def __init__(self, ins_id): super().__init__() self.ins_id = ins_id.lower() self.production = f'T {self.ins_id}' # TODO: consider copy value from source sentence # class V(Action): # def __init__(self, id_c): # super().__init__() # self.id_c = id_c # self.production = 'V ins' if __name__ == '__main__': order_rule = Order(GrammarType.OrderDesLim) assert order_rule.production == 'Order des A limit' assert str(order_rule) == 'Order -> des A limit' sel_rule = Select(1) assert sel_rule.production == 'Select A A' assert str(sel_rule) == 'Select -> A A' col_rule = C('sales') assert col_rule.production == 'C sales' assert str(col_rule) == 'C -> sales'
ContextualSP/interactive_text_to_sql/src/context/grammar.py/0
{ "file_path": "ContextualSP/interactive_text_to_sql/src/context/grammar.py", "repo_id": "ContextualSP", "token_count": 5484 }
243
# coding: utf-8 import json all_examples = { 'trian': json.load(open('data/spider/train_spider.json', 'r', encoding='utf-8')), 'dev': json.load(open('data/spider/dev.json', 'r', encoding='utf-8')) } def search_for_id(question, split='dev'): examples = all_examples[split] for idx, example in enumerate(examples): if example['question'] == question: return idx if __name__ == '__main__': question = 'Find the last name of the student who has a cat that is age 3.' print(search_for_id(question))
ContextualSP/interactive_text_to_sql/src/utils/tools.py/0
{ "file_path": "ContextualSP/interactive_text_to_sql/src/utils/tools.py", "repo_id": "ContextualSP", "token_count": 214 }
244
from collections import defaultdict, Counter, deque import numpy as np import random from gtd import utils # defines whether an edge is inverted or not inverted = lambda r: r[:2] == '**' invert = lambda r: r[2:] if inverted(r) else '**' + r class Graph(object): def __init__(self, triples): self.triples = triples neighbors = defaultdict(lambda: defaultdict(set)) relation_args = defaultdict(lambda: defaultdict(set)) for s, r, t in triples: relation_args[r]['s'].add(s) relation_args[r]['t'].add(t) neighbors[s][r].add(t) neighbors[t][invert(r)].add(s) def freeze(d): frozen = {} for key, subdict in d.items(): frozen[key] = {} for subkey, set_val in subdict.items(): frozen[key][subkey] = tuple(set_val) return frozen # WARNING: both neighbors and relation_args must not have default initialization. # Default init is dangerous, because we sometimes perform uniform sampling over # all keys in the dictionary. This distribution will get altered if a user asks about # entities or relations that weren't present. # self.neighbors[start][relation] = (end1, end2, ...) # self.relation_args[relation][position] = (ent1, ent2, ...) # position is either 's' (domain) or 't' (range) self.neighbors = freeze(neighbors) self.relation_args = freeze(relation_args) self.random_entities = [] # cpp_graph = graph_traversal.Graph() # for s, r, t in triples: # cpp_graph.add_edge(s, r, t) # cpp_graph.add_edge(t, invert(r), s) # self.cpp_graph = cpp_graph cpp_graph = None def shortest_path(self, source, target): # use breadth-first search queue = deque() explored = {} # stores backpointers def enqueue(node, backpointer): queue.appendleft(node) explored[node] = backpointer def path(node): current = node path = [current] while True: backpointer = explored[current] if backpointer: rel, current = backpointer path.extend((rel, current)) else: break # we've hit the source return path[::-1] # reverse enqueue(source, None) while len(queue) != 0: current = queue.pop() for rel, nbrs in self.neighbors[current].items(): for nbr in nbrs: if nbr not in explored: enqueue(nbr, (rel, current)) if nbr == target: return path(nbr) def random_walk_probs(self, start, path): return self.cpp_graph.exact_random_walk_probs(start, list(path)) def walk_all(self, start, path, positive_branch_factor=float('inf')): if positive_branch_factor == 0: return set() approx = positive_branch_factor != float('inf') if approx: return set(self.cpp_graph.approx_path_traversal(start, list(path), positive_branch_factor)) else: return set(self.cpp_graph.path_traversal(start, list(path))) def is_trivial_query(self, start, path): return self.cpp_graph.is_trivial_query(start, list(path)) def type_matching_entities(self, path, position): if position == 's': r = path[0] elif position == 't': r = path[-1] else: raise ValueError(position) try: if not inverted(r): return self.relation_args[r][position] else: inv_pos = 's' if position == 't' else 't' return self.relation_args[invert(r)][inv_pos] except KeyError: # nothing type-matches return tuple() # TODO: test this def random_walk(self, start, length, no_return=False): """ If no_return, the random walk never revisits the same node. Can sometimes return None, None. """ max_attempts = 1000 for i in range(max_attempts): sampled_path = [] visited = set() current = start for k in range(length): visited.add(current) r = random.choice(list(self.neighbors[current].keys())) sampled_path.append(r) candidates = self.neighbors[current][r] if no_return: current = utils.sample_excluding(candidates, visited) else: current = random.choice(candidates) # no viable next step if current is None: break # failed to find a viable walk. Try again. if current is None: continue return tuple(sampled_path), current return None, None def random_walk_constrained(self, start, path): """ Warning! Can sometimes return None. """ # if start node isn't present we can't take this walk if start not in self.neighbors: return None current = start for r in path: rels = self.neighbors[current] if r not in rels: # no viable next steps return None current = random.choice(rels[r]) return current def random_entity(self): if len(self.random_entities) == 0: self.random_entities = list(np.random.choice(list(self.neighbors.keys()), size=20000, replace=True)) return self.random_entities.pop() def relation_stats(self): stats = defaultdict(dict) rel_counts = Counter(r for s, r, t in self.triples) for r, args in self.relation_args.items(): out_degrees, in_degrees = [], [] for s in args['s']: out_degrees.append(len(self.neighbors[s][r])) for t in args['t']: in_degrees.append(len(self.neighbors[t][invert(r)])) domain = float(len(args['s'])) range = float(len(args['t'])) out_degree = np.mean(out_degrees) in_degree = np.mean(in_degrees) stat = {'avg_out_degree': out_degree, 'avg_in_degree': in_degree, 'min_degree': min(in_degree, out_degree), 'in/out': in_degree / out_degree, 'domain': domain, 'range': range, 'r/d': range / domain, 'total': rel_counts[r], 'log(total)': np.log(rel_counts[r]) } # include inverted relation inv_stat = {'avg_out_degree': in_degree, 'avg_in_degree': out_degree, 'min_degree': stat['min_degree'], 'in/out': out_degree / in_degree, 'domain': range, 'range': domain, 'r/d': domain / range, 'total': stat['total'], 'log(total)': stat['log(total)'] } stats[r] = stat stats[invert(r)] = inv_stat return stats
ContextualSP/lemon/executor/gtd/graph.py/0
{ "file_path": "ContextualSP/lemon/executor/gtd/graph.py", "repo_id": "ContextualSP", "token_count": 3785 }
245
from abc import ABCMeta, abstractmethod import numpy as np from strongsup.utils import softmax_with_alpha_beta from strongsup.value import check_denotation from strongsup.value_function import ConstantValueFunction class CaseWeighter(object, metaclass=ABCMeta): @abstractmethod def __call__(self, paths, example): """Compute update weights for all ParseCases in a batch of ParsePaths. Args: paths (list[ParsePath]) example (Example): the Example for which the ParsePaths were sampled Returns: weights (list[list[float]]): one weight for each ParseCase """ pass class MMLCaseWeighter(CaseWeighter): def __init__(self, alpha, beta, parse_model): self._alpha = alpha self._beta = beta self._parse_model = parse_model def _destroy_path_scores(self, paths): # A bit of an information-hiding hack. # Now that the path weighter has used the path scores, prevent anyone else from using them by overwriting # them with None for path in paths: for case in path: case.choice_logits = None case.choice_log_probs = None def _weight_paths(self, paths, example): # paths may have incorrect scores, left there by some exploration policy self._parse_model.score_paths( paths, ignore_previous_utterances=False, caching=False) log_probs = [] # log p(z | x) + log p(y | z) for path in paths: z_given_x = path.log_prob y_given_z = 0 if check_denotation(example.answer, path.finalized_denotation) else float('-inf') lp = z_given_x + y_given_z log_probs.append(lp) log_probs = np.array(log_probs) self._destroy_path_scores(paths) # destroy scores so no one else misuses them # if every probability is 0, the softmax downstream will compute 0/0 = NaN. # We will assume 0/0 = 0 if np.all(log_probs == float('-inf')): return np.zeros(len(paths)) # Reweight with alpha and beta weights_alpha = softmax_with_alpha_beta(log_probs, self._alpha, self._beta) assert np.all(np.isfinite(weights_alpha)) return weights_alpha def __call__(self, paths, example): path_weights = self._weight_paths(paths, example) case_weights = [] for path, path_wt in zip(paths, path_weights): case_weights.append([path_wt] * len(path)) return case_weights class REINFORCECaseWeighter(CaseWeighter): def __init__(self, correct_weight, incorrect_weight, value_function): """Weights the cases according to REINFORCE Args: correct_weight (float): the weight that each case should get if the denotation is correct incorrect_weight (float): weight for incorrect denotations value_function (StateValueFunction): assigns a value to each state to be subtracted as a baseline """ self._correct_weight = correct_weight self._incorrect_weight = incorrect_weight self._value_function = value_function def __call__(self, paths, example): path_weights = self._weight_paths(paths, example) cases = [case for path in paths for case in path] state_values = self._value_function.values(cases) case_weights = [] index = 0 for path, path_weight in zip(paths, path_weights): case_weights_for_path = [] for case in path: case_weights_for_path.append(path_weight - state_values[index]) index += 1 case_weights.append(case_weights_for_path) return case_weights def _weight_paths(self, paths, example): # TODO: Destroy path scores? return [self._correct_weight if check_denotation(example.answer, path.finalized_denotation) else self._incorrect_weight for path in paths] def get_case_weighter(config, parse_model, value_function): """Creates the correct CaseWeighter from the Config Args: config (Config): the config parse_model (ParseModel): the parse model that the case weighter will use value_function (ValueFunction): the value function that the case weighter will use Returns: CaseWeighter """ if config.type == 'mml': # Make sure we're not using a ValueFunction if it's MML assert type(value_function) is ConstantValueFunction assert value_function.constant_value == 0 return MMLCaseWeighter(config.alpha, config.beta, parse_model) elif config.type == 'reinforce': return REINFORCECaseWeighter( config.correct_weight, config.incorrect_weight, value_function) else: raise ValueError('CaseWeighter {} not supported.'.format(config.type))
ContextualSP/lemon/executor/strongsup/case_weighter.py/0
{ "file_path": "ContextualSP/lemon/executor/strongsup/case_weighter.py", "repo_id": "ContextualSP", "token_count": 2087 }
246
from strongsup.value import Value class RLongStateValue(Value): """Value based on RLongState.""" def __init__(self, state): self._state = state def __repr__(self): return repr(self._state) @property def state(self): return self._state def __eq__(self, other): return (isinstance(other, self.__class__) and self._state == other._state) def match(self, other): return self._state == other._state
ContextualSP/lemon/executor/strongsup/rlong/value.py/0
{ "file_path": "ContextualSP/lemon/executor/strongsup/rlong/value.py", "repo_id": "ContextualSP", "token_count": 197 }
247
import copy import os import pytest import shutil from strongsup.results.tracker import LeafTracker, TopLevelTracker from strongsup.results.entry import Entry, ExperimentType from strongsup.results.result_value import ResultValue class TestTracker(object): @pytest.fixture def filters(self): return ["match", "other"] @pytest.fixture def result(self): return ResultValue([1, 2, 3, 4, 5], [2, 3, 4, 5, 6]) @pytest.fixture def experiment_types(self): match = ExperimentType(["should-match", "config"], "base") also_match = ExperimentType(["config", "other"], "base") no_match = ExperimentType(["filter"], "base") other = ExperimentType(["config"], "base") return [match, also_match, no_match, other] def _entries_equal(self, entries, expected_entries): """Returns if two lists of entries contain equal entries""" return sorted(entries, key=lambda entry: str(entry)) == sorted( expected_entries, key=lambda entry: str(entry)) class TestLeafTracker(TestTracker): def test_merge(self, tracker, result, experiment_types): tracker.add_result(experiment_types[0], 0, result) expected_entry = Entry(experiment_types[0]) expected_entry.add_seed(0, result) expected_entries = [expected_entry] # Test merge of two seeds other = LeafTracker("other") other.add_result(experiment_types[0], 1, result * 2) tracker.merge(other) expected_entry.add_seed(1, result * 2) assert tracker.entries() == expected_entries # Test merge on two Entries other = LeafTracker("other") other.add_result(experiment_types[1], 0, result) tracker.merge(other) expected_entry = Entry(experiment_types[1]) expected_entry.add_seed(0, result) expected_entries.append(expected_entry) self._entries_equal(tracker.entries(), expected_entries) # Test merge updates to best seed other = LeafTracker("other") other.add_result(experiment_types[1], 0, result * 2) tracker.merge(other) expected_entry.update_seed(0, result * 2) self._entries_equal(tracker.entries(), expected_entries) def test_entries(self, tracker, result, experiment_types, filters): # Make sure is empty upon construction entries = tracker.entries() assert len(entries) == 0 # Test filtering # No matches tracker.add_result(experiment_types[2], 0, result) entries = tracker.entries(filters) assert len(entries) == 0 # Matches both expected_entry = Entry(experiment_types[0]) expected_entry.add_seed(0, result) expected_entry.add_seed(1, result * 2) expected_entries = [expected_entry] expected_entry = Entry(experiment_types[1]) expected_entry.add_seed(0, result) expected_entries.append(expected_entry) tracker.add_result(experiment_types[1], 0, result) tracker.add_result(experiment_types[0], 0, result) tracker.add_result(experiment_types[0], 1, result * 2) entries = tracker.entries(filters) assert self._entries_equal(entries, expected_entries) def test_add_entry(self, tracker, result, experiment_types): # Test adding a single entry tracker.add_result(experiment_types[0], 0, result) entries = tracker.entries() expected_entry = Entry(experiment_types[0]) expected_entry.add_seed(0, result) expected_entries = [expected_entry] assert entries == expected_entries # Test adding a duplicate entry with pytest.raises(ValueError) as excinfo: tracker.add_result(experiment_types[0], 0, result*2) assert excinfo.match("Seed 0 already in Entry") # Test adding multiple seeds tracker.add_result(experiment_types[0], 1, result * 2) entries = tracker.entries() expected_entry.add_seed(1, result * 2) assert entries == expected_entries # Test adding multiple entries tracker.add_result(experiment_types[1], 0, result) entries = tracker.entries() expected_entry = Entry(experiment_types[1]) expected_entry.add_seed(0, result) expected_entries.append(expected_entry) assert self._entries_equal(entries, expected_entries) @pytest.fixture def tracker(self): tracker = LeafTracker("name") return tracker class TestTopLevelTracker(TestTracker): def test_register_result(self, result, experiment_types, datasets, teardown_tensorboard): # Clear out previous tracker if os.path.exists(TopLevelTracker("test_tracker").filename): os.remove(TopLevelTracker("test_tracker").filename) # Register result with TopLevelTracker("test_tracker") as tracker: tracker.register_result( datasets[0], experiment_types[0], 0, ".") assert tracker.entries() == [] # Make sure that result gets loaded with TopLevelTracker("test_tracker") as tracker: expected_entry = Entry(experiment_types[0]) expected_entry.add_seed(0, ResultValue([0.0] * 5, [0.0] * 5)) expected_entries = [expected_entry] assert tracker.entries() == expected_entries # Update result shutil.move("tensorboard", "backup") shutil.move("other_tensorboard", "tensorboard") result = ResultValue( [0.9396985173225403, 0.839195966720581, 0.6281406879425049, 0.49246230721473694, 0.3467336595058441], [0.9012500047683716, 0.8087499737739563, 0.6499999761581421, 0.4737499952316284, 0.3449999988079071]) # Make sure result gets loaded again with TopLevelTracker("test_tracker") as tracker: entries = tracker.entries() expected_entry.update_seed(0, result) assert tracker.entries() == expected_entries # Make sure result doesn't change with TopLevelTracker("test_tracker") as tracker: entries = tracker.entries() expected_entry.update_seed(0, result) assert tracker.entries() == expected_entries @pytest.fixture def teardown_tensorboard(self): yield # Restore files to correct place shutil.move("tensorboard", "other_tensorboard") shutil.move("backup", "tensorboard") def test_persist(self, result, experiment_types, datasets): # Clear out previous tracker if os.path.exists(TopLevelTracker("test_tracker").filename): os.remove(TopLevelTracker("test_tracker").filename) # Test reloading empty tracker with TopLevelTracker("test_tracker") as tracker: clone = copy.deepcopy(tracker) assert clone == TopLevelTracker("test_tracker") # Test reloading non-empty tracker with TopLevelTracker("test_tracker") as tracker: # Multiple datasets tracker.add_result(datasets[0], experiment_types[0], 0, result) tracker.add_result(datasets[1], experiment_types[0], 0, result * 2) tracker.add_result(datasets[2], experiment_types[0], 0, result * 3) # Multiple entries per dataset tracker.add_result(datasets[0], experiment_types[1], 0, result) # Multiple seeds per entry tracker.add_result(datasets[0], experiment_types[1], 1, result * 2) clone = copy.deepcopy(tracker) assert clone == TopLevelTracker("test_tracker") def test_merge(self, tracker, result, experiment_types, datasets): # Merge two empty trackers other = TopLevelTracker("other") tracker.merge(other) assert tracker.entries() == [] # Merge non-empty into empty other.add_result(datasets[0], experiment_types[0], 0, result) tracker.merge(other) entries = tracker.entries() expected_entry = Entry(experiment_types[0]) expected_entry.add_seed(0, result) expected_entries = [expected_entry] assert self._entries_equal(entries, expected_entries) # Merge empty into non-empty other = TopLevelTracker("other") tracker.merge(other) entries = tracker.entries() assert self._entries_equal(entries, expected_entries) # Merge two different datasets other.add_result(datasets[1], experiment_types[0], 0, result) tracker.merge(other) entries = tracker.entries() expected_entry = Entry(experiment_types[0]) expected_entry.add_seed(0, result) expected_entries.append(expected_entry) assert self._entries_equal(entries, expected_entries) # Merge on same dataset other = TopLevelTracker("other") other.add_result(datasets[0], experiment_types[1], 0, result) tracker.merge(other) entries = tracker.entries() expected_entry = Entry(experiment_types[1]) expected_entry.add_seed(0, result) expected_entries.append(expected_entry) assert self._entries_equal(entries, expected_entries) # Merge on same Entry other = TopLevelTracker("other") other.add_result(datasets[0], experiment_types[0], 1, result) tracker.merge(other) entries = tracker.entries() expected_entries[0].add_seed(1, result) assert self._entries_equal(entries, expected_entries) # Merge on same seed other = TopLevelTracker("other") other.add_result(datasets[0], experiment_types[0], 1, result * 2) tracker.merge(other) expected_entries[0].update_seed(1, result * 2) assert self._entries_equal(entries, expected_entries) def test_entries(self, tracker, result, experiment_types, filters, datasets): # Empty at beginning assert tracker.entries() == [] # Filter on experiment type tracker.add_result(datasets[0], experiment_types[2], 0, result) entries = tracker.entries(experiment_type_filters=filters) assert entries == [] # Filter on dataset tracker.add_result(datasets[2], experiment_types[0], 0, result) entries = tracker.entries(dataset_filters=filters) expected_entry = Entry(experiment_types[2]) expected_entry.add_seed(0, result) expected_entries = [expected_entry] assert self._entries_equal(entries, expected_entries) # Filter on experiment type and dataset entries = tracker.entries(dataset_filters=filters, experiment_type_filters=filters) assert entries == [] # Match both tracker.add_result(datasets[1], experiment_types[1], 1, result * 2) expected_entry = Entry(experiment_types[1]) expected_entry.add_seed(1, result * 2) expected_entries = [expected_entry] entries = tracker.entries(dataset_filters=filters, experiment_type_filters=filters) assert self._entries_equal(entries, expected_entries) def test_add_result(self, tracker, result, experiment_types, datasets): # Add a single result tracker.add_result(datasets[0], experiment_types[0], 0, result) entries = tracker.entries() expected_entry = Entry(experiment_types[0]) expected_entry.add_seed(0, result) expected_entries = [expected_entry] assert entries == expected_entries # Add multiple results to same dataset tracker.add_result(datasets[0], experiment_types[1], 0, result) entries = tracker.entries() expected_entry = Entry(experiment_types[1]) expected_entry.add_seed(0, result) expected_entries.append(expected_entry) assert self._entries_equal(entries, expected_entries) # Add invalid result to same dataset with pytest.raises(ValueError) as excinfo: tracker.add_result(datasets[0], experiment_types[1], 0, result * 2) assert excinfo.match("Seed 0 already in Entry") assert self._entries_equal(entries, expected_entries) # Add to multiple datasets tracker.add_result(datasets[1], experiment_types[0], 0, result) entries = tracker.entries() expected_entry = Entry(experiment_types[0]) expected_entry.add_seed(0, result) expected_entries.append(expected_entry) assert self._entries_equal(entries, expected_entries) @pytest.fixture def tracker(self): tracker = TopLevelTracker("tracker") return tracker @pytest.fixture def datasets(self): return ["match-dataset", "dataset-other", "filtered-dataset"]
ContextualSP/lemon/executor/strongsup/tests/results/test_tracker.py/0
{ "file_path": "ContextualSP/lemon/executor/strongsup/tests/results/test_tracker.py", "repo_id": "ContextualSP", "token_count": 5367 }
248
import copy import random from collections import MutableMapping import numpy as np import tensorflow as tf # End of utterance token EOU = '<EOU>' def epsilon_greedy_sample(choices, num_to_sample, epsilon=0.05): """Samples without replacement num_to_sample choices from choices where the ith choice is choices[i] with prob 1 - epsilon, and uniformly at random with prob epsilon Args: choices (list[Object]): a list of choices num_to_sample (int): number of things to sample epsilon (float): probability to deviate Returns: list[Object]: list of size num_to_sample choices """ assert(len(choices) >= num_to_sample) assert(0 <= epsilon <= 1) if (len(choices) == num_to_sample): return choices # Performance if epsilon == 0: return choices[:num_to_sample] sample = [] index_choices = list(range(len(choices))) for i in range(num_to_sample): if random.random() <= epsilon or not i in index_choices: choice_index = random.choice(index_choices) else: choice_index = i index_choices.remove(choice_index) sample.append(choices[choice_index]) return sample def softmax(stuff): """Compute [exp(x) / S for x in stuff] where S = sum(exp(x) for x in stuff)""" stuff = np.array(stuff) stuff = np.exp(stuff - np.max(stuff)) return stuff / np.sum(stuff) def softmax_with_alpha_beta(stuff, alpha, beta): """Compute [exp(x*beta) / T * S^(1-alpha) for x in stuff] where S = sum(exp(x) for x in stuff) and T = sum(exp(x*beta) for x in stuff) Assume that alpha >= 0 and beta >= 0. """ stuff = np.array(stuff) stuff_times_beta = np.array([ x * beta if x != float('-inf') else float('-inf') for x in stuff]) m = np.max(stuff) return np.exp( stuff_times_beta - (m * beta + np.log(np.sum(np.exp(stuff_times_beta - m * beta)))) + (1 - alpha) * (m + np.log(np.sum(np.exp(stuff - m))))) def sample_with_replacement(stuff, probs, num_to_sample): """Samples num_to_sample total elements from stuff. Returns: list: list of elements """ indices = np.random.choice( len(stuff), size=num_to_sample, replace=True, p=probs) return [stuff[index] for index in indices] class PredicateList(object): """list[Predicate] but with fast index lookup""" def __init__(self, predicates): self.predicates = predicates self.predicate_to_index = {x.name: i for (i, x) in enumerate(predicates)} def index(self, x): return self.predicate_to_index[x.name] def __iter__(self): return iter(self.predicates) def __len__(self): return len(self.predicates) def __repr__(self): return repr(self.predicates) def __getitem__(self, i): return self.predicates[i] class OptimizerOptions(object): SGD = "sgd" ADAM = "adam" VALID_OPTIONS = [SGD, ADAM] """Light-weight wrapper around options for Optimizers Args: opt_str (string): the string, needs to be in VALID_OPTIONS """ def __init__(self, opt_str): if opt_str not in OptimizerOptions.VALID_OPTIONS: raise ValueError( "{} not a valid optimizer option".format(opt_str)) self._opt = opt_str @property def opt(self): return self._opt def get_optimizer(optimizer_opt): assert type(optimizer_opt) is OptimizerOptions if optimizer_opt.opt == OptimizerOptions.SGD: return tf.train.GradientDescentOptimizer elif optimizer_opt.opt == OptimizerOptions.ADAM: return tf.train.AdamOptimizer else: raise ValueError("This should never happen")
ContextualSP/lemon/executor/strongsup/utils.py/0
{ "file_path": "ContextualSP/lemon/executor/strongsup/utils.py", "repo_id": "ContextualSP", "token_count": 1578 }
249
This repository contains tools for generating datasets and evaluating predictions for the following [AI2 Leaderboards](https://leaderboard.allenai.org/): * [ARC (AI2 Reasoning Challenge)](arc/) * [OpenBook QA](openbookqa/) * [ProPara](propara/) * [QASC](qasc/) * [SciTail](scitail/) * [eQASC](eqasc/)
ContextualSP/lemon/propara_evaluator/aristo-leaderboard/README.md/0
{ "file_path": "ContextualSP/lemon/propara_evaluator/aristo-leaderboard/README.md", "repo_id": "ContextualSP", "token_count": 101 }
250
{ "id": "question1", "answerKey": "C" } { "id": "question2", "answerKey": "B" } { "id": "question3", "answerKey": "C" } { "id": "question4", "answerKey": "D" } { "id": "question5", "answerKey": "D" }
ContextualSP/lemon/propara_evaluator/aristo-leaderboard/arc/evaluator/questions.jsonl/0
{ "file_path": "ContextualSP/lemon/propara_evaluator/aristo-leaderboard/arc/evaluator/questions.jsonl", "repo_id": "ContextualSP", "token_count": 85 }
251
{"score": 0.2023383378982544, "chain_id": "3C44YUNSI1OBFBB8D36GODNOZN9DPA_1_1"} {"score": 0.5158032774925232, "chain_id": "3C44YUNSI1OBFBB8D36GODNOZN9DPA_1_2"} {"score": 0.17925743758678436, "chain_id": "3C44YUNSI1OBFBB8D36GODNOZN9DPA_1_5"} {"score": 0.8793290853500366, "chain_id": "3C44YUNSI1OBFBB8D36GODNOZN9DPA_1_7"} {"score": 0.49962201714515686, "chain_id": "3C44YUNSI1OBFBB8D36GODNOZN9DPA_1_3"} {"score": 0.318893164396286, "chain_id": "3C44YUNSI1OBFBB8D36GODNOZN9DPA_1_4"} {"score": 0.042609114199876785, "chain_id": "3C44YUNSI1OBFBB8D36GODNOZN9DPA_1_6"} {"score": 0.4866274893283844, "chain_id": "3C44YUNSI1OBFBB8D36GODNOZN9DPA_1_8"} {"score": 0.17660178244113922, "chain_id": "3C44YUNSI1OBFBB8D36GODNOZN9DPA_1_9"} {"score": 0.022419992834329605, "chain_id": "3C44YUNSI1OBFBB8D36GODNOZN9DPA_1_10"} {"score": 0.9762198328971863, "chain_id": "3B1NLC6UGZVERVLZFT7OUYQLD1SGPZ_1_1"} {"score": 0.5939199924468994, "chain_id": "3B1NLC6UGZVERVLZFT7OUYQLD1SGPZ_1_2"} {"score": 0.13692770898342133, "chain_id": "3B1NLC6UGZVERVLZFT7OUYQLD1SGPZ_1_3"} {"score": 0.06807658821344376, "chain_id": "3B1NLC6UGZVERVLZFT7OUYQLD1SGPZ_1_4"} {"score": 0.3188892602920532, "chain_id": "3B1NLC6UGZVERVLZFT7OUYQLD1SGPZ_1_5"} {"score": 0.07258988916873932, "chain_id": "3B1NLC6UGZVERVLZFT7OUYQLD1SGPZ_1_6"} {"score": 0.046394575387239456, "chain_id": "3B1NLC6UGZVERVLZFT7OUYQLD1SGPZ_1_7"} {"score": 0.04906206950545311, "chain_id": "3B1NLC6UGZVERVLZFT7OUYQLD1SGPZ_1_8"} {"score": 0.046142932027578354, "chain_id": "3B1NLC6UGZVERVLZFT7OUYQLD1SGPZ_1_9"} {"score": 0.053280651569366455, "chain_id": "3B1NLC6UGZVERVLZFT7OUYQLD1SGPZ_1_10"} {"score": 0.09263954311609268, "chain_id": "3QRYMNZ7FYGITFVSJET3PS0F4S0NT9_1_1"} {"score": 0.16910839080810547, "chain_id": "3QRYMNZ7FYGITFVSJET3PS0F4S0NT9_1_2"} {"score": 0.027015184983611107, "chain_id": "3QRYMNZ7FYGITFVSJET3PS0F4S0NT9_1_3"} {"score": 0.07709699869155884, "chain_id": "3QRYMNZ7FYGITFVSJET3PS0F4S0NT9_1_4"} {"score": 0.0625581368803978, "chain_id": "3QRYMNZ7FYGITFVSJET3PS0F4S0NT9_1_5"} {"score": 0.03083304688334465, "chain_id": "3QRYMNZ7FYGITFVSJET3PS0F4S0NT9_1_6"} {"score": 0.04556988552212715, "chain_id": "3QRYMNZ7FYGITFVSJET3PS0F4S0NT9_1_7"} {"score": 0.032626792788505554, "chain_id": "3QRYMNZ7FYGITFVSJET3PS0F4S0NT9_1_8"} {"score": 0.2351386696100235, "chain_id": "3QRYMNZ7FYGITFVSJET3PS0F4S0NT9_1_9"} {"score": 0.021611249074339867, "chain_id": "3QRYMNZ7FYGITFVSJET3PS0F4S0NT9_1_10"} {"score": 0.3319288492202759, "chain_id": "336KAV9KYQRILF5T71II5LPW6IJ2YE_1_1"} {"score": 0.3393683135509491, "chain_id": "336KAV9KYQRILF5T71II5LPW6IJ2YE_1_2"} {"score": 0.1019323542714119, "chain_id": "336KAV9KYQRILF5T71II5LPW6IJ2YE_1_3"} {"score": 0.17231668531894684, "chain_id": "336KAV9KYQRILF5T71II5LPW6IJ2YE_1_4"} {"score": 0.10625903308391571, "chain_id": "336KAV9KYQRILF5T71II5LPW6IJ2YE_1_5"} {"score": 0.3550889194011688, "chain_id": "336KAV9KYQRILF5T71II5LPW6IJ2YE_1_6"} {"score": 0.24990414083003998, "chain_id": "336KAV9KYQRILF5T71II5LPW6IJ2YE_1_7"} {"score": 0.49256256222724915, "chain_id": "336KAV9KYQRILF5T71II5LPW6IJ2YE_1_8"} {"score": 0.4175323247909546, "chain_id": "336KAV9KYQRILF5T71II5LPW6IJ2YE_1_9"} {"score": 0.289831280708313, "chain_id": "336KAV9KYQRILF5T71II5LPW6IJ2YE_1_10"} {"score": 0.8398701548576355, "chain_id": "3NJM2BJS4W51AJ5UD7B54756E49CPJ_1_1"} {"score": 0.752326488494873, "chain_id": "3NJM2BJS4W51AJ5UD7B54756E49CPJ_1_2"} {"score": 0.17661374807357788, "chain_id": "3NJM2BJS4W51AJ5UD7B54756E49CPJ_1_3"} {"score": 0.08687683194875717, "chain_id": "3NJM2BJS4W51AJ5UD7B54756E49CPJ_1_4"} {"score": 0.07977458834648132, "chain_id": "3NJM2BJS4W51AJ5UD7B54756E49CPJ_1_5"} {"score": 0.3049956262111664, "chain_id": "3NJM2BJS4W51AJ5UD7B54756E49CPJ_1_6"} {"score": 0.13215121626853943, "chain_id": "3NJM2BJS4W51AJ5UD7B54756E49CPJ_1_7"} {"score": 0.09796953946352005, "chain_id": "3NJM2BJS4W51AJ5UD7B54756E49CPJ_1_8"} {"score": 0.3386376202106476, "chain_id": "3NJM2BJS4W51AJ5UD7B54756E49CPJ_1_9"} {"score": 0.07817163318395615, "chain_id": "3NJM2BJS4W51AJ5UD7B54756E49CPJ_1_10"} {"score": 0.37462639808654785, "chain_id": "33FOTY3KEMKYTRMSS50F3BN8CL3C1A_1_1"} {"score": 0.7736762762069702, "chain_id": "33FOTY3KEMKYTRMSS50F3BN8CL3C1A_1_3"} {"score": 0.08248872309923172, "chain_id": "33FOTY3KEMKYTRMSS50F3BN8CL3C1A_1_2"} {"score": 0.17387132346630096, "chain_id": "33FOTY3KEMKYTRMSS50F3BN8CL3C1A_1_4"} {"score": 0.3566812574863434, "chain_id": "33FOTY3KEMKYTRMSS50F3BN8CL3C1A_1_5"} {"score": 0.18837140500545502, "chain_id": "33FOTY3KEMKYTRMSS50F3BN8CL3C1A_1_6"} {"score": 0.0988221988081932, "chain_id": "33FOTY3KEMKYTRMSS50F3BN8CL3C1A_1_7"} {"score": 0.12544329464435577, "chain_id": "33FOTY3KEMKYTRMSS50F3BN8CL3C1A_1_8"} {"score": 0.08482809364795685, "chain_id": "33FOTY3KEMKYTRMSS50F3BN8CL3C1A_1_9"} {"score": 0.08082888275384903, "chain_id": "33FOTY3KEMKYTRMSS50F3BN8CL3C1A_1_10"} {"score": 0.9133855700492859, "chain_id": "33OOO72IVHKZ2BY1UOKP9H631AGCTE_1_5"} {"score": 0.875912070274353, "chain_id": "33OOO72IVHKZ2BY1UOKP9H631AGCTE_1_9"} {"score": 0.8060799241065979, "chain_id": "33OOO72IVHKZ2BY1UOKP9H631AGCTE_1_10"} {"score": 0.7857192754745483, "chain_id": "33OOO72IVHKZ2BY1UOKP9H631AGCTE_1_1"} {"score": 0.04883244261145592, "chain_id": "33OOO72IVHKZ2BY1UOKP9H631AGCTE_1_2"} {"score": 0.13211819529533386, "chain_id": "33OOO72IVHKZ2BY1UOKP9H631AGCTE_1_3"} {"score": 0.2612411081790924, "chain_id": "33OOO72IVHKZ2BY1UOKP9H631AGCTE_1_4"} {"score": 0.4621364176273346, "chain_id": "33OOO72IVHKZ2BY1UOKP9H631AGCTE_1_6"} {"score": 0.10293852537870407, "chain_id": "33OOO72IVHKZ2BY1UOKP9H631AGCTE_1_7"} {"score": 0.09142011404037476, "chain_id": "33OOO72IVHKZ2BY1UOKP9H631AGCTE_1_8"} {"score": 0.06857550889253616, "chain_id": "3JBT3HLQF81EICG45LVDF56RLSYPZ8_1_1"} {"score": 0.25306063890457153, "chain_id": "3JBT3HLQF81EICG45LVDF56RLSYPZ8_1_2"} {"score": 0.11338400840759277, "chain_id": "3JBT3HLQF81EICG45LVDF56RLSYPZ8_1_3"} {"score": 0.11746183037757874, "chain_id": "3JBT3HLQF81EICG45LVDF56RLSYPZ8_1_4"} {"score": 0.05603582412004471, "chain_id": "3JBT3HLQF81EICG45LVDF56RLSYPZ8_1_5"} {"score": 0.061703041195869446, "chain_id": "3JBT3HLQF81EICG45LVDF56RLSYPZ8_1_6"} {"score": 0.03510373458266258, "chain_id": "3JBT3HLQF81EICG45LVDF56RLSYPZ8_1_7"} {"score": 0.12237264215946198, "chain_id": "3JBT3HLQF81EICG45LVDF56RLSYPZ8_1_8"} {"score": 0.023876579478383064, "chain_id": "3JBT3HLQF81EICG45LVDF56RLSYPZ8_1_9"} {"score": 0.04188814014196396, "chain_id": "3JBT3HLQF81EICG45LVDF56RLSYPZ8_1_10"} {"score": 0.9044582843780518, "chain_id": "3QAVNHZ3EM3NQJTY11M7HV6Y7ZOLA7_1_4"} {"score": 0.8255676627159119, "chain_id": "3QAVNHZ3EM3NQJTY11M7HV6Y7ZOLA7_1_1"} {"score": 0.8846401572227478, "chain_id": "3QAVNHZ3EM3NQJTY11M7HV6Y7ZOLA7_1_2"} {"score": 0.8255676627159119, "chain_id": "3QAVNHZ3EM3NQJTY11M7HV6Y7ZOLA7_1_3"} {"score": 0.013255574740469456, "chain_id": "3QAVNHZ3EM3NQJTY11M7HV6Y7ZOLA7_1_5"} {"score": 0.03665152192115784, "chain_id": "3QAVNHZ3EM3NQJTY11M7HV6Y7ZOLA7_1_6"} {"score": 0.036047544330358505, "chain_id": "3QAVNHZ3EM3NQJTY11M7HV6Y7ZOLA7_1_7"} {"score": 0.011777615174651146, "chain_id": "3QAVNHZ3EM3NQJTY11M7HV6Y7ZOLA7_1_8"} {"score": 0.039197612553834915, "chain_id": "3QAVNHZ3EM3NQJTY11M7HV6Y7ZOLA7_1_9"} {"score": 0.04864739999175072, "chain_id": "3QAVNHZ3EM3NQJTY11M7HV6Y7ZOLA7_1_10"} {"score": 0.7632380127906799, "chain_id": "3TMSXRD2X6Z77PSX9W0GF5UB1E9W1E_1_3"} {"score": 0.5352249145507812, "chain_id": "3TMSXRD2X6Z77PSX9W0GF5UB1E9W1E_1_4"} {"score": 0.7536261081695557, "chain_id": "3TMSXRD2X6Z77PSX9W0GF5UB1E9W1E_1_1"} {"score": 0.10466351360082626, "chain_id": "3TMSXRD2X6Z77PSX9W0GF5UB1E9W1E_1_2"} {"score": 0.16523195803165436, "chain_id": "3TMSXRD2X6Z77PSX9W0GF5UB1E9W1E_1_5"} {"score": 0.839786946773529, "chain_id": "3TMSXRD2X6Z77PSX9W0GF5UB1E9W1E_1_6"} {"score": 0.21846607327461243, "chain_id": "3TMSXRD2X6Z77PSX9W0GF5UB1E9W1E_1_7"} {"score": 0.641603410243988, "chain_id": "3TMSXRD2X6Z77PSX9W0GF5UB1E9W1E_1_8"} {"score": 0.48928728699684143, "chain_id": "3TMSXRD2X6Z77PSX9W0GF5UB1E9W1E_1_9"} {"score": 0.12079144269227982, "chain_id": "3TMSXRD2X6Z77PSX9W0GF5UB1E9W1E_1_10"} {"score": 0.8353675603866577, "chain_id": "3MB8LZR5BFST2W2KDSZWB99UDQSLKR_1_2"} {"score": 0.6096939444541931, "chain_id": "3MB8LZR5BFST2W2KDSZWB99UDQSLKR_1_3"} {"score": 0.8686092495918274, "chain_id": "3MB8LZR5BFST2W2KDSZWB99UDQSLKR_1_4"} {"score": 0.7437042593955994, "chain_id": "3MB8LZR5BFST2W2KDSZWB99UDQSLKR_1_6"} {"score": 0.7972725629806519, "chain_id": "3MB8LZR5BFST2W2KDSZWB99UDQSLKR_1_7"} {"score": 0.9376955032348633, "chain_id": "3MB8LZR5BFST2W2KDSZWB99UDQSLKR_1_9"} {"score": 0.6657786965370178, "chain_id": "3MB8LZR5BFST2W2KDSZWB99UDQSLKR_1_1"} {"score": 0.9382190704345703, "chain_id": "3MB8LZR5BFST2W2KDSZWB99UDQSLKR_1_5"} {"score": 0.6713827848434448, "chain_id": "3MB8LZR5BFST2W2KDSZWB99UDQSLKR_1_8"} {"score": 0.4746702313423157, "chain_id": "3MB8LZR5BFST2W2KDSZWB99UDQSLKR_1_10"} {"score": 0.6366685628890991, "chain_id": "39RP059MEHSCFBGB7RNICJ5TQAZMBI_1_7"} {"score": 0.13135340809822083, "chain_id": "39RP059MEHSCFBGB7RNICJ5TQAZMBI_1_1"} {"score": 0.03226114809513092, "chain_id": "39RP059MEHSCFBGB7RNICJ5TQAZMBI_1_2"} {"score": 0.046870019286870956, "chain_id": "39RP059MEHSCFBGB7RNICJ5TQAZMBI_1_3"} {"score": 0.04489680752158165, "chain_id": "39RP059MEHSCFBGB7RNICJ5TQAZMBI_1_4"} {"score": 0.7205605506896973, "chain_id": "39RP059MEHSCFBGB7RNICJ5TQAZMBI_1_5"} {"score": 0.18286024034023285, "chain_id": "39RP059MEHSCFBGB7RNICJ5TQAZMBI_1_6"} {"score": 0.4540029764175415, "chain_id": "39RP059MEHSCFBGB7RNICJ5TQAZMBI_1_8"} {"score": 0.06966561079025269, "chain_id": "39RP059MEHSCFBGB7RNICJ5TQAZMBI_1_9"} {"score": 0.023733172565698624, "chain_id": "39RP059MEHSCFBGB7RNICJ5TQAZMBI_1_10"} {"score": 0.01647893898189068, "chain_id": "37UQDCYH6XU83M7U82CTUD2AYDLV7N_1_1"} {"score": 0.016540559008717537, "chain_id": "37UQDCYH6XU83M7U82CTUD2AYDLV7N_1_2"} {"score": 0.015403724275529385, "chain_id": "37UQDCYH6XU83M7U82CTUD2AYDLV7N_1_3"} {"score": 0.017426196485757828, "chain_id": "37UQDCYH6XU83M7U82CTUD2AYDLV7N_1_4"} {"score": 0.03384215012192726, "chain_id": "37UQDCYH6XU83M7U82CTUD2AYDLV7N_1_5"} {"score": 0.02439924143254757, "chain_id": "37UQDCYH6XU83M7U82CTUD2AYDLV7N_1_6"} {"score": 0.02264990098774433, "chain_id": "37UQDCYH6XU83M7U82CTUD2AYDLV7N_1_7"} {"score": 0.04251828044652939, "chain_id": "37UQDCYH6XU83M7U82CTUD2AYDLV7N_1_8"} {"score": 0.03409824147820473, "chain_id": "37UQDCYH6XU83M7U82CTUD2AYDLV7N_1_9"} {"score": 0.059302542358636856, "chain_id": "37UQDCYH6XU83M7U82CTUD2AYDLV7N_1_10"} {"score": 0.821366012096405, "chain_id": "3NXNZ5RS1AWA6FUR517X2VDD7TN97M_1_5"} {"score": 0.06966358423233032, "chain_id": "3NXNZ5RS1AWA6FUR517X2VDD7TN97M_1_1"} {"score": 0.08344791829586029, "chain_id": "3NXNZ5RS1AWA6FUR517X2VDD7TN97M_1_2"} {"score": 0.1553470641374588, "chain_id": "3NXNZ5RS1AWA6FUR517X2VDD7TN97M_1_3"} {"score": 0.1933247447013855, "chain_id": "3NXNZ5RS1AWA6FUR517X2VDD7TN97M_1_4"} {"score": 0.028767941519618034, "chain_id": "3NXNZ5RS1AWA6FUR517X2VDD7TN97M_1_6"} {"score": 0.1380046159029007, "chain_id": "3NXNZ5RS1AWA6FUR517X2VDD7TN97M_1_7"} {"score": 0.029581714421510696, "chain_id": "3NXNZ5RS1AWA6FUR517X2VDD7TN97M_1_8"} {"score": 0.031859882175922394, "chain_id": "3NXNZ5RS1AWA6FUR517X2VDD7TN97M_1_9"} {"score": 0.8815996050834656, "chain_id": "3NXNZ5RS1AWA6FUR517X2VDD7TN97M_1_10"} {"score": 0.3263559639453888, "chain_id": "358010RM5ES2I1DLQFGROCFY4NLVX5_1_1"} {"score": 0.7512660622596741, "chain_id": "358010RM5ES2I1DLQFGROCFY4NLVX5_1_6"} {"score": 0.406207412481308, "chain_id": "358010RM5ES2I1DLQFGROCFY4NLVX5_1_2"} {"score": 0.06309666484594345, "chain_id": "358010RM5ES2I1DLQFGROCFY4NLVX5_1_3"} {"score": 0.9258131980895996, "chain_id": "358010RM5ES2I1DLQFGROCFY4NLVX5_1_4"} {"score": 0.06539591401815414, "chain_id": "358010RM5ES2I1DLQFGROCFY4NLVX5_1_5"} {"score": 0.10767804086208344, "chain_id": "358010RM5ES2I1DLQFGROCFY4NLVX5_1_7"} {"score": 0.10111741721630096, "chain_id": "358010RM5ES2I1DLQFGROCFY4NLVX5_1_8"} {"score": 0.1968596875667572, "chain_id": "358010RM5ES2I1DLQFGROCFY4NLVX5_1_9"} {"score": 0.9400942921638489, "chain_id": "358010RM5ES2I1DLQFGROCFY4NLVX5_1_10"} {"score": 0.036755647510290146, "chain_id": "3UNH76FOCS48SJ9MHJ12KU3UGCXMY4_1_7"} {"score": 0.025993159040808678, "chain_id": "3UNH76FOCS48SJ9MHJ12KU3UGCXMY4_1_1"} {"score": 0.03289685398340225, "chain_id": "3UNH76FOCS48SJ9MHJ12KU3UGCXMY4_1_2"} {"score": 0.037508487701416016, "chain_id": "3UNH76FOCS48SJ9MHJ12KU3UGCXMY4_1_3"} {"score": 0.05785013362765312, "chain_id": "3UNH76FOCS48SJ9MHJ12KU3UGCXMY4_1_4"} {"score": 0.020302407443523407, "chain_id": "3UNH76FOCS48SJ9MHJ12KU3UGCXMY4_1_5"} {"score": 0.05674457922577858, "chain_id": "3UNH76FOCS48SJ9MHJ12KU3UGCXMY4_1_6"} {"score": 0.16305245459079742, "chain_id": "3UNH76FOCS48SJ9MHJ12KU3UGCXMY4_1_8"} {"score": 0.02168487012386322, "chain_id": "3UNH76FOCS48SJ9MHJ12KU3UGCXMY4_1_9"} {"score": 0.012927955016493797, "chain_id": "3UNH76FOCS48SJ9MHJ12KU3UGCXMY4_1_10"} {"score": 0.9665948748588562, "chain_id": "3K772S5NP8AOU0RKQL9VLM3IHKMEHD_1_2"} {"score": 0.516265869140625, "chain_id": "3K772S5NP8AOU0RKQL9VLM3IHKMEHD_1_8"} {"score": 0.9535672068595886, "chain_id": "3K772S5NP8AOU0RKQL9VLM3IHKMEHD_1_1"} {"score": 0.968649685382843, "chain_id": "3K772S5NP8AOU0RKQL9VLM3IHKMEHD_1_3"} {"score": 0.9684985876083374, "chain_id": "3K772S5NP8AOU0RKQL9VLM3IHKMEHD_1_4"} {"score": 0.9550628066062927, "chain_id": "3K772S5NP8AOU0RKQL9VLM3IHKMEHD_1_5"} {"score": 0.48977380990982056, "chain_id": "3K772S5NP8AOU0RKQL9VLM3IHKMEHD_1_6"} {"score": 0.21187131106853485, "chain_id": "3K772S5NP8AOU0RKQL9VLM3IHKMEHD_1_7"} {"score": 0.2241518348455429, "chain_id": "3K772S5NP8AOU0RKQL9VLM3IHKMEHD_1_9"} {"score": 0.42254742980003357, "chain_id": "3K772S5NP8AOU0RKQL9VLM3IHKMEHD_1_10"} {"score": 0.9370291233062744, "chain_id": "30BUDKLTXDUCE77PPJ8MWP0SCBYE5Z_1_4"} {"score": 0.056855279952287674, "chain_id": "30BUDKLTXDUCE77PPJ8MWP0SCBYE5Z_1_9"} {"score": 0.8608370423316956, "chain_id": "30BUDKLTXDUCE77PPJ8MWP0SCBYE5Z_1_1"} {"score": 0.613294243812561, "chain_id": "30BUDKLTXDUCE77PPJ8MWP0SCBYE5Z_1_2"} {"score": 0.8497787714004517, "chain_id": "30BUDKLTXDUCE77PPJ8MWP0SCBYE5Z_1_3"} {"score": 0.9134693145751953, "chain_id": "30BUDKLTXDUCE77PPJ8MWP0SCBYE5Z_1_5"} {"score": 0.7115750312805176, "chain_id": "30BUDKLTXDUCE77PPJ8MWP0SCBYE5Z_1_6"} {"score": 0.04371250048279762, "chain_id": "30BUDKLTXDUCE77PPJ8MWP0SCBYE5Z_1_7"} {"score": 0.09521152079105377, "chain_id": "30BUDKLTXDUCE77PPJ8MWP0SCBYE5Z_1_8"} {"score": 0.3795100748538971, "chain_id": "30BUDKLTXDUCE77PPJ8MWP0SCBYE5Z_1_10"} {"score": 0.22212649881839752, "chain_id": "3K772S5NP8AOU0RKQL9VLM3ID8VEHU_1_1"} {"score": 0.4455289840698242, "chain_id": "3K772S5NP8AOU0RKQL9VLM3ID8VEHU_1_2"} {"score": 0.2620682716369629, "chain_id": "3K772S5NP8AOU0RKQL9VLM3ID8VEHU_1_3"} {"score": 0.711925745010376, "chain_id": "3K772S5NP8AOU0RKQL9VLM3ID8VEHU_1_4"} {"score": 0.05293738842010498, "chain_id": "3K772S5NP8AOU0RKQL9VLM3ID8VEHU_1_5"} {"score": 0.2133210301399231, "chain_id": "3K772S5NP8AOU0RKQL9VLM3ID8VEHU_1_6"} {"score": 0.12218166142702103, "chain_id": "3K772S5NP8AOU0RKQL9VLM3ID8VEHU_1_7"} {"score": 0.5137094855308533, "chain_id": "3K772S5NP8AOU0RKQL9VLM3ID8VEHU_1_8"} {"score": 0.07708409428596497, "chain_id": "3K772S5NP8AOU0RKQL9VLM3ID8VEHU_1_9"} {"score": 0.9062312841415405, "chain_id": "3K772S5NP8AOU0RKQL9VLM3ID8VEHU_1_10"} {"score": 0.989189624786377, "chain_id": "32KTQ2V7RDETRI1E979MLDA33ETM9E_1_1"} {"score": 0.9815819263458252, "chain_id": "32KTQ2V7RDETRI1E979MLDA33ETM9E_1_2"} {"score": 0.9827540516853333, "chain_id": "32KTQ2V7RDETRI1E979MLDA33ETM9E_1_4"} {"score": 0.9799287915229797, "chain_id": "32KTQ2V7RDETRI1E979MLDA33ETM9E_1_3"} {"score": 0.12840093672275543, "chain_id": "32KTQ2V7RDETRI1E979MLDA33ETM9E_1_5"} {"score": 0.27205967903137207, "chain_id": "32KTQ2V7RDETRI1E979MLDA33ETM9E_1_6"} {"score": 0.33747202157974243, "chain_id": "32KTQ2V7RDETRI1E979MLDA33ETM9E_1_7"} {"score": 0.08181705325841904, "chain_id": "32KTQ2V7RDETRI1E979MLDA33ETM9E_1_8"} {"score": 0.020344894379377365, "chain_id": "32KTQ2V7RDETRI1E979MLDA33ETM9E_1_9"} {"score": 0.014041785150766373, "chain_id": "32KTQ2V7RDETRI1E979MLDA33ETM9E_1_10"} {"score": 0.9899576306343079, "chain_id": "3W92K5RLWUGTGITBK9XWWTOE9B1V5T_1_1"} {"score": 0.8855201005935669, "chain_id": "3W92K5RLWUGTGITBK9XWWTOE9B1V5T_1_2"} {"score": 0.24624714255332947, "chain_id": "3W92K5RLWUGTGITBK9XWWTOE9B1V5T_1_3"} {"score": 0.7943950891494751, "chain_id": "3W92K5RLWUGTGITBK9XWWTOE9B1V5T_1_4"} {"score": 0.33134353160858154, "chain_id": "3W92K5RLWUGTGITBK9XWWTOE9B1V5T_1_5"} {"score": 0.3801756799221039, "chain_id": "3W92K5RLWUGTGITBK9XWWTOE9B1V5T_1_6"} {"score": 0.20967841148376465, "chain_id": "3W92K5RLWUGTGITBK9XWWTOE9B1V5T_1_7"} {"score": 0.06849371641874313, "chain_id": "3W92K5RLWUGTGITBK9XWWTOE9B1V5T_1_8"} {"score": 0.7259992957115173, "chain_id": "3W92K5RLWUGTGITBK9XWWTOE9B1V5T_1_9"} {"score": 0.2910816967487335, "chain_id": "3W92K5RLWUGTGITBK9XWWTOE9B1V5T_1_10"} {"score": 0.9894891381263733, "chain_id": "3K2755HG5S2ZOYMEZ0ABCJ9KZJIFDB_1_1"} {"score": 0.7463639378547668, "chain_id": "3K2755HG5S2ZOYMEZ0ABCJ9KZJIFDB_1_3"} {"score": 0.2317049652338028, "chain_id": "3K2755HG5S2ZOYMEZ0ABCJ9KZJIFDB_1_4"} {"score": 0.9810124635696411, "chain_id": "3K2755HG5S2ZOYMEZ0ABCJ9KZJIFDB_1_2"} {"score": 0.09827973693609238, "chain_id": "3K2755HG5S2ZOYMEZ0ABCJ9KZJIFDB_1_5"} {"score": 0.04844331741333008, "chain_id": "3K2755HG5S2ZOYMEZ0ABCJ9KZJIFDB_1_6"} {"score": 0.04640039801597595, "chain_id": "3K2755HG5S2ZOYMEZ0ABCJ9KZJIFDB_1_7"} {"score": 0.021913466975092888, "chain_id": "3K2755HG5S2ZOYMEZ0ABCJ9KZJIFDB_1_8"} {"score": 0.14013530313968658, "chain_id": "3K2755HG5S2ZOYMEZ0ABCJ9KZJIFDB_1_9"} {"score": 0.027687011286616325, "chain_id": "3K2755HG5S2ZOYMEZ0ABCJ9KZJIFDB_1_10"} {"score": 0.8398764729499817, "chain_id": "3X31TUMD7XLRWVGY5ITE6UDV7KY1LD_1_2"} {"score": 0.8683324456214905, "chain_id": "3X31TUMD7XLRWVGY5ITE6UDV7KY1LD_1_4"} {"score": 0.9905971884727478, "chain_id": "3X31TUMD7XLRWVGY5ITE6UDV7KY1LD_1_1"} {"score": 0.9793686866760254, "chain_id": "3X31TUMD7XLRWVGY5ITE6UDV7KY1LD_1_3"} {"score": 0.030098237097263336, "chain_id": "3X31TUMD7XLRWVGY5ITE6UDV7KY1LD_1_5"} {"score": 0.022287189960479736, "chain_id": "3X31TUMD7XLRWVGY5ITE6UDV7KY1LD_1_6"} {"score": 0.022312527522444725, "chain_id": "3X31TUMD7XLRWVGY5ITE6UDV7KY1LD_1_7"} {"score": 0.027194155380129814, "chain_id": "3X31TUMD7XLRWVGY5ITE6UDV7KY1LD_1_8"} {"score": 0.022342057898640633, "chain_id": "3X31TUMD7XLRWVGY5ITE6UDV7KY1LD_1_9"} {"score": 0.029684584587812424, "chain_id": "3X31TUMD7XLRWVGY5ITE6UDV7KY1LD_1_10"} {"score": 0.8337042331695557, "chain_id": "3T111IHZ5EPKOYE6EF537C4DM0V9R3_1_1"} {"score": 0.08962155878543854, "chain_id": "3T111IHZ5EPKOYE6EF537C4DM0V9R3_1_2"} {"score": 0.8361915349960327, "chain_id": "3T111IHZ5EPKOYE6EF537C4DM0V9R3_1_3"} {"score": 0.2881397306919098, "chain_id": "3T111IHZ5EPKOYE6EF537C4DM0V9R3_1_4"} {"score": 0.8969811201095581, "chain_id": "3T111IHZ5EPKOYE6EF537C4DM0V9R3_1_5"} {"score": 0.11486461013555527, "chain_id": "3T111IHZ5EPKOYE6EF537C4DM0V9R3_1_6"} {"score": 0.20072662830352783, "chain_id": "3T111IHZ5EPKOYE6EF537C4DM0V9R3_1_7"} {"score": 0.13397961854934692, "chain_id": "3T111IHZ5EPKOYE6EF537C4DM0V9R3_1_8"} {"score": 0.6745132803916931, "chain_id": "3T111IHZ5EPKOYE6EF537C4DM0V9R3_1_9"} {"score": 0.10437515377998352, "chain_id": "3T111IHZ5EPKOYE6EF537C4DM0V9R3_1_10"} {"score": 0.4777771532535553, "chain_id": "31JLPPHS2UTVCJXA5ENPM4WMBNEO39_1_1"} {"score": 0.4574280381202698, "chain_id": "31JLPPHS2UTVCJXA5ENPM4WMBNEO39_1_2"} {"score": 0.5309774279594421, "chain_id": "31JLPPHS2UTVCJXA5ENPM4WMBNEO39_1_3"} {"score": 0.3570319414138794, "chain_id": "31JLPPHS2UTVCJXA5ENPM4WMBNEO39_1_4"} {"score": 0.7932518124580383, "chain_id": "31JLPPHS2UTVCJXA5ENPM4WMBNEO39_1_5"} {"score": 0.4650282561779022, "chain_id": "31JLPPHS2UTVCJXA5ENPM4WMBNEO39_1_6"} {"score": 0.7743787169456482, "chain_id": "31JLPPHS2UTVCJXA5ENPM4WMBNEO39_1_7"} {"score": 0.9757777452468872, "chain_id": "31JLPPHS2UTVCJXA5ENPM4WMBNEO39_1_8"} {"score": 0.35477060079574585, "chain_id": "31JLPPHS2UTVCJXA5ENPM4WMBNEO39_1_9"} {"score": 0.7659540176391602, "chain_id": "31JLPPHS2UTVCJXA5ENPM4WMBNEO39_1_10"} {"score": 0.9926707744598389, "chain_id": "3C2NJ6JBKAGO9G1F0Z97O5RPF4U2NS_1_1"} {"score": 0.9010935425758362, "chain_id": "3C2NJ6JBKAGO9G1F0Z97O5RPF4U2NS_1_2"} {"score": 0.9924820065498352, "chain_id": "3C2NJ6JBKAGO9G1F0Z97O5RPF4U2NS_1_3"} {"score": 0.8428212404251099, "chain_id": "3C2NJ6JBKAGO9G1F0Z97O5RPF4U2NS_1_4"} {"score": 0.01317331288009882, "chain_id": "3C2NJ6JBKAGO9G1F0Z97O5RPF4U2NS_1_5"} {"score": 0.01869630627334118, "chain_id": "3C2NJ6JBKAGO9G1F0Z97O5RPF4U2NS_1_6"} {"score": 0.01620364747941494, "chain_id": "3C2NJ6JBKAGO9G1F0Z97O5RPF4U2NS_1_7"} {"score": 0.014697928912937641, "chain_id": "3C2NJ6JBKAGO9G1F0Z97O5RPF4U2NS_1_8"} {"score": 0.017449138686060905, "chain_id": "3C2NJ6JBKAGO9G1F0Z97O5RPF4U2NS_1_9"} {"score": 0.029354412108659744, "chain_id": "3C2NJ6JBKAGO9G1F0Z97O5RPF4U2NS_1_10"} {"score": 0.9884560108184814, "chain_id": "3L2IS5HSFAHXTSAHJJJDUOMHYGTUNO_1_1"} {"score": 0.8084842562675476, "chain_id": "3L2IS5HSFAHXTSAHJJJDUOMHYGTUNO_1_3"} {"score": 0.8471212387084961, "chain_id": "3L2IS5HSFAHXTSAHJJJDUOMHYGTUNO_1_4"} {"score": 0.9673542976379395, "chain_id": "3L2IS5HSFAHXTSAHJJJDUOMHYGTUNO_1_2"} {"score": 0.10444016009569168, "chain_id": "3L2IS5HSFAHXTSAHJJJDUOMHYGTUNO_1_5"} {"score": 0.05549401417374611, "chain_id": "3L2IS5HSFAHXTSAHJJJDUOMHYGTUNO_1_6"} {"score": 0.0805240198969841, "chain_id": "3L2IS5HSFAHXTSAHJJJDUOMHYGTUNO_1_7"} {"score": 0.7305310964584351, "chain_id": "3L2IS5HSFAHXTSAHJJJDUOMHYGTUNO_1_8"} {"score": 0.7011041045188904, "chain_id": "3L2IS5HSFAHXTSAHJJJDUOMHYGTUNO_1_9"} {"score": 0.14810819923877716, "chain_id": "3L2IS5HSFAHXTSAHJJJDUOMHYGTUNO_1_10"} {"score": 0.9442319869995117, "chain_id": "32RIADZISS3VS787C99HGEYTM3S4S4_1_5"} {"score": 0.5992108583450317, "chain_id": "32RIADZISS3VS787C99HGEYTM3S4S4_1_1"} {"score": 0.5362958312034607, "chain_id": "32RIADZISS3VS787C99HGEYTM3S4S4_1_2"} {"score": 0.16987909376621246, "chain_id": "32RIADZISS3VS787C99HGEYTM3S4S4_1_3"} {"score": 0.35831719636917114, "chain_id": "32RIADZISS3VS787C99HGEYTM3S4S4_1_4"} {"score": 0.04841872304677963, "chain_id": "32RIADZISS3VS787C99HGEYTM3S4S4_1_6"} {"score": 0.6521724462509155, "chain_id": "32RIADZISS3VS787C99HGEYTM3S4S4_1_7"} {"score": 0.5100412368774414, "chain_id": "32RIADZISS3VS787C99HGEYTM3S4S4_1_8"} {"score": 0.4044564366340637, "chain_id": "32RIADZISS3VS787C99HGEYTM3S4S4_1_9"} {"score": 0.047114383429288864, "chain_id": "32RIADZISS3VS787C99HGEYTM3S4S4_1_10"} {"score": 0.9923518300056458, "chain_id": "3QIYRE09Y3GHKVJJHV9TJMHKNSTN1X_1_1"} {"score": 0.8439410924911499, "chain_id": "3QIYRE09Y3GHKVJJHV9TJMHKNSTN1X_1_2"} {"score": 0.9120049476623535, "chain_id": "3QIYRE09Y3GHKVJJHV9TJMHKNSTN1X_1_4"} {"score": 0.16972576081752777, "chain_id": "3QIYRE09Y3GHKVJJHV9TJMHKNSTN1X_1_3"} {"score": 0.3472607433795929, "chain_id": "3QIYRE09Y3GHKVJJHV9TJMHKNSTN1X_1_5"} {"score": 0.39995625615119934, "chain_id": "3QIYRE09Y3GHKVJJHV9TJMHKNSTN1X_1_6"} {"score": 0.2114173322916031, "chain_id": "3QIYRE09Y3GHKVJJHV9TJMHKNSTN1X_1_7"} {"score": 0.07768794149160385, "chain_id": "3QIYRE09Y3GHKVJJHV9TJMHKNSTN1X_1_8"} {"score": 0.09700740873813629, "chain_id": "3QIYRE09Y3GHKVJJHV9TJMHKNSTN1X_1_9"} {"score": 0.023631563410162926, "chain_id": "3QIYRE09Y3GHKVJJHV9TJMHKNSTN1X_1_10"} {"score": 0.21629048883914948, "chain_id": "3A1COHJ8NJU7LZHTDINVTC7WZFVH8D_1_3"} {"score": 0.8673613667488098, "chain_id": "3A1COHJ8NJU7LZHTDINVTC7WZFVH8D_1_1"} {"score": 0.08126679807901382, "chain_id": "3A1COHJ8NJU7LZHTDINVTC7WZFVH8D_1_2"} {"score": 0.31888285279273987, "chain_id": "3A1COHJ8NJU7LZHTDINVTC7WZFVH8D_1_4"} {"score": 0.18328575789928436, "chain_id": "3A1COHJ8NJU7LZHTDINVTC7WZFVH8D_1_5"} {"score": 0.04153578728437424, "chain_id": "3A1COHJ8NJU7LZHTDINVTC7WZFVH8D_1_6"} {"score": 0.053204283118247986, "chain_id": "3A1COHJ8NJU7LZHTDINVTC7WZFVH8D_1_7"} {"score": 0.14582650363445282, "chain_id": "3A1COHJ8NJU7LZHTDINVTC7WZFVH8D_1_8"} {"score": 0.16666515171527863, "chain_id": "3A1COHJ8NJU7LZHTDINVTC7WZFVH8D_1_9"} {"score": 0.08033885806798935, "chain_id": "3A1COHJ8NJU7LZHTDINVTC7WZFVH8D_1_10"} {"score": 0.24151524901390076, "chain_id": "373ERPL3YO738DNKCLAKYC5P24ZTR4_1_1"} {"score": 0.31788942217826843, "chain_id": "373ERPL3YO738DNKCLAKYC5P24ZTR4_1_2"} {"score": 0.29457253217697144, "chain_id": "373ERPL3YO738DNKCLAKYC5P24ZTR4_1_3"} {"score": 0.24047663807868958, "chain_id": "373ERPL3YO738DNKCLAKYC5P24ZTR4_1_4"} {"score": 0.1970454454421997, "chain_id": "373ERPL3YO738DNKCLAKYC5P24ZTR4_1_5"} {"score": 0.04812343046069145, "chain_id": "373ERPL3YO738DNKCLAKYC5P24ZTR4_1_6"} {"score": 0.020284727215766907, "chain_id": "373ERPL3YO738DNKCLAKYC5P24ZTR4_1_7"} {"score": 0.08508771657943726, "chain_id": "373ERPL3YO738DNKCLAKYC5P24ZTR4_1_8"} {"score": 0.0914626270532608, "chain_id": "373ERPL3YO738DNKCLAKYC5P24ZTR4_1_9"} {"score": 0.041098251938819885, "chain_id": "373ERPL3YO738DNKCLAKYC5P24ZTR4_1_10"} {"score": 0.6860213875770569, "chain_id": "3BDCF01OGXTOM1R1H70NKHO5BLWLYD_1_1"} {"score": 0.13792087137699127, "chain_id": "3BDCF01OGXTOM1R1H70NKHO5BLWLYD_1_2"} {"score": 0.12998756766319275, "chain_id": "3BDCF01OGXTOM1R1H70NKHO5BLWLYD_1_3"} {"score": 0.060014039278030396, "chain_id": "3BDCF01OGXTOM1R1H70NKHO5BLWLYD_1_4"} {"score": 0.05864468961954117, "chain_id": "3BDCF01OGXTOM1R1H70NKHO5BLWLYD_1_5"} {"score": 0.8057789206504822, "chain_id": "3BDCF01OGXTOM1R1H70NKHO5BLWLYD_1_6"} {"score": 0.6813462376594543, "chain_id": "3BDCF01OGXTOM1R1H70NKHO5BLWLYD_1_7"} {"score": 0.3141630291938782, "chain_id": "3BDCF01OGXTOM1R1H70NKHO5BLWLYD_1_8"} {"score": 0.28139379620552063, "chain_id": "3BDCF01OGXTOM1R1H70NKHO5BLWLYD_1_9"} {"score": 0.6073617339134216, "chain_id": "3BDCF01OGXTOM1R1H70NKHO5BLWLYD_1_10"} {"score": 0.8361778259277344, "chain_id": "39GHHAVOMFQ2T4PHPF03OD76G0KJ4U_1_1"} {"score": 0.9656243920326233, "chain_id": "39GHHAVOMFQ2T4PHPF03OD76G0KJ4U_1_2"} {"score": 0.5318172574043274, "chain_id": "39GHHAVOMFQ2T4PHPF03OD76G0KJ4U_1_3"} {"score": 0.3577338457107544, "chain_id": "39GHHAVOMFQ2T4PHPF03OD76G0KJ4U_1_4"} {"score": 0.0928681418299675, "chain_id": "39GHHAVOMFQ2T4PHPF03OD76G0KJ4U_1_5"} {"score": 0.3555404245853424, "chain_id": "39GHHAVOMFQ2T4PHPF03OD76G0KJ4U_1_6"} {"score": 0.21772846579551697, "chain_id": "39GHHAVOMFQ2T4PHPF03OD76G0KJ4U_1_7"} {"score": 0.8957876563072205, "chain_id": "39GHHAVOMFQ2T4PHPF03OD76G0KJ4U_1_8"} {"score": 0.09520802646875381, "chain_id": "39GHHAVOMFQ2T4PHPF03OD76G0KJ4U_1_9"} {"score": 0.16789604723453522, "chain_id": "39GHHAVOMFQ2T4PHPF03OD76G0KJ4U_1_10"} {"score": 0.1490403413772583, "chain_id": "3CP1TO84PT0KJRV9WZDLUOR3ENO25U_1_3"} {"score": 0.907627284526825, "chain_id": "3CP1TO84PT0KJRV9WZDLUOR3ENO25U_1_7"} {"score": 0.974826455116272, "chain_id": "3CP1TO84PT0KJRV9WZDLUOR3ENO25U_1_1"} {"score": 0.7871871590614319, "chain_id": "3CP1TO84PT0KJRV9WZDLUOR3ENO25U_1_2"} {"score": 0.16771647334098816, "chain_id": "3CP1TO84PT0KJRV9WZDLUOR3ENO25U_1_4"} {"score": 0.8049781322479248, "chain_id": "3CP1TO84PT0KJRV9WZDLUOR3ENO25U_1_5"} {"score": 0.757803738117218, "chain_id": "3CP1TO84PT0KJRV9WZDLUOR3ENO25U_1_6"} {"score": 0.1383199244737625, "chain_id": "3CP1TO84PT0KJRV9WZDLUOR3ENO25U_1_8"} {"score": 0.11431457847356796, "chain_id": "3CP1TO84PT0KJRV9WZDLUOR3ENO25U_1_9"} {"score": 0.23266415297985077, "chain_id": "3CP1TO84PT0KJRV9WZDLUOR3ENO25U_1_10"} {"score": 0.9815878868103027, "chain_id": "3TE3O8573079OET7T6QOXPWZ65FR2Z_1_1"} {"score": 0.7921923995018005, "chain_id": "3TE3O8573079OET7T6QOXPWZ65FR2Z_1_3"} {"score": 0.8796286582946777, "chain_id": "3TE3O8573079OET7T6QOXPWZ65FR2Z_1_4"} {"score": 0.9847905039787292, "chain_id": "3TE3O8573079OET7T6QOXPWZ65FR2Z_1_5"} {"score": 0.7003065347671509, "chain_id": "3TE3O8573079OET7T6QOXPWZ65FR2Z_1_2"} {"score": 0.013195287436246872, "chain_id": "3TE3O8573079OET7T6QOXPWZ65FR2Z_1_6"} {"score": 0.03025178797543049, "chain_id": "3TE3O8573079OET7T6QOXPWZ65FR2Z_1_7"} {"score": 0.021012965589761734, "chain_id": "3TE3O8573079OET7T6QOXPWZ65FR2Z_1_8"} {"score": 0.022505130618810654, "chain_id": "3TE3O8573079OET7T6QOXPWZ65FR2Z_1_9"} {"score": 0.09474389255046844, "chain_id": "3TE3O8573079OET7T6QOXPWZ65FR2Z_1_10"} {"score": 0.03249487280845642, "chain_id": "3K9FOBBF2HIUA2NNA5RC31QYBCJNL6_1_1"} {"score": 0.051898859441280365, "chain_id": "3K9FOBBF2HIUA2NNA5RC31QYBCJNL6_1_2"} {"score": 0.03924262151122093, "chain_id": "3K9FOBBF2HIUA2NNA5RC31QYBCJNL6_1_3"} {"score": 0.03260441869497299, "chain_id": "3K9FOBBF2HIUA2NNA5RC31QYBCJNL6_1_4"} {"score": 0.9444201588630676, "chain_id": "3K9FOBBF2HIUA2NNA5RC31QYBCJNL6_1_5"} {"score": 0.03505226969718933, "chain_id": "3K9FOBBF2HIUA2NNA5RC31QYBCJNL6_1_6"} {"score": 0.6888753771781921, "chain_id": "3K9FOBBF2HIUA2NNA5RC31QYBCJNL6_1_7"} {"score": 0.2537498474121094, "chain_id": "3K9FOBBF2HIUA2NNA5RC31QYBCJNL6_1_8"} {"score": 0.032863058149814606, "chain_id": "3K9FOBBF2HIUA2NNA5RC31QYBCJNL6_1_9"} {"score": 0.029285961762070656, "chain_id": "3K9FOBBF2HIUA2NNA5RC31QYBCJNL6_1_10"} {"score": 0.29215285181999207, "chain_id": "3LBXNTKX0RU4LU0INEBVWUQ1EC2X9Q_1_1"} {"score": 0.022310519590973854, "chain_id": "3LBXNTKX0RU4LU0INEBVWUQ1EC2X9Q_1_2"} {"score": 0.02108684927225113, "chain_id": "3LBXNTKX0RU4LU0INEBVWUQ1EC2X9Q_1_3"} {"score": 0.2730967104434967, "chain_id": "3LBXNTKX0RU4LU0INEBVWUQ1EC2X9Q_1_4"} {"score": 0.5497796535491943, "chain_id": "3LBXNTKX0RU4LU0INEBVWUQ1EC2X9Q_1_5"} {"score": 0.056720659136772156, "chain_id": "3LBXNTKX0RU4LU0INEBVWUQ1EC2X9Q_1_6"} {"score": 0.03874582052230835, "chain_id": "3LBXNTKX0RU4LU0INEBVWUQ1EC2X9Q_1_7"} {"score": 0.11402331292629242, "chain_id": "3LBXNTKX0RU4LU0INEBVWUQ1EC2X9Q_1_8"} {"score": 0.3611949682235718, "chain_id": "3LBXNTKX0RU4LU0INEBVWUQ1EC2X9Q_1_9"} {"score": 0.11744117736816406, "chain_id": "3LBXNTKX0RU4LU0INEBVWUQ1EC2X9Q_1_10"} {"score": 0.21805115044116974, "chain_id": "34HJIJKLP5VBKZPB64EMR1I05694VE_1_1"} {"score": 0.3030031621456146, "chain_id": "34HJIJKLP5VBKZPB64EMR1I05694VE_1_2"} {"score": 0.6193975806236267, "chain_id": "34HJIJKLP5VBKZPB64EMR1I05694VE_1_3"} {"score": 0.5368941426277161, "chain_id": "34HJIJKLP5VBKZPB64EMR1I05694VE_1_4"} {"score": 0.3485585153102875, "chain_id": "34HJIJKLP5VBKZPB64EMR1I05694VE_1_5"} {"score": 0.09618660062551498, "chain_id": "34HJIJKLP5VBKZPB64EMR1I05694VE_1_6"} {"score": 0.06169288977980614, "chain_id": "34HJIJKLP5VBKZPB64EMR1I05694VE_1_7"} {"score": 0.1885337084531784, "chain_id": "34HJIJKLP5VBKZPB64EMR1I05694VE_1_8"} {"score": 0.18036849796772003, "chain_id": "34HJIJKLP5VBKZPB64EMR1I05694VE_1_9"} {"score": 0.29407379031181335, "chain_id": "34HJIJKLP5VBKZPB64EMR1I05694VE_1_10"} {"score": 0.21894776821136475, "chain_id": "3IXEICO792IAMUP0KX7MNHET6G56T1_1_1"} {"score": 0.16442738473415375, "chain_id": "3IXEICO792IAMUP0KX7MNHET6G56T1_1_2"} {"score": 0.7214082479476929, "chain_id": "3IXEICO792IAMUP0KX7MNHET6G56T1_1_3"} {"score": 0.4974067211151123, "chain_id": "3IXEICO792IAMUP0KX7MNHET6G56T1_1_4"} {"score": 0.20332030951976776, "chain_id": "3IXEICO792IAMUP0KX7MNHET6G56T1_1_5"} {"score": 0.719197154045105, "chain_id": "3IXEICO792IAMUP0KX7MNHET6G56T1_1_6"} {"score": 0.7415965795516968, "chain_id": "3IXEICO792IAMUP0KX7MNHET6G56T1_1_7"} {"score": 0.13755856454372406, "chain_id": "3IXEICO792IAMUP0KX7MNHET6G56T1_1_8"} {"score": 0.06171469762921333, "chain_id": "3IXEICO792IAMUP0KX7MNHET6G56T1_1_9"} {"score": 0.08286911994218826, "chain_id": "3IXEICO792IAMUP0KX7MNHET6G56T1_1_10"} {"score": 0.9857587814331055, "chain_id": "33C7UALJVLXWHOWFBTKA1PRPLLI18A_1_2"} {"score": 0.9617506265640259, "chain_id": "33C7UALJVLXWHOWFBTKA1PRPLLI18A_1_3"} {"score": 0.9824371933937073, "chain_id": "33C7UALJVLXWHOWFBTKA1PRPLLI18A_1_4"} {"score": 0.9896990656852722, "chain_id": "33C7UALJVLXWHOWFBTKA1PRPLLI18A_1_5"} {"score": 0.9913467764854431, "chain_id": "33C7UALJVLXWHOWFBTKA1PRPLLI18A_1_6"} {"score": 0.9875757694244385, "chain_id": "33C7UALJVLXWHOWFBTKA1PRPLLI18A_1_7"} {"score": 0.9471564888954163, "chain_id": "33C7UALJVLXWHOWFBTKA1PRPLLI18A_1_8"} {"score": 0.6294551491737366, "chain_id": "33C7UALJVLXWHOWFBTKA1PRPLLI18A_1_9"} {"score": 0.9229037165641785, "chain_id": "33C7UALJVLXWHOWFBTKA1PRPLLI18A_1_10"} {"score": 0.39781859517097473, "chain_id": "33C7UALJVLXWHOWFBTKA1PRPLLI18A_1_1"} {"score": 0.6185726523399353, "chain_id": "3WYP994K17Q63GOUU3ULVY68MJEY6C_1_2"} {"score": 0.9089565277099609, "chain_id": "3WYP994K17Q63GOUU3ULVY68MJEY6C_1_3"} {"score": 0.9809193015098572, "chain_id": "3WYP994K17Q63GOUU3ULVY68MJEY6C_1_5"} {"score": 0.8405240178108215, "chain_id": "3WYP994K17Q63GOUU3ULVY68MJEY6C_1_6"} {"score": 0.5086553692817688, "chain_id": "3WYP994K17Q63GOUU3ULVY68MJEY6C_1_7"} {"score": 0.9279714822769165, "chain_id": "3WYP994K17Q63GOUU3ULVY68MJEY6C_1_9"} {"score": 0.9379281401634216, "chain_id": "3WYP994K17Q63GOUU3ULVY68MJEY6C_1_10"} {"score": 0.8053033351898193, "chain_id": "3WYP994K17Q63GOUU3ULVY68MJEY6C_1_1"} {"score": 0.65697181224823, "chain_id": "3WYP994K17Q63GOUU3ULVY68MJEY6C_1_4"} {"score": 0.3813200294971466, "chain_id": "3WYP994K17Q63GOUU3ULVY68MJEY6C_1_8"} {"score": 0.25133413076400757, "chain_id": "3TE3O8573079OET7T6QOXPWZ3U4R2Z_1_2"} {"score": 0.2519063651561737, "chain_id": "3TE3O8573079OET7T6QOXPWZ3U4R2Z_1_9"} {"score": 0.33763357996940613, "chain_id": "3TE3O8573079OET7T6QOXPWZ3U4R2Z_1_1"} {"score": 0.562949001789093, "chain_id": "3TE3O8573079OET7T6QOXPWZ3U4R2Z_1_3"} {"score": 0.42082715034484863, "chain_id": "3TE3O8573079OET7T6QOXPWZ3U4R2Z_1_4"} {"score": 0.09157557785511017, "chain_id": "3TE3O8573079OET7T6QOXPWZ3U4R2Z_1_5"} {"score": 0.15308985114097595, "chain_id": "3TE3O8573079OET7T6QOXPWZ3U4R2Z_1_6"} {"score": 0.1770956963300705, "chain_id": "3TE3O8573079OET7T6QOXPWZ3U4R2Z_1_7"} {"score": 0.14185971021652222, "chain_id": "3TE3O8573079OET7T6QOXPWZ3U4R2Z_1_8"} {"score": 0.13762517273426056, "chain_id": "3TE3O8573079OET7T6QOXPWZ3U4R2Z_1_10"} {"score": 0.7919415831565857, "chain_id": "3PJUZCGDJ6FE6TZAF6Z3GV98J8H98O_1_1"} {"score": 0.5415679216384888, "chain_id": "3PJUZCGDJ6FE6TZAF6Z3GV98J8H98O_1_2"} {"score": 0.9070650935173035, "chain_id": "3PJUZCGDJ6FE6TZAF6Z3GV98J8H98O_1_4"} {"score": 0.31728383898735046, "chain_id": "3PJUZCGDJ6FE6TZAF6Z3GV98J8H98O_1_7"} {"score": 0.7322466969490051, "chain_id": "3PJUZCGDJ6FE6TZAF6Z3GV98J8H98O_1_8"} {"score": 0.609283447265625, "chain_id": "3PJUZCGDJ6FE6TZAF6Z3GV98J8H98O_1_3"} {"score": 0.44294679164886475, "chain_id": "3PJUZCGDJ6FE6TZAF6Z3GV98J8H98O_1_5"} {"score": 0.20068864524364471, "chain_id": "3PJUZCGDJ6FE6TZAF6Z3GV98J8H98O_1_6"} {"score": 0.09338913857936859, "chain_id": "3PJUZCGDJ6FE6TZAF6Z3GV98J8H98O_1_9"} {"score": 0.12569913268089294, "chain_id": "3PJUZCGDJ6FE6TZAF6Z3GV98J8H98O_1_10"} {"score": 0.6349253058433533, "chain_id": "3R9WASFE2ZF2RZRARIZ83BSNLFBFZJ_1_3"} {"score": 0.6726340055465698, "chain_id": "3R9WASFE2ZF2RZRARIZ83BSNLFBFZJ_1_7"} {"score": 0.5436278581619263, "chain_id": "3R9WASFE2ZF2RZRARIZ83BSNLFBFZJ_1_10"} {"score": 0.7731122970581055, "chain_id": "3R9WASFE2ZF2RZRARIZ83BSNLFBFZJ_1_1"} {"score": 0.674819827079773, "chain_id": "3R9WASFE2ZF2RZRARIZ83BSNLFBFZJ_1_2"} {"score": 0.7202927470207214, "chain_id": "3R9WASFE2ZF2RZRARIZ83BSNLFBFZJ_1_4"} {"score": 0.6642867922782898, "chain_id": "3R9WASFE2ZF2RZRARIZ83BSNLFBFZJ_1_5"} {"score": 0.2116093933582306, "chain_id": "3R9WASFE2ZF2RZRARIZ83BSNLFBFZJ_1_6"} {"score": 0.48594024777412415, "chain_id": "3R9WASFE2ZF2RZRARIZ83BSNLFBFZJ_1_8"} {"score": 0.6391252279281616, "chain_id": "3R9WASFE2ZF2RZRARIZ83BSNLFBFZJ_1_9"} {"score": 0.9567440152168274, "chain_id": "3PH3VY7DJLW42LD5H7987ZENGMLZWT_1_1"} {"score": 0.9891768097877502, "chain_id": "3PH3VY7DJLW42LD5H7987ZENGMLZWT_1_2"} {"score": 0.9193685054779053, "chain_id": "3PH3VY7DJLW42LD5H7987ZENGMLZWT_1_3"} {"score": 0.05624423921108246, "chain_id": "3PH3VY7DJLW42LD5H7987ZENGMLZWT_1_10"} {"score": 0.8632722496986389, "chain_id": "3PH3VY7DJLW42LD5H7987ZENGMLZWT_1_4"} {"score": 0.6382546424865723, "chain_id": "3PH3VY7DJLW42LD5H7987ZENGMLZWT_1_5"} {"score": 0.37033188343048096, "chain_id": "3PH3VY7DJLW42LD5H7987ZENGMLZWT_1_6"} {"score": 0.3919024169445038, "chain_id": "3PH3VY7DJLW42LD5H7987ZENGMLZWT_1_7"} {"score": 0.20137189328670502, "chain_id": "3PH3VY7DJLW42LD5H7987ZENGMLZWT_1_8"} {"score": 0.21231138706207275, "chain_id": "3PH3VY7DJLW42LD5H7987ZENGMLZWT_1_9"} {"score": 0.9191380143165588, "chain_id": "3P1L2B7AD1OCSNNZBKRPIQQ32QELOI_1_2"} {"score": 0.9710100293159485, "chain_id": "3P1L2B7AD1OCSNNZBKRPIQQ32QELOI_1_3"} {"score": 0.9855519533157349, "chain_id": "3P1L2B7AD1OCSNNZBKRPIQQ32QELOI_1_4"} {"score": 0.9670160412788391, "chain_id": "3P1L2B7AD1OCSNNZBKRPIQQ32QELOI_1_5"} {"score": 0.9820963144302368, "chain_id": "3P1L2B7AD1OCSNNZBKRPIQQ32QELOI_1_6"} {"score": 0.9920600652694702, "chain_id": "3P1L2B7AD1OCSNNZBKRPIQQ32QELOI_1_8"} {"score": 0.7603789567947388, "chain_id": "3P1L2B7AD1OCSNNZBKRPIQQ32QELOI_1_10"} {"score": 0.9764559268951416, "chain_id": "3P1L2B7AD1OCSNNZBKRPIQQ32QELOI_1_1"} {"score": 0.9903674125671387, "chain_id": "3P1L2B7AD1OCSNNZBKRPIQQ32QELOI_1_7"} {"score": 0.9654616713523865, "chain_id": "3P1L2B7AD1OCSNNZBKRPIQQ32QELOI_1_9"} {"score": 0.9135903716087341, "chain_id": "3OXV7EAXLEP5NDR65I1V54AVH8636I_1_2"} {"score": 0.811151921749115, "chain_id": "3OXV7EAXLEP5NDR65I1V54AVH8636I_1_3"} {"score": 0.9354241490364075, "chain_id": "3OXV7EAXLEP5NDR65I1V54AVH8636I_1_4"} {"score": 0.9539145231246948, "chain_id": "3OXV7EAXLEP5NDR65I1V54AVH8636I_1_6"} {"score": 0.9629189372062683, "chain_id": "3OXV7EAXLEP5NDR65I1V54AVH8636I_1_7"} {"score": 0.9250715374946594, "chain_id": "3OXV7EAXLEP5NDR65I1V54AVH8636I_1_1"} {"score": 0.07251444458961487, "chain_id": "3OXV7EAXLEP5NDR65I1V54AVH8636I_1_5"} {"score": 0.9472677111625671, "chain_id": "3OXV7EAXLEP5NDR65I1V54AVH8636I_1_8"} {"score": 0.9475233554840088, "chain_id": "3OXV7EAXLEP5NDR65I1V54AVH8636I_1_9"} {"score": 0.027591869235038757, "chain_id": "3OXV7EAXLEP5NDR65I1V54AVH8636I_1_10"} {"score": 0.7711402177810669, "chain_id": "3R0T90IZ1SBVX6CVAOLIAYREDDQGCN_1_1"} {"score": 0.33240845799446106, "chain_id": "3R0T90IZ1SBVX6CVAOLIAYREDDQGCN_1_5"} {"score": 0.26237988471984863, "chain_id": "3R0T90IZ1SBVX6CVAOLIAYREDDQGCN_1_2"} {"score": 0.7908608913421631, "chain_id": "3R0T90IZ1SBVX6CVAOLIAYREDDQGCN_1_3"} {"score": 0.6892794966697693, "chain_id": "3R0T90IZ1SBVX6CVAOLIAYREDDQGCN_1_4"} {"score": 0.1528148502111435, "chain_id": "3R0T90IZ1SBVX6CVAOLIAYREDDQGCN_1_6"} {"score": 0.19654816389083862, "chain_id": "3R0T90IZ1SBVX6CVAOLIAYREDDQGCN_1_7"} {"score": 0.3056890070438385, "chain_id": "3R0T90IZ1SBVX6CVAOLIAYREDDQGCN_1_8"} {"score": 0.22666428983211517, "chain_id": "3R0T90IZ1SBVX6CVAOLIAYREDDQGCN_1_9"} {"score": 0.27276337146759033, "chain_id": "3R0T90IZ1SBVX6CVAOLIAYREDDQGCN_1_10"} {"score": 0.27533474564552307, "chain_id": "3CPLWGV3MOYZ90MEL8OMYSZ3BBWN9P_1_2"} {"score": 0.26036110520362854, "chain_id": "3CPLWGV3MOYZ90MEL8OMYSZ3BBWN9P_1_4"} {"score": 0.32290971279144287, "chain_id": "3CPLWGV3MOYZ90MEL8OMYSZ3BBWN9P_1_8"} {"score": 0.15514114499092102, "chain_id": "3CPLWGV3MOYZ90MEL8OMYSZ3BBWN9P_1_1"} {"score": 0.5957075953483582, "chain_id": "3CPLWGV3MOYZ90MEL8OMYSZ3BBWN9P_1_3"} {"score": 0.6047306060791016, "chain_id": "3CPLWGV3MOYZ90MEL8OMYSZ3BBWN9P_1_5"} {"score": 0.3283277750015259, "chain_id": "3CPLWGV3MOYZ90MEL8OMYSZ3BBWN9P_1_6"} {"score": 0.37066057324409485, "chain_id": "3CPLWGV3MOYZ90MEL8OMYSZ3BBWN9P_1_7"} {"score": 0.42824259400367737, "chain_id": "3CPLWGV3MOYZ90MEL8OMYSZ3BBWN9P_1_9"} {"score": 0.16354797780513763, "chain_id": "3CPLWGV3MOYZ90MEL8OMYSZ3BBWN9P_1_10"} {"score": 0.02398308739066124, "chain_id": "33FBRBDW6OYG4R6DRQ9UILAGTOVC8D_1_1"} {"score": 0.08328790217638016, "chain_id": "33FBRBDW6OYG4R6DRQ9UILAGTOVC8D_1_2"} {"score": 0.05365036055445671, "chain_id": "33FBRBDW6OYG4R6DRQ9UILAGTOVC8D_1_3"} {"score": 0.7924655675888062, "chain_id": "33FBRBDW6OYG4R6DRQ9UILAGTOVC8D_1_4"} {"score": 0.21402707695960999, "chain_id": "33FBRBDW6OYG4R6DRQ9UILAGTOVC8D_1_5"} {"score": 0.09333626180887222, "chain_id": "33FBRBDW6OYG4R6DRQ9UILAGTOVC8D_1_6"} {"score": 0.028797511011362076, "chain_id": "33FBRBDW6OYG4R6DRQ9UILAGTOVC8D_1_7"} {"score": 0.16521812975406647, "chain_id": "33FBRBDW6OYG4R6DRQ9UILAGTOVC8D_1_8"} {"score": 0.04496557265520096, "chain_id": "33FBRBDW6OYG4R6DRQ9UILAGTOVC8D_1_9"} {"score": 0.1688125878572464, "chain_id": "33FBRBDW6OYG4R6DRQ9UILAGTOVC8D_1_10"} {"score": 0.4449424147605896, "chain_id": "3Z3ZLGNNSITYXVAQKRFTB9RMHHK3QX_1_1"} {"score": 0.902410626411438, "chain_id": "3Z3ZLGNNSITYXVAQKRFTB9RMHHK3QX_1_2"} {"score": 0.5119417309761047, "chain_id": "3Z3ZLGNNSITYXVAQKRFTB9RMHHK3QX_1_3"} {"score": 0.2354804426431656, "chain_id": "3Z3ZLGNNSITYXVAQKRFTB9RMHHK3QX_1_4"} {"score": 0.3193625807762146, "chain_id": "3Z3ZLGNNSITYXVAQKRFTB9RMHHK3QX_1_5"} {"score": 0.2050715833902359, "chain_id": "3Z3ZLGNNSITYXVAQKRFTB9RMHHK3QX_1_6"} {"score": 0.046860307455062866, "chain_id": "3Z3ZLGNNSITYXVAQKRFTB9RMHHK3QX_1_7"} {"score": 0.09397859871387482, "chain_id": "3Z3ZLGNNSITYXVAQKRFTB9RMHHK3QX_1_8"} {"score": 0.1800081729888916, "chain_id": "3Z3ZLGNNSITYXVAQKRFTB9RMHHK3QX_1_9"} {"score": 0.9025315046310425, "chain_id": "3Z3ZLGNNSITYXVAQKRFTB9RMHHK3QX_1_10"} {"score": 0.9886892437934875, "chain_id": "3018Q3ZVOIPYTHOB6LJ337FXF57ARA_1_1"} {"score": 0.9887287616729736, "chain_id": "3018Q3ZVOIPYTHOB6LJ337FXF57ARA_1_2"} {"score": 0.9875671863555908, "chain_id": "3018Q3ZVOIPYTHOB6LJ337FXF57ARA_1_4"} {"score": 0.37468233704566956, "chain_id": "3018Q3ZVOIPYTHOB6LJ337FXF57ARA_1_6"} {"score": 0.9921157956123352, "chain_id": "3018Q3ZVOIPYTHOB6LJ337FXF57ARA_1_3"} {"score": 0.47544118762016296, "chain_id": "3018Q3ZVOIPYTHOB6LJ337FXF57ARA_1_5"} {"score": 0.174798384308815, "chain_id": "3018Q3ZVOIPYTHOB6LJ337FXF57ARA_1_7"} {"score": 0.48049023747444153, "chain_id": "3018Q3ZVOIPYTHOB6LJ337FXF57ARA_1_8"} {"score": 0.046462107449769974, "chain_id": "3018Q3ZVOIPYTHOB6LJ337FXF57ARA_1_9"} {"score": 0.13396866619586945, "chain_id": "3018Q3ZVOIPYTHOB6LJ337FXF57ARA_1_10"} {"score": 0.7820394039154053, "chain_id": "3U088ZLJVKS7007FDDWG10B1Y1B0WJ_1_1"} {"score": 0.9726693630218506, "chain_id": "3U088ZLJVKS7007FDDWG10B1Y1B0WJ_1_2"} {"score": 0.3990831971168518, "chain_id": "3U088ZLJVKS7007FDDWG10B1Y1B0WJ_1_3"} {"score": 0.33631661534309387, "chain_id": "3U088ZLJVKS7007FDDWG10B1Y1B0WJ_1_4"} {"score": 0.6394280195236206, "chain_id": "3U088ZLJVKS7007FDDWG10B1Y1B0WJ_1_5"} {"score": 0.07449155300855637, "chain_id": "3U088ZLJVKS7007FDDWG10B1Y1B0WJ_1_6"} {"score": 0.5277230739593506, "chain_id": "3U088ZLJVKS7007FDDWG10B1Y1B0WJ_1_7"} {"score": 0.05477989837527275, "chain_id": "3U088ZLJVKS7007FDDWG10B1Y1B0WJ_1_8"} {"score": 0.29586419463157654, "chain_id": "3U088ZLJVKS7007FDDWG10B1Y1B0WJ_1_9"} {"score": 0.03074811026453972, "chain_id": "3U088ZLJVKS7007FDDWG10B1Y1B0WJ_1_10"} {"score": 0.989554762840271, "chain_id": "3RANCT1ZVFGVSJLKGTE43TMN4RLBU9_1_1"} {"score": 0.9853968024253845, "chain_id": "3RANCT1ZVFGVSJLKGTE43TMN4RLBU9_1_2"} {"score": 0.98832768201828, "chain_id": "3RANCT1ZVFGVSJLKGTE43TMN4RLBU9_1_3"} {"score": 0.985792338848114, "chain_id": "3RANCT1ZVFGVSJLKGTE43TMN4RLBU9_1_4"} {"score": 0.2822820544242859, "chain_id": "3RANCT1ZVFGVSJLKGTE43TMN4RLBU9_1_5"} {"score": 0.17776033282279968, "chain_id": "3RANCT1ZVFGVSJLKGTE43TMN4RLBU9_1_6"} {"score": 0.041535958647727966, "chain_id": "3RANCT1ZVFGVSJLKGTE43TMN4RLBU9_1_7"} {"score": 0.07423543184995651, "chain_id": "3RANCT1ZVFGVSJLKGTE43TMN4RLBU9_1_8"} {"score": 0.14889110624790192, "chain_id": "3RANCT1ZVFGVSJLKGTE43TMN4RLBU9_1_9"} {"score": 0.7218266725540161, "chain_id": "3RANCT1ZVFGVSJLKGTE43TMN4RLBU9_1_10"} {"score": 0.9589889049530029, "chain_id": "3P529IW9KYKIMAA6CH8ZVWHP665FL2_1_1"} {"score": 0.9707103371620178, "chain_id": "3P529IW9KYKIMAA6CH8ZVWHP665FL2_1_2"} {"score": 0.9774790406227112, "chain_id": "3P529IW9KYKIMAA6CH8ZVWHP665FL2_1_4"} {"score": 0.89356929063797, "chain_id": "3P529IW9KYKIMAA6CH8ZVWHP665FL2_1_5"} {"score": 0.9793732166290283, "chain_id": "3P529IW9KYKIMAA6CH8ZVWHP665FL2_1_6"} {"score": 0.8353902697563171, "chain_id": "3P529IW9KYKIMAA6CH8ZVWHP665FL2_1_3"} {"score": 0.11592880636453629, "chain_id": "3P529IW9KYKIMAA6CH8ZVWHP665FL2_1_7"} {"score": 0.44843390583992004, "chain_id": "3P529IW9KYKIMAA6CH8ZVWHP665FL2_1_8"} {"score": 0.6351901292800903, "chain_id": "3P529IW9KYKIMAA6CH8ZVWHP665FL2_1_9"} {"score": 0.20877891778945923, "chain_id": "3P529IW9KYKIMAA6CH8ZVWHP665FL2_1_10"} {"score": 0.9471220374107361, "chain_id": "30LSNF239UUWVFQO3JWFJXV8H8D2IJ_1_1"} {"score": 0.7089617252349854, "chain_id": "30LSNF239UUWVFQO3JWFJXV8H8D2IJ_1_3"} {"score": 0.922541618347168, "chain_id": "30LSNF239UUWVFQO3JWFJXV8H8D2IJ_1_4"} {"score": 0.9235604405403137, "chain_id": "30LSNF239UUWVFQO3JWFJXV8H8D2IJ_1_5"} {"score": 0.5923240184783936, "chain_id": "30LSNF239UUWVFQO3JWFJXV8H8D2IJ_1_6"} {"score": 0.7998456358909607, "chain_id": "30LSNF239UUWVFQO3JWFJXV8H8D2IJ_1_7"} {"score": 0.8209313154220581, "chain_id": "30LSNF239UUWVFQO3JWFJXV8H8D2IJ_1_8"} {"score": 0.8106291890144348, "chain_id": "30LSNF239UUWVFQO3JWFJXV8H8D2IJ_1_9"} {"score": 0.7041488289833069, "chain_id": "30LSNF239UUWVFQO3JWFJXV8H8D2IJ_1_10"} {"score": 0.9622686505317688, "chain_id": "30LSNF239UUWVFQO3JWFJXV8H8D2IJ_1_2"} {"score": 0.32146212458610535, "chain_id": "33LKR6A5KEJFF8O3ERV5SLNC0LDT1C_1_1"} {"score": 0.6558692455291748, "chain_id": "33LKR6A5KEJFF8O3ERV5SLNC0LDT1C_1_2"} {"score": 0.7771638631820679, "chain_id": "33LKR6A5KEJFF8O3ERV5SLNC0LDT1C_1_3"} {"score": 0.2446449100971222, "chain_id": "33LKR6A5KEJFF8O3ERV5SLNC0LDT1C_1_4"} {"score": 0.46462181210517883, "chain_id": "33LKR6A5KEJFF8O3ERV5SLNC0LDT1C_1_5"} {"score": 0.36314359307289124, "chain_id": "33LKR6A5KEJFF8O3ERV5SLNC0LDT1C_1_6"} {"score": 0.09858331829309464, "chain_id": "33LKR6A5KEJFF8O3ERV5SLNC0LDT1C_1_7"} {"score": 0.5265430808067322, "chain_id": "33LKR6A5KEJFF8O3ERV5SLNC0LDT1C_1_8"} {"score": 0.6316548585891724, "chain_id": "33LKR6A5KEJFF8O3ERV5SLNC0LDT1C_1_9"} {"score": 0.5274831652641296, "chain_id": "33LKR6A5KEJFF8O3ERV5SLNC0LDT1C_1_10"} {"score": 0.988106369972229, "chain_id": "3IRIK4HM3AJT0DNPYBCWY7EPM7NC60_1_2"} {"score": 0.3510138690471649, "chain_id": "3IRIK4HM3AJT0DNPYBCWY7EPM7NC60_1_7"} {"score": 0.9861738681793213, "chain_id": "3IRIK4HM3AJT0DNPYBCWY7EPM7NC60_1_1"} {"score": 0.9922375082969666, "chain_id": "3IRIK4HM3AJT0DNPYBCWY7EPM7NC60_1_3"} {"score": 0.9845481514930725, "chain_id": "3IRIK4HM3AJT0DNPYBCWY7EPM7NC60_1_4"} {"score": 0.024634627625346184, "chain_id": "3IRIK4HM3AJT0DNPYBCWY7EPM7NC60_1_5"} {"score": 0.08273178339004517, "chain_id": "3IRIK4HM3AJT0DNPYBCWY7EPM7NC60_1_6"} {"score": 0.10871633887290955, "chain_id": "3IRIK4HM3AJT0DNPYBCWY7EPM7NC60_1_8"} {"score": 0.2351071834564209, "chain_id": "3IRIK4HM3AJT0DNPYBCWY7EPM7NC60_1_9"} {"score": 0.11787020415067673, "chain_id": "3IRIK4HM3AJT0DNPYBCWY7EPM7NC60_1_10"} {"score": 0.26732251048088074, "chain_id": "39DD6S19JPAALLREW7F2LT7NCP6ZEK_1_1"} {"score": 0.0302118007093668, "chain_id": "39DD6S19JPAALLREW7F2LT7NCP6ZEK_1_2"} {"score": 0.03254568949341774, "chain_id": "39DD6S19JPAALLREW7F2LT7NCP6ZEK_1_3"} {"score": 0.03786981478333473, "chain_id": "39DD6S19JPAALLREW7F2LT7NCP6ZEK_1_4"} {"score": 0.5467883348464966, "chain_id": "39DD6S19JPAALLREW7F2LT7NCP6ZEK_1_5"} {"score": 0.6016547679901123, "chain_id": "39DD6S19JPAALLREW7F2LT7NCP6ZEK_1_6"} {"score": 0.48986542224884033, "chain_id": "39DD6S19JPAALLREW7F2LT7NCP6ZEK_1_7"} {"score": 0.25840070843696594, "chain_id": "39DD6S19JPAALLREW7F2LT7NCP6ZEK_1_8"} {"score": 0.4257572293281555, "chain_id": "39DD6S19JPAALLREW7F2LT7NCP6ZEK_1_9"} {"score": 0.02791052684187889, "chain_id": "39DD6S19JPAALLREW7F2LT7NCP6ZEK_1_10"} {"score": 0.9863876104354858, "chain_id": "3R2PKQ87NW7M2JUHD1FZY696QKYIMB_1_2"} {"score": 0.9900268316268921, "chain_id": "3R2PKQ87NW7M2JUHD1FZY696QKYIMB_1_3"} {"score": 0.9872927665710449, "chain_id": "3R2PKQ87NW7M2JUHD1FZY696QKYIMB_1_4"} {"score": 0.9897409677505493, "chain_id": "3R2PKQ87NW7M2JUHD1FZY696QKYIMB_1_1"} {"score": 0.3157305121421814, "chain_id": "3R2PKQ87NW7M2JUHD1FZY696QKYIMB_1_5"} {"score": 0.15004883706569672, "chain_id": "3R2PKQ87NW7M2JUHD1FZY696QKYIMB_1_6"} {"score": 0.03878612071275711, "chain_id": "3R2PKQ87NW7M2JUHD1FZY696QKYIMB_1_7"} {"score": 0.06229649856686592, "chain_id": "3R2PKQ87NW7M2JUHD1FZY696QKYIMB_1_8"} {"score": 0.14351356029510498, "chain_id": "3R2PKQ87NW7M2JUHD1FZY696QKYIMB_1_9"} {"score": 0.746549665927887, "chain_id": "3R2PKQ87NW7M2JUHD1FZY696QKYIMB_1_10"} {"score": 0.9886892437934875, "chain_id": "3BWI6RSP7G8R1BL8DCNJU9EO34I7E6_1_1"} {"score": 0.9887287616729736, "chain_id": "3BWI6RSP7G8R1BL8DCNJU9EO34I7E6_1_2"} {"score": 0.9921157956123352, "chain_id": "3BWI6RSP7G8R1BL8DCNJU9EO34I7E6_1_3"} {"score": 0.9875671863555908, "chain_id": "3BWI6RSP7G8R1BL8DCNJU9EO34I7E6_1_4"} {"score": 0.47544118762016296, "chain_id": "3BWI6RSP7G8R1BL8DCNJU9EO34I7E6_1_5"} {"score": 0.37468233704566956, "chain_id": "3BWI6RSP7G8R1BL8DCNJU9EO34I7E6_1_6"} {"score": 0.174798384308815, "chain_id": "3BWI6RSP7G8R1BL8DCNJU9EO34I7E6_1_7"} {"score": 0.48049023747444153, "chain_id": "3BWI6RSP7G8R1BL8DCNJU9EO34I7E6_1_8"} {"score": 0.046462107449769974, "chain_id": "3BWI6RSP7G8R1BL8DCNJU9EO34I7E6_1_9"} {"score": 0.13396866619586945, "chain_id": "3BWI6RSP7G8R1BL8DCNJU9EO34I7E6_1_10"} {"score": 0.9862035512924194, "chain_id": "3OVHNO1VE605TFDE0C4IFBP2DTWDZT_1_2"} {"score": 0.9894059300422668, "chain_id": "3OVHNO1VE605TFDE0C4IFBP2DTWDZT_1_4"} {"score": 0.24778400361537933, "chain_id": "3OVHNO1VE605TFDE0C4IFBP2DTWDZT_1_5"} {"score": 0.9867532849311829, "chain_id": "3OVHNO1VE605TFDE0C4IFBP2DTWDZT_1_1"} {"score": 0.9872337579727173, "chain_id": "3OVHNO1VE605TFDE0C4IFBP2DTWDZT_1_3"} {"score": 0.532346785068512, "chain_id": "3OVHNO1VE605TFDE0C4IFBP2DTWDZT_1_6"} {"score": 0.12080852687358856, "chain_id": "3OVHNO1VE605TFDE0C4IFBP2DTWDZT_1_7"} {"score": 0.7177907824516296, "chain_id": "3OVHNO1VE605TFDE0C4IFBP2DTWDZT_1_8"} {"score": 0.49679917097091675, "chain_id": "3OVHNO1VE605TFDE0C4IFBP2DTWDZT_1_9"} {"score": 0.6516163349151611, "chain_id": "3OVHNO1VE605TFDE0C4IFBP2DTWDZT_1_10"} {"score": 0.6961647272109985, "chain_id": "39RP059MEHSCFBGB7RNICJ5TTXSMBO_1_6"} {"score": 0.34531551599502563, "chain_id": "39RP059MEHSCFBGB7RNICJ5TTXSMBO_1_7"} {"score": 0.8145788311958313, "chain_id": "39RP059MEHSCFBGB7RNICJ5TTXSMBO_1_1"} {"score": 0.18412886559963226, "chain_id": "39RP059MEHSCFBGB7RNICJ5TTXSMBO_1_2"} {"score": 0.34641513228416443, "chain_id": "39RP059MEHSCFBGB7RNICJ5TTXSMBO_1_3"} {"score": 0.1592598557472229, "chain_id": "39RP059MEHSCFBGB7RNICJ5TTXSMBO_1_4"} {"score": 0.7885825037956238, "chain_id": "39RP059MEHSCFBGB7RNICJ5TTXSMBO_1_5"} {"score": 0.15316729247570038, "chain_id": "39RP059MEHSCFBGB7RNICJ5TTXSMBO_1_8"} {"score": 0.04726738482713699, "chain_id": "39RP059MEHSCFBGB7RNICJ5TTXSMBO_1_9"} {"score": 0.029300443828105927, "chain_id": "39RP059MEHSCFBGB7RNICJ5TTXSMBO_1_10"} {"score": 0.03796778619289398, "chain_id": "3D4CH1LGEASTZ85SY4BR88Q6BAJ9GZ_1_1"} {"score": 0.48129454255104065, "chain_id": "3D4CH1LGEASTZ85SY4BR88Q6BAJ9GZ_1_2"} {"score": 0.7254457473754883, "chain_id": "3D4CH1LGEASTZ85SY4BR88Q6BAJ9GZ_1_3"} {"score": 0.04879710078239441, "chain_id": "3D4CH1LGEASTZ85SY4BR88Q6BAJ9GZ_1_4"} {"score": 0.024941807612776756, "chain_id": "3D4CH1LGEASTZ85SY4BR88Q6BAJ9GZ_1_5"} {"score": 0.03258330747485161, "chain_id": "3D4CH1LGEASTZ85SY4BR88Q6BAJ9GZ_1_6"} {"score": 0.04876327887177467, "chain_id": "3D4CH1LGEASTZ85SY4BR88Q6BAJ9GZ_1_7"} {"score": 0.4317256808280945, "chain_id": "3D4CH1LGEASTZ85SY4BR88Q6BAJ9GZ_1_8"} {"score": 0.7155023217201233, "chain_id": "3D4CH1LGEASTZ85SY4BR88Q6BAJ9GZ_1_9"} {"score": 0.7501763105392456, "chain_id": "3D4CH1LGEASTZ85SY4BR88Q6BAJ9GZ_1_10"} {"score": 0.632850706577301, "chain_id": "33F859I566CQNXF0GU75KEXXEHNHBI_1_1"} {"score": 0.6497350931167603, "chain_id": "33F859I566CQNXF0GU75KEXXEHNHBI_1_2"} {"score": 0.72269207239151, "chain_id": "33F859I566CQNXF0GU75KEXXEHNHBI_1_3"} {"score": 0.6675340533256531, "chain_id": "33F859I566CQNXF0GU75KEXXEHNHBI_1_4"} {"score": 0.43412351608276367, "chain_id": "33F859I566CQNXF0GU75KEXXEHNHBI_1_5"} {"score": 0.3214554488658905, "chain_id": "33F859I566CQNXF0GU75KEXXEHNHBI_1_6"} {"score": 0.48860055208206177, "chain_id": "33F859I566CQNXF0GU75KEXXEHNHBI_1_7"} {"score": 0.33549749851226807, "chain_id": "33F859I566CQNXF0GU75KEXXEHNHBI_1_8"} {"score": 0.27967673540115356, "chain_id": "33F859I566CQNXF0GU75KEXXEHNHBI_1_9"} {"score": 0.15416158735752106, "chain_id": "33F859I566CQNXF0GU75KEXXEHNHBI_1_10"} {"score": 0.961983859539032, "chain_id": "3BF51CHDTV9P3ACQIEAG0X1ENIEH0U_1_1"} {"score": 0.2342749536037445, "chain_id": "3BF51CHDTV9P3ACQIEAG0X1ENIEH0U_1_2"} {"score": 0.822347104549408, "chain_id": "3BF51CHDTV9P3ACQIEAG0X1ENIEH0U_1_3"} {"score": 0.5893095135688782, "chain_id": "3BF51CHDTV9P3ACQIEAG0X1ENIEH0U_1_4"} {"score": 0.10031332075595856, "chain_id": "3BF51CHDTV9P3ACQIEAG0X1ENIEH0U_1_5"} {"score": 0.2918059229850769, "chain_id": "3BF51CHDTV9P3ACQIEAG0X1ENIEH0U_1_6"} {"score": 0.03458784520626068, "chain_id": "3BF51CHDTV9P3ACQIEAG0X1ENIEH0U_1_7"} {"score": 0.2212289720773697, "chain_id": "3BF51CHDTV9P3ACQIEAG0X1ENIEH0U_1_8"} {"score": 0.10795483738183975, "chain_id": "3BF51CHDTV9P3ACQIEAG0X1ENIEH0U_1_9"} {"score": 0.15600699186325073, "chain_id": "3BF51CHDTV9P3ACQIEAG0X1ENIEH0U_1_10"} {"score": 0.7940883636474609, "chain_id": "3AAJC4I4FGRIW1D6A8QTI9KFE7NZJ7_1_1"} {"score": 0.43610405921936035, "chain_id": "3AAJC4I4FGRIW1D6A8QTI9KFE7NZJ7_1_2"} {"score": 0.9714958071708679, "chain_id": "3AAJC4I4FGRIW1D6A8QTI9KFE7NZJ7_1_3"} {"score": 0.537977933883667, "chain_id": "3AAJC4I4FGRIW1D6A8QTI9KFE7NZJ7_1_4"} {"score": 0.12396659702062607, "chain_id": "3AAJC4I4FGRIW1D6A8QTI9KFE7NZJ7_1_5"} {"score": 0.14577606320381165, "chain_id": "3AAJC4I4FGRIW1D6A8QTI9KFE7NZJ7_1_6"} {"score": 0.4405944347381592, "chain_id": "3AAJC4I4FGRIW1D6A8QTI9KFE7NZJ7_1_7"} {"score": 0.3367394804954529, "chain_id": "3AAJC4I4FGRIW1D6A8QTI9KFE7NZJ7_1_8"} {"score": 0.31602099537849426, "chain_id": "3AAJC4I4FGRIW1D6A8QTI9KFE7NZJ7_1_9"} {"score": 0.039668839424848557, "chain_id": "3AAJC4I4FGRIW1D6A8QTI9KFE7NZJ7_1_10"} {"score": 0.917353630065918, "chain_id": "3LRLIPTPEQ8C6DBGG1A62VTJKFDKAV_1_2"} {"score": 0.9652080535888672, "chain_id": "3LRLIPTPEQ8C6DBGG1A62VTJKFDKAV_1_7"} {"score": 0.9701718091964722, "chain_id": "3LRLIPTPEQ8C6DBGG1A62VTJKFDKAV_1_1"} {"score": 0.9325137138366699, "chain_id": "3LRLIPTPEQ8C6DBGG1A62VTJKFDKAV_1_3"} {"score": 0.7585666179656982, "chain_id": "3LRLIPTPEQ8C6DBGG1A62VTJKFDKAV_1_4"} {"score": 0.4730243384838104, "chain_id": "3LRLIPTPEQ8C6DBGG1A62VTJKFDKAV_1_5"} {"score": 0.09703920036554337, "chain_id": "3LRLIPTPEQ8C6DBGG1A62VTJKFDKAV_1_6"} {"score": 0.04119850695133209, "chain_id": "3LRLIPTPEQ8C6DBGG1A62VTJKFDKAV_1_8"} {"score": 0.5896634459495544, "chain_id": "3LRLIPTPEQ8C6DBGG1A62VTJKFDKAV_1_9"} {"score": 0.6608075499534607, "chain_id": "3LRLIPTPEQ8C6DBGG1A62VTJKFDKAV_1_10"} {"score": 0.9589043259620667, "chain_id": "3IHR8NYAM70YFFSFKS5NL9TIMNB4P9_1_1"} {"score": 0.9349663853645325, "chain_id": "3IHR8NYAM70YFFSFKS5NL9TIMNB4P9_1_2"} {"score": 0.9746468663215637, "chain_id": "3IHR8NYAM70YFFSFKS5NL9TIMNB4P9_1_7"} {"score": 0.9145552515983582, "chain_id": "3IHR8NYAM70YFFSFKS5NL9TIMNB4P9_1_3"} {"score": 0.7304132580757141, "chain_id": "3IHR8NYAM70YFFSFKS5NL9TIMNB4P9_1_4"} {"score": 0.5302850008010864, "chain_id": "3IHR8NYAM70YFFSFKS5NL9TIMNB4P9_1_5"} {"score": 0.09270224720239639, "chain_id": "3IHR8NYAM70YFFSFKS5NL9TIMNB4P9_1_6"} {"score": 0.047465622425079346, "chain_id": "3IHR8NYAM70YFFSFKS5NL9TIMNB4P9_1_8"} {"score": 0.6440563201904297, "chain_id": "3IHR8NYAM70YFFSFKS5NL9TIMNB4P9_1_9"} {"score": 0.6757715344429016, "chain_id": "3IHR8NYAM70YFFSFKS5NL9TIMNB4P9_1_10"} {"score": 0.3513355851173401, "chain_id": "3FTF2T8WLRHPWUVSD9F9UBCU1EJ9W0_1_1"} {"score": 0.06857025623321533, "chain_id": "3FTF2T8WLRHPWUVSD9F9UBCU1EJ9W0_1_2"} {"score": 0.04360519349575043, "chain_id": "3FTF2T8WLRHPWUVSD9F9UBCU1EJ9W0_1_3"} {"score": 0.028131000697612762, "chain_id": "3FTF2T8WLRHPWUVSD9F9UBCU1EJ9W0_1_4"} {"score": 0.028264174237847328, "chain_id": "3FTF2T8WLRHPWUVSD9F9UBCU1EJ9W0_1_5"} {"score": 0.0721694678068161, "chain_id": "3FTF2T8WLRHPWUVSD9F9UBCU1EJ9W0_1_6"} {"score": 0.08043333142995834, "chain_id": "3FTF2T8WLRHPWUVSD9F9UBCU1EJ9W0_1_7"} {"score": 0.015981631353497505, "chain_id": "3FTF2T8WLRHPWUVSD9F9UBCU1EJ9W0_1_8"} {"score": 0.10436472296714783, "chain_id": "3FTF2T8WLRHPWUVSD9F9UBCU1EJ9W0_1_9"} {"score": 0.07220504432916641, "chain_id": "3FTF2T8WLRHPWUVSD9F9UBCU1EJ9W0_1_10"} {"score": 0.985713005065918, "chain_id": "3N2BF7Y2VQTM6OJX7JXEYU8RNRYMH2_1_1"} {"score": 0.07304055243730545, "chain_id": "3N2BF7Y2VQTM6OJX7JXEYU8RNRYMH2_1_2"} {"score": 0.11324045062065125, "chain_id": "3N2BF7Y2VQTM6OJX7JXEYU8RNRYMH2_1_3"} {"score": 0.977771520614624, "chain_id": "3N2BF7Y2VQTM6OJX7JXEYU8RNRYMH2_1_4"} {"score": 0.044970620423555374, "chain_id": "3N2BF7Y2VQTM6OJX7JXEYU8RNRYMH2_1_5"} {"score": 0.05280961096286774, "chain_id": "3N2BF7Y2VQTM6OJX7JXEYU8RNRYMH2_1_6"} {"score": 0.07238810509443283, "chain_id": "3N2BF7Y2VQTM6OJX7JXEYU8RNRYMH2_1_7"} {"score": 0.07450413703918457, "chain_id": "3N2BF7Y2VQTM6OJX7JXEYU8RNRYMH2_1_8"} {"score": 0.5176454186439514, "chain_id": "3N2BF7Y2VQTM6OJX7JXEYU8RNRYMH2_1_9"} {"score": 0.03446251153945923, "chain_id": "3N2BF7Y2VQTM6OJX7JXEYU8RNRYMH2_1_10"} {"score": 0.23984076082706451, "chain_id": "358UUM7WRZ2GAFQDZI7JTGD7G047RR_1_1"} {"score": 0.45518559217453003, "chain_id": "358UUM7WRZ2GAFQDZI7JTGD7G047RR_1_2"} {"score": 0.49533185362815857, "chain_id": "358UUM7WRZ2GAFQDZI7JTGD7G047RR_1_3"} {"score": 0.849315345287323, "chain_id": "358UUM7WRZ2GAFQDZI7JTGD7G047RR_1_4"} {"score": 0.027302678674459457, "chain_id": "358UUM7WRZ2GAFQDZI7JTGD7G047RR_1_5"} {"score": 0.3214986324310303, "chain_id": "358UUM7WRZ2GAFQDZI7JTGD7G047RR_1_6"} {"score": 0.2792038321495056, "chain_id": "358UUM7WRZ2GAFQDZI7JTGD7G047RR_1_7"} {"score": 0.4352929890155792, "chain_id": "358UUM7WRZ2GAFQDZI7JTGD7G047RR_1_8"} {"score": 0.23357392847537994, "chain_id": "358UUM7WRZ2GAFQDZI7JTGD7G047RR_1_9"} {"score": 0.08674817532300949, "chain_id": "358UUM7WRZ2GAFQDZI7JTGD7G047RR_1_10"} {"score": 0.2388557642698288, "chain_id": "3FQ5JJ512LNJQW55P5FBO1DJJIINKG_1_1"} {"score": 0.05814632400870323, "chain_id": "3FQ5JJ512LNJQW55P5FBO1DJJIINKG_1_2"} {"score": 0.7087937593460083, "chain_id": "3FQ5JJ512LNJQW55P5FBO1DJJIINKG_1_3"} {"score": 0.22205083072185516, "chain_id": "3FQ5JJ512LNJQW55P5FBO1DJJIINKG_1_4"} {"score": 0.018464768305420876, "chain_id": "3FQ5JJ512LNJQW55P5FBO1DJJIINKG_1_5"} {"score": 0.16113297641277313, "chain_id": "3FQ5JJ512LNJQW55P5FBO1DJJIINKG_1_6"} {"score": 0.10597579926252365, "chain_id": "3FQ5JJ512LNJQW55P5FBO1DJJIINKG_1_7"} {"score": 0.1242380291223526, "chain_id": "3FQ5JJ512LNJQW55P5FBO1DJJIINKG_1_8"} {"score": 0.014278772287070751, "chain_id": "3FQ5JJ512LNJQW55P5FBO1DJJIINKG_1_9"} {"score": 0.02727634645998478, "chain_id": "3FQ5JJ512LNJQW55P5FBO1DJJIINKG_1_10"} {"score": 0.03728727623820305, "chain_id": "3YOH7BII096WY1EERW12YI7W5LOVK9_1_1"} {"score": 0.048388831317424774, "chain_id": "3YOH7BII096WY1EERW12YI7W5LOVK9_1_2"} {"score": 0.059808555990457535, "chain_id": "3YOH7BII096WY1EERW12YI7W5LOVK9_1_3"} {"score": 0.03824532404541969, "chain_id": "3YOH7BII096WY1EERW12YI7W5LOVK9_1_4"} {"score": 0.0204011183232069, "chain_id": "3YOH7BII096WY1EERW12YI7W5LOVK9_1_5"} {"score": 0.03039322793483734, "chain_id": "3YOH7BII096WY1EERW12YI7W5LOVK9_1_6"} {"score": 0.036085858941078186, "chain_id": "3YOH7BII096WY1EERW12YI7W5LOVK9_1_7"} {"score": 0.03221205249428749, "chain_id": "3YOH7BII096WY1EERW12YI7W5LOVK9_1_8"} {"score": 0.02531716413795948, "chain_id": "3YOH7BII096WY1EERW12YI7W5LOVK9_1_9"} {"score": 0.012263134121894836, "chain_id": "3YOH7BII096WY1EERW12YI7W5LOVK9_1_10"} {"score": 0.045744750648736954, "chain_id": "3SKRO2GZ71QGCPYGKIHDRU0GGVK1KL_1_8"} {"score": 0.9244514107704163, "chain_id": "3SKRO2GZ71QGCPYGKIHDRU0GGVK1KL_1_1"} {"score": 0.6606931090354919, "chain_id": "3SKRO2GZ71QGCPYGKIHDRU0GGVK1KL_1_2"} {"score": 0.6859264373779297, "chain_id": "3SKRO2GZ71QGCPYGKIHDRU0GGVK1KL_1_3"} {"score": 0.2735801637172699, "chain_id": "3SKRO2GZ71QGCPYGKIHDRU0GGVK1KL_1_4"} {"score": 0.04954485967755318, "chain_id": "3SKRO2GZ71QGCPYGKIHDRU0GGVK1KL_1_5"} {"score": 0.048599135130643845, "chain_id": "3SKRO2GZ71QGCPYGKIHDRU0GGVK1KL_1_6"} {"score": 0.06125812977552414, "chain_id": "3SKRO2GZ71QGCPYGKIHDRU0GGVK1KL_1_7"} {"score": 0.05909932404756546, "chain_id": "3SKRO2GZ71QGCPYGKIHDRU0GGVK1KL_1_9"} {"score": 0.046580445021390915, "chain_id": "3SKRO2GZ71QGCPYGKIHDRU0GGVK1KL_1_10"} {"score": 0.5912509560585022, "chain_id": "3XM0HYN6NKYG7HP89YH0UV59ZJEPEN_1_1"} {"score": 0.6210793256759644, "chain_id": "3XM0HYN6NKYG7HP89YH0UV59ZJEPEN_1_2"} {"score": 0.5707592368125916, "chain_id": "3XM0HYN6NKYG7HP89YH0UV59ZJEPEN_1_5"} {"score": 0.10291554778814316, "chain_id": "3XM0HYN6NKYG7HP89YH0UV59ZJEPEN_1_3"} {"score": 0.07379084080457687, "chain_id": "3XM0HYN6NKYG7HP89YH0UV59ZJEPEN_1_4"} {"score": 0.09928205609321594, "chain_id": "3XM0HYN6NKYG7HP89YH0UV59ZJEPEN_1_6"} {"score": 0.05089631676673889, "chain_id": "3XM0HYN6NKYG7HP89YH0UV59ZJEPEN_1_7"} {"score": 0.37358710169792175, "chain_id": "3XM0HYN6NKYG7HP89YH0UV59ZJEPEN_1_8"} {"score": 0.017863688990473747, "chain_id": "3XM0HYN6NKYG7HP89YH0UV59ZJEPEN_1_9"} {"score": 0.056328218430280685, "chain_id": "3XM0HYN6NKYG7HP89YH0UV59ZJEPEN_1_10"} {"score": 0.9717729091644287, "chain_id": "3SB4CE2TJVUIQDANFKPVSP1LIO8XAF_1_1"} {"score": 0.9819886684417725, "chain_id": "3SB4CE2TJVUIQDANFKPVSP1LIO8XAF_1_2"} {"score": 0.916419267654419, "chain_id": "3SB4CE2TJVUIQDANFKPVSP1LIO8XAF_1_7"} {"score": 0.8743537664413452, "chain_id": "3SB4CE2TJVUIQDANFKPVSP1LIO8XAF_1_3"} {"score": 0.9346250295639038, "chain_id": "3SB4CE2TJVUIQDANFKPVSP1LIO8XAF_1_4"} {"score": 0.8854311108589172, "chain_id": "3SB4CE2TJVUIQDANFKPVSP1LIO8XAF_1_5"} {"score": 0.7497885823249817, "chain_id": "3SB4CE2TJVUIQDANFKPVSP1LIO8XAF_1_6"} {"score": 0.06130722910165787, "chain_id": "3SB4CE2TJVUIQDANFKPVSP1LIO8XAF_1_8"} {"score": 0.0342496782541275, "chain_id": "3SB4CE2TJVUIQDANFKPVSP1LIO8XAF_1_9"} {"score": 0.04679781571030617, "chain_id": "3SB4CE2TJVUIQDANFKPVSP1LIO8XAF_1_10"} {"score": 0.9482936859130859, "chain_id": "3U4J9857OEATU89O3LLTT183WOYB7X_1_1"} {"score": 0.89585942029953, "chain_id": "3U4J9857OEATU89O3LLTT183WOYB7X_1_2"} {"score": 0.036150623112916946, "chain_id": "3U4J9857OEATU89O3LLTT183WOYB7X_1_3"} {"score": 0.020232105627655983, "chain_id": "3U4J9857OEATU89O3LLTT183WOYB7X_1_4"} {"score": 0.08667833358049393, "chain_id": "3U4J9857OEATU89O3LLTT183WOYB7X_1_5"} {"score": 0.03115977719426155, "chain_id": "3U4J9857OEATU89O3LLTT183WOYB7X_1_6"} {"score": 0.0582621693611145, "chain_id": "3U4J9857OEATU89O3LLTT183WOYB7X_1_7"} {"score": 0.24668438732624054, "chain_id": "3U4J9857OEATU89O3LLTT183WOYB7X_1_8"} {"score": 0.3072498142719269, "chain_id": "3U4J9857OEATU89O3LLTT183WOYB7X_1_9"} {"score": 0.05097072198987007, "chain_id": "3U4J9857OEATU89O3LLTT183WOYB7X_1_10"} {"score": 0.7977977991104126, "chain_id": "3M1CVSFP604YHG9BT6U3YH5SKVXQA6_1_1"} {"score": 0.3768554925918579, "chain_id": "3M1CVSFP604YHG9BT6U3YH5SKVXQA6_1_2"} {"score": 0.06257230788469315, "chain_id": "3M1CVSFP604YHG9BT6U3YH5SKVXQA6_1_3"} {"score": 0.5234935283660889, "chain_id": "3M1CVSFP604YHG9BT6U3YH5SKVXQA6_1_4"} {"score": 0.033009354025125504, "chain_id": "3M1CVSFP604YHG9BT6U3YH5SKVXQA6_1_5"} {"score": 0.3268662393093109, "chain_id": "3M1CVSFP604YHG9BT6U3YH5SKVXQA6_1_6"} {"score": 0.022826001048088074, "chain_id": "3M1CVSFP604YHG9BT6U3YH5SKVXQA6_1_7"} {"score": 0.2432868629693985, "chain_id": "3M1CVSFP604YHG9BT6U3YH5SKVXQA6_1_8"} {"score": 0.1956099271774292, "chain_id": "3M1CVSFP604YHG9BT6U3YH5SKVXQA6_1_9"} {"score": 0.6840819120407104, "chain_id": "3M1CVSFP604YHG9BT6U3YH5SKVXQA6_1_10"} {"score": 0.9460564851760864, "chain_id": "3NS0A6KXC4785ZN5225QLWSZNXCZGA_1_3"} {"score": 0.8024733066558838, "chain_id": "3NS0A6KXC4785ZN5225QLWSZNXCZGA_1_4"} {"score": 0.3233587145805359, "chain_id": "3NS0A6KXC4785ZN5225QLWSZNXCZGA_1_6"} {"score": 0.2748965322971344, "chain_id": "3NS0A6KXC4785ZN5225QLWSZNXCZGA_1_1"} {"score": 0.7318570017814636, "chain_id": "3NS0A6KXC4785ZN5225QLWSZNXCZGA_1_2"} {"score": 0.07358869165182114, "chain_id": "3NS0A6KXC4785ZN5225QLWSZNXCZGA_1_5"} {"score": 0.0732140764594078, "chain_id": "3NS0A6KXC4785ZN5225QLWSZNXCZGA_1_7"} {"score": 0.48958665132522583, "chain_id": "3NS0A6KXC4785ZN5225QLWSZNXCZGA_1_8"} {"score": 0.05375639721751213, "chain_id": "3NS0A6KXC4785ZN5225QLWSZNXCZGA_1_9"} {"score": 0.07142043113708496, "chain_id": "3NS0A6KXC4785ZN5225QLWSZNXCZGA_1_10"} {"score": 0.9922401905059814, "chain_id": "39PAAFCODMZV1K41L5FUZ9USOZSVTU_1_2"} {"score": 0.6885374784469604, "chain_id": "39PAAFCODMZV1K41L5FUZ9USOZSVTU_1_4"} {"score": 0.5763446688652039, "chain_id": "39PAAFCODMZV1K41L5FUZ9USOZSVTU_1_7"} {"score": 0.0675802156329155, "chain_id": "39PAAFCODMZV1K41L5FUZ9USOZSVTU_1_1"} {"score": 0.07204701751470566, "chain_id": "39PAAFCODMZV1K41L5FUZ9USOZSVTU_1_3"} {"score": 0.2584819197654724, "chain_id": "39PAAFCODMZV1K41L5FUZ9USOZSVTU_1_5"} {"score": 0.841670036315918, "chain_id": "39PAAFCODMZV1K41L5FUZ9USOZSVTU_1_6"} {"score": 0.2055550366640091, "chain_id": "39PAAFCODMZV1K41L5FUZ9USOZSVTU_1_8"} {"score": 0.685763418674469, "chain_id": "39PAAFCODMZV1K41L5FUZ9USOZSVTU_1_9"} {"score": 0.05219142511487007, "chain_id": "39PAAFCODMZV1K41L5FUZ9USOZSVTU_1_10"} {"score": 0.9361492991447449, "chain_id": "3Q5C1WP23M0DU6DDDVD7P5HYJ5J51Y_1_1"} {"score": 0.9171412587165833, "chain_id": "3Q5C1WP23M0DU6DDDVD7P5HYJ5J51Y_1_3"} {"score": 0.27948349714279175, "chain_id": "3Q5C1WP23M0DU6DDDVD7P5HYJ5J51Y_1_5"} {"score": 0.3492262363433838, "chain_id": "3Q5C1WP23M0DU6DDDVD7P5HYJ5J51Y_1_2"} {"score": 0.7104056477546692, "chain_id": "3Q5C1WP23M0DU6DDDVD7P5HYJ5J51Y_1_4"} {"score": 0.6536765694618225, "chain_id": "3Q5C1WP23M0DU6DDDVD7P5HYJ5J51Y_1_6"} {"score": 0.3090682923793793, "chain_id": "3Q5C1WP23M0DU6DDDVD7P5HYJ5J51Y_1_7"} {"score": 0.456182599067688, "chain_id": "3Q5C1WP23M0DU6DDDVD7P5HYJ5J51Y_1_8"} {"score": 0.1744493693113327, "chain_id": "3Q5C1WP23M0DU6DDDVD7P5HYJ5J51Y_1_9"} {"score": 0.2736692726612091, "chain_id": "3Q5C1WP23M0DU6DDDVD7P5HYJ5J51Y_1_10"} {"score": 0.1575784832239151, "chain_id": "3ERET4BTVM8Y1U1BOVW660IZECOK93_1_1"} {"score": 0.10015495121479034, "chain_id": "3ERET4BTVM8Y1U1BOVW660IZECOK93_1_2"} {"score": 0.8442806601524353, "chain_id": "3ERET4BTVM8Y1U1BOVW660IZECOK93_1_3"} {"score": 0.7616512179374695, "chain_id": "3ERET4BTVM8Y1U1BOVW660IZECOK93_1_4"} {"score": 0.21828573942184448, "chain_id": "3ERET4BTVM8Y1U1BOVW660IZECOK93_1_5"} {"score": 0.07444896548986435, "chain_id": "3ERET4BTVM8Y1U1BOVW660IZECOK93_1_6"} {"score": 0.373539537191391, "chain_id": "3ERET4BTVM8Y1U1BOVW660IZECOK93_1_7"} {"score": 0.7773420214653015, "chain_id": "3ERET4BTVM8Y1U1BOVW660IZECOK93_1_8"} {"score": 0.9212695360183716, "chain_id": "3ERET4BTVM8Y1U1BOVW660IZECOK93_1_9"} {"score": 0.029797552153468132, "chain_id": "3ERET4BTVM8Y1U1BOVW660IZECOK93_1_10"} {"score": 0.08703559637069702, "chain_id": "3K772S5NP8AOU0RKQL9VLM3IENYHEV_1_6"} {"score": 0.02067827247083187, "chain_id": "3K772S5NP8AOU0RKQL9VLM3IENYHEV_1_1"} {"score": 0.08127384632825851, "chain_id": "3K772S5NP8AOU0RKQL9VLM3IENYHEV_1_2"} {"score": 0.08527060598134995, "chain_id": "3K772S5NP8AOU0RKQL9VLM3IENYHEV_1_3"} {"score": 0.023505039513111115, "chain_id": "3K772S5NP8AOU0RKQL9VLM3IENYHEV_1_4"} {"score": 0.017912637442350388, "chain_id": "3K772S5NP8AOU0RKQL9VLM3IENYHEV_1_5"} {"score": 0.1066814586520195, "chain_id": "3K772S5NP8AOU0RKQL9VLM3IENYHEV_1_7"} {"score": 0.014603731222450733, "chain_id": "3K772S5NP8AOU0RKQL9VLM3IENYHEV_1_8"} {"score": 0.07637939602136612, "chain_id": "3K772S5NP8AOU0RKQL9VLM3IENYHEV_1_9"} {"score": 0.03991691395640373, "chain_id": "3K772S5NP8AOU0RKQL9VLM3IENYHEV_1_10"} {"score": 0.3363167345523834, "chain_id": "39U1BHVTDLQBPB2I1V9OGE29Y153TK_1_6"} {"score": 0.06609123200178146, "chain_id": "39U1BHVTDLQBPB2I1V9OGE29Y153TK_1_1"} {"score": 0.646805465221405, "chain_id": "39U1BHVTDLQBPB2I1V9OGE29Y153TK_1_2"} {"score": 0.23487292230129242, "chain_id": "39U1BHVTDLQBPB2I1V9OGE29Y153TK_1_3"} {"score": 0.16404545307159424, "chain_id": "39U1BHVTDLQBPB2I1V9OGE29Y153TK_1_4"} {"score": 0.08145501464605331, "chain_id": "39U1BHVTDLQBPB2I1V9OGE29Y153TK_1_5"} {"score": 0.07381689548492432, "chain_id": "39U1BHVTDLQBPB2I1V9OGE29Y153TK_1_7"} {"score": 0.06440557539463043, "chain_id": "39U1BHVTDLQBPB2I1V9OGE29Y153TK_1_8"} {"score": 0.20917852222919464, "chain_id": "39U1BHVTDLQBPB2I1V9OGE29Y153TK_1_9"} {"score": 0.055658675730228424, "chain_id": "39U1BHVTDLQBPB2I1V9OGE29Y153TK_1_10"} {"score": 0.5853492021560669, "chain_id": "33OOO72IVHKZ2BY1UOKP9H635OUTC5_1_1"} {"score": 0.541861355304718, "chain_id": "33OOO72IVHKZ2BY1UOKP9H635OUTC5_1_2"} {"score": 0.5370045900344849, "chain_id": "33OOO72IVHKZ2BY1UOKP9H635OUTC5_1_3"} {"score": 0.172322079539299, "chain_id": "33OOO72IVHKZ2BY1UOKP9H635OUTC5_1_4"} {"score": 0.07007192075252533, "chain_id": "33OOO72IVHKZ2BY1UOKP9H635OUTC5_1_5"} {"score": 0.2385946363210678, "chain_id": "33OOO72IVHKZ2BY1UOKP9H635OUTC5_1_6"} {"score": 0.06192729249596596, "chain_id": "33OOO72IVHKZ2BY1UOKP9H635OUTC5_1_7"} {"score": 0.20865321159362793, "chain_id": "33OOO72IVHKZ2BY1UOKP9H635OUTC5_1_8"} {"score": 0.021112041547894478, "chain_id": "33OOO72IVHKZ2BY1UOKP9H635OUTC5_1_9"} {"score": 0.016174977645277977, "chain_id": "33OOO72IVHKZ2BY1UOKP9H635OUTC5_1_10"} {"score": 0.9911337494850159, "chain_id": "3JMSRU9HQITTC1M4VAQZ0NURNMGVEB_1_1"} {"score": 0.5783217549324036, "chain_id": "3JMSRU9HQITTC1M4VAQZ0NURNMGVEB_1_8"} {"score": 0.5941488146781921, "chain_id": "3JMSRU9HQITTC1M4VAQZ0NURNMGVEB_1_2"} {"score": 0.9090446829795837, "chain_id": "3JMSRU9HQITTC1M4VAQZ0NURNMGVEB_1_3"} {"score": 0.6450496912002563, "chain_id": "3JMSRU9HQITTC1M4VAQZ0NURNMGVEB_1_4"} {"score": 0.2559070587158203, "chain_id": "3JMSRU9HQITTC1M4VAQZ0NURNMGVEB_1_5"} {"score": 0.09087260812520981, "chain_id": "3JMSRU9HQITTC1M4VAQZ0NURNMGVEB_1_6"} {"score": 0.3520236313343048, "chain_id": "3JMSRU9HQITTC1M4VAQZ0NURNMGVEB_1_7"} {"score": 0.020719120278954506, "chain_id": "3JMSRU9HQITTC1M4VAQZ0NURNMGVEB_1_9"} {"score": 0.09469466656446457, "chain_id": "3JMSRU9HQITTC1M4VAQZ0NURNMGVEB_1_10"} {"score": 0.14441326260566711, "chain_id": "3G5W44VEU7HDG4OJ212GYH4MKBVKGG_1_1"} {"score": 0.8026977181434631, "chain_id": "3G5W44VEU7HDG4OJ212GYH4MKBVKGG_1_2"} {"score": 0.47091931104660034, "chain_id": "3G5W44VEU7HDG4OJ212GYH4MKBVKGG_1_3"} {"score": 0.1441594511270523, "chain_id": "3G5W44VEU7HDG4OJ212GYH4MKBVKGG_1_4"} {"score": 0.802116870880127, "chain_id": "3G5W44VEU7HDG4OJ212GYH4MKBVKGG_1_5"} {"score": 0.6451898217201233, "chain_id": "3G5W44VEU7HDG4OJ212GYH4MKBVKGG_1_6"} {"score": 0.6994529962539673, "chain_id": "3G5W44VEU7HDG4OJ212GYH4MKBVKGG_1_7"} {"score": 0.12506970763206482, "chain_id": "3G5W44VEU7HDG4OJ212GYH4MKBVKGG_1_8"} {"score": 0.024535352364182472, "chain_id": "3G5W44VEU7HDG4OJ212GYH4MKBVKGG_1_9"} {"score": 0.02314160391688347, "chain_id": "3G5W44VEU7HDG4OJ212GYH4MKBVKGG_1_10"} {"score": 0.055780716240406036, "chain_id": "3FQ5JJ512LNJQW55P5FBO1DJLPNNK1_1_1"} {"score": 0.6535148024559021, "chain_id": "3FQ5JJ512LNJQW55P5FBO1DJLPNNK1_1_2"} {"score": 0.17904354631900787, "chain_id": "3FQ5JJ512LNJQW55P5FBO1DJLPNNK1_1_3"} {"score": 0.02608206495642662, "chain_id": "3FQ5JJ512LNJQW55P5FBO1DJLPNNK1_1_4"} {"score": 0.12402775883674622, "chain_id": "3FQ5JJ512LNJQW55P5FBO1DJLPNNK1_1_5"} {"score": 0.1287272572517395, "chain_id": "3FQ5JJ512LNJQW55P5FBO1DJLPNNK1_1_6"} {"score": 0.09997013211250305, "chain_id": "3FQ5JJ512LNJQW55P5FBO1DJLPNNK1_1_7"} {"score": 0.43391239643096924, "chain_id": "3FQ5JJ512LNJQW55P5FBO1DJLPNNK1_1_8"} {"score": 0.044956814497709274, "chain_id": "3FQ5JJ512LNJQW55P5FBO1DJLPNNK1_1_9"} {"score": 0.0453813262283802, "chain_id": "3FQ5JJ512LNJQW55P5FBO1DJLPNNK1_1_10"} {"score": 0.7421324849128723, "chain_id": "3Y9N9SS8LYA48M6LF599BAKNVHGD3E_1_1"} {"score": 0.4418417811393738, "chain_id": "3Y9N9SS8LYA48M6LF599BAKNVHGD3E_1_2"} {"score": 0.8315750360488892, "chain_id": "3Y9N9SS8LYA48M6LF599BAKNVHGD3E_1_3"} {"score": 0.043185099959373474, "chain_id": "3Y9N9SS8LYA48M6LF599BAKNVHGD3E_1_4"} {"score": 0.03799821063876152, "chain_id": "3Y9N9SS8LYA48M6LF599BAKNVHGD3E_1_5"} {"score": 0.9104287624359131, "chain_id": "3Y9N9SS8LYA48M6LF599BAKNVHGD3E_1_6"} {"score": 0.38110312819480896, "chain_id": "3Y9N9SS8LYA48M6LF599BAKNVHGD3E_1_7"} {"score": 0.08163082599639893, "chain_id": "3Y9N9SS8LYA48M6LF599BAKNVHGD3E_1_8"} {"score": 0.4066452085971832, "chain_id": "3Y9N9SS8LYA48M6LF599BAKNVHGD3E_1_9"} {"score": 0.06569928675889969, "chain_id": "3Y9N9SS8LYA48M6LF599BAKNVHGD3E_1_10"} {"score": 0.9689311981201172, "chain_id": "3YZ8UPK3VTLE2ODQUTAZEDS5PY5CUC_1_1"} {"score": 0.9723588824272156, "chain_id": "3YZ8UPK3VTLE2ODQUTAZEDS5PY5CUC_1_2"} {"score": 0.9840599298477173, "chain_id": "3YZ8UPK3VTLE2ODQUTAZEDS5PY5CUC_1_3"} {"score": 0.9811029434204102, "chain_id": "3YZ8UPK3VTLE2ODQUTAZEDS5PY5CUC_1_4"} {"score": 0.7921320796012878, "chain_id": "3YZ8UPK3VTLE2ODQUTAZEDS5PY5CUC_1_5"} {"score": 0.7302311658859253, "chain_id": "3YZ8UPK3VTLE2ODQUTAZEDS5PY5CUC_1_6"} {"score": 0.6215923428535461, "chain_id": "3YZ8UPK3VTLE2ODQUTAZEDS5PY5CUC_1_7"} {"score": 0.6785271167755127, "chain_id": "3YZ8UPK3VTLE2ODQUTAZEDS5PY5CUC_1_8"} {"score": 0.34298649430274963, "chain_id": "3YZ8UPK3VTLE2ODQUTAZEDS5PY5CUC_1_9"} {"score": 0.3159642219543457, "chain_id": "3YZ8UPK3VTLE2ODQUTAZEDS5PY5CUC_1_10"} {"score": 0.9725301265716553, "chain_id": "30IQTZXKAK5MP0C5NIS23JP8BW0X0I_1_1"} {"score": 0.9719923734664917, "chain_id": "30IQTZXKAK5MP0C5NIS23JP8BW0X0I_1_2"} {"score": 0.9852584004402161, "chain_id": "30IQTZXKAK5MP0C5NIS23JP8BW0X0I_1_3"} {"score": 0.9820054769515991, "chain_id": "30IQTZXKAK5MP0C5NIS23JP8BW0X0I_1_4"} {"score": 0.8396161198616028, "chain_id": "30IQTZXKAK5MP0C5NIS23JP8BW0X0I_1_7"} {"score": 0.795762300491333, "chain_id": "30IQTZXKAK5MP0C5NIS23JP8BW0X0I_1_8"} {"score": 0.8651369214057922, "chain_id": "30IQTZXKAK5MP0C5NIS23JP8BW0X0I_1_5"} {"score": 0.737517237663269, "chain_id": "30IQTZXKAK5MP0C5NIS23JP8BW0X0I_1_6"} {"score": 0.1252746731042862, "chain_id": "30IQTZXKAK5MP0C5NIS23JP8BW0X0I_1_9"} {"score": 0.16538701951503754, "chain_id": "30IQTZXKAK5MP0C5NIS23JP8BW0X0I_1_10"} {"score": 0.9798846244812012, "chain_id": "33FOTY3KEMKYTRMSS50F3BN8FDKC1E_1_1"} {"score": 0.979206919670105, "chain_id": "33FOTY3KEMKYTRMSS50F3BN8FDKC1E_1_2"} {"score": 0.9870153665542603, "chain_id": "33FOTY3KEMKYTRMSS50F3BN8FDKC1E_1_3"} {"score": 0.9847086668014526, "chain_id": "33FOTY3KEMKYTRMSS50F3BN8FDKC1E_1_4"} {"score": 0.8379072546958923, "chain_id": "33FOTY3KEMKYTRMSS50F3BN8FDKC1E_1_5"} {"score": 0.6948103904724121, "chain_id": "33FOTY3KEMKYTRMSS50F3BN8FDKC1E_1_6"} {"score": 0.8184589743614197, "chain_id": "33FOTY3KEMKYTRMSS50F3BN8FDKC1E_1_8"} {"score": 0.8596130609512329, "chain_id": "33FOTY3KEMKYTRMSS50F3BN8FDKC1E_1_7"} {"score": 0.16324222087860107, "chain_id": "33FOTY3KEMKYTRMSS50F3BN8FDKC1E_1_9"} {"score": 0.22055529057979584, "chain_id": "33FOTY3KEMKYTRMSS50F3BN8FDKC1E_1_10"} {"score": 0.9826927185058594, "chain_id": "3X87C8JFV6A2HCV5A6GUJHZY9Y2QSX_1_1"} {"score": 0.9838824272155762, "chain_id": "3X87C8JFV6A2HCV5A6GUJHZY9Y2QSX_1_2"} {"score": 0.9861837029457092, "chain_id": "3X87C8JFV6A2HCV5A6GUJHZY9Y2QSX_1_3"} {"score": 0.9843722581863403, "chain_id": "3X87C8JFV6A2HCV5A6GUJHZY9Y2QSX_1_4"} {"score": 0.899387776851654, "chain_id": "3X87C8JFV6A2HCV5A6GUJHZY9Y2QSX_1_5"} {"score": 0.8447761535644531, "chain_id": "3X87C8JFV6A2HCV5A6GUJHZY9Y2QSX_1_6"} {"score": 0.7617170214653015, "chain_id": "3X87C8JFV6A2HCV5A6GUJHZY9Y2QSX_1_7"} {"score": 0.7964922189712524, "chain_id": "3X87C8JFV6A2HCV5A6GUJHZY9Y2QSX_1_8"} {"score": 0.44486185908317566, "chain_id": "3X87C8JFV6A2HCV5A6GUJHZY9Y2QSX_1_9"} {"score": 0.3933596611022949, "chain_id": "3X87C8JFV6A2HCV5A6GUJHZY9Y2QSX_1_10"} {"score": 0.39817777276039124, "chain_id": "3R2UR8A0IAF7SH4OP3UDTKLQI8WOX6_1_3"} {"score": 0.417366623878479, "chain_id": "3R2UR8A0IAF7SH4OP3UDTKLQI8WOX6_1_1"} {"score": 0.7188136577606201, "chain_id": "3R2UR8A0IAF7SH4OP3UDTKLQI8WOX6_1_2"} {"score": 0.936326265335083, "chain_id": "3R2UR8A0IAF7SH4OP3UDTKLQI8WOX6_1_4"} {"score": 0.6922022104263306, "chain_id": "3R2UR8A0IAF7SH4OP3UDTKLQI8WOX6_1_5"} {"score": 0.04544011130928993, "chain_id": "3R2UR8A0IAF7SH4OP3UDTKLQI8WOX6_1_6"} {"score": 0.5888357162475586, "chain_id": "3R2UR8A0IAF7SH4OP3UDTKLQI8WOX6_1_7"} {"score": 0.1472369134426117, "chain_id": "3R2UR8A0IAF7SH4OP3UDTKLQI8WOX6_1_8"} {"score": 0.030938316136598587, "chain_id": "3R2UR8A0IAF7SH4OP3UDTKLQI8WOX6_1_9"} {"score": 0.020463792607188225, "chain_id": "3R2UR8A0IAF7SH4OP3UDTKLQI8WOX6_1_10"} {"score": 0.1267852932214737, "chain_id": "3ERMJ6L4DYRPDZDLUAB27HJXLHXM7T_1_1"} {"score": 0.20549975335597992, "chain_id": "3ERMJ6L4DYRPDZDLUAB27HJXLHXM7T_1_2"} {"score": 0.22313039004802704, "chain_id": "3ERMJ6L4DYRPDZDLUAB27HJXLHXM7T_1_3"} {"score": 0.1599355787038803, "chain_id": "3ERMJ6L4DYRPDZDLUAB27HJXLHXM7T_1_4"} {"score": 0.10924368351697922, "chain_id": "3ERMJ6L4DYRPDZDLUAB27HJXLHXM7T_1_5"} {"score": 0.16383856534957886, "chain_id": "3ERMJ6L4DYRPDZDLUAB27HJXLHXM7T_1_6"} {"score": 0.024262264370918274, "chain_id": "3ERMJ6L4DYRPDZDLUAB27HJXLHXM7T_1_7"} {"score": 0.04911966994404793, "chain_id": "3ERMJ6L4DYRPDZDLUAB27HJXLHXM7T_1_8"} {"score": 0.2265075147151947, "chain_id": "3ERMJ6L4DYRPDZDLUAB27HJXLHXM7T_1_9"} {"score": 0.038792550563812256, "chain_id": "3ERMJ6L4DYRPDZDLUAB27HJXLHXM7T_1_10"} {"score": 0.9830477833747864, "chain_id": "3R3YRB5GRF2Q99GSAFE88I2HZC1UAH_1_1"} {"score": 0.9821786284446716, "chain_id": "3R3YRB5GRF2Q99GSAFE88I2HZC1UAH_1_2"} {"score": 0.25303199887275696, "chain_id": "3R3YRB5GRF2Q99GSAFE88I2HZC1UAH_1_3"} {"score": 0.5072196125984192, "chain_id": "3R3YRB5GRF2Q99GSAFE88I2HZC1UAH_1_4"} {"score": 0.12299969792366028, "chain_id": "3R3YRB5GRF2Q99GSAFE88I2HZC1UAH_1_6"} {"score": 0.36678844690322876, "chain_id": "3R3YRB5GRF2Q99GSAFE88I2HZC1UAH_1_7"} {"score": 0.5280774235725403, "chain_id": "3R3YRB5GRF2Q99GSAFE88I2HZC1UAH_1_8"} {"score": 0.7110729813575745, "chain_id": "3R3YRB5GRF2Q99GSAFE88I2HZC1UAH_1_5"} {"score": 0.2841801047325134, "chain_id": "3R3YRB5GRF2Q99GSAFE88I2HZC1UAH_1_9"} {"score": 0.05696796998381615, "chain_id": "3R3YRB5GRF2Q99GSAFE88I2HZC1UAH_1_10"} {"score": 0.971874475479126, "chain_id": "3A7Y0R2P2ONTR6DR9Q28LO44JN8XJ0_1_1"} {"score": 0.9849492907524109, "chain_id": "3A7Y0R2P2ONTR6DR9Q28LO44JN8XJ0_1_2"} {"score": 0.7687680721282959, "chain_id": "3A7Y0R2P2ONTR6DR9Q28LO44JN8XJ0_1_3"} {"score": 0.9738627076148987, "chain_id": "3A7Y0R2P2ONTR6DR9Q28LO44JN8XJ0_1_4"} {"score": 0.7224722504615784, "chain_id": "3A7Y0R2P2ONTR6DR9Q28LO44JN8XJ0_1_6"} {"score": 0.8157476782798767, "chain_id": "3A7Y0R2P2ONTR6DR9Q28LO44JN8XJ0_1_7"} {"score": 0.6348943710327148, "chain_id": "3A7Y0R2P2ONTR6DR9Q28LO44JN8XJ0_1_8"} {"score": 0.9816781878471375, "chain_id": "3A7Y0R2P2ONTR6DR9Q28LO44JN8XJ0_1_5"} {"score": 0.04418589919805527, "chain_id": "3A7Y0R2P2ONTR6DR9Q28LO44JN8XJ0_1_9"} {"score": 0.07054402679204941, "chain_id": "3A7Y0R2P2ONTR6DR9Q28LO44JN8XJ0_1_10"} {"score": 0.9826927185058594, "chain_id": "37Q970SNZE7E08BOPRQFIGRQA2WS1V_1_1"} {"score": 0.9838824272155762, "chain_id": "37Q970SNZE7E08BOPRQFIGRQA2WS1V_1_2"} {"score": 0.9843722581863403, "chain_id": "37Q970SNZE7E08BOPRQFIGRQA2WS1V_1_4"} {"score": 0.899387776851654, "chain_id": "37Q970SNZE7E08BOPRQFIGRQA2WS1V_1_5"} {"score": 0.8447761535644531, "chain_id": "37Q970SNZE7E08BOPRQFIGRQA2WS1V_1_6"} {"score": 0.7964922189712524, "chain_id": "37Q970SNZE7E08BOPRQFIGRQA2WS1V_1_8"} {"score": 0.9861837029457092, "chain_id": "37Q970SNZE7E08BOPRQFIGRQA2WS1V_1_3"} {"score": 0.7617170214653015, "chain_id": "37Q970SNZE7E08BOPRQFIGRQA2WS1V_1_7"} {"score": 0.44486185908317566, "chain_id": "37Q970SNZE7E08BOPRQFIGRQA2WS1V_1_9"} {"score": 0.3933596611022949, "chain_id": "37Q970SNZE7E08BOPRQFIGRQA2WS1V_1_10"} {"score": 0.6510259509086609, "chain_id": "3DL65MZB8DEXDSG44TVUAV62DBACE6_1_1"} {"score": 0.6821446418762207, "chain_id": "3DL65MZB8DEXDSG44TVUAV62DBACE6_1_2"} {"score": 0.9299067854881287, "chain_id": "3DL65MZB8DEXDSG44TVUAV62DBACE6_1_3"} {"score": 0.7621113061904907, "chain_id": "3DL65MZB8DEXDSG44TVUAV62DBACE6_1_4"} {"score": 0.7393246293067932, "chain_id": "3DL65MZB8DEXDSG44TVUAV62DBACE6_1_6"} {"score": 0.8923138976097107, "chain_id": "3DL65MZB8DEXDSG44TVUAV62DBACE6_1_5"} {"score": 0.13905468583106995, "chain_id": "3DL65MZB8DEXDSG44TVUAV62DBACE6_1_7"} {"score": 0.27877992391586304, "chain_id": "3DL65MZB8DEXDSG44TVUAV62DBACE6_1_8"} {"score": 0.0536593459546566, "chain_id": "3DL65MZB8DEXDSG44TVUAV62DBACE6_1_9"} {"score": 0.044416870921850204, "chain_id": "3DL65MZB8DEXDSG44TVUAV62DBACE6_1_10"} {"score": 0.9886793494224548, "chain_id": "3PEIJLRY6TSFXQDQGPLNAEYCM1KWXY_1_1"} {"score": 0.9866798520088196, "chain_id": "3PEIJLRY6TSFXQDQGPLNAEYCM1KWXY_1_2"} {"score": 0.9375211000442505, "chain_id": "3PEIJLRY6TSFXQDQGPLNAEYCM1KWXY_1_3"} {"score": 0.2952674627304077, "chain_id": "3PEIJLRY6TSFXQDQGPLNAEYCM1KWXY_1_4"} {"score": 0.056572359055280685, "chain_id": "3PEIJLRY6TSFXQDQGPLNAEYCM1KWXY_1_5"} {"score": 0.6776962876319885, "chain_id": "3PEIJLRY6TSFXQDQGPLNAEYCM1KWXY_1_6"} {"score": 0.025635093450546265, "chain_id": "3PEIJLRY6TSFXQDQGPLNAEYCM1KWXY_1_7"} {"score": 0.08565982431173325, "chain_id": "3PEIJLRY6TSFXQDQGPLNAEYCM1KWXY_1_8"} {"score": 0.02493242733180523, "chain_id": "3PEIJLRY6TSFXQDQGPLNAEYCM1KWXY_1_9"} {"score": 0.1492917686700821, "chain_id": "3PEIJLRY6TSFXQDQGPLNAEYCM1KWXY_1_10"} {"score": 0.12331399321556091, "chain_id": "3L4D84MILZRW5GDC4MKMI2GAMP0JHF_1_2"} {"score": 0.23562520742416382, "chain_id": "3L4D84MILZRW5GDC4MKMI2GAMP0JHF_1_3"} {"score": 0.1437770426273346, "chain_id": "3L4D84MILZRW5GDC4MKMI2GAMP0JHF_1_1"} {"score": 0.11710652709007263, "chain_id": "3L4D84MILZRW5GDC4MKMI2GAMP0JHF_1_4"} {"score": 0.08975216746330261, "chain_id": "3L4D84MILZRW5GDC4MKMI2GAMP0JHF_1_5"} {"score": 0.7492919564247131, "chain_id": "3L4D84MILZRW5GDC4MKMI2GAMP0JHF_1_6"} {"score": 0.05050031468272209, "chain_id": "3L4D84MILZRW5GDC4MKMI2GAMP0JHF_1_7"} {"score": 0.511273980140686, "chain_id": "3L4D84MILZRW5GDC4MKMI2GAMP0JHF_1_8"} {"score": 0.13116973638534546, "chain_id": "3L4D84MILZRW5GDC4MKMI2GAMP0JHF_1_9"} {"score": 0.29148194193840027, "chain_id": "3L4D84MILZRW5GDC4MKMI2GAMP0JHF_1_10"} {"score": 0.9447976350784302, "chain_id": "3A9AA95ATWLGBYWFYXOXQ1ZWMFV5PW_1_1"} {"score": 0.8636153936386108, "chain_id": "3A9AA95ATWLGBYWFYXOXQ1ZWMFV5PW_1_2"} {"score": 0.5226145386695862, "chain_id": "3A9AA95ATWLGBYWFYXOXQ1ZWMFV5PW_1_3"} {"score": 0.5634247660636902, "chain_id": "3A9AA95ATWLGBYWFYXOXQ1ZWMFV5PW_1_4"} {"score": 0.018687859177589417, "chain_id": "3A9AA95ATWLGBYWFYXOXQ1ZWMFV5PW_1_5"} {"score": 0.06387092918157578, "chain_id": "3A9AA95ATWLGBYWFYXOXQ1ZWMFV5PW_1_6"} {"score": 0.40236037969589233, "chain_id": "3A9AA95ATWLGBYWFYXOXQ1ZWMFV5PW_1_7"} {"score": 0.7815876007080078, "chain_id": "3A9AA95ATWLGBYWFYXOXQ1ZWMFV5PW_1_8"} {"score": 0.1358879953622818, "chain_id": "3A9AA95ATWLGBYWFYXOXQ1ZWMFV5PW_1_9"} {"score": 0.034644715487957, "chain_id": "3A9AA95ATWLGBYWFYXOXQ1ZWMFV5PW_1_10"} {"score": 0.17932482063770294, "chain_id": "3FE7TXL1LIM9CDE7GR1OSZMU7902Q9_1_1"} {"score": 0.11383267492055893, "chain_id": "3FE7TXL1LIM9CDE7GR1OSZMU7902Q9_1_2"} {"score": 0.08245814591646194, "chain_id": "3FE7TXL1LIM9CDE7GR1OSZMU7902Q9_1_3"} {"score": 0.0232784952968359, "chain_id": "3FE7TXL1LIM9CDE7GR1OSZMU7902Q9_1_4"} {"score": 0.04408896341919899, "chain_id": "3FE7TXL1LIM9CDE7GR1OSZMU7902Q9_1_5"} {"score": 0.1008591577410698, "chain_id": "3FE7TXL1LIM9CDE7GR1OSZMU7902Q9_1_6"} {"score": 0.053587980568408966, "chain_id": "3FE7TXL1LIM9CDE7GR1OSZMU7902Q9_1_7"} {"score": 0.057366810739040375, "chain_id": "3FE7TXL1LIM9CDE7GR1OSZMU7902Q9_1_8"} {"score": 0.10097120702266693, "chain_id": "3FE7TXL1LIM9CDE7GR1OSZMU7902Q9_1_9"} {"score": 0.4119614064693451, "chain_id": "3FE7TXL1LIM9CDE7GR1OSZMU7902Q9_1_10"} {"score": 0.019180549308657646, "chain_id": "3137ONMDKG4AU4W96FRD0MRHZX2GEW_1_1"} {"score": 0.03284595534205437, "chain_id": "3137ONMDKG4AU4W96FRD0MRHZX2GEW_1_2"} {"score": 0.024737168103456497, "chain_id": "3137ONMDKG4AU4W96FRD0MRHZX2GEW_1_3"} {"score": 0.01646568812429905, "chain_id": "3137ONMDKG4AU4W96FRD0MRHZX2GEW_1_4"} {"score": 0.06295713037252426, "chain_id": "3137ONMDKG4AU4W96FRD0MRHZX2GEW_1_5"} {"score": 0.026662863790988922, "chain_id": "3137ONMDKG4AU4W96FRD0MRHZX2GEW_1_6"} {"score": 0.060882799327373505, "chain_id": "3137ONMDKG4AU4W96FRD0MRHZX2GEW_1_7"} {"score": 0.061169661581516266, "chain_id": "3137ONMDKG4AU4W96FRD0MRHZX2GEW_1_8"} {"score": 0.029021935537457466, "chain_id": "3137ONMDKG4AU4W96FRD0MRHZX2GEW_1_9"} {"score": 0.027063628658652306, "chain_id": "3137ONMDKG4AU4W96FRD0MRHZX2GEW_1_10"} {"score": 0.9590144753456116, "chain_id": "3FTOP5WARFNLUG7G6ED1CAHTXUHJ01_1_2"} {"score": 0.029497502371668816, "chain_id": "3FTOP5WARFNLUG7G6ED1CAHTXUHJ01_1_1"} {"score": 0.034749336540699005, "chain_id": "3FTOP5WARFNLUG7G6ED1CAHTXUHJ01_1_3"} {"score": 0.02432866394519806, "chain_id": "3FTOP5WARFNLUG7G6ED1CAHTXUHJ01_1_4"} {"score": 0.014827066101133823, "chain_id": "3FTOP5WARFNLUG7G6ED1CAHTXUHJ01_1_5"} {"score": 0.8130871057510376, "chain_id": "3FTOP5WARFNLUG7G6ED1CAHTXUHJ01_1_6"} {"score": 0.5269595980644226, "chain_id": "3FTOP5WARFNLUG7G6ED1CAHTXUHJ01_1_7"} {"score": 0.8810989260673523, "chain_id": "3FTOP5WARFNLUG7G6ED1CAHTXUHJ01_1_8"} {"score": 0.5461553335189819, "chain_id": "3FTOP5WARFNLUG7G6ED1CAHTXUHJ01_1_9"} {"score": 0.020846273750066757, "chain_id": "3FTOP5WARFNLUG7G6ED1CAHTXUHJ01_1_10"} {"score": 0.37438127398490906, "chain_id": "36V4Q8R5ZKZZJHI0Q9K8780SFUBMQC_1_5"} {"score": 0.1110953837633133, "chain_id": "36V4Q8R5ZKZZJHI0Q9K8780SFUBMQC_1_1"} {"score": 0.0834614709019661, "chain_id": "36V4Q8R5ZKZZJHI0Q9K8780SFUBMQC_1_2"} {"score": 0.05585112050175667, "chain_id": "36V4Q8R5ZKZZJHI0Q9K8780SFUBMQC_1_3"} {"score": 0.08196864277124405, "chain_id": "36V4Q8R5ZKZZJHI0Q9K8780SFUBMQC_1_4"} {"score": 0.08831039816141129, "chain_id": "36V4Q8R5ZKZZJHI0Q9K8780SFUBMQC_1_6"} {"score": 0.0241408571600914, "chain_id": "36V4Q8R5ZKZZJHI0Q9K8780SFUBMQC_1_7"} {"score": 0.08854486793279648, "chain_id": "36V4Q8R5ZKZZJHI0Q9K8780SFUBMQC_1_8"} {"score": 0.045695170760154724, "chain_id": "36V4Q8R5ZKZZJHI0Q9K8780SFUBMQC_1_9"} {"score": 0.02276245318353176, "chain_id": "36V4Q8R5ZKZZJHI0Q9K8780SFUBMQC_1_10"} {"score": 0.021647930145263672, "chain_id": "3BDCF01OGXTOM1R1H70NKHO5E2QYLL_1_1"} {"score": 0.01785070076584816, "chain_id": "3BDCF01OGXTOM1R1H70NKHO5E2QYLL_1_2"} {"score": 0.01893858052790165, "chain_id": "3BDCF01OGXTOM1R1H70NKHO5E2QYLL_1_3"} {"score": 0.039649318903684616, "chain_id": "3BDCF01OGXTOM1R1H70NKHO5E2QYLL_1_4"} {"score": 0.03963339328765869, "chain_id": "3BDCF01OGXTOM1R1H70NKHO5E2QYLL_1_5"} {"score": 0.027347790077328682, "chain_id": "3BDCF01OGXTOM1R1H70NKHO5E2QYLL_1_6"} {"score": 0.12273363023996353, "chain_id": "3BDCF01OGXTOM1R1H70NKHO5E2QYLL_1_7"} {"score": 0.04381489008665085, "chain_id": "3BDCF01OGXTOM1R1H70NKHO5E2QYLL_1_8"} {"score": 0.03617485985159874, "chain_id": "3BDCF01OGXTOM1R1H70NKHO5E2QYLL_1_9"} {"score": 0.0194852277636528, "chain_id": "3BDCF01OGXTOM1R1H70NKHO5E2QYLL_1_10"} {"score": 0.36579430103302, "chain_id": "3DZQRBDBSLEAABP3CV4Y696N82OS3X_1_1"} {"score": 0.5549899935722351, "chain_id": "3DZQRBDBSLEAABP3CV4Y696N82OS3X_1_5"} {"score": 0.25548288226127625, "chain_id": "3DZQRBDBSLEAABP3CV4Y696N82OS3X_1_9"} {"score": 0.5443301796913147, "chain_id": "3DZQRBDBSLEAABP3CV4Y696N82OS3X_1_2"} {"score": 0.030544662848114967, "chain_id": "3DZQRBDBSLEAABP3CV4Y696N82OS3X_1_3"} {"score": 0.12914280593395233, "chain_id": "3DZQRBDBSLEAABP3CV4Y696N82OS3X_1_4"} {"score": 0.21363021433353424, "chain_id": "3DZQRBDBSLEAABP3CV4Y696N82OS3X_1_6"} {"score": 0.02769368700683117, "chain_id": "3DZQRBDBSLEAABP3CV4Y696N82OS3X_1_7"} {"score": 0.030831152573227882, "chain_id": "3DZQRBDBSLEAABP3CV4Y696N82OS3X_1_8"} {"score": 0.13292665779590607, "chain_id": "3DZQRBDBSLEAABP3CV4Y696N82OS3X_1_10"} {"score": 0.7556447386741638, "chain_id": "3Z9WI9EOZZNRG0JUM7KYJHGNAE6KHU_1_1"} {"score": 0.06863746792078018, "chain_id": "3Z9WI9EOZZNRG0JUM7KYJHGNAE6KHU_1_4"} {"score": 0.07241462171077728, "chain_id": "3Z9WI9EOZZNRG0JUM7KYJHGNAE6KHU_1_9"} {"score": 0.3259970545768738, "chain_id": "3Z9WI9EOZZNRG0JUM7KYJHGNAE6KHU_1_2"} {"score": 0.02505413442850113, "chain_id": "3Z9WI9EOZZNRG0JUM7KYJHGNAE6KHU_1_3"} {"score": 0.03771376982331276, "chain_id": "3Z9WI9EOZZNRG0JUM7KYJHGNAE6KHU_1_5"} {"score": 0.14707960188388824, "chain_id": "3Z9WI9EOZZNRG0JUM7KYJHGNAE6KHU_1_6"} {"score": 0.054836273193359375, "chain_id": "3Z9WI9EOZZNRG0JUM7KYJHGNAE6KHU_1_7"} {"score": 0.021350186318159103, "chain_id": "3Z9WI9EOZZNRG0JUM7KYJHGNAE6KHU_1_8"} {"score": 0.045466143637895584, "chain_id": "3Z9WI9EOZZNRG0JUM7KYJHGNAE6KHU_1_10"} {"score": 0.02687326818704605, "chain_id": "3ATTHHXXWANXWVTLR8H89NP468MXIR_1_1"} {"score": 0.34991341829299927, "chain_id": "3ATTHHXXWANXWVTLR8H89NP468MXIR_1_2"} {"score": 0.1219916045665741, "chain_id": "3ATTHHXXWANXWVTLR8H89NP468MXIR_1_3"} {"score": 0.024470467120409012, "chain_id": "3ATTHHXXWANXWVTLR8H89NP468MXIR_1_4"} {"score": 0.050127673894166946, "chain_id": "3ATTHHXXWANXWVTLR8H89NP468MXIR_1_5"} {"score": 0.03397301957011223, "chain_id": "3ATTHHXXWANXWVTLR8H89NP468MXIR_1_6"} {"score": 0.029265472665429115, "chain_id": "3ATTHHXXWANXWVTLR8H89NP468MXIR_1_7"} {"score": 0.017553145065903664, "chain_id": "3ATTHHXXWANXWVTLR8H89NP468MXIR_1_8"} {"score": 0.0278011504560709, "chain_id": "3ATTHHXXWANXWVTLR8H89NP468MXIR_1_9"} {"score": 0.011400977149605751, "chain_id": "3ATTHHXXWANXWVTLR8H89NP468MXIR_1_10"} {"score": 0.9740021228790283, "chain_id": "3CN4LGXD5XNSOTKGBF16Y0MU31HY4V_1_1"} {"score": 0.28299257159233093, "chain_id": "3CN4LGXD5XNSOTKGBF16Y0MU31HY4V_1_2"} {"score": 0.3716403543949127, "chain_id": "3CN4LGXD5XNSOTKGBF16Y0MU31HY4V_1_3"} {"score": 0.05187419056892395, "chain_id": "3CN4LGXD5XNSOTKGBF16Y0MU31HY4V_1_4"} {"score": 0.01570257358253002, "chain_id": "3CN4LGXD5XNSOTKGBF16Y0MU31HY4V_1_5"} {"score": 0.012048850767314434, "chain_id": "3CN4LGXD5XNSOTKGBF16Y0MU31HY4V_1_6"} {"score": 0.017015589401125908, "chain_id": "3CN4LGXD5XNSOTKGBF16Y0MU31HY4V_1_7"} {"score": 0.03047666884958744, "chain_id": "3CN4LGXD5XNSOTKGBF16Y0MU31HY4V_1_8"} {"score": 0.0209729615598917, "chain_id": "3CN4LGXD5XNSOTKGBF16Y0MU31HY4V_1_9"} {"score": 0.014785067178308964, "chain_id": "3CN4LGXD5XNSOTKGBF16Y0MU31HY4V_1_10"} {"score": 0.46415838599205017, "chain_id": "3EJPLAJKEMF686YZQPW495FA5NO6ZE_1_1"} {"score": 0.1648941934108734, "chain_id": "3EJPLAJKEMF686YZQPW495FA5NO6ZE_1_3"} {"score": 0.8246101140975952, "chain_id": "3EJPLAJKEMF686YZQPW495FA5NO6ZE_1_2"} {"score": 0.8624105453491211, "chain_id": "3EJPLAJKEMF686YZQPW495FA5NO6ZE_1_4"} {"score": 0.4436875581741333, "chain_id": "3EJPLAJKEMF686YZQPW495FA5NO6ZE_1_5"} {"score": 0.1565735787153244, "chain_id": "3EJPLAJKEMF686YZQPW495FA5NO6ZE_1_6"} {"score": 0.1440870612859726, "chain_id": "3EJPLAJKEMF686YZQPW495FA5NO6ZE_1_7"} {"score": 0.04054852947592735, "chain_id": "3EJPLAJKEMF686YZQPW495FA5NO6ZE_1_8"} {"score": 0.09604694694280624, "chain_id": "3EJPLAJKEMF686YZQPW495FA5NO6ZE_1_9"} {"score": 0.04426439478993416, "chain_id": "3EJPLAJKEMF686YZQPW495FA5NO6ZE_1_10"} {"score": 0.12224593013525009, "chain_id": "3Y54SXRO1LKVO5F1GF5P3NS9NDRUTV_1_3"} {"score": 0.13372394442558289, "chain_id": "3Y54SXRO1LKVO5F1GF5P3NS9NDRUTV_1_7"} {"score": 0.06938397884368896, "chain_id": "3Y54SXRO1LKVO5F1GF5P3NS9NDRUTV_1_1"} {"score": 0.14166666567325592, "chain_id": "3Y54SXRO1LKVO5F1GF5P3NS9NDRUTV_1_2"} {"score": 0.07867306470870972, "chain_id": "3Y54SXRO1LKVO5F1GF5P3NS9NDRUTV_1_4"} {"score": 0.023182064294815063, "chain_id": "3Y54SXRO1LKVO5F1GF5P3NS9NDRUTV_1_5"} {"score": 0.04127468541264534, "chain_id": "3Y54SXRO1LKVO5F1GF5P3NS9NDRUTV_1_6"} {"score": 0.16204895079135895, "chain_id": "3Y54SXRO1LKVO5F1GF5P3NS9NDRUTV_1_8"} {"score": 0.04667710140347481, "chain_id": "3Y54SXRO1LKVO5F1GF5P3NS9NDRUTV_1_9"} {"score": 0.02426709607243538, "chain_id": "3Y54SXRO1LKVO5F1GF5P3NS9NDRUTV_1_10"} {"score": 0.05238930508494377, "chain_id": "3K2755HG5S2ZOYMEZ0ABCJ9KYYJDF3_1_6"} {"score": 0.269187331199646, "chain_id": "3K2755HG5S2ZOYMEZ0ABCJ9KYYJDF3_1_1"} {"score": 0.02263632044196129, "chain_id": "3K2755HG5S2ZOYMEZ0ABCJ9KYYJDF3_1_2"} {"score": 0.014776957221329212, "chain_id": "3K2755HG5S2ZOYMEZ0ABCJ9KYYJDF3_1_3"} {"score": 0.017036650329828262, "chain_id": "3K2755HG5S2ZOYMEZ0ABCJ9KYYJDF3_1_4"} {"score": 0.03395211324095726, "chain_id": "3K2755HG5S2ZOYMEZ0ABCJ9KYYJDF3_1_5"} {"score": 0.03883201256394386, "chain_id": "3K2755HG5S2ZOYMEZ0ABCJ9KYYJDF3_1_7"} {"score": 0.07876432687044144, "chain_id": "3K2755HG5S2ZOYMEZ0ABCJ9KYYJDF3_1_8"} {"score": 0.020019764080643654, "chain_id": "3K2755HG5S2ZOYMEZ0ABCJ9KYYJDF3_1_9"} {"score": 0.5733287334442139, "chain_id": "3K2755HG5S2ZOYMEZ0ABCJ9KYYJDF3_1_10"} {"score": 0.989962100982666, "chain_id": "3EJJQNKU9R4D34WPCRTVKT21QMRRH2_1_2"} {"score": 0.9902162551879883, "chain_id": "3EJJQNKU9R4D34WPCRTVKT21QMRRH2_1_3"} {"score": 0.9879075884819031, "chain_id": "3EJJQNKU9R4D34WPCRTVKT21QMRRH2_1_1"} {"score": 0.9902961850166321, "chain_id": "3EJJQNKU9R4D34WPCRTVKT21QMRRH2_1_4"} {"score": 0.4005311131477356, "chain_id": "3EJJQNKU9R4D34WPCRTVKT21QMRRH2_1_5"} {"score": 0.8887441158294678, "chain_id": "3EJJQNKU9R4D34WPCRTVKT21QMRRH2_1_6"} {"score": 0.14744378626346588, "chain_id": "3EJJQNKU9R4D34WPCRTVKT21QMRRH2_1_7"} {"score": 0.6050322651863098, "chain_id": "3EJJQNKU9R4D34WPCRTVKT21QMRRH2_1_8"} {"score": 0.21338430047035217, "chain_id": "3EJJQNKU9R4D34WPCRTVKT21QMRRH2_1_9"} {"score": 0.132613405585289, "chain_id": "3EJJQNKU9R4D34WPCRTVKT21QMRRH2_1_10"} {"score": 0.9529123902320862, "chain_id": "3SNVL38CI4R0ZS8E0F6X8QJ7HISKCO_1_1"} {"score": 0.6054344773292542, "chain_id": "3SNVL38CI4R0ZS8E0F6X8QJ7HISKCO_1_5"} {"score": 0.2436574548482895, "chain_id": "3SNVL38CI4R0ZS8E0F6X8QJ7HISKCO_1_7"} {"score": 0.2875816524028778, "chain_id": "3SNVL38CI4R0ZS8E0F6X8QJ7HISKCO_1_2"} {"score": 0.6463683843612671, "chain_id": "3SNVL38CI4R0ZS8E0F6X8QJ7HISKCO_1_3"} {"score": 0.5023134350776672, "chain_id": "3SNVL38CI4R0ZS8E0F6X8QJ7HISKCO_1_4"} {"score": 0.12036290764808655, "chain_id": "3SNVL38CI4R0ZS8E0F6X8QJ7HISKCO_1_6"} {"score": 0.4422362446784973, "chain_id": "3SNVL38CI4R0ZS8E0F6X8QJ7HISKCO_1_8"} {"score": 0.3303152620792389, "chain_id": "3SNVL38CI4R0ZS8E0F6X8QJ7HISKCO_1_9"} {"score": 0.029241429641842842, "chain_id": "3SNVL38CI4R0ZS8E0F6X8QJ7HISKCO_1_10"} {"score": 0.8468676209449768, "chain_id": "3HVVDCPGTERC5EZ6QG2E68YM3TMTYG_1_2"} {"score": 0.02408246323466301, "chain_id": "3HVVDCPGTERC5EZ6QG2E68YM3TMTYG_1_5"} {"score": 0.5992864966392517, "chain_id": "3HVVDCPGTERC5EZ6QG2E68YM3TMTYG_1_1"} {"score": 0.44676584005355835, "chain_id": "3HVVDCPGTERC5EZ6QG2E68YM3TMTYG_1_3"} {"score": 0.6533979177474976, "chain_id": "3HVVDCPGTERC5EZ6QG2E68YM3TMTYG_1_4"} {"score": 0.03331875428557396, "chain_id": "3HVVDCPGTERC5EZ6QG2E68YM3TMTYG_1_6"} {"score": 0.053227443248033524, "chain_id": "3HVVDCPGTERC5EZ6QG2E68YM3TMTYG_1_7"} {"score": 0.04106702283024788, "chain_id": "3HVVDCPGTERC5EZ6QG2E68YM3TMTYG_1_8"} {"score": 0.0529121458530426, "chain_id": "3HVVDCPGTERC5EZ6QG2E68YM3TMTYG_1_9"} {"score": 0.05854282155632973, "chain_id": "3HVVDCPGTERC5EZ6QG2E68YM3TMTYG_1_10"} {"score": 0.6791632771492004, "chain_id": "39LNWE0K4UV5FRZQM36LPGQ0YDPUIC_1_1"} {"score": 0.8314403891563416, "chain_id": "39LNWE0K4UV5FRZQM36LPGQ0YDPUIC_1_3"} {"score": 0.5188141465187073, "chain_id": "39LNWE0K4UV5FRZQM36LPGQ0YDPUIC_1_4"} {"score": 0.41434717178344727, "chain_id": "39LNWE0K4UV5FRZQM36LPGQ0YDPUIC_1_2"} {"score": 0.22778882086277008, "chain_id": "39LNWE0K4UV5FRZQM36LPGQ0YDPUIC_1_5"} {"score": 0.06320878118276596, "chain_id": "39LNWE0K4UV5FRZQM36LPGQ0YDPUIC_1_6"} {"score": 0.0725989118218422, "chain_id": "39LNWE0K4UV5FRZQM36LPGQ0YDPUIC_1_7"} {"score": 0.03188294172286987, "chain_id": "39LNWE0K4UV5FRZQM36LPGQ0YDPUIC_1_8"} {"score": 0.11795759201049805, "chain_id": "39LNWE0K4UV5FRZQM36LPGQ0YDPUIC_1_9"} {"score": 0.20397841930389404, "chain_id": "39LNWE0K4UV5FRZQM36LPGQ0YDPUIC_1_10"} {"score": 0.760866641998291, "chain_id": "3BWI6RSP7G8R1BL8DCNJU9EOYOIE7C_1_1"} {"score": 0.053036030381917953, "chain_id": "3BWI6RSP7G8R1BL8DCNJU9EOYOIE7C_1_2"} {"score": 0.1024915874004364, "chain_id": "3BWI6RSP7G8R1BL8DCNJU9EOYOIE7C_1_3"} {"score": 0.1234569102525711, "chain_id": "3BWI6RSP7G8R1BL8DCNJU9EOYOIE7C_1_4"} {"score": 0.02075238712131977, "chain_id": "3BWI6RSP7G8R1BL8DCNJU9EOYOIE7C_1_5"} {"score": 0.1128244698047638, "chain_id": "3BWI6RSP7G8R1BL8DCNJU9EOYOIE7C_1_6"} {"score": 0.07556141912937164, "chain_id": "3BWI6RSP7G8R1BL8DCNJU9EOYOIE7C_1_7"} {"score": 0.4738740622997284, "chain_id": "3BWI6RSP7G8R1BL8DCNJU9EOYOIE7C_1_8"} {"score": 0.020512260496616364, "chain_id": "3BWI6RSP7G8R1BL8DCNJU9EOYOIE7C_1_9"} {"score": 0.02788088470697403, "chain_id": "3BWI6RSP7G8R1BL8DCNJU9EOYOIE7C_1_10"} {"score": 0.02743513323366642, "chain_id": "3AMW0RGHOD1K1N2L2XKJKIZIGHHPNT_1_1"} {"score": 0.9577423930168152, "chain_id": "3AMW0RGHOD1K1N2L2XKJKIZIGHHPNT_1_2"} {"score": 0.048819586634635925, "chain_id": "3AMW0RGHOD1K1N2L2XKJKIZIGHHPNT_1_3"} {"score": 0.09894344210624695, "chain_id": "3AMW0RGHOD1K1N2L2XKJKIZIGHHPNT_1_4"} {"score": 0.11288746446371078, "chain_id": "3AMW0RGHOD1K1N2L2XKJKIZIGHHPNT_1_5"} {"score": 0.4601776897907257, "chain_id": "3AMW0RGHOD1K1N2L2XKJKIZIGHHPNT_1_6"} {"score": 0.961962103843689, "chain_id": "3AMW0RGHOD1K1N2L2XKJKIZIGHHPNT_1_7"} {"score": 0.05011164769530296, "chain_id": "3AMW0RGHOD1K1N2L2XKJKIZIGHHPNT_1_8"} {"score": 0.0440482534468174, "chain_id": "3AMW0RGHOD1K1N2L2XKJKIZIGHHPNT_1_9"} {"score": 0.7941014170646667, "chain_id": "3AMW0RGHOD1K1N2L2XKJKIZIGHHPNT_1_10"} {"score": 0.9656290411949158, "chain_id": "3CFJTT4SXTP3HGNU9VDAFOCGUPHI71_1_1"} {"score": 0.2852121591567993, "chain_id": "3CFJTT4SXTP3HGNU9VDAFOCGUPHI71_1_2"} {"score": 0.05741962790489197, "chain_id": "3CFJTT4SXTP3HGNU9VDAFOCGUPHI71_1_3"} {"score": 0.09725631028413773, "chain_id": "3CFJTT4SXTP3HGNU9VDAFOCGUPHI71_1_4"} {"score": 0.3562834858894348, "chain_id": "3CFJTT4SXTP3HGNU9VDAFOCGUPHI71_1_5"} {"score": 0.092081718146801, "chain_id": "3CFJTT4SXTP3HGNU9VDAFOCGUPHI71_1_6"} {"score": 0.08299963921308517, "chain_id": "3CFJTT4SXTP3HGNU9VDAFOCGUPHI71_1_7"} {"score": 0.03498993441462517, "chain_id": "3CFJTT4SXTP3HGNU9VDAFOCGUPHI71_1_8"} {"score": 0.0251966193318367, "chain_id": "3CFJTT4SXTP3HGNU9VDAFOCGUPHI71_1_9"} {"score": 0.027526620775461197, "chain_id": "3CFJTT4SXTP3HGNU9VDAFOCGUPHI71_1_10"} {"score": 0.1829860657453537, "chain_id": "39KFRKBFINUWSMUYUZGFCYSZAWTOY5_1_1"} {"score": 0.02883126772940159, "chain_id": "39KFRKBFINUWSMUYUZGFCYSZAWTOY5_1_3"} {"score": 0.02452206052839756, "chain_id": "39KFRKBFINUWSMUYUZGFCYSZAWTOY5_1_2"} {"score": 0.029491521418094635, "chain_id": "39KFRKBFINUWSMUYUZGFCYSZAWTOY5_1_4"} {"score": 0.07858294248580933, "chain_id": "39KFRKBFINUWSMUYUZGFCYSZAWTOY5_1_5"} {"score": 0.042619358748197556, "chain_id": "39KFRKBFINUWSMUYUZGFCYSZAWTOY5_1_6"} {"score": 0.05688486993312836, "chain_id": "39KFRKBFINUWSMUYUZGFCYSZAWTOY5_1_7"} {"score": 0.14332136511802673, "chain_id": "39KFRKBFINUWSMUYUZGFCYSZAWTOY5_1_8"} {"score": 0.21258454024791718, "chain_id": "39KFRKBFINUWSMUYUZGFCYSZAWTOY5_1_9"} {"score": 0.11405698955059052, "chain_id": "39KFRKBFINUWSMUYUZGFCYSZAWTOY5_1_10"} {"score": 0.5637102127075195, "chain_id": "34Z02EIMISCF8J3LI8R5EG42YXS0TC_1_6"} {"score": 0.18828512728214264, "chain_id": "34Z02EIMISCF8J3LI8R5EG42YXS0TC_1_7"} {"score": 0.4685070514678955, "chain_id": "34Z02EIMISCF8J3LI8R5EG42YXS0TC_1_8"} {"score": 0.20570969581604004, "chain_id": "34Z02EIMISCF8J3LI8R5EG42YXS0TC_1_9"} {"score": 0.47144585847854614, "chain_id": "34Z02EIMISCF8J3LI8R5EG42YXS0TC_1_1"} {"score": 0.5448963046073914, "chain_id": "34Z02EIMISCF8J3LI8R5EG42YXS0TC_1_2"} {"score": 0.36171939969062805, "chain_id": "34Z02EIMISCF8J3LI8R5EG42YXS0TC_1_3"} {"score": 0.45903369784355164, "chain_id": "34Z02EIMISCF8J3LI8R5EG42YXS0TC_1_4"} {"score": 0.7403878569602966, "chain_id": "34Z02EIMISCF8J3LI8R5EG42YXS0TC_1_5"} {"score": 0.13645057380199432, "chain_id": "34Z02EIMISCF8J3LI8R5EG42YXS0TC_1_10"} {"score": 0.9469135999679565, "chain_id": "37M28K1J0QCHVT5YYGAU1GT69PIAJT_1_5"} {"score": 0.9765180945396423, "chain_id": "37M28K1J0QCHVT5YYGAU1GT69PIAJT_1_6"} {"score": 0.09385234862565994, "chain_id": "37M28K1J0QCHVT5YYGAU1GT69PIAJT_1_1"} {"score": 0.25373876094818115, "chain_id": "37M28K1J0QCHVT5YYGAU1GT69PIAJT_1_2"} {"score": 0.06635908782482147, "chain_id": "37M28K1J0QCHVT5YYGAU1GT69PIAJT_1_3"} {"score": 0.0553898848593235, "chain_id": "37M28K1J0QCHVT5YYGAU1GT69PIAJT_1_4"} {"score": 0.6026286482810974, "chain_id": "37M28K1J0QCHVT5YYGAU1GT69PIAJT_1_7"} {"score": 0.43956661224365234, "chain_id": "37M28K1J0QCHVT5YYGAU1GT69PIAJT_1_8"} {"score": 0.17143501341342926, "chain_id": "37M28K1J0QCHVT5YYGAU1GT69PIAJT_1_9"} {"score": 0.164560467004776, "chain_id": "37M28K1J0QCHVT5YYGAU1GT69PIAJT_1_10"} {"score": 0.44914308190345764, "chain_id": "3R9WASFE2ZF2RZRARIZ83BSNPBLZF9_1_5"} {"score": 0.8027976751327515, "chain_id": "3R9WASFE2ZF2RZRARIZ83BSNPBLZF9_1_7"} {"score": 0.3072410523891449, "chain_id": "3R9WASFE2ZF2RZRARIZ83BSNPBLZF9_1_1"} {"score": 0.35981878638267517, "chain_id": "3R9WASFE2ZF2RZRARIZ83BSNPBLZF9_1_2"} {"score": 0.2910501956939697, "chain_id": "3R9WASFE2ZF2RZRARIZ83BSNPBLZF9_1_3"} {"score": 0.13101322948932648, "chain_id": "3R9WASFE2ZF2RZRARIZ83BSNPBLZF9_1_4"} {"score": 0.4483968913555145, "chain_id": "3R9WASFE2ZF2RZRARIZ83BSNPBLZF9_1_6"} {"score": 0.6527007818222046, "chain_id": "3R9WASFE2ZF2RZRARIZ83BSNPBLZF9_1_8"} {"score": 0.2650876045227051, "chain_id": "3R9WASFE2ZF2RZRARIZ83BSNPBLZF9_1_9"} {"score": 0.24110595881938934, "chain_id": "3R9WASFE2ZF2RZRARIZ83BSNPBLZF9_1_10"} {"score": 0.9893660545349121, "chain_id": "3NG53N1RLVIZYGFHWVV02L9NL97P8Y_1_1"} {"score": 0.9192708730697632, "chain_id": "3NG53N1RLVIZYGFHWVV02L9NL97P8Y_1_2"} {"score": 0.9282407164573669, "chain_id": "3NG53N1RLVIZYGFHWVV02L9NL97P8Y_1_3"} {"score": 0.3738654553890228, "chain_id": "3NG53N1RLVIZYGFHWVV02L9NL97P8Y_1_4"} {"score": 0.15605899691581726, "chain_id": "3NG53N1RLVIZYGFHWVV02L9NL97P8Y_1_5"} {"score": 0.13286186754703522, "chain_id": "3NG53N1RLVIZYGFHWVV02L9NL97P8Y_1_6"} {"score": 0.050005462020635605, "chain_id": "3NG53N1RLVIZYGFHWVV02L9NL97P8Y_1_7"} {"score": 0.06511187553405762, "chain_id": "3NG53N1RLVIZYGFHWVV02L9NL97P8Y_1_8"} {"score": 0.08812902122735977, "chain_id": "3NG53N1RLVIZYGFHWVV02L9NL97P8Y_1_9"} {"score": 0.12139197438955307, "chain_id": "3NG53N1RLVIZYGFHWVV02L9NL97P8Y_1_10"} {"score": 0.6513458490371704, "chain_id": "31LVTDXBL79FP0FF3C8TCLV86VJRLB_1_2"} {"score": 0.6817856431007385, "chain_id": "31LVTDXBL79FP0FF3C8TCLV86VJRLB_1_4"} {"score": 0.27411600947380066, "chain_id": "31LVTDXBL79FP0FF3C8TCLV86VJRLB_1_5"} {"score": 0.1418447345495224, "chain_id": "31LVTDXBL79FP0FF3C8TCLV86VJRLB_1_9"} {"score": 0.878687858581543, "chain_id": "31LVTDXBL79FP0FF3C8TCLV86VJRLB_1_1"} {"score": 0.0698736160993576, "chain_id": "31LVTDXBL79FP0FF3C8TCLV86VJRLB_1_3"} {"score": 0.29781073331832886, "chain_id": "31LVTDXBL79FP0FF3C8TCLV86VJRLB_1_6"} {"score": 0.020387953147292137, "chain_id": "31LVTDXBL79FP0FF3C8TCLV86VJRLB_1_7"} {"score": 0.02180406264960766, "chain_id": "31LVTDXBL79FP0FF3C8TCLV86VJRLB_1_8"} {"score": 0.029570626094937325, "chain_id": "31LVTDXBL79FP0FF3C8TCLV86VJRLB_1_10"} {"score": 0.151192307472229, "chain_id": "3X73LLYYQ1DSO64XJKCEB9XRQCCHNP_1_1"} {"score": 0.08652763813734055, "chain_id": "3X73LLYYQ1DSO64XJKCEB9XRQCCHNP_1_3"} {"score": 0.12905167043209076, "chain_id": "3X73LLYYQ1DSO64XJKCEB9XRQCCHNP_1_7"} {"score": 0.44512248039245605, "chain_id": "3X73LLYYQ1DSO64XJKCEB9XRQCCHNP_1_2"} {"score": 0.1413232982158661, "chain_id": "3X73LLYYQ1DSO64XJKCEB9XRQCCHNP_1_4"} {"score": 0.04858316481113434, "chain_id": "3X73LLYYQ1DSO64XJKCEB9XRQCCHNP_1_5"} {"score": 0.6677334904670715, "chain_id": "3X73LLYYQ1DSO64XJKCEB9XRQCCHNP_1_6"} {"score": 0.06890372186899185, "chain_id": "3X73LLYYQ1DSO64XJKCEB9XRQCCHNP_1_8"} {"score": 0.036103080958127975, "chain_id": "3X73LLYYQ1DSO64XJKCEB9XRQCCHNP_1_9"} {"score": 0.040438756346702576, "chain_id": "3X73LLYYQ1DSO64XJKCEB9XRQCCHNP_1_10"} {"score": 0.023625541478395462, "chain_id": "3A1COHJ8NJU7LZHTDINVTC7W5USH8A_1_1"} {"score": 0.021845072507858276, "chain_id": "3A1COHJ8NJU7LZHTDINVTC7W5USH8A_1_2"} {"score": 0.027951272204518318, "chain_id": "3A1COHJ8NJU7LZHTDINVTC7W5USH8A_1_3"} {"score": 0.02852707915008068, "chain_id": "3A1COHJ8NJU7LZHTDINVTC7W5USH8A_1_4"} {"score": 0.01988784410059452, "chain_id": "3A1COHJ8NJU7LZHTDINVTC7W5USH8A_1_5"} {"score": 0.041557811200618744, "chain_id": "3A1COHJ8NJU7LZHTDINVTC7W5USH8A_1_6"} {"score": 0.02251906879246235, "chain_id": "3A1COHJ8NJU7LZHTDINVTC7W5USH8A_1_7"} {"score": 0.027757389470934868, "chain_id": "3A1COHJ8NJU7LZHTDINVTC7W5USH8A_1_8"} {"score": 0.016201838850975037, "chain_id": "3A1COHJ8NJU7LZHTDINVTC7W5USH8A_1_9"} {"score": 0.015837056562304497, "chain_id": "3A1COHJ8NJU7LZHTDINVTC7W5USH8A_1_10"} {"score": 0.9135614633560181, "chain_id": "3HVVDCPGTERC5EZ6QG2E68YM94HYT8_1_1"} {"score": 0.22425177693367004, "chain_id": "3HVVDCPGTERC5EZ6QG2E68YM94HYT8_1_2"} {"score": 0.27602237462997437, "chain_id": "3HVVDCPGTERC5EZ6QG2E68YM94HYT8_1_3"} {"score": 0.20501896739006042, "chain_id": "3HVVDCPGTERC5EZ6QG2E68YM94HYT8_1_5"} {"score": 0.488496869802475, "chain_id": "3HVVDCPGTERC5EZ6QG2E68YM94HYT8_1_6"} {"score": 0.4298863112926483, "chain_id": "3HVVDCPGTERC5EZ6QG2E68YM94HYT8_1_8"} {"score": 0.047257401049137115, "chain_id": "3HVVDCPGTERC5EZ6QG2E68YM94HYT8_1_9"} {"score": 0.08870340883731842, "chain_id": "3HVVDCPGTERC5EZ6QG2E68YM94HYT8_1_4"} {"score": 0.37379083037376404, "chain_id": "3HVVDCPGTERC5EZ6QG2E68YM94HYT8_1_7"} {"score": 0.2941233515739441, "chain_id": "3HVVDCPGTERC5EZ6QG2E68YM94HYT8_1_10"} {"score": 0.7841662764549255, "chain_id": "3ZWFC4W1UU6TP85JH15VH8QOGEURF4_1_2"} {"score": 0.3477177023887634, "chain_id": "3ZWFC4W1UU6TP85JH15VH8QOGEURF4_1_1"} {"score": 0.11026296764612198, "chain_id": "3ZWFC4W1UU6TP85JH15VH8QOGEURF4_1_3"} {"score": 0.02791208028793335, "chain_id": "3ZWFC4W1UU6TP85JH15VH8QOGEURF4_1_4"} {"score": 0.19133567810058594, "chain_id": "3ZWFC4W1UU6TP85JH15VH8QOGEURF4_1_5"} {"score": 0.041667159646749496, "chain_id": "3ZWFC4W1UU6TP85JH15VH8QOGEURF4_1_6"} {"score": 0.04808575659990311, "chain_id": "3ZWFC4W1UU6TP85JH15VH8QOGEURF4_1_7"} {"score": 0.060709524899721146, "chain_id": "3ZWFC4W1UU6TP85JH15VH8QOGEURF4_1_8"} {"score": 0.41560912132263184, "chain_id": "3ZWFC4W1UU6TP85JH15VH8QOGEURF4_1_9"} {"score": 0.25687599182128906, "chain_id": "3ZWFC4W1UU6TP85JH15VH8QOGEURF4_1_10"} {"score": 0.43433520197868347, "chain_id": "3KV0LJBBH2KZVIX03O98CYAX76EMRQ_1_1"} {"score": 0.7958104610443115, "chain_id": "3KV0LJBBH2KZVIX03O98CYAX76EMRQ_1_2"} {"score": 0.8323804140090942, "chain_id": "3KV0LJBBH2KZVIX03O98CYAX76EMRQ_1_3"} {"score": 0.8442041277885437, "chain_id": "3KV0LJBBH2KZVIX03O98CYAX76EMRQ_1_4"} {"score": 0.03199255093932152, "chain_id": "3KV0LJBBH2KZVIX03O98CYAX76EMRQ_1_5"} {"score": 0.020507311448454857, "chain_id": "3KV0LJBBH2KZVIX03O98CYAX76EMRQ_1_6"} {"score": 0.05251745134592056, "chain_id": "3KV0LJBBH2KZVIX03O98CYAX76EMRQ_1_7"} {"score": 0.05932077020406723, "chain_id": "3KV0LJBBH2KZVIX03O98CYAX76EMRQ_1_8"} {"score": 0.07003408670425415, "chain_id": "3KV0LJBBH2KZVIX03O98CYAX76EMRQ_1_9"} {"score": 0.07343368977308273, "chain_id": "3KV0LJBBH2KZVIX03O98CYAX76EMRQ_1_10"} {"score": 0.9883397817611694, "chain_id": "3SEPORI8WNY7V8A2G2DGPAHWM7LZAR_1_1"} {"score": 0.8071951270103455, "chain_id": "3SEPORI8WNY7V8A2G2DGPAHWM7LZAR_1_2"} {"score": 0.9475386738777161, "chain_id": "3SEPORI8WNY7V8A2G2DGPAHWM7LZAR_1_3"} {"score": 0.4030727744102478, "chain_id": "3SEPORI8WNY7V8A2G2DGPAHWM7LZAR_1_7"} {"score": 0.1852044016122818, "chain_id": "3SEPORI8WNY7V8A2G2DGPAHWM7LZAR_1_9"} {"score": 0.5017093420028687, "chain_id": "3SEPORI8WNY7V8A2G2DGPAHWM7LZAR_1_4"} {"score": 0.1938103884458542, "chain_id": "3SEPORI8WNY7V8A2G2DGPAHWM7LZAR_1_5"} {"score": 0.5518460273742676, "chain_id": "3SEPORI8WNY7V8A2G2DGPAHWM7LZAR_1_6"} {"score": 0.29078051447868347, "chain_id": "3SEPORI8WNY7V8A2G2DGPAHWM7LZAR_1_8"} {"score": 0.08402955532073975, "chain_id": "3SEPORI8WNY7V8A2G2DGPAHWM7LZAR_1_10"} {"score": 0.0423220656812191, "chain_id": "3DYGAII7PL754KFDIPC0OCUNGTAQPK_1_10"} {"score": 0.11372460424900055, "chain_id": "3DYGAII7PL754KFDIPC0OCUNGTAQPK_1_1"} {"score": 0.0492272675037384, "chain_id": "3DYGAII7PL754KFDIPC0OCUNGTAQPK_1_2"} {"score": 0.16280417144298553, "chain_id": "3DYGAII7PL754KFDIPC0OCUNGTAQPK_1_3"} {"score": 0.2361663281917572, "chain_id": "3DYGAII7PL754KFDIPC0OCUNGTAQPK_1_4"} {"score": 0.05174516141414642, "chain_id": "3DYGAII7PL754KFDIPC0OCUNGTAQPK_1_5"} {"score": 0.07357559353113174, "chain_id": "3DYGAII7PL754KFDIPC0OCUNGTAQPK_1_6"} {"score": 0.14826984703540802, "chain_id": "3DYGAII7PL754KFDIPC0OCUNGTAQPK_1_7"} {"score": 0.22140690684318542, "chain_id": "3DYGAII7PL754KFDIPC0OCUNGTAQPK_1_8"} {"score": 0.2659648656845093, "chain_id": "3DYGAII7PL754KFDIPC0OCUNGTAQPK_1_9"} {"score": 0.04849947243928909, "chain_id": "3TK8OJTYM1KX9SBU4O6AUZTV2JYPVN_1_1"} {"score": 0.06961842626333237, "chain_id": "3TK8OJTYM1KX9SBU4O6AUZTV2JYPVN_1_2"} {"score": 0.06400275975465775, "chain_id": "3TK8OJTYM1KX9SBU4O6AUZTV2JYPVN_1_3"} {"score": 0.05277493596076965, "chain_id": "3TK8OJTYM1KX9SBU4O6AUZTV2JYPVN_1_4"} {"score": 0.28100454807281494, "chain_id": "3TK8OJTYM1KX9SBU4O6AUZTV2JYPVN_1_5"} {"score": 0.07806456834077835, "chain_id": "3TK8OJTYM1KX9SBU4O6AUZTV2JYPVN_1_6"} {"score": 0.1193971112370491, "chain_id": "3TK8OJTYM1KX9SBU4O6AUZTV2JYPVN_1_7"} {"score": 0.03704743832349777, "chain_id": "3TK8OJTYM1KX9SBU4O6AUZTV2JYPVN_1_8"} {"score": 0.1440773606300354, "chain_id": "3TK8OJTYM1KX9SBU4O6AUZTV2JYPVN_1_9"} {"score": 0.03068503364920616, "chain_id": "3TK8OJTYM1KX9SBU4O6AUZTV2JYPVN_1_10"} {"score": 0.44431108236312866, "chain_id": "33IZTU6J810MQ9WHWKBMDPVR6L9XSP_1_1"} {"score": 0.05002513900399208, "chain_id": "33IZTU6J810MQ9WHWKBMDPVR6L9XSP_1_2"} {"score": 0.3004089891910553, "chain_id": "33IZTU6J810MQ9WHWKBMDPVR6L9XSP_1_3"} {"score": 0.7649312615394592, "chain_id": "33IZTU6J810MQ9WHWKBMDPVR6L9XSP_1_4"} {"score": 0.025636114180088043, "chain_id": "33IZTU6J810MQ9WHWKBMDPVR6L9XSP_1_5"} {"score": 0.223946675658226, "chain_id": "33IZTU6J810MQ9WHWKBMDPVR6L9XSP_1_6"} {"score": 0.08568264544010162, "chain_id": "33IZTU6J810MQ9WHWKBMDPVR6L9XSP_1_7"} {"score": 0.2609943747520447, "chain_id": "33IZTU6J810MQ9WHWKBMDPVR6L9XSP_1_8"} {"score": 0.4417230188846588, "chain_id": "33IZTU6J810MQ9WHWKBMDPVR6L9XSP_1_9"} {"score": 0.028761887922883034, "chain_id": "33IZTU6J810MQ9WHWKBMDPVR6L9XSP_1_10"} {"score": 0.927692174911499, "chain_id": "378XPAWRUCCL0ILSGYPUPFE6S76AIK_1_1"} {"score": 0.944140613079071, "chain_id": "378XPAWRUCCL0ILSGYPUPFE6S76AIK_1_2"} {"score": 0.6519410610198975, "chain_id": "378XPAWRUCCL0ILSGYPUPFE6S76AIK_1_3"} {"score": 0.3573085069656372, "chain_id": "378XPAWRUCCL0ILSGYPUPFE6S76AIK_1_4"} {"score": 0.06882073730230331, "chain_id": "378XPAWRUCCL0ILSGYPUPFE6S76AIK_1_5"} {"score": 0.08533058315515518, "chain_id": "378XPAWRUCCL0ILSGYPUPFE6S76AIK_1_6"} {"score": 0.07935710996389389, "chain_id": "378XPAWRUCCL0ILSGYPUPFE6S76AIK_1_7"} {"score": 0.01852201670408249, "chain_id": "378XPAWRUCCL0ILSGYPUPFE6S76AIK_1_8"} {"score": 0.813421905040741, "chain_id": "378XPAWRUCCL0ILSGYPUPFE6S76AIK_1_9"} {"score": 0.6580358147621155, "chain_id": "378XPAWRUCCL0ILSGYPUPFE6S76AIK_1_10"} {"score": 0.9914211630821228, "chain_id": "3EKVH9QMEY3FN4A2B5V4S0FVOEMD2U_1_1"} {"score": 0.9907947182655334, "chain_id": "3EKVH9QMEY3FN4A2B5V4S0FVOEMD2U_1_2"} {"score": 0.9890899062156677, "chain_id": "3EKVH9QMEY3FN4A2B5V4S0FVOEMD2U_1_3"} {"score": 0.982333779335022, "chain_id": "3EKVH9QMEY3FN4A2B5V4S0FVOEMD2U_1_4"} {"score": 0.10831145942211151, "chain_id": "3EKVH9QMEY3FN4A2B5V4S0FVOEMD2U_1_5"} {"score": 0.05701894313097, "chain_id": "3EKVH9QMEY3FN4A2B5V4S0FVOEMD2U_1_6"} {"score": 0.015817811712622643, "chain_id": "3EKVH9QMEY3FN4A2B5V4S0FVOEMD2U_1_7"} {"score": 0.010915873572230339, "chain_id": "3EKVH9QMEY3FN4A2B5V4S0FVOEMD2U_1_8"} {"score": 0.20215103030204773, "chain_id": "3EKVH9QMEY3FN4A2B5V4S0FVOEMD2U_1_9"} {"score": 0.08425173163414001, "chain_id": "3EKVH9QMEY3FN4A2B5V4S0FVOEMD2U_1_10"} {"score": 0.16681131720542908, "chain_id": "30OG32W0SUAG4WDVTJ48Q60EZMSENV_1_5"} {"score": 0.16681131720542908, "chain_id": "30OG32W0SUAG4WDVTJ48Q60EZMSENV_1_8"} {"score": 0.7730688452720642, "chain_id": "30OG32W0SUAG4WDVTJ48Q60EZMSENV_1_1"} {"score": 0.7345470190048218, "chain_id": "30OG32W0SUAG4WDVTJ48Q60EZMSENV_1_2"} {"score": 0.3637889623641968, "chain_id": "30OG32W0SUAG4WDVTJ48Q60EZMSENV_1_3"} {"score": 0.527812659740448, "chain_id": "30OG32W0SUAG4WDVTJ48Q60EZMSENV_1_4"} {"score": 0.3040047883987427, "chain_id": "30OG32W0SUAG4WDVTJ48Q60EZMSENV_1_6"} {"score": 0.0634351521730423, "chain_id": "30OG32W0SUAG4WDVTJ48Q60EZMSENV_1_7"} {"score": 0.1477620154619217, "chain_id": "30OG32W0SUAG4WDVTJ48Q60EZMSENV_1_9"} {"score": 0.1669739931821823, "chain_id": "30OG32W0SUAG4WDVTJ48Q60EZMSENV_1_10"} {"score": 0.9914211630821228, "chain_id": "37QW5D2ZRGLWB8V9OCZUXQEYBL4S8U_1_1"} {"score": 0.9907947182655334, "chain_id": "37QW5D2ZRGLWB8V9OCZUXQEYBL4S8U_1_2"} {"score": 0.9890899062156677, "chain_id": "37QW5D2ZRGLWB8V9OCZUXQEYBL4S8U_1_3"} {"score": 0.982333779335022, "chain_id": "37QW5D2ZRGLWB8V9OCZUXQEYBL4S8U_1_4"} {"score": 0.10831145942211151, "chain_id": "37QW5D2ZRGLWB8V9OCZUXQEYBL4S8U_1_5"} {"score": 0.05701894313097, "chain_id": "37QW5D2ZRGLWB8V9OCZUXQEYBL4S8U_1_6"} {"score": 0.015817811712622643, "chain_id": "37QW5D2ZRGLWB8V9OCZUXQEYBL4S8U_1_7"} {"score": 0.010915873572230339, "chain_id": "37QW5D2ZRGLWB8V9OCZUXQEYBL4S8U_1_8"} {"score": 0.20215103030204773, "chain_id": "37QW5D2ZRGLWB8V9OCZUXQEYBL4S8U_1_9"} {"score": 0.08425173163414001, "chain_id": "37QW5D2ZRGLWB8V9OCZUXQEYBL4S8U_1_10"} {"score": 0.8846365809440613, "chain_id": "3M81GAB8A0I30QE3ZKUZTSPY13OQBM_1_1"} {"score": 0.8013771772384644, "chain_id": "3M81GAB8A0I30QE3ZKUZTSPY13OQBM_1_2"} {"score": 0.9307407140731812, "chain_id": "3M81GAB8A0I30QE3ZKUZTSPY13OQBM_1_3"} {"score": 0.8500295281410217, "chain_id": "3M81GAB8A0I30QE3ZKUZTSPY13OQBM_1_5"} {"score": 0.015389522537589073, "chain_id": "3M81GAB8A0I30QE3ZKUZTSPY13OQBM_1_8"} {"score": 0.03803086653351784, "chain_id": "3M81GAB8A0I30QE3ZKUZTSPY13OQBM_1_4"} {"score": 0.06085469201207161, "chain_id": "3M81GAB8A0I30QE3ZKUZTSPY13OQBM_1_6"} {"score": 0.04415219649672508, "chain_id": "3M81GAB8A0I30QE3ZKUZTSPY13OQBM_1_7"} {"score": 0.01940683089196682, "chain_id": "3M81GAB8A0I30QE3ZKUZTSPY13OQBM_1_9"} {"score": 0.04102384299039841, "chain_id": "3M81GAB8A0I30QE3ZKUZTSPY13OQBM_1_10"} {"score": 0.9871691465377808, "chain_id": "3KV0LJBBH2KZVIX03O98CYAXA3GMRP_1_1"} {"score": 0.9866064786911011, "chain_id": "3KV0LJBBH2KZVIX03O98CYAXA3GMRP_1_2"} {"score": 0.39612823724746704, "chain_id": "3KV0LJBBH2KZVIX03O98CYAXA3GMRP_1_5"} {"score": 0.044094379991292953, "chain_id": "3KV0LJBBH2KZVIX03O98CYAXA3GMRP_1_3"} {"score": 0.05171826481819153, "chain_id": "3KV0LJBBH2KZVIX03O98CYAXA3GMRP_1_4"} {"score": 0.5033102631568909, "chain_id": "3KV0LJBBH2KZVIX03O98CYAXA3GMRP_1_6"} {"score": 0.051921866834163666, "chain_id": "3KV0LJBBH2KZVIX03O98CYAXA3GMRP_1_7"} {"score": 0.05089227110147476, "chain_id": "3KV0LJBBH2KZVIX03O98CYAXA3GMRP_1_8"} {"score": 0.11375561356544495, "chain_id": "3KV0LJBBH2KZVIX03O98CYAXA3GMRP_1_9"} {"score": 0.031196175143122673, "chain_id": "3KV0LJBBH2KZVIX03O98CYAXA3GMRP_1_10"} {"score": 0.9344497919082642, "chain_id": "3G0WWMR1UVJ51Z302AZ8KNPSJCONQZ_1_1"} {"score": 0.6862500309944153, "chain_id": "3G0WWMR1UVJ51Z302AZ8KNPSJCONQZ_1_3"} {"score": 0.9817349314689636, "chain_id": "3G0WWMR1UVJ51Z302AZ8KNPSJCONQZ_1_2"} {"score": 0.5884066224098206, "chain_id": "3G0WWMR1UVJ51Z302AZ8KNPSJCONQZ_1_4"} {"score": 0.12706522643566132, "chain_id": "3G0WWMR1UVJ51Z302AZ8KNPSJCONQZ_1_5"} {"score": 0.043535977602005005, "chain_id": "3G0WWMR1UVJ51Z302AZ8KNPSJCONQZ_1_6"} {"score": 0.0350906103849411, "chain_id": "3G0WWMR1UVJ51Z302AZ8KNPSJCONQZ_1_7"} {"score": 0.02619265764951706, "chain_id": "3G0WWMR1UVJ51Z302AZ8KNPSJCONQZ_1_8"} {"score": 0.06575702875852585, "chain_id": "3G0WWMR1UVJ51Z302AZ8KNPSJCONQZ_1_9"} {"score": 0.01810881681740284, "chain_id": "3G0WWMR1UVJ51Z302AZ8KNPSJCONQZ_1_10"} {"score": 0.991456925868988, "chain_id": "31N2WW6R9RP166KH6B4ZZAN87UO3F7_1_1"} {"score": 0.9908260703086853, "chain_id": "31N2WW6R9RP166KH6B4ZZAN87UO3F7_1_2"} {"score": 0.9891327023506165, "chain_id": "31N2WW6R9RP166KH6B4ZZAN87UO3F7_1_3"} {"score": 0.982300341129303, "chain_id": "31N2WW6R9RP166KH6B4ZZAN87UO3F7_1_4"} {"score": 0.11247270554304123, "chain_id": "31N2WW6R9RP166KH6B4ZZAN87UO3F7_1_5"} {"score": 0.05921418219804764, "chain_id": "31N2WW6R9RP166KH6B4ZZAN87UO3F7_1_6"} {"score": 0.014954044483602047, "chain_id": "31N2WW6R9RP166KH6B4ZZAN87UO3F7_1_7"} {"score": 0.011196529492735863, "chain_id": "31N2WW6R9RP166KH6B4ZZAN87UO3F7_1_8"} {"score": 0.2250138223171234, "chain_id": "31N2WW6R9RP166KH6B4ZZAN87UO3F7_1_9"} {"score": 0.07807155698537827, "chain_id": "31N2WW6R9RP166KH6B4ZZAN87UO3F7_1_10"} {"score": 0.04651867225766182, "chain_id": "3X1FV8S5JXQRWFIV15GN0QF3013GVJ_1_1"} {"score": 0.02487765997648239, "chain_id": "3X1FV8S5JXQRWFIV15GN0QF3013GVJ_1_2"} {"score": 0.06960482895374298, "chain_id": "3X1FV8S5JXQRWFIV15GN0QF3013GVJ_1_3"} {"score": 0.033308129757642746, "chain_id": "3X1FV8S5JXQRWFIV15GN0QF3013GVJ_1_4"} {"score": 0.023415081202983856, "chain_id": "3X1FV8S5JXQRWFIV15GN0QF3013GVJ_1_5"} {"score": 0.02083052136003971, "chain_id": "3X1FV8S5JXQRWFIV15GN0QF3013GVJ_1_6"} {"score": 0.11134645342826843, "chain_id": "3X1FV8S5JXQRWFIV15GN0QF3013GVJ_1_7"} {"score": 0.0314791202545166, "chain_id": "3X1FV8S5JXQRWFIV15GN0QF3013GVJ_1_8"} {"score": 0.027757585048675537, "chain_id": "3X1FV8S5JXQRWFIV15GN0QF3013GVJ_1_9"} {"score": 0.16283494234085083, "chain_id": "3X1FV8S5JXQRWFIV15GN0QF3013GVJ_1_10"} {"score": 0.991431474685669, "chain_id": "3300DTYQT2G17TQN9BWPU0VJ5IYQEK_1_1"} {"score": 0.9904035329818726, "chain_id": "3300DTYQT2G17TQN9BWPU0VJ5IYQEK_1_2"} {"score": 0.989458441734314, "chain_id": "3300DTYQT2G17TQN9BWPU0VJ5IYQEK_1_3"} {"score": 0.9824819564819336, "chain_id": "3300DTYQT2G17TQN9BWPU0VJ5IYQEK_1_4"} {"score": 0.0405360646545887, "chain_id": "3300DTYQT2G17TQN9BWPU0VJ5IYQEK_1_5"} {"score": 0.05244296044111252, "chain_id": "3300DTYQT2G17TQN9BWPU0VJ5IYQEK_1_6"} {"score": 0.020976418629288673, "chain_id": "3300DTYQT2G17TQN9BWPU0VJ5IYQEK_1_7"} {"score": 0.010003465227782726, "chain_id": "3300DTYQT2G17TQN9BWPU0VJ5IYQEK_1_8"} {"score": 0.16093574464321136, "chain_id": "3300DTYQT2G17TQN9BWPU0VJ5IYQEK_1_9"} {"score": 0.16526076197624207, "chain_id": "3300DTYQT2G17TQN9BWPU0VJ5IYQEK_1_10"} {"score": 0.9660302996635437, "chain_id": "3E1QT0TDFP87HUSDJ05GTO8BZNM8IZ_1_1"} {"score": 0.9809946417808533, "chain_id": "3E1QT0TDFP87HUSDJ05GTO8BZNM8IZ_1_2"} {"score": 0.9899889230728149, "chain_id": "3E1QT0TDFP87HUSDJ05GTO8BZNM8IZ_1_5"} {"score": 0.1960994452238083, "chain_id": "3E1QT0TDFP87HUSDJ05GTO8BZNM8IZ_1_6"} {"score": 0.7080116271972656, "chain_id": "3E1QT0TDFP87HUSDJ05GTO8BZNM8IZ_1_3"} {"score": 0.5918977856636047, "chain_id": "3E1QT0TDFP87HUSDJ05GTO8BZNM8IZ_1_4"} {"score": 0.9323411583900452, "chain_id": "3E1QT0TDFP87HUSDJ05GTO8BZNM8IZ_1_7"} {"score": 0.3008139729499817, "chain_id": "3E1QT0TDFP87HUSDJ05GTO8BZNM8IZ_1_8"} {"score": 0.08438356220722198, "chain_id": "3E1QT0TDFP87HUSDJ05GTO8BZNM8IZ_1_9"} {"score": 0.06222881004214287, "chain_id": "3E1QT0TDFP87HUSDJ05GTO8BZNM8IZ_1_10"} {"score": 0.9880964756011963, "chain_id": "3YJ6NA41JBFOIXB0NZSRRBI11GLJPO_1_1"} {"score": 0.5554947853088379, "chain_id": "3YJ6NA41JBFOIXB0NZSRRBI11GLJPO_1_5"} {"score": 0.9505621194839478, "chain_id": "3YJ6NA41JBFOIXB0NZSRRBI11GLJPO_1_2"} {"score": 0.8396114706993103, "chain_id": "3YJ6NA41JBFOIXB0NZSRRBI11GLJPO_1_3"} {"score": 0.6702800393104553, "chain_id": "3YJ6NA41JBFOIXB0NZSRRBI11GLJPO_1_4"} {"score": 0.42639869451522827, "chain_id": "3YJ6NA41JBFOIXB0NZSRRBI11GLJPO_1_6"} {"score": 0.24067091941833496, "chain_id": "3YJ6NA41JBFOIXB0NZSRRBI11GLJPO_1_7"} {"score": 0.08640672266483307, "chain_id": "3YJ6NA41JBFOIXB0NZSRRBI11GLJPO_1_8"} {"score": 0.9004074335098267, "chain_id": "3YJ6NA41JBFOIXB0NZSRRBI11GLJPO_1_9"} {"score": 0.0404350571334362, "chain_id": "3YJ6NA41JBFOIXB0NZSRRBI11GLJPO_1_10"} {"score": 0.9459839463233948, "chain_id": "3KRVW3HTZNKBWXXDID9D28FTUPHMSX_1_2"} {"score": 0.8334718346595764, "chain_id": "3KRVW3HTZNKBWXXDID9D28FTUPHMSX_1_4"} {"score": 0.5989881753921509, "chain_id": "3KRVW3HTZNKBWXXDID9D28FTUPHMSX_1_10"} {"score": 0.5063827037811279, "chain_id": "3KRVW3HTZNKBWXXDID9D28FTUPHMSX_1_1"} {"score": 0.8325225710868835, "chain_id": "3KRVW3HTZNKBWXXDID9D28FTUPHMSX_1_3"} {"score": 0.9382896423339844, "chain_id": "3KRVW3HTZNKBWXXDID9D28FTUPHMSX_1_5"} {"score": 0.8678272366523743, "chain_id": "3KRVW3HTZNKBWXXDID9D28FTUPHMSX_1_6"} {"score": 0.31510868668556213, "chain_id": "3KRVW3HTZNKBWXXDID9D28FTUPHMSX_1_7"} {"score": 0.8886202573776245, "chain_id": "3KRVW3HTZNKBWXXDID9D28FTUPHMSX_1_8"} {"score": 0.8950401544570923, "chain_id": "3KRVW3HTZNKBWXXDID9D28FTUPHMSX_1_9"} {"score": 0.48880693316459656, "chain_id": "3WJ1OXY92AFSBC9F7CD3CQKSOJL8A9_1_1"} {"score": 0.11548867076635361, "chain_id": "3WJ1OXY92AFSBC9F7CD3CQKSOJL8A9_1_2"} {"score": 0.5312458872795105, "chain_id": "3WJ1OXY92AFSBC9F7CD3CQKSOJL8A9_1_3"} {"score": 0.3302268385887146, "chain_id": "3WJ1OXY92AFSBC9F7CD3CQKSOJL8A9_1_4"} {"score": 0.06025191769003868, "chain_id": "3WJ1OXY92AFSBC9F7CD3CQKSOJL8A9_1_5"} {"score": 0.24139289557933807, "chain_id": "3WJ1OXY92AFSBC9F7CD3CQKSOJL8A9_1_6"} {"score": 0.10222439467906952, "chain_id": "3WJ1OXY92AFSBC9F7CD3CQKSOJL8A9_1_7"} {"score": 0.49949702620506287, "chain_id": "3WJ1OXY92AFSBC9F7CD3CQKSOJL8A9_1_8"} {"score": 0.023583337664604187, "chain_id": "3WJ1OXY92AFSBC9F7CD3CQKSOJL8A9_1_9"} {"score": 0.046171821653842926, "chain_id": "3WJ1OXY92AFSBC9F7CD3CQKSOJL8A9_1_10"} {"score": 0.8795865178108215, "chain_id": "30X31N5D63PAUWOOLAJ8THKT0Q6SAX_1_1"} {"score": 0.9790488481521606, "chain_id": "30X31N5D63PAUWOOLAJ8THKT0Q6SAX_1_2"} {"score": 0.9260743856430054, "chain_id": "30X31N5D63PAUWOOLAJ8THKT0Q6SAX_1_4"} {"score": 0.5915571451187134, "chain_id": "30X31N5D63PAUWOOLAJ8THKT0Q6SAX_1_5"} {"score": 0.9189905524253845, "chain_id": "30X31N5D63PAUWOOLAJ8THKT0Q6SAX_1_3"} {"score": 0.45578867197036743, "chain_id": "30X31N5D63PAUWOOLAJ8THKT0Q6SAX_1_6"} {"score": 0.3400470018386841, "chain_id": "30X31N5D63PAUWOOLAJ8THKT0Q6SAX_1_7"} {"score": 0.6245846748352051, "chain_id": "30X31N5D63PAUWOOLAJ8THKT0Q6SAX_1_8"} {"score": 0.905224621295929, "chain_id": "30X31N5D63PAUWOOLAJ8THKT0Q6SAX_1_9"} {"score": 0.5341776013374329, "chain_id": "30X31N5D63PAUWOOLAJ8THKT0Q6SAX_1_10"} {"score": 0.9238304495811462, "chain_id": "3C8HJ7UOP7T8X9JRD53LY1CWI10MZG_1_1"} {"score": 0.9792511463165283, "chain_id": "3C8HJ7UOP7T8X9JRD53LY1CWI10MZG_1_2"} {"score": 0.9786314964294434, "chain_id": "3C8HJ7UOP7T8X9JRD53LY1CWI10MZG_1_3"} {"score": 0.8495381474494934, "chain_id": "3C8HJ7UOP7T8X9JRD53LY1CWI10MZG_1_4"} {"score": 0.9405500888824463, "chain_id": "3C8HJ7UOP7T8X9JRD53LY1CWI10MZG_1_5"} {"score": 0.8878045678138733, "chain_id": "3C8HJ7UOP7T8X9JRD53LY1CWI10MZG_1_6"} {"score": 0.1833026111125946, "chain_id": "3C8HJ7UOP7T8X9JRD53LY1CWI10MZG_1_7"} {"score": 0.0593782402575016, "chain_id": "3C8HJ7UOP7T8X9JRD53LY1CWI10MZG_1_8"} {"score": 0.2150518149137497, "chain_id": "3C8HJ7UOP7T8X9JRD53LY1CWI10MZG_1_9"} {"score": 0.10216104239225388, "chain_id": "3C8HJ7UOP7T8X9JRD53LY1CWI10MZG_1_10"} {"score": 0.928570032119751, "chain_id": "3XLBSAQ9Z4BPC6C49Z1WFJF6NSZZ78_1_1"} {"score": 0.9315063953399658, "chain_id": "3XLBSAQ9Z4BPC6C49Z1WFJF6NSZZ78_1_2"} {"score": 0.4112953841686249, "chain_id": "3XLBSAQ9Z4BPC6C49Z1WFJF6NSZZ78_1_3"} {"score": 0.9436720013618469, "chain_id": "3XLBSAQ9Z4BPC6C49Z1WFJF6NSZZ78_1_7"} {"score": 0.1725205034017563, "chain_id": "3XLBSAQ9Z4BPC6C49Z1WFJF6NSZZ78_1_4"} {"score": 0.11424032598733902, "chain_id": "3XLBSAQ9Z4BPC6C49Z1WFJF6NSZZ78_1_5"} {"score": 0.7151238322257996, "chain_id": "3XLBSAQ9Z4BPC6C49Z1WFJF6NSZZ78_1_6"} {"score": 0.12212931364774704, "chain_id": "3XLBSAQ9Z4BPC6C49Z1WFJF6NSZZ78_1_8"} {"score": 0.8445336818695068, "chain_id": "3XLBSAQ9Z4BPC6C49Z1WFJF6NSZZ78_1_9"} {"score": 0.5087730884552002, "chain_id": "3XLBSAQ9Z4BPC6C49Z1WFJF6NSZZ78_1_10"} {"score": 0.9139493107795715, "chain_id": "34X6J5FLPTX9I9CFNC7GRG8B9M0QJ2_1_1"} {"score": 0.9609729647636414, "chain_id": "34X6J5FLPTX9I9CFNC7GRG8B9M0QJ2_1_2"} {"score": 0.02400178462266922, "chain_id": "34X6J5FLPTX9I9CFNC7GRG8B9M0QJ2_1_6"} {"score": 0.16145634651184082, "chain_id": "34X6J5FLPTX9I9CFNC7GRG8B9M0QJ2_1_3"} {"score": 0.05033571273088455, "chain_id": "34X6J5FLPTX9I9CFNC7GRG8B9M0QJ2_1_4"} {"score": 0.045995473861694336, "chain_id": "34X6J5FLPTX9I9CFNC7GRG8B9M0QJ2_1_5"} {"score": 0.7975853681564331, "chain_id": "34X6J5FLPTX9I9CFNC7GRG8B9M0QJ2_1_7"} {"score": 0.7230958938598633, "chain_id": "34X6J5FLPTX9I9CFNC7GRG8B9M0QJ2_1_8"} {"score": 0.12243123352527618, "chain_id": "34X6J5FLPTX9I9CFNC7GRG8B9M0QJ2_1_9"} {"score": 0.03979642316699028, "chain_id": "34X6J5FLPTX9I9CFNC7GRG8B9M0QJ2_1_10"} {"score": 0.9416494369506836, "chain_id": "3DY4FPOOA1NIL5R9HGAZZUTA1UQVR9_1_1"} {"score": 0.890999436378479, "chain_id": "3DY4FPOOA1NIL5R9HGAZZUTA1UQVR9_1_2"} {"score": 0.8910493850708008, "chain_id": "3DY4FPOOA1NIL5R9HGAZZUTA1UQVR9_1_3"} {"score": 0.7713608741760254, "chain_id": "3DY4FPOOA1NIL5R9HGAZZUTA1UQVR9_1_4"} {"score": 0.1646842658519745, "chain_id": "3DY4FPOOA1NIL5R9HGAZZUTA1UQVR9_1_5"} {"score": 0.09320870786905289, "chain_id": "3DY4FPOOA1NIL5R9HGAZZUTA1UQVR9_1_6"} {"score": 0.10206934064626694, "chain_id": "3DY4FPOOA1NIL5R9HGAZZUTA1UQVR9_1_7"} {"score": 0.055062148720026016, "chain_id": "3DY4FPOOA1NIL5R9HGAZZUTA1UQVR9_1_8"} {"score": 0.03504324331879616, "chain_id": "3DY4FPOOA1NIL5R9HGAZZUTA1UQVR9_1_9"} {"score": 0.07180893421173096, "chain_id": "3DY4FPOOA1NIL5R9HGAZZUTA1UQVR9_1_10"} {"score": 0.9706440567970276, "chain_id": "3TY7ZAOG5FJG50DYOZDDDPH6C8JK0H_1_1"} {"score": 0.16442173719406128, "chain_id": "3TY7ZAOG5FJG50DYOZDDDPH6C8JK0H_1_2"} {"score": 0.06612637639045715, "chain_id": "3TY7ZAOG5FJG50DYOZDDDPH6C8JK0H_1_3"} {"score": 0.06378040462732315, "chain_id": "3TY7ZAOG5FJG50DYOZDDDPH6C8JK0H_1_4"} {"score": 0.05445870757102966, "chain_id": "3TY7ZAOG5FJG50DYOZDDDPH6C8JK0H_1_5"} {"score": 0.1707061380147934, "chain_id": "3TY7ZAOG5FJG50DYOZDDDPH6C8JK0H_1_6"} {"score": 0.19823598861694336, "chain_id": "3TY7ZAOG5FJG50DYOZDDDPH6C8JK0H_1_7"} {"score": 0.13720405101776123, "chain_id": "3TY7ZAOG5FJG50DYOZDDDPH6C8JK0H_1_8"} {"score": 0.18514658510684967, "chain_id": "3TY7ZAOG5FJG50DYOZDDDPH6C8JK0H_1_9"} {"score": 0.21085476875305176, "chain_id": "3TY7ZAOG5FJG50DYOZDDDPH6C8JK0H_1_10"} {"score": 0.9675098061561584, "chain_id": "3BV8HQ2ZZW057YQREXG5SCO1LCH6AM_1_1"} {"score": 0.9686607718467712, "chain_id": "3BV8HQ2ZZW057YQREXG5SCO1LCH6AM_1_2"} {"score": 0.9609179496765137, "chain_id": "3BV8HQ2ZZW057YQREXG5SCO1LCH6AM_1_3"} {"score": 0.16335009038448334, "chain_id": "3BV8HQ2ZZW057YQREXG5SCO1LCH6AM_1_4"} {"score": 0.13387320935726166, "chain_id": "3BV8HQ2ZZW057YQREXG5SCO1LCH6AM_1_5"} {"score": 0.08047284185886383, "chain_id": "3BV8HQ2ZZW057YQREXG5SCO1LCH6AM_1_6"} {"score": 0.05880990996956825, "chain_id": "3BV8HQ2ZZW057YQREXG5SCO1LCH6AM_1_7"} {"score": 0.1340886801481247, "chain_id": "3BV8HQ2ZZW057YQREXG5SCO1LCH6AM_1_8"} {"score": 0.11687721312046051, "chain_id": "3BV8HQ2ZZW057YQREXG5SCO1LCH6AM_1_9"} {"score": 0.057836584746837616, "chain_id": "3BV8HQ2ZZW057YQREXG5SCO1LCH6AM_1_10"} {"score": 0.9593425989151001, "chain_id": "36U2A8VAG1YD2V9JW7OM5HBQPARYK4_1_1"} {"score": 0.38863733410835266, "chain_id": "36U2A8VAG1YD2V9JW7OM5HBQPARYK4_1_3"} {"score": 0.4457578659057617, "chain_id": "36U2A8VAG1YD2V9JW7OM5HBQPARYK4_1_2"} {"score": 0.5915741920471191, "chain_id": "36U2A8VAG1YD2V9JW7OM5HBQPARYK4_1_4"} {"score": 0.06723500043153763, "chain_id": "36U2A8VAG1YD2V9JW7OM5HBQPARYK4_1_5"} {"score": 0.5162129998207092, "chain_id": "36U2A8VAG1YD2V9JW7OM5HBQPARYK4_1_6"} {"score": 0.04551341384649277, "chain_id": "36U2A8VAG1YD2V9JW7OM5HBQPARYK4_1_7"} {"score": 0.04656742513179779, "chain_id": "36U2A8VAG1YD2V9JW7OM5HBQPARYK4_1_8"} {"score": 0.35623931884765625, "chain_id": "36U2A8VAG1YD2V9JW7OM5HBQPARYK4_1_9"} {"score": 0.07357979565858841, "chain_id": "36U2A8VAG1YD2V9JW7OM5HBQPARYK4_1_10"} {"score": 0.7407547831535339, "chain_id": "3Y5140Z9DXFSNMRU5H7RFA31RZVIP9_1_2"} {"score": 0.4861578941345215, "chain_id": "3Y5140Z9DXFSNMRU5H7RFA31RZVIP9_1_10"} {"score": 0.3044706881046295, "chain_id": "3Y5140Z9DXFSNMRU5H7RFA31RZVIP9_1_1"} {"score": 0.6495702266693115, "chain_id": "3Y5140Z9DXFSNMRU5H7RFA31RZVIP9_1_3"} {"score": 0.2377336323261261, "chain_id": "3Y5140Z9DXFSNMRU5H7RFA31RZVIP9_1_4"} {"score": 0.12330301105976105, "chain_id": "3Y5140Z9DXFSNMRU5H7RFA31RZVIP9_1_5"} {"score": 0.36778655648231506, "chain_id": "3Y5140Z9DXFSNMRU5H7RFA31RZVIP9_1_6"} {"score": 0.8032005429267883, "chain_id": "3Y5140Z9DXFSNMRU5H7RFA31RZVIP9_1_7"} {"score": 0.0868263840675354, "chain_id": "3Y5140Z9DXFSNMRU5H7RFA31RZVIP9_1_8"} {"score": 0.2753188908100128, "chain_id": "3Y5140Z9DXFSNMRU5H7RFA31RZVIP9_1_9"} {"score": 0.9383996725082397, "chain_id": "37FMASSAYCQQJSQKMCPQKQYCCYMBIV_1_1"} {"score": 0.34463560581207275, "chain_id": "37FMASSAYCQQJSQKMCPQKQYCCYMBIV_1_6"} {"score": 0.17158176004886627, "chain_id": "37FMASSAYCQQJSQKMCPQKQYCCYMBIV_1_2"} {"score": 0.06715737283229828, "chain_id": "37FMASSAYCQQJSQKMCPQKQYCCYMBIV_1_3"} {"score": 0.05910707637667656, "chain_id": "37FMASSAYCQQJSQKMCPQKQYCCYMBIV_1_4"} {"score": 0.055264923721551895, "chain_id": "37FMASSAYCQQJSQKMCPQKQYCCYMBIV_1_5"} {"score": 0.17913715541362762, "chain_id": "37FMASSAYCQQJSQKMCPQKQYCCYMBIV_1_7"} {"score": 0.10584507137537003, "chain_id": "37FMASSAYCQQJSQKMCPQKQYCCYMBIV_1_8"} {"score": 0.291666179895401, "chain_id": "37FMASSAYCQQJSQKMCPQKQYCCYMBIV_1_9"} {"score": 0.29301518201828003, "chain_id": "37FMASSAYCQQJSQKMCPQKQYCCYMBIV_1_10"} {"score": 0.8170627951622009, "chain_id": "3IJXV6UZ1XIDZZ79I9BGK53GSA7RIK_1_3"} {"score": 0.9394452571868896, "chain_id": "3IJXV6UZ1XIDZZ79I9BGK53GSA7RIK_1_8"} {"score": 0.1805572360754013, "chain_id": "3IJXV6UZ1XIDZZ79I9BGK53GSA7RIK_1_10"} {"score": 0.20426402986049652, "chain_id": "3IJXV6UZ1XIDZZ79I9BGK53GSA7RIK_1_1"} {"score": 0.09828375279903412, "chain_id": "3IJXV6UZ1XIDZZ79I9BGK53GSA7RIK_1_2"} {"score": 0.4984123706817627, "chain_id": "3IJXV6UZ1XIDZZ79I9BGK53GSA7RIK_1_4"} {"score": 0.28832653164863586, "chain_id": "3IJXV6UZ1XIDZZ79I9BGK53GSA7RIK_1_5"} {"score": 0.1638599932193756, "chain_id": "3IJXV6UZ1XIDZZ79I9BGK53GSA7RIK_1_6"} {"score": 0.07020781934261322, "chain_id": "3IJXV6UZ1XIDZZ79I9BGK53GSA7RIK_1_7"} {"score": 0.13325735926628113, "chain_id": "3IJXV6UZ1XIDZZ79I9BGK53GSA7RIK_1_9"} {"score": 0.7555909156799316, "chain_id": "3KAKFY4PGU1LGXM77JAK2700M4RI3N_1_2"} {"score": 0.9834268093109131, "chain_id": "3KAKFY4PGU1LGXM77JAK2700M4RI3N_1_4"} {"score": 0.7451780438423157, "chain_id": "3KAKFY4PGU1LGXM77JAK2700M4RI3N_1_5"} {"score": 0.49353858828544617, "chain_id": "3KAKFY4PGU1LGXM77JAK2700M4RI3N_1_9"} {"score": 0.9667642712593079, "chain_id": "3KAKFY4PGU1LGXM77JAK2700M4RI3N_1_1"} {"score": 0.4815290868282318, "chain_id": "3KAKFY4PGU1LGXM77JAK2700M4RI3N_1_3"} {"score": 0.26032519340515137, "chain_id": "3KAKFY4PGU1LGXM77JAK2700M4RI3N_1_6"} {"score": 0.8656952977180481, "chain_id": "3KAKFY4PGU1LGXM77JAK2700M4RI3N_1_7"} {"score": 0.05321730300784111, "chain_id": "3KAKFY4PGU1LGXM77JAK2700M4RI3N_1_8"} {"score": 0.05628504604101181, "chain_id": "3KAKFY4PGU1LGXM77JAK2700M4RI3N_1_10"} {"score": 0.8304702043533325, "chain_id": "3KJYX6QCM9A1NH8W9B1QX37JQD0JV8_1_3"} {"score": 0.9746648669242859, "chain_id": "3KJYX6QCM9A1NH8W9B1QX37JQD0JV8_1_8"} {"score": 0.30508890748023987, "chain_id": "3KJYX6QCM9A1NH8W9B1QX37JQD0JV8_1_1"} {"score": 0.23644742369651794, "chain_id": "3KJYX6QCM9A1NH8W9B1QX37JQD0JV8_1_2"} {"score": 0.4908422827720642, "chain_id": "3KJYX6QCM9A1NH8W9B1QX37JQD0JV8_1_4"} {"score": 0.29459813237190247, "chain_id": "3KJYX6QCM9A1NH8W9B1QX37JQD0JV8_1_5"} {"score": 0.14852288365364075, "chain_id": "3KJYX6QCM9A1NH8W9B1QX37JQD0JV8_1_6"} {"score": 0.05834552273154259, "chain_id": "3KJYX6QCM9A1NH8W9B1QX37JQD0JV8_1_7"} {"score": 0.1843043565750122, "chain_id": "3KJYX6QCM9A1NH8W9B1QX37JQD0JV8_1_9"} {"score": 0.44167017936706543, "chain_id": "3KJYX6QCM9A1NH8W9B1QX37JQD0JV8_1_10"} {"score": 0.9875463843345642, "chain_id": "3TAYZSBPLL7LPTTK8VQTNZ1VP0ES2N_1_4"} {"score": 0.9577633738517761, "chain_id": "3TAYZSBPLL7LPTTK8VQTNZ1VP0ES2N_1_9"} {"score": 0.928462028503418, "chain_id": "3TAYZSBPLL7LPTTK8VQTNZ1VP0ES2N_1_10"} {"score": 0.9879844188690186, "chain_id": "3TAYZSBPLL7LPTTK8VQTNZ1VP0ES2N_1_1"} {"score": 0.9815726280212402, "chain_id": "3TAYZSBPLL7LPTTK8VQTNZ1VP0ES2N_1_2"} {"score": 0.9843961000442505, "chain_id": "3TAYZSBPLL7LPTTK8VQTNZ1VP0ES2N_1_3"} {"score": 0.359526664018631, "chain_id": "3TAYZSBPLL7LPTTK8VQTNZ1VP0ES2N_1_5"} {"score": 0.38629624247550964, "chain_id": "3TAYZSBPLL7LPTTK8VQTNZ1VP0ES2N_1_6"} {"score": 0.28117093443870544, "chain_id": "3TAYZSBPLL7LPTTK8VQTNZ1VP0ES2N_1_7"} {"score": 0.3898228108882904, "chain_id": "3TAYZSBPLL7LPTTK8VQTNZ1VP0ES2N_1_8"} {"score": 0.3743549585342407, "chain_id": "3ATPCQ38J897QI0XKGBXB38UI93YAF_1_1"} {"score": 0.4139532446861267, "chain_id": "3ATPCQ38J897QI0XKGBXB38UI93YAF_1_2"} {"score": 0.10483521223068237, "chain_id": "3ATPCQ38J897QI0XKGBXB38UI93YAF_1_3"} {"score": 0.0248115174472332, "chain_id": "3ATPCQ38J897QI0XKGBXB38UI93YAF_1_4"} {"score": 0.047469817101955414, "chain_id": "3ATPCQ38J897QI0XKGBXB38UI93YAF_1_5"} {"score": 0.14452104270458221, "chain_id": "3ATPCQ38J897QI0XKGBXB38UI93YAF_1_6"} {"score": 0.052546024322509766, "chain_id": "3ATPCQ38J897QI0XKGBXB38UI93YAF_1_7"} {"score": 0.13885195553302765, "chain_id": "3ATPCQ38J897QI0XKGBXB38UI93YAF_1_8"} {"score": 0.04812220484018326, "chain_id": "3ATPCQ38J897QI0XKGBXB38UI93YAF_1_9"} {"score": 0.29920223355293274, "chain_id": "3ATPCQ38J897QI0XKGBXB38UI93YAF_1_10"} {"score": 0.9900362491607666, "chain_id": "3LOZAJ85YDCTLAFJ25WGM7IN59JX2S_1_1"} {"score": 0.7508453726768494, "chain_id": "3LOZAJ85YDCTLAFJ25WGM7IN59JX2S_1_6"} {"score": 0.6330910921096802, "chain_id": "3LOZAJ85YDCTLAFJ25WGM7IN59JX2S_1_2"} {"score": 0.8115637898445129, "chain_id": "3LOZAJ85YDCTLAFJ25WGM7IN59JX2S_1_3"} {"score": 0.9347298741340637, "chain_id": "3LOZAJ85YDCTLAFJ25WGM7IN59JX2S_1_4"} {"score": 0.8276845812797546, "chain_id": "3LOZAJ85YDCTLAFJ25WGM7IN59JX2S_1_5"} {"score": 0.7628861665725708, "chain_id": "3LOZAJ85YDCTLAFJ25WGM7IN59JX2S_1_7"} {"score": 0.4892266094684601, "chain_id": "3LOZAJ85YDCTLAFJ25WGM7IN59JX2S_1_8"} {"score": 0.6252624988555908, "chain_id": "3LOZAJ85YDCTLAFJ25WGM7IN59JX2S_1_9"} {"score": 0.14368008077144623, "chain_id": "3LOZAJ85YDCTLAFJ25WGM7IN59JX2S_1_10"} {"score": 0.03833107650279999, "chain_id": "31IBVUNM9SYLIFM0QLA5I5FRY1LVFA_1_6"} {"score": 0.30803096294403076, "chain_id": "31IBVUNM9SYLIFM0QLA5I5FRY1LVFA_1_1"} {"score": 0.1201343834400177, "chain_id": "31IBVUNM9SYLIFM0QLA5I5FRY1LVFA_1_2"} {"score": 0.05527867004275322, "chain_id": "31IBVUNM9SYLIFM0QLA5I5FRY1LVFA_1_3"} {"score": 0.052195023745298386, "chain_id": "31IBVUNM9SYLIFM0QLA5I5FRY1LVFA_1_4"} {"score": 0.03564828634262085, "chain_id": "31IBVUNM9SYLIFM0QLA5I5FRY1LVFA_1_5"} {"score": 0.05239356309175491, "chain_id": "31IBVUNM9SYLIFM0QLA5I5FRY1LVFA_1_7"} {"score": 0.11181193590164185, "chain_id": "31IBVUNM9SYLIFM0QLA5I5FRY1LVFA_1_8"} {"score": 0.15709912776947021, "chain_id": "31IBVUNM9SYLIFM0QLA5I5FRY1LVFA_1_9"} {"score": 0.06103675439953804, "chain_id": "31IBVUNM9SYLIFM0QLA5I5FRY1LVFA_1_10"} {"score": 0.5034213066101074, "chain_id": "34PGFRQONOAE2681ZL6MJ5QXYI9JWI_1_3"} {"score": 0.9806026816368103, "chain_id": "34PGFRQONOAE2681ZL6MJ5QXYI9JWI_1_4"} {"score": 0.8113434314727783, "chain_id": "34PGFRQONOAE2681ZL6MJ5QXYI9JWI_1_7"} {"score": 0.7093861699104309, "chain_id": "34PGFRQONOAE2681ZL6MJ5QXYI9JWI_1_8"} {"score": 0.6652227640151978, "chain_id": "34PGFRQONOAE2681ZL6MJ5QXYI9JWI_1_1"} {"score": 0.32578927278518677, "chain_id": "34PGFRQONOAE2681ZL6MJ5QXYI9JWI_1_2"} {"score": 0.254615843296051, "chain_id": "34PGFRQONOAE2681ZL6MJ5QXYI9JWI_1_5"} {"score": 0.8010282516479492, "chain_id": "34PGFRQONOAE2681ZL6MJ5QXYI9JWI_1_6"} {"score": 0.378629207611084, "chain_id": "34PGFRQONOAE2681ZL6MJ5QXYI9JWI_1_9"} {"score": 0.15612992644309998, "chain_id": "34PGFRQONOAE2681ZL6MJ5QXYI9JWI_1_10"} {"score": 0.9713186621665955, "chain_id": "3PIWWX1FJJ5SWM82SMN7UFWPWRLJJI_1_5"} {"score": 0.16512881219387054, "chain_id": "3PIWWX1FJJ5SWM82SMN7UFWPWRLJJI_1_1"} {"score": 0.18072976171970367, "chain_id": "3PIWWX1FJJ5SWM82SMN7UFWPWRLJJI_1_2"} {"score": 0.9177088737487793, "chain_id": "3PIWWX1FJJ5SWM82SMN7UFWPWRLJJI_1_3"} {"score": 0.35466116666793823, "chain_id": "3PIWWX1FJJ5SWM82SMN7UFWPWRLJJI_1_4"} {"score": 0.4687047004699707, "chain_id": "3PIWWX1FJJ5SWM82SMN7UFWPWRLJJI_1_6"} {"score": 0.24508905410766602, "chain_id": "3PIWWX1FJJ5SWM82SMN7UFWPWRLJJI_1_7"} {"score": 0.036983512341976166, "chain_id": "3PIWWX1FJJ5SWM82SMN7UFWPWRLJJI_1_8"} {"score": 0.21746404469013214, "chain_id": "3PIWWX1FJJ5SWM82SMN7UFWPWRLJJI_1_9"} {"score": 0.031001003459095955, "chain_id": "3PIWWX1FJJ5SWM82SMN7UFWPWRLJJI_1_10"} {"score": 0.98785001039505, "chain_id": "3WJ1OXY92AFSBC9F7CD3CQKSQTY8A8_1_1"} {"score": 0.9887341260910034, "chain_id": "3WJ1OXY92AFSBC9F7CD3CQKSQTY8A8_1_2"} {"score": 0.9691790342330933, "chain_id": "3WJ1OXY92AFSBC9F7CD3CQKSQTY8A8_1_4"} {"score": 0.8008118271827698, "chain_id": "3WJ1OXY92AFSBC9F7CD3CQKSQTY8A8_1_5"} {"score": 0.09170914441347122, "chain_id": "3WJ1OXY92AFSBC9F7CD3CQKSQTY8A8_1_7"} {"score": 0.9164067506790161, "chain_id": "3WJ1OXY92AFSBC9F7CD3CQKSQTY8A8_1_8"} {"score": 0.9612295627593994, "chain_id": "3WJ1OXY92AFSBC9F7CD3CQKSQTY8A8_1_10"} {"score": 0.9393413066864014, "chain_id": "3WJ1OXY92AFSBC9F7CD3CQKSQTY8A8_1_3"} {"score": 0.18095500767230988, "chain_id": "3WJ1OXY92AFSBC9F7CD3CQKSQTY8A8_1_6"} {"score": 0.05637788027524948, "chain_id": "3WJ1OXY92AFSBC9F7CD3CQKSQTY8A8_1_9"} {"score": 0.9812619090080261, "chain_id": "3IXEICO792IAMUP0KX7MNHET8NU6T6_1_2"} {"score": 0.32199573516845703, "chain_id": "3IXEICO792IAMUP0KX7MNHET8NU6T6_1_1"} {"score": 0.6863413453102112, "chain_id": "3IXEICO792IAMUP0KX7MNHET8NU6T6_1_3"} {"score": 0.02816297858953476, "chain_id": "3IXEICO792IAMUP0KX7MNHET8NU6T6_1_4"} {"score": 0.2874455153942108, "chain_id": "3IXEICO792IAMUP0KX7MNHET8NU6T6_1_5"} {"score": 0.4319772720336914, "chain_id": "3IXEICO792IAMUP0KX7MNHET8NU6T6_1_6"} {"score": 0.5041524171829224, "chain_id": "3IXEICO792IAMUP0KX7MNHET8NU6T6_1_7"} {"score": 0.6802955865859985, "chain_id": "3IXEICO792IAMUP0KX7MNHET8NU6T6_1_8"} {"score": 0.5577141642570496, "chain_id": "3IXEICO792IAMUP0KX7MNHET8NU6T6_1_9"} {"score": 0.0641956478357315, "chain_id": "3IXEICO792IAMUP0KX7MNHET8NU6T6_1_10"} {"score": 0.9879844188690186, "chain_id": "37C0GNLMHF2355T3Y777IDW76IZD6M_1_1"} {"score": 0.9815726280212402, "chain_id": "37C0GNLMHF2355T3Y777IDW76IZD6M_1_2"} {"score": 0.9843961000442505, "chain_id": "37C0GNLMHF2355T3Y777IDW76IZD6M_1_3"} {"score": 0.9875463843345642, "chain_id": "37C0GNLMHF2355T3Y777IDW76IZD6M_1_4"} {"score": 0.38629624247550964, "chain_id": "37C0GNLMHF2355T3Y777IDW76IZD6M_1_6"} {"score": 0.9577633738517761, "chain_id": "37C0GNLMHF2355T3Y777IDW76IZD6M_1_9"} {"score": 0.928462028503418, "chain_id": "37C0GNLMHF2355T3Y777IDW76IZD6M_1_10"} {"score": 0.359526664018631, "chain_id": "37C0GNLMHF2355T3Y777IDW76IZD6M_1_5"} {"score": 0.28117093443870544, "chain_id": "37C0GNLMHF2355T3Y777IDW76IZD6M_1_7"} {"score": 0.3898228108882904, "chain_id": "37C0GNLMHF2355T3Y777IDW76IZD6M_1_8"} {"score": 0.9792943596839905, "chain_id": "34J10VATJFXDNYS95UMGFFTBWO7QIK_1_1"} {"score": 0.9483195543289185, "chain_id": "34J10VATJFXDNYS95UMGFFTBWO7QIK_1_2"} {"score": 0.9465410113334656, "chain_id": "34J10VATJFXDNYS95UMGFFTBWO7QIK_1_3"} {"score": 0.9359816312789917, "chain_id": "34J10VATJFXDNYS95UMGFFTBWO7QIK_1_4"} {"score": 0.9612663388252258, "chain_id": "34J10VATJFXDNYS95UMGFFTBWO7QIK_1_6"} {"score": 0.902824878692627, "chain_id": "34J10VATJFXDNYS95UMGFFTBWO7QIK_1_7"} {"score": 0.9409307837486267, "chain_id": "34J10VATJFXDNYS95UMGFFTBWO7QIK_1_10"} {"score": 0.5878410935401917, "chain_id": "34J10VATJFXDNYS95UMGFFTBWO7QIK_1_5"} {"score": 0.8886701464653015, "chain_id": "34J10VATJFXDNYS95UMGFFTBWO7QIK_1_8"} {"score": 0.914993941783905, "chain_id": "34J10VATJFXDNYS95UMGFFTBWO7QIK_1_9"} {"score": 0.978243350982666, "chain_id": "3F6HPJW4JDZEWAATS00UKO4GV4JW2X_1_1"} {"score": 0.9274653792381287, "chain_id": "3F6HPJW4JDZEWAATS00UKO4GV4JW2X_1_5"} {"score": 0.9888148903846741, "chain_id": "3F6HPJW4JDZEWAATS00UKO4GV4JW2X_1_6"} {"score": 0.9684508442878723, "chain_id": "3F6HPJW4JDZEWAATS00UKO4GV4JW2X_1_2"} {"score": 0.3023146688938141, "chain_id": "3F6HPJW4JDZEWAATS00UKO4GV4JW2X_1_3"} {"score": 0.7436468601226807, "chain_id": "3F6HPJW4JDZEWAATS00UKO4GV4JW2X_1_4"} {"score": 0.5572948455810547, "chain_id": "3F6HPJW4JDZEWAATS00UKO4GV4JW2X_1_7"} {"score": 0.37136608362197876, "chain_id": "3F6HPJW4JDZEWAATS00UKO4GV4JW2X_1_8"} {"score": 0.4773459732532501, "chain_id": "3F6HPJW4JDZEWAATS00UKO4GV4JW2X_1_9"} {"score": 0.2437664121389389, "chain_id": "3F6HPJW4JDZEWAATS00UKO4GV4JW2X_1_10"} {"score": 0.9506145715713501, "chain_id": "3FTYUGLFSUK7M1TPTOX2Q7I7842D5G_1_1"} {"score": 0.7527263164520264, "chain_id": "3FTYUGLFSUK7M1TPTOX2Q7I7842D5G_1_3"} {"score": 0.19707296788692474, "chain_id": "3FTYUGLFSUK7M1TPTOX2Q7I7842D5G_1_5"} {"score": 0.8939962387084961, "chain_id": "3FTYUGLFSUK7M1TPTOX2Q7I7842D5G_1_2"} {"score": 0.39363428950309753, "chain_id": "3FTYUGLFSUK7M1TPTOX2Q7I7842D5G_1_4"} {"score": 0.05210435017943382, "chain_id": "3FTYUGLFSUK7M1TPTOX2Q7I7842D5G_1_6"} {"score": 0.21099571883678436, "chain_id": "3FTYUGLFSUK7M1TPTOX2Q7I7842D5G_1_7"} {"score": 0.18204006552696228, "chain_id": "3FTYUGLFSUK7M1TPTOX2Q7I7842D5G_1_8"} {"score": 0.2887173295021057, "chain_id": "3FTYUGLFSUK7M1TPTOX2Q7I7842D5G_1_9"} {"score": 0.45818960666656494, "chain_id": "3FTYUGLFSUK7M1TPTOX2Q7I7842D5G_1_10"} {"score": 0.9460834860801697, "chain_id": "3RYC5T2D73S5GLUDV410T24SE7TRPP_1_1"} {"score": 0.9467577934265137, "chain_id": "3RYC5T2D73S5GLUDV410T24SE7TRPP_1_3"} {"score": 0.991161584854126, "chain_id": "3RYC5T2D73S5GLUDV410T24SE7TRPP_1_4"} {"score": 0.9914063215255737, "chain_id": "3RYC5T2D73S5GLUDV410T24SE7TRPP_1_2"} {"score": 0.45178455114364624, "chain_id": "3RYC5T2D73S5GLUDV410T24SE7TRPP_1_5"} {"score": 0.20183368027210236, "chain_id": "3RYC5T2D73S5GLUDV410T24SE7TRPP_1_6"} {"score": 0.11688536405563354, "chain_id": "3RYC5T2D73S5GLUDV410T24SE7TRPP_1_7"} {"score": 0.38960838317871094, "chain_id": "3RYC5T2D73S5GLUDV410T24SE7TRPP_1_8"} {"score": 0.349208265542984, "chain_id": "3RYC5T2D73S5GLUDV410T24SE7TRPP_1_9"} {"score": 0.12202468514442444, "chain_id": "3RYC5T2D73S5GLUDV410T24SE7TRPP_1_10"} {"score": 0.019492629915475845, "chain_id": "3Q5ZZ9ZEVOEV56XYCGMM4F46Y9658W_1_7"} {"score": 0.3481845259666443, "chain_id": "3Q5ZZ9ZEVOEV56XYCGMM4F46Y9658W_1_1"} {"score": 0.3895142376422882, "chain_id": "3Q5ZZ9ZEVOEV56XYCGMM4F46Y9658W_1_2"} {"score": 0.19332857429981232, "chain_id": "3Q5ZZ9ZEVOEV56XYCGMM4F46Y9658W_1_3"} {"score": 0.36408036947250366, "chain_id": "3Q5ZZ9ZEVOEV56XYCGMM4F46Y9658W_1_4"} {"score": 0.1035015657544136, "chain_id": "3Q5ZZ9ZEVOEV56XYCGMM4F46Y9658W_1_5"} {"score": 0.21314725279808044, "chain_id": "3Q5ZZ9ZEVOEV56XYCGMM4F46Y9658W_1_6"} {"score": 0.31587862968444824, "chain_id": "3Q5ZZ9ZEVOEV56XYCGMM4F46Y9658W_1_8"} {"score": 0.02716837264597416, "chain_id": "3Q5ZZ9ZEVOEV56XYCGMM4F46Y9658W_1_9"} {"score": 0.02442147769033909, "chain_id": "3Q5ZZ9ZEVOEV56XYCGMM4F46Y9658W_1_10"} {"score": 0.8756793737411499, "chain_id": "39DD6S19JPAALLREW7F2LT7NAGQZEK_1_2"} {"score": 0.931439995765686, "chain_id": "39DD6S19JPAALLREW7F2LT7NAGQZEK_1_4"} {"score": 0.6435291171073914, "chain_id": "39DD6S19JPAALLREW7F2LT7NAGQZEK_1_5"} {"score": 0.40105655789375305, "chain_id": "39DD6S19JPAALLREW7F2LT7NAGQZEK_1_8"} {"score": 0.6586593985557556, "chain_id": "39DD6S19JPAALLREW7F2LT7NAGQZEK_1_1"} {"score": 0.9549263715744019, "chain_id": "39DD6S19JPAALLREW7F2LT7NAGQZEK_1_3"} {"score": 0.9079769849777222, "chain_id": "39DD6S19JPAALLREW7F2LT7NAGQZEK_1_6"} {"score": 0.712008535861969, "chain_id": "39DD6S19JPAALLREW7F2LT7NAGQZEK_1_7"} {"score": 0.5104432702064514, "chain_id": "39DD6S19JPAALLREW7F2LT7NAGQZEK_1_9"} {"score": 0.2658531069755554, "chain_id": "39DD6S19JPAALLREW7F2LT7NAGQZEK_1_10"} {"score": 0.9099897146224976, "chain_id": "3EA3QWIZ4IUQFEK1MYGBKK4YHNATIQ_1_1"} {"score": 0.6755364537239075, "chain_id": "3EA3QWIZ4IUQFEK1MYGBKK4YHNATIQ_1_4"} {"score": 0.21082116663455963, "chain_id": "3EA3QWIZ4IUQFEK1MYGBKK4YHNATIQ_1_8"} {"score": 0.310086727142334, "chain_id": "3EA3QWIZ4IUQFEK1MYGBKK4YHNATIQ_1_9"} {"score": 0.13184833526611328, "chain_id": "3EA3QWIZ4IUQFEK1MYGBKK4YHNATIQ_1_2"} {"score": 0.34458643198013306, "chain_id": "3EA3QWIZ4IUQFEK1MYGBKK4YHNATIQ_1_3"} {"score": 0.11835798621177673, "chain_id": "3EA3QWIZ4IUQFEK1MYGBKK4YHNATIQ_1_5"} {"score": 0.8147692680358887, "chain_id": "3EA3QWIZ4IUQFEK1MYGBKK4YHNATIQ_1_6"} {"score": 0.2762663662433624, "chain_id": "3EA3QWIZ4IUQFEK1MYGBKK4YHNATIQ_1_7"} {"score": 0.5227175951004028, "chain_id": "3EA3QWIZ4IUQFEK1MYGBKK4YHNATIQ_1_10"} {"score": 0.9857431054115295, "chain_id": "3IOEN3P9S7I9DADRIENCHBVYHNN16F_1_2"} {"score": 0.9793358445167542, "chain_id": "3IOEN3P9S7I9DADRIENCHBVYHNN16F_1_3"} {"score": 0.9914166331291199, "chain_id": "3IOEN3P9S7I9DADRIENCHBVYHNN16F_1_4"} {"score": 0.9919914603233337, "chain_id": "3IOEN3P9S7I9DADRIENCHBVYHNN16F_1_5"} {"score": 0.9881376624107361, "chain_id": "3IOEN3P9S7I9DADRIENCHBVYHNN16F_1_6"} {"score": 0.9331756234169006, "chain_id": "3IOEN3P9S7I9DADRIENCHBVYHNN16F_1_7"} {"score": 0.9881154298782349, "chain_id": "3IOEN3P9S7I9DADRIENCHBVYHNN16F_1_8"} {"score": 0.9855890870094299, "chain_id": "3IOEN3P9S7I9DADRIENCHBVYHNN16F_1_9"} {"score": 0.8931971788406372, "chain_id": "3IOEN3P9S7I9DADRIENCHBVYHNN16F_1_10"} {"score": 0.9865291118621826, "chain_id": "3IOEN3P9S7I9DADRIENCHBVYHNN16F_1_1"} {"score": 0.9926812052726746, "chain_id": "3M81GAB8A0I30QE3ZKUZTSPY371QB9_1_1"} {"score": 0.9918388724327087, "chain_id": "3M81GAB8A0I30QE3ZKUZTSPY371QB9_1_2"} {"score": 0.9608218669891357, "chain_id": "3M81GAB8A0I30QE3ZKUZTSPY371QB9_1_6"} {"score": 0.9913681149482727, "chain_id": "3M81GAB8A0I30QE3ZKUZTSPY371QB9_1_7"} {"score": 0.2679632604122162, "chain_id": "3M81GAB8A0I30QE3ZKUZTSPY371QB9_1_3"} {"score": 0.3573083281517029, "chain_id": "3M81GAB8A0I30QE3ZKUZTSPY371QB9_1_4"} {"score": 0.3908446729183197, "chain_id": "3M81GAB8A0I30QE3ZKUZTSPY371QB9_1_5"} {"score": 0.4188839793205261, "chain_id": "3M81GAB8A0I30QE3ZKUZTSPY371QB9_1_8"} {"score": 0.22724978625774384, "chain_id": "3M81GAB8A0I30QE3ZKUZTSPY371QB9_1_9"} {"score": 0.09689412266016006, "chain_id": "3M81GAB8A0I30QE3ZKUZTSPY371QB9_1_10"} {"score": 0.5584361553192139, "chain_id": "3RYC5T2D73S5GLUDV410T24SF2PRPC_1_1"} {"score": 0.768315315246582, "chain_id": "3RYC5T2D73S5GLUDV410T24SF2PRPC_1_2"} {"score": 0.18255481123924255, "chain_id": "3RYC5T2D73S5GLUDV410T24SF2PRPC_1_3"} {"score": 0.2324550300836563, "chain_id": "3RYC5T2D73S5GLUDV410T24SF2PRPC_1_4"} {"score": 0.5022381544113159, "chain_id": "3RYC5T2D73S5GLUDV410T24SF2PRPC_1_5"} {"score": 0.5388346910476685, "chain_id": "3RYC5T2D73S5GLUDV410T24SF2PRPC_1_6"} {"score": 0.17454026639461517, "chain_id": "3RYC5T2D73S5GLUDV410T24SF2PRPC_1_7"} {"score": 0.08447165787220001, "chain_id": "3RYC5T2D73S5GLUDV410T24SF2PRPC_1_8"} {"score": 0.5781673789024353, "chain_id": "3RYC5T2D73S5GLUDV410T24SF2PRPC_1_9"} {"score": 0.4426697790622711, "chain_id": "3RYC5T2D73S5GLUDV410T24SF2PRPC_1_10"} {"score": 0.9929717183113098, "chain_id": "34Q075JO1XCEZZRCGP7V8AL71M310H_1_1"} {"score": 0.7640556693077087, "chain_id": "34Q075JO1XCEZZRCGP7V8AL71M310H_1_2"} {"score": 0.8268507719039917, "chain_id": "34Q075JO1XCEZZRCGP7V8AL71M310H_1_3"} {"score": 0.5431873202323914, "chain_id": "34Q075JO1XCEZZRCGP7V8AL71M310H_1_4"} {"score": 0.9206939339637756, "chain_id": "34Q075JO1XCEZZRCGP7V8AL71M310H_1_6"} {"score": 0.7530951499938965, "chain_id": "34Q075JO1XCEZZRCGP7V8AL71M310H_1_7"} {"score": 0.47420042753219604, "chain_id": "34Q075JO1XCEZZRCGP7V8AL71M310H_1_9"} {"score": 0.2010834515094757, "chain_id": "34Q075JO1XCEZZRCGP7V8AL71M310H_1_5"} {"score": 0.21346014738082886, "chain_id": "34Q075JO1XCEZZRCGP7V8AL71M310H_1_8"} {"score": 0.5130179524421692, "chain_id": "34Q075JO1XCEZZRCGP7V8AL71M310H_1_10"} {"score": 0.13730992376804352, "chain_id": "3LRLIPTPEQ8C6DBGG1A62VTJJVIKAV_1_2"} {"score": 0.21339282393455505, "chain_id": "3LRLIPTPEQ8C6DBGG1A62VTJJVIKAV_1_4"} {"score": 0.2104567587375641, "chain_id": "3LRLIPTPEQ8C6DBGG1A62VTJJVIKAV_1_6"} {"score": 0.19484412670135498, "chain_id": "3LRLIPTPEQ8C6DBGG1A62VTJJVIKAV_1_1"} {"score": 0.12913712859153748, "chain_id": "3LRLIPTPEQ8C6DBGG1A62VTJJVIKAV_1_3"} {"score": 0.13425232470035553, "chain_id": "3LRLIPTPEQ8C6DBGG1A62VTJJVIKAV_1_5"} {"score": 0.0865936279296875, "chain_id": "3LRLIPTPEQ8C6DBGG1A62VTJJVIKAV_1_7"} {"score": 0.8242059350013733, "chain_id": "3LRLIPTPEQ8C6DBGG1A62VTJJVIKAV_1_8"} {"score": 0.36778655648231506, "chain_id": "3LRLIPTPEQ8C6DBGG1A62VTJJVIKAV_1_9"} {"score": 0.13002710044384003, "chain_id": "3LRLIPTPEQ8C6DBGG1A62VTJJVIKAV_1_10"} {"score": 0.31776368618011475, "chain_id": "3FUI0JHJPXX6QU4OMG3XY1YB21T330_1_5"} {"score": 0.6379289031028748, "chain_id": "3FUI0JHJPXX6QU4OMG3XY1YB21T330_1_1"} {"score": 0.6816525459289551, "chain_id": "3FUI0JHJPXX6QU4OMG3XY1YB21T330_1_2"} {"score": 0.8100684285163879, "chain_id": "3FUI0JHJPXX6QU4OMG3XY1YB21T330_1_3"} {"score": 0.8190628290176392, "chain_id": "3FUI0JHJPXX6QU4OMG3XY1YB21T330_1_4"} {"score": 0.4199669361114502, "chain_id": "3FUI0JHJPXX6QU4OMG3XY1YB21T330_1_6"} {"score": 0.21993105113506317, "chain_id": "3FUI0JHJPXX6QU4OMG3XY1YB21T330_1_7"} {"score": 0.35451439023017883, "chain_id": "3FUI0JHJPXX6QU4OMG3XY1YB21T330_1_8"} {"score": 0.49215829372406006, "chain_id": "3FUI0JHJPXX6QU4OMG3XY1YB21T330_1_9"} {"score": 0.3495534658432007, "chain_id": "3FUI0JHJPXX6QU4OMG3XY1YB21T330_1_10"} {"score": 0.9067502617835999, "chain_id": "32AT8R96GL8U952MRF0ZTIWNLV0SUT_1_1"} {"score": 0.2560647130012512, "chain_id": "32AT8R96GL8U952MRF0ZTIWNLV0SUT_1_2"} {"score": 0.832918107509613, "chain_id": "32AT8R96GL8U952MRF0ZTIWNLV0SUT_1_4"} {"score": 0.8542815446853638, "chain_id": "32AT8R96GL8U952MRF0ZTIWNLV0SUT_1_6"} {"score": 0.10565754771232605, "chain_id": "32AT8R96GL8U952MRF0ZTIWNLV0SUT_1_3"} {"score": 0.1302746683359146, "chain_id": "32AT8R96GL8U952MRF0ZTIWNLV0SUT_1_5"} {"score": 0.02567247301340103, "chain_id": "32AT8R96GL8U952MRF0ZTIWNLV0SUT_1_7"} {"score": 0.10437461733818054, "chain_id": "32AT8R96GL8U952MRF0ZTIWNLV0SUT_1_8"} {"score": 0.03437602519989014, "chain_id": "32AT8R96GL8U952MRF0ZTIWNLV0SUT_1_9"} {"score": 0.17946337163448334, "chain_id": "32AT8R96GL8U952MRF0ZTIWNLV0SUT_1_10"} {"score": 0.08518176525831223, "chain_id": "3BF51CHDTV9P3ACQIEAG0X1EW030HB_1_7"} {"score": 0.08331865072250366, "chain_id": "3BF51CHDTV9P3ACQIEAG0X1EW030HB_1_8"} {"score": 0.8926287293434143, "chain_id": "3BF51CHDTV9P3ACQIEAG0X1EW030HB_1_1"} {"score": 0.886867105960846, "chain_id": "3BF51CHDTV9P3ACQIEAG0X1EW030HB_1_2"} {"score": 0.4635043442249298, "chain_id": "3BF51CHDTV9P3ACQIEAG0X1EW030HB_1_3"} {"score": 0.8463897109031677, "chain_id": "3BF51CHDTV9P3ACQIEAG0X1EW030HB_1_4"} {"score": 0.9359543919563293, "chain_id": "3BF51CHDTV9P3ACQIEAG0X1EW030HB_1_5"} {"score": 0.5549555420875549, "chain_id": "3BF51CHDTV9P3ACQIEAG0X1EW030HB_1_6"} {"score": 0.9430368542671204, "chain_id": "3BF51CHDTV9P3ACQIEAG0X1EW030HB_1_9"} {"score": 0.03136492148041725, "chain_id": "3BF51CHDTV9P3ACQIEAG0X1EW030HB_1_10"} {"score": 0.06593626737594604, "chain_id": "33F859I566CQNXF0GU75KEXXO9XBHG_1_1"} {"score": 0.04049387946724892, "chain_id": "33F859I566CQNXF0GU75KEXXO9XBHG_1_3"} {"score": 0.09166581928730011, "chain_id": "33F859I566CQNXF0GU75KEXXO9XBHG_1_2"} {"score": 0.03769419342279434, "chain_id": "33F859I566CQNXF0GU75KEXXO9XBHG_1_4"} {"score": 0.015391730703413486, "chain_id": "33F859I566CQNXF0GU75KEXXO9XBHG_1_5"} {"score": 0.014770482666790485, "chain_id": "33F859I566CQNXF0GU75KEXXO9XBHG_1_6"} {"score": 0.016133544966578484, "chain_id": "33F859I566CQNXF0GU75KEXXO9XBHG_1_7"} {"score": 0.017718281596899033, "chain_id": "33F859I566CQNXF0GU75KEXXO9XBHG_1_8"} {"score": 0.014504731632769108, "chain_id": "33F859I566CQNXF0GU75KEXXO9XBHG_1_9"} {"score": 0.033553287386894226, "chain_id": "33F859I566CQNXF0GU75KEXXO9XBHG_1_10"} {"score": 0.10427144914865494, "chain_id": "3F0BG9B9MPMP7G2ZDDZD1C64ENOY7K_1_3"} {"score": 0.7592055797576904, "chain_id": "3F0BG9B9MPMP7G2ZDDZD1C64ENOY7K_1_1"} {"score": 0.7196557521820068, "chain_id": "3F0BG9B9MPMP7G2ZDDZD1C64ENOY7K_1_2"} {"score": 0.08467817306518555, "chain_id": "3F0BG9B9MPMP7G2ZDDZD1C64ENOY7K_1_4"} {"score": 0.0466991551220417, "chain_id": "3F0BG9B9MPMP7G2ZDDZD1C64ENOY7K_1_5"} {"score": 0.6945710182189941, "chain_id": "3F0BG9B9MPMP7G2ZDDZD1C64ENOY7K_1_6"} {"score": 0.1309572160243988, "chain_id": "3F0BG9B9MPMP7G2ZDDZD1C64ENOY7K_1_7"} {"score": 0.7549588084220886, "chain_id": "3F0BG9B9MPMP7G2ZDDZD1C64ENOY7K_1_8"} {"score": 0.31454530358314514, "chain_id": "3F0BG9B9MPMP7G2ZDDZD1C64ENOY7K_1_9"} {"score": 0.0828854888677597, "chain_id": "3F0BG9B9MPMP7G2ZDDZD1C64ENOY7K_1_10"} {"score": 0.4700012803077698, "chain_id": "3RKNTXVS3MXRSBMDV9NQVE4NKY6A4L_1_1"} {"score": 0.8564116954803467, "chain_id": "3RKNTXVS3MXRSBMDV9NQVE4NKY6A4L_1_2"} {"score": 0.514302134513855, "chain_id": "3RKNTXVS3MXRSBMDV9NQVE4NKY6A4L_1_3"} {"score": 0.2249452918767929, "chain_id": "3RKNTXVS3MXRSBMDV9NQVE4NKY6A4L_1_4"} {"score": 0.25669151544570923, "chain_id": "3RKNTXVS3MXRSBMDV9NQVE4NKY6A4L_1_5"} {"score": 0.30986979603767395, "chain_id": "3RKNTXVS3MXRSBMDV9NQVE4NKY6A4L_1_6"} {"score": 0.5008572936058044, "chain_id": "3RKNTXVS3MXRSBMDV9NQVE4NKY6A4L_1_7"} {"score": 0.42463064193725586, "chain_id": "3RKNTXVS3MXRSBMDV9NQVE4NKY6A4L_1_8"} {"score": 0.11256960034370422, "chain_id": "3RKNTXVS3MXRSBMDV9NQVE4NKY6A4L_1_9"} {"score": 0.19868767261505127, "chain_id": "3RKNTXVS3MXRSBMDV9NQVE4NKY6A4L_1_10"} {"score": 0.9152590036392212, "chain_id": "3AZHRG4CU4JA925R3TLEW304XIP305_1_1"} {"score": 0.8446303606033325, "chain_id": "3AZHRG4CU4JA925R3TLEW304XIP305_1_2"} {"score": 0.3038969039916992, "chain_id": "3AZHRG4CU4JA925R3TLEW304XIP305_1_5"} {"score": 0.17392681539058685, "chain_id": "3AZHRG4CU4JA925R3TLEW304XIP305_1_6"} {"score": 0.19670961797237396, "chain_id": "3AZHRG4CU4JA925R3TLEW304XIP305_1_7"} {"score": 0.8185697793960571, "chain_id": "3AZHRG4CU4JA925R3TLEW304XIP305_1_3"} {"score": 0.43922391533851624, "chain_id": "3AZHRG4CU4JA925R3TLEW304XIP305_1_4"} {"score": 0.2951298654079437, "chain_id": "3AZHRG4CU4JA925R3TLEW304XIP305_1_8"} {"score": 0.19515027105808258, "chain_id": "3AZHRG4CU4JA925R3TLEW304XIP305_1_9"} {"score": 0.03460061177611351, "chain_id": "3AZHRG4CU4JA925R3TLEW304XIP305_1_10"} {"score": 0.9794331789016724, "chain_id": "3SB5N7Y3O33B3EHFY8SYFXPDHNS0GO_1_2"} {"score": 0.9489426016807556, "chain_id": "3SB5N7Y3O33B3EHFY8SYFXPDHNS0GO_1_6"} {"score": 0.7495524883270264, "chain_id": "3SB5N7Y3O33B3EHFY8SYFXPDHNS0GO_1_7"} {"score": 0.17071986198425293, "chain_id": "3SB5N7Y3O33B3EHFY8SYFXPDHNS0GO_1_9"} {"score": 0.16266775131225586, "chain_id": "3SB5N7Y3O33B3EHFY8SYFXPDHNS0GO_1_10"} {"score": 0.18299685418605804, "chain_id": "3SB5N7Y3O33B3EHFY8SYFXPDHNS0GO_1_1"} {"score": 0.5804712176322937, "chain_id": "3SB5N7Y3O33B3EHFY8SYFXPDHNS0GO_1_3"} {"score": 0.2649182975292206, "chain_id": "3SB5N7Y3O33B3EHFY8SYFXPDHNS0GO_1_4"} {"score": 0.9261298179626465, "chain_id": "3SB5N7Y3O33B3EHFY8SYFXPDHNS0GO_1_5"} {"score": 0.5276601910591125, "chain_id": "3SB5N7Y3O33B3EHFY8SYFXPDHNS0GO_1_8"} {"score": 0.15328200161457062, "chain_id": "3YDTZAI2WXFVYN9DZQUXKDBKWM814C_1_5"} {"score": 0.2767471969127655, "chain_id": "3YDTZAI2WXFVYN9DZQUXKDBKWM814C_1_6"} {"score": 0.46032607555389404, "chain_id": "3YDTZAI2WXFVYN9DZQUXKDBKWM814C_1_7"} {"score": 0.9829917550086975, "chain_id": "3YDTZAI2WXFVYN9DZQUXKDBKWM814C_1_1"} {"score": 0.973496675491333, "chain_id": "3YDTZAI2WXFVYN9DZQUXKDBKWM814C_1_2"} {"score": 0.9786635637283325, "chain_id": "3YDTZAI2WXFVYN9DZQUXKDBKWM814C_1_3"} {"score": 0.9001798033714294, "chain_id": "3YDTZAI2WXFVYN9DZQUXKDBKWM814C_1_4"} {"score": 0.12219484895467758, "chain_id": "3YDTZAI2WXFVYN9DZQUXKDBKWM814C_1_8"} {"score": 0.10341912508010864, "chain_id": "3YDTZAI2WXFVYN9DZQUXKDBKWM814C_1_9"} {"score": 0.4265994429588318, "chain_id": "3YDTZAI2WXFVYN9DZQUXKDBKWM814C_1_10"} {"score": 0.9473364353179932, "chain_id": "3PQMUDRV7R50604QSMH76D2PI7LII3_1_1"} {"score": 0.9825431108474731, "chain_id": "3PQMUDRV7R50604QSMH76D2PI7LII3_1_2"} {"score": 0.9488394260406494, "chain_id": "3PQMUDRV7R50604QSMH76D2PI7LII3_1_3"} {"score": 0.8987551927566528, "chain_id": "3PQMUDRV7R50604QSMH76D2PI7LII3_1_4"} {"score": 0.6086598634719849, "chain_id": "3PQMUDRV7R50604QSMH76D2PI7LII3_1_5"} {"score": 0.5209280848503113, "chain_id": "3PQMUDRV7R50604QSMH76D2PI7LII3_1_9"} {"score": 0.5377677083015442, "chain_id": "3PQMUDRV7R50604QSMH76D2PI7LII3_1_10"} {"score": 0.7781319618225098, "chain_id": "3PQMUDRV7R50604QSMH76D2PI7LII3_1_6"} {"score": 0.3194084167480469, "chain_id": "3PQMUDRV7R50604QSMH76D2PI7LII3_1_7"} {"score": 0.3164166212081909, "chain_id": "3PQMUDRV7R50604QSMH76D2PI7LII3_1_8"} {"score": 0.9510183930397034, "chain_id": "39U1BHVTDLQBPB2I1V9OGE29A8I3TN_1_1"} {"score": 0.6180248260498047, "chain_id": "39U1BHVTDLQBPB2I1V9OGE29A8I3TN_1_2"} {"score": 0.6960570216178894, "chain_id": "39U1BHVTDLQBPB2I1V9OGE29A8I3TN_1_3"} {"score": 0.09661901742219925, "chain_id": "39U1BHVTDLQBPB2I1V9OGE29A8I3TN_1_5"} {"score": 0.5247631669044495, "chain_id": "39U1BHVTDLQBPB2I1V9OGE29A8I3TN_1_7"} {"score": 0.8950250744819641, "chain_id": "39U1BHVTDLQBPB2I1V9OGE29A8I3TN_1_4"} {"score": 0.2586647868156433, "chain_id": "39U1BHVTDLQBPB2I1V9OGE29A8I3TN_1_6"} {"score": 0.029620962217450142, "chain_id": "39U1BHVTDLQBPB2I1V9OGE29A8I3TN_1_8"} {"score": 0.22713254392147064, "chain_id": "39U1BHVTDLQBPB2I1V9OGE29A8I3TN_1_9"} {"score": 0.12089300155639648, "chain_id": "39U1BHVTDLQBPB2I1V9OGE29A8I3TN_1_10"} {"score": 0.8745676279067993, "chain_id": "3HRMW88U16PBVOD19BQTS29A3I5M0R_1_3"} {"score": 0.21055249869823456, "chain_id": "3HRMW88U16PBVOD19BQTS29A3I5M0R_1_1"} {"score": 0.36441555619239807, "chain_id": "3HRMW88U16PBVOD19BQTS29A3I5M0R_1_2"} {"score": 0.3743700087070465, "chain_id": "3HRMW88U16PBVOD19BQTS29A3I5M0R_1_4"} {"score": 0.28055065870285034, "chain_id": "3HRMW88U16PBVOD19BQTS29A3I5M0R_1_5"} {"score": 0.09153397381305695, "chain_id": "3HRMW88U16PBVOD19BQTS29A3I5M0R_1_6"} {"score": 0.07439889013767242, "chain_id": "3HRMW88U16PBVOD19BQTS29A3I5M0R_1_7"} {"score": 0.3401827812194824, "chain_id": "3HRMW88U16PBVOD19BQTS29A3I5M0R_1_8"} {"score": 0.11716291308403015, "chain_id": "3HRMW88U16PBVOD19BQTS29A3I5M0R_1_9"} {"score": 0.1313769668340683, "chain_id": "3HRMW88U16PBVOD19BQTS29A3I5M0R_1_10"} {"score": 0.4799151122570038, "chain_id": "3TU5ZICBRD0KYSGWW8AP2QZXWICQ85_1_3"} {"score": 0.4681215286254883, "chain_id": "3TU5ZICBRD0KYSGWW8AP2QZXWICQ85_1_5"} {"score": 0.5688501000404358, "chain_id": "3TU5ZICBRD0KYSGWW8AP2QZXWICQ85_1_1"} {"score": 0.43373557925224304, "chain_id": "3TU5ZICBRD0KYSGWW8AP2QZXWICQ85_1_2"} {"score": 0.7912382483482361, "chain_id": "3TU5ZICBRD0KYSGWW8AP2QZXWICQ85_1_4"} {"score": 0.338935524225235, "chain_id": "3TU5ZICBRD0KYSGWW8AP2QZXWICQ85_1_6"} {"score": 0.2717103958129883, "chain_id": "3TU5ZICBRD0KYSGWW8AP2QZXWICQ85_1_7"} {"score": 0.055165451020002365, "chain_id": "3TU5ZICBRD0KYSGWW8AP2QZXWICQ85_1_8"} {"score": 0.5602487921714783, "chain_id": "3TU5ZICBRD0KYSGWW8AP2QZXWICQ85_1_9"} {"score": 0.6826480627059937, "chain_id": "3TU5ZICBRD0KYSGWW8AP2QZXWICQ85_1_10"} {"score": 0.3361039161682129, "chain_id": "3JBT3HLQF81EICG45LVDF56RQ0LZPQ_1_1"} {"score": 0.34137141704559326, "chain_id": "3JBT3HLQF81EICG45LVDF56RQ0LZPQ_1_2"} {"score": 0.7571152448654175, "chain_id": "3JBT3HLQF81EICG45LVDF56RQ0LZPQ_1_3"} {"score": 0.6908171772956848, "chain_id": "3JBT3HLQF81EICG45LVDF56RQ0LZPQ_1_4"} {"score": 0.31938686966896057, "chain_id": "3JBT3HLQF81EICG45LVDF56RQ0LZPQ_1_5"} {"score": 0.3060420751571655, "chain_id": "3JBT3HLQF81EICG45LVDF56RQ0LZPQ_1_6"} {"score": 0.37670186161994934, "chain_id": "3JBT3HLQF81EICG45LVDF56RQ0LZPQ_1_7"} {"score": 0.11709829419851303, "chain_id": "3JBT3HLQF81EICG45LVDF56RQ0LZPQ_1_8"} {"score": 0.18631573021411896, "chain_id": "3JBT3HLQF81EICG45LVDF56RQ0LZPQ_1_9"} {"score": 0.10125508159399033, "chain_id": "3JBT3HLQF81EICG45LVDF56RQ0LZPQ_1_10"} {"score": 0.9914063215255737, "chain_id": "39GHHAVOMFQ2T4PHPF03OD76HHU4JO_1_2"} {"score": 0.9467577934265137, "chain_id": "39GHHAVOMFQ2T4PHPF03OD76HHU4JO_1_3"} {"score": 0.991161584854126, "chain_id": "39GHHAVOMFQ2T4PHPF03OD76HHU4JO_1_4"} {"score": 0.9460834860801697, "chain_id": "39GHHAVOMFQ2T4PHPF03OD76HHU4JO_1_1"} {"score": 0.45178455114364624, "chain_id": "39GHHAVOMFQ2T4PHPF03OD76HHU4JO_1_5"} {"score": 0.20183368027210236, "chain_id": "39GHHAVOMFQ2T4PHPF03OD76HHU4JO_1_6"} {"score": 0.11688536405563354, "chain_id": "39GHHAVOMFQ2T4PHPF03OD76HHU4JO_1_7"} {"score": 0.38960838317871094, "chain_id": "39GHHAVOMFQ2T4PHPF03OD76HHU4JO_1_8"} {"score": 0.349208265542984, "chain_id": "39GHHAVOMFQ2T4PHPF03OD76HHU4JO_1_9"} {"score": 0.12202468514442444, "chain_id": "39GHHAVOMFQ2T4PHPF03OD76HHU4JO_1_10"} {"score": 0.24483057856559753, "chain_id": "3VNL7UK1XFI65NIBLQAQHNR64EVFT3_1_5"} {"score": 0.5822733044624329, "chain_id": "3VNL7UK1XFI65NIBLQAQHNR64EVFT3_1_9"} {"score": 0.23617233335971832, "chain_id": "3VNL7UK1XFI65NIBLQAQHNR64EVFT3_1_10"} {"score": 0.7850605845451355, "chain_id": "3VNL7UK1XFI65NIBLQAQHNR64EVFT3_1_1"} {"score": 0.20318156480789185, "chain_id": "3VNL7UK1XFI65NIBLQAQHNR64EVFT3_1_2"} {"score": 0.6782299876213074, "chain_id": "3VNL7UK1XFI65NIBLQAQHNR64EVFT3_1_3"} {"score": 0.1938685029745102, "chain_id": "3VNL7UK1XFI65NIBLQAQHNR64EVFT3_1_4"} {"score": 0.3778577744960785, "chain_id": "3VNL7UK1XFI65NIBLQAQHNR64EVFT3_1_6"} {"score": 0.3633370101451874, "chain_id": "3VNL7UK1XFI65NIBLQAQHNR64EVFT3_1_7"} {"score": 0.2775909900665283, "chain_id": "3VNL7UK1XFI65NIBLQAQHNR64EVFT3_1_8"} {"score": 0.9205984473228455, "chain_id": "3ZV9H2YQQD63HS6CW0EZ3Y985433WB_1_3"} {"score": 0.22011928260326385, "chain_id": "3ZV9H2YQQD63HS6CW0EZ3Y985433WB_1_4"} {"score": 0.537048876285553, "chain_id": "3ZV9H2YQQD63HS6CW0EZ3Y985433WB_1_5"} {"score": 0.7935999035835266, "chain_id": "3ZV9H2YQQD63HS6CW0EZ3Y985433WB_1_6"} {"score": 0.8600237369537354, "chain_id": "3ZV9H2YQQD63HS6CW0EZ3Y985433WB_1_8"} {"score": 0.8510710597038269, "chain_id": "3ZV9H2YQQD63HS6CW0EZ3Y985433WB_1_1"} {"score": 0.17280583083629608, "chain_id": "3ZV9H2YQQD63HS6CW0EZ3Y985433WB_1_2"} {"score": 0.9154056310653687, "chain_id": "3ZV9H2YQQD63HS6CW0EZ3Y985433WB_1_7"} {"score": 0.39983513951301575, "chain_id": "3ZV9H2YQQD63HS6CW0EZ3Y985433WB_1_9"} {"score": 0.24318446218967438, "chain_id": "3ZV9H2YQQD63HS6CW0EZ3Y985433WB_1_10"} {"score": 0.9780368208885193, "chain_id": "3YWRV122CSYCQLNDDHUUCRWM0N6U87_1_2"} {"score": 0.8534596562385559, "chain_id": "3YWRV122CSYCQLNDDHUUCRWM0N6U87_1_3"} {"score": 0.9894098043441772, "chain_id": "3YWRV122CSYCQLNDDHUUCRWM0N6U87_1_4"} {"score": 0.9847827553749084, "chain_id": "3YWRV122CSYCQLNDDHUUCRWM0N6U87_1_6"} {"score": 0.9639368057250977, "chain_id": "3YWRV122CSYCQLNDDHUUCRWM0N6U87_1_8"} {"score": 0.9861365556716919, "chain_id": "3YWRV122CSYCQLNDDHUUCRWM0N6U87_1_1"} {"score": 0.8487195372581482, "chain_id": "3YWRV122CSYCQLNDDHUUCRWM0N6U87_1_5"} {"score": 0.9857988357543945, "chain_id": "3YWRV122CSYCQLNDDHUUCRWM0N6U87_1_7"} {"score": 0.8437317609786987, "chain_id": "3YWRV122CSYCQLNDDHUUCRWM0N6U87_1_9"} {"score": 0.19930197298526764, "chain_id": "3YWRV122CSYCQLNDDHUUCRWM0N6U87_1_10"} {"score": 0.19363754987716675, "chain_id": "3ON104KXQKVOZOPGWEJID31EEAF4WK_1_1"} {"score": 0.0716930404305458, "chain_id": "3ON104KXQKVOZOPGWEJID31EEAF4WK_1_2"} {"score": 0.19100654125213623, "chain_id": "3ON104KXQKVOZOPGWEJID31EEAF4WK_1_3"} {"score": 0.15230685472488403, "chain_id": "3ON104KXQKVOZOPGWEJID31EEAF4WK_1_4"} {"score": 0.02509104646742344, "chain_id": "3ON104KXQKVOZOPGWEJID31EEAF4WK_1_5"} {"score": 0.021338317543268204, "chain_id": "3ON104KXQKVOZOPGWEJID31EEAF4WK_1_6"} {"score": 0.026850391179323196, "chain_id": "3ON104KXQKVOZOPGWEJID31EEAF4WK_1_7"} {"score": 0.07678406685590744, "chain_id": "3ON104KXQKVOZOPGWEJID31EEAF4WK_1_8"} {"score": 0.0679435133934021, "chain_id": "3ON104KXQKVOZOPGWEJID31EEAF4WK_1_9"} {"score": 0.030237402766942978, "chain_id": "3ON104KXQKVOZOPGWEJID31EEAF4WK_1_10"} {"score": 0.9892416596412659, "chain_id": "3SB5N7Y3O33B3EHFY8SYFXPD3KOG0G_1_1"} {"score": 0.9191246628761292, "chain_id": "3SB5N7Y3O33B3EHFY8SYFXPD3KOG0G_1_2"} {"score": 0.7909923791885376, "chain_id": "3SB5N7Y3O33B3EHFY8SYFXPD3KOG0G_1_3"} {"score": 0.7708802819252014, "chain_id": "3SB5N7Y3O33B3EHFY8SYFXPD3KOG0G_1_4"} {"score": 0.0324595645070076, "chain_id": "3SB5N7Y3O33B3EHFY8SYFXPD3KOG0G_1_5"} {"score": 0.1202240139245987, "chain_id": "3SB5N7Y3O33B3EHFY8SYFXPD3KOG0G_1_6"} {"score": 0.028572898358106613, "chain_id": "3SB5N7Y3O33B3EHFY8SYFXPD3KOG0G_1_7"} {"score": 0.04547186940908432, "chain_id": "3SB5N7Y3O33B3EHFY8SYFXPD3KOG0G_1_8"} {"score": 0.042607102543115616, "chain_id": "3SB5N7Y3O33B3EHFY8SYFXPD3KOG0G_1_9"} {"score": 0.03859352692961693, "chain_id": "3SB5N7Y3O33B3EHFY8SYFXPD3KOG0G_1_10"} {"score": 0.9901543259620667, "chain_id": "3YGXWBAF70GFLQJBFNJH19UBM5LC4T_1_1"} {"score": 0.951835036277771, "chain_id": "3YGXWBAF70GFLQJBFNJH19UBM5LC4T_1_2"} {"score": 0.8477085828781128, "chain_id": "3YGXWBAF70GFLQJBFNJH19UBM5LC4T_1_3"} {"score": 0.8474387526512146, "chain_id": "3YGXWBAF70GFLQJBFNJH19UBM5LC4T_1_4"} {"score": 0.042014963924884796, "chain_id": "3YGXWBAF70GFLQJBFNJH19UBM5LC4T_1_5"} {"score": 0.9195663332939148, "chain_id": "3YGXWBAF70GFLQJBFNJH19UBM5LC4T_1_6"} {"score": 0.7523550391197205, "chain_id": "3YGXWBAF70GFLQJBFNJH19UBM5LC4T_1_7"} {"score": 0.08501606434583664, "chain_id": "3YGXWBAF70GFLQJBFNJH19UBM5LC4T_1_8"} {"score": 0.6054915189743042, "chain_id": "3YGXWBAF70GFLQJBFNJH19UBM5LC4T_1_9"} {"score": 0.5217137336730957, "chain_id": "3YGXWBAF70GFLQJBFNJH19UBM5LC4T_1_10"} {"score": 0.26596295833587646, "chain_id": "3COPXFW7XBBJTHHI5KS3SQIEKE0KPP_1_1"} {"score": 0.6108843088150024, "chain_id": "3COPXFW7XBBJTHHI5KS3SQIEKE0KPP_1_2"} {"score": 0.5713686943054199, "chain_id": "3COPXFW7XBBJTHHI5KS3SQIEKE0KPP_1_3"} {"score": 0.5261148810386658, "chain_id": "3COPXFW7XBBJTHHI5KS3SQIEKE0KPP_1_4"} {"score": 0.19767311215400696, "chain_id": "3COPXFW7XBBJTHHI5KS3SQIEKE0KPP_1_5"} {"score": 0.25509506464004517, "chain_id": "3COPXFW7XBBJTHHI5KS3SQIEKE0KPP_1_6"} {"score": 0.6969821453094482, "chain_id": "3COPXFW7XBBJTHHI5KS3SQIEKE0KPP_1_7"} {"score": 0.6414143443107605, "chain_id": "3COPXFW7XBBJTHHI5KS3SQIEKE0KPP_1_8"} {"score": 0.11208944767713547, "chain_id": "3COPXFW7XBBJTHHI5KS3SQIEKE0KPP_1_9"} {"score": 0.06581903994083405, "chain_id": "3COPXFW7XBBJTHHI5KS3SQIEKE0KPP_1_10"} {"score": 0.9919036030769348, "chain_id": "3KV0LJBBH2KZVIX03O98CYAXA9ZRMP_1_1"} {"score": 0.9805520176887512, "chain_id": "3KV0LJBBH2KZVIX03O98CYAXA9ZRMP_1_4"} {"score": 0.9496093988418579, "chain_id": "3KV0LJBBH2KZVIX03O98CYAXA9ZRMP_1_5"} {"score": 0.43991535902023315, "chain_id": "3KV0LJBBH2KZVIX03O98CYAXA9ZRMP_1_9"} {"score": 0.16999293863773346, "chain_id": "3KV0LJBBH2KZVIX03O98CYAXA9ZRMP_1_2"} {"score": 0.12596546113491058, "chain_id": "3KV0LJBBH2KZVIX03O98CYAXA9ZRMP_1_3"} {"score": 0.9123578071594238, "chain_id": "3KV0LJBBH2KZVIX03O98CYAXA9ZRMP_1_6"} {"score": 0.10548214614391327, "chain_id": "3KV0LJBBH2KZVIX03O98CYAXA9ZRMP_1_7"} {"score": 0.48828157782554626, "chain_id": "3KV0LJBBH2KZVIX03O98CYAXA9ZRMP_1_8"} {"score": 0.261010080575943, "chain_id": "3KV0LJBBH2KZVIX03O98CYAXA9ZRMP_1_10"} {"score": 0.9877344965934753, "chain_id": "39K0FND3AHE7W1BJ1DNMH8LNBFSMAE_1_1"} {"score": 0.9786204099655151, "chain_id": "39K0FND3AHE7W1BJ1DNMH8LNBFSMAE_1_4"} {"score": 0.2696616053581238, "chain_id": "39K0FND3AHE7W1BJ1DNMH8LNBFSMAE_1_10"} {"score": 0.9815942049026489, "chain_id": "39K0FND3AHE7W1BJ1DNMH8LNBFSMAE_1_2"} {"score": 0.9803910255432129, "chain_id": "39K0FND3AHE7W1BJ1DNMH8LNBFSMAE_1_3"} {"score": 0.723516047000885, "chain_id": "39K0FND3AHE7W1BJ1DNMH8LNBFSMAE_1_5"} {"score": 0.6395719051361084, "chain_id": "39K0FND3AHE7W1BJ1DNMH8LNBFSMAE_1_6"} {"score": 0.0943061038851738, "chain_id": "39K0FND3AHE7W1BJ1DNMH8LNBFSMAE_1_7"} {"score": 0.08046289533376694, "chain_id": "39K0FND3AHE7W1BJ1DNMH8LNBFSMAE_1_8"} {"score": 0.07582739740610123, "chain_id": "39K0FND3AHE7W1BJ1DNMH8LNBFSMAE_1_9"} {"score": 0.9891725778579712, "chain_id": "3300DTYQT2G17TQN9BWPU0VJH6UQE4_1_1"} {"score": 0.9890769720077515, "chain_id": "3300DTYQT2G17TQN9BWPU0VJH6UQE4_1_2"} {"score": 0.9655908346176147, "chain_id": "3300DTYQT2G17TQN9BWPU0VJH6UQE4_1_3"} {"score": 0.0426536463201046, "chain_id": "3300DTYQT2G17TQN9BWPU0VJH6UQE4_1_10"} {"score": 0.9582394361495972, "chain_id": "3300DTYQT2G17TQN9BWPU0VJH6UQE4_1_4"} {"score": 0.08740375190973282, "chain_id": "3300DTYQT2G17TQN9BWPU0VJH6UQE4_1_5"} {"score": 0.8835698962211609, "chain_id": "3300DTYQT2G17TQN9BWPU0VJH6UQE4_1_6"} {"score": 0.8645373582839966, "chain_id": "3300DTYQT2G17TQN9BWPU0VJH6UQE4_1_7"} {"score": 0.6281717419624329, "chain_id": "3300DTYQT2G17TQN9BWPU0VJH6UQE4_1_8"} {"score": 0.021371211856603622, "chain_id": "3300DTYQT2G17TQN9BWPU0VJH6UQE4_1_9"} {"score": 0.9292318224906921, "chain_id": "3OONKJ5DKCI0FE1NK72V4NUYZ8HOBC_1_1"} {"score": 0.7369624972343445, "chain_id": "3OONKJ5DKCI0FE1NK72V4NUYZ8HOBC_1_2"} {"score": 0.5751636624336243, "chain_id": "3OONKJ5DKCI0FE1NK72V4NUYZ8HOBC_1_3"} {"score": 0.8828562498092651, "chain_id": "3OONKJ5DKCI0FE1NK72V4NUYZ8HOBC_1_4"} {"score": 0.21711814403533936, "chain_id": "3OONKJ5DKCI0FE1NK72V4NUYZ8HOBC_1_5"} {"score": 0.1340809464454651, "chain_id": "3OONKJ5DKCI0FE1NK72V4NUYZ8HOBC_1_6"} {"score": 0.2589471936225891, "chain_id": "3OONKJ5DKCI0FE1NK72V4NUYZ8HOBC_1_7"} {"score": 0.1766262650489807, "chain_id": "3OONKJ5DKCI0FE1NK72V4NUYZ8HOBC_1_8"} {"score": 0.8672113418579102, "chain_id": "3OONKJ5DKCI0FE1NK72V4NUYZ8HOBC_1_9"} {"score": 0.5504745841026306, "chain_id": "3OONKJ5DKCI0FE1NK72V4NUYZ8HOBC_1_10"} {"score": 0.8897126913070679, "chain_id": "31QTRG6Q2TCEDM6Z9ZTU1YXPUSCYPB_1_5"} {"score": 0.9680717587471008, "chain_id": "31QTRG6Q2TCEDM6Z9ZTU1YXPUSCYPB_1_7"} {"score": 0.9096059203147888, "chain_id": "31QTRG6Q2TCEDM6Z9ZTU1YXPUSCYPB_1_8"} {"score": 0.3467910885810852, "chain_id": "31QTRG6Q2TCEDM6Z9ZTU1YXPUSCYPB_1_10"} {"score": 0.39791497588157654, "chain_id": "31QTRG6Q2TCEDM6Z9ZTU1YXPUSCYPB_1_1"} {"score": 0.16404500603675842, "chain_id": "31QTRG6Q2TCEDM6Z9ZTU1YXPUSCYPB_1_2"} {"score": 0.11589626222848892, "chain_id": "31QTRG6Q2TCEDM6Z9ZTU1YXPUSCYPB_1_3"} {"score": 0.10109297931194305, "chain_id": "31QTRG6Q2TCEDM6Z9ZTU1YXPUSCYPB_1_4"} {"score": 0.9903122186660767, "chain_id": "31QTRG6Q2TCEDM6Z9ZTU1YXPUSCYPB_1_6"} {"score": 0.8313992619514465, "chain_id": "31QTRG6Q2TCEDM6Z9ZTU1YXPUSCYPB_1_9"} {"score": 0.8903772234916687, "chain_id": "3WMOAN2SRBWX67ZHO9TIQAO0C0HNVB_1_2"} {"score": 0.9549639821052551, "chain_id": "3WMOAN2SRBWX67ZHO9TIQAO0C0HNVB_1_4"} {"score": 0.9831985831260681, "chain_id": "3WMOAN2SRBWX67ZHO9TIQAO0C0HNVB_1_1"} {"score": 0.03437532112002373, "chain_id": "3WMOAN2SRBWX67ZHO9TIQAO0C0HNVB_1_3"} {"score": 0.9458882212638855, "chain_id": "3WMOAN2SRBWX67ZHO9TIQAO0C0HNVB_1_5"} {"score": 0.0578896701335907, "chain_id": "3WMOAN2SRBWX67ZHO9TIQAO0C0HNVB_1_6"} {"score": 0.6520726084709167, "chain_id": "3WMOAN2SRBWX67ZHO9TIQAO0C0HNVB_1_7"} {"score": 0.5108676552772522, "chain_id": "3WMOAN2SRBWX67ZHO9TIQAO0C0HNVB_1_8"} {"score": 0.11167789250612259, "chain_id": "3WMOAN2SRBWX67ZHO9TIQAO0C0HNVB_1_9"} {"score": 0.1356559693813324, "chain_id": "3WMOAN2SRBWX67ZHO9TIQAO0C0HNVB_1_10"} {"score": 0.9853531718254089, "chain_id": "30LSNF239UUWVFQO3JWFJXV8DQF2IH_1_2"} {"score": 0.9661656022071838, "chain_id": "30LSNF239UUWVFQO3JWFJXV8DQF2IH_1_5"} {"score": 0.9236079454421997, "chain_id": "30LSNF239UUWVFQO3JWFJXV8DQF2IH_1_1"} {"score": 0.7471112012863159, "chain_id": "30LSNF239UUWVFQO3JWFJXV8DQF2IH_1_3"} {"score": 0.187580406665802, "chain_id": "30LSNF239UUWVFQO3JWFJXV8DQF2IH_1_4"} {"score": 0.7115736603736877, "chain_id": "30LSNF239UUWVFQO3JWFJXV8DQF2IH_1_6"} {"score": 0.2947259843349457, "chain_id": "30LSNF239UUWVFQO3JWFJXV8DQF2IH_1_7"} {"score": 0.05553396791219711, "chain_id": "30LSNF239UUWVFQO3JWFJXV8DQF2IH_1_8"} {"score": 0.4758944809436798, "chain_id": "30LSNF239UUWVFQO3JWFJXV8DQF2IH_1_9"} {"score": 0.5131267309188843, "chain_id": "30LSNF239UUWVFQO3JWFJXV8DQF2IH_1_10"} {"score": 0.8538436889648438, "chain_id": "3NGMS9VZTLHWMI0AQ6510JC5M5JFF0_1_1"} {"score": 0.9742348194122314, "chain_id": "3NGMS9VZTLHWMI0AQ6510JC5M5JFF0_1_2"} {"score": 0.6708962321281433, "chain_id": "3NGMS9VZTLHWMI0AQ6510JC5M5JFF0_1_3"} {"score": 0.9504051208496094, "chain_id": "3NGMS9VZTLHWMI0AQ6510JC5M5JFF0_1_4"} {"score": 0.6718852519989014, "chain_id": "3NGMS9VZTLHWMI0AQ6510JC5M5JFF0_1_7"} {"score": 0.6026815176010132, "chain_id": "3NGMS9VZTLHWMI0AQ6510JC5M5JFF0_1_5"} {"score": 0.04122476652264595, "chain_id": "3NGMS9VZTLHWMI0AQ6510JC5M5JFF0_1_6"} {"score": 0.11651060730218887, "chain_id": "3NGMS9VZTLHWMI0AQ6510JC5M5JFF0_1_8"} {"score": 0.01856997050344944, "chain_id": "3NGMS9VZTLHWMI0AQ6510JC5M5JFF0_1_9"} {"score": 0.01794678531587124, "chain_id": "3NGMS9VZTLHWMI0AQ6510JC5M5JFF0_1_10"} {"score": 0.9446108341217041, "chain_id": "3RJSC4XJ10TDNHSVHC97B0YORMT051_1_1"} {"score": 0.44081535935401917, "chain_id": "3RJSC4XJ10TDNHSVHC97B0YORMT051_1_3"} {"score": 0.8077253103256226, "chain_id": "3RJSC4XJ10TDNHSVHC97B0YORMT051_1_4"} {"score": 0.7831987738609314, "chain_id": "3RJSC4XJ10TDNHSVHC97B0YORMT051_1_2"} {"score": 0.4638034403324127, "chain_id": "3RJSC4XJ10TDNHSVHC97B0YORMT051_1_5"} {"score": 0.056602317839860916, "chain_id": "3RJSC4XJ10TDNHSVHC97B0YORMT051_1_6"} {"score": 0.03874659165740013, "chain_id": "3RJSC4XJ10TDNHSVHC97B0YORMT051_1_7"} {"score": 0.027208033949136734, "chain_id": "3RJSC4XJ10TDNHSVHC97B0YORMT051_1_8"} {"score": 0.03269396722316742, "chain_id": "3RJSC4XJ10TDNHSVHC97B0YORMT051_1_9"} {"score": 0.02685238979756832, "chain_id": "3RJSC4XJ10TDNHSVHC97B0YORMT051_1_10"} {"score": 0.9372732639312744, "chain_id": "33C7UALJVLXWHOWFBTKA1PRPLGZ81O_1_4"} {"score": 0.9798276424407959, "chain_id": "33C7UALJVLXWHOWFBTKA1PRPLGZ81O_1_6"} {"score": 0.9395155310630798, "chain_id": "33C7UALJVLXWHOWFBTKA1PRPLGZ81O_1_7"} {"score": 0.47793498635292053, "chain_id": "33C7UALJVLXWHOWFBTKA1PRPLGZ81O_1_1"} {"score": 0.34046411514282227, "chain_id": "33C7UALJVLXWHOWFBTKA1PRPLGZ81O_1_2"} {"score": 0.9192469120025635, "chain_id": "33C7UALJVLXWHOWFBTKA1PRPLGZ81O_1_3"} {"score": 0.8594329357147217, "chain_id": "33C7UALJVLXWHOWFBTKA1PRPLGZ81O_1_5"} {"score": 0.7038501501083374, "chain_id": "33C7UALJVLXWHOWFBTKA1PRPLGZ81O_1_8"} {"score": 0.4878857135772705, "chain_id": "33C7UALJVLXWHOWFBTKA1PRPLGZ81O_1_9"} {"score": 0.11845646053552628, "chain_id": "33C7UALJVLXWHOWFBTKA1PRPLGZ81O_1_10"} {"score": 0.7910907864570618, "chain_id": "37Q970SNZE7E08BOPRQFIGRQXCWS12_1_1"} {"score": 0.8191338181495667, "chain_id": "37Q970SNZE7E08BOPRQFIGRQXCWS12_1_3"} {"score": 0.8801499605178833, "chain_id": "37Q970SNZE7E08BOPRQFIGRQXCWS12_1_7"} {"score": 0.9819706678390503, "chain_id": "37Q970SNZE7E08BOPRQFIGRQXCWS12_1_2"} {"score": 0.626286506652832, "chain_id": "37Q970SNZE7E08BOPRQFIGRQXCWS12_1_4"} {"score": 0.9302442669868469, "chain_id": "37Q970SNZE7E08BOPRQFIGRQXCWS12_1_5"} {"score": 0.4685252904891968, "chain_id": "37Q970SNZE7E08BOPRQFIGRQXCWS12_1_6"} {"score": 0.2998470962047577, "chain_id": "37Q970SNZE7E08BOPRQFIGRQXCWS12_1_8"} {"score": 0.5203366875648499, "chain_id": "37Q970SNZE7E08BOPRQFIGRQXCWS12_1_9"} {"score": 0.6045598983764648, "chain_id": "37Q970SNZE7E08BOPRQFIGRQXCWS12_1_10"} {"score": 0.27869388461112976, "chain_id": "3PZDLQMM0TK5IC4OB90T8UXD3TB2CE_1_1"} {"score": 0.5403079390525818, "chain_id": "3PZDLQMM0TK5IC4OB90T8UXD3TB2CE_1_2"} {"score": 0.4265631139278412, "chain_id": "3PZDLQMM0TK5IC4OB90T8UXD3TB2CE_1_3"} {"score": 0.26772385835647583, "chain_id": "3PZDLQMM0TK5IC4OB90T8UXD3TB2CE_1_4"} {"score": 0.73122638463974, "chain_id": "3PZDLQMM0TK5IC4OB90T8UXD3TB2CE_1_5"} {"score": 0.9564170837402344, "chain_id": "3PZDLQMM0TK5IC4OB90T8UXD3TB2CE_1_6"} {"score": 0.7092298269271851, "chain_id": "3PZDLQMM0TK5IC4OB90T8UXD3TB2CE_1_7"} {"score": 0.049288008362054825, "chain_id": "3PZDLQMM0TK5IC4OB90T8UXD3TB2CE_1_8"} {"score": 0.19196775555610657, "chain_id": "3PZDLQMM0TK5IC4OB90T8UXD3TB2CE_1_9"} {"score": 0.45574942231178284, "chain_id": "3PZDLQMM0TK5IC4OB90T8UXD3TB2CE_1_10"} {"score": 0.669166624546051, "chain_id": "3JNQLM5FT4LYLGYUOMTSBDN0X482LH_1_1"} {"score": 0.8801740407943726, "chain_id": "3JNQLM5FT4LYLGYUOMTSBDN0X482LH_1_2"} {"score": 0.46211379766464233, "chain_id": "3JNQLM5FT4LYLGYUOMTSBDN0X482LH_1_3"} {"score": 0.24229979515075684, "chain_id": "3JNQLM5FT4LYLGYUOMTSBDN0X482LH_1_4"} {"score": 0.8280352354049683, "chain_id": "3JNQLM5FT4LYLGYUOMTSBDN0X482LH_1_5"} {"score": 0.32108697295188904, "chain_id": "3JNQLM5FT4LYLGYUOMTSBDN0X482LH_1_6"} {"score": 0.8840315341949463, "chain_id": "3JNQLM5FT4LYLGYUOMTSBDN0X482LH_1_7"} {"score": 0.3976663053035736, "chain_id": "3JNQLM5FT4LYLGYUOMTSBDN0X482LH_1_8"} {"score": 0.1921645551919937, "chain_id": "3JNQLM5FT4LYLGYUOMTSBDN0X482LH_1_9"} {"score": 0.05034950375556946, "chain_id": "3JNQLM5FT4LYLGYUOMTSBDN0X482LH_1_10"} {"score": 0.40775880217552185, "chain_id": "3RYC5T2D73S5GLUDV410T24SHEMPRX_1_1"} {"score": 0.7924609184265137, "chain_id": "3RYC5T2D73S5GLUDV410T24SHEMPRX_1_3"} {"score": 0.3157244324684143, "chain_id": "3RYC5T2D73S5GLUDV410T24SHEMPRX_1_2"} {"score": 0.3899422585964203, "chain_id": "3RYC5T2D73S5GLUDV410T24SHEMPRX_1_4"} {"score": 0.09290153533220291, "chain_id": "3RYC5T2D73S5GLUDV410T24SHEMPRX_1_5"} {"score": 0.26438984274864197, "chain_id": "3RYC5T2D73S5GLUDV410T24SHEMPRX_1_6"} {"score": 0.06983685493469238, "chain_id": "3RYC5T2D73S5GLUDV410T24SHEMPRX_1_7"} {"score": 0.0504918247461319, "chain_id": "3RYC5T2D73S5GLUDV410T24SHEMPRX_1_8"} {"score": 0.3283430337905884, "chain_id": "3RYC5T2D73S5GLUDV410T24SHEMPRX_1_9"} {"score": 0.6238681077957153, "chain_id": "3RYC5T2D73S5GLUDV410T24SHEMPRX_1_10"} {"score": 0.3361744284629822, "chain_id": "3NG53N1RLVIZYGFHWVV02L9NRN4P8T_1_1"} {"score": 0.293053537607193, "chain_id": "3NG53N1RLVIZYGFHWVV02L9NRN4P8T_1_4"} {"score": 0.21550704538822174, "chain_id": "3NG53N1RLVIZYGFHWVV02L9NRN4P8T_1_5"} {"score": 0.9694185853004456, "chain_id": "3NG53N1RLVIZYGFHWVV02L9NRN4P8T_1_6"} {"score": 0.919111967086792, "chain_id": "3NG53N1RLVIZYGFHWVV02L9NRN4P8T_1_8"} {"score": 0.5769457221031189, "chain_id": "3NG53N1RLVIZYGFHWVV02L9NRN4P8T_1_2"} {"score": 0.6328338980674744, "chain_id": "3NG53N1RLVIZYGFHWVV02L9NRN4P8T_1_3"} {"score": 0.903281569480896, "chain_id": "3NG53N1RLVIZYGFHWVV02L9NRN4P8T_1_7"} {"score": 0.7238082885742188, "chain_id": "3NG53N1RLVIZYGFHWVV02L9NRN4P8T_1_9"} {"score": 0.6523950695991516, "chain_id": "3NG53N1RLVIZYGFHWVV02L9NRN4P8T_1_10"} {"score": 0.17049196362495422, "chain_id": "3FTF2T8WLRHPWUVSD9F9UBCU51B9W6_1_1"} {"score": 0.4638596773147583, "chain_id": "3FTF2T8WLRHPWUVSD9F9UBCU51B9W6_1_4"} {"score": 0.6763050556182861, "chain_id": "3FTF2T8WLRHPWUVSD9F9UBCU51B9W6_1_2"} {"score": 0.2523733377456665, "chain_id": "3FTF2T8WLRHPWUVSD9F9UBCU51B9W6_1_3"} {"score": 0.43789997696876526, "chain_id": "3FTF2T8WLRHPWUVSD9F9UBCU51B9W6_1_5"} {"score": 0.12911562621593475, "chain_id": "3FTF2T8WLRHPWUVSD9F9UBCU51B9W6_1_6"} {"score": 0.589759886264801, "chain_id": "3FTF2T8WLRHPWUVSD9F9UBCU51B9W6_1_7"} {"score": 0.039864830672740936, "chain_id": "3FTF2T8WLRHPWUVSD9F9UBCU51B9W6_1_8"} {"score": 0.2416335791349411, "chain_id": "3FTF2T8WLRHPWUVSD9F9UBCU51B9W6_1_9"} {"score": 0.3200138509273529, "chain_id": "3FTF2T8WLRHPWUVSD9F9UBCU51B9W6_1_10"} {"score": 0.9535447955131531, "chain_id": "3MD9PLUKKIDEFR4RP6ILBG1WNXQZNL_1_3"} {"score": 0.9613798260688782, "chain_id": "3MD9PLUKKIDEFR4RP6ILBG1WNXQZNL_1_4"} {"score": 0.8646423816680908, "chain_id": "3MD9PLUKKIDEFR4RP6ILBG1WNXQZNL_1_5"} {"score": 0.8529472947120667, "chain_id": "3MD9PLUKKIDEFR4RP6ILBG1WNXQZNL_1_7"} {"score": 0.41329917311668396, "chain_id": "3MD9PLUKKIDEFR4RP6ILBG1WNXQZNL_1_9"} {"score": 0.9791075587272644, "chain_id": "3MD9PLUKKIDEFR4RP6ILBG1WNXQZNL_1_10"} {"score": 0.7310245633125305, "chain_id": "3MD9PLUKKIDEFR4RP6ILBG1WNXQZNL_1_1"} {"score": 0.782798707485199, "chain_id": "3MD9PLUKKIDEFR4RP6ILBG1WNXQZNL_1_2"} {"score": 0.9318264126777649, "chain_id": "3MD9PLUKKIDEFR4RP6ILBG1WNXQZNL_1_6"} {"score": 0.4634534418582916, "chain_id": "3MD9PLUKKIDEFR4RP6ILBG1WNXQZNL_1_8"} {"score": 0.9926069974899292, "chain_id": "3TVRFO09GKEZMW1RCBEL13HWA3OXLI_1_1"} {"score": 0.9879788160324097, "chain_id": "3TVRFO09GKEZMW1RCBEL13HWA3OXLI_1_3"} {"score": 0.9856260418891907, "chain_id": "3TVRFO09GKEZMW1RCBEL13HWA3OXLI_1_4"} {"score": 0.9575147032737732, "chain_id": "3TVRFO09GKEZMW1RCBEL13HWA3OXLI_1_5"} {"score": 0.6281211376190186, "chain_id": "3TVRFO09GKEZMW1RCBEL13HWA3OXLI_1_6"} {"score": 0.9604581594467163, "chain_id": "3TVRFO09GKEZMW1RCBEL13HWA3OXLI_1_7"} {"score": 0.877236008644104, "chain_id": "3TVRFO09GKEZMW1RCBEL13HWA3OXLI_1_8"} {"score": 0.9797383546829224, "chain_id": "3TVRFO09GKEZMW1RCBEL13HWA3OXLI_1_2"} {"score": 0.6582927703857422, "chain_id": "3TVRFO09GKEZMW1RCBEL13HWA3OXLI_1_9"} {"score": 0.5348970890045166, "chain_id": "3TVRFO09GKEZMW1RCBEL13HWA3OXLI_1_10"} {"score": 0.9349715709686279, "chain_id": "3N2BF7Y2VQTM6OJX7JXEYU8RP3OHMD_1_1"} {"score": 0.6215378642082214, "chain_id": "3N2BF7Y2VQTM6OJX7JXEYU8RP3OHMD_1_2"} {"score": 0.9077014327049255, "chain_id": "3N2BF7Y2VQTM6OJX7JXEYU8RP3OHMD_1_3"} {"score": 0.9183961153030396, "chain_id": "3N2BF7Y2VQTM6OJX7JXEYU8RP3OHMD_1_4"} {"score": 0.7088794708251953, "chain_id": "3N2BF7Y2VQTM6OJX7JXEYU8RP3OHMD_1_8"} {"score": 0.7140434384346008, "chain_id": "3N2BF7Y2VQTM6OJX7JXEYU8RP3OHMD_1_9"} {"score": 0.1998482346534729, "chain_id": "3N2BF7Y2VQTM6OJX7JXEYU8RP3OHMD_1_5"} {"score": 0.3581417500972748, "chain_id": "3N2BF7Y2VQTM6OJX7JXEYU8RP3OHMD_1_6"} {"score": 0.6029291152954102, "chain_id": "3N2BF7Y2VQTM6OJX7JXEYU8RP3OHMD_1_7"} {"score": 0.09454421699047089, "chain_id": "3N2BF7Y2VQTM6OJX7JXEYU8RP3OHMD_1_10"} {"score": 0.6887797117233276, "chain_id": "3OHYZ19UGC4VW4WVET2Z9CAS8LAAOY_1_1"} {"score": 0.04528393596410751, "chain_id": "3OHYZ19UGC4VW4WVET2Z9CAS8LAAOY_1_2"} {"score": 0.8938608765602112, "chain_id": "3OHYZ19UGC4VW4WVET2Z9CAS8LAAOY_1_3"} {"score": 0.6500686407089233, "chain_id": "3OHYZ19UGC4VW4WVET2Z9CAS8LAAOY_1_8"} {"score": 0.8901426196098328, "chain_id": "3OHYZ19UGC4VW4WVET2Z9CAS8LAAOY_1_9"} {"score": 0.3354077637195587, "chain_id": "3OHYZ19UGC4VW4WVET2Z9CAS8LAAOY_1_4"} {"score": 0.20635926723480225, "chain_id": "3OHYZ19UGC4VW4WVET2Z9CAS8LAAOY_1_5"} {"score": 0.06644397228956223, "chain_id": "3OHYZ19UGC4VW4WVET2Z9CAS8LAAOY_1_6"} {"score": 0.1261928826570511, "chain_id": "3OHYZ19UGC4VW4WVET2Z9CAS8LAAOY_1_7"} {"score": 0.07450974732637405, "chain_id": "3OHYZ19UGC4VW4WVET2Z9CAS8LAAOY_1_10"} {"score": 0.051681917160749435, "chain_id": "33JKGHPFYCTEGK58AHSR3E5N83LNMP_1_1"} {"score": 0.026356318965554237, "chain_id": "33JKGHPFYCTEGK58AHSR3E5N83LNMP_1_2"} {"score": 0.01765015907585621, "chain_id": "33JKGHPFYCTEGK58AHSR3E5N83LNMP_1_3"} {"score": 0.04059331491589546, "chain_id": "33JKGHPFYCTEGK58AHSR3E5N83LNMP_1_4"} {"score": 0.03314093500375748, "chain_id": "33JKGHPFYCTEGK58AHSR3E5N83LNMP_1_5"} {"score": 0.0597665011882782, "chain_id": "33JKGHPFYCTEGK58AHSR3E5N83LNMP_1_6"} {"score": 0.024819673970341682, "chain_id": "33JKGHPFYCTEGK58AHSR3E5N83LNMP_1_7"} {"score": 0.0313870944082737, "chain_id": "33JKGHPFYCTEGK58AHSR3E5N83LNMP_1_8"} {"score": 0.02215954102575779, "chain_id": "33JKGHPFYCTEGK58AHSR3E5N83LNMP_1_9"} {"score": 0.0435742549598217, "chain_id": "33JKGHPFYCTEGK58AHSR3E5N83LNMP_1_10"} {"score": 0.968245267868042, "chain_id": "3YT88D1N08XCMSCV7MVWFNFDEHP3KA_1_1"} {"score": 0.7031989097595215, "chain_id": "3YT88D1N08XCMSCV7MVWFNFDEHP3KA_1_2"} {"score": 0.9587360620498657, "chain_id": "3YT88D1N08XCMSCV7MVWFNFDEHP3KA_1_3"} {"score": 0.8802765011787415, "chain_id": "3YT88D1N08XCMSCV7MVWFNFDEHP3KA_1_4"} {"score": 0.2685087025165558, "chain_id": "3YT88D1N08XCMSCV7MVWFNFDEHP3KA_1_7"} {"score": 0.1544356793165207, "chain_id": "3YT88D1N08XCMSCV7MVWFNFDEHP3KA_1_5"} {"score": 0.21844466030597687, "chain_id": "3YT88D1N08XCMSCV7MVWFNFDEHP3KA_1_6"} {"score": 0.25294700264930725, "chain_id": "3YT88D1N08XCMSCV7MVWFNFDEHP3KA_1_8"} {"score": 0.07562767714262009, "chain_id": "3YT88D1N08XCMSCV7MVWFNFDEHP3KA_1_9"} {"score": 0.01823214814066887, "chain_id": "3YT88D1N08XCMSCV7MVWFNFDEHP3KA_1_10"} {"score": 0.9352657198905945, "chain_id": "3GM6G9ZBKNWCBXAS7DE3CDBFYHWMT7_1_1"} {"score": 0.9819837808609009, "chain_id": "3GM6G9ZBKNWCBXAS7DE3CDBFYHWMT7_1_2"} {"score": 0.8013685345649719, "chain_id": "3GM6G9ZBKNWCBXAS7DE3CDBFYHWMT7_1_3"} {"score": 0.9732340574264526, "chain_id": "3GM6G9ZBKNWCBXAS7DE3CDBFYHWMT7_1_4"} {"score": 0.4021998941898346, "chain_id": "3GM6G9ZBKNWCBXAS7DE3CDBFYHWMT7_1_5"} {"score": 0.08844436705112457, "chain_id": "3GM6G9ZBKNWCBXAS7DE3CDBFYHWMT7_1_6"} {"score": 0.11037007719278336, "chain_id": "3GM6G9ZBKNWCBXAS7DE3CDBFYHWMT7_1_7"} {"score": 0.3391331732273102, "chain_id": "3GM6G9ZBKNWCBXAS7DE3CDBFYHWMT7_1_8"} {"score": 0.18138162791728973, "chain_id": "3GM6G9ZBKNWCBXAS7DE3CDBFYHWMT7_1_9"} {"score": 0.19216454029083252, "chain_id": "3GM6G9ZBKNWCBXAS7DE3CDBFYHWMT7_1_10"} {"score": 0.04018065333366394, "chain_id": "3WYP994K17Q63GOUU3ULVY68NUT6YM_1_1"} {"score": 0.08356434851884842, "chain_id": "3WYP994K17Q63GOUU3ULVY68NUT6YM_1_2"} {"score": 0.13133925199508667, "chain_id": "3WYP994K17Q63GOUU3ULVY68NUT6YM_1_3"} {"score": 0.354520320892334, "chain_id": "3WYP994K17Q63GOUU3ULVY68NUT6YM_1_4"} {"score": 0.304402619600296, "chain_id": "3WYP994K17Q63GOUU3ULVY68NUT6YM_1_5"} {"score": 0.08347127586603165, "chain_id": "3WYP994K17Q63GOUU3ULVY68NUT6YM_1_6"} {"score": 0.01644216664135456, "chain_id": "3WYP994K17Q63GOUU3ULVY68NUT6YM_1_7"} {"score": 0.0953531265258789, "chain_id": "3WYP994K17Q63GOUU3ULVY68NUT6YM_1_8"} {"score": 0.012851043604314327, "chain_id": "3WYP994K17Q63GOUU3ULVY68NUT6YM_1_9"} {"score": 0.0418812595307827, "chain_id": "3WYP994K17Q63GOUU3ULVY68NUT6YM_1_10"} {"score": 0.836455225944519, "chain_id": "3YMU66OBIN7MEENBWGZJLPOURDAHGT_1_1"} {"score": 0.2348470240831375, "chain_id": "3YMU66OBIN7MEENBWGZJLPOURDAHGT_1_2"} {"score": 0.07305336743593216, "chain_id": "3YMU66OBIN7MEENBWGZJLPOURDAHGT_1_3"} {"score": 0.10315355658531189, "chain_id": "3YMU66OBIN7MEENBWGZJLPOURDAHGT_1_4"} {"score": 0.06498444080352783, "chain_id": "3YMU66OBIN7MEENBWGZJLPOURDAHGT_1_5"} {"score": 0.07308143377304077, "chain_id": "3YMU66OBIN7MEENBWGZJLPOURDAHGT_1_6"} {"score": 0.4547892212867737, "chain_id": "3YMU66OBIN7MEENBWGZJLPOURDAHGT_1_7"} {"score": 0.20878629386425018, "chain_id": "3YMU66OBIN7MEENBWGZJLPOURDAHGT_1_8"} {"score": 0.27893370389938354, "chain_id": "3YMU66OBIN7MEENBWGZJLPOURDAHGT_1_9"} {"score": 0.12369024008512497, "chain_id": "3YMU66OBIN7MEENBWGZJLPOURDAHGT_1_10"} {"score": 0.885199785232544, "chain_id": "3NQL1CS15R7RI63VVB2T7QM7522YVI_1_1"} {"score": 0.36547037959098816, "chain_id": "3NQL1CS15R7RI63VVB2T7QM7522YVI_1_2"} {"score": 0.1416352540254593, "chain_id": "3NQL1CS15R7RI63VVB2T7QM7522YVI_1_3"} {"score": 0.5442482233047485, "chain_id": "3NQL1CS15R7RI63VVB2T7QM7522YVI_1_4"} {"score": 0.4208383560180664, "chain_id": "3NQL1CS15R7RI63VVB2T7QM7522YVI_1_5"} {"score": 0.508206307888031, "chain_id": "3NQL1CS15R7RI63VVB2T7QM7522YVI_1_6"} {"score": 0.32459262013435364, "chain_id": "3NQL1CS15R7RI63VVB2T7QM7522YVI_1_7"} {"score": 0.04308289662003517, "chain_id": "3NQL1CS15R7RI63VVB2T7QM7522YVI_1_8"} {"score": 0.4841058850288391, "chain_id": "3NQL1CS15R7RI63VVB2T7QM7522YVI_1_9"} {"score": 0.3064914345741272, "chain_id": "3NQL1CS15R7RI63VVB2T7QM7522YVI_1_10"} {"score": 0.916093647480011, "chain_id": "3EFVCAY5L383C5CJ1IQG5PNBIL98JH_1_6"} {"score": 0.021679580211639404, "chain_id": "3EFVCAY5L383C5CJ1IQG5PNBIL98JH_1_1"} {"score": 0.03150807321071625, "chain_id": "3EFVCAY5L383C5CJ1IQG5PNBIL98JH_1_2"} {"score": 0.25358742475509644, "chain_id": "3EFVCAY5L383C5CJ1IQG5PNBIL98JH_1_3"} {"score": 0.10707743465900421, "chain_id": "3EFVCAY5L383C5CJ1IQG5PNBIL98JH_1_4"} {"score": 0.05092749372124672, "chain_id": "3EFVCAY5L383C5CJ1IQG5PNBIL98JH_1_5"} {"score": 0.2272229939699173, "chain_id": "3EFVCAY5L383C5CJ1IQG5PNBIL98JH_1_7"} {"score": 0.024895092472434044, "chain_id": "3EFVCAY5L383C5CJ1IQG5PNBIL98JH_1_8"} {"score": 0.02438265271484852, "chain_id": "3EFVCAY5L383C5CJ1IQG5PNBIL98JH_1_9"} {"score": 0.1831742376089096, "chain_id": "3EFVCAY5L383C5CJ1IQG5PNBIL98JH_1_10"} {"score": 0.98382967710495, "chain_id": "3F0BG9B9MPMP7G2ZDDZD1C64LFE7YA_1_1"} {"score": 0.9767733812332153, "chain_id": "3F0BG9B9MPMP7G2ZDDZD1C64LFE7YA_1_2"} {"score": 0.6802504658699036, "chain_id": "3F0BG9B9MPMP7G2ZDDZD1C64LFE7YA_1_6"} {"score": 0.35302770137786865, "chain_id": "3F0BG9B9MPMP7G2ZDDZD1C64LFE7YA_1_3"} {"score": 0.2684079110622406, "chain_id": "3F0BG9B9MPMP7G2ZDDZD1C64LFE7YA_1_4"} {"score": 0.21648705005645752, "chain_id": "3F0BG9B9MPMP7G2ZDDZD1C64LFE7YA_1_5"} {"score": 0.35077059268951416, "chain_id": "3F0BG9B9MPMP7G2ZDDZD1C64LFE7YA_1_7"} {"score": 0.34986117482185364, "chain_id": "3F0BG9B9MPMP7G2ZDDZD1C64LFE7YA_1_8"} {"score": 0.43994593620300293, "chain_id": "3F0BG9B9MPMP7G2ZDDZD1C64LFE7YA_1_9"} {"score": 0.3660951554775238, "chain_id": "3F0BG9B9MPMP7G2ZDDZD1C64LFE7YA_1_10"} {"score": 0.3032434582710266, "chain_id": "3FTF2T8WLRHPWUVSD9F9UBCU4O1W9S_1_2"} {"score": 0.6857616305351257, "chain_id": "3FTF2T8WLRHPWUVSD9F9UBCU4O1W9S_1_4"} {"score": 0.3549724221229553, "chain_id": "3FTF2T8WLRHPWUVSD9F9UBCU4O1W9S_1_10"} {"score": 0.24300453066825867, "chain_id": "3FTF2T8WLRHPWUVSD9F9UBCU4O1W9S_1_1"} {"score": 0.473504900932312, "chain_id": "3FTF2T8WLRHPWUVSD9F9UBCU4O1W9S_1_3"} {"score": 0.2367193102836609, "chain_id": "3FTF2T8WLRHPWUVSD9F9UBCU4O1W9S_1_5"} {"score": 0.031804777681827545, "chain_id": "3FTF2T8WLRHPWUVSD9F9UBCU4O1W9S_1_6"} {"score": 0.07702593505382538, "chain_id": "3FTF2T8WLRHPWUVSD9F9UBCU4O1W9S_1_7"} {"score": 0.03772624954581261, "chain_id": "3FTF2T8WLRHPWUVSD9F9UBCU4O1W9S_1_8"} {"score": 0.30694979429244995, "chain_id": "3FTF2T8WLRHPWUVSD9F9UBCU4O1W9S_1_9"} {"score": 0.9768174290657043, "chain_id": "3KV0LJBBH2KZVIX03O98CYAXDFPMRP_1_1"} {"score": 0.9704880118370056, "chain_id": "3KV0LJBBH2KZVIX03O98CYAXDFPMRP_1_2"} {"score": 0.14565438032150269, "chain_id": "3KV0LJBBH2KZVIX03O98CYAXDFPMRP_1_5"} {"score": 0.5581644773483276, "chain_id": "3KV0LJBBH2KZVIX03O98CYAXDFPMRP_1_6"} {"score": 0.213920459151268, "chain_id": "3KV0LJBBH2KZVIX03O98CYAXDFPMRP_1_3"} {"score": 0.09397260844707489, "chain_id": "3KV0LJBBH2KZVIX03O98CYAXDFPMRP_1_4"} {"score": 0.44561147689819336, "chain_id": "3KV0LJBBH2KZVIX03O98CYAXDFPMRP_1_7"} {"score": 0.6169430613517761, "chain_id": "3KV0LJBBH2KZVIX03O98CYAXDFPMRP_1_8"} {"score": 0.10720892250537872, "chain_id": "3KV0LJBBH2KZVIX03O98CYAXDFPMRP_1_9"} {"score": 0.8367414474487305, "chain_id": "3KV0LJBBH2KZVIX03O98CYAXDFPMRP_1_10"} {"score": 0.9911121726036072, "chain_id": "3SEPORI8WNY7V8A2G2DGPAHWSUUAZR_1_1"} {"score": 0.9898161888122559, "chain_id": "3SEPORI8WNY7V8A2G2DGPAHWSUUAZR_1_3"} {"score": 0.9856460690498352, "chain_id": "3SEPORI8WNY7V8A2G2DGPAHWSUUAZR_1_4"} {"score": 0.9221913814544678, "chain_id": "3SEPORI8WNY7V8A2G2DGPAHWSUUAZR_1_5"} {"score": 0.4168737530708313, "chain_id": "3SEPORI8WNY7V8A2G2DGPAHWSUUAZR_1_8"} {"score": 0.3582402467727661, "chain_id": "3SEPORI8WNY7V8A2G2DGPAHWSUUAZR_1_10"} {"score": 0.9916471242904663, "chain_id": "3SEPORI8WNY7V8A2G2DGPAHWSUUAZR_1_2"} {"score": 0.7075740098953247, "chain_id": "3SEPORI8WNY7V8A2G2DGPAHWSUUAZR_1_6"} {"score": 0.8942641019821167, "chain_id": "3SEPORI8WNY7V8A2G2DGPAHWSUUAZR_1_7"} {"score": 0.18791231513023376, "chain_id": "3SEPORI8WNY7V8A2G2DGPAHWSUUAZR_1_9"} {"score": 0.019064152613282204, "chain_id": "3M1CVSFP604YHG9BT6U3YH5SJGNAQL_1_1"} {"score": 0.01976623758673668, "chain_id": "3M1CVSFP604YHG9BT6U3YH5SJGNAQL_1_2"} {"score": 0.0171392522752285, "chain_id": "3M1CVSFP604YHG9BT6U3YH5SJGNAQL_1_3"} {"score": 0.135270357131958, "chain_id": "3M1CVSFP604YHG9BT6U3YH5SJGNAQL_1_4"} {"score": 0.023574354127049446, "chain_id": "3M1CVSFP604YHG9BT6U3YH5SJGNAQL_1_5"} {"score": 0.02458224631845951, "chain_id": "3M1CVSFP604YHG9BT6U3YH5SJGNAQL_1_6"} {"score": 0.03330564871430397, "chain_id": "3M1CVSFP604YHG9BT6U3YH5SJGNAQL_1_7"} {"score": 0.016738368198275566, "chain_id": "3M1CVSFP604YHG9BT6U3YH5SJGNAQL_1_8"} {"score": 0.06352024525403976, "chain_id": "3M1CVSFP604YHG9BT6U3YH5SJGNAQL_1_9"} {"score": 0.04668400436639786, "chain_id": "3M1CVSFP604YHG9BT6U3YH5SJGNAQL_1_10"} {"score": 0.2625790536403656, "chain_id": "3PDJHANYK5FKHLY5K3QX9YB5WAJH6O_1_1"} {"score": 0.36496320366859436, "chain_id": "3PDJHANYK5FKHLY5K3QX9YB5WAJH6O_1_2"} {"score": 0.3154843747615814, "chain_id": "3PDJHANYK5FKHLY5K3QX9YB5WAJH6O_1_3"} {"score": 0.18910035490989685, "chain_id": "3PDJHANYK5FKHLY5K3QX9YB5WAJH6O_1_4"} {"score": 0.08130021393299103, "chain_id": "3PDJHANYK5FKHLY5K3QX9YB5WAJH6O_1_5"} {"score": 0.20923052728176117, "chain_id": "3PDJHANYK5FKHLY5K3QX9YB5WAJH6O_1_6"} {"score": 0.036322277039289474, "chain_id": "3PDJHANYK5FKHLY5K3QX9YB5WAJH6O_1_7"} {"score": 0.11471515148878098, "chain_id": "3PDJHANYK5FKHLY5K3QX9YB5WAJH6O_1_8"} {"score": 0.0864279642701149, "chain_id": "3PDJHANYK5FKHLY5K3QX9YB5WAJH6O_1_9"} {"score": 0.055278580635786057, "chain_id": "3PDJHANYK5FKHLY5K3QX9YB5WAJH6O_1_10"} {"score": 0.5384483933448792, "chain_id": "3XUHV3NRVKXOYHYRFKGSHSX50RG5HS_1_1"} {"score": 0.06266392767429352, "chain_id": "3XUHV3NRVKXOYHYRFKGSHSX50RG5HS_1_2"} {"score": 0.11413362622261047, "chain_id": "3XUHV3NRVKXOYHYRFKGSHSX50RG5HS_1_3"} {"score": 0.16330312192440033, "chain_id": "3XUHV3NRVKXOYHYRFKGSHSX50RG5HS_1_4"} {"score": 0.04198186844587326, "chain_id": "3XUHV3NRVKXOYHYRFKGSHSX50RG5HS_1_5"} {"score": 0.07314088940620422, "chain_id": "3XUHV3NRVKXOYHYRFKGSHSX50RG5HS_1_6"} {"score": 0.07441078126430511, "chain_id": "3XUHV3NRVKXOYHYRFKGSHSX50RG5HS_1_7"} {"score": 0.01832769811153412, "chain_id": "3XUHV3NRVKXOYHYRFKGSHSX50RG5HS_1_8"} {"score": 0.957331657409668, "chain_id": "3XUHV3NRVKXOYHYRFKGSHSX50RG5HS_1_9"} {"score": 0.5292197465896606, "chain_id": "3XUHV3NRVKXOYHYRFKGSHSX50RG5HS_1_10"} {"score": 0.8742250204086304, "chain_id": "3HVVDCPGTERC5EZ6QG2E68YM6SPYTP_1_5"} {"score": 0.9586597084999084, "chain_id": "3HVVDCPGTERC5EZ6QG2E68YM6SPYTP_1_6"} {"score": 0.9724140763282776, "chain_id": "3HVVDCPGTERC5EZ6QG2E68YM6SPYTP_1_7"} {"score": 0.9828565716743469, "chain_id": "3HVVDCPGTERC5EZ6QG2E68YM6SPYTP_1_9"} {"score": 0.24050478637218475, "chain_id": "3HVVDCPGTERC5EZ6QG2E68YM6SPYTP_1_1"} {"score": 0.21326079964637756, "chain_id": "3HVVDCPGTERC5EZ6QG2E68YM6SPYTP_1_2"} {"score": 0.2387089878320694, "chain_id": "3HVVDCPGTERC5EZ6QG2E68YM6SPYTP_1_3"} {"score": 0.15983211994171143, "chain_id": "3HVVDCPGTERC5EZ6QG2E68YM6SPYTP_1_4"} {"score": 0.555397093296051, "chain_id": "3HVVDCPGTERC5EZ6QG2E68YM6SPYTP_1_8"} {"score": 0.3408890664577484, "chain_id": "3HVVDCPGTERC5EZ6QG2E68YM6SPYTP_1_10"} {"score": 0.5205956101417542, "chain_id": "3W92K5RLWUGTGITBK9XWWTOEBLVV59_1_1"} {"score": 0.03491652384400368, "chain_id": "3W92K5RLWUGTGITBK9XWWTOEBLVV59_1_2"} {"score": 0.06520351022481918, "chain_id": "3W92K5RLWUGTGITBK9XWWTOEBLVV59_1_3"} {"score": 0.6178109645843506, "chain_id": "3W92K5RLWUGTGITBK9XWWTOEBLVV59_1_4"} {"score": 0.17612048983573914, "chain_id": "3W92K5RLWUGTGITBK9XWWTOEBLVV59_1_5"} {"score": 0.46400755643844604, "chain_id": "3W92K5RLWUGTGITBK9XWWTOEBLVV59_1_6"} {"score": 0.41982710361480713, "chain_id": "3W92K5RLWUGTGITBK9XWWTOEBLVV59_1_7"} {"score": 0.7199838161468506, "chain_id": "3W92K5RLWUGTGITBK9XWWTOEBLVV59_1_8"} {"score": 0.18457576632499695, "chain_id": "3W92K5RLWUGTGITBK9XWWTOEBLVV59_1_9"} {"score": 0.1476249396800995, "chain_id": "3W92K5RLWUGTGITBK9XWWTOEBLVV59_1_10"} {"score": 0.4956073462963104, "chain_id": "31LM9EDVOLROFCZN7KFZNMD684SNJH_1_1"} {"score": 0.8805655241012573, "chain_id": "31LM9EDVOLROFCZN7KFZNMD684SNJH_1_2"} {"score": 0.6614198684692383, "chain_id": "31LM9EDVOLROFCZN7KFZNMD684SNJH_1_3"} {"score": 0.861523449420929, "chain_id": "31LM9EDVOLROFCZN7KFZNMD684SNJH_1_5"} {"score": 0.7015535831451416, "chain_id": "31LM9EDVOLROFCZN7KFZNMD684SNJH_1_10"} {"score": 0.2351173758506775, "chain_id": "31LM9EDVOLROFCZN7KFZNMD684SNJH_1_4"} {"score": 0.2818834185600281, "chain_id": "31LM9EDVOLROFCZN7KFZNMD684SNJH_1_6"} {"score": 0.129672572016716, "chain_id": "31LM9EDVOLROFCZN7KFZNMD684SNJH_1_7"} {"score": 0.16477566957473755, "chain_id": "31LM9EDVOLROFCZN7KFZNMD684SNJH_1_8"} {"score": 0.29325956106185913, "chain_id": "31LM9EDVOLROFCZN7KFZNMD684SNJH_1_9"} {"score": 0.9812379479408264, "chain_id": "3YWRV122CSYCQLNDDHUUCRWMWGA8U7_1_5"} {"score": 0.7009619474411011, "chain_id": "3YWRV122CSYCQLNDDHUUCRWMWGA8U7_1_1"} {"score": 0.39008018374443054, "chain_id": "3YWRV122CSYCQLNDDHUUCRWMWGA8U7_1_2"} {"score": 0.9685760736465454, "chain_id": "3YWRV122CSYCQLNDDHUUCRWMWGA8U7_1_3"} {"score": 0.8974879384040833, "chain_id": "3YWRV122CSYCQLNDDHUUCRWMWGA8U7_1_4"} {"score": 0.9388367533683777, "chain_id": "3YWRV122CSYCQLNDDHUUCRWMWGA8U7_1_6"} {"score": 0.9664422869682312, "chain_id": "3YWRV122CSYCQLNDDHUUCRWMWGA8U7_1_7"} {"score": 0.8183411955833435, "chain_id": "3YWRV122CSYCQLNDDHUUCRWMWGA8U7_1_8"} {"score": 0.21936725080013275, "chain_id": "3YWRV122CSYCQLNDDHUUCRWMWGA8U7_1_9"} {"score": 0.6167675256729126, "chain_id": "3YWRV122CSYCQLNDDHUUCRWMWGA8U7_1_10"} {"score": 0.9930686950683594, "chain_id": "3SB4CE2TJVUIQDANFKPVSP1LKQ3XAG_1_5"} {"score": 0.96903395652771, "chain_id": "3SB4CE2TJVUIQDANFKPVSP1LKQ3XAG_1_6"} {"score": 0.6103258728981018, "chain_id": "3SB4CE2TJVUIQDANFKPVSP1LKQ3XAG_1_8"} {"score": 0.03978811949491501, "chain_id": "3SB4CE2TJVUIQDANFKPVSP1LKQ3XAG_1_1"} {"score": 0.03575177118182182, "chain_id": "3SB4CE2TJVUIQDANFKPVSP1LKQ3XAG_1_2"} {"score": 0.01705707237124443, "chain_id": "3SB4CE2TJVUIQDANFKPVSP1LKQ3XAG_1_3"} {"score": 0.028682956472039223, "chain_id": "3SB4CE2TJVUIQDANFKPVSP1LKQ3XAG_1_4"} {"score": 0.7280322313308716, "chain_id": "3SB4CE2TJVUIQDANFKPVSP1LKQ3XAG_1_7"} {"score": 0.3872619569301605, "chain_id": "3SB4CE2TJVUIQDANFKPVSP1LKQ3XAG_1_9"} {"score": 0.20639421045780182, "chain_id": "3SB4CE2TJVUIQDANFKPVSP1LKQ3XAG_1_10"} {"score": 0.6140138506889343, "chain_id": "33CID57104SN6YUDSM7XUNSS76U3LV_1_4"} {"score": 0.4029552638530731, "chain_id": "33CID57104SN6YUDSM7XUNSS76U3LV_1_7"} {"score": 0.35546451807022095, "chain_id": "33CID57104SN6YUDSM7XUNSS76U3LV_1_8"} {"score": 0.6287064552307129, "chain_id": "33CID57104SN6YUDSM7XUNSS76U3LV_1_9"} {"score": 0.41213279962539673, "chain_id": "33CID57104SN6YUDSM7XUNSS76U3LV_1_10"} {"score": 0.5844631791114807, "chain_id": "33CID57104SN6YUDSM7XUNSS76U3LV_1_1"} {"score": 0.20611882209777832, "chain_id": "33CID57104SN6YUDSM7XUNSS76U3LV_1_2"} {"score": 0.4618491232395172, "chain_id": "33CID57104SN6YUDSM7XUNSS76U3LV_1_3"} {"score": 0.595639169216156, "chain_id": "33CID57104SN6YUDSM7XUNSS76U3LV_1_5"} {"score": 0.039698511362075806, "chain_id": "33CID57104SN6YUDSM7XUNSS76U3LV_1_6"} {"score": 0.10065541416406631, "chain_id": "34PGFRQONOAE2681ZL6MJ5QX114WJV_1_1"} {"score": 0.6875263452529907, "chain_id": "34PGFRQONOAE2681ZL6MJ5QX114WJV_1_4"} {"score": 0.0893380343914032, "chain_id": "34PGFRQONOAE2681ZL6MJ5QX114WJV_1_2"} {"score": 0.5431599020957947, "chain_id": "34PGFRQONOAE2681ZL6MJ5QX114WJV_1_3"} {"score": 0.06345682591199875, "chain_id": "34PGFRQONOAE2681ZL6MJ5QX114WJV_1_5"} {"score": 0.13411621749401093, "chain_id": "34PGFRQONOAE2681ZL6MJ5QX114WJV_1_6"} {"score": 0.01688460260629654, "chain_id": "34PGFRQONOAE2681ZL6MJ5QX114WJV_1_7"} {"score": 0.021733997389674187, "chain_id": "34PGFRQONOAE2681ZL6MJ5QX114WJV_1_8"} {"score": 0.042067527770996094, "chain_id": "34PGFRQONOAE2681ZL6MJ5QX114WJV_1_9"} {"score": 0.023898271843791008, "chain_id": "34PGFRQONOAE2681ZL6MJ5QX114WJV_1_10"} {"score": 0.25920817255973816, "chain_id": "30LSNF239UUWVFQO3JWFJXV8KPI2IP_1_1"} {"score": 0.3303495943546295, "chain_id": "30LSNF239UUWVFQO3JWFJXV8KPI2IP_1_2"} {"score": 0.3823340833187103, "chain_id": "30LSNF239UUWVFQO3JWFJXV8KPI2IP_1_3"} {"score": 0.6286837458610535, "chain_id": "30LSNF239UUWVFQO3JWFJXV8KPI2IP_1_4"} {"score": 0.6188557744026184, "chain_id": "30LSNF239UUWVFQO3JWFJXV8KPI2IP_1_5"} {"score": 0.787028431892395, "chain_id": "30LSNF239UUWVFQO3JWFJXV8KPI2IP_1_6"} {"score": 0.5087283253669739, "chain_id": "30LSNF239UUWVFQO3JWFJXV8KPI2IP_1_7"} {"score": 0.9056010842323303, "chain_id": "30LSNF239UUWVFQO3JWFJXV8KPI2IP_1_8"} {"score": 0.13704563677310944, "chain_id": "30LSNF239UUWVFQO3JWFJXV8KPI2IP_1_9"} {"score": 0.5627762675285339, "chain_id": "30LSNF239UUWVFQO3JWFJXV8KPI2IP_1_10"} {"score": 0.0181911401450634, "chain_id": "3B2X28YI3WEAQ8VJKBG1NN87EBL6B9_1_1"} {"score": 0.026328837499022484, "chain_id": "3B2X28YI3WEAQ8VJKBG1NN87EBL6B9_1_2"} {"score": 0.02378023974597454, "chain_id": "3B2X28YI3WEAQ8VJKBG1NN87EBL6B9_1_3"} {"score": 0.030792970210313797, "chain_id": "3B2X28YI3WEAQ8VJKBG1NN87EBL6B9_1_4"} {"score": 0.02286960743367672, "chain_id": "3B2X28YI3WEAQ8VJKBG1NN87EBL6B9_1_5"} {"score": 0.026801761239767075, "chain_id": "3B2X28YI3WEAQ8VJKBG1NN87EBL6B9_1_6"} {"score": 0.02720894291996956, "chain_id": "3B2X28YI3WEAQ8VJKBG1NN87EBL6B9_1_7"} {"score": 0.028126318007707596, "chain_id": "3B2X28YI3WEAQ8VJKBG1NN87EBL6B9_1_8"} {"score": 0.01827990636229515, "chain_id": "3B2X28YI3WEAQ8VJKBG1NN87EBL6B9_1_9"} {"score": 0.026835449039936066, "chain_id": "3B2X28YI3WEAQ8VJKBG1NN87EBL6B9_1_10"} {"score": 0.028082288801670074, "chain_id": "374TNBHA8BUZDY7E9C8J13NZZMMYQM_1_7"} {"score": 0.01696929894387722, "chain_id": "374TNBHA8BUZDY7E9C8J13NZZMMYQM_1_1"} {"score": 0.01639879308640957, "chain_id": "374TNBHA8BUZDY7E9C8J13NZZMMYQM_1_2"} {"score": 0.020435430109500885, "chain_id": "374TNBHA8BUZDY7E9C8J13NZZMMYQM_1_3"} {"score": 0.05462782084941864, "chain_id": "374TNBHA8BUZDY7E9C8J13NZZMMYQM_1_4"} {"score": 0.013786219991743565, "chain_id": "374TNBHA8BUZDY7E9C8J13NZZMMYQM_1_5"} {"score": 0.016446277499198914, "chain_id": "374TNBHA8BUZDY7E9C8J13NZZMMYQM_1_6"} {"score": 0.022262051701545715, "chain_id": "374TNBHA8BUZDY7E9C8J13NZZMMYQM_1_8"} {"score": 0.023215752094984055, "chain_id": "374TNBHA8BUZDY7E9C8J13NZZMMYQM_1_9"} {"score": 0.0713043138384819, "chain_id": "374TNBHA8BUZDY7E9C8J13NZZMMYQM_1_10"} {"score": 0.5431599020957947, "chain_id": "34YB12FSQYN86SOMNDFWDUWQK2LMG1_1_3"} {"score": 0.10065541416406631, "chain_id": "34YB12FSQYN86SOMNDFWDUWQK2LMG1_1_1"} {"score": 0.0893380343914032, "chain_id": "34YB12FSQYN86SOMNDFWDUWQK2LMG1_1_2"} {"score": 0.6875263452529907, "chain_id": "34YB12FSQYN86SOMNDFWDUWQK2LMG1_1_4"} {"score": 0.06345682591199875, "chain_id": "34YB12FSQYN86SOMNDFWDUWQK2LMG1_1_5"} {"score": 0.13411621749401093, "chain_id": "34YB12FSQYN86SOMNDFWDUWQK2LMG1_1_6"} {"score": 0.01688460260629654, "chain_id": "34YB12FSQYN86SOMNDFWDUWQK2LMG1_1_7"} {"score": 0.021733997389674187, "chain_id": "34YB12FSQYN86SOMNDFWDUWQK2LMG1_1_8"} {"score": 0.042067527770996094, "chain_id": "34YB12FSQYN86SOMNDFWDUWQK2LMG1_1_9"} {"score": 0.023898271843791008, "chain_id": "34YB12FSQYN86SOMNDFWDUWQK2LMG1_1_10"} {"score": 0.02572096511721611, "chain_id": "3JJVG1YBEBWE74V5FS6WVHU7IVAB5S_1_9"} {"score": 0.11528665572404861, "chain_id": "3JJVG1YBEBWE74V5FS6WVHU7IVAB5S_1_1"} {"score": 0.024393899366259575, "chain_id": "3JJVG1YBEBWE74V5FS6WVHU7IVAB5S_1_2"} {"score": 0.018056116998195648, "chain_id": "3JJVG1YBEBWE74V5FS6WVHU7IVAB5S_1_3"} {"score": 0.04068540036678314, "chain_id": "3JJVG1YBEBWE74V5FS6WVHU7IVAB5S_1_4"} {"score": 0.08417107909917831, "chain_id": "3JJVG1YBEBWE74V5FS6WVHU7IVAB5S_1_5"} {"score": 0.02153446339070797, "chain_id": "3JJVG1YBEBWE74V5FS6WVHU7IVAB5S_1_6"} {"score": 0.016376342624425888, "chain_id": "3JJVG1YBEBWE74V5FS6WVHU7IVAB5S_1_7"} {"score": 0.01137245912104845, "chain_id": "3JJVG1YBEBWE74V5FS6WVHU7IVAB5S_1_8"} {"score": 0.021955082193017006, "chain_id": "3JJVG1YBEBWE74V5FS6WVHU7IVAB5S_1_10"} {"score": 0.08312342315912247, "chain_id": "3BXQMRHWKZXRBAPH7I4DH9XHTDZUME_1_1"} {"score": 0.03982476517558098, "chain_id": "3BXQMRHWKZXRBAPH7I4DH9XHTDZUME_1_2"} {"score": 0.032035987824201584, "chain_id": "3BXQMRHWKZXRBAPH7I4DH9XHTDZUME_1_3"} {"score": 0.017670895904302597, "chain_id": "3BXQMRHWKZXRBAPH7I4DH9XHTDZUME_1_4"} {"score": 0.03359051048755646, "chain_id": "3BXQMRHWKZXRBAPH7I4DH9XHTDZUME_1_5"} {"score": 0.01328863576054573, "chain_id": "3BXQMRHWKZXRBAPH7I4DH9XHTDZUME_1_6"} {"score": 0.18450745940208435, "chain_id": "3BXQMRHWKZXRBAPH7I4DH9XHTDZUME_1_7"} {"score": 0.09648758172988892, "chain_id": "3BXQMRHWKZXRBAPH7I4DH9XHTDZUME_1_8"} {"score": 0.035725317895412445, "chain_id": "3BXQMRHWKZXRBAPH7I4DH9XHTDZUME_1_9"} {"score": 0.047486312687397, "chain_id": "3BXQMRHWKZXRBAPH7I4DH9XHTDZUME_1_10"} {"score": 0.20296718180179596, "chain_id": "3PIWWX1FJJ5SWM82SMN7UFWP97KJJQ_1_6"} {"score": 0.2552315890789032, "chain_id": "3PIWWX1FJJ5SWM82SMN7UFWP97KJJQ_1_1"} {"score": 0.09363947063684464, "chain_id": "3PIWWX1FJJ5SWM82SMN7UFWP97KJJQ_1_2"} {"score": 0.4707423448562622, "chain_id": "3PIWWX1FJJ5SWM82SMN7UFWP97KJJQ_1_3"} {"score": 0.35288748145103455, "chain_id": "3PIWWX1FJJ5SWM82SMN7UFWP97KJJQ_1_4"} {"score": 0.0252839308232069, "chain_id": "3PIWWX1FJJ5SWM82SMN7UFWP97KJJQ_1_5"} {"score": 0.11963173747062683, "chain_id": "3PIWWX1FJJ5SWM82SMN7UFWP97KJJQ_1_7"} {"score": 0.05743276700377464, "chain_id": "3PIWWX1FJJ5SWM82SMN7UFWP97KJJQ_1_8"} {"score": 0.038073986768722534, "chain_id": "3PIWWX1FJJ5SWM82SMN7UFWP97KJJQ_1_9"} {"score": 0.034773021936416626, "chain_id": "3PIWWX1FJJ5SWM82SMN7UFWP97KJJQ_1_10"} {"score": 0.04617960378527641, "chain_id": "3VE8AYVF8MWN73QNISZVQRVJZ1RF84_1_1"} {"score": 0.04344794526696205, "chain_id": "3VE8AYVF8MWN73QNISZVQRVJZ1RF84_1_2"} {"score": 0.08727468550205231, "chain_id": "3VE8AYVF8MWN73QNISZVQRVJZ1RF84_1_3"} {"score": 0.028689278289675713, "chain_id": "3VE8AYVF8MWN73QNISZVQRVJZ1RF84_1_4"} {"score": 0.024959711357951164, "chain_id": "3VE8AYVF8MWN73QNISZVQRVJZ1RF84_1_5"} {"score": 0.06251651048660278, "chain_id": "3VE8AYVF8MWN73QNISZVQRVJZ1RF84_1_6"} {"score": 0.5907382965087891, "chain_id": "3VE8AYVF8MWN73QNISZVQRVJZ1RF84_1_7"} {"score": 0.02518445812165737, "chain_id": "3VE8AYVF8MWN73QNISZVQRVJZ1RF84_1_8"} {"score": 0.3215942978858948, "chain_id": "3VE8AYVF8MWN73QNISZVQRVJZ1RF84_1_9"} {"score": 0.14419716596603394, "chain_id": "3VE8AYVF8MWN73QNISZVQRVJZ1RF84_1_10"} {"score": 0.08253240585327148, "chain_id": "39U1BHVTDLQBPB2I1V9OGE29XBJ3TH_1_1"} {"score": 0.6979168653488159, "chain_id": "39U1BHVTDLQBPB2I1V9OGE29XBJ3TH_1_2"} {"score": 0.0690389946103096, "chain_id": "39U1BHVTDLQBPB2I1V9OGE29XBJ3TH_1_3"} {"score": 0.0981466993689537, "chain_id": "39U1BHVTDLQBPB2I1V9OGE29XBJ3TH_1_4"} {"score": 0.052319783717393875, "chain_id": "39U1BHVTDLQBPB2I1V9OGE29XBJ3TH_1_5"} {"score": 0.3504936099052429, "chain_id": "39U1BHVTDLQBPB2I1V9OGE29XBJ3TH_1_6"} {"score": 0.4060216546058655, "chain_id": "39U1BHVTDLQBPB2I1V9OGE29XBJ3TH_1_7"} {"score": 0.7254627346992493, "chain_id": "39U1BHVTDLQBPB2I1V9OGE29XBJ3TH_1_8"} {"score": 0.020339692011475563, "chain_id": "39U1BHVTDLQBPB2I1V9OGE29XBJ3TH_1_9"} {"score": 0.34259602427482605, "chain_id": "39U1BHVTDLQBPB2I1V9OGE29XBJ3TH_1_10"} {"score": 0.9857400059700012, "chain_id": "30JNVC0OR9JDR3HPZC4VF3SWWEOHQK_1_1"} {"score": 0.9890182018280029, "chain_id": "30JNVC0OR9JDR3HPZC4VF3SWWEOHQK_1_2"} {"score": 0.9188352823257446, "chain_id": "30JNVC0OR9JDR3HPZC4VF3SWWEOHQK_1_3"} {"score": 0.9876500964164734, "chain_id": "30JNVC0OR9JDR3HPZC4VF3SWWEOHQK_1_5"} {"score": 0.9493808746337891, "chain_id": "30JNVC0OR9JDR3HPZC4VF3SWWEOHQK_1_6"} {"score": 0.9621159434318542, "chain_id": "30JNVC0OR9JDR3HPZC4VF3SWWEOHQK_1_7"} {"score": 0.4176539480686188, "chain_id": "30JNVC0OR9JDR3HPZC4VF3SWWEOHQK_1_8"} {"score": 0.05784450098872185, "chain_id": "30JNVC0OR9JDR3HPZC4VF3SWWEOHQK_1_9"} {"score": 0.6647170186042786, "chain_id": "30JNVC0OR9JDR3HPZC4VF3SWWEOHQK_1_10"} {"score": 0.9812535643577576, "chain_id": "30JNVC0OR9JDR3HPZC4VF3SWWEOHQK_1_4"} {"score": 0.19539232552051544, "chain_id": "3ZDAD0O1T1CN599WLKGCNURD4FVXT4_1_1"} {"score": 0.49177882075309753, "chain_id": "3ZDAD0O1T1CN599WLKGCNURD4FVXT4_1_2"} {"score": 0.8903793692588806, "chain_id": "3ZDAD0O1T1CN599WLKGCNURD4FVXT4_1_3"} {"score": 0.23676255345344543, "chain_id": "3ZDAD0O1T1CN599WLKGCNURD4FVXT4_1_4"} {"score": 0.06866344064474106, "chain_id": "3ZDAD0O1T1CN599WLKGCNURD4FVXT4_1_5"} {"score": 0.08141748607158661, "chain_id": "3ZDAD0O1T1CN599WLKGCNURD4FVXT4_1_6"} {"score": 0.5805388689041138, "chain_id": "3ZDAD0O1T1CN599WLKGCNURD4FVXT4_1_7"} {"score": 0.04356677085161209, "chain_id": "3ZDAD0O1T1CN599WLKGCNURD4FVXT4_1_8"} {"score": 0.10324828326702118, "chain_id": "3ZDAD0O1T1CN599WLKGCNURD4FVXT4_1_9"} {"score": 0.4123810827732086, "chain_id": "3ZDAD0O1T1CN599WLKGCNURD4FVXT4_1_10"} {"score": 0.9794966578483582, "chain_id": "3Z7EFSHGN9D6JS7LZYLMYKR9G13XC9_1_1"} {"score": 0.9832748770713806, "chain_id": "3Z7EFSHGN9D6JS7LZYLMYKR9G13XC9_1_2"} {"score": 0.9904983639717102, "chain_id": "3Z7EFSHGN9D6JS7LZYLMYKR9G13XC9_1_3"} {"score": 0.8690275549888611, "chain_id": "3Z7EFSHGN9D6JS7LZYLMYKR9G13XC9_1_4"} {"score": 0.8391369581222534, "chain_id": "3Z7EFSHGN9D6JS7LZYLMYKR9G13XC9_1_5"} {"score": 0.8142072558403015, "chain_id": "3Z7EFSHGN9D6JS7LZYLMYKR9G13XC9_1_6"} {"score": 0.9235972166061401, "chain_id": "3Z7EFSHGN9D6JS7LZYLMYKR9G13XC9_1_7"} {"score": 0.11056344956159592, "chain_id": "3Z7EFSHGN9D6JS7LZYLMYKR9G13XC9_1_8"} {"score": 0.805792510509491, "chain_id": "3Z7EFSHGN9D6JS7LZYLMYKR9G13XC9_1_9"} {"score": 0.043136950582265854, "chain_id": "3Z7EFSHGN9D6JS7LZYLMYKR9G13XC9_1_10"} {"score": 0.34221911430358887, "chain_id": "3RKNTXVS3MXRSBMDV9NQVE4NN4W4AK_1_1"} {"score": 0.33193427324295044, "chain_id": "3RKNTXVS3MXRSBMDV9NQVE4NN4W4AK_1_2"} {"score": 0.09051722288131714, "chain_id": "3RKNTXVS3MXRSBMDV9NQVE4NN4W4AK_1_3"} {"score": 0.1518014669418335, "chain_id": "3RKNTXVS3MXRSBMDV9NQVE4NN4W4AK_1_4"} {"score": 0.06620888411998749, "chain_id": "3RKNTXVS3MXRSBMDV9NQVE4NN4W4AK_1_5"} {"score": 0.5832935571670532, "chain_id": "3RKNTXVS3MXRSBMDV9NQVE4NN4W4AK_1_6"} {"score": 0.5358290076255798, "chain_id": "3RKNTXVS3MXRSBMDV9NQVE4NN4W4AK_1_7"} {"score": 0.3200347423553467, "chain_id": "3RKNTXVS3MXRSBMDV9NQVE4NN4W4AK_1_8"} {"score": 0.10280928760766983, "chain_id": "3RKNTXVS3MXRSBMDV9NQVE4NN4W4AK_1_9"} {"score": 0.060931261628866196, "chain_id": "3RKNTXVS3MXRSBMDV9NQVE4NN4W4AK_1_10"} {"score": 0.9612741470336914, "chain_id": "36NEMU28XFC43EEM2IJEZXIE1FNWMN_1_1"} {"score": 0.9632535576820374, "chain_id": "36NEMU28XFC43EEM2IJEZXIE1FNWMN_1_2"} {"score": 0.8787732720375061, "chain_id": "36NEMU28XFC43EEM2IJEZXIE1FNWMN_1_5"} {"score": 0.9474585056304932, "chain_id": "36NEMU28XFC43EEM2IJEZXIE1FNWMN_1_8"} {"score": 0.9381726384162903, "chain_id": "36NEMU28XFC43EEM2IJEZXIE1FNWMN_1_3"} {"score": 0.9646422266960144, "chain_id": "36NEMU28XFC43EEM2IJEZXIE1FNWMN_1_4"} {"score": 0.3680947422981262, "chain_id": "36NEMU28XFC43EEM2IJEZXIE1FNWMN_1_6"} {"score": 0.8981550335884094, "chain_id": "36NEMU28XFC43EEM2IJEZXIE1FNWMN_1_7"} {"score": 0.15946444869041443, "chain_id": "36NEMU28XFC43EEM2IJEZXIE1FNWMN_1_9"} {"score": 0.48321670293807983, "chain_id": "36NEMU28XFC43EEM2IJEZXIE1FNWMN_1_10"} {"score": 0.9704378247261047, "chain_id": "3LEIZ60CDJYTQP0XOWZGTF6CVIP9Z9_1_1"} {"score": 0.8269341588020325, "chain_id": "3LEIZ60CDJYTQP0XOWZGTF6CVIP9Z9_1_3"} {"score": 0.9513445496559143, "chain_id": "3LEIZ60CDJYTQP0XOWZGTF6CVIP9Z9_1_4"} {"score": 0.321043998003006, "chain_id": "3LEIZ60CDJYTQP0XOWZGTF6CVIP9Z9_1_5"} {"score": 0.4419352114200592, "chain_id": "3LEIZ60CDJYTQP0XOWZGTF6CVIP9Z9_1_6"} {"score": 0.9851937890052795, "chain_id": "3LEIZ60CDJYTQP0XOWZGTF6CVIP9Z9_1_2"} {"score": 0.9117695689201355, "chain_id": "3LEIZ60CDJYTQP0XOWZGTF6CVIP9Z9_1_7"} {"score": 0.8604675531387329, "chain_id": "3LEIZ60CDJYTQP0XOWZGTF6CVIP9Z9_1_8"} {"score": 0.3326892852783203, "chain_id": "3LEIZ60CDJYTQP0XOWZGTF6CVIP9Z9_1_9"} {"score": 0.06523316353559494, "chain_id": "3LEIZ60CDJYTQP0XOWZGTF6CVIP9Z9_1_10"} {"score": 0.954380989074707, "chain_id": "3QY7M81QH7LUNBDI9YYMS4RTWXFK75_1_1"} {"score": 0.9882516264915466, "chain_id": "3QY7M81QH7LUNBDI9YYMS4RTWXFK75_1_2"} {"score": 0.6865464448928833, "chain_id": "3QY7M81QH7LUNBDI9YYMS4RTWXFK75_1_4"} {"score": 0.6562359929084778, "chain_id": "3QY7M81QH7LUNBDI9YYMS4RTWXFK75_1_9"} {"score": 0.9291729927062988, "chain_id": "3QY7M81QH7LUNBDI9YYMS4RTWXFK75_1_10"} {"score": 0.8352360129356384, "chain_id": "3QY7M81QH7LUNBDI9YYMS4RTWXFK75_1_3"} {"score": 0.8657374382019043, "chain_id": "3QY7M81QH7LUNBDI9YYMS4RTWXFK75_1_5"} {"score": 0.8604342341423035, "chain_id": "3QY7M81QH7LUNBDI9YYMS4RTWXFK75_1_6"} {"score": 0.33183348178863525, "chain_id": "3QY7M81QH7LUNBDI9YYMS4RTWXFK75_1_7"} {"score": 0.5118632912635803, "chain_id": "3QY7M81QH7LUNBDI9YYMS4RTWXFK75_1_8"} {"score": 0.7718412280082703, "chain_id": "3LOTDFNYA7YYX4M5GVF147Y5IWNWF6_1_1"} {"score": 0.8185635209083557, "chain_id": "3LOTDFNYA7YYX4M5GVF147Y5IWNWF6_1_2"} {"score": 0.8132449388504028, "chain_id": "3LOTDFNYA7YYX4M5GVF147Y5IWNWF6_1_3"} {"score": 0.9599770903587341, "chain_id": "3LOTDFNYA7YYX4M5GVF147Y5IWNWF6_1_4"} {"score": 0.6767857670783997, "chain_id": "3LOTDFNYA7YYX4M5GVF147Y5IWNWF6_1_5"} {"score": 0.2885403335094452, "chain_id": "3LOTDFNYA7YYX4M5GVF147Y5IWNWF6_1_6"} {"score": 0.6886000633239746, "chain_id": "3LOTDFNYA7YYX4M5GVF147Y5IWNWF6_1_7"} {"score": 0.8391515016555786, "chain_id": "3LOTDFNYA7YYX4M5GVF147Y5IWNWF6_1_8"} {"score": 0.9066275954246521, "chain_id": "3LOTDFNYA7YYX4M5GVF147Y5IWNWF6_1_9"} {"score": 0.2813873291015625, "chain_id": "3LOTDFNYA7YYX4M5GVF147Y5IWNWF6_1_10"} {"score": 0.9652560353279114, "chain_id": "3E13VNJ1NNUP6U8SKFW1EEL31L21II_1_1"} {"score": 0.9880496859550476, "chain_id": "3E13VNJ1NNUP6U8SKFW1EEL31L21II_1_3"} {"score": 0.984809935092926, "chain_id": "3E13VNJ1NNUP6U8SKFW1EEL31L21II_1_4"} {"score": 0.8747043609619141, "chain_id": "3E13VNJ1NNUP6U8SKFW1EEL31L21II_1_2"} {"score": 0.25325754284858704, "chain_id": "3E13VNJ1NNUP6U8SKFW1EEL31L21II_1_5"} {"score": 0.042227160185575485, "chain_id": "3E13VNJ1NNUP6U8SKFW1EEL31L21II_1_6"} {"score": 0.06464722752571106, "chain_id": "3E13VNJ1NNUP6U8SKFW1EEL31L21II_1_7"} {"score": 0.03290707990527153, "chain_id": "3E13VNJ1NNUP6U8SKFW1EEL31L21II_1_8"} {"score": 0.018125023692846298, "chain_id": "3E13VNJ1NNUP6U8SKFW1EEL31L21II_1_9"} {"score": 0.18882636725902557, "chain_id": "3E13VNJ1NNUP6U8SKFW1EEL31L21II_1_10"} {"score": 0.9888367652893066, "chain_id": "3NS0A6KXC4785ZN5225QLWSZZSYGZF_1_1"} {"score": 0.9880908727645874, "chain_id": "3NS0A6KXC4785ZN5225QLWSZZSYGZF_1_3"} {"score": 0.9539201855659485, "chain_id": "3NS0A6KXC4785ZN5225QLWSZZSYGZF_1_5"} {"score": 0.9484509825706482, "chain_id": "3NS0A6KXC4785ZN5225QLWSZZSYGZF_1_6"} {"score": 0.05127923563122749, "chain_id": "3NS0A6KXC4785ZN5225QLWSZZSYGZF_1_9"} {"score": 0.9884719848632812, "chain_id": "3NS0A6KXC4785ZN5225QLWSZZSYGZF_1_2"} {"score": 0.9863117337226868, "chain_id": "3NS0A6KXC4785ZN5225QLWSZZSYGZF_1_4"} {"score": 0.40286287665367126, "chain_id": "3NS0A6KXC4785ZN5225QLWSZZSYGZF_1_7"} {"score": 0.2731170356273651, "chain_id": "3NS0A6KXC4785ZN5225QLWSZZSYGZF_1_8"} {"score": 0.08821253478527069, "chain_id": "3NS0A6KXC4785ZN5225QLWSZZSYGZF_1_10"} {"score": 0.9879999756813049, "chain_id": "3XLBSAQ9Z4BPC6C49Z1WFJF60VU7ZU_1_2"} {"score": 0.8426192402839661, "chain_id": "3XLBSAQ9Z4BPC6C49Z1WFJF60VU7ZU_1_3"} {"score": 0.9697818160057068, "chain_id": "3XLBSAQ9Z4BPC6C49Z1WFJF60VU7ZU_1_4"} {"score": 0.32946670055389404, "chain_id": "3XLBSAQ9Z4BPC6C49Z1WFJF60VU7ZU_1_7"} {"score": 0.931060791015625, "chain_id": "3XLBSAQ9Z4BPC6C49Z1WFJF60VU7ZU_1_8"} {"score": 0.9604922533035278, "chain_id": "3XLBSAQ9Z4BPC6C49Z1WFJF60VU7ZU_1_1"} {"score": 0.8605608940124512, "chain_id": "3XLBSAQ9Z4BPC6C49Z1WFJF60VU7ZU_1_5"} {"score": 0.9019380211830139, "chain_id": "3XLBSAQ9Z4BPC6C49Z1WFJF60VU7ZU_1_6"} {"score": 0.22348184883594513, "chain_id": "3XLBSAQ9Z4BPC6C49Z1WFJF60VU7ZU_1_9"} {"score": 0.339922159910202, "chain_id": "3XLBSAQ9Z4BPC6C49Z1WFJF60VU7ZU_1_10"} {"score": 0.09259466081857681, "chain_id": "3FIJLY1B6U38DVP44916CDQ9PXHFPN_1_1"} {"score": 0.156132310628891, "chain_id": "3FIJLY1B6U38DVP44916CDQ9PXHFPN_1_2"} {"score": 0.06627845764160156, "chain_id": "3FIJLY1B6U38DVP44916CDQ9PXHFPN_1_3"} {"score": 0.0444047786295414, "chain_id": "3FIJLY1B6U38DVP44916CDQ9PXHFPN_1_4"} {"score": 0.010425342246890068, "chain_id": "3FIJLY1B6U38DVP44916CDQ9PXHFPN_1_5"} {"score": 0.013138039037585258, "chain_id": "3FIJLY1B6U38DVP44916CDQ9PXHFPN_1_6"} {"score": 0.014913451857864857, "chain_id": "3FIJLY1B6U38DVP44916CDQ9PXHFPN_1_7"} {"score": 0.01697780191898346, "chain_id": "3FIJLY1B6U38DVP44916CDQ9PXHFPN_1_8"} {"score": 0.014801586046814919, "chain_id": "3FIJLY1B6U38DVP44916CDQ9PXHFPN_1_9"} {"score": 0.01883416250348091, "chain_id": "3FIJLY1B6U38DVP44916CDQ9PXHFPN_1_10"} {"score": 0.9848899245262146, "chain_id": "3Q5C1WP23M0DU6DDDVD7P5HYMIB51J_1_1"} {"score": 0.9850229620933533, "chain_id": "3Q5C1WP23M0DU6DDDVD7P5HYMIB51J_1_3"} {"score": 0.9547351002693176, "chain_id": "3Q5C1WP23M0DU6DDDVD7P5HYMIB51J_1_7"} {"score": 0.9632133841514587, "chain_id": "3Q5C1WP23M0DU6DDDVD7P5HYMIB51J_1_2"} {"score": 0.13844874501228333, "chain_id": "3Q5C1WP23M0DU6DDDVD7P5HYMIB51J_1_4"} {"score": 0.9708094596862793, "chain_id": "3Q5C1WP23M0DU6DDDVD7P5HYMIB51J_1_5"} {"score": 0.9695760607719421, "chain_id": "3Q5C1WP23M0DU6DDDVD7P5HYMIB51J_1_6"} {"score": 0.9185247421264648, "chain_id": "3Q5C1WP23M0DU6DDDVD7P5HYMIB51J_1_8"} {"score": 0.23420670628547668, "chain_id": "3Q5C1WP23M0DU6DDDVD7P5HYMIB51J_1_9"} {"score": 0.9678165316581726, "chain_id": "3Q5C1WP23M0DU6DDDVD7P5HYMIB51J_1_10"} {"score": 0.9591273069381714, "chain_id": "3KIBXJ1WD5T18H5HQKFO3QDOCKGKO8_1_3"} {"score": 0.8859013915061951, "chain_id": "3KIBXJ1WD5T18H5HQKFO3QDOCKGKO8_1_6"} {"score": 0.9704996943473816, "chain_id": "3KIBXJ1WD5T18H5HQKFO3QDOCKGKO8_1_7"} {"score": 0.9842543601989746, "chain_id": "3KIBXJ1WD5T18H5HQKFO3QDOCKGKO8_1_8"} {"score": 0.8483834862709045, "chain_id": "3KIBXJ1WD5T18H5HQKFO3QDOCKGKO8_1_1"} {"score": 0.938819944858551, "chain_id": "3KIBXJ1WD5T18H5HQKFO3QDOCKGKO8_1_2"} {"score": 0.982501745223999, "chain_id": "3KIBXJ1WD5T18H5HQKFO3QDOCKGKO8_1_4"} {"score": 0.6988877058029175, "chain_id": "3KIBXJ1WD5T18H5HQKFO3QDOCKGKO8_1_5"} {"score": 0.26879656314849854, "chain_id": "3KIBXJ1WD5T18H5HQKFO3QDOCKGKO8_1_9"} {"score": 0.054290976375341415, "chain_id": "3KIBXJ1WD5T18H5HQKFO3QDOCKGKO8_1_10"} {"score": 0.990425169467926, "chain_id": "3WJ1OXY92AFSBC9F7CD3CQKSTLYA8X_1_2"} {"score": 0.9902119040489197, "chain_id": "3WJ1OXY92AFSBC9F7CD3CQKSTLYA8X_1_3"} {"score": 0.9896932244300842, "chain_id": "3WJ1OXY92AFSBC9F7CD3CQKSTLYA8X_1_6"} {"score": 0.9891008734703064, "chain_id": "3WJ1OXY92AFSBC9F7CD3CQKSTLYA8X_1_7"} {"score": 0.9814749956130981, "chain_id": "3WJ1OXY92AFSBC9F7CD3CQKSTLYA8X_1_1"} {"score": 0.9836246967315674, "chain_id": "3WJ1OXY92AFSBC9F7CD3CQKSTLYA8X_1_4"} {"score": 0.9776521921157837, "chain_id": "3WJ1OXY92AFSBC9F7CD3CQKSTLYA8X_1_5"} {"score": 0.6781275868415833, "chain_id": "3WJ1OXY92AFSBC9F7CD3CQKSTLYA8X_1_8"} {"score": 0.9838674068450928, "chain_id": "3WJ1OXY92AFSBC9F7CD3CQKSTLYA8X_1_9"} {"score": 0.7729448080062866, "chain_id": "3WJ1OXY92AFSBC9F7CD3CQKSTLYA8X_1_10"} {"score": 0.08867519348859787, "chain_id": "3GDTJDAPVUATDDI44F38LHFSWZTM82_1_1"} {"score": 0.10561669617891312, "chain_id": "3GDTJDAPVUATDDI44F38LHFSWZTM82_1_2"} {"score": 0.01447928138077259, "chain_id": "3GDTJDAPVUATDDI44F38LHFSWZTM82_1_3"} {"score": 0.13270029425621033, "chain_id": "3GDTJDAPVUATDDI44F38LHFSWZTM82_1_4"} {"score": 0.017475826665759087, "chain_id": "3GDTJDAPVUATDDI44F38LHFSWZTM82_1_5"} {"score": 0.03830772265791893, "chain_id": "3GDTJDAPVUATDDI44F38LHFSWZTM82_1_6"} {"score": 0.019111022353172302, "chain_id": "3GDTJDAPVUATDDI44F38LHFSWZTM82_1_7"} {"score": 0.035414278507232666, "chain_id": "3GDTJDAPVUATDDI44F38LHFSWZTM82_1_8"} {"score": 0.37289556860923767, "chain_id": "3GDTJDAPVUATDDI44F38LHFSWZTM82_1_9"} {"score": 0.12834665179252625, "chain_id": "3GDTJDAPVUATDDI44F38LHFSWZTM82_1_10"} {"score": 0.9921073317527771, "chain_id": "3180JW2OT4BKPNTH3KJDT5DKQGV5JF_1_1"} {"score": 0.992448091506958, "chain_id": "3180JW2OT4BKPNTH3KJDT5DKQGV5JF_1_2"} {"score": 0.9931440353393555, "chain_id": "3180JW2OT4BKPNTH3KJDT5DKQGV5JF_1_4"} {"score": 0.2801794409751892, "chain_id": "3180JW2OT4BKPNTH3KJDT5DKQGV5JF_1_3"} {"score": 0.06256947666406631, "chain_id": "3180JW2OT4BKPNTH3KJDT5DKQGV5JF_1_5"} {"score": 0.035209059715270996, "chain_id": "3180JW2OT4BKPNTH3KJDT5DKQGV5JF_1_6"} {"score": 0.11896969377994537, "chain_id": "3180JW2OT4BKPNTH3KJDT5DKQGV5JF_1_7"} {"score": 0.25745946168899536, "chain_id": "3180JW2OT4BKPNTH3KJDT5DKQGV5JF_1_8"} {"score": 0.4330350160598755, "chain_id": "3180JW2OT4BKPNTH3KJDT5DKQGV5JF_1_9"} {"score": 0.35098469257354736, "chain_id": "3180JW2OT4BKPNTH3KJDT5DKQGV5JF_1_10"} {"score": 0.9896432161331177, "chain_id": "3C6FJU71TQSR5REVQLSOB4KO26KUYD_1_1"} {"score": 0.9907855987548828, "chain_id": "3C6FJU71TQSR5REVQLSOB4KO26KUYD_1_2"} {"score": 0.9906538128852844, "chain_id": "3C6FJU71TQSR5REVQLSOB4KO26KUYD_1_4"} {"score": 0.990968644618988, "chain_id": "3C6FJU71TQSR5REVQLSOB4KO26KUYD_1_5"} {"score": 0.9911378026008606, "chain_id": "3C6FJU71TQSR5REVQLSOB4KO26KUYD_1_6"} {"score": 0.7581547498703003, "chain_id": "3C6FJU71TQSR5REVQLSOB4KO26KUYD_1_7"} {"score": 0.9918658137321472, "chain_id": "3C6FJU71TQSR5REVQLSOB4KO26KUYD_1_9"} {"score": 0.7094718813896179, "chain_id": "3C6FJU71TQSR5REVQLSOB4KO26KUYD_1_10"} {"score": 0.10003132373094559, "chain_id": "3C6FJU71TQSR5REVQLSOB4KO26KUYD_1_3"} {"score": 0.17360526323318481, "chain_id": "3C6FJU71TQSR5REVQLSOB4KO26KUYD_1_8"} {"score": 0.9412992000579834, "chain_id": "3ON104KXQKVOZOPGWEJID31ESOD4WO_1_1"} {"score": 0.9609060287475586, "chain_id": "3ON104KXQKVOZOPGWEJID31ESOD4WO_1_2"} {"score": 0.9753727912902832, "chain_id": "3ON104KXQKVOZOPGWEJID31ESOD4WO_1_3"} {"score": 0.9664108753204346, "chain_id": "3ON104KXQKVOZOPGWEJID31ESOD4WO_1_4"} {"score": 0.3396645784378052, "chain_id": "3ON104KXQKVOZOPGWEJID31ESOD4WO_1_6"} {"score": 0.33784979581832886, "chain_id": "3ON104KXQKVOZOPGWEJID31ESOD4WO_1_8"} {"score": 0.9256299138069153, "chain_id": "3ON104KXQKVOZOPGWEJID31ESOD4WO_1_10"} {"score": 0.8192030191421509, "chain_id": "3ON104KXQKVOZOPGWEJID31ESOD4WO_1_5"} {"score": 0.0906720906496048, "chain_id": "3ON104KXQKVOZOPGWEJID31ESOD4WO_1_7"} {"score": 0.07925237715244293, "chain_id": "3ON104KXQKVOZOPGWEJID31ESOD4WO_1_9"} {"score": 0.09144491702318192, "chain_id": "3A0EX8ZRN8NC9S5PQUBT6ES0D0NYB4_1_1"} {"score": 0.9750354290008545, "chain_id": "3A0EX8ZRN8NC9S5PQUBT6ES0D0NYB4_1_2"} {"score": 0.04952762648463249, "chain_id": "3A0EX8ZRN8NC9S5PQUBT6ES0D0NYB4_1_3"} {"score": 0.4868656396865845, "chain_id": "3A0EX8ZRN8NC9S5PQUBT6ES0D0NYB4_1_4"} {"score": 0.8052114248275757, "chain_id": "3A0EX8ZRN8NC9S5PQUBT6ES0D0NYB4_1_5"} {"score": 0.03986121341586113, "chain_id": "3A0EX8ZRN8NC9S5PQUBT6ES0D0NYB4_1_6"} {"score": 0.030269652605056763, "chain_id": "3A0EX8ZRN8NC9S5PQUBT6ES0D0NYB4_1_7"} {"score": 0.040008798241615295, "chain_id": "3A0EX8ZRN8NC9S5PQUBT6ES0D0NYB4_1_8"} {"score": 0.04509450122714043, "chain_id": "3A0EX8ZRN8NC9S5PQUBT6ES0D0NYB4_1_9"} {"score": 0.12125636637210846, "chain_id": "3A0EX8ZRN8NC9S5PQUBT6ES0D0NYB4_1_10"} {"score": 0.9363079071044922, "chain_id": "34X6J5FLPTX9I9CFNC7GRG8BMW5JQX_1_1"} {"score": 0.26790112257003784, "chain_id": "34X6J5FLPTX9I9CFNC7GRG8BMW5JQX_1_3"} {"score": 0.8296130895614624, "chain_id": "34X6J5FLPTX9I9CFNC7GRG8BMW5JQX_1_4"} {"score": 0.46699240803718567, "chain_id": "34X6J5FLPTX9I9CFNC7GRG8BMW5JQX_1_5"} {"score": 0.6752709150314331, "chain_id": "34X6J5FLPTX9I9CFNC7GRG8BMW5JQX_1_7"} {"score": 0.6292642951011658, "chain_id": "34X6J5FLPTX9I9CFNC7GRG8BMW5JQX_1_9"} {"score": 0.8357582688331604, "chain_id": "34X6J5FLPTX9I9CFNC7GRG8BMW5JQX_1_2"} {"score": 0.3798828423023224, "chain_id": "34X6J5FLPTX9I9CFNC7GRG8BMW5JQX_1_6"} {"score": 0.2746630609035492, "chain_id": "34X6J5FLPTX9I9CFNC7GRG8BMW5JQX_1_8"} {"score": 0.33421748876571655, "chain_id": "34X6J5FLPTX9I9CFNC7GRG8BMW5JQX_1_10"} {"score": 0.7310047149658203, "chain_id": "3DYGAII7PL754KFDIPC0OCUNVWDQP8_1_1"} {"score": 0.7486575841903687, "chain_id": "3DYGAII7PL754KFDIPC0OCUNVWDQP8_1_2"} {"score": 0.7868125438690186, "chain_id": "3DYGAII7PL754KFDIPC0OCUNVWDQP8_1_3"} {"score": 0.40660619735717773, "chain_id": "3DYGAII7PL754KFDIPC0OCUNVWDQP8_1_4"} {"score": 0.014202028512954712, "chain_id": "3DYGAII7PL754KFDIPC0OCUNVWDQP8_1_5"} {"score": 0.04904995113611221, "chain_id": "3DYGAII7PL754KFDIPC0OCUNVWDQP8_1_6"} {"score": 0.07046613097190857, "chain_id": "3DYGAII7PL754KFDIPC0OCUNVWDQP8_1_7"} {"score": 0.07825659215450287, "chain_id": "3DYGAII7PL754KFDIPC0OCUNVWDQP8_1_8"} {"score": 0.03001302108168602, "chain_id": "3DYGAII7PL754KFDIPC0OCUNVWDQP8_1_9"} {"score": 0.012553771026432514, "chain_id": "3DYGAII7PL754KFDIPC0OCUNVWDQP8_1_10"} {"score": 0.9154567718505859, "chain_id": "317HQ483I7RSK1FHP2UZBLY648IINQ_1_1"} {"score": 0.5777605772018433, "chain_id": "317HQ483I7RSK1FHP2UZBLY648IINQ_1_3"} {"score": 0.9831798076629639, "chain_id": "317HQ483I7RSK1FHP2UZBLY648IINQ_1_4"} {"score": 0.984449565410614, "chain_id": "317HQ483I7RSK1FHP2UZBLY648IINQ_1_7"} {"score": 0.8624579310417175, "chain_id": "317HQ483I7RSK1FHP2UZBLY648IINQ_1_2"} {"score": 0.8356350660324097, "chain_id": "317HQ483I7RSK1FHP2UZBLY648IINQ_1_5"} {"score": 0.62261962890625, "chain_id": "317HQ483I7RSK1FHP2UZBLY648IINQ_1_6"} {"score": 0.20439565181732178, "chain_id": "317HQ483I7RSK1FHP2UZBLY648IINQ_1_8"} {"score": 0.14658012986183167, "chain_id": "317HQ483I7RSK1FHP2UZBLY648IINQ_1_9"} {"score": 0.9492968916893005, "chain_id": "317HQ483I7RSK1FHP2UZBLY648IINQ_1_10"} {"score": 0.9581796526908875, "chain_id": "33JKGHPFYCTEGK58AHSR3E5NBF9NM4_1_4"} {"score": 0.07774543017148972, "chain_id": "33JKGHPFYCTEGK58AHSR3E5NBF9NM4_1_9"} {"score": 0.13334105908870697, "chain_id": "33JKGHPFYCTEGK58AHSR3E5NBF9NM4_1_1"} {"score": 0.10442887991666794, "chain_id": "33JKGHPFYCTEGK58AHSR3E5NBF9NM4_1_2"} {"score": 0.22259287536144257, "chain_id": "33JKGHPFYCTEGK58AHSR3E5NBF9NM4_1_3"} {"score": 0.11935234069824219, "chain_id": "33JKGHPFYCTEGK58AHSR3E5NBF9NM4_1_5"} {"score": 0.11763257533311844, "chain_id": "33JKGHPFYCTEGK58AHSR3E5NBF9NM4_1_6"} {"score": 0.10220145434141159, "chain_id": "33JKGHPFYCTEGK58AHSR3E5NBF9NM4_1_7"} {"score": 0.1041022539138794, "chain_id": "33JKGHPFYCTEGK58AHSR3E5NBF9NM4_1_8"} {"score": 0.8557587265968323, "chain_id": "33JKGHPFYCTEGK58AHSR3E5NBF9NM4_1_10"} {"score": 0.026636319234967232, "chain_id": "3R9WASFE2ZF2RZRARIZ83BSNLXDFZL_1_3"} {"score": 0.06297542154788971, "chain_id": "3R9WASFE2ZF2RZRARIZ83BSNLXDFZL_1_1"} {"score": 0.024925656616687775, "chain_id": "3R9WASFE2ZF2RZRARIZ83BSNLXDFZL_1_2"} {"score": 0.029428578913211823, "chain_id": "3R9WASFE2ZF2RZRARIZ83BSNLXDFZL_1_4"} {"score": 0.055048611015081406, "chain_id": "3R9WASFE2ZF2RZRARIZ83BSNLXDFZL_1_5"} {"score": 0.12813352048397064, "chain_id": "3R9WASFE2ZF2RZRARIZ83BSNLXDFZL_1_6"} {"score": 0.13603425025939941, "chain_id": "3R9WASFE2ZF2RZRARIZ83BSNLXDFZL_1_7"} {"score": 0.03279795125126839, "chain_id": "3R9WASFE2ZF2RZRARIZ83BSNLXDFZL_1_8"} {"score": 0.031302228569984436, "chain_id": "3R9WASFE2ZF2RZRARIZ83BSNLXDFZL_1_9"} {"score": 0.029330523684620857, "chain_id": "3R9WASFE2ZF2RZRARIZ83BSNLXDFZL_1_10"} {"score": 0.07985483855009079, "chain_id": "3Z7EFSHGN9D6JS7LZYLMYKR9GWHCXS_1_1"} {"score": 0.07590900361537933, "chain_id": "3Z7EFSHGN9D6JS7LZYLMYKR9GWHCXS_1_2"} {"score": 0.04685087502002716, "chain_id": "3Z7EFSHGN9D6JS7LZYLMYKR9GWHCXS_1_3"} {"score": 0.09594999998807907, "chain_id": "3Z7EFSHGN9D6JS7LZYLMYKR9GWHCXS_1_4"} {"score": 0.25676029920578003, "chain_id": "3Z7EFSHGN9D6JS7LZYLMYKR9GWHCXS_1_5"} {"score": 0.06144321337342262, "chain_id": "3Z7EFSHGN9D6JS7LZYLMYKR9GWHCXS_1_6"} {"score": 0.04512657970190048, "chain_id": "3Z7EFSHGN9D6JS7LZYLMYKR9GWHCXS_1_7"} {"score": 0.04145573824644089, "chain_id": "3Z7EFSHGN9D6JS7LZYLMYKR9GWHCXS_1_8"} {"score": 0.03368903324007988, "chain_id": "3Z7EFSHGN9D6JS7LZYLMYKR9GWHCXS_1_9"} {"score": 0.11083556711673737, "chain_id": "3Z7EFSHGN9D6JS7LZYLMYKR9GWHCXS_1_10"} {"score": 0.03610510379076004, "chain_id": "3URFVVM165HRAHO0M7U7PBTQWZGZUN_1_7"} {"score": 0.42121556401252747, "chain_id": "3URFVVM165HRAHO0M7U7PBTQWZGZUN_1_1"} {"score": 0.32749149203300476, "chain_id": "3URFVVM165HRAHO0M7U7PBTQWZGZUN_1_2"} {"score": 0.09690182656049728, "chain_id": "3URFVVM165HRAHO0M7U7PBTQWZGZUN_1_3"} {"score": 0.5031583309173584, "chain_id": "3URFVVM165HRAHO0M7U7PBTQWZGZUN_1_4"} {"score": 0.18831652402877808, "chain_id": "3URFVVM165HRAHO0M7U7PBTQWZGZUN_1_5"} {"score": 0.019123394042253494, "chain_id": "3URFVVM165HRAHO0M7U7PBTQWZGZUN_1_6"} {"score": 0.04683178290724754, "chain_id": "3URFVVM165HRAHO0M7U7PBTQWZGZUN_1_8"} {"score": 0.04537514969706535, "chain_id": "3URFVVM165HRAHO0M7U7PBTQWZGZUN_1_9"} {"score": 0.041998617351055145, "chain_id": "3URFVVM165HRAHO0M7U7PBTQWZGZUN_1_10"} {"score": 0.7412227988243103, "chain_id": "3GU1KF0O4I0I0EDOZ7FATNZOXHHPBU_1_1"} {"score": 0.07638975232839584, "chain_id": "3GU1KF0O4I0I0EDOZ7FATNZOXHHPBU_1_3"} {"score": 0.15743526816368103, "chain_id": "3GU1KF0O4I0I0EDOZ7FATNZOXHHPBU_1_5"} {"score": 0.8888723254203796, "chain_id": "3GU1KF0O4I0I0EDOZ7FATNZOXHHPBU_1_2"} {"score": 0.05812326818704605, "chain_id": "3GU1KF0O4I0I0EDOZ7FATNZOXHHPBU_1_4"} {"score": 0.12587207555770874, "chain_id": "3GU1KF0O4I0I0EDOZ7FATNZOXHHPBU_1_6"} {"score": 0.46611008048057556, "chain_id": "3GU1KF0O4I0I0EDOZ7FATNZOXHHPBU_1_7"} {"score": 0.20894096791744232, "chain_id": "3GU1KF0O4I0I0EDOZ7FATNZOXHHPBU_1_8"} {"score": 0.04740026593208313, "chain_id": "3GU1KF0O4I0I0EDOZ7FATNZOXHHPBU_1_9"} {"score": 0.14934270083904266, "chain_id": "3GU1KF0O4I0I0EDOZ7FATNZOXHHPBU_1_10"} {"score": 0.4835258722305298, "chain_id": "3LBXNTKX0RU4LU0INEBVWUQ1BG29X7_1_2"} {"score": 0.42739132046699524, "chain_id": "3LBXNTKX0RU4LU0INEBVWUQ1BG29X7_1_3"} {"score": 0.33917826414108276, "chain_id": "3LBXNTKX0RU4LU0INEBVWUQ1BG29X7_1_1"} {"score": 0.08536523580551147, "chain_id": "3LBXNTKX0RU4LU0INEBVWUQ1BG29X7_1_4"} {"score": 0.7020468711853027, "chain_id": "3LBXNTKX0RU4LU0INEBVWUQ1BG29X7_1_5"} {"score": 0.6521119475364685, "chain_id": "3LBXNTKX0RU4LU0INEBVWUQ1BG29X7_1_6"} {"score": 0.1232077106833458, "chain_id": "3LBXNTKX0RU4LU0INEBVWUQ1BG29X7_1_7"} {"score": 0.023895233869552612, "chain_id": "3LBXNTKX0RU4LU0INEBVWUQ1BG29X7_1_8"} {"score": 0.017075607553124428, "chain_id": "3LBXNTKX0RU4LU0INEBVWUQ1BG29X7_1_9"} {"score": 0.02194664254784584, "chain_id": "3LBXNTKX0RU4LU0INEBVWUQ1BG29X7_1_10"} {"score": 0.23827876150608063, "chain_id": "3MB8LZR5BFST2W2KDSZWB99UGJXKLK_1_5"} {"score": 0.12758848071098328, "chain_id": "3MB8LZR5BFST2W2KDSZWB99UGJXKLK_1_10"} {"score": 0.027926383540034294, "chain_id": "3MB8LZR5BFST2W2KDSZWB99UGJXKLK_1_1"} {"score": 0.023714285343885422, "chain_id": "3MB8LZR5BFST2W2KDSZWB99UGJXKLK_1_2"} {"score": 0.020623667165637016, "chain_id": "3MB8LZR5BFST2W2KDSZWB99UGJXKLK_1_3"} {"score": 0.03776988759636879, "chain_id": "3MB8LZR5BFST2W2KDSZWB99UGJXKLK_1_4"} {"score": 0.12347623705863953, "chain_id": "3MB8LZR5BFST2W2KDSZWB99UGJXKLK_1_6"} {"score": 0.2568586468696594, "chain_id": "3MB8LZR5BFST2W2KDSZWB99UGJXKLK_1_7"} {"score": 0.16518941521644592, "chain_id": "3MB8LZR5BFST2W2KDSZWB99UGJXKLK_1_8"} {"score": 0.13972581923007965, "chain_id": "3MB8LZR5BFST2W2KDSZWB99UGJXKLK_1_9"} {"score": 0.11185585707426071, "chain_id": "3HPZF4IVNMSVJXXV4U7OHYYIJ5UYCA_1_1"} {"score": 0.05529968440532684, "chain_id": "3HPZF4IVNMSVJXXV4U7OHYYIJ5UYCA_1_2"} {"score": 0.13319586217403412, "chain_id": "3HPZF4IVNMSVJXXV4U7OHYYIJ5UYCA_1_3"} {"score": 0.1283125877380371, "chain_id": "3HPZF4IVNMSVJXXV4U7OHYYIJ5UYCA_1_4"} {"score": 0.042667824774980545, "chain_id": "3HPZF4IVNMSVJXXV4U7OHYYIJ5UYCA_1_5"} {"score": 0.03394974023103714, "chain_id": "3HPZF4IVNMSVJXXV4U7OHYYIJ5UYCA_1_6"} {"score": 0.20345425605773926, "chain_id": "3HPZF4IVNMSVJXXV4U7OHYYIJ5UYCA_1_7"} {"score": 0.10968180745840073, "chain_id": "3HPZF4IVNMSVJXXV4U7OHYYIJ5UYCA_1_8"} {"score": 0.026705363765358925, "chain_id": "3HPZF4IVNMSVJXXV4U7OHYYIJ5UYCA_1_9"} {"score": 0.022960515692830086, "chain_id": "3HPZF4IVNMSVJXXV4U7OHYYIJ5UYCA_1_10"} {"score": 0.9857215881347656, "chain_id": "373ERPL3YO738DNKCLAKYC5P44QTRX_1_2"} {"score": 0.9904013276100159, "chain_id": "373ERPL3YO738DNKCLAKYC5P44QTRX_1_3"} {"score": 0.9903594255447388, "chain_id": "373ERPL3YO738DNKCLAKYC5P44QTRX_1_1"} {"score": 0.974920392036438, "chain_id": "373ERPL3YO738DNKCLAKYC5P44QTRX_1_4"} {"score": 0.025011621415615082, "chain_id": "373ERPL3YO738DNKCLAKYC5P44QTRX_1_5"} {"score": 0.02197246626019478, "chain_id": "373ERPL3YO738DNKCLAKYC5P44QTRX_1_6"} {"score": 0.166298970580101, "chain_id": "373ERPL3YO738DNKCLAKYC5P44QTRX_1_7"} {"score": 0.023742984980344772, "chain_id": "373ERPL3YO738DNKCLAKYC5P44QTRX_1_8"} {"score": 0.024103593081235886, "chain_id": "373ERPL3YO738DNKCLAKYC5P44QTRX_1_9"} {"score": 0.0638149306178093, "chain_id": "373ERPL3YO738DNKCLAKYC5P44QTRX_1_10"} {"score": 0.9794880747795105, "chain_id": "3OS4RQUCR9E691OUL4J5HTLKUXJBF9_1_1"} {"score": 0.970670223236084, "chain_id": "3OS4RQUCR9E691OUL4J5HTLKUXJBF9_1_3"} {"score": 0.84765625, "chain_id": "3OS4RQUCR9E691OUL4J5HTLKUXJBF9_1_5"} {"score": 0.8508180975914001, "chain_id": "3OS4RQUCR9E691OUL4J5HTLKUXJBF9_1_7"} {"score": 0.7403894066810608, "chain_id": "3OS4RQUCR9E691OUL4J5HTLKUXJBF9_1_9"} {"score": 0.5528419613838196, "chain_id": "3OS4RQUCR9E691OUL4J5HTLKUXJBF9_1_10"} {"score": 0.9023457169532776, "chain_id": "3OS4RQUCR9E691OUL4J5HTLKUXJBF9_1_2"} {"score": 0.8994147777557373, "chain_id": "3OS4RQUCR9E691OUL4J5HTLKUXJBF9_1_4"} {"score": 0.5999276041984558, "chain_id": "3OS4RQUCR9E691OUL4J5HTLKUXJBF9_1_6"} {"score": 0.7803041338920593, "chain_id": "3OS4RQUCR9E691OUL4J5HTLKUXJBF9_1_8"} {"score": 0.8087719082832336, "chain_id": "3R5F3LQFV2JWXC43QLIYQ511D69ZOC_1_2"} {"score": 0.8440436720848083, "chain_id": "3R5F3LQFV2JWXC43QLIYQ511D69ZOC_1_4"} {"score": 0.8017367124557495, "chain_id": "3R5F3LQFV2JWXC43QLIYQ511D69ZOC_1_7"} {"score": 0.8196654915809631, "chain_id": "3R5F3LQFV2JWXC43QLIYQ511D69ZOC_1_10"} {"score": 0.2048327922821045, "chain_id": "3R5F3LQFV2JWXC43QLIYQ511D69ZOC_1_1"} {"score": 0.5364073514938354, "chain_id": "3R5F3LQFV2JWXC43QLIYQ511D69ZOC_1_3"} {"score": 0.16587093472480774, "chain_id": "3R5F3LQFV2JWXC43QLIYQ511D69ZOC_1_5"} {"score": 0.19284985959529877, "chain_id": "3R5F3LQFV2JWXC43QLIYQ511D69ZOC_1_6"} {"score": 0.35652226209640503, "chain_id": "3R5F3LQFV2JWXC43QLIYQ511D69ZOC_1_8"} {"score": 0.7451574206352234, "chain_id": "3R5F3LQFV2JWXC43QLIYQ511D69ZOC_1_9"} {"score": 0.9702250957489014, "chain_id": "3U84XHCDICCSTJUL713PC7VWWSW4ZK_1_1"} {"score": 0.9689123034477234, "chain_id": "3U84XHCDICCSTJUL713PC7VWWSW4ZK_1_2"} {"score": 0.959805965423584, "chain_id": "3U84XHCDICCSTJUL713PC7VWWSW4ZK_1_4"} {"score": 0.4105139970779419, "chain_id": "3U84XHCDICCSTJUL713PC7VWWSW4ZK_1_3"} {"score": 0.058928728103637695, "chain_id": "3U84XHCDICCSTJUL713PC7VWWSW4ZK_1_5"} {"score": 0.03955565765500069, "chain_id": "3U84XHCDICCSTJUL713PC7VWWSW4ZK_1_6"} {"score": 0.03427266702055931, "chain_id": "3U84XHCDICCSTJUL713PC7VWWSW4ZK_1_7"} {"score": 0.025522585958242416, "chain_id": "3U84XHCDICCSTJUL713PC7VWWSW4ZK_1_8"} {"score": 0.027898387983441353, "chain_id": "3U84XHCDICCSTJUL713PC7VWWSW4ZK_1_9"} {"score": 0.09743047505617142, "chain_id": "3U84XHCDICCSTJUL713PC7VWWSW4ZK_1_10"} {"score": 0.9297007322311401, "chain_id": "3X4JMASXCM8FCX94IM0KEMYGPMN0B6_1_1"} {"score": 0.4299171268939972, "chain_id": "3X4JMASXCM8FCX94IM0KEMYGPMN0B6_1_2"} {"score": 0.8105069398880005, "chain_id": "3X4JMASXCM8FCX94IM0KEMYGPMN0B6_1_3"} {"score": 0.9518170356750488, "chain_id": "3X4JMASXCM8FCX94IM0KEMYGPMN0B6_1_7"} {"score": 0.09380880743265152, "chain_id": "3X4JMASXCM8FCX94IM0KEMYGPMN0B6_1_8"} {"score": 0.2280242145061493, "chain_id": "3X4JMASXCM8FCX94IM0KEMYGPMN0B6_1_4"} {"score": 0.9808711409568787, "chain_id": "3X4JMASXCM8FCX94IM0KEMYGPMN0B6_1_5"} {"score": 0.11666527390480042, "chain_id": "3X4JMASXCM8FCX94IM0KEMYGPMN0B6_1_6"} {"score": 0.10768789798021317, "chain_id": "3X4JMASXCM8FCX94IM0KEMYGPMN0B6_1_9"} {"score": 0.24888253211975098, "chain_id": "3X4JMASXCM8FCX94IM0KEMYGPMN0B6_1_10"} {"score": 0.9854065179824829, "chain_id": "32SVAV9L3F86AF39VVI7L9CHBKH3AD_1_1"} {"score": 0.983958899974823, "chain_id": "32SVAV9L3F86AF39VVI7L9CHBKH3AD_1_2"} {"score": 0.9625998139381409, "chain_id": "32SVAV9L3F86AF39VVI7L9CHBKH3AD_1_3"} {"score": 0.9729174375534058, "chain_id": "32SVAV9L3F86AF39VVI7L9CHBKH3AD_1_5"} {"score": 0.9713378548622131, "chain_id": "32SVAV9L3F86AF39VVI7L9CHBKH3AD_1_8"} {"score": 0.9729985594749451, "chain_id": "32SVAV9L3F86AF39VVI7L9CHBKH3AD_1_9"} {"score": 0.9543339610099792, "chain_id": "32SVAV9L3F86AF39VVI7L9CHBKH3AD_1_10"} {"score": 0.9761849045753479, "chain_id": "32SVAV9L3F86AF39VVI7L9CHBKH3AD_1_4"} {"score": 0.9527711868286133, "chain_id": "32SVAV9L3F86AF39VVI7L9CHBKH3AD_1_6"} {"score": 0.18908827006816864, "chain_id": "32SVAV9L3F86AF39VVI7L9CHBKH3AD_1_7"} {"score": 0.9921497106552124, "chain_id": "36WLNQG78Z9E3NOYQTZZZB0KV3ABEO_1_3"} {"score": 0.9920905828475952, "chain_id": "36WLNQG78Z9E3NOYQTZZZB0KV3ABEO_1_4"} {"score": 0.2978891134262085, "chain_id": "36WLNQG78Z9E3NOYQTZZZB0KV3ABEO_1_5"} {"score": 0.992635190486908, "chain_id": "36WLNQG78Z9E3NOYQTZZZB0KV3ABEO_1_6"} {"score": 0.992784857749939, "chain_id": "36WLNQG78Z9E3NOYQTZZZB0KV3ABEO_1_8"} {"score": 0.8409917950630188, "chain_id": "36WLNQG78Z9E3NOYQTZZZB0KV3ABEO_1_9"} {"score": 0.9917328357696533, "chain_id": "36WLNQG78Z9E3NOYQTZZZB0KV3ABEO_1_1"} {"score": 0.9917978048324585, "chain_id": "36WLNQG78Z9E3NOYQTZZZB0KV3ABEO_1_2"} {"score": 0.1796063929796219, "chain_id": "36WLNQG78Z9E3NOYQTZZZB0KV3ABEO_1_7"} {"score": 0.7484343647956848, "chain_id": "36WLNQG78Z9E3NOYQTZZZB0KV3ABEO_1_10"} {"score": 0.31491169333457947, "chain_id": "3WRFBPLXRANDUYXY4ZNC7FWHL6EN3K_1_3"} {"score": 0.9448958039283752, "chain_id": "3WRFBPLXRANDUYXY4ZNC7FWHL6EN3K_1_4"} {"score": 0.5572637915611267, "chain_id": "3WRFBPLXRANDUYXY4ZNC7FWHL6EN3K_1_10"} {"score": 0.7850368022918701, "chain_id": "3WRFBPLXRANDUYXY4ZNC7FWHL6EN3K_1_1"} {"score": 0.3837791383266449, "chain_id": "3WRFBPLXRANDUYXY4ZNC7FWHL6EN3K_1_2"} {"score": 0.943192183971405, "chain_id": "3WRFBPLXRANDUYXY4ZNC7FWHL6EN3K_1_5"} {"score": 0.9296678900718689, "chain_id": "3WRFBPLXRANDUYXY4ZNC7FWHL6EN3K_1_6"} {"score": 0.7373611330986023, "chain_id": "3WRFBPLXRANDUYXY4ZNC7FWHL6EN3K_1_7"} {"score": 0.9249341487884521, "chain_id": "3WRFBPLXRANDUYXY4ZNC7FWHL6EN3K_1_8"} {"score": 0.19077908992767334, "chain_id": "3WRFBPLXRANDUYXY4ZNC7FWHL6EN3K_1_9"} {"score": 0.9901954531669617, "chain_id": "3LOTDFNYA7YYX4M5GVF147Y5H9AFW1_1_1"} {"score": 0.9707315564155579, "chain_id": "3LOTDFNYA7YYX4M5GVF147Y5H9AFW1_1_2"} {"score": 0.9901623725891113, "chain_id": "3LOTDFNYA7YYX4M5GVF147Y5H9AFW1_1_3"} {"score": 0.9495334029197693, "chain_id": "3LOTDFNYA7YYX4M5GVF147Y5H9AFW1_1_4"} {"score": 0.9809195399284363, "chain_id": "3LOTDFNYA7YYX4M5GVF147Y5H9AFW1_1_7"} {"score": 0.9843897223472595, "chain_id": "3LOTDFNYA7YYX4M5GVF147Y5H9AFW1_1_5"} {"score": 0.9842574596405029, "chain_id": "3LOTDFNYA7YYX4M5GVF147Y5H9AFW1_1_6"} {"score": 0.980637788772583, "chain_id": "3LOTDFNYA7YYX4M5GVF147Y5H9AFW1_1_8"} {"score": 0.8338428139686584, "chain_id": "3LOTDFNYA7YYX4M5GVF147Y5H9AFW1_1_9"} {"score": 0.9083850383758545, "chain_id": "3LOTDFNYA7YYX4M5GVF147Y5H9AFW1_1_10"} {"score": 0.9910503625869751, "chain_id": "3LYA37P8IQMHPNG8MFA2X6DPFD8BK0_1_2"} {"score": 0.9874534010887146, "chain_id": "3LYA37P8IQMHPNG8MFA2X6DPFD8BK0_1_3"} {"score": 0.9916884303092957, "chain_id": "3LYA37P8IQMHPNG8MFA2X6DPFD8BK0_1_4"} {"score": 0.9594663977622986, "chain_id": "3LYA37P8IQMHPNG8MFA2X6DPFD8BK0_1_5"} {"score": 0.9168974161148071, "chain_id": "3LYA37P8IQMHPNG8MFA2X6DPFD8BK0_1_8"} {"score": 0.862824022769928, "chain_id": "3LYA37P8IQMHPNG8MFA2X6DPFD8BK0_1_9"} {"score": 0.9152292609214783, "chain_id": "3LYA37P8IQMHPNG8MFA2X6DPFD8BK0_1_10"} {"score": 0.9885393977165222, "chain_id": "3LYA37P8IQMHPNG8MFA2X6DPFD8BK0_1_1"} {"score": 0.9371470212936401, "chain_id": "3LYA37P8IQMHPNG8MFA2X6DPFD8BK0_1_6"} {"score": 0.9641270041465759, "chain_id": "3LYA37P8IQMHPNG8MFA2X6DPFD8BK0_1_7"} {"score": 0.748113214969635, "chain_id": "30ZX6P7VF8USQQAUL1HFVYA87TQ2J8_1_3"} {"score": 0.8222833871841431, "chain_id": "30ZX6P7VF8USQQAUL1HFVYA87TQ2J8_1_7"} {"score": 0.4304685890674591, "chain_id": "30ZX6P7VF8USQQAUL1HFVYA87TQ2J8_1_8"} {"score": 0.5992030501365662, "chain_id": "30ZX6P7VF8USQQAUL1HFVYA87TQ2J8_1_1"} {"score": 0.3146055042743683, "chain_id": "30ZX6P7VF8USQQAUL1HFVYA87TQ2J8_1_2"} {"score": 0.5548149347305298, "chain_id": "30ZX6P7VF8USQQAUL1HFVYA87TQ2J8_1_4"} {"score": 0.1073208674788475, "chain_id": "30ZX6P7VF8USQQAUL1HFVYA87TQ2J8_1_5"} {"score": 0.28291815519332886, "chain_id": "30ZX6P7VF8USQQAUL1HFVYA87TQ2J8_1_6"} {"score": 0.05751821771264076, "chain_id": "30ZX6P7VF8USQQAUL1HFVYA87TQ2J8_1_9"} {"score": 0.5337343215942383, "chain_id": "30ZX6P7VF8USQQAUL1HFVYA87TQ2J8_1_10"} {"score": 0.9854065179824829, "chain_id": "3TPZPLC3M0BDXJ9BKE04B41CM8VP39_1_1"} {"score": 0.983958899974823, "chain_id": "3TPZPLC3M0BDXJ9BKE04B41CM8VP39_1_2"} {"score": 0.9761849045753479, "chain_id": "3TPZPLC3M0BDXJ9BKE04B41CM8VP39_1_4"} {"score": 0.9713378548622131, "chain_id": "3TPZPLC3M0BDXJ9BKE04B41CM8VP39_1_8"} {"score": 0.9729985594749451, "chain_id": "3TPZPLC3M0BDXJ9BKE04B41CM8VP39_1_9"} {"score": 0.9543339610099792, "chain_id": "3TPZPLC3M0BDXJ9BKE04B41CM8VP39_1_10"} {"score": 0.9625998139381409, "chain_id": "3TPZPLC3M0BDXJ9BKE04B41CM8VP39_1_3"} {"score": 0.9729174375534058, "chain_id": "3TPZPLC3M0BDXJ9BKE04B41CM8VP39_1_5"} {"score": 0.9527711868286133, "chain_id": "3TPZPLC3M0BDXJ9BKE04B41CM8VP39_1_6"} {"score": 0.18908827006816864, "chain_id": "3TPZPLC3M0BDXJ9BKE04B41CM8VP39_1_7"} {"score": 0.9847446084022522, "chain_id": "3M0BCWMB8VV8KNAPBTT5LH7K3XFBWL_1_1"} {"score": 0.9537423849105835, "chain_id": "3M0BCWMB8VV8KNAPBTT5LH7K3XFBWL_1_2"} {"score": 0.983352780342102, "chain_id": "3M0BCWMB8VV8KNAPBTT5LH7K3XFBWL_1_3"} {"score": 0.16601616144180298, "chain_id": "3M0BCWMB8VV8KNAPBTT5LH7K3XFBWL_1_5"} {"score": 0.9640381932258606, "chain_id": "3M0BCWMB8VV8KNAPBTT5LH7K3XFBWL_1_6"} {"score": 0.3311668336391449, "chain_id": "3M0BCWMB8VV8KNAPBTT5LH7K3XFBWL_1_4"} {"score": 0.9617972373962402, "chain_id": "3M0BCWMB8VV8KNAPBTT5LH7K3XFBWL_1_7"} {"score": 0.9444975852966309, "chain_id": "3M0BCWMB8VV8KNAPBTT5LH7K3XFBWL_1_8"} {"score": 0.8711000084877014, "chain_id": "3M0BCWMB8VV8KNAPBTT5LH7K3XFBWL_1_9"} {"score": 0.14634743332862854, "chain_id": "3M0BCWMB8VV8KNAPBTT5LH7K3XFBWL_1_10"} {"score": 0.049179282039403915, "chain_id": "3TUI152ZZBM2NSWBXN1ANGCPGZNQ1A_1_1"} {"score": 0.0700080543756485, "chain_id": "3TUI152ZZBM2NSWBXN1ANGCPGZNQ1A_1_2"} {"score": 0.0162035021930933, "chain_id": "3TUI152ZZBM2NSWBXN1ANGCPGZNQ1A_1_3"} {"score": 0.07406250387430191, "chain_id": "3TUI152ZZBM2NSWBXN1ANGCPGZNQ1A_1_4"} {"score": 0.036167461425065994, "chain_id": "3TUI152ZZBM2NSWBXN1ANGCPGZNQ1A_1_5"} {"score": 0.31386685371398926, "chain_id": "3TUI152ZZBM2NSWBXN1ANGCPGZNQ1A_1_6"} {"score": 0.13376232981681824, "chain_id": "3TUI152ZZBM2NSWBXN1ANGCPGZNQ1A_1_7"} {"score": 0.019713561981916428, "chain_id": "3TUI152ZZBM2NSWBXN1ANGCPGZNQ1A_1_8"} {"score": 0.4649793803691864, "chain_id": "3TUI152ZZBM2NSWBXN1ANGCPGZNQ1A_1_9"} {"score": 0.37456604838371277, "chain_id": "3TUI152ZZBM2NSWBXN1ANGCPGZNQ1A_1_10"} {"score": 0.7898266911506653, "chain_id": "3FTOP5WARFNLUG7G6ED1CAHTY8KJ0X_1_1"} {"score": 0.9486637115478516, "chain_id": "3FTOP5WARFNLUG7G6ED1CAHTY8KJ0X_1_2"} {"score": 0.9654468894004822, "chain_id": "3FTOP5WARFNLUG7G6ED1CAHTY8KJ0X_1_3"} {"score": 0.44778746366500854, "chain_id": "3FTOP5WARFNLUG7G6ED1CAHTY8KJ0X_1_5"} {"score": 0.7606213092803955, "chain_id": "3FTOP5WARFNLUG7G6ED1CAHTY8KJ0X_1_8"} {"score": 0.3871762454509735, "chain_id": "3FTOP5WARFNLUG7G6ED1CAHTY8KJ0X_1_4"} {"score": 0.42719706892967224, "chain_id": "3FTOP5WARFNLUG7G6ED1CAHTY8KJ0X_1_6"} {"score": 0.040193457156419754, "chain_id": "3FTOP5WARFNLUG7G6ED1CAHTY8KJ0X_1_7"} {"score": 0.055768538266420364, "chain_id": "3FTOP5WARFNLUG7G6ED1CAHTY8KJ0X_1_9"} {"score": 0.3413337469100952, "chain_id": "3FTOP5WARFNLUG7G6ED1CAHTY8KJ0X_1_10"} {"score": 0.04012324661016464, "chain_id": "3IGI0VL647J2GNQKNX74VIUS1AHNOX_1_1"} {"score": 0.192902073264122, "chain_id": "3IGI0VL647J2GNQKNX74VIUS1AHNOX_1_2"} {"score": 0.017297476530075073, "chain_id": "3IGI0VL647J2GNQKNX74VIUS1AHNOX_1_3"} {"score": 0.13547959923744202, "chain_id": "3IGI0VL647J2GNQKNX74VIUS1AHNOX_1_4"} {"score": 0.043877530843019485, "chain_id": "3IGI0VL647J2GNQKNX74VIUS1AHNOX_1_5"} {"score": 0.07609385251998901, "chain_id": "3IGI0VL647J2GNQKNX74VIUS1AHNOX_1_6"} {"score": 0.07620837539434433, "chain_id": "3IGI0VL647J2GNQKNX74VIUS1AHNOX_1_7"} {"score": 0.10261890292167664, "chain_id": "3IGI0VL647J2GNQKNX74VIUS1AHNOX_1_8"} {"score": 0.031682491302490234, "chain_id": "3IGI0VL647J2GNQKNX74VIUS1AHNOX_1_9"} {"score": 0.04053111374378204, "chain_id": "3IGI0VL647J2GNQKNX74VIUS1AHNOX_1_10"} {"score": 0.8650367856025696, "chain_id": "3FIJLY1B6U38DVP44916CDQ99O2PFK_1_6"} {"score": 0.045795440673828125, "chain_id": "3FIJLY1B6U38DVP44916CDQ99O2PFK_1_1"} {"score": 0.37102803587913513, "chain_id": "3FIJLY1B6U38DVP44916CDQ99O2PFK_1_2"} {"score": 0.2781636714935303, "chain_id": "3FIJLY1B6U38DVP44916CDQ99O2PFK_1_3"} {"score": 0.0734143853187561, "chain_id": "3FIJLY1B6U38DVP44916CDQ99O2PFK_1_4"} {"score": 0.7987061738967896, "chain_id": "3FIJLY1B6U38DVP44916CDQ99O2PFK_1_5"} {"score": 0.29807227849960327, "chain_id": "3FIJLY1B6U38DVP44916CDQ99O2PFK_1_7"} {"score": 0.7992562055587769, "chain_id": "3FIJLY1B6U38DVP44916CDQ99O2PFK_1_8"} {"score": 0.8573560118675232, "chain_id": "3FIJLY1B6U38DVP44916CDQ99O2PFK_1_9"} {"score": 0.06408859044313431, "chain_id": "3FIJLY1B6U38DVP44916CDQ99O2PFK_1_10"} {"score": 0.9804608225822449, "chain_id": "39PAAFCODMZV1K41L5FUZ9USMMQTVY_1_1"} {"score": 0.9912586808204651, "chain_id": "39PAAFCODMZV1K41L5FUZ9USMMQTVY_1_3"} {"score": 0.7434263825416565, "chain_id": "39PAAFCODMZV1K41L5FUZ9USMMQTVY_1_5"} {"score": 0.9264957904815674, "chain_id": "39PAAFCODMZV1K41L5FUZ9USMMQTVY_1_6"} {"score": 0.8014420866966248, "chain_id": "39PAAFCODMZV1K41L5FUZ9USMMQTVY_1_7"} {"score": 0.9499127268791199, "chain_id": "39PAAFCODMZV1K41L5FUZ9USMMQTVY_1_2"} {"score": 0.9697241187095642, "chain_id": "39PAAFCODMZV1K41L5FUZ9USMMQTVY_1_4"} {"score": 0.4826086759567261, "chain_id": "39PAAFCODMZV1K41L5FUZ9USMMQTVY_1_8"} {"score": 0.09318441152572632, "chain_id": "39PAAFCODMZV1K41L5FUZ9USMMQTVY_1_9"} {"score": 0.5126415491104126, "chain_id": "39PAAFCODMZV1K41L5FUZ9USMMQTVY_1_10"} {"score": 0.03205689787864685, "chain_id": "382M9COHEHETZMX4QKGU41S86PDEUS_1_10"} {"score": 0.021078331395983696, "chain_id": "382M9COHEHETZMX4QKGU41S86PDEUS_1_1"} {"score": 0.03959181532263756, "chain_id": "382M9COHEHETZMX4QKGU41S86PDEUS_1_2"} {"score": 0.014783253893256187, "chain_id": "382M9COHEHETZMX4QKGU41S86PDEUS_1_3"} {"score": 0.02229093387722969, "chain_id": "382M9COHEHETZMX4QKGU41S86PDEUS_1_4"} {"score": 0.017934076488018036, "chain_id": "382M9COHEHETZMX4QKGU41S86PDEUS_1_5"} {"score": 0.018240857869386673, "chain_id": "382M9COHEHETZMX4QKGU41S86PDEUS_1_6"} {"score": 0.03339041396975517, "chain_id": "382M9COHEHETZMX4QKGU41S86PDEUS_1_7"} {"score": 0.019204407930374146, "chain_id": "382M9COHEHETZMX4QKGU41S86PDEUS_1_8"} {"score": 0.018802033737301826, "chain_id": "382M9COHEHETZMX4QKGU41S86PDEUS_1_9"} {"score": 0.9804608225822449, "chain_id": "326O153BMIX7IKMI4PQ5U1OKKS8EDE_1_1"} {"score": 0.9499127268791199, "chain_id": "326O153BMIX7IKMI4PQ5U1OKKS8EDE_1_2"} {"score": 0.9912586808204651, "chain_id": "326O153BMIX7IKMI4PQ5U1OKKS8EDE_1_3"} {"score": 0.9264957904815674, "chain_id": "326O153BMIX7IKMI4PQ5U1OKKS8EDE_1_6"} {"score": 0.5126415491104126, "chain_id": "326O153BMIX7IKMI4PQ5U1OKKS8EDE_1_10"} {"score": 0.9697241187095642, "chain_id": "326O153BMIX7IKMI4PQ5U1OKKS8EDE_1_4"} {"score": 0.7434263825416565, "chain_id": "326O153BMIX7IKMI4PQ5U1OKKS8EDE_1_5"} {"score": 0.8014420866966248, "chain_id": "326O153BMIX7IKMI4PQ5U1OKKS8EDE_1_7"} {"score": 0.4826086759567261, "chain_id": "326O153BMIX7IKMI4PQ5U1OKKS8EDE_1_8"} {"score": 0.09318441152572632, "chain_id": "326O153BMIX7IKMI4PQ5U1OKKS8EDE_1_9"} {"score": 0.9846953749656677, "chain_id": "36ZN444YTRXA2MFTQHUCQAYBGA6IOU_1_1"} {"score": 0.9460883736610413, "chain_id": "36ZN444YTRXA2MFTQHUCQAYBGA6IOU_1_2"} {"score": 0.28303956985473633, "chain_id": "36ZN444YTRXA2MFTQHUCQAYBGA6IOU_1_3"} {"score": 0.07906454801559448, "chain_id": "36ZN444YTRXA2MFTQHUCQAYBGA6IOU_1_4"} {"score": 0.0792069137096405, "chain_id": "36ZN444YTRXA2MFTQHUCQAYBGA6IOU_1_5"} {"score": 0.11252561211585999, "chain_id": "36ZN444YTRXA2MFTQHUCQAYBGA6IOU_1_6"} {"score": 0.0534319244325161, "chain_id": "36ZN444YTRXA2MFTQHUCQAYBGA6IOU_1_7"} {"score": 0.08897761255502701, "chain_id": "36ZN444YTRXA2MFTQHUCQAYBGA6IOU_1_8"} {"score": 0.176442950963974, "chain_id": "36ZN444YTRXA2MFTQHUCQAYBGA6IOU_1_9"} {"score": 0.05985713377594948, "chain_id": "36ZN444YTRXA2MFTQHUCQAYBGA6IOU_1_10"} {"score": 0.9893445372581482, "chain_id": "3B1NLC6UGZVERVLZFT7OUYQLAVVGPN_1_1"} {"score": 0.9734662771224976, "chain_id": "3B1NLC6UGZVERVLZFT7OUYQLAVVGPN_1_2"} {"score": 0.09479371458292007, "chain_id": "3B1NLC6UGZVERVLZFT7OUYQLAVVGPN_1_9"} {"score": 0.1473105549812317, "chain_id": "3B1NLC6UGZVERVLZFT7OUYQLAVVGPN_1_3"} {"score": 0.6007817387580872, "chain_id": "3B1NLC6UGZVERVLZFT7OUYQLAVVGPN_1_4"} {"score": 0.20414845645427704, "chain_id": "3B1NLC6UGZVERVLZFT7OUYQLAVVGPN_1_5"} {"score": 0.15992410480976105, "chain_id": "3B1NLC6UGZVERVLZFT7OUYQLAVVGPN_1_6"} {"score": 0.06612573564052582, "chain_id": "3B1NLC6UGZVERVLZFT7OUYQLAVVGPN_1_7"} {"score": 0.1332981288433075, "chain_id": "3B1NLC6UGZVERVLZFT7OUYQLAVVGPN_1_8"} {"score": 0.09157378226518631, "chain_id": "3B1NLC6UGZVERVLZFT7OUYQLAVVGPN_1_10"} {"score": 0.9703662991523743, "chain_id": "3IRIK4HM3AJT0DNPYBCWY7EPIVMC67_1_1"} {"score": 0.8770426511764526, "chain_id": "3IRIK4HM3AJT0DNPYBCWY7EPIVMC67_1_2"} {"score": 0.15116089582443237, "chain_id": "3IRIK4HM3AJT0DNPYBCWY7EPIVMC67_1_3"} {"score": 0.07078065723180771, "chain_id": "3IRIK4HM3AJT0DNPYBCWY7EPIVMC67_1_4"} {"score": 0.6032075881958008, "chain_id": "3IRIK4HM3AJT0DNPYBCWY7EPIVMC67_1_5"} {"score": 0.7736836075782776, "chain_id": "3IRIK4HM3AJT0DNPYBCWY7EPIVMC67_1_6"} {"score": 0.1388956606388092, "chain_id": "3IRIK4HM3AJT0DNPYBCWY7EPIVMC67_1_7"} {"score": 0.7700244784355164, "chain_id": "3IRIK4HM3AJT0DNPYBCWY7EPIVMC67_1_8"} {"score": 0.16970938444137573, "chain_id": "3IRIK4HM3AJT0DNPYBCWY7EPIVMC67_1_9"} {"score": 0.5869985222816467, "chain_id": "3IRIK4HM3AJT0DNPYBCWY7EPIVMC67_1_10"} {"score": 0.9900216460227966, "chain_id": "36NEMU28XFC43EEM2IJEZXIE1XMWMM_1_1"} {"score": 0.9686681628227234, "chain_id": "36NEMU28XFC43EEM2IJEZXIE1XMWMM_1_2"} {"score": 0.9894502758979797, "chain_id": "36NEMU28XFC43EEM2IJEZXIE1XMWMM_1_3"} {"score": 0.9693134427070618, "chain_id": "36NEMU28XFC43EEM2IJEZXIE1XMWMM_1_4"} {"score": 0.9635159969329834, "chain_id": "36NEMU28XFC43EEM2IJEZXIE1XMWMM_1_5"} {"score": 0.10907159745693207, "chain_id": "36NEMU28XFC43EEM2IJEZXIE1XMWMM_1_10"} {"score": 0.9750192165374756, "chain_id": "36NEMU28XFC43EEM2IJEZXIE1XMWMM_1_6"} {"score": 0.742146909236908, "chain_id": "36NEMU28XFC43EEM2IJEZXIE1XMWMM_1_7"} {"score": 0.632805347442627, "chain_id": "36NEMU28XFC43EEM2IJEZXIE1XMWMM_1_8"} {"score": 0.15451693534851074, "chain_id": "36NEMU28XFC43EEM2IJEZXIE1XMWMM_1_9"} {"score": 0.948867678642273, "chain_id": "320DUZ38G7LI5KI1KG24X2493HSJG1_1_1"} {"score": 0.8771567344665527, "chain_id": "320DUZ38G7LI5KI1KG24X2493HSJG1_1_2"} {"score": 0.7222528457641602, "chain_id": "320DUZ38G7LI5KI1KG24X2493HSJG1_1_3"} {"score": 0.6976664066314697, "chain_id": "320DUZ38G7LI5KI1KG24X2493HSJG1_1_4"} {"score": 0.04438715800642967, "chain_id": "320DUZ38G7LI5KI1KG24X2493HSJG1_1_5"} {"score": 0.024167442694306374, "chain_id": "320DUZ38G7LI5KI1KG24X2493HSJG1_1_6"} {"score": 0.055137716233730316, "chain_id": "320DUZ38G7LI5KI1KG24X2493HSJG1_1_7"} {"score": 0.0627596527338028, "chain_id": "320DUZ38G7LI5KI1KG24X2493HSJG1_1_8"} {"score": 0.41547322273254395, "chain_id": "320DUZ38G7LI5KI1KG24X2493HSJG1_1_9"} {"score": 0.104792021214962, "chain_id": "320DUZ38G7LI5KI1KG24X2493HSJG1_1_10"} {"score": 0.9902607798576355, "chain_id": "3B837J3LDOV2TDA5NL5UO7931S5SRD_1_1"} {"score": 0.49671268463134766, "chain_id": "3B837J3LDOV2TDA5NL5UO7931S5SRD_1_2"} {"score": 0.9822413325309753, "chain_id": "3B837J3LDOV2TDA5NL5UO7931S5SRD_1_3"} {"score": 0.5903858542442322, "chain_id": "3B837J3LDOV2TDA5NL5UO7931S5SRD_1_4"} {"score": 0.8437063097953796, "chain_id": "3B837J3LDOV2TDA5NL5UO7931S5SRD_1_5"} {"score": 0.5747241377830505, "chain_id": "3B837J3LDOV2TDA5NL5UO7931S5SRD_1_6"} {"score": 0.8301595449447632, "chain_id": "3B837J3LDOV2TDA5NL5UO7931S5SRD_1_7"} {"score": 0.6660641431808472, "chain_id": "3B837J3LDOV2TDA5NL5UO7931S5SRD_1_8"} {"score": 0.10596929490566254, "chain_id": "3B837J3LDOV2TDA5NL5UO7931S5SRD_1_9"} {"score": 0.23313185572624207, "chain_id": "3B837J3LDOV2TDA5NL5UO7931S5SRD_1_10"} {"score": 0.9896349310874939, "chain_id": "3GNCZX450IMDH48WTTFEYCFIGM0PAE_1_1"} {"score": 0.9899617433547974, "chain_id": "3GNCZX450IMDH48WTTFEYCFIGM0PAE_1_3"} {"score": 0.9639177322387695, "chain_id": "3GNCZX450IMDH48WTTFEYCFIGM0PAE_1_4"} {"score": 0.958730161190033, "chain_id": "3GNCZX450IMDH48WTTFEYCFIGM0PAE_1_6"} {"score": 0.9258610010147095, "chain_id": "3GNCZX450IMDH48WTTFEYCFIGM0PAE_1_2"} {"score": 0.9612423181533813, "chain_id": "3GNCZX450IMDH48WTTFEYCFIGM0PAE_1_5"} {"score": 0.6901140213012695, "chain_id": "3GNCZX450IMDH48WTTFEYCFIGM0PAE_1_7"} {"score": 0.5810004472732544, "chain_id": "3GNCZX450IMDH48WTTFEYCFIGM0PAE_1_8"} {"score": 0.8648675680160522, "chain_id": "3GNCZX450IMDH48WTTFEYCFIGM0PAE_1_9"} {"score": 0.09896320104598999, "chain_id": "3GNCZX450IMDH48WTTFEYCFIGM0PAE_1_10"} {"score": 0.5642130374908447, "chain_id": "3FIJLY1B6U38DVP44916CDQ9D7GFPU_1_1"} {"score": 0.7365432977676392, "chain_id": "3FIJLY1B6U38DVP44916CDQ9D7GFPU_1_2"} {"score": 0.5412119030952454, "chain_id": "3FIJLY1B6U38DVP44916CDQ9D7GFPU_1_3"} {"score": 0.8616964221000671, "chain_id": "3FIJLY1B6U38DVP44916CDQ9D7GFPU_1_4"} {"score": 0.47883790731430054, "chain_id": "3FIJLY1B6U38DVP44916CDQ9D7GFPU_1_5"} {"score": 0.6489725112915039, "chain_id": "3FIJLY1B6U38DVP44916CDQ9D7GFPU_1_6"} {"score": 0.4105292856693268, "chain_id": "3FIJLY1B6U38DVP44916CDQ9D7GFPU_1_7"} {"score": 0.7372876405715942, "chain_id": "3FIJLY1B6U38DVP44916CDQ9D7GFPU_1_8"} {"score": 0.7345288395881653, "chain_id": "3FIJLY1B6U38DVP44916CDQ9D7GFPU_1_9"} {"score": 0.4294341504573822, "chain_id": "3FIJLY1B6U38DVP44916CDQ9D7GFPU_1_10"} {"score": 0.034591853618621826, "chain_id": "3LEP4MGT3GZ9BHAYUYOFTTIZFO7BD7_1_1"} {"score": 0.1516413688659668, "chain_id": "3LEP4MGT3GZ9BHAYUYOFTTIZFO7BD7_1_2"} {"score": 0.042668417096138, "chain_id": "3LEP4MGT3GZ9BHAYUYOFTTIZFO7BD7_1_3"} {"score": 0.016563791781663895, "chain_id": "3LEP4MGT3GZ9BHAYUYOFTTIZFO7BD7_1_4"} {"score": 0.07429693639278412, "chain_id": "3LEP4MGT3GZ9BHAYUYOFTTIZFO7BD7_1_5"} {"score": 0.029960468411445618, "chain_id": "3LEP4MGT3GZ9BHAYUYOFTTIZFO7BD7_1_6"} {"score": 0.03401781618595123, "chain_id": "3LEP4MGT3GZ9BHAYUYOFTTIZFO7BD7_1_7"} {"score": 0.2757861316204071, "chain_id": "3LEP4MGT3GZ9BHAYUYOFTTIZFO7BD7_1_8"} {"score": 0.4480946958065033, "chain_id": "3LEP4MGT3GZ9BHAYUYOFTTIZFO7BD7_1_9"} {"score": 0.01644914783537388, "chain_id": "3LEP4MGT3GZ9BHAYUYOFTTIZFO7BD7_1_10"} {"score": 0.042926397174596786, "chain_id": "3EA3QWIZ4IUQFEK1MYGBKK4YF0DTIH_1_1"} {"score": 0.07353728264570236, "chain_id": "3EA3QWIZ4IUQFEK1MYGBKK4YF0DTIH_1_2"} {"score": 0.1382400393486023, "chain_id": "3EA3QWIZ4IUQFEK1MYGBKK4YF0DTIH_1_3"} {"score": 0.07075571268796921, "chain_id": "3EA3QWIZ4IUQFEK1MYGBKK4YF0DTIH_1_4"} {"score": 0.04595399647951126, "chain_id": "3EA3QWIZ4IUQFEK1MYGBKK4YF0DTIH_1_5"} {"score": 0.026760833337903023, "chain_id": "3EA3QWIZ4IUQFEK1MYGBKK4YF0DTIH_1_6"} {"score": 0.05350079759955406, "chain_id": "3EA3QWIZ4IUQFEK1MYGBKK4YF0DTIH_1_7"} {"score": 0.01965015009045601, "chain_id": "3EA3QWIZ4IUQFEK1MYGBKK4YF0DTIH_1_8"} {"score": 0.03482433035969734, "chain_id": "3EA3QWIZ4IUQFEK1MYGBKK4YF0DTIH_1_9"} {"score": 0.06455030292272568, "chain_id": "3EA3QWIZ4IUQFEK1MYGBKK4YF0DTIH_1_10"} {"score": 0.03866618871688843, "chain_id": "3KV0LJBBH2KZVIX03O98CYAX8WIRMG_1_1"} {"score": 0.03917032480239868, "chain_id": "3KV0LJBBH2KZVIX03O98CYAX8WIRMG_1_2"} {"score": 0.14355525374412537, "chain_id": "3KV0LJBBH2KZVIX03O98CYAX8WIRMG_1_3"} {"score": 0.11112888902425766, "chain_id": "3KV0LJBBH2KZVIX03O98CYAX8WIRMG_1_4"} {"score": 0.043691236525774, "chain_id": "3KV0LJBBH2KZVIX03O98CYAX8WIRMG_1_5"} {"score": 0.03827283903956413, "chain_id": "3KV0LJBBH2KZVIX03O98CYAX8WIRMG_1_6"} {"score": 0.05671147257089615, "chain_id": "3KV0LJBBH2KZVIX03O98CYAX8WIRMG_1_7"} {"score": 0.04063829779624939, "chain_id": "3KV0LJBBH2KZVIX03O98CYAX8WIRMG_1_8"} {"score": 0.03514615446329117, "chain_id": "3KV0LJBBH2KZVIX03O98CYAX8WIRMG_1_9"} {"score": 0.054892223328351974, "chain_id": "3KV0LJBBH2KZVIX03O98CYAX8WIRMG_1_10"} {"score": 0.06439996510744095, "chain_id": "3R2PKQ87NW7M2JUHD1FZY696N0HIMN_1_8"} {"score": 0.018706727772951126, "chain_id": "3R2PKQ87NW7M2JUHD1FZY696N0HIMN_1_1"} {"score": 0.039863087236881256, "chain_id": "3R2PKQ87NW7M2JUHD1FZY696N0HIMN_1_2"} {"score": 0.017929228022694588, "chain_id": "3R2PKQ87NW7M2JUHD1FZY696N0HIMN_1_3"} {"score": 0.019412657245993614, "chain_id": "3R2PKQ87NW7M2JUHD1FZY696N0HIMN_1_4"} {"score": 0.015096792951226234, "chain_id": "3R2PKQ87NW7M2JUHD1FZY696N0HIMN_1_5"} {"score": 0.03838164359331131, "chain_id": "3R2PKQ87NW7M2JUHD1FZY696N0HIMN_1_6"} {"score": 0.040165577083826065, "chain_id": "3R2PKQ87NW7M2JUHD1FZY696N0HIMN_1_7"} {"score": 0.08452736586332321, "chain_id": "3R2PKQ87NW7M2JUHD1FZY696N0HIMN_1_9"} {"score": 0.028894364833831787, "chain_id": "3R2PKQ87NW7M2JUHD1FZY696N0HIMN_1_10"} {"score": 0.053724490106105804, "chain_id": "3A4NIXBJ76YOSK2NY4CCQM1Y452MLY_1_1"} {"score": 0.021363522857427597, "chain_id": "3A4NIXBJ76YOSK2NY4CCQM1Y452MLY_1_2"} {"score": 0.018900614231824875, "chain_id": "3A4NIXBJ76YOSK2NY4CCQM1Y452MLY_1_3"} {"score": 0.033926717936992645, "chain_id": "3A4NIXBJ76YOSK2NY4CCQM1Y452MLY_1_4"} {"score": 0.019382843747735023, "chain_id": "3A4NIXBJ76YOSK2NY4CCQM1Y452MLY_1_5"} {"score": 0.04735278710722923, "chain_id": "3A4NIXBJ76YOSK2NY4CCQM1Y452MLY_1_6"} {"score": 0.01621418632566929, "chain_id": "3A4NIXBJ76YOSK2NY4CCQM1Y452MLY_1_7"} {"score": 0.020829489454627037, "chain_id": "3A4NIXBJ76YOSK2NY4CCQM1Y452MLY_1_8"} {"score": 0.01758667640388012, "chain_id": "3A4NIXBJ76YOSK2NY4CCQM1Y452MLY_1_9"} {"score": 0.019374044612050056, "chain_id": "3A4NIXBJ76YOSK2NY4CCQM1Y452MLY_1_10"} {"score": 0.016964636743068695, "chain_id": "308XBLVESI33CRT3CZJZYIZ3Y9IBR5_1_1"} {"score": 0.01546438131481409, "chain_id": "308XBLVESI33CRT3CZJZYIZ3Y9IBR5_1_2"} {"score": 0.02200378105044365, "chain_id": "308XBLVESI33CRT3CZJZYIZ3Y9IBR5_1_3"} {"score": 0.16551797091960907, "chain_id": "308XBLVESI33CRT3CZJZYIZ3Y9IBR5_1_4"} {"score": 0.012896351516246796, "chain_id": "308XBLVESI33CRT3CZJZYIZ3Y9IBR5_1_5"} {"score": 0.08326756954193115, "chain_id": "308XBLVESI33CRT3CZJZYIZ3Y9IBR5_1_6"} {"score": 0.021450970321893692, "chain_id": "308XBLVESI33CRT3CZJZYIZ3Y9IBR5_1_7"} {"score": 0.02379247359931469, "chain_id": "308XBLVESI33CRT3CZJZYIZ3Y9IBR5_1_8"} {"score": 0.09393510967493057, "chain_id": "308XBLVESI33CRT3CZJZYIZ3Y9IBR5_1_9"} {"score": 0.022071324288845062, "chain_id": "308XBLVESI33CRT3CZJZYIZ3Y9IBR5_1_10"} {"score": 0.06516290456056595, "chain_id": "36NEMU28XFC43EEM2IJEZXIE34WMW2_1_1"} {"score": 0.022008279338479042, "chain_id": "36NEMU28XFC43EEM2IJEZXIE34WMW2_1_2"} {"score": 0.14608260989189148, "chain_id": "36NEMU28XFC43EEM2IJEZXIE34WMW2_1_3"} {"score": 0.3244105279445648, "chain_id": "36NEMU28XFC43EEM2IJEZXIE34WMW2_1_4"} {"score": 0.03849893808364868, "chain_id": "36NEMU28XFC43EEM2IJEZXIE34WMW2_1_5"} {"score": 0.030646465718746185, "chain_id": "36NEMU28XFC43EEM2IJEZXIE34WMW2_1_6"} {"score": 0.04714242368936539, "chain_id": "36NEMU28XFC43EEM2IJEZXIE34WMW2_1_7"} {"score": 0.5918416380882263, "chain_id": "36NEMU28XFC43EEM2IJEZXIE34WMW2_1_8"} {"score": 0.016942180693149567, "chain_id": "36NEMU28XFC43EEM2IJEZXIE34WMW2_1_9"} {"score": 0.022952407598495483, "chain_id": "36NEMU28XFC43EEM2IJEZXIE34WMW2_1_10"} {"score": 0.07975862920284271, "chain_id": "3XCC1ODXDLAQGXVSVHGPT7U2LTGQRY_1_1"} {"score": 0.019383052363991737, "chain_id": "3XCC1ODXDLAQGXVSVHGPT7U2LTGQRY_1_2"} {"score": 0.020606832578778267, "chain_id": "3XCC1ODXDLAQGXVSVHGPT7U2LTGQRY_1_3"} {"score": 0.06210717931389809, "chain_id": "3XCC1ODXDLAQGXVSVHGPT7U2LTGQRY_1_4"} {"score": 0.04313357546925545, "chain_id": "3XCC1ODXDLAQGXVSVHGPT7U2LTGQRY_1_5"} {"score": 0.031610213220119476, "chain_id": "3XCC1ODXDLAQGXVSVHGPT7U2LTGQRY_1_6"} {"score": 0.017901943996548653, "chain_id": "3XCC1ODXDLAQGXVSVHGPT7U2LTGQRY_1_7"} {"score": 0.03384534642100334, "chain_id": "3XCC1ODXDLAQGXVSVHGPT7U2LTGQRY_1_8"} {"score": 0.026598269119858742, "chain_id": "3XCC1ODXDLAQGXVSVHGPT7U2LTGQRY_1_9"} {"score": 0.19499824941158295, "chain_id": "3XCC1ODXDLAQGXVSVHGPT7U2LTGQRY_1_10"} {"score": 0.05593818426132202, "chain_id": "3UJ1CZ6IZHODOQC7QESRL6476YX5S2_1_1"} {"score": 0.02431575581431389, "chain_id": "3UJ1CZ6IZHODOQC7QESRL6476YX5S2_1_2"} {"score": 0.024471281096339226, "chain_id": "3UJ1CZ6IZHODOQC7QESRL6476YX5S2_1_3"} {"score": 0.03778956085443497, "chain_id": "3UJ1CZ6IZHODOQC7QESRL6476YX5S2_1_4"} {"score": 0.02750241756439209, "chain_id": "3UJ1CZ6IZHODOQC7QESRL6476YX5S2_1_5"} {"score": 0.01490565575659275, "chain_id": "3UJ1CZ6IZHODOQC7QESRL6476YX5S2_1_6"} {"score": 0.015042847022414207, "chain_id": "3UJ1CZ6IZHODOQC7QESRL6476YX5S2_1_7"} {"score": 0.022864066064357758, "chain_id": "3UJ1CZ6IZHODOQC7QESRL6476YX5S2_1_8"} {"score": 0.0321304090321064, "chain_id": "3UJ1CZ6IZHODOQC7QESRL6476YX5S2_1_9"} {"score": 0.021552888676524162, "chain_id": "3UJ1CZ6IZHODOQC7QESRL6476YX5S2_1_10"} {"score": 0.24483463168144226, "chain_id": "3WOKGM4L71FZVRYDMR56K6YFU6NO0J_1_2"} {"score": 0.9582250714302063, "chain_id": "3WOKGM4L71FZVRYDMR56K6YFU6NO0J_1_8"} {"score": 0.6993237137794495, "chain_id": "3WOKGM4L71FZVRYDMR56K6YFU6NO0J_1_1"} {"score": 0.08174800872802734, "chain_id": "3WOKGM4L71FZVRYDMR56K6YFU6NO0J_1_3"} {"score": 0.31847599148750305, "chain_id": "3WOKGM4L71FZVRYDMR56K6YFU6NO0J_1_4"} {"score": 0.03722454234957695, "chain_id": "3WOKGM4L71FZVRYDMR56K6YFU6NO0J_1_5"} {"score": 0.03259947523474693, "chain_id": "3WOKGM4L71FZVRYDMR56K6YFU6NO0J_1_6"} {"score": 0.06730406731367111, "chain_id": "3WOKGM4L71FZVRYDMR56K6YFU6NO0J_1_7"} {"score": 0.09783587604761124, "chain_id": "3WOKGM4L71FZVRYDMR56K6YFU6NO0J_1_9"} {"score": 0.03870376572012901, "chain_id": "3WOKGM4L71FZVRYDMR56K6YFU6NO0J_1_10"} {"score": 0.09652425348758698, "chain_id": "37ZHEEHM6WLORD5BOS6NBIAR9Y473Q_1_4"} {"score": 0.09642499685287476, "chain_id": "37ZHEEHM6WLORD5BOS6NBIAR9Y473Q_1_1"} {"score": 0.26252537965774536, "chain_id": "37ZHEEHM6WLORD5BOS6NBIAR9Y473Q_1_2"} {"score": 0.07095550745725632, "chain_id": "37ZHEEHM6WLORD5BOS6NBIAR9Y473Q_1_3"} {"score": 0.0162374135106802, "chain_id": "37ZHEEHM6WLORD5BOS6NBIAR9Y473Q_1_5"} {"score": 0.03686520457267761, "chain_id": "37ZHEEHM6WLORD5BOS6NBIAR9Y473Q_1_6"} {"score": 0.016615228727459908, "chain_id": "37ZHEEHM6WLORD5BOS6NBIAR9Y473Q_1_7"} {"score": 0.10593444854021072, "chain_id": "37ZHEEHM6WLORD5BOS6NBIAR9Y473Q_1_8"} {"score": 0.24343915283679962, "chain_id": "37ZHEEHM6WLORD5BOS6NBIAR9Y473Q_1_9"} {"score": 0.045507319271564484, "chain_id": "37ZHEEHM6WLORD5BOS6NBIAR9Y473Q_1_10"} {"score": 0.028460267931222916, "chain_id": "336KAV9KYQRILF5T71II5LPW88EY2N_1_1"} {"score": 0.017578158527612686, "chain_id": "336KAV9KYQRILF5T71II5LPW88EY2N_1_2"} {"score": 0.01958337239921093, "chain_id": "336KAV9KYQRILF5T71II5LPW88EY2N_1_3"} {"score": 0.018118586391210556, "chain_id": "336KAV9KYQRILF5T71II5LPW88EY2N_1_4"} {"score": 0.018305703997612, "chain_id": "336KAV9KYQRILF5T71II5LPW88EY2N_1_5"} {"score": 0.037798404693603516, "chain_id": "336KAV9KYQRILF5T71II5LPW88EY2N_1_6"} {"score": 0.015282568521797657, "chain_id": "336KAV9KYQRILF5T71II5LPW88EY2N_1_7"} {"score": 0.4782504439353943, "chain_id": "3M0BCWMB8VV8KNAPBTT5LH7KPFOWB1_1_1"} {"score": 0.534812331199646, "chain_id": "3M0BCWMB8VV8KNAPBTT5LH7KPFOWB1_1_2"} {"score": 0.09915582090616226, "chain_id": "3M0BCWMB8VV8KNAPBTT5LH7KPFOWB1_1_4"} {"score": 0.7433521747589111, "chain_id": "3M0BCWMB8VV8KNAPBTT5LH7KPFOWB1_1_5"} {"score": 0.04223669320344925, "chain_id": "3M0BCWMB8VV8KNAPBTT5LH7KPFOWB1_1_3"} {"score": 0.01440327800810337, "chain_id": "3M0BCWMB8VV8KNAPBTT5LH7KPFOWB1_1_6"} {"score": 0.023149559274315834, "chain_id": "3M0BCWMB8VV8KNAPBTT5LH7KPFOWB1_1_7"} {"score": 0.18248715996742249, "chain_id": "3M0BCWMB8VV8KNAPBTT5LH7KPFOWB1_1_8"} {"score": 0.0199974924325943, "chain_id": "3M0BCWMB8VV8KNAPBTT5LH7KPFOWB1_1_9"} {"score": 0.1487436592578888, "chain_id": "3M0BCWMB8VV8KNAPBTT5LH7KPFOWB1_1_10"} {"score": 0.4910854399204254, "chain_id": "32XVDSJFPZWIRYGFOYU7BQ2PYHK2MM_1_1"} {"score": 0.8670825958251953, "chain_id": "32XVDSJFPZWIRYGFOYU7BQ2PYHK2MM_1_4"} {"score": 0.0570860281586647, "chain_id": "32XVDSJFPZWIRYGFOYU7BQ2PYHK2MM_1_2"} {"score": 0.7958604097366333, "chain_id": "32XVDSJFPZWIRYGFOYU7BQ2PYHK2MM_1_3"} {"score": 0.33648839592933655, "chain_id": "32XVDSJFPZWIRYGFOYU7BQ2PYHK2MM_1_5"} {"score": 0.4682263731956482, "chain_id": "32XVDSJFPZWIRYGFOYU7BQ2PYHK2MM_1_6"} {"score": 0.2538294494152069, "chain_id": "32XVDSJFPZWIRYGFOYU7BQ2PYHK2MM_1_7"} {"score": 0.01949060894548893, "chain_id": "32XVDSJFPZWIRYGFOYU7BQ2PYHK2MM_1_8"} {"score": 0.04973958060145378, "chain_id": "32XVDSJFPZWIRYGFOYU7BQ2PYHK2MM_1_9"} {"score": 0.049700696021318436, "chain_id": "32XVDSJFPZWIRYGFOYU7BQ2PYHK2MM_1_10"} {"score": 0.845350980758667, "chain_id": "3ZGVPD4G6TGCA49BM24XKF7OPJ3ZTY_1_1"} {"score": 0.8725919723510742, "chain_id": "3ZGVPD4G6TGCA49BM24XKF7OPJ3ZTY_1_2"} {"score": 0.17452919483184814, "chain_id": "3ZGVPD4G6TGCA49BM24XKF7OPJ3ZTY_1_3"} {"score": 0.7262684106826782, "chain_id": "3ZGVPD4G6TGCA49BM24XKF7OPJ3ZTY_1_8"} {"score": 0.48763057589530945, "chain_id": "3ZGVPD4G6TGCA49BM24XKF7OPJ3ZTY_1_4"} {"score": 0.7778458595275879, "chain_id": "3ZGVPD4G6TGCA49BM24XKF7OPJ3ZTY_1_5"} {"score": 0.13922028243541718, "chain_id": "3ZGVPD4G6TGCA49BM24XKF7OPJ3ZTY_1_6"} {"score": 0.7303237318992615, "chain_id": "3ZGVPD4G6TGCA49BM24XKF7OPJ3ZTY_1_7"} {"score": 0.12026408314704895, "chain_id": "3ZGVPD4G6TGCA49BM24XKF7OPJ3ZTY_1_9"} {"score": 0.22530825436115265, "chain_id": "3ZGVPD4G6TGCA49BM24XKF7OPJ3ZTY_1_10"} {"score": 0.03269681707024574, "chain_id": "3RYC5T2D73S5GLUDV410T24SRFURPJ_1_1"} {"score": 0.028080111369490623, "chain_id": "3RYC5T2D73S5GLUDV410T24SRFURPJ_1_2"} {"score": 0.029025115072727203, "chain_id": "3RYC5T2D73S5GLUDV410T24SRFURPJ_1_3"} {"score": 0.02114635333418846, "chain_id": "3RYC5T2D73S5GLUDV410T24SRFURPJ_1_4"} {"score": 0.0858578011393547, "chain_id": "3RYC5T2D73S5GLUDV410T24SRFURPJ_1_5"} {"score": 0.04627809301018715, "chain_id": "3RYC5T2D73S5GLUDV410T24SRFURPJ_1_6"} {"score": 0.02290409244596958, "chain_id": "3RYC5T2D73S5GLUDV410T24SRFURPJ_1_7"} {"score": 0.5041458010673523, "chain_id": "3RYC5T2D73S5GLUDV410T24SRFURPJ_1_8"} {"score": 0.051804158836603165, "chain_id": "3RYC5T2D73S5GLUDV410T24SRFURPJ_1_9"} {"score": 0.025920113548636436, "chain_id": "3RYC5T2D73S5GLUDV410T24SRFURPJ_1_10"} {"score": 0.5521496534347534, "chain_id": "37C0GNLMHF2355T3Y777IDW7HDZ6DG_1_3"} {"score": 0.49105104804039, "chain_id": "37C0GNLMHF2355T3Y777IDW7HDZ6DG_1_1"} {"score": 0.9911487102508545, "chain_id": "37C0GNLMHF2355T3Y777IDW7HDZ6DG_1_2"} {"score": 0.05119910463690758, "chain_id": "37C0GNLMHF2355T3Y777IDW7HDZ6DG_1_4"} {"score": 0.328058660030365, "chain_id": "37C0GNLMHF2355T3Y777IDW7HDZ6DG_1_5"} {"score": 0.18556195497512817, "chain_id": "37C0GNLMHF2355T3Y777IDW7HDZ6DG_1_6"} {"score": 0.0728730782866478, "chain_id": "37C0GNLMHF2355T3Y777IDW7HDZ6DG_1_7"} {"score": 0.5930079221725464, "chain_id": "37C0GNLMHF2355T3Y777IDW7HDZ6DG_1_8"} {"score": 0.035104282200336456, "chain_id": "37C0GNLMHF2355T3Y777IDW7HDZ6DG_1_9"} {"score": 0.16548457741737366, "chain_id": "37C0GNLMHF2355T3Y777IDW7HDZ6DG_1_10"} {"score": 0.10076989978551865, "chain_id": "3RXCAC0YIROTL3MITC5D8CVVOZ4G87_1_1"} {"score": 0.15154598653316498, "chain_id": "3RXCAC0YIROTL3MITC5D8CVVOZ4G87_1_2"} {"score": 0.21885937452316284, "chain_id": "3RXCAC0YIROTL3MITC5D8CVVOZ4G87_1_3"} {"score": 0.07338127493858337, "chain_id": "3RXCAC0YIROTL3MITC5D8CVVOZ4G87_1_4"} {"score": 0.7864599227905273, "chain_id": "3RXCAC0YIROTL3MITC5D8CVVOZ4G87_1_5"} {"score": 0.8406728506088257, "chain_id": "3RXCAC0YIROTL3MITC5D8CVVOZ4G87_1_6"} {"score": 0.5879044532775879, "chain_id": "3RXCAC0YIROTL3MITC5D8CVVOZ4G87_1_7"} {"score": 0.13541056215763092, "chain_id": "3RXCAC0YIROTL3MITC5D8CVVOZ4G87_1_8"} {"score": 0.14717060327529907, "chain_id": "3RXCAC0YIROTL3MITC5D8CVVOZ4G87_1_9"} {"score": 0.23517990112304688, "chain_id": "3RXCAC0YIROTL3MITC5D8CVVOZ4G87_1_10"} {"score": 0.05448903515934944, "chain_id": "3NAPMVF0ZWEZ6V9SKSSIS85Z4YP72T_1_1"} {"score": 0.03449507802724838, "chain_id": "3NAPMVF0ZWEZ6V9SKSSIS85Z4YP72T_1_2"} {"score": 0.016353348270058632, "chain_id": "3NAPMVF0ZWEZ6V9SKSSIS85Z4YP72T_1_3"} {"score": 0.051537055522203445, "chain_id": "3NAPMVF0ZWEZ6V9SKSSIS85Z4YP72T_1_4"} {"score": 0.6829248666763306, "chain_id": "3NAPMVF0ZWEZ6V9SKSSIS85Z4YP72T_1_5"} {"score": 0.15501070022583008, "chain_id": "3NAPMVF0ZWEZ6V9SKSSIS85Z4YP72T_1_6"} {"score": 0.6154931783676147, "chain_id": "3NAPMVF0ZWEZ6V9SKSSIS85Z4YP72T_1_7"} {"score": 0.12835341691970825, "chain_id": "3NAPMVF0ZWEZ6V9SKSSIS85Z4YP72T_1_8"} {"score": 0.4711633026599884, "chain_id": "3NAPMVF0ZWEZ6V9SKSSIS85Z4YP72T_1_9"} {"score": 0.03430084511637688, "chain_id": "3NAPMVF0ZWEZ6V9SKSSIS85Z4YP72T_1_10"} {"score": 0.8259221315383911, "chain_id": "3KMS4QQVK2P724SORHWYGW4AHPSKFY_1_2"} {"score": 0.7572835683822632, "chain_id": "3KMS4QQVK2P724SORHWYGW4AHPSKFY_1_1"} {"score": 0.09818585962057114, "chain_id": "3KMS4QQVK2P724SORHWYGW4AHPSKFY_1_3"} {"score": 0.6714238524436951, "chain_id": "3KMS4QQVK2P724SORHWYGW4AHPSKFY_1_4"} {"score": 0.7610051035881042, "chain_id": "3KMS4QQVK2P724SORHWYGW4AHPSKFY_1_5"} {"score": 0.014340803027153015, "chain_id": "3KMS4QQVK2P724SORHWYGW4AHPSKFY_1_6"} {"score": 0.14398978650569916, "chain_id": "3KMS4QQVK2P724SORHWYGW4AHPSKFY_1_7"} {"score": 0.047245267778635025, "chain_id": "3KMS4QQVK2P724SORHWYGW4AHPSKFY_1_8"} {"score": 0.03589580953121185, "chain_id": "3KMS4QQVK2P724SORHWYGW4AHPSKFY_1_9"} {"score": 0.048674486577510834, "chain_id": "3KMS4QQVK2P724SORHWYGW4AHPSKFY_1_10"} {"score": 0.10755758732557297, "chain_id": "3HYA4D452RICLOOY2BQUG0IG0R4F29_1_2"} {"score": 0.8397847414016724, "chain_id": "3HYA4D452RICLOOY2BQUG0IG0R4F29_1_3"} {"score": 0.7269610166549683, "chain_id": "3HYA4D452RICLOOY2BQUG0IG0R4F29_1_1"} {"score": 0.30280056595802307, "chain_id": "3HYA4D452RICLOOY2BQUG0IG0R4F29_1_4"} {"score": 0.10829824954271317, "chain_id": "3HYA4D452RICLOOY2BQUG0IG0R4F29_1_5"} {"score": 0.1060338169336319, "chain_id": "3HYA4D452RICLOOY2BQUG0IG0R4F29_1_6"} {"score": 0.013506438583135605, "chain_id": "3HYA4D452RICLOOY2BQUG0IG0R4F29_1_7"} {"score": 0.034584321081638336, "chain_id": "3HYA4D452RICLOOY2BQUG0IG0R4F29_1_8"} {"score": 0.028920313343405724, "chain_id": "3HYA4D452RICLOOY2BQUG0IG0R4F29_1_9"} {"score": 0.021009454503655434, "chain_id": "3HYA4D452RICLOOY2BQUG0IG0R4F29_1_10"} {"score": 0.9405590295791626, "chain_id": "3SBEHTYCWN2MW0JVW43AS1WDV0MYIZ_1_1"} {"score": 0.5800114274024963, "chain_id": "3SBEHTYCWN2MW0JVW43AS1WDV0MYIZ_1_2"} {"score": 0.5782549381256104, "chain_id": "3SBEHTYCWN2MW0JVW43AS1WDV0MYIZ_1_3"} {"score": 0.7110059857368469, "chain_id": "3SBEHTYCWN2MW0JVW43AS1WDV0MYIZ_1_5"} {"score": 0.13897275924682617, "chain_id": "3SBEHTYCWN2MW0JVW43AS1WDV0MYIZ_1_4"} {"score": 0.03291330486536026, "chain_id": "3SBEHTYCWN2MW0JVW43AS1WDV0MYIZ_1_6"} {"score": 0.014967143535614014, "chain_id": "3SBEHTYCWN2MW0JVW43AS1WDV0MYIZ_1_7"} {"score": 0.008760624565184116, "chain_id": "3SBEHTYCWN2MW0JVW43AS1WDV0MYIZ_1_8"} {"score": 0.2166775017976761, "chain_id": "3SBEHTYCWN2MW0JVW43AS1WDV0MYIZ_1_9"} {"score": 0.807864248752594, "chain_id": "3SBEHTYCWN2MW0JVW43AS1WDV0MYIZ_1_10"} {"score": 0.9900944828987122, "chain_id": "3X1FV8S5JXQRWFIV15GN0QF3YBTGVR_1_1"} {"score": 0.9854235053062439, "chain_id": "3X1FV8S5JXQRWFIV15GN0QF3YBTGVR_1_2"} {"score": 0.5896332263946533, "chain_id": "3X1FV8S5JXQRWFIV15GN0QF3YBTGVR_1_3"} {"score": 0.342433363199234, "chain_id": "3X1FV8S5JXQRWFIV15GN0QF3YBTGVR_1_4"} {"score": 0.21741747856140137, "chain_id": "3X1FV8S5JXQRWFIV15GN0QF3YBTGVR_1_5"} {"score": 0.9307575821876526, "chain_id": "3X1FV8S5JXQRWFIV15GN0QF3YBTGVR_1_6"} {"score": 0.7495818734169006, "chain_id": "3X1FV8S5JXQRWFIV15GN0QF3YBTGVR_1_7"} {"score": 0.4951752722263336, "chain_id": "3X1FV8S5JXQRWFIV15GN0QF3YBTGVR_1_8"} {"score": 0.15810559689998627, "chain_id": "3X1FV8S5JXQRWFIV15GN0QF3YBTGVR_1_9"} {"score": 0.6768882274627686, "chain_id": "3X1FV8S5JXQRWFIV15GN0QF3YBTGVR_1_10"} {"score": 0.8721335530281067, "chain_id": "3WJ1OXY92AFSBC9F7CD3CQKSPQ7A8C_1_1"} {"score": 0.14270377159118652, "chain_id": "3WJ1OXY92AFSBC9F7CD3CQKSPQ7A8C_1_9"} {"score": 0.7000414729118347, "chain_id": "3WJ1OXY92AFSBC9F7CD3CQKSPQ7A8C_1_2"} {"score": 0.9103202223777771, "chain_id": "3WJ1OXY92AFSBC9F7CD3CQKSPQ7A8C_1_3"} {"score": 0.5468452572822571, "chain_id": "3WJ1OXY92AFSBC9F7CD3CQKSPQ7A8C_1_4"} {"score": 0.26802030205726624, "chain_id": "3WJ1OXY92AFSBC9F7CD3CQKSPQ7A8C_1_5"} {"score": 0.9412935972213745, "chain_id": "3WJ1OXY92AFSBC9F7CD3CQKSPQ7A8C_1_6"} {"score": 0.7453970909118652, "chain_id": "3WJ1OXY92AFSBC9F7CD3CQKSPQ7A8C_1_7"} {"score": 0.21115200221538544, "chain_id": "3WJ1OXY92AFSBC9F7CD3CQKSPQ7A8C_1_8"} {"score": 0.45765843987464905, "chain_id": "3WJ1OXY92AFSBC9F7CD3CQKSPQ7A8C_1_10"} {"score": 0.9900944828987122, "chain_id": "3N1FSUEFL5ZPQIPPFJESLFCTCWZ4DA_1_1"} {"score": 0.9854235053062439, "chain_id": "3N1FSUEFL5ZPQIPPFJESLFCTCWZ4DA_1_2"} {"score": 0.5896332263946533, "chain_id": "3N1FSUEFL5ZPQIPPFJESLFCTCWZ4DA_1_3"} {"score": 0.342433363199234, "chain_id": "3N1FSUEFL5ZPQIPPFJESLFCTCWZ4DA_1_4"} {"score": 0.21741747856140137, "chain_id": "3N1FSUEFL5ZPQIPPFJESLFCTCWZ4DA_1_5"} {"score": 0.9307575821876526, "chain_id": "3N1FSUEFL5ZPQIPPFJESLFCTCWZ4DA_1_6"} {"score": 0.7495818734169006, "chain_id": "3N1FSUEFL5ZPQIPPFJESLFCTCWZ4DA_1_7"} {"score": 0.4951752722263336, "chain_id": "3N1FSUEFL5ZPQIPPFJESLFCTCWZ4DA_1_8"} {"score": 0.15810559689998627, "chain_id": "3N1FSUEFL5ZPQIPPFJESLFCTCWZ4DA_1_9"} {"score": 0.6768882274627686, "chain_id": "3N1FSUEFL5ZPQIPPFJESLFCTCWZ4DA_1_10"} {"score": 0.9916479587554932, "chain_id": "3P1L2B7AD1OCSNNZBKRPIQQ32ZGLO2_1_2"} {"score": 0.9358387589454651, "chain_id": "3P1L2B7AD1OCSNNZBKRPIQQ32ZGLO2_1_3"} {"score": 0.952042818069458, "chain_id": "3P1L2B7AD1OCSNNZBKRPIQQ32ZGLO2_1_4"} {"score": 0.08195856213569641, "chain_id": "3P1L2B7AD1OCSNNZBKRPIQQ32ZGLO2_1_7"} {"score": 0.9904470443725586, "chain_id": "3P1L2B7AD1OCSNNZBKRPIQQ32ZGLO2_1_1"} {"score": 0.1332027018070221, "chain_id": "3P1L2B7AD1OCSNNZBKRPIQQ32ZGLO2_1_5"} {"score": 0.05553140863776207, "chain_id": "3P1L2B7AD1OCSNNZBKRPIQQ32ZGLO2_1_6"} {"score": 0.019378993660211563, "chain_id": "3P1L2B7AD1OCSNNZBKRPIQQ32ZGLO2_1_8"} {"score": 0.037638090550899506, "chain_id": "3P1L2B7AD1OCSNNZBKRPIQQ32ZGLO2_1_9"} {"score": 0.016728099435567856, "chain_id": "3P1L2B7AD1OCSNNZBKRPIQQ32ZGLO2_1_10"} {"score": 0.9904470443725586, "chain_id": "3Q5C1WP23M0DU6DDDVD7P5HYJ9Y15H_1_1"} {"score": 0.9916479587554932, "chain_id": "3Q5C1WP23M0DU6DDDVD7P5HYJ9Y15H_1_2"} {"score": 0.9358387589454651, "chain_id": "3Q5C1WP23M0DU6DDDVD7P5HYJ9Y15H_1_3"} {"score": 0.952042818069458, "chain_id": "3Q5C1WP23M0DU6DDDVD7P5HYJ9Y15H_1_4"} {"score": 0.1332027018070221, "chain_id": "3Q5C1WP23M0DU6DDDVD7P5HYJ9Y15H_1_5"} {"score": 0.05553140863776207, "chain_id": "3Q5C1WP23M0DU6DDDVD7P5HYJ9Y15H_1_6"} {"score": 0.08195856213569641, "chain_id": "3Q5C1WP23M0DU6DDDVD7P5HYJ9Y15H_1_7"} {"score": 0.019378993660211563, "chain_id": "3Q5C1WP23M0DU6DDDVD7P5HYJ9Y15H_1_8"} {"score": 0.037638090550899506, "chain_id": "3Q5C1WP23M0DU6DDDVD7P5HYJ9Y15H_1_9"} {"score": 0.016728099435567856, "chain_id": "3Q5C1WP23M0DU6DDDVD7P5HYJ9Y15H_1_10"} {"score": 0.5771113038063049, "chain_id": "3ZOTGHDK5IAZW0IPVTOQUC4YR07OSD_1_1"} {"score": 0.9643951654434204, "chain_id": "3ZOTGHDK5IAZW0IPVTOQUC4YR07OSD_1_2"} {"score": 0.0868578851222992, "chain_id": "3ZOTGHDK5IAZW0IPVTOQUC4YR07OSD_1_3"} {"score": 0.045742884278297424, "chain_id": "3ZOTGHDK5IAZW0IPVTOQUC4YR07OSD_1_4"} {"score": 0.19842690229415894, "chain_id": "3ZOTGHDK5IAZW0IPVTOQUC4YR07OSD_1_5"} {"score": 0.7282000780105591, "chain_id": "3ZOTGHDK5IAZW0IPVTOQUC4YR07OSD_1_6"} {"score": 0.037719421088695526, "chain_id": "3ZOTGHDK5IAZW0IPVTOQUC4YR07OSD_1_7"} {"score": 0.17342619597911835, "chain_id": "3ZOTGHDK5IAZW0IPVTOQUC4YR07OSD_1_8"} {"score": 0.02195528708398342, "chain_id": "3ZOTGHDK5IAZW0IPVTOQUC4YR07OSD_1_9"} {"score": 0.024157559499144554, "chain_id": "3ZOTGHDK5IAZW0IPVTOQUC4YR07OSD_1_10"} {"score": 0.11188257485628128, "chain_id": "37WLF8U1WPPBJBZDQOTUMQRXP7B6K2_1_2"} {"score": 0.0746062621474266, "chain_id": "37WLF8U1WPPBJBZDQOTUMQRXP7B6K2_1_4"} {"score": 0.614717960357666, "chain_id": "37WLF8U1WPPBJBZDQOTUMQRXP7B6K2_1_5"} {"score": 0.0461973212659359, "chain_id": "37WLF8U1WPPBJBZDQOTUMQRXP7B6K2_1_1"} {"score": 0.12090978026390076, "chain_id": "37WLF8U1WPPBJBZDQOTUMQRXP7B6K2_1_3"} {"score": 0.34221339225769043, "chain_id": "37WLF8U1WPPBJBZDQOTUMQRXP7B6K2_1_6"} {"score": 0.18748952448368073, "chain_id": "37WLF8U1WPPBJBZDQOTUMQRXP7B6K2_1_7"} {"score": 0.3804631233215332, "chain_id": "37WLF8U1WPPBJBZDQOTUMQRXP7B6K2_1_8"} {"score": 0.056562792509794235, "chain_id": "37WLF8U1WPPBJBZDQOTUMQRXP7B6K2_1_9"} {"score": 0.39676761627197266, "chain_id": "37WLF8U1WPPBJBZDQOTUMQRXP7B6K2_1_10"} {"score": 0.9879882335662842, "chain_id": "3OLF68YTN901QRJ2FQJ9MI1ED7NFAS_1_1"} {"score": 0.9838628172874451, "chain_id": "3OLF68YTN901QRJ2FQJ9MI1ED7NFAS_1_3"} {"score": 0.9723308086395264, "chain_id": "3OLF68YTN901QRJ2FQJ9MI1ED7NFAS_1_4"} {"score": 0.9908084273338318, "chain_id": "3OLF68YTN901QRJ2FQJ9MI1ED7NFAS_1_6"} {"score": 0.9318959712982178, "chain_id": "3OLF68YTN901QRJ2FQJ9MI1ED7NFAS_1_2"} {"score": 0.985372006893158, "chain_id": "3OLF68YTN901QRJ2FQJ9MI1ED7NFAS_1_5"} {"score": 0.8496091961860657, "chain_id": "3OLF68YTN901QRJ2FQJ9MI1ED7NFAS_1_7"} {"score": 0.9582607746124268, "chain_id": "3OLF68YTN901QRJ2FQJ9MI1ED7NFAS_1_8"} {"score": 0.9755561351776123, "chain_id": "3OLF68YTN901QRJ2FQJ9MI1ED7NFAS_1_9"} {"score": 0.10324681550264359, "chain_id": "3OLF68YTN901QRJ2FQJ9MI1ED7NFAS_1_10"} {"score": 0.15654350817203522, "chain_id": "3I02618YA05XWDMUZYW5YDRCM5LPUE_1_1"} {"score": 0.35417863726615906, "chain_id": "3I02618YA05XWDMUZYW5YDRCM5LPUE_1_2"} {"score": 0.043535541743040085, "chain_id": "3I02618YA05XWDMUZYW5YDRCM5LPUE_1_3"} {"score": 0.07886110246181488, "chain_id": "3I02618YA05XWDMUZYW5YDRCM5LPUE_1_4"} {"score": 0.1969754993915558, "chain_id": "3I02618YA05XWDMUZYW5YDRCM5LPUE_1_5"} {"score": 0.021465009078383446, "chain_id": "3I02618YA05XWDMUZYW5YDRCM5LPUE_1_6"} {"score": 0.03201264888048172, "chain_id": "3I02618YA05XWDMUZYW5YDRCM5LPUE_1_7"} {"score": 0.06338763236999512, "chain_id": "3I02618YA05XWDMUZYW5YDRCM5LPUE_1_8"} {"score": 0.03719551861286163, "chain_id": "3I02618YA05XWDMUZYW5YDRCM5LPUE_1_9"} {"score": 0.23264937102794647, "chain_id": "3I02618YA05XWDMUZYW5YDRCM5LPUE_1_10"} {"score": 0.0424969457089901, "chain_id": "3VW04L3ZLT5UMQIGQUH9CXCJD6VXXL_1_1"} {"score": 0.4560645520687103, "chain_id": "3VW04L3ZLT5UMQIGQUH9CXCJD6VXXL_1_2"} {"score": 0.06306007504463196, "chain_id": "3VW04L3ZLT5UMQIGQUH9CXCJD6VXXL_1_3"} {"score": 0.15370520949363708, "chain_id": "3VW04L3ZLT5UMQIGQUH9CXCJD6VXXL_1_4"} {"score": 0.18714413046836853, "chain_id": "3VW04L3ZLT5UMQIGQUH9CXCJD6VXXL_1_5"} {"score": 0.19216515123844147, "chain_id": "3VW04L3ZLT5UMQIGQUH9CXCJD6VXXL_1_6"} {"score": 0.03577727824449539, "chain_id": "3VW04L3ZLT5UMQIGQUH9CXCJD6VXXL_1_7"} {"score": 0.07488906383514404, "chain_id": "3VW04L3ZLT5UMQIGQUH9CXCJD6VXXL_1_8"} {"score": 0.18531130254268646, "chain_id": "3VW04L3ZLT5UMQIGQUH9CXCJD6VXXL_1_9"} {"score": 0.04839499294757843, "chain_id": "3VW04L3ZLT5UMQIGQUH9CXCJD6VXXL_1_10"} {"score": 0.09056147933006287, "chain_id": "3R5F3LQFV2JWXC43QLIYQ5119FYZOF_1_1"} {"score": 0.09884803742170334, "chain_id": "3R5F3LQFV2JWXC43QLIYQ5119FYZOF_1_2"} {"score": 0.06214834377169609, "chain_id": "3R5F3LQFV2JWXC43QLIYQ5119FYZOF_1_3"} {"score": 0.07586683332920074, "chain_id": "3R5F3LQFV2JWXC43QLIYQ5119FYZOF_1_4"} {"score": 0.037723101675510406, "chain_id": "3R5F3LQFV2JWXC43QLIYQ5119FYZOF_1_5"} {"score": 0.2264571636915207, "chain_id": "3R5F3LQFV2JWXC43QLIYQ5119FYZOF_1_6"} {"score": 0.18555037677288055, "chain_id": "3R5F3LQFV2JWXC43QLIYQ5119FYZOF_1_7"} {"score": 0.017185509204864502, "chain_id": "3R5F3LQFV2JWXC43QLIYQ5119FYZOF_1_8"} {"score": 0.038796015083789825, "chain_id": "3R5F3LQFV2JWXC43QLIYQ5119FYZOF_1_9"} {"score": 0.020586024969816208, "chain_id": "3R5F3LQFV2JWXC43QLIYQ5119FYZOF_1_10"} {"score": 0.9769259095191956, "chain_id": "3QECW5O0KH0E3QPMFEXHVB0TAS65TA_1_2"} {"score": 0.3466857373714447, "chain_id": "3QECW5O0KH0E3QPMFEXHVB0TAS65TA_1_1"} {"score": 0.09330113977193832, "chain_id": "3QECW5O0KH0E3QPMFEXHVB0TAS65TA_1_3"} {"score": 0.06681520491838455, "chain_id": "3QECW5O0KH0E3QPMFEXHVB0TAS65TA_1_4"} {"score": 0.041490595787763596, "chain_id": "3QECW5O0KH0E3QPMFEXHVB0TAS65TA_1_5"} {"score": 0.057630546391010284, "chain_id": "3QECW5O0KH0E3QPMFEXHVB0TAS65TA_1_6"} {"score": 0.03998542204499245, "chain_id": "3QECW5O0KH0E3QPMFEXHVB0TAS65TA_1_7"} {"score": 0.03860323503613472, "chain_id": "3QECW5O0KH0E3QPMFEXHVB0TAS65TA_1_8"} {"score": 0.032658692449331284, "chain_id": "3QECW5O0KH0E3QPMFEXHVB0TAS65TA_1_9"} {"score": 0.04473720118403435, "chain_id": "3QECW5O0KH0E3QPMFEXHVB0TAS65TA_1_10"} {"score": 0.04234832897782326, "chain_id": "3NAPMVF0ZWEZ6V9SKSSIS85ZY5I72U_1_1"} {"score": 0.16642943024635315, "chain_id": "3NAPMVF0ZWEZ6V9SKSSIS85ZY5I72U_1_2"} {"score": 0.2229107767343521, "chain_id": "3NAPMVF0ZWEZ6V9SKSSIS85ZY5I72U_1_3"} {"score": 0.1254849135875702, "chain_id": "3NAPMVF0ZWEZ6V9SKSSIS85ZY5I72U_1_4"} {"score": 0.2516786456108093, "chain_id": "3NAPMVF0ZWEZ6V9SKSSIS85ZY5I72U_1_5"} {"score": 0.2771064043045044, "chain_id": "3NAPMVF0ZWEZ6V9SKSSIS85ZY5I72U_1_6"} {"score": 0.3298325538635254, "chain_id": "3NAPMVF0ZWEZ6V9SKSSIS85ZY5I72U_1_7"} {"score": 0.088505819439888, "chain_id": "3NAPMVF0ZWEZ6V9SKSSIS85ZY5I72U_1_8"} {"score": 0.2951991558074951, "chain_id": "3NAPMVF0ZWEZ6V9SKSSIS85ZY5I72U_1_9"} {"score": 0.08937430381774902, "chain_id": "3NAPMVF0ZWEZ6V9SKSSIS85ZY5I72U_1_10"} {"score": 0.4769619107246399, "chain_id": "3Y5140Z9DXFSNMRU5H7RFA31N6YPIT_1_1"} {"score": 0.4902859330177307, "chain_id": "3Y5140Z9DXFSNMRU5H7RFA31N6YPIT_1_2"} {"score": 0.2022729068994522, "chain_id": "3Y5140Z9DXFSNMRU5H7RFA31N6YPIT_1_3"} {"score": 0.33917421102523804, "chain_id": "3Y5140Z9DXFSNMRU5H7RFA31N6YPIT_1_4"} {"score": 0.9079618453979492, "chain_id": "3Y5140Z9DXFSNMRU5H7RFA31N6YPIT_1_5"} {"score": 0.6275643110275269, "chain_id": "3Y5140Z9DXFSNMRU5H7RFA31N6YPIT_1_6"} {"score": 0.04182766377925873, "chain_id": "3Y5140Z9DXFSNMRU5H7RFA31N6YPIT_1_7"} {"score": 0.4174048900604248, "chain_id": "3Y5140Z9DXFSNMRU5H7RFA31N6YPIT_1_8"} {"score": 0.9681011438369751, "chain_id": "3Y5140Z9DXFSNMRU5H7RFA31N6YPIT_1_9"} {"score": 0.037129007279872894, "chain_id": "3Y5140Z9DXFSNMRU5H7RFA31N6YPIT_1_10"} {"score": 0.4683692157268524, "chain_id": "351SEKWQS0G5U8EVLNEO79TTRP7DMY_1_1"} {"score": 0.9695390462875366, "chain_id": "351SEKWQS0G5U8EVLNEO79TTRP7DMY_1_5"} {"score": 0.8315140604972839, "chain_id": "351SEKWQS0G5U8EVLNEO79TTRP7DMY_1_6"} {"score": 0.24200507998466492, "chain_id": "351SEKWQS0G5U8EVLNEO79TTRP7DMY_1_2"} {"score": 0.4216766059398651, "chain_id": "351SEKWQS0G5U8EVLNEO79TTRP7DMY_1_3"} {"score": 0.3443838357925415, "chain_id": "351SEKWQS0G5U8EVLNEO79TTRP7DMY_1_4"} {"score": 0.9693450927734375, "chain_id": "351SEKWQS0G5U8EVLNEO79TTRP7DMY_1_7"} {"score": 0.8527612090110779, "chain_id": "351SEKWQS0G5U8EVLNEO79TTRP7DMY_1_8"} {"score": 0.09464456140995026, "chain_id": "351SEKWQS0G5U8EVLNEO79TTRP7DMY_1_9"} {"score": 0.053625233471393585, "chain_id": "351SEKWQS0G5U8EVLNEO79TTRP7DMY_1_10"} {"score": 0.7838525176048279, "chain_id": "3C2NJ6JBKAGO9G1F0Z97O5RPZOUN21_1_1"} {"score": 0.9595149159431458, "chain_id": "3C2NJ6JBKAGO9G1F0Z97O5RPZOUN21_1_2"} {"score": 0.944605827331543, "chain_id": "3C2NJ6JBKAGO9G1F0Z97O5RPZOUN21_1_4"} {"score": 0.9582228660583496, "chain_id": "3C2NJ6JBKAGO9G1F0Z97O5RPZOUN21_1_5"} {"score": 0.5652231574058533, "chain_id": "3C2NJ6JBKAGO9G1F0Z97O5RPZOUN21_1_9"} {"score": 0.8015221357345581, "chain_id": "3C2NJ6JBKAGO9G1F0Z97O5RPZOUN21_1_3"} {"score": 0.8606981635093689, "chain_id": "3C2NJ6JBKAGO9G1F0Z97O5RPZOUN21_1_6"} {"score": 0.48681265115737915, "chain_id": "3C2NJ6JBKAGO9G1F0Z97O5RPZOUN21_1_7"} {"score": 0.06459362059831619, "chain_id": "3C2NJ6JBKAGO9G1F0Z97O5RPZOUN21_1_8"} {"score": 0.20717769861221313, "chain_id": "3C2NJ6JBKAGO9G1F0Z97O5RPZOUN21_1_10"} {"score": 0.579220712184906, "chain_id": "3JWH6J9I9SCIXT1BJS2IPYUTTW3NB3_1_2"} {"score": 0.22013089060783386, "chain_id": "3JWH6J9I9SCIXT1BJS2IPYUTTW3NB3_1_1"} {"score": 0.47467365860939026, "chain_id": "3JWH6J9I9SCIXT1BJS2IPYUTTW3NB3_1_3"} {"score": 0.33652523159980774, "chain_id": "3JWH6J9I9SCIXT1BJS2IPYUTTW3NB3_1_4"} {"score": 0.04990522563457489, "chain_id": "3JWH6J9I9SCIXT1BJS2IPYUTTW3NB3_1_5"} {"score": 0.022417331114411354, "chain_id": "3JWH6J9I9SCIXT1BJS2IPYUTTW3NB3_1_6"} {"score": 0.02241327613592148, "chain_id": "3JWH6J9I9SCIXT1BJS2IPYUTTW3NB3_1_7"} {"score": 0.026713529601693153, "chain_id": "3JWH6J9I9SCIXT1BJS2IPYUTTW3NB3_1_8"} {"score": 0.05957704409956932, "chain_id": "3JWH6J9I9SCIXT1BJS2IPYUTTW3NB3_1_9"} {"score": 0.09459738433361053, "chain_id": "3JWH6J9I9SCIXT1BJS2IPYUTTW3NB3_1_10"} {"score": 0.9803099036216736, "chain_id": "3Z7VU45IPYGB1KX2KJKNE9OTJZNZ1K_1_1"} {"score": 0.8795400261878967, "chain_id": "3Z7VU45IPYGB1KX2KJKNE9OTJZNZ1K_1_3"} {"score": 0.869828999042511, "chain_id": "3Z7VU45IPYGB1KX2KJKNE9OTJZNZ1K_1_9"} {"score": 0.9441043734550476, "chain_id": "3Z7VU45IPYGB1KX2KJKNE9OTJZNZ1K_1_10"} {"score": 0.9809478521347046, "chain_id": "3Z7VU45IPYGB1KX2KJKNE9OTJZNZ1K_1_2"} {"score": 0.8115057349205017, "chain_id": "3Z7VU45IPYGB1KX2KJKNE9OTJZNZ1K_1_4"} {"score": 0.789172351360321, "chain_id": "3Z7VU45IPYGB1KX2KJKNE9OTJZNZ1K_1_5"} {"score": 0.7776191830635071, "chain_id": "3Z7VU45IPYGB1KX2KJKNE9OTJZNZ1K_1_6"} {"score": 0.9390684366226196, "chain_id": "3Z7VU45IPYGB1KX2KJKNE9OTJZNZ1K_1_7"} {"score": 0.8589649796485901, "chain_id": "3Z7VU45IPYGB1KX2KJKNE9OTJZNZ1K_1_8"} {"score": 0.8304406404495239, "chain_id": "392CY0QWG1Q6YT5B7XF3CCS61AV4IF_1_3"} {"score": 0.9306324124336243, "chain_id": "392CY0QWG1Q6YT5B7XF3CCS61AV4IF_1_1"} {"score": 0.942096471786499, "chain_id": "392CY0QWG1Q6YT5B7XF3CCS61AV4IF_1_2"} {"score": 0.8895958065986633, "chain_id": "392CY0QWG1Q6YT5B7XF3CCS61AV4IF_1_4"} {"score": 0.017333583906292915, "chain_id": "392CY0QWG1Q6YT5B7XF3CCS61AV4IF_1_5"} {"score": 0.05727212131023407, "chain_id": "392CY0QWG1Q6YT5B7XF3CCS61AV4IF_1_6"} {"score": 0.8639029264450073, "chain_id": "392CY0QWG1Q6YT5B7XF3CCS61AV4IF_1_7"} {"score": 0.05372878164052963, "chain_id": "392CY0QWG1Q6YT5B7XF3CCS61AV4IF_1_8"} {"score": 0.7823760509490967, "chain_id": "392CY0QWG1Q6YT5B7XF3CCS61AV4IF_1_9"} {"score": 0.035916902124881744, "chain_id": "392CY0QWG1Q6YT5B7XF3CCS61AV4IF_1_10"} {"score": 0.0348096564412117, "chain_id": "3JNQLM5FT4LYLGYUOMTSBDN0Y382LG_1_1"} {"score": 0.05158732458949089, "chain_id": "3JNQLM5FT4LYLGYUOMTSBDN0Y382LG_1_2"} {"score": 0.16260434687137604, "chain_id": "3JNQLM5FT4LYLGYUOMTSBDN0Y382LG_1_3"} {"score": 0.19384686648845673, "chain_id": "3JNQLM5FT4LYLGYUOMTSBDN0Y382LG_1_4"} {"score": 0.0999046117067337, "chain_id": "3JNQLM5FT4LYLGYUOMTSBDN0Y382LG_1_5"} {"score": 0.05581864342093468, "chain_id": "3JNQLM5FT4LYLGYUOMTSBDN0Y382LG_1_6"} {"score": 0.027852818369865417, "chain_id": "3JNQLM5FT4LYLGYUOMTSBDN0Y382LG_1_7"} {"score": 0.0786224827170372, "chain_id": "3JNQLM5FT4LYLGYUOMTSBDN0Y382LG_1_8"} {"score": 0.026497244834899902, "chain_id": "3JNQLM5FT4LYLGYUOMTSBDN0Y382LG_1_9"} {"score": 0.041070278733968735, "chain_id": "3JNQLM5FT4LYLGYUOMTSBDN0Y382LG_1_10"} {"score": 0.9013250470161438, "chain_id": "3N1FSUEFL5ZPQIPPFJESLFCT9AZ4DZ_1_1"} {"score": 0.4267193078994751, "chain_id": "3N1FSUEFL5ZPQIPPFJESLFCT9AZ4DZ_1_2"} {"score": 0.8210919499397278, "chain_id": "3N1FSUEFL5ZPQIPPFJESLFCT9AZ4DZ_1_3"} {"score": 0.6721128225326538, "chain_id": "3N1FSUEFL5ZPQIPPFJESLFCT9AZ4DZ_1_4"} {"score": 0.14716428518295288, "chain_id": "3N1FSUEFL5ZPQIPPFJESLFCT9AZ4DZ_1_8"} {"score": 0.09664462506771088, "chain_id": "3N1FSUEFL5ZPQIPPFJESLFCT9AZ4DZ_1_5"} {"score": 0.6350325345993042, "chain_id": "3N1FSUEFL5ZPQIPPFJESLFCT9AZ4DZ_1_6"} {"score": 0.2841198146343231, "chain_id": "3N1FSUEFL5ZPQIPPFJESLFCT9AZ4DZ_1_7"} {"score": 0.026694638654589653, "chain_id": "3N1FSUEFL5ZPQIPPFJESLFCT9AZ4DZ_1_9"} {"score": 0.054111119359731674, "chain_id": "3N1FSUEFL5ZPQIPPFJESLFCT9AZ4DZ_1_10"} {"score": 0.9872065782546997, "chain_id": "3VELCLL3GKI5W362J7QGBH8B9ER1F2_1_2"} {"score": 0.9396024346351624, "chain_id": "3VELCLL3GKI5W362J7QGBH8B9ER1F2_1_3"} {"score": 0.7657251358032227, "chain_id": "3VELCLL3GKI5W362J7QGBH8B9ER1F2_1_4"} {"score": 0.13773757219314575, "chain_id": "3VELCLL3GKI5W362J7QGBH8B9ER1F2_1_10"} {"score": 0.6795353293418884, "chain_id": "3VELCLL3GKI5W362J7QGBH8B9ER1F2_1_1"} {"score": 0.8422725796699524, "chain_id": "3VELCLL3GKI5W362J7QGBH8B9ER1F2_1_5"} {"score": 0.5333855152130127, "chain_id": "3VELCLL3GKI5W362J7QGBH8B9ER1F2_1_6"} {"score": 0.024632738903164864, "chain_id": "3VELCLL3GKI5W362J7QGBH8B9ER1F2_1_7"} {"score": 0.3084288537502289, "chain_id": "3VELCLL3GKI5W362J7QGBH8B9ER1F2_1_8"} {"score": 0.9477853178977966, "chain_id": "3VELCLL3GKI5W362J7QGBH8B9ER1F2_1_9"} {"score": 0.9890235662460327, "chain_id": "31N2WW6R9RP166KH6B4ZZAN883WF3A_1_2"} {"score": 0.9360491037368774, "chain_id": "31N2WW6R9RP166KH6B4ZZAN883WF3A_1_3"} {"score": 0.5760735273361206, "chain_id": "31N2WW6R9RP166KH6B4ZZAN883WF3A_1_1"} {"score": 0.7042190432548523, "chain_id": "31N2WW6R9RP166KH6B4ZZAN883WF3A_1_4"} {"score": 0.7729032039642334, "chain_id": "31N2WW6R9RP166KH6B4ZZAN883WF3A_1_5"} {"score": 0.8683418035507202, "chain_id": "31N2WW6R9RP166KH6B4ZZAN883WF3A_1_6"} {"score": 0.03371656686067581, "chain_id": "31N2WW6R9RP166KH6B4ZZAN883WF3A_1_7"} {"score": 0.10682502388954163, "chain_id": "31N2WW6R9RP166KH6B4ZZAN883WF3A_1_8"} {"score": 0.5829291343688965, "chain_id": "31N2WW6R9RP166KH6B4ZZAN883WF3A_1_9"} {"score": 0.0299969669431448, "chain_id": "31N2WW6R9RP166KH6B4ZZAN883WF3A_1_10"} {"score": 0.045589011162519455, "chain_id": "3KGTPGBS6XK146LOX0LT20JJCNG2UC_1_1"} {"score": 0.05811125785112381, "chain_id": "3KGTPGBS6XK146LOX0LT20JJCNG2UC_1_2"} {"score": 0.06489606946706772, "chain_id": "3KGTPGBS6XK146LOX0LT20JJCNG2UC_1_3"} {"score": 0.02042321115732193, "chain_id": "3KGTPGBS6XK146LOX0LT20JJCNG2UC_1_4"} {"score": 0.061997417360544205, "chain_id": "3KGTPGBS6XK146LOX0LT20JJCNG2UC_1_5"} {"score": 0.1061791330575943, "chain_id": "3KGTPGBS6XK146LOX0LT20JJCNG2UC_1_6"} {"score": 0.01808192767202854, "chain_id": "3KGTPGBS6XK146LOX0LT20JJCNG2UC_1_7"} {"score": 0.01776822656393051, "chain_id": "3KGTPGBS6XK146LOX0LT20JJCNG2UC_1_8"} {"score": 0.023545492440462112, "chain_id": "3KGTPGBS6XK146LOX0LT20JJCNG2UC_1_9"} {"score": 0.046627044677734375, "chain_id": "3KGTPGBS6XK146LOX0LT20JJCNG2UC_1_10"} {"score": 0.6985493898391724, "chain_id": "3NL0RFNU0FMX4OVZ700FPS7JS0GK49_1_1"} {"score": 0.25040802359580994, "chain_id": "3NL0RFNU0FMX4OVZ700FPS7JS0GK49_1_2"} {"score": 0.9788647890090942, "chain_id": "3NL0RFNU0FMX4OVZ700FPS7JS0GK49_1_3"} {"score": 0.3805520236492157, "chain_id": "3NL0RFNU0FMX4OVZ700FPS7JS0GK49_1_4"} {"score": 0.18531852960586548, "chain_id": "3NL0RFNU0FMX4OVZ700FPS7JS0GK49_1_5"} {"score": 0.1929674744606018, "chain_id": "3NL0RFNU0FMX4OVZ700FPS7JS0GK49_1_6"} {"score": 0.13821163773536682, "chain_id": "3NL0RFNU0FMX4OVZ700FPS7JS0GK49_1_7"} {"score": 0.10130929946899414, "chain_id": "3NL0RFNU0FMX4OVZ700FPS7JS0GK49_1_8"} {"score": 0.2626461982727051, "chain_id": "3NL0RFNU0FMX4OVZ700FPS7JS0GK49_1_9"} {"score": 0.6206151843070984, "chain_id": "3NL0RFNU0FMX4OVZ700FPS7JS0GK49_1_10"} {"score": 0.9908701777458191, "chain_id": "3NG53N1RLVIZYGFHWVV02L9NOGFP8N_1_1"} {"score": 0.9917070269584656, "chain_id": "3NG53N1RLVIZYGFHWVV02L9NOGFP8N_1_3"} {"score": 0.9876068234443665, "chain_id": "3NG53N1RLVIZYGFHWVV02L9NOGFP8N_1_4"} {"score": 0.9910315275192261, "chain_id": "3NG53N1RLVIZYGFHWVV02L9NOGFP8N_1_2"} {"score": 0.9175323247909546, "chain_id": "3NG53N1RLVIZYGFHWVV02L9NOGFP8N_1_5"} {"score": 0.9394692182540894, "chain_id": "3NG53N1RLVIZYGFHWVV02L9NOGFP8N_1_6"} {"score": 0.8859620094299316, "chain_id": "3NG53N1RLVIZYGFHWVV02L9NOGFP8N_1_7"} {"score": 0.25981512665748596, "chain_id": "3NG53N1RLVIZYGFHWVV02L9NOGFP8N_1_8"} {"score": 0.5243114829063416, "chain_id": "3NG53N1RLVIZYGFHWVV02L9NOGFP8N_1_9"} {"score": 0.8604647517204285, "chain_id": "3NG53N1RLVIZYGFHWVV02L9NOGFP8N_1_10"} {"score": 0.9856408834457397, "chain_id": "3Z7EFSHGN9D6JS7LZYLMYKR9ILKXCW_1_1"} {"score": 0.9865664839744568, "chain_id": "3Z7EFSHGN9D6JS7LZYLMYKR9ILKXCW_1_2"} {"score": 0.9623767733573914, "chain_id": "3Z7EFSHGN9D6JS7LZYLMYKR9ILKXCW_1_4"} {"score": 0.9791207313537598, "chain_id": "3Z7EFSHGN9D6JS7LZYLMYKR9ILKXCW_1_6"} {"score": 0.12620015442371368, "chain_id": "3Z7EFSHGN9D6JS7LZYLMYKR9ILKXCW_1_7"} {"score": 0.8758062720298767, "chain_id": "3Z7EFSHGN9D6JS7LZYLMYKR9ILKXCW_1_3"} {"score": 0.7602607011795044, "chain_id": "3Z7EFSHGN9D6JS7LZYLMYKR9ILKXCW_1_5"} {"score": 0.1641140729188919, "chain_id": "3Z7EFSHGN9D6JS7LZYLMYKR9ILKXCW_1_8"} {"score": 0.7808352112770081, "chain_id": "3Z7EFSHGN9D6JS7LZYLMYKR9ILKXCW_1_9"} {"score": 0.6100738644599915, "chain_id": "3Z7EFSHGN9D6JS7LZYLMYKR9ILKXCW_1_10"} {"score": 0.9850179553031921, "chain_id": "3ZV9H2YQQD63HS6CW0EZ3Y983843WI_1_1"} {"score": 0.9460277557373047, "chain_id": "3ZV9H2YQQD63HS6CW0EZ3Y983843WI_1_2"} {"score": 0.973939836025238, "chain_id": "3ZV9H2YQQD63HS6CW0EZ3Y983843WI_1_3"} {"score": 0.9897994995117188, "chain_id": "3ZV9H2YQQD63HS6CW0EZ3Y983843WI_1_5"} {"score": 0.9896138310432434, "chain_id": "3ZV9H2YQQD63HS6CW0EZ3Y983843WI_1_6"} {"score": 0.5881291031837463, "chain_id": "3ZV9H2YQQD63HS6CW0EZ3Y983843WI_1_4"} {"score": 0.9904161691665649, "chain_id": "3KAKFY4PGU1LGXM77JAK2700OZJ3IS_1_1"} {"score": 0.9907764792442322, "chain_id": "3KAKFY4PGU1LGXM77JAK2700OZJ3IS_1_2"} {"score": 0.9892733693122864, "chain_id": "3KAKFY4PGU1LGXM77JAK2700OZJ3IS_1_3"} {"score": 0.9901751279830933, "chain_id": "3KAKFY4PGU1LGXM77JAK2700OZJ3IS_1_4"} {"score": 0.9917305111885071, "chain_id": "3KAKFY4PGU1LGXM77JAK2700OZJ3IS_1_5"} {"score": 0.9925526976585388, "chain_id": "3KAKFY4PGU1LGXM77JAK2700OZJ3IS_1_6"} {"score": 0.86219722032547, "chain_id": "3KAKFY4PGU1LGXM77JAK2700OZJ3IS_1_7"} {"score": 0.8213629722595215, "chain_id": "3KAKFY4PGU1LGXM77JAK2700OZJ3IS_1_8"} {"score": 0.25907382369041443, "chain_id": "3KAKFY4PGU1LGXM77JAK2700OZJ3IS_1_9"} {"score": 0.5673283338546753, "chain_id": "3KAKFY4PGU1LGXM77JAK2700OZJ3IS_1_10"} {"score": 0.7913414835929871, "chain_id": "36WLNQG78Z9E3NOYQTZZZB0KI8CBEN_1_3"} {"score": 0.9692202210426331, "chain_id": "36WLNQG78Z9E3NOYQTZZZB0KI8CBEN_1_1"} {"score": 0.9287152886390686, "chain_id": "36WLNQG78Z9E3NOYQTZZZB0KI8CBEN_1_2"} {"score": 0.062270697206258774, "chain_id": "36WLNQG78Z9E3NOYQTZZZB0KI8CBEN_1_4"} {"score": 0.09563031047582626, "chain_id": "36WLNQG78Z9E3NOYQTZZZB0KI8CBEN_1_5"} {"score": 0.0584128275513649, "chain_id": "36WLNQG78Z9E3NOYQTZZZB0KI8CBEN_1_6"} {"score": 0.041809435933828354, "chain_id": "36WLNQG78Z9E3NOYQTZZZB0KI8CBEN_1_7"} {"score": 0.6751390695571899, "chain_id": "36WLNQG78Z9E3NOYQTZZZB0KI8CBEN_1_8"} {"score": 0.0321878045797348, "chain_id": "36WLNQG78Z9E3NOYQTZZZB0KI8CBEN_1_9"} {"score": 0.038618315011262894, "chain_id": "36WLNQG78Z9E3NOYQTZZZB0KI8CBEN_1_10"} {"score": 0.9709309935569763, "chain_id": "3PZDLQMM0TK5IC4OB90T8UXD4SR2CT_1_2"} {"score": 0.9430598616600037, "chain_id": "3PZDLQMM0TK5IC4OB90T8UXD4SR2CT_1_4"} {"score": 0.21343286335468292, "chain_id": "3PZDLQMM0TK5IC4OB90T8UXD4SR2CT_1_5"} {"score": 0.5316922068595886, "chain_id": "3PZDLQMM0TK5IC4OB90T8UXD4SR2CT_1_8"} {"score": 0.2806686460971832, "chain_id": "3PZDLQMM0TK5IC4OB90T8UXD4SR2CT_1_9"} {"score": 0.8390300869941711, "chain_id": "3PZDLQMM0TK5IC4OB90T8UXD4SR2CT_1_10"} {"score": 0.6343940496444702, "chain_id": "3PZDLQMM0TK5IC4OB90T8UXD4SR2CT_1_1"} {"score": 0.9569464325904846, "chain_id": "3PZDLQMM0TK5IC4OB90T8UXD4SR2CT_1_3"} {"score": 0.6603418588638306, "chain_id": "3PZDLQMM0TK5IC4OB90T8UXD4SR2CT_1_6"} {"score": 0.11117355525493622, "chain_id": "3PZDLQMM0TK5IC4OB90T8UXD4SR2CT_1_7"} {"score": 0.5619273781776428, "chain_id": "3LOZAJ85YDCTLAFJ25WGM7IN4VJX2Z_1_1"} {"score": 0.5052344799041748, "chain_id": "3LOZAJ85YDCTLAFJ25WGM7IN4VJX2Z_1_2"} {"score": 0.11137237399816513, "chain_id": "3LOZAJ85YDCTLAFJ25WGM7IN4VJX2Z_1_3"} {"score": 0.09051342308521271, "chain_id": "3LOZAJ85YDCTLAFJ25WGM7IN4VJX2Z_1_4"} {"score": 0.1557818353176117, "chain_id": "3LOZAJ85YDCTLAFJ25WGM7IN4VJX2Z_1_5"} {"score": 0.19775253534317017, "chain_id": "3LOZAJ85YDCTLAFJ25WGM7IN4VJX2Z_1_6"} {"score": 0.1702478975057602, "chain_id": "3LOZAJ85YDCTLAFJ25WGM7IN4VJX2Z_1_7"} {"score": 0.04365825653076172, "chain_id": "3LOZAJ85YDCTLAFJ25WGM7IN4VJX2Z_1_8"} {"score": 0.7853278517723083, "chain_id": "3LOZAJ85YDCTLAFJ25WGM7IN4VJX2Z_1_9"} {"score": 0.22485674917697906, "chain_id": "3LOZAJ85YDCTLAFJ25WGM7IN4VJX2Z_1_10"} {"score": 0.9922741055488586, "chain_id": "308Q0PEVB8C7VZBNOSBUTK3MMRAI93_1_1"} {"score": 0.9742644429206848, "chain_id": "308Q0PEVB8C7VZBNOSBUTK3MMRAI93_1_2"} {"score": 0.8974676132202148, "chain_id": "308Q0PEVB8C7VZBNOSBUTK3MMRAI93_1_3"} {"score": 0.9871233701705933, "chain_id": "308Q0PEVB8C7VZBNOSBUTK3MMRAI93_1_4"} {"score": 0.6030104756355286, "chain_id": "308Q0PEVB8C7VZBNOSBUTK3MMRAI93_1_5"} {"score": 0.057277362793684006, "chain_id": "308Q0PEVB8C7VZBNOSBUTK3MMRAI93_1_6"} {"score": 0.045705296099185944, "chain_id": "308Q0PEVB8C7VZBNOSBUTK3MMRAI93_1_7"} {"score": 0.03531079366803169, "chain_id": "308Q0PEVB8C7VZBNOSBUTK3MMRAI93_1_8"} {"score": 0.620681643486023, "chain_id": "308Q0PEVB8C7VZBNOSBUTK3MMRAI93_1_9"} {"score": 0.9493424296379089, "chain_id": "308Q0PEVB8C7VZBNOSBUTK3MMRAI93_1_10"} {"score": 0.09598571807146072, "chain_id": "30X31N5D63PAUWOOLAJ8THKT2IDAS8_1_1"} {"score": 0.03402472659945488, "chain_id": "30X31N5D63PAUWOOLAJ8THKT2IDAS8_1_2"} {"score": 0.05359451100230217, "chain_id": "30X31N5D63PAUWOOLAJ8THKT2IDAS8_1_3"} {"score": 0.05042361095547676, "chain_id": "30X31N5D63PAUWOOLAJ8THKT2IDAS8_1_4"} {"score": 0.04206022992730141, "chain_id": "30X31N5D63PAUWOOLAJ8THKT2IDAS8_1_5"} {"score": 0.8374961018562317, "chain_id": "30X31N5D63PAUWOOLAJ8THKT2IDAS8_1_6"} {"score": 0.21441012620925903, "chain_id": "30X31N5D63PAUWOOLAJ8THKT2IDAS8_1_7"} {"score": 0.7109217047691345, "chain_id": "30X31N5D63PAUWOOLAJ8THKT2IDAS8_1_8"} {"score": 0.08168203383684158, "chain_id": "30X31N5D63PAUWOOLAJ8THKT2IDAS8_1_9"} {"score": 0.5829445123672485, "chain_id": "30X31N5D63PAUWOOLAJ8THKT2IDAS8_1_10"} {"score": 0.13713699579238892, "chain_id": "340UGXU9DY0A1XJQLA5445GU8SEVUV_1_1"} {"score": 0.8095197677612305, "chain_id": "340UGXU9DY0A1XJQLA5445GU8SEVUV_1_2"} {"score": 0.13541051745414734, "chain_id": "340UGXU9DY0A1XJQLA5445GU8SEVUV_1_3"} {"score": 0.12655627727508545, "chain_id": "340UGXU9DY0A1XJQLA5445GU8SEVUV_1_4"} {"score": 0.0542290173470974, "chain_id": "340UGXU9DY0A1XJQLA5445GU8SEVUV_1_5"} {"score": 0.08007904887199402, "chain_id": "340UGXU9DY0A1XJQLA5445GU8SEVUV_1_6"} {"score": 0.4714207649230957, "chain_id": "340UGXU9DY0A1XJQLA5445GU8SEVUV_1_7"} {"score": 0.07455813139677048, "chain_id": "340UGXU9DY0A1XJQLA5445GU8SEVUV_1_8"} {"score": 0.8952430486679077, "chain_id": "340UGXU9DY0A1XJQLA5445GU8SEVUV_1_9"} {"score": 0.5741461515426636, "chain_id": "340UGXU9DY0A1XJQLA5445GU8SEVUV_1_10"} {"score": 0.6567255258560181, "chain_id": "3ERET4BTVM8Y1U1BOVW660IZFA4K9G_1_1"} {"score": 0.9825582504272461, "chain_id": "3ERET4BTVM8Y1U1BOVW660IZFA4K9G_1_2"} {"score": 0.950247049331665, "chain_id": "3ERET4BTVM8Y1U1BOVW660IZFA4K9G_1_3"} {"score": 0.19083940982818604, "chain_id": "3ERET4BTVM8Y1U1BOVW660IZFA4K9G_1_4"} {"score": 0.17266713082790375, "chain_id": "3ERET4BTVM8Y1U1BOVW660IZFA4K9G_1_5"} {"score": 0.7636598348617554, "chain_id": "3ERET4BTVM8Y1U1BOVW660IZFA4K9G_1_6"} {"score": 0.9694271087646484, "chain_id": "3ERET4BTVM8Y1U1BOVW660IZFA4K9G_1_7"} {"score": 0.6583028435707092, "chain_id": "3ERET4BTVM8Y1U1BOVW660IZFA4K9G_1_8"} {"score": 0.21183578670024872, "chain_id": "3ERET4BTVM8Y1U1BOVW660IZFA4K9G_1_9"} {"score": 0.05009789019823074, "chain_id": "3ERET4BTVM8Y1U1BOVW660IZFA4K9G_1_10"} {"score": 0.9676408171653748, "chain_id": "324G5B4FB37SAL6E55O49KCK72L07M_1_2"} {"score": 0.9894753694534302, "chain_id": "324G5B4FB37SAL6E55O49KCK72L07M_1_3"} {"score": 0.11428576707839966, "chain_id": "324G5B4FB37SAL6E55O49KCK72L07M_1_4"} {"score": 0.986116349697113, "chain_id": "324G5B4FB37SAL6E55O49KCK72L07M_1_7"} {"score": 0.9916287660598755, "chain_id": "324G5B4FB37SAL6E55O49KCK72L07M_1_1"} {"score": 0.09582110494375229, "chain_id": "324G5B4FB37SAL6E55O49KCK72L07M_1_5"} {"score": 0.04346156492829323, "chain_id": "324G5B4FB37SAL6E55O49KCK72L07M_1_6"} {"score": 0.20179209113121033, "chain_id": "324G5B4FB37SAL6E55O49KCK72L07M_1_8"} {"score": 0.3019693195819855, "chain_id": "324G5B4FB37SAL6E55O49KCK72L07M_1_9"} {"score": 0.12929166853427887, "chain_id": "324G5B4FB37SAL6E55O49KCK72L07M_1_10"} {"score": 0.31416159868240356, "chain_id": "3QAPZX2QN4CLOK98ZT79DTVCWS302M_1_1"} {"score": 0.024237701669335365, "chain_id": "3QAPZX2QN4CLOK98ZT79DTVCWS302M_1_2"} {"score": 0.4867391288280487, "chain_id": "3QAPZX2QN4CLOK98ZT79DTVCWS302M_1_3"} {"score": 0.9689118266105652, "chain_id": "3QAPZX2QN4CLOK98ZT79DTVCWS302M_1_4"} {"score": 0.9169474840164185, "chain_id": "3QAPZX2QN4CLOK98ZT79DTVCWS302M_1_5"} {"score": 0.05605905130505562, "chain_id": "3QAPZX2QN4CLOK98ZT79DTVCWS302M_1_6"} {"score": 0.026427168399095535, "chain_id": "3QAPZX2QN4CLOK98ZT79DTVCWS302M_1_7"} {"score": 0.26651719212532043, "chain_id": "3QAPZX2QN4CLOK98ZT79DTVCWS302M_1_8"} {"score": 0.4415493309497833, "chain_id": "3QAPZX2QN4CLOK98ZT79DTVCWS302M_1_9"} {"score": 0.12028943747282028, "chain_id": "3QAPZX2QN4CLOK98ZT79DTVCWS302M_1_10"} {"score": 0.9914257526397705, "chain_id": "3XC1O3LBOSLS5FS771DOC0WQZ59TL2_1_1"} {"score": 0.9912527203559875, "chain_id": "3XC1O3LBOSLS5FS771DOC0WQZ59TL2_1_2"} {"score": 0.8970206379890442, "chain_id": "3XC1O3LBOSLS5FS771DOC0WQZ59TL2_1_3"} {"score": 0.9278052449226379, "chain_id": "3XC1O3LBOSLS5FS771DOC0WQZ59TL2_1_9"} {"score": 0.8055357933044434, "chain_id": "3XC1O3LBOSLS5FS771DOC0WQZ59TL2_1_4"} {"score": 0.1807481199502945, "chain_id": "3XC1O3LBOSLS5FS771DOC0WQZ59TL2_1_5"} {"score": 0.9234862327575684, "chain_id": "3XC1O3LBOSLS5FS771DOC0WQZ59TL2_1_6"} {"score": 0.05661782622337341, "chain_id": "3XC1O3LBOSLS5FS771DOC0WQZ59TL2_1_7"} {"score": 0.05103548988699913, "chain_id": "3XC1O3LBOSLS5FS771DOC0WQZ59TL2_1_8"} {"score": 0.01806940883398056, "chain_id": "3XC1O3LBOSLS5FS771DOC0WQZ59TL2_1_10"} {"score": 0.9205842018127441, "chain_id": "3R08VXYT7CULIB7ZYCHPGFLO74Q7WE_1_1"} {"score": 0.8429412841796875, "chain_id": "3R08VXYT7CULIB7ZYCHPGFLO74Q7WE_1_2"} {"score": 0.991336464881897, "chain_id": "3R08VXYT7CULIB7ZYCHPGFLO74Q7WE_1_5"} {"score": 0.08391831815242767, "chain_id": "3R08VXYT7CULIB7ZYCHPGFLO74Q7WE_1_6"} {"score": 0.7329562306404114, "chain_id": "3R08VXYT7CULIB7ZYCHPGFLO74Q7WE_1_8"} {"score": 0.8668707609176636, "chain_id": "3R08VXYT7CULIB7ZYCHPGFLO74Q7WE_1_9"} {"score": 0.9704952836036682, "chain_id": "3R08VXYT7CULIB7ZYCHPGFLO74Q7WE_1_10"} {"score": 0.9215924143791199, "chain_id": "3R08VXYT7CULIB7ZYCHPGFLO74Q7WE_1_3"} {"score": 0.9654207825660706, "chain_id": "3R08VXYT7CULIB7ZYCHPGFLO74Q7WE_1_4"} {"score": 0.5314794778823853, "chain_id": "3R08VXYT7CULIB7ZYCHPGFLO74Q7WE_1_7"} {"score": 0.4006476104259491, "chain_id": "3QFUFYSY9YEMO23L6P9I9FFELJIF4G_1_1"} {"score": 0.7609026432037354, "chain_id": "3QFUFYSY9YEMO23L6P9I9FFELJIF4G_1_2"} {"score": 0.09595321863889694, "chain_id": "3QFUFYSY9YEMO23L6P9I9FFELJIF4G_1_3"} {"score": 0.023405231535434723, "chain_id": "3QFUFYSY9YEMO23L6P9I9FFELJIF4G_1_4"} {"score": 0.5492115020751953, "chain_id": "3QFUFYSY9YEMO23L6P9I9FFELJIF4G_1_5"} {"score": 0.08482035249471664, "chain_id": "3QFUFYSY9YEMO23L6P9I9FFELJIF4G_1_6"} {"score": 0.34015464782714844, "chain_id": "3QFUFYSY9YEMO23L6P9I9FFELJIF4G_1_7"} {"score": 0.03283281996846199, "chain_id": "3QFUFYSY9YEMO23L6P9I9FFELJIF4G_1_8"} {"score": 0.04763704165816307, "chain_id": "3QFUFYSY9YEMO23L6P9I9FFELJIF4G_1_9"} {"score": 0.1526232659816742, "chain_id": "3QFUFYSY9YEMO23L6P9I9FFELJIF4G_1_10"} {"score": 0.047749485820531845, "chain_id": "317HQ483I7RSK1FHP2UZBLY6SUSINW_1_1"} {"score": 0.06420234590768814, "chain_id": "317HQ483I7RSK1FHP2UZBLY6SUSINW_1_2"} {"score": 0.032541222870349884, "chain_id": "317HQ483I7RSK1FHP2UZBLY6SUSINW_1_3"} {"score": 0.025133084505796432, "chain_id": "317HQ483I7RSK1FHP2UZBLY6SUSINW_1_4"} {"score": 0.8032740950584412, "chain_id": "317HQ483I7RSK1FHP2UZBLY6SUSINW_1_5"} {"score": 0.5229150056838989, "chain_id": "317HQ483I7RSK1FHP2UZBLY6SUSINW_1_6"} {"score": 0.1007659062743187, "chain_id": "317HQ483I7RSK1FHP2UZBLY6SUSINW_1_7"} {"score": 0.11772626638412476, "chain_id": "317HQ483I7RSK1FHP2UZBLY6SUSINW_1_8"} {"score": 0.33601292967796326, "chain_id": "317HQ483I7RSK1FHP2UZBLY6SUSINW_1_9"} {"score": 0.32154926657676697, "chain_id": "317HQ483I7RSK1FHP2UZBLY6SUSINW_1_10"} {"score": 0.8532102704048157, "chain_id": "31LVTDXBL79FP0FF3C8TCLV8A0RRLX_1_1"} {"score": 0.8452767729759216, "chain_id": "31LVTDXBL79FP0FF3C8TCLV8A0RRLX_1_7"} {"score": 0.5819367170333862, "chain_id": "31LVTDXBL79FP0FF3C8TCLV8A0RRLX_1_8"} {"score": 0.8767338395118713, "chain_id": "31LVTDXBL79FP0FF3C8TCLV8A0RRLX_1_2"} {"score": 0.09598319232463837, "chain_id": "31LVTDXBL79FP0FF3C8TCLV8A0RRLX_1_3"} {"score": 0.10275845974683762, "chain_id": "31LVTDXBL79FP0FF3C8TCLV8A0RRLX_1_4"} {"score": 0.040542520582675934, "chain_id": "31LVTDXBL79FP0FF3C8TCLV8A0RRLX_1_5"} {"score": 0.08597251772880554, "chain_id": "31LVTDXBL79FP0FF3C8TCLV8A0RRLX_1_6"} {"score": 0.05620031803846359, "chain_id": "31LVTDXBL79FP0FF3C8TCLV8A0RRLX_1_9"} {"score": 0.27307528257369995, "chain_id": "31LVTDXBL79FP0FF3C8TCLV8A0RRLX_1_10"} {"score": 0.6998258233070374, "chain_id": "3L6L49WXW0WUM5AW0DW9N3O1XAJ458_1_1"} {"score": 0.654389500617981, "chain_id": "3L6L49WXW0WUM5AW0DW9N3O1XAJ458_1_2"} {"score": 0.5071374177932739, "chain_id": "3L6L49WXW0WUM5AW0DW9N3O1XAJ458_1_3"} {"score": 0.6914356350898743, "chain_id": "3L6L49WXW0WUM5AW0DW9N3O1XAJ458_1_4"} {"score": 0.9756356477737427, "chain_id": "3L6L49WXW0WUM5AW0DW9N3O1XAJ458_1_7"} {"score": 0.04669126495718956, "chain_id": "3L6L49WXW0WUM5AW0DW9N3O1XAJ458_1_5"} {"score": 0.9530490636825562, "chain_id": "3L6L49WXW0WUM5AW0DW9N3O1XAJ458_1_6"} {"score": 0.9491099715232849, "chain_id": "3L6L49WXW0WUM5AW0DW9N3O1XAJ458_1_8"} {"score": 0.08113826811313629, "chain_id": "3L6L49WXW0WUM5AW0DW9N3O1XAJ458_1_9"} {"score": 0.3019696772098541, "chain_id": "3L6L49WXW0WUM5AW0DW9N3O1XAJ458_1_10"} {"score": 0.017112910747528076, "chain_id": "3WMOAN2SRBWX67ZHO9TIQAO01F6NVJ_1_1"} {"score": 0.15722209215164185, "chain_id": "3WMOAN2SRBWX67ZHO9TIQAO01F6NVJ_1_2"} {"score": 0.11539125442504883, "chain_id": "3WMOAN2SRBWX67ZHO9TIQAO01F6NVJ_1_3"} {"score": 0.02164820395410061, "chain_id": "3WMOAN2SRBWX67ZHO9TIQAO01F6NVJ_1_4"} {"score": 0.08997275680303574, "chain_id": "3WMOAN2SRBWX67ZHO9TIQAO01F6NVJ_1_5"} {"score": 0.059623513370752335, "chain_id": "3WMOAN2SRBWX67ZHO9TIQAO01F6NVJ_1_6"} {"score": 0.10355071723461151, "chain_id": "3WMOAN2SRBWX67ZHO9TIQAO01F6NVJ_1_7"} {"score": 0.06380007416009903, "chain_id": "3WMOAN2SRBWX67ZHO9TIQAO01F6NVJ_1_8"} {"score": 0.1728385090827942, "chain_id": "3WMOAN2SRBWX67ZHO9TIQAO01F6NVJ_1_9"} {"score": 0.6336665153503418, "chain_id": "3WMOAN2SRBWX67ZHO9TIQAO01F6NVJ_1_10"} {"score": 0.541816771030426, "chain_id": "3MTMREQS4VH31D5X5FT9Q6NE8ZPAWB_1_1"} {"score": 0.9689080119132996, "chain_id": "3MTMREQS4VH31D5X5FT9Q6NE8ZPAWB_1_2"} {"score": 0.43959248065948486, "chain_id": "3MTMREQS4VH31D5X5FT9Q6NE8ZPAWB_1_4"} {"score": 0.6263224482536316, "chain_id": "3MTMREQS4VH31D5X5FT9Q6NE8ZPAWB_1_6"} {"score": 0.7601879835128784, "chain_id": "3MTMREQS4VH31D5X5FT9Q6NE8ZPAWB_1_7"} {"score": 0.7923812866210938, "chain_id": "3MTMREQS4VH31D5X5FT9Q6NE8ZPAWB_1_8"} {"score": 0.06107914820313454, "chain_id": "3MTMREQS4VH31D5X5FT9Q6NE8ZPAWB_1_3"} {"score": 0.30363819003105164, "chain_id": "3MTMREQS4VH31D5X5FT9Q6NE8ZPAWB_1_5"} {"score": 0.043030995875597, "chain_id": "3MTMREQS4VH31D5X5FT9Q6NE8ZPAWB_1_9"} {"score": 0.042059458792209625, "chain_id": "3MTMREQS4VH31D5X5FT9Q6NE8ZPAWB_1_10"} {"score": 0.7737621068954468, "chain_id": "3HWRJOOET51DK9501FLUP0AKN8ISEE_1_2"} {"score": 0.8034618496894836, "chain_id": "3HWRJOOET51DK9501FLUP0AKN8ISEE_1_3"} {"score": 0.7661446332931519, "chain_id": "3HWRJOOET51DK9501FLUP0AKN8ISEE_1_1"} {"score": 0.08980543911457062, "chain_id": "3HWRJOOET51DK9501FLUP0AKN8ISEE_1_4"} {"score": 0.6003015041351318, "chain_id": "3HWRJOOET51DK9501FLUP0AKN8ISEE_1_5"} {"score": 0.43666359782218933, "chain_id": "3HWRJOOET51DK9501FLUP0AKN8ISEE_1_6"} {"score": 0.12328276038169861, "chain_id": "3HWRJOOET51DK9501FLUP0AKN8ISEE_1_7"} {"score": 0.08078159391880035, "chain_id": "3HWRJOOET51DK9501FLUP0AKN8ISEE_1_8"} {"score": 0.30691343545913696, "chain_id": "3HWRJOOET51DK9501FLUP0AKN8ISEE_1_9"} {"score": 0.21145163476467133, "chain_id": "3HWRJOOET51DK9501FLUP0AKN8ISEE_1_10"} {"score": 0.9668914675712585, "chain_id": "38F5OAUN5NB3LLCA3DVPFCB1TP5H7Z_1_1"} {"score": 0.581234335899353, "chain_id": "38F5OAUN5NB3LLCA3DVPFCB1TP5H7Z_1_2"} {"score": 0.7035232782363892, "chain_id": "38F5OAUN5NB3LLCA3DVPFCB1TP5H7Z_1_3"} {"score": 0.4100389778614044, "chain_id": "38F5OAUN5NB3LLCA3DVPFCB1TP5H7Z_1_4"} {"score": 0.9856487512588501, "chain_id": "38F5OAUN5NB3LLCA3DVPFCB1TP5H7Z_1_5"} {"score": 0.44297119975090027, "chain_id": "38F5OAUN5NB3LLCA3DVPFCB1TP5H7Z_1_7"} {"score": 0.7569271922111511, "chain_id": "38F5OAUN5NB3LLCA3DVPFCB1TP5H7Z_1_9"} {"score": 0.3244408965110779, "chain_id": "38F5OAUN5NB3LLCA3DVPFCB1TP5H7Z_1_6"} {"score": 0.13392551243305206, "chain_id": "38F5OAUN5NB3LLCA3DVPFCB1TP5H7Z_1_8"} {"score": 0.531536340713501, "chain_id": "38F5OAUN5NB3LLCA3DVPFCB1TP5H7Z_1_10"} {"score": 0.8716413378715515, "chain_id": "3JAOYWH7VI39L0JT9V87L0VE34ZL9X_1_1"} {"score": 0.019707417115569115, "chain_id": "3JAOYWH7VI39L0JT9V87L0VE34ZL9X_1_2"} {"score": 0.7605498433113098, "chain_id": "3JAOYWH7VI39L0JT9V87L0VE34ZL9X_1_3"} {"score": 0.07024785131216049, "chain_id": "3JAOYWH7VI39L0JT9V87L0VE34ZL9X_1_4"} {"score": 0.04086177796125412, "chain_id": "3JAOYWH7VI39L0JT9V87L0VE34ZL9X_1_5"} {"score": 0.029048658907413483, "chain_id": "3JAOYWH7VI39L0JT9V87L0VE34ZL9X_1_6"} {"score": 0.019303666427731514, "chain_id": "3JAOYWH7VI39L0JT9V87L0VE34ZL9X_1_7"} {"score": 0.02126302942633629, "chain_id": "3JAOYWH7VI39L0JT9V87L0VE34ZL9X_1_8"} {"score": 0.1515781432390213, "chain_id": "3JAOYWH7VI39L0JT9V87L0VE34ZL9X_1_9"} {"score": 0.0456402450799942, "chain_id": "3JAOYWH7VI39L0JT9V87L0VE34ZL9X_1_10"} {"score": 0.4753512144088745, "chain_id": "36V4Q8R5ZKZZJHI0Q9K8780SDE7QME_1_1"} {"score": 0.49989068508148193, "chain_id": "36V4Q8R5ZKZZJHI0Q9K8780SDE7QME_1_2"} {"score": 0.7764980792999268, "chain_id": "36V4Q8R5ZKZZJHI0Q9K8780SDE7QME_1_3"} {"score": 0.17980514466762543, "chain_id": "36V4Q8R5ZKZZJHI0Q9K8780SDE7QME_1_4"} {"score": 0.1654440015554428, "chain_id": "36V4Q8R5ZKZZJHI0Q9K8780SDE7QME_1_5"} {"score": 0.28939691185951233, "chain_id": "36V4Q8R5ZKZZJHI0Q9K8780SDE7QME_1_6"} {"score": 0.2663090229034424, "chain_id": "36V4Q8R5ZKZZJHI0Q9K8780SDE7QME_1_7"} {"score": 0.12176446616649628, "chain_id": "36V4Q8R5ZKZZJHI0Q9K8780SDE7QME_1_8"} {"score": 0.22850748896598816, "chain_id": "36V4Q8R5ZKZZJHI0Q9K8780SDE7QME_1_9"} {"score": 0.24370498955249786, "chain_id": "36V4Q8R5ZKZZJHI0Q9K8780SDE7QME_1_10"} {"score": 0.9605117440223694, "chain_id": "3QEMNNSB2XYM9578HHCZORW3097D74_1_1"} {"score": 0.15107618272304535, "chain_id": "3QEMNNSB2XYM9578HHCZORW3097D74_1_2"} {"score": 0.772172749042511, "chain_id": "3QEMNNSB2XYM9578HHCZORW3097D74_1_3"} {"score": 0.09246978163719177, "chain_id": "3QEMNNSB2XYM9578HHCZORW3097D74_1_4"} {"score": 0.31345799565315247, "chain_id": "3QEMNNSB2XYM9578HHCZORW3097D74_1_5"} {"score": 0.5602109432220459, "chain_id": "3QEMNNSB2XYM9578HHCZORW3097D74_1_6"} {"score": 0.043841127306222916, "chain_id": "3QEMNNSB2XYM9578HHCZORW3097D74_1_7"} {"score": 0.18322189152240753, "chain_id": "3QEMNNSB2XYM9578HHCZORW3097D74_1_8"} {"score": 0.5293465852737427, "chain_id": "3QEMNNSB2XYM9578HHCZORW3097D74_1_9"} {"score": 0.9295799136161804, "chain_id": "3QEMNNSB2XYM9578HHCZORW3097D74_1_10"} {"score": 0.0877634659409523, "chain_id": "3ZSY5X72NXANVLICG4OL42Z2540ROG_1_1"} {"score": 0.03061097301542759, "chain_id": "3ZSY5X72NXANVLICG4OL42Z2540ROG_1_2"} {"score": 0.08654139935970306, "chain_id": "3ZSY5X72NXANVLICG4OL42Z2540ROG_1_3"} {"score": 0.18065208196640015, "chain_id": "3ZSY5X72NXANVLICG4OL42Z2540ROG_1_4"} {"score": 0.039939526468515396, "chain_id": "3ZSY5X72NXANVLICG4OL42Z2540ROG_1_5"} {"score": 0.07025259733200073, "chain_id": "3ZSY5X72NXANVLICG4OL42Z2540ROG_1_6"} {"score": 0.036924172192811966, "chain_id": "3ZSY5X72NXANVLICG4OL42Z2540ROG_1_7"} {"score": 0.39238569140434265, "chain_id": "3ZSY5X72NXANVLICG4OL42Z2540ROG_1_8"} {"score": 0.5406104922294617, "chain_id": "3ZSY5X72NXANVLICG4OL42Z2540ROG_1_9"} {"score": 0.6759127378463745, "chain_id": "3ZSY5X72NXANVLICG4OL42Z2540ROG_1_10"} {"score": 0.3510458171367645, "chain_id": "3TMSXRD2X6Z77PSX9W0GF5UB4DC1WN_1_1"} {"score": 0.4535945653915405, "chain_id": "3TMSXRD2X6Z77PSX9W0GF5UB4DC1WN_1_2"} {"score": 0.40979331731796265, "chain_id": "3TMSXRD2X6Z77PSX9W0GF5UB4DC1WN_1_3"} {"score": 0.43199342489242554, "chain_id": "3TMSXRD2X6Z77PSX9W0GF5UB4DC1WN_1_4"} {"score": 0.31283053755760193, "chain_id": "3TMSXRD2X6Z77PSX9W0GF5UB4DC1WN_1_5"} {"score": 0.25463953614234924, "chain_id": "3TMSXRD2X6Z77PSX9W0GF5UB4DC1WN_1_6"} {"score": 0.24955739080905914, "chain_id": "3TMSXRD2X6Z77PSX9W0GF5UB4DC1WN_1_7"} {"score": 0.21092239022254944, "chain_id": "3TMSXRD2X6Z77PSX9W0GF5UB4DC1WN_1_8"} {"score": 0.32046228647232056, "chain_id": "3TMSXRD2X6Z77PSX9W0GF5UB4DC1WN_1_9"} {"score": 0.6008816957473755, "chain_id": "3TMSXRD2X6Z77PSX9W0GF5UB4DC1WN_1_10"} {"score": 0.9764379858970642, "chain_id": "3PW9OPU9PQJLV9UQVCB9RYEMZGU121_1_1"} {"score": 0.9769855737686157, "chain_id": "3PW9OPU9PQJLV9UQVCB9RYEMZGU121_1_2"} {"score": 0.9937658309936523, "chain_id": "3PW9OPU9PQJLV9UQVCB9RYEMZGU121_1_3"} {"score": 0.9877305626869202, "chain_id": "3PW9OPU9PQJLV9UQVCB9RYEMZGU121_1_4"} {"score": 0.9464561343193054, "chain_id": "3PW9OPU9PQJLV9UQVCB9RYEMZGU121_1_5"} {"score": 0.7709922194480896, "chain_id": "3PW9OPU9PQJLV9UQVCB9RYEMZGU121_1_6"} {"score": 0.8435567021369934, "chain_id": "3PW9OPU9PQJLV9UQVCB9RYEMZGU121_1_7"} {"score": 0.3014128506183624, "chain_id": "3PW9OPU9PQJLV9UQVCB9RYEMZGU121_1_8"} {"score": 0.6646180152893066, "chain_id": "3PW9OPU9PQJLV9UQVCB9RYEMZGU121_1_10"} {"score": 0.6761057376861572, "chain_id": "3PW9OPU9PQJLV9UQVCB9RYEMZGU121_1_9"} {"score": 0.9764379858970642, "chain_id": "3300DTYQT2G17TQN9BWPU0VJ48KQEL_1_1"} {"score": 0.9937658309936523, "chain_id": "3300DTYQT2G17TQN9BWPU0VJ48KQEL_1_3"} {"score": 0.7709922194480896, "chain_id": "3300DTYQT2G17TQN9BWPU0VJ48KQEL_1_6"} {"score": 0.6646180152893066, "chain_id": "3300DTYQT2G17TQN9BWPU0VJ48KQEL_1_10"} {"score": 0.9769855737686157, "chain_id": "3300DTYQT2G17TQN9BWPU0VJ48KQEL_1_2"} {"score": 0.9877305626869202, "chain_id": "3300DTYQT2G17TQN9BWPU0VJ48KQEL_1_4"} {"score": 0.9464561343193054, "chain_id": "3300DTYQT2G17TQN9BWPU0VJ48KQEL_1_5"} {"score": 0.8435567021369934, "chain_id": "3300DTYQT2G17TQN9BWPU0VJ48KQEL_1_7"} {"score": 0.3014128506183624, "chain_id": "3300DTYQT2G17TQN9BWPU0VJ48KQEL_1_8"} {"score": 0.6761057376861572, "chain_id": "3300DTYQT2G17TQN9BWPU0VJ48KQEL_1_9"} {"score": 0.9885567426681519, "chain_id": "3LRLIPTPEQ8C6DBGG1A62VTJKSOAKM_1_1"} {"score": 0.98863285779953, "chain_id": "3LRLIPTPEQ8C6DBGG1A62VTJKSOAKM_1_2"} {"score": 0.9932108521461487, "chain_id": "3LRLIPTPEQ8C6DBGG1A62VTJKSOAKM_1_3"} {"score": 0.9474079608917236, "chain_id": "3LRLIPTPEQ8C6DBGG1A62VTJKSOAKM_1_5"} {"score": 0.293503999710083, "chain_id": "3LRLIPTPEQ8C6DBGG1A62VTJKSOAKM_1_8"} {"score": 0.9888677000999451, "chain_id": "3LRLIPTPEQ8C6DBGG1A62VTJKSOAKM_1_4"} {"score": 0.7693239450454712, "chain_id": "3LRLIPTPEQ8C6DBGG1A62VTJKSOAKM_1_6"} {"score": 0.84122234582901, "chain_id": "3LRLIPTPEQ8C6DBGG1A62VTJKSOAKM_1_7"} {"score": 0.6939842700958252, "chain_id": "3LRLIPTPEQ8C6DBGG1A62VTJKSOAKM_1_9"} {"score": 0.6533558368682861, "chain_id": "3LRLIPTPEQ8C6DBGG1A62VTJKSOAKM_1_10"} {"score": 0.9885567426681519, "chain_id": "37UEWGM5HT72ZTBBA2QAS6MUDBDR1H_1_1"} {"score": 0.98863285779953, "chain_id": "37UEWGM5HT72ZTBBA2QAS6MUDBDR1H_1_2"} {"score": 0.9888677000999451, "chain_id": "37UEWGM5HT72ZTBBA2QAS6MUDBDR1H_1_4"} {"score": 0.9474079608917236, "chain_id": "37UEWGM5HT72ZTBBA2QAS6MUDBDR1H_1_5"} {"score": 0.7693239450454712, "chain_id": "37UEWGM5HT72ZTBBA2QAS6MUDBDR1H_1_6"} {"score": 0.84122234582901, "chain_id": "37UEWGM5HT72ZTBBA2QAS6MUDBDR1H_1_7"} {"score": 0.6939842700958252, "chain_id": "37UEWGM5HT72ZTBBA2QAS6MUDBDR1H_1_9"} {"score": 0.6533558368682861, "chain_id": "37UEWGM5HT72ZTBBA2QAS6MUDBDR1H_1_10"} {"score": 0.9932108521461487, "chain_id": "37UEWGM5HT72ZTBBA2QAS6MUDBDR1H_1_3"} {"score": 0.293503999710083, "chain_id": "37UEWGM5HT72ZTBBA2QAS6MUDBDR1H_1_8"} {"score": 0.982282280921936, "chain_id": "3JV9LGBJWTDW6V9Y0TU95YLV4FIGO7_1_1"} {"score": 0.98360276222229, "chain_id": "3JV9LGBJWTDW6V9Y0TU95YLV4FIGO7_1_2"} {"score": 0.24918565154075623, "chain_id": "3JV9LGBJWTDW6V9Y0TU95YLV4FIGO7_1_3"} {"score": 0.2771889269351959, "chain_id": "3JV9LGBJWTDW6V9Y0TU95YLV4FIGO7_1_4"} {"score": 0.16646510362625122, "chain_id": "3JV9LGBJWTDW6V9Y0TU95YLV4FIGO7_1_5"} {"score": 0.33626505732536316, "chain_id": "3JV9LGBJWTDW6V9Y0TU95YLV4FIGO7_1_6"} {"score": 0.2517017126083374, "chain_id": "3JV9LGBJWTDW6V9Y0TU95YLV4FIGO7_1_7"} {"score": 0.14020469784736633, "chain_id": "3JV9LGBJWTDW6V9Y0TU95YLV4FIGO7_1_8"} {"score": 0.1730770468711853, "chain_id": "3JV9LGBJWTDW6V9Y0TU95YLV4FIGO7_1_9"} {"score": 0.02033958211541176, "chain_id": "3JV9LGBJWTDW6V9Y0TU95YLV4FIGO7_1_10"} {"score": 0.013200522400438786, "chain_id": "3ZSANO2JCF65QN5WWQ507IVKZXRSF2_1_1"} {"score": 0.01643790304660797, "chain_id": "3ZSANO2JCF65QN5WWQ507IVKZXRSF2_1_2"} {"score": 0.0539064034819603, "chain_id": "3ZSANO2JCF65QN5WWQ507IVKZXRSF2_1_3"} {"score": 0.02739282138645649, "chain_id": "3ZSANO2JCF65QN5WWQ507IVKZXRSF2_1_4"} {"score": 0.03663435950875282, "chain_id": "3ZSANO2JCF65QN5WWQ507IVKZXRSF2_1_5"} {"score": 0.020465752109885216, "chain_id": "3ZSANO2JCF65QN5WWQ507IVKZXRSF2_1_6"} {"score": 0.0659228190779686, "chain_id": "3ZSANO2JCF65QN5WWQ507IVKZXRSF2_1_7"} {"score": 0.07473894208669662, "chain_id": "3ZSANO2JCF65QN5WWQ507IVKZXRSF2_1_8"} {"score": 0.024159234017133713, "chain_id": "3ZSANO2JCF65QN5WWQ507IVKZXRSF2_1_9"} {"score": 0.024501003324985504, "chain_id": "3ZSANO2JCF65QN5WWQ507IVKZXRSF2_1_10"} {"score": 0.9906196594238281, "chain_id": "3RU7GD8VPOSHH0UQAT15JC9O14NPSD_1_1"} {"score": 0.9862123727798462, "chain_id": "3RU7GD8VPOSHH0UQAT15JC9O14NPSD_1_2"} {"score": 0.9877040386199951, "chain_id": "3RU7GD8VPOSHH0UQAT15JC9O14NPSD_1_4"} {"score": 0.8778210282325745, "chain_id": "3RU7GD8VPOSHH0UQAT15JC9O14NPSD_1_6"} {"score": 0.8534337878227234, "chain_id": "3RU7GD8VPOSHH0UQAT15JC9O14NPSD_1_8"} {"score": 0.9877955913543701, "chain_id": "3RU7GD8VPOSHH0UQAT15JC9O14NPSD_1_3"} {"score": 0.9094221591949463, "chain_id": "3RU7GD8VPOSHH0UQAT15JC9O14NPSD_1_5"} {"score": 0.7039523124694824, "chain_id": "3RU7GD8VPOSHH0UQAT15JC9O14NPSD_1_7"} {"score": 0.4897139072418213, "chain_id": "3RU7GD8VPOSHH0UQAT15JC9O14NPSD_1_9"} {"score": 0.2396358698606491, "chain_id": "3RU7GD8VPOSHH0UQAT15JC9O14NPSD_1_10"} {"score": 0.965821385383606, "chain_id": "3HVVDCPGTERC5EZ6QG2E68YM71ATYO_1_1"} {"score": 0.9850526452064514, "chain_id": "3HVVDCPGTERC5EZ6QG2E68YM71ATYO_1_2"} {"score": 0.9809402823448181, "chain_id": "3HVVDCPGTERC5EZ6QG2E68YM71ATYO_1_3"} {"score": 0.972899854183197, "chain_id": "3HVVDCPGTERC5EZ6QG2E68YM71ATYO_1_4"} {"score": 0.5941103100776672, "chain_id": "3HVVDCPGTERC5EZ6QG2E68YM71ATYO_1_5"} {"score": 0.3453190326690674, "chain_id": "3HVVDCPGTERC5EZ6QG2E68YM71ATYO_1_6"} {"score": 0.05854366719722748, "chain_id": "3HVVDCPGTERC5EZ6QG2E68YM71ATYO_1_7"} {"score": 0.12458871304988861, "chain_id": "3HVVDCPGTERC5EZ6QG2E68YM71ATYO_1_8"} {"score": 0.3027131259441376, "chain_id": "3HVVDCPGTERC5EZ6QG2E68YM71ATYO_1_9"} {"score": 0.07560174912214279, "chain_id": "3HVVDCPGTERC5EZ6QG2E68YM71ATYO_1_10"} {"score": 0.939943253993988, "chain_id": "3FE7TXL1LIM9CDE7GR1OSZMU58EQ27_1_1"} {"score": 0.9863126873970032, "chain_id": "3FE7TXL1LIM9CDE7GR1OSZMU58EQ27_1_2"} {"score": 0.9684461355209351, "chain_id": "3FE7TXL1LIM9CDE7GR1OSZMU58EQ27_1_3"} {"score": 0.9377120733261108, "chain_id": "3FE7TXL1LIM9CDE7GR1OSZMU58EQ27_1_7"} {"score": 0.9883939027786255, "chain_id": "3FE7TXL1LIM9CDE7GR1OSZMU58EQ27_1_8"} {"score": 0.9488491415977478, "chain_id": "3FE7TXL1LIM9CDE7GR1OSZMU58EQ27_1_9"} {"score": 0.8727880716323853, "chain_id": "3FE7TXL1LIM9CDE7GR1OSZMU58EQ27_1_4"} {"score": 0.06479858607053757, "chain_id": "3FE7TXL1LIM9CDE7GR1OSZMU58EQ27_1_5"} {"score": 0.9408517479896545, "chain_id": "3FE7TXL1LIM9CDE7GR1OSZMU58EQ27_1_6"} {"score": 0.03389601409435272, "chain_id": "3FE7TXL1LIM9CDE7GR1OSZMU58EQ27_1_10"} {"score": 0.25287100672721863, "chain_id": "3UWN2HHPUY4HEFIDUEODFN4TYVSSNZ_1_1"} {"score": 0.4369405508041382, "chain_id": "3UWN2HHPUY4HEFIDUEODFN4TYVSSNZ_1_2"} {"score": 0.37111371755599976, "chain_id": "3UWN2HHPUY4HEFIDUEODFN4TYVSSNZ_1_3"} {"score": 0.3428005874156952, "chain_id": "3UWN2HHPUY4HEFIDUEODFN4TYVSSNZ_1_4"} {"score": 0.047093141824007034, "chain_id": "3UWN2HHPUY4HEFIDUEODFN4TYVSSNZ_1_5"} {"score": 0.5798112750053406, "chain_id": "3UWN2HHPUY4HEFIDUEODFN4TYVSSNZ_1_6"} {"score": 0.07880699634552002, "chain_id": "3UWN2HHPUY4HEFIDUEODFN4TYVSSNZ_1_7"} {"score": 0.5824438333511353, "chain_id": "3UWN2HHPUY4HEFIDUEODFN4TYVSSNZ_1_8"} {"score": 0.19301332533359528, "chain_id": "3UWN2HHPUY4HEFIDUEODFN4TYVSSNZ_1_9"} {"score": 0.2574761211872101, "chain_id": "3UWN2HHPUY4HEFIDUEODFN4TYVSSNZ_1_10"} {"score": 0.872903048992157, "chain_id": "3XM0HYN6NKYG7HP89YH0UV59XRSPEF_1_1"} {"score": 0.4668155014514923, "chain_id": "3XM0HYN6NKYG7HP89YH0UV59XRSPEF_1_2"} {"score": 0.8546494841575623, "chain_id": "3XM0HYN6NKYG7HP89YH0UV59XRSPEF_1_7"} {"score": 0.11211403459310532, "chain_id": "3XM0HYN6NKYG7HP89YH0UV59XRSPEF_1_9"} {"score": 0.17152871191501617, "chain_id": "3XM0HYN6NKYG7HP89YH0UV59XRSPEF_1_3"} {"score": 0.6312422156333923, "chain_id": "3XM0HYN6NKYG7HP89YH0UV59XRSPEF_1_4"} {"score": 0.22848811745643616, "chain_id": "3XM0HYN6NKYG7HP89YH0UV59XRSPEF_1_5"} {"score": 0.36367279291152954, "chain_id": "3XM0HYN6NKYG7HP89YH0UV59XRSPEF_1_6"} {"score": 0.16003760695457458, "chain_id": "3XM0HYN6NKYG7HP89YH0UV59XRSPEF_1_8"} {"score": 0.6202408075332642, "chain_id": "3XM0HYN6NKYG7HP89YH0UV59XRSPEF_1_10"} {"score": 0.6324179172515869, "chain_id": "3X4MXAO0BGNV0URE7QFVLWCO5CGWRN_1_2"} {"score": 0.8454567193984985, "chain_id": "3X4MXAO0BGNV0URE7QFVLWCO5CGWRN_1_5"} {"score": 0.811129093170166, "chain_id": "3X4MXAO0BGNV0URE7QFVLWCO5CGWRN_1_1"} {"score": 0.8657873272895813, "chain_id": "3X4MXAO0BGNV0URE7QFVLWCO5CGWRN_1_3"} {"score": 0.7561652064323425, "chain_id": "3X4MXAO0BGNV0URE7QFVLWCO5CGWRN_1_4"} {"score": 0.02742181532084942, "chain_id": "3X4MXAO0BGNV0URE7QFVLWCO5CGWRN_1_6"} {"score": 0.01648840680718422, "chain_id": "3X4MXAO0BGNV0URE7QFVLWCO5CGWRN_1_7"} {"score": 0.04371153190732002, "chain_id": "3X4MXAO0BGNV0URE7QFVLWCO5CGWRN_1_8"} {"score": 0.1079479306936264, "chain_id": "3X4MXAO0BGNV0URE7QFVLWCO5CGWRN_1_9"} {"score": 0.04046238213777542, "chain_id": "3X4MXAO0BGNV0URE7QFVLWCO5CGWRN_1_10"} {"score": 0.66582190990448, "chain_id": "3P4MQ7TPPXBGWKCEG2X9Y3UZE2XBB2_1_1"} {"score": 0.1876021921634674, "chain_id": "3P4MQ7TPPXBGWKCEG2X9Y3UZE2XBB2_1_2"} {"score": 0.40213310718536377, "chain_id": "3P4MQ7TPPXBGWKCEG2X9Y3UZE2XBB2_1_3"} {"score": 0.2766716182231903, "chain_id": "3P4MQ7TPPXBGWKCEG2X9Y3UZE2XBB2_1_4"} {"score": 0.13857285678386688, "chain_id": "3P4MQ7TPPXBGWKCEG2X9Y3UZE2XBB2_1_5"} {"score": 0.76506507396698, "chain_id": "3P4MQ7TPPXBGWKCEG2X9Y3UZE2XBB2_1_6"} {"score": 0.08867225795984268, "chain_id": "3P4MQ7TPPXBGWKCEG2X9Y3UZE2XBB2_1_7"} {"score": 0.021609654650092125, "chain_id": "3P4MQ7TPPXBGWKCEG2X9Y3UZE2XBB2_1_8"} {"score": 0.10122540593147278, "chain_id": "3P4MQ7TPPXBGWKCEG2X9Y3UZE2XBB2_1_9"} {"score": 0.07725051045417786, "chain_id": "3P4MQ7TPPXBGWKCEG2X9Y3UZE2XBB2_1_10"} {"score": 0.9797580242156982, "chain_id": "3AZHRG4CU4JA925R3TLEW304Z91301_1_4"} {"score": 0.8384842276573181, "chain_id": "3AZHRG4CU4JA925R3TLEW304Z91301_1_7"} {"score": 0.08914006501436234, "chain_id": "3AZHRG4CU4JA925R3TLEW304Z91301_1_1"} {"score": 0.88889479637146, "chain_id": "3AZHRG4CU4JA925R3TLEW304Z91301_1_2"} {"score": 0.7382000088691711, "chain_id": "3AZHRG4CU4JA925R3TLEW304Z91301_1_3"} {"score": 0.0652581974864006, "chain_id": "3AZHRG4CU4JA925R3TLEW304Z91301_1_5"} {"score": 0.9534401893615723, "chain_id": "3AZHRG4CU4JA925R3TLEW304Z91301_1_6"} {"score": 0.6534826159477234, "chain_id": "3AZHRG4CU4JA925R3TLEW304Z91301_1_8"} {"score": 0.7287110686302185, "chain_id": "3AZHRG4CU4JA925R3TLEW304Z91301_1_9"} {"score": 0.4688939154148102, "chain_id": "3AZHRG4CU4JA925R3TLEW304Z91301_1_10"} {"score": 0.4358920156955719, "chain_id": "3K4J6M3CXES74RFXQAPR431QHPNAGV_1_1"} {"score": 0.8197861909866333, "chain_id": "3K4J6M3CXES74RFXQAPR431QHPNAGV_1_2"} {"score": 0.051199864596128464, "chain_id": "3K4J6M3CXES74RFXQAPR431QHPNAGV_1_3"} {"score": 0.3437190055847168, "chain_id": "3K4J6M3CXES74RFXQAPR431QHPNAGV_1_4"} {"score": 0.4688287079334259, "chain_id": "3K4J6M3CXES74RFXQAPR431QHPNAGV_1_5"} {"score": 0.1828688681125641, "chain_id": "3K4J6M3CXES74RFXQAPR431QHPNAGV_1_6"} {"score": 0.0718025341629982, "chain_id": "3K4J6M3CXES74RFXQAPR431QHPNAGV_1_7"} {"score": 0.10726159811019897, "chain_id": "3K4J6M3CXES74RFXQAPR431QHPNAGV_1_8"} {"score": 0.20028866827487946, "chain_id": "3K4J6M3CXES74RFXQAPR431QHPNAGV_1_9"} {"score": 0.08037377893924713, "chain_id": "3K4J6M3CXES74RFXQAPR431QHPNAGV_1_10"} {"score": 0.8594335913658142, "chain_id": "3OE22WJIGINIWPN9ZBBUYIHMUF3QUX_1_1"} {"score": 0.20725952088832855, "chain_id": "3OE22WJIGINIWPN9ZBBUYIHMUF3QUX_1_8"} {"score": 0.8976173996925354, "chain_id": "3OE22WJIGINIWPN9ZBBUYIHMUF3QUX_1_2"} {"score": 0.7175804376602173, "chain_id": "3OE22WJIGINIWPN9ZBBUYIHMUF3QUX_1_3"} {"score": 0.7083702087402344, "chain_id": "3OE22WJIGINIWPN9ZBBUYIHMUF3QUX_1_4"} {"score": 0.4502936005592346, "chain_id": "3OE22WJIGINIWPN9ZBBUYIHMUF3QUX_1_5"} {"score": 0.395868718624115, "chain_id": "3OE22WJIGINIWPN9ZBBUYIHMUF3QUX_1_6"} {"score": 0.04526565968990326, "chain_id": "3OE22WJIGINIWPN9ZBBUYIHMUF3QUX_1_7"} {"score": 0.060092389583587646, "chain_id": "3OE22WJIGINIWPN9ZBBUYIHMUF3QUX_1_9"} {"score": 0.054144736379384995, "chain_id": "3OE22WJIGINIWPN9ZBBUYIHMUF3QUX_1_10"} {"score": 0.2101796716451645, "chain_id": "3Z7EFSHGN9D6JS7LZYLMYKR9KRHCXM_1_1"} {"score": 0.027091704308986664, "chain_id": "3Z7EFSHGN9D6JS7LZYLMYKR9KRHCXM_1_2"} {"score": 0.12935185432434082, "chain_id": "3Z7EFSHGN9D6JS7LZYLMYKR9KRHCXM_1_3"} {"score": 0.8862185478210449, "chain_id": "3Z7EFSHGN9D6JS7LZYLMYKR9KRHCXM_1_4"} {"score": 0.8606535196304321, "chain_id": "3Z7EFSHGN9D6JS7LZYLMYKR9KRHCXM_1_5"} {"score": 0.2265566736459732, "chain_id": "3Z7EFSHGN9D6JS7LZYLMYKR9KRHCXM_1_6"} {"score": 0.09252561628818512, "chain_id": "3Z7EFSHGN9D6JS7LZYLMYKR9KRHCXM_1_7"} {"score": 0.025655247271060944, "chain_id": "3Z7EFSHGN9D6JS7LZYLMYKR9KRHCXM_1_8"} {"score": 0.044873178005218506, "chain_id": "3Z7EFSHGN9D6JS7LZYLMYKR9KRHCXM_1_9"} {"score": 0.019250735640525818, "chain_id": "3Z7EFSHGN9D6JS7LZYLMYKR9KRHCXM_1_10"} {"score": 0.9880026578903198, "chain_id": "3TMSXRD2X6Z77PSX9W0GF5UB7VAW1J_1_1"} {"score": 0.7215200662612915, "chain_id": "3TMSXRD2X6Z77PSX9W0GF5UB7VAW1J_1_3"} {"score": 0.9869930744171143, "chain_id": "3TMSXRD2X6Z77PSX9W0GF5UB7VAW1J_1_5"} {"score": 0.8937990665435791, "chain_id": "3TMSXRD2X6Z77PSX9W0GF5UB7VAW1J_1_2"} {"score": 0.9801881313323975, "chain_id": "3TMSXRD2X6Z77PSX9W0GF5UB7VAW1J_1_4"} {"score": 0.7066361308097839, "chain_id": "3TMSXRD2X6Z77PSX9W0GF5UB7VAW1J_1_6"} {"score": 0.9472936391830444, "chain_id": "3TMSXRD2X6Z77PSX9W0GF5UB7VAW1J_1_7"} {"score": 0.39627212285995483, "chain_id": "3TMSXRD2X6Z77PSX9W0GF5UB7VAW1J_1_8"} {"score": 0.09046153724193573, "chain_id": "3TMSXRD2X6Z77PSX9W0GF5UB7VAW1J_1_9"} {"score": 0.02762574329972267, "chain_id": "3TMSXRD2X6Z77PSX9W0GF5UB7VAW1J_1_10"} {"score": 0.990461528301239, "chain_id": "3XC1O3LBOSLS5FS771DOC0WQ19CTLF_1_1"} {"score": 0.990361213684082, "chain_id": "3XC1O3LBOSLS5FS771DOC0WQ19CTLF_1_2"} {"score": 0.9884172081947327, "chain_id": "3XC1O3LBOSLS5FS771DOC0WQ19CTLF_1_3"} {"score": 0.9856733083724976, "chain_id": "3XC1O3LBOSLS5FS771DOC0WQ19CTLF_1_4"} {"score": 0.9889804124832153, "chain_id": "3XC1O3LBOSLS5FS771DOC0WQ19CTLF_1_5"} {"score": 0.9751869440078735, "chain_id": "3XC1O3LBOSLS5FS771DOC0WQ19CTLF_1_7"} {"score": 0.509863555431366, "chain_id": "3XC1O3LBOSLS5FS771DOC0WQ19CTLF_1_6"} {"score": 0.05562162026762962, "chain_id": "3XC1O3LBOSLS5FS771DOC0WQ19CTLF_1_8"} {"score": 0.18393836915493011, "chain_id": "3XC1O3LBOSLS5FS771DOC0WQ19CTLF_1_9"} {"score": 0.497290700674057, "chain_id": "3XC1O3LBOSLS5FS771DOC0WQ19CTLF_1_10"} {"score": 0.9423670172691345, "chain_id": "31IBVUNM9SYLIFM0QLA5I5FR10FVF5_1_1"} {"score": 0.04969038441777229, "chain_id": "31IBVUNM9SYLIFM0QLA5I5FR10FVF5_1_2"} {"score": 0.3943229019641876, "chain_id": "31IBVUNM9SYLIFM0QLA5I5FR10FVF5_1_3"} {"score": 0.06925445795059204, "chain_id": "31IBVUNM9SYLIFM0QLA5I5FR10FVF5_1_4"} {"score": 0.015014211647212505, "chain_id": "31IBVUNM9SYLIFM0QLA5I5FR10FVF5_1_5"} {"score": 0.0220431387424469, "chain_id": "31IBVUNM9SYLIFM0QLA5I5FR10FVF5_1_6"} {"score": 0.017636168748140335, "chain_id": "31IBVUNM9SYLIFM0QLA5I5FR10FVF5_1_7"} {"score": 0.014519236981868744, "chain_id": "31IBVUNM9SYLIFM0QLA5I5FR10FVF5_1_8"} {"score": 0.018455015495419502, "chain_id": "31IBVUNM9SYLIFM0QLA5I5FR10FVF5_1_9"} {"score": 0.024437611922621727, "chain_id": "31IBVUNM9SYLIFM0QLA5I5FR10FVF5_1_10"} {"score": 0.601386308670044, "chain_id": "3VAR3R6G1P0HDG3GHVILDL4XHGIO8H_1_1"} {"score": 0.026194768026471138, "chain_id": "3VAR3R6G1P0HDG3GHVILDL4XHGIO8H_1_2"} {"score": 0.03683824837207794, "chain_id": "3VAR3R6G1P0HDG3GHVILDL4XHGIO8H_1_3"} {"score": 0.07407883554697037, "chain_id": "3VAR3R6G1P0HDG3GHVILDL4XHGIO8H_1_4"} {"score": 0.06998881697654724, "chain_id": "3VAR3R6G1P0HDG3GHVILDL4XHGIO8H_1_5"} {"score": 0.03994053229689598, "chain_id": "3VAR3R6G1P0HDG3GHVILDL4XHGIO8H_1_6"} {"score": 0.017214607447385788, "chain_id": "3VAR3R6G1P0HDG3GHVILDL4XHGIO8H_1_7"} {"score": 0.03554336726665497, "chain_id": "3VAR3R6G1P0HDG3GHVILDL4XHGIO8H_1_8"} {"score": 0.02243831194937229, "chain_id": "3VAR3R6G1P0HDG3GHVILDL4XHGIO8H_1_9"} {"score": 0.02441919408738613, "chain_id": "3VAR3R6G1P0HDG3GHVILDL4XHGIO8H_1_10"} {"score": 0.9850252270698547, "chain_id": "3TPZPLC3M0BDXJ9BKE04B41C8PGP3E_1_1"} {"score": 0.9810898900032043, "chain_id": "3TPZPLC3M0BDXJ9BKE04B41C8PGP3E_1_9"} {"score": 0.993301272392273, "chain_id": "3TPZPLC3M0BDXJ9BKE04B41C8PGP3E_1_2"} {"score": 0.8750136494636536, "chain_id": "3TPZPLC3M0BDXJ9BKE04B41C8PGP3E_1_3"} {"score": 0.9928932785987854, "chain_id": "3TPZPLC3M0BDXJ9BKE04B41C8PGP3E_1_4"} {"score": 0.846124529838562, "chain_id": "3TPZPLC3M0BDXJ9BKE04B41C8PGP3E_1_5"} {"score": 0.9807553291320801, "chain_id": "3TPZPLC3M0BDXJ9BKE04B41C8PGP3E_1_6"} {"score": 0.9606543779373169, "chain_id": "3TPZPLC3M0BDXJ9BKE04B41C8PGP3E_1_7"} {"score": 0.14969922602176666, "chain_id": "3TPZPLC3M0BDXJ9BKE04B41C8PGP3E_1_8"} {"score": 0.10217536985874176, "chain_id": "3TPZPLC3M0BDXJ9BKE04B41C8PGP3E_1_10"} {"score": 0.3244844377040863, "chain_id": "3CFVK00FWLKM3HHVBO5V1Q4CE4GL6E_1_1"} {"score": 0.0728054940700531, "chain_id": "3CFVK00FWLKM3HHVBO5V1Q4CE4GL6E_1_2"} {"score": 0.5444037318229675, "chain_id": "3CFVK00FWLKM3HHVBO5V1Q4CE4GL6E_1_3"} {"score": 0.15410222113132477, "chain_id": "3CFVK00FWLKM3HHVBO5V1Q4CE4GL6E_1_4"} {"score": 0.1525358408689499, "chain_id": "3CFVK00FWLKM3HHVBO5V1Q4CE4GL6E_1_5"} {"score": 0.5224574208259583, "chain_id": "3CFVK00FWLKM3HHVBO5V1Q4CE4GL6E_1_6"} {"score": 0.03810688853263855, "chain_id": "3CFVK00FWLKM3HHVBO5V1Q4CE4GL6E_1_7"} {"score": 0.21017661690711975, "chain_id": "3CFVK00FWLKM3HHVBO5V1Q4CE4GL6E_1_8"} {"score": 0.22006186842918396, "chain_id": "3CFVK00FWLKM3HHVBO5V1Q4CE4GL6E_1_9"} {"score": 0.17163439095020294, "chain_id": "3CFVK00FWLKM3HHVBO5V1Q4CE4GL6E_1_10"} {"score": 0.12260197103023529, "chain_id": "31HQ4X3T3S9RQFFSI18Y2V04W90LSJ_1_4"} {"score": 0.344350129365921, "chain_id": "31HQ4X3T3S9RQFFSI18Y2V04W90LSJ_1_1"} {"score": 0.6921296119689941, "chain_id": "31HQ4X3T3S9RQFFSI18Y2V04W90LSJ_1_2"} {"score": 0.114654541015625, "chain_id": "31HQ4X3T3S9RQFFSI18Y2V04W90LSJ_1_3"} {"score": 0.05249728634953499, "chain_id": "31HQ4X3T3S9RQFFSI18Y2V04W90LSJ_1_5"} {"score": 0.6686126589775085, "chain_id": "31HQ4X3T3S9RQFFSI18Y2V04W90LSJ_1_6"} {"score": 0.04284367337822914, "chain_id": "31HQ4X3T3S9RQFFSI18Y2V04W90LSJ_1_7"} {"score": 0.02903471514582634, "chain_id": "31HQ4X3T3S9RQFFSI18Y2V04W90LSJ_1_8"} {"score": 0.02133709006011486, "chain_id": "31HQ4X3T3S9RQFFSI18Y2V04W90LSJ_1_9"} {"score": 0.011560154147446156, "chain_id": "31HQ4X3T3S9RQFFSI18Y2V04W90LSJ_1_10"} {"score": 0.9489273428916931, "chain_id": "39K0FND3AHE7W1BJ1DNMH8LN9F5AMD_1_5"} {"score": 0.855181097984314, "chain_id": "39K0FND3AHE7W1BJ1DNMH8LN9F5AMD_1_8"} {"score": 0.1722378134727478, "chain_id": "39K0FND3AHE7W1BJ1DNMH8LN9F5AMD_1_1"} {"score": 0.0777869001030922, "chain_id": "39K0FND3AHE7W1BJ1DNMH8LN9F5AMD_1_2"} {"score": 0.04413716867566109, "chain_id": "39K0FND3AHE7W1BJ1DNMH8LN9F5AMD_1_3"} {"score": 0.04668590798974037, "chain_id": "39K0FND3AHE7W1BJ1DNMH8LN9F5AMD_1_4"} {"score": 0.049660857766866684, "chain_id": "39K0FND3AHE7W1BJ1DNMH8LN9F5AMD_1_6"} {"score": 0.663521945476532, "chain_id": "39K0FND3AHE7W1BJ1DNMH8LN9F5AMD_1_7"} {"score": 0.17879696190357208, "chain_id": "39K0FND3AHE7W1BJ1DNMH8LN9F5AMD_1_9"} {"score": 0.945574164390564, "chain_id": "39K0FND3AHE7W1BJ1DNMH8LN9F5AMD_1_10"} {"score": 0.7008712887763977, "chain_id": "3A0EX8ZRN8NC9S5PQUBT6ES00J7BYQ_1_1"} {"score": 0.7170664072036743, "chain_id": "3A0EX8ZRN8NC9S5PQUBT6ES00J7BYQ_1_2"} {"score": 0.9149632453918457, "chain_id": "3A0EX8ZRN8NC9S5PQUBT6ES00J7BYQ_1_3"} {"score": 0.8305090069770813, "chain_id": "3A0EX8ZRN8NC9S5PQUBT6ES00J7BYQ_1_4"} {"score": 0.8671072721481323, "chain_id": "3A0EX8ZRN8NC9S5PQUBT6ES00J7BYQ_1_5"} {"score": 0.8107290863990784, "chain_id": "3A0EX8ZRN8NC9S5PQUBT6ES00J7BYQ_1_6"} {"score": 0.5252068042755127, "chain_id": "3A0EX8ZRN8NC9S5PQUBT6ES00J7BYQ_1_7"} {"score": 0.9705479741096497, "chain_id": "3A0EX8ZRN8NC9S5PQUBT6ES00J7BYQ_1_8"} {"score": 0.16004449129104614, "chain_id": "3A0EX8ZRN8NC9S5PQUBT6ES00J7BYQ_1_9"} {"score": 0.6747220754623413, "chain_id": "3A0EX8ZRN8NC9S5PQUBT6ES00J7BYQ_1_10"} {"score": 0.989371657371521, "chain_id": "3KIBXJ1WD5T18H5HQKFO3QDOA5PKOL_1_1"} {"score": 0.9302921295166016, "chain_id": "3KIBXJ1WD5T18H5HQKFO3QDOA5PKOL_1_5"} {"score": 0.7025399804115295, "chain_id": "3KIBXJ1WD5T18H5HQKFO3QDOA5PKOL_1_7"} {"score": 0.8409433960914612, "chain_id": "3KIBXJ1WD5T18H5HQKFO3QDOA5PKOL_1_2"} {"score": 0.9283468723297119, "chain_id": "3KIBXJ1WD5T18H5HQKFO3QDOA5PKOL_1_3"} {"score": 0.9502226114273071, "chain_id": "3KIBXJ1WD5T18H5HQKFO3QDOA5PKOL_1_4"} {"score": 0.9114928245544434, "chain_id": "3KIBXJ1WD5T18H5HQKFO3QDOA5PKOL_1_6"} {"score": 0.8437076210975647, "chain_id": "3KIBXJ1WD5T18H5HQKFO3QDOA5PKOL_1_8"} {"score": 0.463006854057312, "chain_id": "3KIBXJ1WD5T18H5HQKFO3QDOA5PKOL_1_9"} {"score": 0.21909776329994202, "chain_id": "3KIBXJ1WD5T18H5HQKFO3QDOA5PKOL_1_10"} {"score": 0.783233642578125, "chain_id": "3U0SRXB7CD45D0I0FPO8PDZXG9HRNI_1_2"} {"score": 0.9247758984565735, "chain_id": "3U0SRXB7CD45D0I0FPO8PDZXG9HRNI_1_4"} {"score": 0.43595418334007263, "chain_id": "3U0SRXB7CD45D0I0FPO8PDZXG9HRNI_1_5"} {"score": 0.23306918144226074, "chain_id": "3U0SRXB7CD45D0I0FPO8PDZXG9HRNI_1_1"} {"score": 0.05272065848112106, "chain_id": "3U0SRXB7CD45D0I0FPO8PDZXG9HRNI_1_3"} {"score": 0.7920937538146973, "chain_id": "3U0SRXB7CD45D0I0FPO8PDZXG9HRNI_1_6"} {"score": 0.6083246469497681, "chain_id": "3U0SRXB7CD45D0I0FPO8PDZXG9HRNI_1_7"} {"score": 0.15575440227985382, "chain_id": "3U0SRXB7CD45D0I0FPO8PDZXG9HRNI_1_8"} {"score": 0.6891958713531494, "chain_id": "3U0SRXB7CD45D0I0FPO8PDZXG9HRNI_1_9"} {"score": 0.9451296925544739, "chain_id": "3U0SRXB7CD45D0I0FPO8PDZXG9HRNI_1_10"} {"score": 0.6034153699874878, "chain_id": "3OONKJ5DKCI0FE1NK72V4NUYO6YOBE_1_1"} {"score": 0.017047906294465065, "chain_id": "3OONKJ5DKCI0FE1NK72V4NUYO6YOBE_1_2"} {"score": 0.12402428686618805, "chain_id": "3OONKJ5DKCI0FE1NK72V4NUYO6YOBE_1_3"} {"score": 0.0349627286195755, "chain_id": "3OONKJ5DKCI0FE1NK72V4NUYO6YOBE_1_4"} {"score": 0.023658785969018936, "chain_id": "3OONKJ5DKCI0FE1NK72V4NUYO6YOBE_1_5"} {"score": 0.04957667365670204, "chain_id": "3OONKJ5DKCI0FE1NK72V4NUYO6YOBE_1_6"} {"score": 0.018908457830548286, "chain_id": "3OONKJ5DKCI0FE1NK72V4NUYO6YOBE_1_7"} {"score": 0.03431479260325432, "chain_id": "3OONKJ5DKCI0FE1NK72V4NUYO6YOBE_1_8"} {"score": 0.016624845564365387, "chain_id": "3OONKJ5DKCI0FE1NK72V4NUYO6YOBE_1_9"} {"score": 0.01661861687898636, "chain_id": "3OONKJ5DKCI0FE1NK72V4NUYO6YOBE_1_10"} {"score": 0.032096486538648605, "chain_id": "3SB5N7Y3O33B3EHFY8SYFXPD7XSG0E_1_1"} {"score": 0.05758669972419739, "chain_id": "3SB5N7Y3O33B3EHFY8SYFXPD7XSG0E_1_2"} {"score": 0.08330172300338745, "chain_id": "3SB5N7Y3O33B3EHFY8SYFXPD7XSG0E_1_3"} {"score": 0.017404858022928238, "chain_id": "3SB5N7Y3O33B3EHFY8SYFXPD7XSG0E_1_4"} {"score": 0.01871303841471672, "chain_id": "3SB5N7Y3O33B3EHFY8SYFXPD7XSG0E_1_5"} {"score": 0.11060068756341934, "chain_id": "3SB5N7Y3O33B3EHFY8SYFXPD7XSG0E_1_6"} {"score": 0.05272591486573219, "chain_id": "3SB5N7Y3O33B3EHFY8SYFXPD7XSG0E_1_7"} {"score": 0.04368715360760689, "chain_id": "3SB5N7Y3O33B3EHFY8SYFXPD7XSG0E_1_8"} {"score": 0.05141285061836243, "chain_id": "3SB5N7Y3O33B3EHFY8SYFXPD7XSG0E_1_9"} {"score": 0.04232250899076462, "chain_id": "3SB5N7Y3O33B3EHFY8SYFXPD7XSG0E_1_10"} {"score": 0.9903186559677124, "chain_id": "3R2UR8A0IAF7SH4OP3UDTKLQ8QZOXZ_1_1"} {"score": 0.9898109436035156, "chain_id": "3R2UR8A0IAF7SH4OP3UDTKLQ8QZOXZ_1_2"} {"score": 0.9912732243537903, "chain_id": "3R2UR8A0IAF7SH4OP3UDTKLQ8QZOXZ_1_4"} {"score": 0.9695528149604797, "chain_id": "3R2UR8A0IAF7SH4OP3UDTKLQ8QZOXZ_1_7"} {"score": 0.9923140406608582, "chain_id": "3R2UR8A0IAF7SH4OP3UDTKLQ8QZOXZ_1_3"} {"score": 0.5615676641464233, "chain_id": "3R2UR8A0IAF7SH4OP3UDTKLQ8QZOXZ_1_5"} {"score": 0.8657466769218445, "chain_id": "3R2UR8A0IAF7SH4OP3UDTKLQ8QZOXZ_1_6"} {"score": 0.7918065786361694, "chain_id": "3R2UR8A0IAF7SH4OP3UDTKLQ8QZOXZ_1_8"} {"score": 0.766390323638916, "chain_id": "3R2UR8A0IAF7SH4OP3UDTKLQ8QZOXZ_1_9"} {"score": 0.08535801619291306, "chain_id": "3R2UR8A0IAF7SH4OP3UDTKLQ8QZOXZ_1_10"} {"score": 0.9440386891365051, "chain_id": "3QEMNNSB2XYM9578HHCZORW3316D7Q_1_2"} {"score": 0.9406982660293579, "chain_id": "3QEMNNSB2XYM9578HHCZORW3316D7Q_1_3"} {"score": 0.9443113803863525, "chain_id": "3QEMNNSB2XYM9578HHCZORW3316D7Q_1_4"} {"score": 0.9650072455406189, "chain_id": "3QEMNNSB2XYM9578HHCZORW3316D7Q_1_5"} {"score": 0.9027596712112427, "chain_id": "3QEMNNSB2XYM9578HHCZORW3316D7Q_1_10"} {"score": 0.9508066773414612, "chain_id": "3QEMNNSB2XYM9578HHCZORW3316D7Q_1_1"} {"score": 0.18454556167125702, "chain_id": "3QEMNNSB2XYM9578HHCZORW3316D7Q_1_6"} {"score": 0.06332375854253769, "chain_id": "3QEMNNSB2XYM9578HHCZORW3316D7Q_1_7"} {"score": 0.04069433733820915, "chain_id": "3QEMNNSB2XYM9578HHCZORW3316D7Q_1_8"} {"score": 0.09875238686800003, "chain_id": "3QEMNNSB2XYM9578HHCZORW3316D7Q_1_9"} {"score": 0.8981195092201233, "chain_id": "3I3WADAZ9Q3YQYKEJXBI11U6DFH5O8_1_5"} {"score": 0.9264786243438721, "chain_id": "3I3WADAZ9Q3YQYKEJXBI11U6DFH5O8_1_6"} {"score": 0.05172806605696678, "chain_id": "3I3WADAZ9Q3YQYKEJXBI11U6DFH5O8_1_1"} {"score": 0.06555509567260742, "chain_id": "3I3WADAZ9Q3YQYKEJXBI11U6DFH5O8_1_2"} {"score": 0.1725955605506897, "chain_id": "3I3WADAZ9Q3YQYKEJXBI11U6DFH5O8_1_3"} {"score": 0.21365496516227722, "chain_id": "3I3WADAZ9Q3YQYKEJXBI11U6DFH5O8_1_4"} {"score": 0.11031265556812286, "chain_id": "3I3WADAZ9Q3YQYKEJXBI11U6DFH5O8_1_7"} {"score": 0.036568328738212585, "chain_id": "3I3WADAZ9Q3YQYKEJXBI11U6DFH5O8_1_8"} {"score": 0.03086879290640354, "chain_id": "3I3WADAZ9Q3YQYKEJXBI11U6DFH5O8_1_9"} {"score": 0.05112758278846741, "chain_id": "3I3WADAZ9Q3YQYKEJXBI11U6DFH5O8_1_10"} {"score": 0.7348594069480896, "chain_id": "30X31N5D63PAUWOOLAJ8THKT52USAE_1_1"} {"score": 0.5639935731887817, "chain_id": "30X31N5D63PAUWOOLAJ8THKT52USAE_1_2"} {"score": 0.348746120929718, "chain_id": "30X31N5D63PAUWOOLAJ8THKT52USAE_1_3"} {"score": 0.46940967440605164, "chain_id": "30X31N5D63PAUWOOLAJ8THKT52USAE_1_4"} {"score": 0.055059198290109634, "chain_id": "30X31N5D63PAUWOOLAJ8THKT52USAE_1_5"} {"score": 0.0875561460852623, "chain_id": "30X31N5D63PAUWOOLAJ8THKT52USAE_1_6"} {"score": 0.4436066150665283, "chain_id": "30X31N5D63PAUWOOLAJ8THKT52USAE_1_7"} {"score": 0.7061092257499695, "chain_id": "30X31N5D63PAUWOOLAJ8THKT52USAE_1_8"} {"score": 0.6963911652565002, "chain_id": "30X31N5D63PAUWOOLAJ8THKT52USAE_1_9"} {"score": 0.9022942781448364, "chain_id": "30X31N5D63PAUWOOLAJ8THKT52USAE_1_10"} {"score": 0.8731732964515686, "chain_id": "3L4D84MILZRW5GDC4MKMI2GAIXAJH1_1_1"} {"score": 0.91841059923172, "chain_id": "3L4D84MILZRW5GDC4MKMI2GAIXAJH1_1_2"} {"score": 0.8771207928657532, "chain_id": "3L4D84MILZRW5GDC4MKMI2GAIXAJH1_1_4"} {"score": 0.335954874753952, "chain_id": "3L4D84MILZRW5GDC4MKMI2GAIXAJH1_1_7"} {"score": 0.43040400743484497, "chain_id": "3L4D84MILZRW5GDC4MKMI2GAIXAJH1_1_3"} {"score": 0.19694429636001587, "chain_id": "3L4D84MILZRW5GDC4MKMI2GAIXAJH1_1_5"} {"score": 0.2972787916660309, "chain_id": "3L4D84MILZRW5GDC4MKMI2GAIXAJH1_1_6"} {"score": 0.19321990013122559, "chain_id": "3L4D84MILZRW5GDC4MKMI2GAIXAJH1_1_8"} {"score": 0.2842824161052704, "chain_id": "3L4D84MILZRW5GDC4MKMI2GAIXAJH1_1_9"} {"score": 0.2984071373939514, "chain_id": "3L4D84MILZRW5GDC4MKMI2GAIXAJH1_1_10"} {"score": 0.9786624312400818, "chain_id": "32XVDSJFPZWIRYGFOYU7BQ2PX99M2E_1_1"} {"score": 0.9836788773536682, "chain_id": "32XVDSJFPZWIRYGFOYU7BQ2PX99M2E_1_2"} {"score": 0.08511678874492645, "chain_id": "32XVDSJFPZWIRYGFOYU7BQ2PX99M2E_1_5"} {"score": 0.11595524102449417, "chain_id": "32XVDSJFPZWIRYGFOYU7BQ2PX99M2E_1_8"} {"score": 0.16073669493198395, "chain_id": "32XVDSJFPZWIRYGFOYU7BQ2PX99M2E_1_3"} {"score": 0.803458034992218, "chain_id": "32XVDSJFPZWIRYGFOYU7BQ2PX99M2E_1_4"} {"score": 0.1011291965842247, "chain_id": "32XVDSJFPZWIRYGFOYU7BQ2PX99M2E_1_6"} {"score": 0.05650576576590538, "chain_id": "32XVDSJFPZWIRYGFOYU7BQ2PX99M2E_1_7"} {"score": 0.0987134575843811, "chain_id": "32XVDSJFPZWIRYGFOYU7BQ2PX99M2E_1_9"} {"score": 0.16336743533611298, "chain_id": "32XVDSJFPZWIRYGFOYU7BQ2PX99M2E_1_10"} {"score": 0.5767525434494019, "chain_id": "3URFVVM165HRAHO0M7U7PBTQW3EUZO_1_6"} {"score": 0.5466331839561462, "chain_id": "3URFVVM165HRAHO0M7U7PBTQW3EUZO_1_1"} {"score": 0.0675584003329277, "chain_id": "3URFVVM165HRAHO0M7U7PBTQW3EUZO_1_2"} {"score": 0.037769317626953125, "chain_id": "3URFVVM165HRAHO0M7U7PBTQW3EUZO_1_3"} {"score": 0.4840962290763855, "chain_id": "3URFVVM165HRAHO0M7U7PBTQW3EUZO_1_4"} {"score": 0.3180839717388153, "chain_id": "3URFVVM165HRAHO0M7U7PBTQW3EUZO_1_5"} {"score": 0.062021832913160324, "chain_id": "3URFVVM165HRAHO0M7U7PBTQW3EUZO_1_7"} {"score": 0.06914281845092773, "chain_id": "3URFVVM165HRAHO0M7U7PBTQW3EUZO_1_8"} {"score": 0.21044158935546875, "chain_id": "3URFVVM165HRAHO0M7U7PBTQW3EUZO_1_9"} {"score": 0.07410092651844025, "chain_id": "3URFVVM165HRAHO0M7U7PBTQW3EUZO_1_10"} {"score": 0.22857780754566193, "chain_id": "3EQHHY4HQSRAYL3GVEYAWSL4M2X5GA_1_1"} {"score": 0.0808168351650238, "chain_id": "3EQHHY4HQSRAYL3GVEYAWSL4M2X5GA_1_2"} {"score": 0.10468750447034836, "chain_id": "3EQHHY4HQSRAYL3GVEYAWSL4M2X5GA_1_3"} {"score": 0.11362957954406738, "chain_id": "3EQHHY4HQSRAYL3GVEYAWSL4M2X5GA_1_4"} {"score": 0.03324121981859207, "chain_id": "3EQHHY4HQSRAYL3GVEYAWSL4M2X5GA_1_5"} {"score": 0.028527729213237762, "chain_id": "3EQHHY4HQSRAYL3GVEYAWSL4M2X5GA_1_6"} {"score": 0.05434660613536835, "chain_id": "3EQHHY4HQSRAYL3GVEYAWSL4M2X5GA_1_7"} {"score": 0.20932643115520477, "chain_id": "3EQHHY4HQSRAYL3GVEYAWSL4M2X5GA_1_8"} {"score": 0.07504712790250778, "chain_id": "3EQHHY4HQSRAYL3GVEYAWSL4M2X5GA_1_9"} {"score": 0.08742783218622208, "chain_id": "3EQHHY4HQSRAYL3GVEYAWSL4M2X5GA_1_10"} {"score": 0.855313241481781, "chain_id": "36W0OB37HWDM5VIGM8N86W403E7ZHQ_1_1"} {"score": 0.3793259859085083, "chain_id": "36W0OB37HWDM5VIGM8N86W403E7ZHQ_1_4"} {"score": 0.8149463534355164, "chain_id": "36W0OB37HWDM5VIGM8N86W403E7ZHQ_1_9"} {"score": 0.13317695260047913, "chain_id": "36W0OB37HWDM5VIGM8N86W403E7ZHQ_1_2"} {"score": 0.4884543716907501, "chain_id": "36W0OB37HWDM5VIGM8N86W403E7ZHQ_1_3"} {"score": 0.3518892228603363, "chain_id": "36W0OB37HWDM5VIGM8N86W403E7ZHQ_1_5"} {"score": 0.030815741047263145, "chain_id": "36W0OB37HWDM5VIGM8N86W403E7ZHQ_1_6"} {"score": 0.05375466123223305, "chain_id": "36W0OB37HWDM5VIGM8N86W403E7ZHQ_1_7"} {"score": 0.1791291981935501, "chain_id": "36W0OB37HWDM5VIGM8N86W403E7ZHQ_1_8"} {"score": 0.03719339892268181, "chain_id": "36W0OB37HWDM5VIGM8N86W403E7ZHQ_1_10"} {"score": 0.026271257549524307, "chain_id": "3PS7W85Z8Z1X4DRYI4AY7R5VZ5TT9U_1_1"} {"score": 0.02761143632233143, "chain_id": "3PS7W85Z8Z1X4DRYI4AY7R5VZ5TT9U_1_2"} {"score": 0.032455071806907654, "chain_id": "3PS7W85Z8Z1X4DRYI4AY7R5VZ5TT9U_1_3"} {"score": 0.009344419464468956, "chain_id": "3PS7W85Z8Z1X4DRYI4AY7R5VZ5TT9U_1_4"} {"score": 0.012788851745426655, "chain_id": "3PS7W85Z8Z1X4DRYI4AY7R5VZ5TT9U_1_5"} {"score": 0.01692446880042553, "chain_id": "3PS7W85Z8Z1X4DRYI4AY7R5VZ5TT9U_1_6"} {"score": 0.026463503018021584, "chain_id": "3PS7W85Z8Z1X4DRYI4AY7R5VZ5TT9U_1_7"} {"score": 0.03403882682323456, "chain_id": "3PS7W85Z8Z1X4DRYI4AY7R5VZ5TT9U_1_8"} {"score": 0.01927460916340351, "chain_id": "3PS7W85Z8Z1X4DRYI4AY7R5VZ5TT9U_1_9"} {"score": 0.02757415361702442, "chain_id": "3PS7W85Z8Z1X4DRYI4AY7R5VZ5TT9U_1_10"} {"score": 0.8323594331741333, "chain_id": "3DH6GAKTYYO8RQ85W8RWSWZ3TCGZYP_1_1"} {"score": 0.9115866422653198, "chain_id": "3DH6GAKTYYO8RQ85W8RWSWZ3TCGZYP_1_2"} {"score": 0.9455037117004395, "chain_id": "3DH6GAKTYYO8RQ85W8RWSWZ3TCGZYP_1_3"} {"score": 0.8768476843833923, "chain_id": "3DH6GAKTYYO8RQ85W8RWSWZ3TCGZYP_1_4"} {"score": 0.17824304103851318, "chain_id": "3DH6GAKTYYO8RQ85W8RWSWZ3TCGZYP_1_5"} {"score": 0.03334375470876694, "chain_id": "3DH6GAKTYYO8RQ85W8RWSWZ3TCGZYP_1_6"} {"score": 0.08647208660840988, "chain_id": "3DH6GAKTYYO8RQ85W8RWSWZ3TCGZYP_1_7"} {"score": 0.04796748608350754, "chain_id": "3DH6GAKTYYO8RQ85W8RWSWZ3TCGZYP_1_8"} {"score": 0.05528947338461876, "chain_id": "3DH6GAKTYYO8RQ85W8RWSWZ3TCGZYP_1_9"} {"score": 0.08368546515703201, "chain_id": "3DH6GAKTYYO8RQ85W8RWSWZ3TCGZYP_1_10"} {"score": 0.9806745648384094, "chain_id": "3XIQGXAUMC707BCP8HDBIYZVFVFX7T_1_1"} {"score": 0.9799096584320068, "chain_id": "3XIQGXAUMC707BCP8HDBIYZVFVFX7T_1_2"} {"score": 0.7397955060005188, "chain_id": "3XIQGXAUMC707BCP8HDBIYZVFVFX7T_1_6"} {"score": 0.3093128204345703, "chain_id": "3XIQGXAUMC707BCP8HDBIYZVFVFX7T_1_8"} {"score": 0.5611846446990967, "chain_id": "3XIQGXAUMC707BCP8HDBIYZVFVFX7T_1_3"} {"score": 0.717001736164093, "chain_id": "3XIQGXAUMC707BCP8HDBIYZVFVFX7T_1_4"} {"score": 0.6815887689590454, "chain_id": "3XIQGXAUMC707BCP8HDBIYZVFVFX7T_1_5"} {"score": 0.25685441493988037, "chain_id": "3XIQGXAUMC707BCP8HDBIYZVFVFX7T_1_7"} {"score": 0.2170405238866806, "chain_id": "3XIQGXAUMC707BCP8HDBIYZVFVFX7T_1_9"} {"score": 0.07534391433000565, "chain_id": "3XIQGXAUMC707BCP8HDBIYZVFVFX7T_1_10"} {"score": 0.9908722043037415, "chain_id": "3X31TUMD7XLRWVGY5ITE6UDV7LP1L6_1_1"} {"score": 0.9917176961898804, "chain_id": "3X31TUMD7XLRWVGY5ITE6UDV7LP1L6_1_2"} {"score": 0.1935657411813736, "chain_id": "3X31TUMD7XLRWVGY5ITE6UDV7LP1L6_1_5"} {"score": 0.2793411314487457, "chain_id": "3X31TUMD7XLRWVGY5ITE6UDV7LP1L6_1_3"} {"score": 0.7521197199821472, "chain_id": "3X31TUMD7XLRWVGY5ITE6UDV7LP1L6_1_4"} {"score": 0.3374629020690918, "chain_id": "3X31TUMD7XLRWVGY5ITE6UDV7LP1L6_1_6"} {"score": 0.6853346228599548, "chain_id": "3X31TUMD7XLRWVGY5ITE6UDV7LP1L6_1_7"} {"score": 0.3618714213371277, "chain_id": "3X31TUMD7XLRWVGY5ITE6UDV7LP1L6_1_8"} {"score": 0.05121814087033272, "chain_id": "3X31TUMD7XLRWVGY5ITE6UDV7LP1L6_1_9"} {"score": 0.10020145773887634, "chain_id": "3X31TUMD7XLRWVGY5ITE6UDV7LP1L6_1_10"} {"score": 0.14055277407169342, "chain_id": "3G0WWMR1UVJ51Z302AZ8KNPSINJNQF_1_1"} {"score": 0.122966468334198, "chain_id": "3G0WWMR1UVJ51Z302AZ8KNPSINJNQF_1_2"} {"score": 0.022918615490198135, "chain_id": "3G0WWMR1UVJ51Z302AZ8KNPSINJNQF_1_3"} {"score": 0.03134285286068916, "chain_id": "3G0WWMR1UVJ51Z302AZ8KNPSINJNQF_1_4"} {"score": 0.01916554756462574, "chain_id": "3G0WWMR1UVJ51Z302AZ8KNPSINJNQF_1_5"} {"score": 0.017030350863933563, "chain_id": "3G0WWMR1UVJ51Z302AZ8KNPSINJNQF_1_6"} {"score": 0.03683020919561386, "chain_id": "3G0WWMR1UVJ51Z302AZ8KNPSINJNQF_1_7"} {"score": 0.08465172350406647, "chain_id": "3G0WWMR1UVJ51Z302AZ8KNPSINJNQF_1_8"} {"score": 0.04177531599998474, "chain_id": "3G0WWMR1UVJ51Z302AZ8KNPSINJNQF_1_9"} {"score": 0.054320160299539566, "chain_id": "3G0WWMR1UVJ51Z302AZ8KNPSINJNQF_1_10"} {"score": 0.8119080662727356, "chain_id": "3ZY8KE4ISJ2I94C941LZU4J546PQVZ_1_5"} {"score": 0.5888422727584839, "chain_id": "3ZY8KE4ISJ2I94C941LZU4J546PQVZ_1_6"} {"score": 0.2708995044231415, "chain_id": "3ZY8KE4ISJ2I94C941LZU4J546PQVZ_1_9"} {"score": 0.13828805088996887, "chain_id": "3ZY8KE4ISJ2I94C941LZU4J546PQVZ_1_1"} {"score": 0.067764513194561, "chain_id": "3ZY8KE4ISJ2I94C941LZU4J546PQVZ_1_2"} {"score": 0.15315599739551544, "chain_id": "3ZY8KE4ISJ2I94C941LZU4J546PQVZ_1_3"} {"score": 0.13260141015052795, "chain_id": "3ZY8KE4ISJ2I94C941LZU4J546PQVZ_1_4"} {"score": 0.0789167657494545, "chain_id": "3ZY8KE4ISJ2I94C941LZU4J546PQVZ_1_7"} {"score": 0.7187663316726685, "chain_id": "3ZY8KE4ISJ2I94C941LZU4J546PQVZ_1_8"} {"score": 0.02888358384370804, "chain_id": "3ZY8KE4ISJ2I94C941LZU4J546PQVZ_1_10"} {"score": 0.0276004821062088, "chain_id": "3ATPCQ38J897QI0XKGBXB38UJ2EYAD_1_1"} {"score": 0.03827393800020218, "chain_id": "3ATPCQ38J897QI0XKGBXB38UJ2EYAD_1_2"} {"score": 0.03136732801795006, "chain_id": "3ATPCQ38J897QI0XKGBXB38UJ2EYAD_1_3"} {"score": 0.04904628172516823, "chain_id": "3ATPCQ38J897QI0XKGBXB38UJ2EYAD_1_4"} {"score": 0.017657354474067688, "chain_id": "3ATPCQ38J897QI0XKGBXB38UJ2EYAD_1_5"} {"score": 0.023841796442866325, "chain_id": "3ATPCQ38J897QI0XKGBXB38UJ2EYAD_1_6"} {"score": 0.0225426834076643, "chain_id": "3ATPCQ38J897QI0XKGBXB38UJ2EYAD_1_7"} {"score": 0.02240620367228985, "chain_id": "3ATPCQ38J897QI0XKGBXB38UJ2EYAD_1_8"} {"score": 0.03705412894487381, "chain_id": "3ATPCQ38J897QI0XKGBXB38UJ2EYAD_1_9"} {"score": 0.024486180394887924, "chain_id": "3ATPCQ38J897QI0XKGBXB38UJ2EYAD_1_10"} {"score": 0.4670570194721222, "chain_id": "3QY5DC2MXRJL50X0LV00MJD8KWHUFT_1_1"} {"score": 0.17084799706935883, "chain_id": "3QY5DC2MXRJL50X0LV00MJD8KWHUFT_1_2"} {"score": 0.07854858785867691, "chain_id": "3QY5DC2MXRJL50X0LV00MJD8KWHUFT_1_3"} {"score": 0.8064721822738647, "chain_id": "3QY5DC2MXRJL50X0LV00MJD8KWHUFT_1_4"} {"score": 0.07466591149568558, "chain_id": "3QY5DC2MXRJL50X0LV00MJD8KWHUFT_1_5"} {"score": 0.03260458633303642, "chain_id": "3QY5DC2MXRJL50X0LV00MJD8KWHUFT_1_6"} {"score": 0.1111137717962265, "chain_id": "3QY5DC2MXRJL50X0LV00MJD8KWHUFT_1_7"} {"score": 0.16425010561943054, "chain_id": "3QY5DC2MXRJL50X0LV00MJD8KWHUFT_1_8"} {"score": 0.1810707300901413, "chain_id": "3QY5DC2MXRJL50X0LV00MJD8KWHUFT_1_9"} {"score": 0.06490698456764221, "chain_id": "3QY5DC2MXRJL50X0LV00MJD8KWHUFT_1_10"} {"score": 0.02018425241112709, "chain_id": "3D3VGR7TA0EY9WPQX64TGZ1RACX3RO_1_1"} {"score": 0.12331627309322357, "chain_id": "3D3VGR7TA0EY9WPQX64TGZ1RACX3RO_1_2"} {"score": 0.02151038497686386, "chain_id": "3D3VGR7TA0EY9WPQX64TGZ1RACX3RO_1_3"} {"score": 0.08388110995292664, "chain_id": "3D3VGR7TA0EY9WPQX64TGZ1RACX3RO_1_4"} {"score": 0.05189235508441925, "chain_id": "3D3VGR7TA0EY9WPQX64TGZ1RACX3RO_1_5"} {"score": 0.026944240555167198, "chain_id": "3D3VGR7TA0EY9WPQX64TGZ1RACX3RO_1_6"} {"score": 0.05916052311658859, "chain_id": "3D3VGR7TA0EY9WPQX64TGZ1RACX3RO_1_7"} {"score": 0.049784813076257706, "chain_id": "3D3VGR7TA0EY9WPQX64TGZ1RACX3RO_1_8"} {"score": 0.17481975257396698, "chain_id": "3D3VGR7TA0EY9WPQX64TGZ1RACX3RO_1_9"} {"score": 0.13009588420391083, "chain_id": "3D3VGR7TA0EY9WPQX64TGZ1RACX3RO_1_10"} {"score": 0.9424861073493958, "chain_id": "32Z9ZLUT1LJA6R49KZCRQYXWLKHOHC_1_1"} {"score": 0.8929646611213684, "chain_id": "32Z9ZLUT1LJA6R49KZCRQYXWLKHOHC_1_2"} {"score": 0.9099879264831543, "chain_id": "32Z9ZLUT1LJA6R49KZCRQYXWLKHOHC_1_3"} {"score": 0.8657948970794678, "chain_id": "32Z9ZLUT1LJA6R49KZCRQYXWLKHOHC_1_4"} {"score": 0.8469035029411316, "chain_id": "32Z9ZLUT1LJA6R49KZCRQYXWLKHOHC_1_5"} {"score": 0.3514905273914337, "chain_id": "32Z9ZLUT1LJA6R49KZCRQYXWLKHOHC_1_6"} {"score": 0.12792295217514038, "chain_id": "32Z9ZLUT1LJA6R49KZCRQYXWLKHOHC_1_7"} {"score": 0.01997818984091282, "chain_id": "32Z9ZLUT1LJA6R49KZCRQYXWLKHOHC_1_8"} {"score": 0.06060658022761345, "chain_id": "32Z9ZLUT1LJA6R49KZCRQYXWLKHOHC_1_9"} {"score": 0.01744762621819973, "chain_id": "32Z9ZLUT1LJA6R49KZCRQYXWLKHOHC_1_10"} {"score": 0.11463215202093124, "chain_id": "3PIWWX1FJJ5SWM82SMN7UFWPZJHJJ1_1_8"} {"score": 0.09200224280357361, "chain_id": "3PIWWX1FJJ5SWM82SMN7UFWPZJHJJ1_1_1"} {"score": 0.016370244324207306, "chain_id": "3PIWWX1FJJ5SWM82SMN7UFWPZJHJJ1_1_2"} {"score": 0.020495884120464325, "chain_id": "3PIWWX1FJJ5SWM82SMN7UFWPZJHJJ1_1_3"} {"score": 0.01743045076727867, "chain_id": "3PIWWX1FJJ5SWM82SMN7UFWPZJHJJ1_1_4"} {"score": 0.050704225897789, "chain_id": "3PIWWX1FJJ5SWM82SMN7UFWPZJHJJ1_1_5"} {"score": 0.38215747475624084, "chain_id": "3PIWWX1FJJ5SWM82SMN7UFWPZJHJJ1_1_6"} {"score": 0.019577275961637497, "chain_id": "3PIWWX1FJJ5SWM82SMN7UFWPZJHJJ1_1_7"} {"score": 0.08796490728855133, "chain_id": "3PIWWX1FJJ5SWM82SMN7UFWPZJHJJ1_1_9"} {"score": 0.03465576842427254, "chain_id": "3PIWWX1FJJ5SWM82SMN7UFWPZJHJJ1_1_10"} {"score": 0.9702723622322083, "chain_id": "308XBLVESI33CRT3CZJZYIZ3XLVBR5_1_2"} {"score": 0.9858176112174988, "chain_id": "308XBLVESI33CRT3CZJZYIZ3XLVBR5_1_3"} {"score": 0.40914058685302734, "chain_id": "308XBLVESI33CRT3CZJZYIZ3XLVBR5_1_8"} {"score": 0.7148237228393555, "chain_id": "308XBLVESI33CRT3CZJZYIZ3XLVBR5_1_10"} {"score": 0.9601445198059082, "chain_id": "308XBLVESI33CRT3CZJZYIZ3XLVBR5_1_1"} {"score": 0.9373387098312378, "chain_id": "308XBLVESI33CRT3CZJZYIZ3XLVBR5_1_4"} {"score": 0.48224154114723206, "chain_id": "308XBLVESI33CRT3CZJZYIZ3XLVBR5_1_5"} {"score": 0.32178324460983276, "chain_id": "308XBLVESI33CRT3CZJZYIZ3XLVBR5_1_6"} {"score": 0.5825563073158264, "chain_id": "308XBLVESI33CRT3CZJZYIZ3XLVBR5_1_7"} {"score": 0.43750250339508057, "chain_id": "308XBLVESI33CRT3CZJZYIZ3XLVBR5_1_9"} {"score": 0.9604309797286987, "chain_id": "36W0OB37HWDM5VIGM8N86W401V3ZHI_1_1"} {"score": 0.21017993986606598, "chain_id": "36W0OB37HWDM5VIGM8N86W401V3ZHI_1_3"} {"score": 0.4195299446582794, "chain_id": "36W0OB37HWDM5VIGM8N86W401V3ZHI_1_4"} {"score": 0.8728730082511902, "chain_id": "36W0OB37HWDM5VIGM8N86W401V3ZHI_1_5"} {"score": 0.8815140128135681, "chain_id": "36W0OB37HWDM5VIGM8N86W401V3ZHI_1_2"} {"score": 0.07596690207719803, "chain_id": "36W0OB37HWDM5VIGM8N86W401V3ZHI_1_6"} {"score": 0.06919725984334946, "chain_id": "36W0OB37HWDM5VIGM8N86W401V3ZHI_1_7"} {"score": 0.026425769552588463, "chain_id": "36W0OB37HWDM5VIGM8N86W401V3ZHI_1_8"} {"score": 0.6252869963645935, "chain_id": "36W0OB37HWDM5VIGM8N86W401V3ZHI_1_9"} {"score": 0.04096619039773941, "chain_id": "36W0OB37HWDM5VIGM8N86W401V3ZHI_1_10"} {"score": 0.46043887734413147, "chain_id": "3IHR8NYAM70YFFSFKS5NL9TIMUG4PS_1_7"} {"score": 0.5922839641571045, "chain_id": "3IHR8NYAM70YFFSFKS5NL9TIMUG4PS_1_1"} {"score": 0.6909554600715637, "chain_id": "3IHR8NYAM70YFFSFKS5NL9TIMUG4PS_1_2"} {"score": 0.6445025205612183, "chain_id": "3IHR8NYAM70YFFSFKS5NL9TIMUG4PS_1_3"} {"score": 0.39087989926338196, "chain_id": "3IHR8NYAM70YFFSFKS5NL9TIMUG4PS_1_4"} {"score": 0.12088826298713684, "chain_id": "3IHR8NYAM70YFFSFKS5NL9TIMUG4PS_1_5"} {"score": 0.09266719967126846, "chain_id": "3IHR8NYAM70YFFSFKS5NL9TIMUG4PS_1_6"} {"score": 0.4405986964702606, "chain_id": "3IHR8NYAM70YFFSFKS5NL9TIMUG4PS_1_8"} {"score": 0.06801671534776688, "chain_id": "3IHR8NYAM70YFFSFKS5NL9TIMUG4PS_1_9"} {"score": 0.8684747219085693, "chain_id": "3IHR8NYAM70YFFSFKS5NL9TIMUG4PS_1_10"} {"score": 0.6703656315803528, "chain_id": "3R5F3LQFV2JWXC43QLIYQ511HZEOZW_1_2"} {"score": 0.9059786796569824, "chain_id": "3R5F3LQFV2JWXC43QLIYQ511HZEOZW_1_3"} {"score": 0.7014577984809875, "chain_id": "3R5F3LQFV2JWXC43QLIYQ511HZEOZW_1_4"} {"score": 0.09778066724538803, "chain_id": "3R5F3LQFV2JWXC43QLIYQ511HZEOZW_1_9"} {"score": 0.9900189638137817, "chain_id": "3R5F3LQFV2JWXC43QLIYQ511HZEOZW_1_1"} {"score": 0.9905951023101807, "chain_id": "3R5F3LQFV2JWXC43QLIYQ511HZEOZW_1_5"} {"score": 0.4475460350513458, "chain_id": "3R5F3LQFV2JWXC43QLIYQ511HZEOZW_1_6"} {"score": 0.35306116938591003, "chain_id": "3R5F3LQFV2JWXC43QLIYQ511HZEOZW_1_7"} {"score": 0.6322989463806152, "chain_id": "3R5F3LQFV2JWXC43QLIYQ511HZEOZW_1_8"} {"score": 0.15265478193759918, "chain_id": "3R5F3LQFV2JWXC43QLIYQ511HZEOZW_1_10"} {"score": 0.8867703676223755, "chain_id": "3GU1KF0O4I0I0EDOZ7FATNZOWMYPBK_1_2"} {"score": 0.9867240786552429, "chain_id": "3GU1KF0O4I0I0EDOZ7FATNZOWMYPBK_1_3"} {"score": 0.9323352575302124, "chain_id": "3GU1KF0O4I0I0EDOZ7FATNZOWMYPBK_1_4"} {"score": 0.9191121459007263, "chain_id": "3GU1KF0O4I0I0EDOZ7FATNZOWMYPBK_1_1"} {"score": 0.3378153145313263, "chain_id": "3GU1KF0O4I0I0EDOZ7FATNZOWMYPBK_1_5"} {"score": 0.20744037628173828, "chain_id": "3GU1KF0O4I0I0EDOZ7FATNZOWMYPBK_1_6"} {"score": 0.39530834555625916, "chain_id": "3GU1KF0O4I0I0EDOZ7FATNZOWMYPBK_1_7"} {"score": 0.22029514610767365, "chain_id": "3GU1KF0O4I0I0EDOZ7FATNZOWMYPBK_1_8"} {"score": 0.05869322642683983, "chain_id": "3GU1KF0O4I0I0EDOZ7FATNZOWMYPBK_1_9"} {"score": 0.04173249751329422, "chain_id": "3GU1KF0O4I0I0EDOZ7FATNZOWMYPBK_1_10"} {"score": 0.990285336971283, "chain_id": "3PDJHANYK5FKHLY5K3QX9YB5ZZR6H2_1_1"} {"score": 0.6985732316970825, "chain_id": "3PDJHANYK5FKHLY5K3QX9YB5ZZR6H2_1_2"} {"score": 0.7042280435562134, "chain_id": "3PDJHANYK5FKHLY5K3QX9YB5ZZR6H2_1_3"} {"score": 0.9888967275619507, "chain_id": "3PDJHANYK5FKHLY5K3QX9YB5ZZR6H2_1_4"} {"score": 0.5922606587409973, "chain_id": "3PDJHANYK5FKHLY5K3QX9YB5ZZR6H2_1_5"} {"score": 0.4072323143482208, "chain_id": "3PDJHANYK5FKHLY5K3QX9YB5ZZR6H2_1_6"} {"score": 0.4321288466453552, "chain_id": "3PDJHANYK5FKHLY5K3QX9YB5ZZR6H2_1_7"} {"score": 0.473145455121994, "chain_id": "3PDJHANYK5FKHLY5K3QX9YB5ZZR6H2_1_8"} {"score": 0.021841155365109444, "chain_id": "3PDJHANYK5FKHLY5K3QX9YB5ZZR6H2_1_9"} {"score": 0.03131723403930664, "chain_id": "3PDJHANYK5FKHLY5K3QX9YB5ZZR6H2_1_10"} {"score": 0.836219072341919, "chain_id": "3JJVG1YBEBWE74V5FS6WVHU78VB5BD_1_1"} {"score": 0.12444846332073212, "chain_id": "3JJVG1YBEBWE74V5FS6WVHU78VB5BD_1_2"} {"score": 0.0805387794971466, "chain_id": "3JJVG1YBEBWE74V5FS6WVHU78VB5BD_1_3"} {"score": 0.7465920448303223, "chain_id": "3JJVG1YBEBWE74V5FS6WVHU78VB5BD_1_4"} {"score": 0.17593063414096832, "chain_id": "3JJVG1YBEBWE74V5FS6WVHU78VB5BD_1_5"} {"score": 0.020115358754992485, "chain_id": "3JJVG1YBEBWE74V5FS6WVHU78VB5BD_1_6"} {"score": 0.22527022659778595, "chain_id": "3JJVG1YBEBWE74V5FS6WVHU78VB5BD_1_7"} {"score": 0.028116583824157715, "chain_id": "3JJVG1YBEBWE74V5FS6WVHU78VB5BD_1_8"} {"score": 0.7956109046936035, "chain_id": "3JJVG1YBEBWE74V5FS6WVHU78VB5BD_1_9"} {"score": 0.02584243193268776, "chain_id": "3JJVG1YBEBWE74V5FS6WVHU78VB5BD_1_10"} {"score": 0.31947124004364014, "chain_id": "3L70J4KAZGL4S756OKOJYIYT46GADC_1_8"} {"score": 0.07379372417926788, "chain_id": "3L70J4KAZGL4S756OKOJYIYT46GADC_1_9"} {"score": 0.16751030087471008, "chain_id": "3L70J4KAZGL4S756OKOJYIYT46GADC_1_1"} {"score": 0.30400511622428894, "chain_id": "3L70J4KAZGL4S756OKOJYIYT46GADC_1_2"} {"score": 0.10479998588562012, "chain_id": "3L70J4KAZGL4S756OKOJYIYT46GADC_1_3"} {"score": 0.05939459800720215, "chain_id": "3L70J4KAZGL4S756OKOJYIYT46GADC_1_4"} {"score": 0.3947587013244629, "chain_id": "3L70J4KAZGL4S756OKOJYIYT46GADC_1_5"} {"score": 0.1335369497537613, "chain_id": "3L70J4KAZGL4S756OKOJYIYT46GADC_1_6"} {"score": 0.3081148862838745, "chain_id": "3L70J4KAZGL4S756OKOJYIYT46GADC_1_7"} {"score": 0.03932870179414749, "chain_id": "3L70J4KAZGL4S756OKOJYIYT46GADC_1_10"} {"score": 0.17562979459762573, "chain_id": "3K2755HG5S2ZOYMEZ0ABCJ9KV45DFY_1_6"} {"score": 0.2070552408695221, "chain_id": "3K2755HG5S2ZOYMEZ0ABCJ9KV45DFY_1_1"} {"score": 0.056136149913072586, "chain_id": "3K2755HG5S2ZOYMEZ0ABCJ9KV45DFY_1_2"} {"score": 0.017117226496338844, "chain_id": "3K2755HG5S2ZOYMEZ0ABCJ9KV45DFY_1_3"} {"score": 0.07486531138420105, "chain_id": "3K2755HG5S2ZOYMEZ0ABCJ9KV45DFY_1_4"} {"score": 0.12899433076381683, "chain_id": "3K2755HG5S2ZOYMEZ0ABCJ9KV45DFY_1_5"} {"score": 0.10170164704322815, "chain_id": "3K2755HG5S2ZOYMEZ0ABCJ9KV45DFY_1_7"} {"score": 0.05091805011034012, "chain_id": "3K2755HG5S2ZOYMEZ0ABCJ9KV45DFY_1_8"} {"score": 0.03360820561647415, "chain_id": "3K2755HG5S2ZOYMEZ0ABCJ9KV45DFY_1_9"} {"score": 0.026322776451706886, "chain_id": "3K2755HG5S2ZOYMEZ0ABCJ9KV45DFY_1_10"} {"score": 0.8264751434326172, "chain_id": "3WI0P0II61RWRORNQVA5T8N3YVHRDE_1_2"} {"score": 0.6875982284545898, "chain_id": "3WI0P0II61RWRORNQVA5T8N3YVHRDE_1_5"} {"score": 0.40925365686416626, "chain_id": "3WI0P0II61RWRORNQVA5T8N3YVHRDE_1_1"} {"score": 0.08740858733654022, "chain_id": "3WI0P0II61RWRORNQVA5T8N3YVHRDE_1_3"} {"score": 0.10063909739255905, "chain_id": "3WI0P0II61RWRORNQVA5T8N3YVHRDE_1_4"} {"score": 0.04097456485033035, "chain_id": "3WI0P0II61RWRORNQVA5T8N3YVHRDE_1_6"} {"score": 0.1108706146478653, "chain_id": "3WI0P0II61RWRORNQVA5T8N3YVHRDE_1_7"} {"score": 0.024064702913165092, "chain_id": "3WI0P0II61RWRORNQVA5T8N3YVHRDE_1_8"} {"score": 0.021372100338339806, "chain_id": "3WI0P0II61RWRORNQVA5T8N3YVHRDE_1_9"} {"score": 0.021450860425829887, "chain_id": "3WI0P0II61RWRORNQVA5T8N3YVHRDE_1_10"} {"score": 0.8973820209503174, "chain_id": "3K3R2QNK8B2C4Q6NI908CNRXEAMU9M_1_4"} {"score": 0.8847006559371948, "chain_id": "3K3R2QNK8B2C4Q6NI908CNRXEAMU9M_1_1"} {"score": 0.902370810508728, "chain_id": "3K3R2QNK8B2C4Q6NI908CNRXEAMU9M_1_2"} {"score": 0.13522280752658844, "chain_id": "3K3R2QNK8B2C4Q6NI908CNRXEAMU9M_1_3"} {"score": 0.8746687769889832, "chain_id": "3K3R2QNK8B2C4Q6NI908CNRXEAMU9M_1_5"} {"score": 0.1197073757648468, "chain_id": "3K3R2QNK8B2C4Q6NI908CNRXEAMU9M_1_6"} {"score": 0.11936161667108536, "chain_id": "3K3R2QNK8B2C4Q6NI908CNRXEAMU9M_1_7"} {"score": 0.17434842884540558, "chain_id": "3K3R2QNK8B2C4Q6NI908CNRXEAMU9M_1_8"} {"score": 0.08004308491945267, "chain_id": "3K3R2QNK8B2C4Q6NI908CNRXEAMU9M_1_9"} {"score": 0.15966960787773132, "chain_id": "3K3R2QNK8B2C4Q6NI908CNRXEAMU9M_1_10"} {"score": 0.0588693767786026, "chain_id": "3Q5C1WP23M0DU6DDDVD7P5HYIAQ51E_1_1"} {"score": 0.027301879599690437, "chain_id": "3Q5C1WP23M0DU6DDDVD7P5HYIAQ51E_1_2"} {"score": 0.3145056962966919, "chain_id": "3Q5C1WP23M0DU6DDDVD7P5HYIAQ51E_1_3"} {"score": 0.054338954389095306, "chain_id": "3Q5C1WP23M0DU6DDDVD7P5HYIAQ51E_1_4"} {"score": 0.0799989104270935, "chain_id": "3Q5C1WP23M0DU6DDDVD7P5HYIAQ51E_1_5"} {"score": 0.04604094848036766, "chain_id": "3Q5C1WP23M0DU6DDDVD7P5HYIAQ51E_1_6"} {"score": 0.02138127014040947, "chain_id": "3Q5C1WP23M0DU6DDDVD7P5HYIAQ51E_1_7"} {"score": 0.05200296267867088, "chain_id": "3Q5C1WP23M0DU6DDDVD7P5HYIAQ51E_1_8"} {"score": 0.0940156951546669, "chain_id": "3Q5C1WP23M0DU6DDDVD7P5HYIAQ51E_1_9"} {"score": 0.03400594741106033, "chain_id": "3Q5C1WP23M0DU6DDDVD7P5HYIAQ51E_1_10"} {"score": 0.49219098687171936, "chain_id": "3ZSY5X72NXANVLICG4OL42Z28H0RO9_1_1"} {"score": 0.6870032548904419, "chain_id": "3ZSY5X72NXANVLICG4OL42Z28H0RO9_1_2"} {"score": 0.9065099358558655, "chain_id": "3ZSY5X72NXANVLICG4OL42Z28H0RO9_1_3"} {"score": 0.6951137781143188, "chain_id": "3ZSY5X72NXANVLICG4OL42Z28H0RO9_1_4"} {"score": 0.045572999864816666, "chain_id": "3ZSY5X72NXANVLICG4OL42Z28H0RO9_1_5"} {"score": 0.032945986837148666, "chain_id": "3ZSY5X72NXANVLICG4OL42Z28H0RO9_1_6"} {"score": 0.027892710641026497, "chain_id": "3ZSY5X72NXANVLICG4OL42Z28H0RO9_1_7"} {"score": 0.07452057301998138, "chain_id": "3ZSY5X72NXANVLICG4OL42Z28H0RO9_1_8"} {"score": 0.2206573337316513, "chain_id": "3ZSY5X72NXANVLICG4OL42Z28H0RO9_1_9"} {"score": 0.050191737711429596, "chain_id": "3ZSY5X72NXANVLICG4OL42Z28H0RO9_1_10"} {"score": 0.9468326568603516, "chain_id": "3FPRZHYEPY6Q23676Q93HWQUYX83VC_1_1"} {"score": 0.4601684510707855, "chain_id": "3FPRZHYEPY6Q23676Q93HWQUYX83VC_1_3"} {"score": 0.5100127458572388, "chain_id": "3FPRZHYEPY6Q23676Q93HWQUYX83VC_1_2"} {"score": 0.44454124569892883, "chain_id": "3FPRZHYEPY6Q23676Q93HWQUYX83VC_1_4"} {"score": 0.07359501719474792, "chain_id": "3FPRZHYEPY6Q23676Q93HWQUYX83VC_1_5"} {"score": 0.030590591952204704, "chain_id": "3FPRZHYEPY6Q23676Q93HWQUYX83VC_1_6"} {"score": 0.029221966862678528, "chain_id": "3FPRZHYEPY6Q23676Q93HWQUYX83VC_1_7"} {"score": 0.15774573385715485, "chain_id": "3FPRZHYEPY6Q23676Q93HWQUYX83VC_1_8"} {"score": 0.023512642830610275, "chain_id": "3FPRZHYEPY6Q23676Q93HWQUYX83VC_1_9"} {"score": 0.03229328244924545, "chain_id": "3FPRZHYEPY6Q23676Q93HWQUYX83VC_1_10"} {"score": 0.1048070564866066, "chain_id": "3W92K5RLWUGTGITBK9XWWTOECZJ5V0_1_1"} {"score": 0.022638307884335518, "chain_id": "3W92K5RLWUGTGITBK9XWWTOECZJ5V0_1_2"} {"score": 0.03357860818505287, "chain_id": "3W92K5RLWUGTGITBK9XWWTOECZJ5V0_1_3"} {"score": 0.02273036539554596, "chain_id": "3W92K5RLWUGTGITBK9XWWTOECZJ5V0_1_4"} {"score": 0.025740431621670723, "chain_id": "3W92K5RLWUGTGITBK9XWWTOECZJ5V0_1_5"} {"score": 0.0652720257639885, "chain_id": "3W92K5RLWUGTGITBK9XWWTOECZJ5V0_1_6"} {"score": 0.04598253220319748, "chain_id": "3W92K5RLWUGTGITBK9XWWTOECZJ5V0_1_7"} {"score": 0.064106784760952, "chain_id": "3W92K5RLWUGTGITBK9XWWTOECZJ5V0_1_8"} {"score": 0.014853360131382942, "chain_id": "3W92K5RLWUGTGITBK9XWWTOECZJ5V0_1_9"} {"score": 0.07454358041286469, "chain_id": "3W92K5RLWUGTGITBK9XWWTOECZJ5V0_1_10"} {"score": 0.8730283975601196, "chain_id": "3A1COHJ8NJU7LZHTDINVTC7W6FOH8D_1_1"} {"score": 0.731550395488739, "chain_id": "3A1COHJ8NJU7LZHTDINVTC7W6FOH8D_1_3"} {"score": 0.7924871444702148, "chain_id": "3A1COHJ8NJU7LZHTDINVTC7W6FOH8D_1_2"} {"score": 0.7282619476318359, "chain_id": "3A1COHJ8NJU7LZHTDINVTC7W6FOH8D_1_4"} {"score": 0.08540116995573044, "chain_id": "3A1COHJ8NJU7LZHTDINVTC7W6FOH8D_1_5"} {"score": 0.10797961801290512, "chain_id": "3A1COHJ8NJU7LZHTDINVTC7W6FOH8D_1_6"} {"score": 0.12687593698501587, "chain_id": "3A1COHJ8NJU7LZHTDINVTC7W6FOH8D_1_7"} {"score": 0.1469944566488266, "chain_id": "3A1COHJ8NJU7LZHTDINVTC7W6FOH8D_1_8"} {"score": 0.12232885509729385, "chain_id": "3A1COHJ8NJU7LZHTDINVTC7W6FOH8D_1_9"} {"score": 0.020015686750411987, "chain_id": "3A1COHJ8NJU7LZHTDINVTC7W6FOH8D_1_10"} {"score": 0.06052149832248688, "chain_id": "3MD9PLUKKIDEFR4RP6ILBG1WR22NZZ_1_1"} {"score": 0.023436326533555984, "chain_id": "3MD9PLUKKIDEFR4RP6ILBG1WR22NZZ_1_2"} {"score": 0.03553759679198265, "chain_id": "3MD9PLUKKIDEFR4RP6ILBG1WR22NZZ_1_3"} {"score": 0.02979547344148159, "chain_id": "3MD9PLUKKIDEFR4RP6ILBG1WR22NZZ_1_4"} {"score": 0.03127181529998779, "chain_id": "3MD9PLUKKIDEFR4RP6ILBG1WR22NZZ_1_5"} {"score": 0.0343499593436718, "chain_id": "3MD9PLUKKIDEFR4RP6ILBG1WR22NZZ_1_6"} {"score": 0.019632643088698387, "chain_id": "3MD9PLUKKIDEFR4RP6ILBG1WR22NZZ_1_7"} {"score": 0.04022921621799469, "chain_id": "3MD9PLUKKIDEFR4RP6ILBG1WR22NZZ_1_8"} {"score": 0.028294658288359642, "chain_id": "3MD9PLUKKIDEFR4RP6ILBG1WR22NZZ_1_9"} {"score": 0.025441978126764297, "chain_id": "3MD9PLUKKIDEFR4RP6ILBG1WR22NZZ_1_10"} {"score": 0.9777031540870667, "chain_id": "337RC3OW0517I7WWCWD3DIKBUPDLVU_1_1"} {"score": 0.2595481276512146, "chain_id": "337RC3OW0517I7WWCWD3DIKBUPDLVU_1_3"} {"score": 0.36441999673843384, "chain_id": "337RC3OW0517I7WWCWD3DIKBUPDLVU_1_2"} {"score": 0.4711589217185974, "chain_id": "337RC3OW0517I7WWCWD3DIKBUPDLVU_1_4"} {"score": 0.21717479825019836, "chain_id": "337RC3OW0517I7WWCWD3DIKBUPDLVU_1_5"} {"score": 0.9502522945404053, "chain_id": "337RC3OW0517I7WWCWD3DIKBUPDLVU_1_6"} {"score": 0.9656388759613037, "chain_id": "337RC3OW0517I7WWCWD3DIKBUPDLVU_1_7"} {"score": 0.885770857334137, "chain_id": "337RC3OW0517I7WWCWD3DIKBUPDLVU_1_8"} {"score": 0.6701270341873169, "chain_id": "337RC3OW0517I7WWCWD3DIKBUPDLVU_1_9"} {"score": 0.7887953519821167, "chain_id": "337RC3OW0517I7WWCWD3DIKBUPDLVU_1_10"} {"score": 0.844865620136261, "chain_id": "358UUM7WRZ2GAFQDZI7JTGD7EZV7RE_1_1"} {"score": 0.970440149307251, "chain_id": "358UUM7WRZ2GAFQDZI7JTGD7EZV7RE_1_2"} {"score": 0.5824220776557922, "chain_id": "358UUM7WRZ2GAFQDZI7JTGD7EZV7RE_1_3"} {"score": 0.47317951917648315, "chain_id": "358UUM7WRZ2GAFQDZI7JTGD7EZV7RE_1_4"} {"score": 0.6235581040382385, "chain_id": "358UUM7WRZ2GAFQDZI7JTGD7EZV7RE_1_5"} {"score": 0.4676934778690338, "chain_id": "358UUM7WRZ2GAFQDZI7JTGD7EZV7RE_1_6"} {"score": 0.9147042036056519, "chain_id": "358UUM7WRZ2GAFQDZI7JTGD7EZV7RE_1_7"} {"score": 0.23132628202438354, "chain_id": "358UUM7WRZ2GAFQDZI7JTGD7EZV7RE_1_8"} {"score": 0.6378214359283447, "chain_id": "358UUM7WRZ2GAFQDZI7JTGD7EZV7RE_1_9"} {"score": 0.13515232503414154, "chain_id": "358UUM7WRZ2GAFQDZI7JTGD7EZV7RE_1_10"} {"score": 0.5973337888717651, "chain_id": "3UOUJI6MTDD25MOLLP6MSQDFN65UXL_1_2"} {"score": 0.4104008078575134, "chain_id": "3UOUJI6MTDD25MOLLP6MSQDFN65UXL_1_9"} {"score": 0.9055771827697754, "chain_id": "3UOUJI6MTDD25MOLLP6MSQDFN65UXL_1_1"} {"score": 0.4250107705593109, "chain_id": "3UOUJI6MTDD25MOLLP6MSQDFN65UXL_1_3"} {"score": 0.7451071739196777, "chain_id": "3UOUJI6MTDD25MOLLP6MSQDFN65UXL_1_4"} {"score": 0.9788243770599365, "chain_id": "3UOUJI6MTDD25MOLLP6MSQDFN65UXL_1_5"} {"score": 0.19572940468788147, "chain_id": "3UOUJI6MTDD25MOLLP6MSQDFN65UXL_1_6"} {"score": 0.20438355207443237, "chain_id": "3UOUJI6MTDD25MOLLP6MSQDFN65UXL_1_7"} {"score": 0.11788579821586609, "chain_id": "3UOUJI6MTDD25MOLLP6MSQDFN65UXL_1_8"} {"score": 0.12513451278209686, "chain_id": "3UOUJI6MTDD25MOLLP6MSQDFN65UXL_1_10"} {"score": 0.8404551148414612, "chain_id": "3SKEMFQBZ34YNPI1J3QS64NOV16K85_1_10"} {"score": 0.4865041673183441, "chain_id": "3SKEMFQBZ34YNPI1J3QS64NOV16K85_1_1"} {"score": 0.07004845142364502, "chain_id": "3SKEMFQBZ34YNPI1J3QS64NOV16K85_1_2"} {"score": 0.7672804594039917, "chain_id": "3SKEMFQBZ34YNPI1J3QS64NOV16K85_1_3"} {"score": 0.11771730333566666, "chain_id": "3SKEMFQBZ34YNPI1J3QS64NOV16K85_1_4"} {"score": 0.9440962076187134, "chain_id": "3SKEMFQBZ34YNPI1J3QS64NOV16K85_1_5"} {"score": 0.1510811597108841, "chain_id": "3SKEMFQBZ34YNPI1J3QS64NOV16K85_1_6"} {"score": 0.08010011911392212, "chain_id": "3SKEMFQBZ34YNPI1J3QS64NOV16K85_1_7"} {"score": 0.051083486527204514, "chain_id": "3SKEMFQBZ34YNPI1J3QS64NOV16K85_1_8"} {"score": 0.5124474763870239, "chain_id": "3SKEMFQBZ34YNPI1J3QS64NOV16K85_1_9"} {"score": 0.5651118159294128, "chain_id": "3VP0C6EFSGV69ZZGB06A13J1FYMM6C_1_4"} {"score": 0.9698296785354614, "chain_id": "3VP0C6EFSGV69ZZGB06A13J1FYMM6C_1_5"} {"score": 0.2012777328491211, "chain_id": "3VP0C6EFSGV69ZZGB06A13J1FYMM6C_1_7"} {"score": 0.3513566553592682, "chain_id": "3VP0C6EFSGV69ZZGB06A13J1FYMM6C_1_9"} {"score": 0.8246622681617737, "chain_id": "3VP0C6EFSGV69ZZGB06A13J1FYMM6C_1_1"} {"score": 0.5276979207992554, "chain_id": "3VP0C6EFSGV69ZZGB06A13J1FYMM6C_1_2"} {"score": 0.43060675263404846, "chain_id": "3VP0C6EFSGV69ZZGB06A13J1FYMM6C_1_3"} {"score": 0.19931364059448242, "chain_id": "3VP0C6EFSGV69ZZGB06A13J1FYMM6C_1_6"} {"score": 0.12572021782398224, "chain_id": "3VP0C6EFSGV69ZZGB06A13J1FYMM6C_1_8"} {"score": 0.14657436311244965, "chain_id": "3VP0C6EFSGV69ZZGB06A13J1FYMM6C_1_10"} {"score": 0.9273174405097961, "chain_id": "3BXQMRHWKZXRBAPH7I4DH9XHGKPUM5_1_7"} {"score": 0.9593112468719482, "chain_id": "3BXQMRHWKZXRBAPH7I4DH9XHGKPUM5_1_1"} {"score": 0.6341525316238403, "chain_id": "3BXQMRHWKZXRBAPH7I4DH9XHGKPUM5_1_2"} {"score": 0.30400800704956055, "chain_id": "3BXQMRHWKZXRBAPH7I4DH9XHGKPUM5_1_3"} {"score": 0.5659045577049255, "chain_id": "3BXQMRHWKZXRBAPH7I4DH9XHGKPUM5_1_4"} {"score": 0.9674991965293884, "chain_id": "3BXQMRHWKZXRBAPH7I4DH9XHGKPUM5_1_5"} {"score": 0.4480254054069519, "chain_id": "3BXQMRHWKZXRBAPH7I4DH9XHGKPUM5_1_6"} {"score": 0.887102484703064, "chain_id": "3BXQMRHWKZXRBAPH7I4DH9XHGKPUM5_1_8"} {"score": 0.07918500900268555, "chain_id": "3BXQMRHWKZXRBAPH7I4DH9XHGKPUM5_1_9"} {"score": 0.3468695878982544, "chain_id": "3BXQMRHWKZXRBAPH7I4DH9XHGKPUM5_1_10"} {"score": 0.9810896515846252, "chain_id": "3YGXWBAF70GFLQJBFNJH19UBO5TC43_1_1"} {"score": 0.9316778779029846, "chain_id": "3YGXWBAF70GFLQJBFNJH19UBO5TC43_1_6"} {"score": 0.5562341809272766, "chain_id": "3YGXWBAF70GFLQJBFNJH19UBO5TC43_1_2"} {"score": 0.22414568066596985, "chain_id": "3YGXWBAF70GFLQJBFNJH19UBO5TC43_1_3"} {"score": 0.3981945216655731, "chain_id": "3YGXWBAF70GFLQJBFNJH19UBO5TC43_1_4"} {"score": 0.5884978175163269, "chain_id": "3YGXWBAF70GFLQJBFNJH19UBO5TC43_1_5"} {"score": 0.14618387818336487, "chain_id": "3YGXWBAF70GFLQJBFNJH19UBO5TC43_1_7"} {"score": 0.6529613137245178, "chain_id": "3YGXWBAF70GFLQJBFNJH19UBO5TC43_1_8"} {"score": 0.8841698169708252, "chain_id": "3YGXWBAF70GFLQJBFNJH19UBO5TC43_1_9"} {"score": 0.04142783209681511, "chain_id": "3YGXWBAF70GFLQJBFNJH19UBO5TC43_1_10"} {"score": 0.9763434529304504, "chain_id": "308Q0PEVB8C7VZBNOSBUTK3MOPRI9I_1_2"} {"score": 0.4394323527812958, "chain_id": "308Q0PEVB8C7VZBNOSBUTK3MOPRI9I_1_8"} {"score": 0.3483298122882843, "chain_id": "308Q0PEVB8C7VZBNOSBUTK3MOPRI9I_1_1"} {"score": 0.14030899107456207, "chain_id": "308Q0PEVB8C7VZBNOSBUTK3MOPRI9I_1_3"} {"score": 0.04796729236841202, "chain_id": "308Q0PEVB8C7VZBNOSBUTK3MOPRI9I_1_4"} {"score": 0.6439855098724365, "chain_id": "308Q0PEVB8C7VZBNOSBUTK3MOPRI9I_1_5"} {"score": 0.9547001123428345, "chain_id": "308Q0PEVB8C7VZBNOSBUTK3MOPRI9I_1_6"} {"score": 0.6456068754196167, "chain_id": "308Q0PEVB8C7VZBNOSBUTK3MOPRI9I_1_7"} {"score": 0.45397165417671204, "chain_id": "308Q0PEVB8C7VZBNOSBUTK3MOPRI9I_1_9"} {"score": 0.35410165786743164, "chain_id": "308Q0PEVB8C7VZBNOSBUTK3MOPRI9I_1_10"} {"score": 0.9849306344985962, "chain_id": "3LWJHTCVCCLTD7QJ4MGVCIGJKT2QFE_1_2"} {"score": 0.9524027109146118, "chain_id": "3LWJHTCVCCLTD7QJ4MGVCIGJKT2QFE_1_3"} {"score": 0.9914127588272095, "chain_id": "3LWJHTCVCCLTD7QJ4MGVCIGJKT2QFE_1_4"} {"score": 0.7104628086090088, "chain_id": "3LWJHTCVCCLTD7QJ4MGVCIGJKT2QFE_1_8"} {"score": 0.4704766273498535, "chain_id": "3LWJHTCVCCLTD7QJ4MGVCIGJKT2QFE_1_10"} {"score": 0.8077701926231384, "chain_id": "3LWJHTCVCCLTD7QJ4MGVCIGJKT2QFE_1_1"} {"score": 0.7045657634735107, "chain_id": "3LWJHTCVCCLTD7QJ4MGVCIGJKT2QFE_1_5"} {"score": 0.7894188761711121, "chain_id": "3LWJHTCVCCLTD7QJ4MGVCIGJKT2QFE_1_6"} {"score": 0.14372040331363678, "chain_id": "3LWJHTCVCCLTD7QJ4MGVCIGJKT2QFE_1_7"} {"score": 0.4475480318069458, "chain_id": "3LWJHTCVCCLTD7QJ4MGVCIGJKT2QFE_1_9"} {"score": 0.9710587859153748, "chain_id": "36H9ULYP62TCRKM69WWMFH4X616JFI_1_1"} {"score": 0.9656491875648499, "chain_id": "36H9ULYP62TCRKM69WWMFH4X616JFI_1_2"} {"score": 0.7899582982063293, "chain_id": "36H9ULYP62TCRKM69WWMFH4X616JFI_1_3"} {"score": 0.9149097204208374, "chain_id": "36H9ULYP62TCRKM69WWMFH4X616JFI_1_4"} {"score": 0.821015477180481, "chain_id": "36H9ULYP62TCRKM69WWMFH4X616JFI_1_6"} {"score": 0.18593479692935944, "chain_id": "36H9ULYP62TCRKM69WWMFH4X616JFI_1_7"} {"score": 0.3424190282821655, "chain_id": "36H9ULYP62TCRKM69WWMFH4X616JFI_1_8"} {"score": 0.9486210942268372, "chain_id": "36H9ULYP62TCRKM69WWMFH4X616JFI_1_5"} {"score": 0.19093254208564758, "chain_id": "36H9ULYP62TCRKM69WWMFH4X616JFI_1_9"} {"score": 0.05111519992351532, "chain_id": "36H9ULYP62TCRKM69WWMFH4X616JFI_1_10"} {"score": 0.3830609917640686, "chain_id": "3TXMY6UCAENMAV69DKQU4CVGNMMQCR_1_1"} {"score": 0.09156284481287003, "chain_id": "3TXMY6UCAENMAV69DKQU4CVGNMMQCR_1_4"} {"score": 0.9435125589370728, "chain_id": "3TXMY6UCAENMAV69DKQU4CVGNMMQCR_1_5"} {"score": 0.8868803977966309, "chain_id": "3TXMY6UCAENMAV69DKQU4CVGNMMQCR_1_7"} {"score": 0.9250856041908264, "chain_id": "3TXMY6UCAENMAV69DKQU4CVGNMMQCR_1_8"} {"score": 0.8168387413024902, "chain_id": "3TXMY6UCAENMAV69DKQU4CVGNMMQCR_1_2"} {"score": 0.6504166126251221, "chain_id": "3TXMY6UCAENMAV69DKQU4CVGNMMQCR_1_3"} {"score": 0.8626440763473511, "chain_id": "3TXMY6UCAENMAV69DKQU4CVGNMMQCR_1_6"} {"score": 0.28571510314941406, "chain_id": "3TXMY6UCAENMAV69DKQU4CVGNMMQCR_1_9"} {"score": 0.8331403732299805, "chain_id": "3TXMY6UCAENMAV69DKQU4CVGNMMQCR_1_10"} {"score": 0.41598600149154663, "chain_id": "3ZOTGHDK5IAZW0IPVTOQUC4YUTFSOE_1_1"} {"score": 0.7777001261711121, "chain_id": "3ZOTGHDK5IAZW0IPVTOQUC4YUTFSOE_1_2"} {"score": 0.6332255005836487, "chain_id": "3ZOTGHDK5IAZW0IPVTOQUC4YUTFSOE_1_3"} {"score": 0.05977901443839073, "chain_id": "3ZOTGHDK5IAZW0IPVTOQUC4YUTFSOE_1_4"} {"score": 0.9403208494186401, "chain_id": "3ZOTGHDK5IAZW0IPVTOQUC4YUTFSOE_1_5"} {"score": 0.8730039000511169, "chain_id": "3ZOTGHDK5IAZW0IPVTOQUC4YUTFSOE_1_6"} {"score": 0.9764410257339478, "chain_id": "3ZOTGHDK5IAZW0IPVTOQUC4YUTFSOE_1_7"} {"score": 0.9782424569129944, "chain_id": "3ZOTGHDK5IAZW0IPVTOQUC4YUTFSOE_1_8"} {"score": 0.2410353571176529, "chain_id": "3ZOTGHDK5IAZW0IPVTOQUC4YUTFSOE_1_9"} {"score": 0.10520317405462265, "chain_id": "3ZOTGHDK5IAZW0IPVTOQUC4YUTFSOE_1_10"} {"score": 0.9589793682098389, "chain_id": "34X6J5FLPTX9I9CFNC7GRG8BMB5QJY_1_1"} {"score": 0.9004181623458862, "chain_id": "34X6J5FLPTX9I9CFNC7GRG8BMB5QJY_1_2"} {"score": 0.916823148727417, "chain_id": "34X6J5FLPTX9I9CFNC7GRG8BMB5QJY_1_3"} {"score": 0.8956495523452759, "chain_id": "34X6J5FLPTX9I9CFNC7GRG8BMB5QJY_1_4"} {"score": 0.4239080548286438, "chain_id": "34X6J5FLPTX9I9CFNC7GRG8BMB5QJY_1_5"} {"score": 0.27353063225746155, "chain_id": "34X6J5FLPTX9I9CFNC7GRG8BMB5QJY_1_6"} {"score": 0.6332600116729736, "chain_id": "34X6J5FLPTX9I9CFNC7GRG8BMB5QJY_1_7"} {"score": 0.24511927366256714, "chain_id": "34X6J5FLPTX9I9CFNC7GRG8BMB5QJY_1_8"} {"score": 0.8205695748329163, "chain_id": "34X6J5FLPTX9I9CFNC7GRG8BMB5QJY_1_9"} {"score": 0.062185000628232956, "chain_id": "34X6J5FLPTX9I9CFNC7GRG8BMB5QJY_1_10"} {"score": 0.25470277667045593, "chain_id": "3JMSRU9HQITTC1M4VAQZ0NURY0PEV6_1_5"} {"score": 0.09871206432580948, "chain_id": "3JMSRU9HQITTC1M4VAQZ0NURY0PEV6_1_1"} {"score": 0.027612784877419472, "chain_id": "3JMSRU9HQITTC1M4VAQZ0NURY0PEV6_1_2"} {"score": 0.04706624895334244, "chain_id": "3JMSRU9HQITTC1M4VAQZ0NURY0PEV6_1_3"} {"score": 0.047410644590854645, "chain_id": "3JMSRU9HQITTC1M4VAQZ0NURY0PEV6_1_4"} {"score": 0.2907840311527252, "chain_id": "3JMSRU9HQITTC1M4VAQZ0NURY0PEV6_1_6"} {"score": 0.06936328113079071, "chain_id": "3JMSRU9HQITTC1M4VAQZ0NURY0PEV6_1_7"} {"score": 0.04421873763203621, "chain_id": "3JMSRU9HQITTC1M4VAQZ0NURY0PEV6_1_8"} {"score": 0.8658271431922913, "chain_id": "3JMSRU9HQITTC1M4VAQZ0NURY0PEV6_1_9"} {"score": 0.030291317030787468, "chain_id": "3JMSRU9HQITTC1M4VAQZ0NURY0PEV6_1_10"} {"score": 0.9215553998947144, "chain_id": "3JMSRU9HQITTC1M4VAQZ0NURYE1EVA_1_1"} {"score": 0.5975977778434753, "chain_id": "3JMSRU9HQITTC1M4VAQZ0NURYE1EVA_1_2"} {"score": 0.5273473262786865, "chain_id": "3JMSRU9HQITTC1M4VAQZ0NURYE1EVA_1_3"} {"score": 0.8912785053253174, "chain_id": "3JMSRU9HQITTC1M4VAQZ0NURYE1EVA_1_4"} {"score": 0.6860911846160889, "chain_id": "3JMSRU9HQITTC1M4VAQZ0NURYE1EVA_1_5"} {"score": 0.8886948823928833, "chain_id": "3JMSRU9HQITTC1M4VAQZ0NURYE1EVA_1_9"} {"score": 0.9394779205322266, "chain_id": "3JMSRU9HQITTC1M4VAQZ0NURYE1EVA_1_10"} {"score": 0.8095960021018982, "chain_id": "3JMSRU9HQITTC1M4VAQZ0NURYE1EVA_1_6"} {"score": 0.8844414353370667, "chain_id": "3JMSRU9HQITTC1M4VAQZ0NURYE1EVA_1_7"} {"score": 0.9116170406341553, "chain_id": "3JMSRU9HQITTC1M4VAQZ0NURYE1EVA_1_8"} {"score": 0.9637910723686218, "chain_id": "3F6KKYWMNB0BCQZVXOTOKOITC2FDNM_1_1"} {"score": 0.8616830110549927, "chain_id": "3F6KKYWMNB0BCQZVXOTOKOITC2FDNM_1_2"} {"score": 0.9091048836708069, "chain_id": "3F6KKYWMNB0BCQZVXOTOKOITC2FDNM_1_3"} {"score": 0.7152931690216064, "chain_id": "3F6KKYWMNB0BCQZVXOTOKOITC2FDNM_1_4"} {"score": 0.7945101261138916, "chain_id": "3F6KKYWMNB0BCQZVXOTOKOITC2FDNM_1_7"} {"score": 0.8902438282966614, "chain_id": "3F6KKYWMNB0BCQZVXOTOKOITC2FDNM_1_5"} {"score": 0.8397817015647888, "chain_id": "3F6KKYWMNB0BCQZVXOTOKOITC2FDNM_1_6"} {"score": 0.5766626596450806, "chain_id": "3F6KKYWMNB0BCQZVXOTOKOITC2FDNM_1_8"} {"score": 0.8527613878250122, "chain_id": "3F6KKYWMNB0BCQZVXOTOKOITC2FDNM_1_9"} {"score": 0.7090646028518677, "chain_id": "3F6KKYWMNB0BCQZVXOTOKOITC2FDNM_1_10"} {"score": 0.9713601469993591, "chain_id": "37C0GNLMHF2355T3Y777IDW7IEPD6G_1_1"} {"score": 0.7306053042411804, "chain_id": "37C0GNLMHF2355T3Y777IDW7IEPD6G_1_2"} {"score": 0.14464861154556274, "chain_id": "37C0GNLMHF2355T3Y777IDW7IEPD6G_1_3"} {"score": 0.11808076500892639, "chain_id": "37C0GNLMHF2355T3Y777IDW7IEPD6G_1_4"} {"score": 0.7916578650474548, "chain_id": "37C0GNLMHF2355T3Y777IDW7IEPD6G_1_5"} {"score": 0.09740490466356277, "chain_id": "37C0GNLMHF2355T3Y777IDW7IEPD6G_1_6"} {"score": 0.09581145644187927, "chain_id": "37C0GNLMHF2355T3Y777IDW7IEPD6G_1_7"} {"score": 0.2635190784931183, "chain_id": "37C0GNLMHF2355T3Y777IDW7IEPD6G_1_8"} {"score": 0.035805996507406235, "chain_id": "37C0GNLMHF2355T3Y777IDW7IEPD6G_1_9"} {"score": 0.07626008987426758, "chain_id": "37C0GNLMHF2355T3Y777IDW7IEPD6G_1_10"} {"score": 0.9211799502372742, "chain_id": "3OLQQLKKNSOKL6MAELCGXZJX4Y5EJF_1_2"} {"score": 0.5650222897529602, "chain_id": "3OLQQLKKNSOKL6MAELCGXZJX4Y5EJF_1_3"} {"score": 0.8971446752548218, "chain_id": "3OLQQLKKNSOKL6MAELCGXZJX4Y5EJF_1_4"} {"score": 0.5090863108634949, "chain_id": "3OLQQLKKNSOKL6MAELCGXZJX4Y5EJF_1_5"} {"score": 0.3966321647167206, "chain_id": "3OLQQLKKNSOKL6MAELCGXZJX4Y5EJF_1_10"} {"score": 0.9715176224708557, "chain_id": "3OLQQLKKNSOKL6MAELCGXZJX4Y5EJF_1_1"} {"score": 0.7018678784370422, "chain_id": "3OLQQLKKNSOKL6MAELCGXZJX4Y5EJF_1_6"} {"score": 0.9268476366996765, "chain_id": "3OLQQLKKNSOKL6MAELCGXZJX4Y5EJF_1_7"} {"score": 0.7940973043441772, "chain_id": "3OLQQLKKNSOKL6MAELCGXZJX4Y5EJF_1_8"} {"score": 0.49481669068336487, "chain_id": "3OLQQLKKNSOKL6MAELCGXZJX4Y5EJF_1_9"} {"score": 0.9715176224708557, "chain_id": "3Z2R0DQ0JHDKFAO2706OYIXGSOG2E5_1_2"} {"score": 0.9211799502372742, "chain_id": "3Z2R0DQ0JHDKFAO2706OYIXGSOG2E5_1_5"} {"score": 0.8971446752548218, "chain_id": "3Z2R0DQ0JHDKFAO2706OYIXGSOG2E5_1_6"} {"score": 0.9268476366996765, "chain_id": "3Z2R0DQ0JHDKFAO2706OYIXGSOG2E5_1_8"} {"score": 0.5650222897529602, "chain_id": "3Z2R0DQ0JHDKFAO2706OYIXGSOG2E5_1_1"} {"score": 0.5090863108634949, "chain_id": "3Z2R0DQ0JHDKFAO2706OYIXGSOG2E5_1_3"} {"score": 0.7018678784370422, "chain_id": "3Z2R0DQ0JHDKFAO2706OYIXGSOG2E5_1_4"} {"score": 0.7940973043441772, "chain_id": "3Z2R0DQ0JHDKFAO2706OYIXGSOG2E5_1_7"} {"score": 0.3966321647167206, "chain_id": "3Z2R0DQ0JHDKFAO2706OYIXGSOG2E5_1_9"} {"score": 0.16425257921218872, "chain_id": "3Z2R0DQ0JHDKFAO2706OYIXGSOG2E5_1_10"} {"score": 0.49509748816490173, "chain_id": "3YGXWBAF70GFLQJBFNJH19UB01W4C2_1_2"} {"score": 0.8317040801048279, "chain_id": "3YGXWBAF70GFLQJBFNJH19UB01W4C2_1_3"} {"score": 0.8739480376243591, "chain_id": "3YGXWBAF70GFLQJBFNJH19UB01W4C2_1_5"} {"score": 0.3796495199203491, "chain_id": "3YGXWBAF70GFLQJBFNJH19UB01W4C2_1_7"} {"score": 0.8632679581642151, "chain_id": "3YGXWBAF70GFLQJBFNJH19UB01W4C2_1_8"} {"score": 0.26932433247566223, "chain_id": "3YGXWBAF70GFLQJBFNJH19UB01W4C2_1_9"} {"score": 0.7111552357673645, "chain_id": "3YGXWBAF70GFLQJBFNJH19UB01W4C2_1_1"} {"score": 0.3861144483089447, "chain_id": "3YGXWBAF70GFLQJBFNJH19UB01W4C2_1_4"} {"score": 0.3875049352645874, "chain_id": "3YGXWBAF70GFLQJBFNJH19UB01W4C2_1_6"} {"score": 0.4623654782772064, "chain_id": "3YGXWBAF70GFLQJBFNJH19UB01W4C2_1_10"} {"score": 0.905949056148529, "chain_id": "32N49TQG3GHQMO5SF5OD4440DJTAV5_1_3"} {"score": 0.7927634119987488, "chain_id": "32N49TQG3GHQMO5SF5OD4440DJTAV5_1_4"} {"score": 0.34929564595222473, "chain_id": "32N49TQG3GHQMO5SF5OD4440DJTAV5_1_1"} {"score": 0.8284922242164612, "chain_id": "32N49TQG3GHQMO5SF5OD4440DJTAV5_1_2"} {"score": 0.20809711515903473, "chain_id": "32N49TQG3GHQMO5SF5OD4440DJTAV5_1_5"} {"score": 0.6678823232650757, "chain_id": "32N49TQG3GHQMO5SF5OD4440DJTAV5_1_6"} {"score": 0.042185816913843155, "chain_id": "32N49TQG3GHQMO5SF5OD4440DJTAV5_1_7"} {"score": 0.0536477230489254, "chain_id": "32N49TQG3GHQMO5SF5OD4440DJTAV5_1_8"} {"score": 0.7145861387252808, "chain_id": "32N49TQG3GHQMO5SF5OD4440DJTAV5_1_9"} {"score": 0.831048846244812, "chain_id": "32N49TQG3GHQMO5SF5OD4440DJTAV5_1_10"} {"score": 0.957565188407898, "chain_id": "39LOEL67OS4SRRAUYXYTPI6MJJX832_1_1"} {"score": 0.9839305281639099, "chain_id": "39LOEL67OS4SRRAUYXYTPI6MJJX832_1_2"} {"score": 0.4459371864795685, "chain_id": "39LOEL67OS4SRRAUYXYTPI6MJJX832_1_3"} {"score": 0.6171239614486694, "chain_id": "39LOEL67OS4SRRAUYXYTPI6MJJX832_1_4"} {"score": 0.09855149686336517, "chain_id": "39LOEL67OS4SRRAUYXYTPI6MJJX832_1_5"} {"score": 0.05214603617787361, "chain_id": "39LOEL67OS4SRRAUYXYTPI6MJJX832_1_6"} {"score": 0.020924990996718407, "chain_id": "39LOEL67OS4SRRAUYXYTPI6MJJX832_1_7"} {"score": 0.01633879728615284, "chain_id": "39LOEL67OS4SRRAUYXYTPI6MJJX832_1_8"} {"score": 0.03695747256278992, "chain_id": "39LOEL67OS4SRRAUYXYTPI6MJJX832_1_9"} {"score": 0.01823359727859497, "chain_id": "39LOEL67OS4SRRAUYXYTPI6MJJX832_1_10"} {"score": 0.9714557528495789, "chain_id": "35BLDD71I6WRNWD0RX4CLXV99DNZVN_1_2"} {"score": 0.9044457674026489, "chain_id": "35BLDD71I6WRNWD0RX4CLXV99DNZVN_1_8"} {"score": 0.9576956033706665, "chain_id": "35BLDD71I6WRNWD0RX4CLXV99DNZVN_1_1"} {"score": 0.7289562821388245, "chain_id": "35BLDD71I6WRNWD0RX4CLXV99DNZVN_1_3"} {"score": 0.8813861012458801, "chain_id": "35BLDD71I6WRNWD0RX4CLXV99DNZVN_1_4"} {"score": 0.0613921619951725, "chain_id": "35BLDD71I6WRNWD0RX4CLXV99DNZVN_1_5"} {"score": 0.3258114159107208, "chain_id": "35BLDD71I6WRNWD0RX4CLXV99DNZVN_1_6"} {"score": 0.29555267095565796, "chain_id": "35BLDD71I6WRNWD0RX4CLXV99DNZVN_1_7"} {"score": 0.8163872957229614, "chain_id": "35BLDD71I6WRNWD0RX4CLXV99DNZVN_1_9"} {"score": 0.7764075994491577, "chain_id": "35BLDD71I6WRNWD0RX4CLXV99DNZVN_1_10"} {"score": 0.07001585513353348, "chain_id": "3LYA37P8IQMHPNG8MFA2X6DP3CFKB2_1_1"} {"score": 0.015606493689119816, "chain_id": "3LYA37P8IQMHPNG8MFA2X6DP3CFKB2_1_2"} {"score": 0.09224473685026169, "chain_id": "3LYA37P8IQMHPNG8MFA2X6DP3CFKB2_1_3"} {"score": 0.023875663056969643, "chain_id": "3LYA37P8IQMHPNG8MFA2X6DP3CFKB2_1_4"} {"score": 0.01168899331241846, "chain_id": "3LYA37P8IQMHPNG8MFA2X6DP3CFKB2_1_5"} {"score": 0.12839750945568085, "chain_id": "3LYA37P8IQMHPNG8MFA2X6DP3CFKB2_1_6"} {"score": 0.014396422542631626, "chain_id": "3LYA37P8IQMHPNG8MFA2X6DP3CFKB2_1_7"} {"score": 0.18679462373256683, "chain_id": "3LYA37P8IQMHPNG8MFA2X6DP3CFKB2_1_8"} {"score": 0.024920905008912086, "chain_id": "3LYA37P8IQMHPNG8MFA2X6DP3CFKB2_1_9"} {"score": 0.038075197488069534, "chain_id": "3LYA37P8IQMHPNG8MFA2X6DP3CFKB2_1_10"} {"score": 0.6653819680213928, "chain_id": "3ZPBJO59KP0J2UDKUQYBF4LXFWMDHU_1_2"} {"score": 0.10370676964521408, "chain_id": "3ZPBJO59KP0J2UDKUQYBF4LXFWMDHU_1_1"} {"score": 0.12085211277008057, "chain_id": "3ZPBJO59KP0J2UDKUQYBF4LXFWMDHU_1_3"} {"score": 0.4934765696525574, "chain_id": "3ZPBJO59KP0J2UDKUQYBF4LXFWMDHU_1_4"} {"score": 0.6962010860443115, "chain_id": "3ZPBJO59KP0J2UDKUQYBF4LXFWMDHU_1_5"} {"score": 0.09864655882120132, "chain_id": "3ZPBJO59KP0J2UDKUQYBF4LXFWMDHU_1_6"} {"score": 0.10607332736253738, "chain_id": "3ZPBJO59KP0J2UDKUQYBF4LXFWMDHU_1_7"} {"score": 0.7211951613426208, "chain_id": "3ZPBJO59KP0J2UDKUQYBF4LXFWMDHU_1_8"} {"score": 0.04372319206595421, "chain_id": "3ZPBJO59KP0J2UDKUQYBF4LXFWMDHU_1_9"} {"score": 0.5119451880455017, "chain_id": "3ZPBJO59KP0J2UDKUQYBF4LXFWMDHU_1_10"} {"score": 0.9793333411216736, "chain_id": "340UGXU9DY0A1XJQLA5445GUBHZVUX_1_3"} {"score": 0.3415369391441345, "chain_id": "340UGXU9DY0A1XJQLA5445GUBHZVUX_1_1"} {"score": 0.6045461297035217, "chain_id": "340UGXU9DY0A1XJQLA5445GUBHZVUX_1_2"} {"score": 0.8917074799537659, "chain_id": "340UGXU9DY0A1XJQLA5445GUBHZVUX_1_4"} {"score": 0.1954927146434784, "chain_id": "340UGXU9DY0A1XJQLA5445GUBHZVUX_1_5"} {"score": 0.3432818353176117, "chain_id": "340UGXU9DY0A1XJQLA5445GUBHZVUX_1_6"} {"score": 0.03780302405357361, "chain_id": "340UGXU9DY0A1XJQLA5445GUBHZVUX_1_7"} {"score": 0.4017018973827362, "chain_id": "340UGXU9DY0A1XJQLA5445GUBHZVUX_1_8"} {"score": 0.2888173758983612, "chain_id": "340UGXU9DY0A1XJQLA5445GUBHZVUX_1_9"} {"score": 0.4286927282810211, "chain_id": "340UGXU9DY0A1XJQLA5445GUBHZVUX_1_10"} {"score": 0.8872122764587402, "chain_id": "3B1NLC6UGZVERVLZFT7OUYQLCQCGPW_1_1"} {"score": 0.760168731212616, "chain_id": "3B1NLC6UGZVERVLZFT7OUYQLCQCGPW_1_2"} {"score": 0.9637000560760498, "chain_id": "3B1NLC6UGZVERVLZFT7OUYQLCQCGPW_1_3"} {"score": 0.01961193047463894, "chain_id": "3B1NLC6UGZVERVLZFT7OUYQLCQCGPW_1_4"} {"score": 0.3774400055408478, "chain_id": "3B1NLC6UGZVERVLZFT7OUYQLCQCGPW_1_5"} {"score": 0.017313580960035324, "chain_id": "3B1NLC6UGZVERVLZFT7OUYQLCQCGPW_1_6"} {"score": 0.8238534331321716, "chain_id": "3B1NLC6UGZVERVLZFT7OUYQLCQCGPW_1_7"} {"score": 0.53572678565979, "chain_id": "3B1NLC6UGZVERVLZFT7OUYQLCQCGPW_1_8"} {"score": 0.040667302906513214, "chain_id": "3B1NLC6UGZVERVLZFT7OUYQLCQCGPW_1_9"} {"score": 0.01199430227279663, "chain_id": "3B1NLC6UGZVERVLZFT7OUYQLCQCGPW_1_10"} {"score": 0.061124205589294434, "chain_id": "3LPW2N6LKT1T334BFJNR07MVUN95UW_1_1"} {"score": 0.04793769121170044, "chain_id": "3LPW2N6LKT1T334BFJNR07MVUN95UW_1_2"} {"score": 0.039065875113010406, "chain_id": "3LPW2N6LKT1T334BFJNR07MVUN95UW_1_3"} {"score": 0.03614119067788124, "chain_id": "3LPW2N6LKT1T334BFJNR07MVUN95UW_1_4"} {"score": 0.09698840230703354, "chain_id": "3LPW2N6LKT1T334BFJNR07MVUN95UW_1_5"} {"score": 0.22170139849185944, "chain_id": "3LPW2N6LKT1T334BFJNR07MVUN95UW_1_6"} {"score": 0.40417876839637756, "chain_id": "3LPW2N6LKT1T334BFJNR07MVUN95UW_1_7"} {"score": 0.021652372553944588, "chain_id": "3LPW2N6LKT1T334BFJNR07MVUN95UW_1_8"} {"score": 0.2426811307668686, "chain_id": "3LPW2N6LKT1T334BFJNR07MVUN95UW_1_9"} {"score": 0.07619106769561768, "chain_id": "3LPW2N6LKT1T334BFJNR07MVUN95UW_1_10"} {"score": 0.6435019969940186, "chain_id": "3E13VNJ1NNUP6U8SKFW1EEL3ODLI1P_1_4"} {"score": 0.6063966155052185, "chain_id": "3E13VNJ1NNUP6U8SKFW1EEL3ODLI1P_1_10"} {"score": 0.025446219369769096, "chain_id": "3E13VNJ1NNUP6U8SKFW1EEL3ODLI1P_1_1"} {"score": 0.181207537651062, "chain_id": "3E13VNJ1NNUP6U8SKFW1EEL3ODLI1P_1_2"} {"score": 0.4953058362007141, "chain_id": "3E13VNJ1NNUP6U8SKFW1EEL3ODLI1P_1_3"} {"score": 0.3654398024082184, "chain_id": "3E13VNJ1NNUP6U8SKFW1EEL3ODLI1P_1_5"} {"score": 0.0326545424759388, "chain_id": "3E13VNJ1NNUP6U8SKFW1EEL3ODLI1P_1_6"} {"score": 0.10236519575119019, "chain_id": "3E13VNJ1NNUP6U8SKFW1EEL3ODLI1P_1_7"} {"score": 0.02910420298576355, "chain_id": "3E13VNJ1NNUP6U8SKFW1EEL3ODLI1P_1_8"} {"score": 0.0223124660551548, "chain_id": "3E13VNJ1NNUP6U8SKFW1EEL3ODLI1P_1_9"} {"score": 0.4701806604862213, "chain_id": "3C6FJU71TQSR5REVQLSOB4KOP80YUO_1_2"} {"score": 0.6698796153068542, "chain_id": "3C6FJU71TQSR5REVQLSOB4KOP80YUO_1_4"} {"score": 0.8269070386886597, "chain_id": "3C6FJU71TQSR5REVQLSOB4KOP80YUO_1_1"} {"score": 0.08357707411050797, "chain_id": "3C6FJU71TQSR5REVQLSOB4KOP80YUO_1_3"} {"score": 0.3246031403541565, "chain_id": "3C6FJU71TQSR5REVQLSOB4KOP80YUO_1_5"} {"score": 0.5297604203224182, "chain_id": "3C6FJU71TQSR5REVQLSOB4KOP80YUO_1_6"} {"score": 0.039074067026376724, "chain_id": "3C6FJU71TQSR5REVQLSOB4KOP80YUO_1_7"} {"score": 0.05518133193254471, "chain_id": "3C6FJU71TQSR5REVQLSOB4KOP80YUO_1_8"} {"score": 0.598452627658844, "chain_id": "3C6FJU71TQSR5REVQLSOB4KOP80YUO_1_9"} {"score": 0.7698994874954224, "chain_id": "3C6FJU71TQSR5REVQLSOB4KOP80YUO_1_10"} {"score": 0.7783843278884888, "chain_id": "3EF8EXOTT1UL15SY2XH1QF032AIJ1B_1_4"} {"score": 0.3280605673789978, "chain_id": "3EF8EXOTT1UL15SY2XH1QF032AIJ1B_1_1"} {"score": 0.25358834862709045, "chain_id": "3EF8EXOTT1UL15SY2XH1QF032AIJ1B_1_2"} {"score": 0.7421741485595703, "chain_id": "3EF8EXOTT1UL15SY2XH1QF032AIJ1B_1_3"} {"score": 0.1145746260881424, "chain_id": "3EF8EXOTT1UL15SY2XH1QF032AIJ1B_1_5"} {"score": 0.16456620395183563, "chain_id": "3EF8EXOTT1UL15SY2XH1QF032AIJ1B_1_6"} {"score": 0.05308493971824646, "chain_id": "3EF8EXOTT1UL15SY2XH1QF032AIJ1B_1_7"} {"score": 0.09139611572027206, "chain_id": "3EF8EXOTT1UL15SY2XH1QF032AIJ1B_1_8"} {"score": 0.3012234568595886, "chain_id": "3EF8EXOTT1UL15SY2XH1QF032AIJ1B_1_9"} {"score": 0.28823617100715637, "chain_id": "3EF8EXOTT1UL15SY2XH1QF032AIJ1B_1_10"} {"score": 0.5175957083702087, "chain_id": "3PB5A5BD0V5PLPHZJ7D7UCZ0EPU7GS_1_1"} {"score": 0.5444817543029785, "chain_id": "3PB5A5BD0V5PLPHZJ7D7UCZ0EPU7GS_1_4"} {"score": 0.21873000264167786, "chain_id": "3PB5A5BD0V5PLPHZJ7D7UCZ0EPU7GS_1_6"} {"score": 0.6625789999961853, "chain_id": "3PB5A5BD0V5PLPHZJ7D7UCZ0EPU7GS_1_7"} {"score": 0.2675436735153198, "chain_id": "3PB5A5BD0V5PLPHZJ7D7UCZ0EPU7GS_1_2"} {"score": 0.4236571788787842, "chain_id": "3PB5A5BD0V5PLPHZJ7D7UCZ0EPU7GS_1_3"} {"score": 0.6246052980422974, "chain_id": "3PB5A5BD0V5PLPHZJ7D7UCZ0EPU7GS_1_5"} {"score": 0.5291457772254944, "chain_id": "3PB5A5BD0V5PLPHZJ7D7UCZ0EPU7GS_1_8"} {"score": 0.6485243439674377, "chain_id": "3PB5A5BD0V5PLPHZJ7D7UCZ0EPU7GS_1_9"} {"score": 0.8580114245414734, "chain_id": "3PB5A5BD0V5PLPHZJ7D7UCZ0EPU7GS_1_10"} {"score": 0.5498273372650146, "chain_id": "31EUONYN2V2FOSZTPOTV5ZO5RYKOVQ_1_4"} {"score": 0.03328482061624527, "chain_id": "31EUONYN2V2FOSZTPOTV5ZO5RYKOVQ_1_6"} {"score": 0.04322730004787445, "chain_id": "31EUONYN2V2FOSZTPOTV5ZO5RYKOVQ_1_1"} {"score": 0.05052274838089943, "chain_id": "31EUONYN2V2FOSZTPOTV5ZO5RYKOVQ_1_2"} {"score": 0.2602885961532593, "chain_id": "31EUONYN2V2FOSZTPOTV5ZO5RYKOVQ_1_3"} {"score": 0.06038191542029381, "chain_id": "31EUONYN2V2FOSZTPOTV5ZO5RYKOVQ_1_5"} {"score": 0.11760786175727844, "chain_id": "31EUONYN2V2FOSZTPOTV5ZO5RYKOVQ_1_7"} {"score": 0.3507537245750427, "chain_id": "31EUONYN2V2FOSZTPOTV5ZO5RYKOVQ_1_8"} {"score": 0.8163807988166809, "chain_id": "31EUONYN2V2FOSZTPOTV5ZO5RYKOVQ_1_9"} {"score": 0.13145990669727325, "chain_id": "31EUONYN2V2FOSZTPOTV5ZO5RYKOVQ_1_10"} {"score": 0.7182552814483643, "chain_id": "3BEFOD78W6SSUCV2SCDV45ZNJFX4M6_1_1"} {"score": 0.5280621647834778, "chain_id": "3BEFOD78W6SSUCV2SCDV45ZNJFX4M6_1_4"} {"score": 0.48577407002449036, "chain_id": "3BEFOD78W6SSUCV2SCDV45ZNJFX4M6_1_9"} {"score": 0.6021357774734497, "chain_id": "3BEFOD78W6SSUCV2SCDV45ZNJFX4M6_1_2"} {"score": 0.9398488998413086, "chain_id": "3BEFOD78W6SSUCV2SCDV45ZNJFX4M6_1_3"} {"score": 0.2743663191795349, "chain_id": "3BEFOD78W6SSUCV2SCDV45ZNJFX4M6_1_5"} {"score": 0.17467738687992096, "chain_id": "3BEFOD78W6SSUCV2SCDV45ZNJFX4M6_1_6"} {"score": 0.6305394768714905, "chain_id": "3BEFOD78W6SSUCV2SCDV45ZNJFX4M6_1_7"} {"score": 0.060667745769023895, "chain_id": "3BEFOD78W6SSUCV2SCDV45ZNJFX4M6_1_8"} {"score": 0.34516963362693787, "chain_id": "3BEFOD78W6SSUCV2SCDV45ZNJFX4M6_1_10"} {"score": 0.8817756772041321, "chain_id": "3UN61F00HWO1NBCUBPSMVWZBNRRR56_1_3"} {"score": 0.8024911284446716, "chain_id": "3UN61F00HWO1NBCUBPSMVWZBNRRR56_1_4"} {"score": 0.15172797441482544, "chain_id": "3UN61F00HWO1NBCUBPSMVWZBNRRR56_1_10"} {"score": 0.15646100044250488, "chain_id": "3UN61F00HWO1NBCUBPSMVWZBNRRR56_1_1"} {"score": 0.9736939668655396, "chain_id": "3UN61F00HWO1NBCUBPSMVWZBNRRR56_1_2"} {"score": 0.86223965883255, "chain_id": "3UN61F00HWO1NBCUBPSMVWZBNRRR56_1_5"} {"score": 0.25654926896095276, "chain_id": "3UN61F00HWO1NBCUBPSMVWZBNRRR56_1_6"} {"score": 0.6030028462409973, "chain_id": "3UN61F00HWO1NBCUBPSMVWZBNRRR56_1_7"} {"score": 0.1518746018409729, "chain_id": "3UN61F00HWO1NBCUBPSMVWZBNRRR56_1_8"} {"score": 0.4358948767185211, "chain_id": "3UN61F00HWO1NBCUBPSMVWZBNRRR56_1_9"} {"score": 0.5968301892280579, "chain_id": "31JLPPHS2UTVCJXA5ENPM4WMZJE3O4_1_7"} {"score": 0.8016409873962402, "chain_id": "31JLPPHS2UTVCJXA5ENPM4WMZJE3O4_1_1"} {"score": 0.9056462049484253, "chain_id": "31JLPPHS2UTVCJXA5ENPM4WMZJE3O4_1_2"} {"score": 0.5652647614479065, "chain_id": "31JLPPHS2UTVCJXA5ENPM4WMZJE3O4_1_3"} {"score": 0.8038293719291687, "chain_id": "31JLPPHS2UTVCJXA5ENPM4WMZJE3O4_1_4"} {"score": 0.5275036096572876, "chain_id": "31JLPPHS2UTVCJXA5ENPM4WMZJE3O4_1_5"} {"score": 0.11087175458669662, "chain_id": "31JLPPHS2UTVCJXA5ENPM4WMZJE3O4_1_6"} {"score": 0.8395283818244934, "chain_id": "31JLPPHS2UTVCJXA5ENPM4WMZJE3O4_1_8"} {"score": 0.34845593571662903, "chain_id": "31JLPPHS2UTVCJXA5ENPM4WMZJE3O4_1_9"} {"score": 0.8418853282928467, "chain_id": "31JLPPHS2UTVCJXA5ENPM4WMZJE3O4_1_10"} {"score": 0.7071312069892883, "chain_id": "3PPTZCWALQJZIOHJ5YA2FAW1TGKQZN_1_1"} {"score": 0.2723689079284668, "chain_id": "3PPTZCWALQJZIOHJ5YA2FAW1TGKQZN_1_2"} {"score": 0.45755624771118164, "chain_id": "3PPTZCWALQJZIOHJ5YA2FAW1TGKQZN_1_3"} {"score": 0.1814635694026947, "chain_id": "3PPTZCWALQJZIOHJ5YA2FAW1TGKQZN_1_4"} {"score": 0.12847857177257538, "chain_id": "3PPTZCWALQJZIOHJ5YA2FAW1TGKQZN_1_5"} {"score": 0.24677875638008118, "chain_id": "3PPTZCWALQJZIOHJ5YA2FAW1TGKQZN_1_6"} {"score": 0.3755013644695282, "chain_id": "3PPTZCWALQJZIOHJ5YA2FAW1TGKQZN_1_7"} {"score": 0.2508738338947296, "chain_id": "3PPTZCWALQJZIOHJ5YA2FAW1TGKQZN_1_8"} {"score": 0.8049203753471375, "chain_id": "3PPTZCWALQJZIOHJ5YA2FAW1TGKQZN_1_9"} {"score": 0.16950421035289764, "chain_id": "3PPTZCWALQJZIOHJ5YA2FAW1TGKQZN_1_10"} {"score": 0.9130871295928955, "chain_id": "39RP059MEHSCFBGB7RNICJ5TSLOBMK_1_1"} {"score": 0.8617900013923645, "chain_id": "39RP059MEHSCFBGB7RNICJ5TSLOBMK_1_3"} {"score": 0.9684181809425354, "chain_id": "39RP059MEHSCFBGB7RNICJ5TSLOBMK_1_2"} {"score": 0.7756855487823486, "chain_id": "39RP059MEHSCFBGB7RNICJ5TSLOBMK_1_4"} {"score": 0.9476110935211182, "chain_id": "39RP059MEHSCFBGB7RNICJ5TSLOBMK_1_5"} {"score": 0.9241812825202942, "chain_id": "39RP059MEHSCFBGB7RNICJ5TSLOBMK_1_6"} {"score": 0.6399215459823608, "chain_id": "39RP059MEHSCFBGB7RNICJ5TSLOBMK_1_7"} {"score": 0.7351926565170288, "chain_id": "39RP059MEHSCFBGB7RNICJ5TSLOBMK_1_8"} {"score": 0.22907501459121704, "chain_id": "39RP059MEHSCFBGB7RNICJ5TSLOBMK_1_9"} {"score": 0.04111945629119873, "chain_id": "39RP059MEHSCFBGB7RNICJ5TSLOBMK_1_10"} {"score": 0.9369262456893921, "chain_id": "38F5OAUN5NB3LLCA3DVPFCB1SBZH70_1_1"} {"score": 0.9798397421836853, "chain_id": "38F5OAUN5NB3LLCA3DVPFCB1SBZH70_1_2"} {"score": 0.8498954772949219, "chain_id": "38F5OAUN5NB3LLCA3DVPFCB1SBZH70_1_4"} {"score": 0.05077847093343735, "chain_id": "38F5OAUN5NB3LLCA3DVPFCB1SBZH70_1_10"} {"score": 0.8928163051605225, "chain_id": "38F5OAUN5NB3LLCA3DVPFCB1SBZH70_1_3"} {"score": 0.8961778283119202, "chain_id": "38F5OAUN5NB3LLCA3DVPFCB1SBZH70_1_5"} {"score": 0.826429009437561, "chain_id": "38F5OAUN5NB3LLCA3DVPFCB1SBZH70_1_6"} {"score": 0.380656898021698, "chain_id": "38F5OAUN5NB3LLCA3DVPFCB1SBZH70_1_7"} {"score": 0.4130828380584717, "chain_id": "38F5OAUN5NB3LLCA3DVPFCB1SBZH70_1_8"} {"score": 0.22929365932941437, "chain_id": "38F5OAUN5NB3LLCA3DVPFCB1SBZH70_1_9"} {"score": 0.9887157082557678, "chain_id": "3X1FV8S5JXQRWFIV15GN0QF31XIGVR_1_1"} {"score": 0.9781658053398132, "chain_id": "3X1FV8S5JXQRWFIV15GN0QF31XIGVR_1_2"} {"score": 0.5028893947601318, "chain_id": "3X1FV8S5JXQRWFIV15GN0QF31XIGVR_1_3"} {"score": 0.21794280409812927, "chain_id": "3X1FV8S5JXQRWFIV15GN0QF31XIGVR_1_10"} {"score": 0.7759404182434082, "chain_id": "3X1FV8S5JXQRWFIV15GN0QF31XIGVR_1_4"} {"score": 0.5177671909332275, "chain_id": "3X1FV8S5JXQRWFIV15GN0QF31XIGVR_1_5"} {"score": 0.30630582571029663, "chain_id": "3X1FV8S5JXQRWFIV15GN0QF31XIGVR_1_6"} {"score": 0.22532351315021515, "chain_id": "3X1FV8S5JXQRWFIV15GN0QF31XIGVR_1_7"} {"score": 0.04974348098039627, "chain_id": "3X1FV8S5JXQRWFIV15GN0QF31XIGVR_1_8"} {"score": 0.8732377290725708, "chain_id": "3X1FV8S5JXQRWFIV15GN0QF31XIGVR_1_9"} {"score": 0.9357259273529053, "chain_id": "345LHZDEDXRQPOH710ZYLAOBKPS3UE_1_4"} {"score": 0.6700955033302307, "chain_id": "345LHZDEDXRQPOH710ZYLAOBKPS3UE_1_1"} {"score": 0.5217100381851196, "chain_id": "345LHZDEDXRQPOH710ZYLAOBKPS3UE_1_2"} {"score": 0.8826202154159546, "chain_id": "345LHZDEDXRQPOH710ZYLAOBKPS3UE_1_3"} {"score": 0.024348817765712738, "chain_id": "345LHZDEDXRQPOH710ZYLAOBKPS3UE_1_5"} {"score": 0.022628366947174072, "chain_id": "345LHZDEDXRQPOH710ZYLAOBKPS3UE_1_6"} {"score": 0.0745794028043747, "chain_id": "345LHZDEDXRQPOH710ZYLAOBKPS3UE_1_7"} {"score": 0.027407865971326828, "chain_id": "345LHZDEDXRQPOH710ZYLAOBKPS3UE_1_8"} {"score": 0.04054728522896767, "chain_id": "345LHZDEDXRQPOH710ZYLAOBKPS3UE_1_9"} {"score": 0.02058357745409012, "chain_id": "345LHZDEDXRQPOH710ZYLAOBKPS3UE_1_10"} {"score": 0.9847822785377502, "chain_id": "35H6S234SAZ81SEAJ1POK18FV1B65J_1_1"} {"score": 0.5312028527259827, "chain_id": "35H6S234SAZ81SEAJ1POK18FV1B65J_1_5"} {"score": 0.44080469012260437, "chain_id": "35H6S234SAZ81SEAJ1POK18FV1B65J_1_6"} {"score": 0.9679387211799622, "chain_id": "35H6S234SAZ81SEAJ1POK18FV1B65J_1_2"} {"score": 0.4648442268371582, "chain_id": "35H6S234SAZ81SEAJ1POK18FV1B65J_1_3"} {"score": 0.6152639389038086, "chain_id": "35H6S234SAZ81SEAJ1POK18FV1B65J_1_4"} {"score": 0.14266721904277802, "chain_id": "35H6S234SAZ81SEAJ1POK18FV1B65J_1_7"} {"score": 0.0439070463180542, "chain_id": "35H6S234SAZ81SEAJ1POK18FV1B65J_1_8"} {"score": 0.8979218602180481, "chain_id": "35H6S234SAZ81SEAJ1POK18FV1B65J_1_9"} {"score": 0.2538672685623169, "chain_id": "35H6S234SAZ81SEAJ1POK18FV1B65J_1_10"} {"score": 0.9868894815444946, "chain_id": "3BDCF01OGXTOM1R1H70NKHO5GDBLYH_1_1"} {"score": 0.7027667164802551, "chain_id": "3BDCF01OGXTOM1R1H70NKHO5GDBLYH_1_7"} {"score": 0.9323704838752747, "chain_id": "3BDCF01OGXTOM1R1H70NKHO5GDBLYH_1_2"} {"score": 0.022694451734423637, "chain_id": "3BDCF01OGXTOM1R1H70NKHO5GDBLYH_1_3"} {"score": 0.021354733034968376, "chain_id": "3BDCF01OGXTOM1R1H70NKHO5GDBLYH_1_4"} {"score": 0.07090794295072556, "chain_id": "3BDCF01OGXTOM1R1H70NKHO5GDBLYH_1_5"} {"score": 0.041036780923604965, "chain_id": "3BDCF01OGXTOM1R1H70NKHO5GDBLYH_1_6"} {"score": 0.803176760673523, "chain_id": "3BDCF01OGXTOM1R1H70NKHO5GDBLYH_1_8"} {"score": 0.04763714596629143, "chain_id": "3BDCF01OGXTOM1R1H70NKHO5GDBLYH_1_9"} {"score": 0.3700147569179535, "chain_id": "3BDCF01OGXTOM1R1H70NKHO5GDBLYH_1_10"} {"score": 0.5783344507217407, "chain_id": "3GNCZX450IMDH48WTTFEYCFIFZ5PA8_1_1"} {"score": 0.8207389116287231, "chain_id": "3GNCZX450IMDH48WTTFEYCFIFZ5PA8_1_2"} {"score": 0.7931603193283081, "chain_id": "3GNCZX450IMDH48WTTFEYCFIFZ5PA8_1_3"} {"score": 0.493604451417923, "chain_id": "3GNCZX450IMDH48WTTFEYCFIFZ5PA8_1_4"} {"score": 0.05743950232863426, "chain_id": "3GNCZX450IMDH48WTTFEYCFIFZ5PA8_1_5"} {"score": 0.8636134266853333, "chain_id": "3GNCZX450IMDH48WTTFEYCFIFZ5PA8_1_6"} {"score": 0.8904128670692444, "chain_id": "3GNCZX450IMDH48WTTFEYCFIFZ5PA8_1_7"} {"score": 0.8345771431922913, "chain_id": "3GNCZX450IMDH48WTTFEYCFIFZ5PA8_1_8"} {"score": 0.3858044743537903, "chain_id": "3GNCZX450IMDH48WTTFEYCFIFZ5PA8_1_9"} {"score": 0.7168474793434143, "chain_id": "3GNCZX450IMDH48WTTFEYCFIFZ5PA8_1_10"} {"score": 0.8563894033432007, "chain_id": "31EUONYN2V2FOSZTPOTV5ZO5SDJVOR_1_1"} {"score": 0.9648727774620056, "chain_id": "31EUONYN2V2FOSZTPOTV5ZO5SDJVOR_1_2"} {"score": 0.3764864504337311, "chain_id": "31EUONYN2V2FOSZTPOTV5ZO5SDJVOR_1_3"} {"score": 0.11496645957231522, "chain_id": "31EUONYN2V2FOSZTPOTV5ZO5SDJVOR_1_4"} {"score": 0.4985092878341675, "chain_id": "31EUONYN2V2FOSZTPOTV5ZO5SDJVOR_1_5"} {"score": 0.0418424978852272, "chain_id": "31EUONYN2V2FOSZTPOTV5ZO5SDJVOR_1_6"} {"score": 0.5093938112258911, "chain_id": "31EUONYN2V2FOSZTPOTV5ZO5SDJVOR_1_7"} {"score": 0.049195945262908936, "chain_id": "31EUONYN2V2FOSZTPOTV5ZO5SDJVOR_1_8"} {"score": 0.07122337818145752, "chain_id": "31EUONYN2V2FOSZTPOTV5ZO5SDJVOR_1_9"} {"score": 0.01874881610274315, "chain_id": "31EUONYN2V2FOSZTPOTV5ZO5SDJVOR_1_10"} {"score": 0.646334707736969, "chain_id": "3KGTPGBS6XK146LOX0LT20JJEDB2UP_1_2"} {"score": 0.6849641799926758, "chain_id": "3KGTPGBS6XK146LOX0LT20JJEDB2UP_1_7"} {"score": 0.7690600156784058, "chain_id": "3KGTPGBS6XK146LOX0LT20JJEDB2UP_1_1"} {"score": 0.9302939176559448, "chain_id": "3KGTPGBS6XK146LOX0LT20JJEDB2UP_1_3"} {"score": 0.4150179624557495, "chain_id": "3KGTPGBS6XK146LOX0LT20JJEDB2UP_1_4"} {"score": 0.20834675431251526, "chain_id": "3KGTPGBS6XK146LOX0LT20JJEDB2UP_1_5"} {"score": 0.03852448612451553, "chain_id": "3KGTPGBS6XK146LOX0LT20JJEDB2UP_1_6"} {"score": 0.33795803785324097, "chain_id": "3KGTPGBS6XK146LOX0LT20JJEDB2UP_1_8"} {"score": 0.8308823108673096, "chain_id": "3KGTPGBS6XK146LOX0LT20JJEDB2UP_1_9"} {"score": 0.2782049775123596, "chain_id": "3KGTPGBS6XK146LOX0LT20JJEDB2UP_1_10"} {"score": 0.9809077382087708, "chain_id": "3U088ZLJVKS7007FDDWG10B1YWDW07_1_1"} {"score": 0.9831475615501404, "chain_id": "3U088ZLJVKS7007FDDWG10B1YWDW07_1_2"} {"score": 0.9856346249580383, "chain_id": "3U088ZLJVKS7007FDDWG10B1YWDW07_1_3"} {"score": 0.9841258525848389, "chain_id": "3U088ZLJVKS7007FDDWG10B1YWDW07_1_4"} {"score": 0.867189347743988, "chain_id": "3U088ZLJVKS7007FDDWG10B1YWDW07_1_5"} {"score": 0.7221226096153259, "chain_id": "3U088ZLJVKS7007FDDWG10B1YWDW07_1_7"} {"score": 0.8321684002876282, "chain_id": "3U088ZLJVKS7007FDDWG10B1YWDW07_1_6"} {"score": 0.7869532704353333, "chain_id": "3U088ZLJVKS7007FDDWG10B1YWDW07_1_8"} {"score": 0.42569613456726074, "chain_id": "3U088ZLJVKS7007FDDWG10B1YWDW07_1_9"} {"score": 0.3786136507987976, "chain_id": "3U088ZLJVKS7007FDDWG10B1YWDW07_1_10"} {"score": 0.8913774490356445, "chain_id": "3TPZPLC3M0BDXJ9BKE04B41C8DRP31_1_1"} {"score": 0.9034562706947327, "chain_id": "3TPZPLC3M0BDXJ9BKE04B41C8DRP31_1_2"} {"score": 0.9694660902023315, "chain_id": "3TPZPLC3M0BDXJ9BKE04B41C8DRP31_1_3"} {"score": 0.9601410031318665, "chain_id": "3TPZPLC3M0BDXJ9BKE04B41C8DRP31_1_4"} {"score": 0.7111977338790894, "chain_id": "3TPZPLC3M0BDXJ9BKE04B41C8DRP31_1_7"} {"score": 0.7931386828422546, "chain_id": "3TPZPLC3M0BDXJ9BKE04B41C8DRP31_1_5"} {"score": 0.7627708911895752, "chain_id": "3TPZPLC3M0BDXJ9BKE04B41C8DRP31_1_6"} {"score": 0.5203690528869629, "chain_id": "3TPZPLC3M0BDXJ9BKE04B41C8DRP31_1_8"} {"score": 0.025251852348446846, "chain_id": "3TPZPLC3M0BDXJ9BKE04B41C8DRP31_1_9"} {"score": 0.025366194546222687, "chain_id": "3TPZPLC3M0BDXJ9BKE04B41C8DRP31_1_10"} {"score": 0.8600850105285645, "chain_id": "382M9COHEHETZMX4QKGU41S87MEUE4_1_1"} {"score": 0.8740594387054443, "chain_id": "382M9COHEHETZMX4QKGU41S87MEUE4_1_2"} {"score": 0.8691075444221497, "chain_id": "382M9COHEHETZMX4QKGU41S87MEUE4_1_3"} {"score": 0.29633140563964844, "chain_id": "382M9COHEHETZMX4QKGU41S87MEUE4_1_5"} {"score": 0.20801472663879395, "chain_id": "382M9COHEHETZMX4QKGU41S87MEUE4_1_6"} {"score": 0.8566492795944214, "chain_id": "382M9COHEHETZMX4QKGU41S87MEUE4_1_4"} {"score": 0.22889146208763123, "chain_id": "382M9COHEHETZMX4QKGU41S87MEUE4_1_7"} {"score": 0.258191853761673, "chain_id": "382M9COHEHETZMX4QKGU41S87MEUE4_1_8"} {"score": 0.1503613144159317, "chain_id": "382M9COHEHETZMX4QKGU41S87MEUE4_1_9"} {"score": 0.1228894367814064, "chain_id": "382M9COHEHETZMX4QKGU41S87MEUE4_1_10"} {"score": 0.9888434410095215, "chain_id": "38SKSKU7R1W2W1CWDPEKYTUHMSWILJ_1_1"} {"score": 0.9888773560523987, "chain_id": "38SKSKU7R1W2W1CWDPEKYTUHMSWILJ_1_2"} {"score": 0.9644541144371033, "chain_id": "38SKSKU7R1W2W1CWDPEKYTUHMSWILJ_1_3"} {"score": 0.9861708879470825, "chain_id": "38SKSKU7R1W2W1CWDPEKYTUHMSWILJ_1_5"} {"score": 0.9330798387527466, "chain_id": "38SKSKU7R1W2W1CWDPEKYTUHMSWILJ_1_6"} {"score": 0.9588990211486816, "chain_id": "38SKSKU7R1W2W1CWDPEKYTUHMSWILJ_1_7"} {"score": 0.9219856262207031, "chain_id": "38SKSKU7R1W2W1CWDPEKYTUHMSWILJ_1_8"} {"score": 0.9872822165489197, "chain_id": "38SKSKU7R1W2W1CWDPEKYTUHMSWILJ_1_4"} {"score": 0.03967088833451271, "chain_id": "38SKSKU7R1W2W1CWDPEKYTUHMSWILJ_1_9"} {"score": 0.06851287186145782, "chain_id": "38SKSKU7R1W2W1CWDPEKYTUHMSWILJ_1_10"} {"score": 0.9576349258422852, "chain_id": "3E47SOBEYQV9TXIQ0CLLVA4USS0CIX_1_2"} {"score": 0.9835363626480103, "chain_id": "3E47SOBEYQV9TXIQ0CLLVA4USS0CIX_1_3"} {"score": 0.9811567068099976, "chain_id": "3E47SOBEYQV9TXIQ0CLLVA4USS0CIX_1_4"} {"score": 0.726750910282135, "chain_id": "3E47SOBEYQV9TXIQ0CLLVA4USS0CIX_1_5"} {"score": 0.6998808979988098, "chain_id": "3E47SOBEYQV9TXIQ0CLLVA4USS0CIX_1_6"} {"score": 0.5674152374267578, "chain_id": "3E47SOBEYQV9TXIQ0CLLVA4USS0CIX_1_7"} {"score": 0.643987774848938, "chain_id": "3E47SOBEYQV9TXIQ0CLLVA4USS0CIX_1_8"} {"score": 0.3274417221546173, "chain_id": "3E47SOBEYQV9TXIQ0CLLVA4USS0CIX_1_9"} {"score": 0.28861311078071594, "chain_id": "3E47SOBEYQV9TXIQ0CLLVA4USS0CIX_1_10"} {"score": 0.9481231570243835, "chain_id": "3E47SOBEYQV9TXIQ0CLLVA4USS0CIX_1_1"} {"score": 0.1267852932214737, "chain_id": "320DUZ38G7LI5KI1KG24X249GOWGJT_1_1"} {"score": 0.20549975335597992, "chain_id": "320DUZ38G7LI5KI1KG24X249GOWGJT_1_2"} {"score": 0.22313039004802704, "chain_id": "320DUZ38G7LI5KI1KG24X249GOWGJT_1_3"} {"score": 0.1599355787038803, "chain_id": "320DUZ38G7LI5KI1KG24X249GOWGJT_1_4"} {"score": 0.10924368351697922, "chain_id": "320DUZ38G7LI5KI1KG24X249GOWGJT_1_5"} {"score": 0.16383856534957886, "chain_id": "320DUZ38G7LI5KI1KG24X249GOWGJT_1_6"} {"score": 0.024262264370918274, "chain_id": "320DUZ38G7LI5KI1KG24X249GOWGJT_1_7"} {"score": 0.04911966994404793, "chain_id": "320DUZ38G7LI5KI1KG24X249GOWGJT_1_8"} {"score": 0.2265075147151947, "chain_id": "320DUZ38G7LI5KI1KG24X249GOWGJT_1_9"} {"score": 0.038792550563812256, "chain_id": "320DUZ38G7LI5KI1KG24X249GOWGJT_1_10"} {"score": 0.9860907793045044, "chain_id": "3GD6L00D3SWB2DYJ5UUT67SKI28M1L_1_1"} {"score": 0.9892691969871521, "chain_id": "3GD6L00D3SWB2DYJ5UUT67SKI28M1L_1_2"} {"score": 0.9839162230491638, "chain_id": "3GD6L00D3SWB2DYJ5UUT67SKI28M1L_1_3"} {"score": 0.9890977144241333, "chain_id": "3GD6L00D3SWB2DYJ5UUT67SKI28M1L_1_4"} {"score": 0.8990319967269897, "chain_id": "3GD6L00D3SWB2DYJ5UUT67SKI28M1L_1_5"} {"score": 0.9850538372993469, "chain_id": "3GD6L00D3SWB2DYJ5UUT67SKI28M1L_1_6"} {"score": 0.9665840864181519, "chain_id": "3GD6L00D3SWB2DYJ5UUT67SKI28M1L_1_7"} {"score": 0.9054572582244873, "chain_id": "3GD6L00D3SWB2DYJ5UUT67SKI28M1L_1_9"} {"score": 0.8867671489715576, "chain_id": "3GD6L00D3SWB2DYJ5UUT67SKI28M1L_1_8"} {"score": 0.29162707924842834, "chain_id": "3GD6L00D3SWB2DYJ5UUT67SKI28M1L_1_10"} {"score": 0.9838571548461914, "chain_id": "3UNH76FOCS48SJ9MHJ12KU3UP0UMYM_1_1"} {"score": 0.983984649181366, "chain_id": "3UNH76FOCS48SJ9MHJ12KU3UP0UMYM_1_2"} {"score": 0.9865293502807617, "chain_id": "3UNH76FOCS48SJ9MHJ12KU3UP0UMYM_1_3"} {"score": 0.9854877591133118, "chain_id": "3UNH76FOCS48SJ9MHJ12KU3UP0UMYM_1_4"} {"score": 0.8771004676818848, "chain_id": "3UNH76FOCS48SJ9MHJ12KU3UP0UMYM_1_6"} {"score": 0.8227543830871582, "chain_id": "3UNH76FOCS48SJ9MHJ12KU3UP0UMYM_1_8"} {"score": 0.8990563750267029, "chain_id": "3UNH76FOCS48SJ9MHJ12KU3UP0UMYM_1_5"} {"score": 0.7753362655639648, "chain_id": "3UNH76FOCS48SJ9MHJ12KU3UP0UMYM_1_7"} {"score": 0.5211533904075623, "chain_id": "3UNH76FOCS48SJ9MHJ12KU3UP0UMYM_1_9"} {"score": 0.44908732175827026, "chain_id": "3UNH76FOCS48SJ9MHJ12KU3UP0UMYM_1_10"} {"score": 0.15819092094898224, "chain_id": "35H6S234SAZ81SEAJ1POK18F4V0564_1_1"} {"score": 0.038374971598386765, "chain_id": "35H6S234SAZ81SEAJ1POK18F4V0564_1_2"} {"score": 0.22722843289375305, "chain_id": "35H6S234SAZ81SEAJ1POK18F4V0564_1_3"} {"score": 0.7936580181121826, "chain_id": "35H6S234SAZ81SEAJ1POK18F4V0564_1_4"} {"score": 0.10255873948335648, "chain_id": "35H6S234SAZ81SEAJ1POK18F4V0564_1_5"} {"score": 0.024905016645789146, "chain_id": "35H6S234SAZ81SEAJ1POK18F4V0564_1_6"} {"score": 0.020189424976706505, "chain_id": "35H6S234SAZ81SEAJ1POK18F4V0564_1_7"} {"score": 0.12088464945554733, "chain_id": "35H6S234SAZ81SEAJ1POK18F4V0564_1_8"} {"score": 0.15765438973903656, "chain_id": "35H6S234SAZ81SEAJ1POK18F4V0564_1_9"} {"score": 0.04942549020051956, "chain_id": "35H6S234SAZ81SEAJ1POK18F4V0564_1_10"} {"score": 0.9831475615501404, "chain_id": "31EUONYN2V2FOSZTPOTV5ZO52KUVOQ_1_2"} {"score": 0.867189347743988, "chain_id": "31EUONYN2V2FOSZTPOTV5ZO52KUVOQ_1_5"} {"score": 0.8321684002876282, "chain_id": "31EUONYN2V2FOSZTPOTV5ZO52KUVOQ_1_6"} {"score": 0.7221226096153259, "chain_id": "31EUONYN2V2FOSZTPOTV5ZO52KUVOQ_1_7"} {"score": 0.7869532704353333, "chain_id": "31EUONYN2V2FOSZTPOTV5ZO52KUVOQ_1_8"} {"score": 0.42569613456726074, "chain_id": "31EUONYN2V2FOSZTPOTV5ZO52KUVOQ_1_9"} {"score": 0.9809077382087708, "chain_id": "31EUONYN2V2FOSZTPOTV5ZO52KUVOQ_1_1"} {"score": 0.9856346249580383, "chain_id": "31EUONYN2V2FOSZTPOTV5ZO52KUVOQ_1_3"} {"score": 0.9841258525848389, "chain_id": "31EUONYN2V2FOSZTPOTV5ZO52KUVOQ_1_4"} {"score": 0.3786136507987976, "chain_id": "31EUONYN2V2FOSZTPOTV5ZO52KUVOQ_1_10"} {"score": 0.9303550720214844, "chain_id": "37XITHEISW8MMWL9QZFU925LS02CRL_1_1"} {"score": 0.8093744516372681, "chain_id": "37XITHEISW8MMWL9QZFU925LS02CRL_1_2"} {"score": 0.28699710965156555, "chain_id": "37XITHEISW8MMWL9QZFU925LS02CRL_1_3"} {"score": 0.29380348324775696, "chain_id": "37XITHEISW8MMWL9QZFU925LS02CRL_1_7"} {"score": 0.8104419112205505, "chain_id": "37XITHEISW8MMWL9QZFU925LS02CRL_1_4"} {"score": 0.6312291622161865, "chain_id": "37XITHEISW8MMWL9QZFU925LS02CRL_1_5"} {"score": 0.939516544342041, "chain_id": "37XITHEISW8MMWL9QZFU925LS02CRL_1_6"} {"score": 0.4228454828262329, "chain_id": "37XITHEISW8MMWL9QZFU925LS02CRL_1_8"} {"score": 0.9406856894493103, "chain_id": "37XITHEISW8MMWL9QZFU925LS02CRL_1_9"} {"score": 0.8977048397064209, "chain_id": "37XITHEISW8MMWL9QZFU925LS02CRL_1_10"} {"score": 0.7803246378898621, "chain_id": "3HYA4D452RICLOOY2BQUG0IG04N2F5_1_1"} {"score": 0.7549359798431396, "chain_id": "3HYA4D452RICLOOY2BQUG0IG04N2F5_1_2"} {"score": 0.6123988628387451, "chain_id": "3HYA4D452RICLOOY2BQUG0IG04N2F5_1_5"} {"score": 0.40030357241630554, "chain_id": "3HYA4D452RICLOOY2BQUG0IG04N2F5_1_9"} {"score": 0.7047066688537598, "chain_id": "3HYA4D452RICLOOY2BQUG0IG04N2F5_1_3"} {"score": 0.7601833939552307, "chain_id": "3HYA4D452RICLOOY2BQUG0IG04N2F5_1_4"} {"score": 0.20933392643928528, "chain_id": "3HYA4D452RICLOOY2BQUG0IG04N2F5_1_6"} {"score": 0.36723756790161133, "chain_id": "3HYA4D452RICLOOY2BQUG0IG04N2F5_1_7"} {"score": 0.03427574783563614, "chain_id": "3HYA4D452RICLOOY2BQUG0IG04N2F5_1_8"} {"score": 0.16077370941638947, "chain_id": "3HYA4D452RICLOOY2BQUG0IG04N2F5_1_10"} {"score": 0.7969744801521301, "chain_id": "3YDTZAI2WXFVYN9DZQUXKDBKJA714A_1_4"} {"score": 0.1801944077014923, "chain_id": "3YDTZAI2WXFVYN9DZQUXKDBKJA714A_1_1"} {"score": 0.04965018853545189, "chain_id": "3YDTZAI2WXFVYN9DZQUXKDBKJA714A_1_2"} {"score": 0.19073134660720825, "chain_id": "3YDTZAI2WXFVYN9DZQUXKDBKJA714A_1_3"} {"score": 0.7752805948257446, "chain_id": "3YDTZAI2WXFVYN9DZQUXKDBKJA714A_1_5"} {"score": 0.15854889154434204, "chain_id": "3YDTZAI2WXFVYN9DZQUXKDBKJA714A_1_6"} {"score": 0.1282554268836975, "chain_id": "3YDTZAI2WXFVYN9DZQUXKDBKJA714A_1_7"} {"score": 0.03939800336956978, "chain_id": "3YDTZAI2WXFVYN9DZQUXKDBKJA714A_1_8"} {"score": 0.2044181376695633, "chain_id": "3YDTZAI2WXFVYN9DZQUXKDBKJA714A_1_9"} {"score": 0.06710673868656158, "chain_id": "3YDTZAI2WXFVYN9DZQUXKDBKJA714A_1_10"} {"score": 0.46428030729293823, "chain_id": "3S3AMIZX3U4SLM248YKA4DOHDDECDA_1_3"} {"score": 0.09474685788154602, "chain_id": "3S3AMIZX3U4SLM248YKA4DOHDDECDA_1_10"} {"score": 0.5459898114204407, "chain_id": "3S3AMIZX3U4SLM248YKA4DOHDDECDA_1_1"} {"score": 0.3463345766067505, "chain_id": "3S3AMIZX3U4SLM248YKA4DOHDDECDA_1_2"} {"score": 0.42838627099990845, "chain_id": "3S3AMIZX3U4SLM248YKA4DOHDDECDA_1_4"} {"score": 0.4047262370586395, "chain_id": "3S3AMIZX3U4SLM248YKA4DOHDDECDA_1_5"} {"score": 0.4935542941093445, "chain_id": "3S3AMIZX3U4SLM248YKA4DOHDDECDA_1_6"} {"score": 0.29127728939056396, "chain_id": "3S3AMIZX3U4SLM248YKA4DOHDDECDA_1_7"} {"score": 0.23373956978321075, "chain_id": "3S3AMIZX3U4SLM248YKA4DOHDDECDA_1_8"} {"score": 0.8105080127716064, "chain_id": "3S3AMIZX3U4SLM248YKA4DOHDDECDA_1_9"} {"score": 0.8429766297340393, "chain_id": "3F0BG9B9MPMP7G2ZDDZD1C64HIPY7E_1_2"} {"score": 0.8035504817962646, "chain_id": "3F0BG9B9MPMP7G2ZDDZD1C64HIPY7E_1_1"} {"score": 0.5278051495552063, "chain_id": "3F0BG9B9MPMP7G2ZDDZD1C64HIPY7E_1_3"} {"score": 0.36238721013069153, "chain_id": "3F0BG9B9MPMP7G2ZDDZD1C64HIPY7E_1_4"} {"score": 0.9032170176506042, "chain_id": "3F0BG9B9MPMP7G2ZDDZD1C64HIPY7E_1_5"} {"score": 0.48678797483444214, "chain_id": "3F0BG9B9MPMP7G2ZDDZD1C64HIPY7E_1_6"} {"score": 0.0155730489641428, "chain_id": "3F0BG9B9MPMP7G2ZDDZD1C64HIPY7E_1_7"} {"score": 0.01812075823545456, "chain_id": "3F0BG9B9MPMP7G2ZDDZD1C64HIPY7E_1_8"} {"score": 0.02945009060204029, "chain_id": "3F0BG9B9MPMP7G2ZDDZD1C64HIPY7E_1_9"} {"score": 0.1374390870332718, "chain_id": "3F0BG9B9MPMP7G2ZDDZD1C64HIPY7E_1_10"} {"score": 0.9861765503883362, "chain_id": "3J4Q2Z4UTY2VOTCEUBQVG62JBEPQW5_1_1"} {"score": 0.9887303709983826, "chain_id": "3J4Q2Z4UTY2VOTCEUBQVG62JBEPQW5_1_5"} {"score": 0.7878208160400391, "chain_id": "3J4Q2Z4UTY2VOTCEUBQVG62JBEPQW5_1_2"} {"score": 0.803482711315155, "chain_id": "3J4Q2Z4UTY2VOTCEUBQVG62JBEPQW5_1_3"} {"score": 0.6512551307678223, "chain_id": "3J4Q2Z4UTY2VOTCEUBQVG62JBEPQW5_1_4"} {"score": 0.46350640058517456, "chain_id": "3J4Q2Z4UTY2VOTCEUBQVG62JBEPQW5_1_6"} {"score": 0.2556350529193878, "chain_id": "3J4Q2Z4UTY2VOTCEUBQVG62JBEPQW5_1_7"} {"score": 0.6050838828086853, "chain_id": "3J4Q2Z4UTY2VOTCEUBQVG62JBEPQW5_1_8"} {"score": 0.15128596127033234, "chain_id": "3J4Q2Z4UTY2VOTCEUBQVG62JBEPQW5_1_9"} {"score": 0.43667495250701904, "chain_id": "3J4Q2Z4UTY2VOTCEUBQVG62JBEPQW5_1_10"} {"score": 0.9821954369544983, "chain_id": "3ZY8KE4ISJ2I94C941LZU4J554TVQ5_1_1"} {"score": 0.6848308444023132, "chain_id": "3ZY8KE4ISJ2I94C941LZU4J554TVQ5_1_2"} {"score": 0.7629762291908264, "chain_id": "3ZY8KE4ISJ2I94C941LZU4J554TVQ5_1_3"} {"score": 0.5977591276168823, "chain_id": "3ZY8KE4ISJ2I94C941LZU4J554TVQ5_1_4"} {"score": 0.9843505620956421, "chain_id": "3ZY8KE4ISJ2I94C941LZU4J554TVQ5_1_5"} {"score": 0.4469353258609772, "chain_id": "3ZY8KE4ISJ2I94C941LZU4J554TVQ5_1_6"} {"score": 0.2585737407207489, "chain_id": "3ZY8KE4ISJ2I94C941LZU4J554TVQ5_1_7"} {"score": 0.6016602516174316, "chain_id": "3ZY8KE4ISJ2I94C941LZU4J554TVQ5_1_8"} {"score": 0.1756783276796341, "chain_id": "3ZY8KE4ISJ2I94C941LZU4J554TVQ5_1_9"} {"score": 0.4410662353038788, "chain_id": "3ZY8KE4ISJ2I94C941LZU4J554TVQ5_1_10"} {"score": 0.033428650349378586, "chain_id": "3GD6L00D3SWB2DYJ5UUT67SK61I1MW_1_2"} {"score": 0.10282155871391296, "chain_id": "3GD6L00D3SWB2DYJ5UUT67SK61I1MW_1_8"} {"score": 0.03832703456282616, "chain_id": "3GD6L00D3SWB2DYJ5UUT67SK61I1MW_1_1"} {"score": 0.04217947646975517, "chain_id": "3GD6L00D3SWB2DYJ5UUT67SK61I1MW_1_3"} {"score": 0.024712178856134415, "chain_id": "3GD6L00D3SWB2DYJ5UUT67SK61I1MW_1_4"} {"score": 0.062097761780023575, "chain_id": "3GD6L00D3SWB2DYJ5UUT67SK61I1MW_1_5"} {"score": 0.02265590988099575, "chain_id": "3GD6L00D3SWB2DYJ5UUT67SK61I1MW_1_6"} {"score": 0.034493133425712585, "chain_id": "3GD6L00D3SWB2DYJ5UUT67SK61I1MW_1_7"} {"score": 0.6234731674194336, "chain_id": "3GD6L00D3SWB2DYJ5UUT67SK61I1MW_1_9"} {"score": 0.1087714210152626, "chain_id": "3GD6L00D3SWB2DYJ5UUT67SK61I1MW_1_10"} {"score": 0.9916251301765442, "chain_id": "3R6P78PK7KACJNE6WAG8Z8RI2Z1TGV_1_1"} {"score": 0.8963115811347961, "chain_id": "3R6P78PK7KACJNE6WAG8Z8RI2Z1TGV_1_3"} {"score": 0.7270128130912781, "chain_id": "3R6P78PK7KACJNE6WAG8Z8RI2Z1TGV_1_6"} {"score": 0.847978413105011, "chain_id": "3R6P78PK7KACJNE6WAG8Z8RI2Z1TGV_1_2"} {"score": 0.6537432074546814, "chain_id": "3R6P78PK7KACJNE6WAG8Z8RI2Z1TGV_1_4"} {"score": 0.988325834274292, "chain_id": "3R6P78PK7KACJNE6WAG8Z8RI2Z1TGV_1_5"} {"score": 0.24159923195838928, "chain_id": "3R6P78PK7KACJNE6WAG8Z8RI2Z1TGV_1_7"} {"score": 0.6352822780609131, "chain_id": "3R6P78PK7KACJNE6WAG8Z8RI2Z1TGV_1_8"} {"score": 0.28228744864463806, "chain_id": "3R6P78PK7KACJNE6WAG8Z8RI2Z1TGV_1_9"} {"score": 0.44099321961402893, "chain_id": "3R6P78PK7KACJNE6WAG8Z8RI2Z1TGV_1_10"} {"score": 0.22678792476654053, "chain_id": "3COPXFW7XBBJTHHI5KS3SQIELWYPKT_1_9"} {"score": 0.9406219124794006, "chain_id": "3COPXFW7XBBJTHHI5KS3SQIELWYPKT_1_1"} {"score": 0.9397831559181213, "chain_id": "3COPXFW7XBBJTHHI5KS3SQIELWYPKT_1_2"} {"score": 0.8350148797035217, "chain_id": "3COPXFW7XBBJTHHI5KS3SQIELWYPKT_1_3"} {"score": 0.45365026593208313, "chain_id": "3COPXFW7XBBJTHHI5KS3SQIELWYPKT_1_4"} {"score": 0.5555431246757507, "chain_id": "3COPXFW7XBBJTHHI5KS3SQIELWYPKT_1_5"} {"score": 0.12402749806642532, "chain_id": "3COPXFW7XBBJTHHI5KS3SQIELWYPKT_1_6"} {"score": 0.01924447901546955, "chain_id": "3COPXFW7XBBJTHHI5KS3SQIELWYPKT_1_7"} {"score": 0.01924447901546955, "chain_id": "3COPXFW7XBBJTHHI5KS3SQIELWYPKT_1_8"} {"score": 0.18154925107955933, "chain_id": "3COPXFW7XBBJTHHI5KS3SQIELWYPKT_1_10"} {"score": 0.6331039667129517, "chain_id": "31JLPPHS2UTVCJXA5ENPM4WM09VO3N_1_8"} {"score": 0.9622095227241516, "chain_id": "31JLPPHS2UTVCJXA5ENPM4WM09VO3N_1_1"} {"score": 0.8446811437606812, "chain_id": "31JLPPHS2UTVCJXA5ENPM4WM09VO3N_1_2"} {"score": 0.952093780040741, "chain_id": "31JLPPHS2UTVCJXA5ENPM4WM09VO3N_1_3"} {"score": 0.1253630518913269, "chain_id": "31JLPPHS2UTVCJXA5ENPM4WM09VO3N_1_4"} {"score": 0.19320623576641083, "chain_id": "31JLPPHS2UTVCJXA5ENPM4WM09VO3N_1_5"} {"score": 0.0847603902220726, "chain_id": "31JLPPHS2UTVCJXA5ENPM4WM09VO3N_1_6"} {"score": 0.23877961933612823, "chain_id": "31JLPPHS2UTVCJXA5ENPM4WM09VO3N_1_7"} {"score": 0.8998863101005554, "chain_id": "31JLPPHS2UTVCJXA5ENPM4WM09VO3N_1_9"} {"score": 0.5845768451690674, "chain_id": "31JLPPHS2UTVCJXA5ENPM4WM09VO3N_1_10"} {"score": 0.037589531391859055, "chain_id": "3NGI5ARFTT4HNGVWXAMLNBMFCZ71PT_1_1"} {"score": 0.030668344348669052, "chain_id": "3NGI5ARFTT4HNGVWXAMLNBMFCZ71PT_1_2"} {"score": 0.030051592737436295, "chain_id": "3NGI5ARFTT4HNGVWXAMLNBMFCZ71PT_1_3"} {"score": 0.01842307485640049, "chain_id": "3NGI5ARFTT4HNGVWXAMLNBMFCZ71PT_1_4"} {"score": 0.13846762478351593, "chain_id": "3NGI5ARFTT4HNGVWXAMLNBMFCZ71PT_1_5"} {"score": 0.01564691588282585, "chain_id": "3NGI5ARFTT4HNGVWXAMLNBMFCZ71PT_1_6"} {"score": 0.03644657880067825, "chain_id": "3NGI5ARFTT4HNGVWXAMLNBMFCZ71PT_1_7"} {"score": 0.04212148115038872, "chain_id": "3NGI5ARFTT4HNGVWXAMLNBMFCZ71PT_1_8"} {"score": 0.05187588930130005, "chain_id": "3NGI5ARFTT4HNGVWXAMLNBMFCZ71PT_1_9"} {"score": 0.0293233934789896, "chain_id": "3NGI5ARFTT4HNGVWXAMLNBMFCZ71PT_1_10"} {"score": 0.9751085042953491, "chain_id": "33CUSNVVNNBESOG0AETPGZEXZMJ88M_1_1"} {"score": 0.1687861829996109, "chain_id": "33CUSNVVNNBESOG0AETPGZEXZMJ88M_1_2"} {"score": 0.23479120433330536, "chain_id": "33CUSNVVNNBESOG0AETPGZEXZMJ88M_1_3"} {"score": 0.6123473644256592, "chain_id": "33CUSNVVNNBESOG0AETPGZEXZMJ88M_1_4"} {"score": 0.2978213131427765, "chain_id": "33CUSNVVNNBESOG0AETPGZEXZMJ88M_1_5"} {"score": 0.04256177693605423, "chain_id": "33CUSNVVNNBESOG0AETPGZEXZMJ88M_1_6"} {"score": 0.0861377939581871, "chain_id": "33CUSNVVNNBESOG0AETPGZEXZMJ88M_1_7"} {"score": 0.07191813737154007, "chain_id": "33CUSNVVNNBESOG0AETPGZEXZMJ88M_1_8"} {"score": 0.12334731966257095, "chain_id": "33CUSNVVNNBESOG0AETPGZEXZMJ88M_1_9"} {"score": 0.04271285980939865, "chain_id": "33CUSNVVNNBESOG0AETPGZEXZMJ88M_1_10"} {"score": 0.9837162494659424, "chain_id": "3IGI0VL647J2GNQKNX74VIUS36HONS_1_1"} {"score": 0.9629495739936829, "chain_id": "3IGI0VL647J2GNQKNX74VIUS36HONS_1_2"} {"score": 0.6882104277610779, "chain_id": "3IGI0VL647J2GNQKNX74VIUS36HONS_1_4"} {"score": 0.931725800037384, "chain_id": "3IGI0VL647J2GNQKNX74VIUS36HONS_1_5"} {"score": 0.938320517539978, "chain_id": "3IGI0VL647J2GNQKNX74VIUS36HONS_1_6"} {"score": 0.2984859347343445, "chain_id": "3IGI0VL647J2GNQKNX74VIUS36HONS_1_3"} {"score": 0.8230963349342346, "chain_id": "3IGI0VL647J2GNQKNX74VIUS36HONS_1_7"} {"score": 0.14215533435344696, "chain_id": "3IGI0VL647J2GNQKNX74VIUS36HONS_1_8"} {"score": 0.4600464999675751, "chain_id": "3IGI0VL647J2GNQKNX74VIUS36HONS_1_9"} {"score": 0.03315332159399986, "chain_id": "3IGI0VL647J2GNQKNX74VIUS36HONS_1_10"} {"score": 0.9841168522834778, "chain_id": "3WS1NTTKEYB5PELKNOMGXCP147BF09_1_1"} {"score": 0.5428671836853027, "chain_id": "3WS1NTTKEYB5PELKNOMGXCP147BF09_1_3"} {"score": 0.9278533458709717, "chain_id": "3WS1NTTKEYB5PELKNOMGXCP147BF09_1_4"} {"score": 0.18831689655780792, "chain_id": "3WS1NTTKEYB5PELKNOMGXCP147BF09_1_2"} {"score": 0.06833024322986603, "chain_id": "3WS1NTTKEYB5PELKNOMGXCP147BF09_1_5"} {"score": 0.0591110959649086, "chain_id": "3WS1NTTKEYB5PELKNOMGXCP147BF09_1_6"} {"score": 0.08829513192176819, "chain_id": "3WS1NTTKEYB5PELKNOMGXCP147BF09_1_7"} {"score": 0.2664435803890228, "chain_id": "3WS1NTTKEYB5PELKNOMGXCP147BF09_1_8"} {"score": 0.6357784271240234, "chain_id": "3WS1NTTKEYB5PELKNOMGXCP147BF09_1_9"} {"score": 0.38492289185523987, "chain_id": "3WS1NTTKEYB5PELKNOMGXCP147BF09_1_10"} {"score": 0.9790512323379517, "chain_id": "34S6N1K2ZVI2061C77WZYHT2N09HLO_1_1"} {"score": 0.9499670267105103, "chain_id": "34S6N1K2ZVI2061C77WZYHT2N09HLO_1_3"} {"score": 0.967783510684967, "chain_id": "34S6N1K2ZVI2061C77WZYHT2N09HLO_1_4"} {"score": 0.8109490871429443, "chain_id": "34S6N1K2ZVI2061C77WZYHT2N09HLO_1_5"} {"score": 0.1993568241596222, "chain_id": "34S6N1K2ZVI2061C77WZYHT2N09HLO_1_2"} {"score": 0.8488272428512573, "chain_id": "34S6N1K2ZVI2061C77WZYHT2N09HLO_1_6"} {"score": 0.6787378787994385, "chain_id": "34S6N1K2ZVI2061C77WZYHT2N09HLO_1_7"} {"score": 0.3766127824783325, "chain_id": "34S6N1K2ZVI2061C77WZYHT2N09HLO_1_8"} {"score": 0.044882699847221375, "chain_id": "34S6N1K2ZVI2061C77WZYHT2N09HLO_1_9"} {"score": 0.08080148696899414, "chain_id": "34S6N1K2ZVI2061C77WZYHT2N09HLO_1_10"} {"score": 0.9711622595787048, "chain_id": "39GXDJN2OTDC30CDI74Z8DY5CLHV8F_1_1"} {"score": 0.9451705813407898, "chain_id": "39GXDJN2OTDC30CDI74Z8DY5CLHV8F_1_2"} {"score": 0.9411163926124573, "chain_id": "39GXDJN2OTDC30CDI74Z8DY5CLHV8F_1_3"} {"score": 0.9386345744132996, "chain_id": "39GXDJN2OTDC30CDI74Z8DY5CLHV8F_1_6"} {"score": 0.09003973007202148, "chain_id": "39GXDJN2OTDC30CDI74Z8DY5CLHV8F_1_4"} {"score": 0.1833481341600418, "chain_id": "39GXDJN2OTDC30CDI74Z8DY5CLHV8F_1_5"} {"score": 0.8403713703155518, "chain_id": "39GXDJN2OTDC30CDI74Z8DY5CLHV8F_1_7"} {"score": 0.6729587912559509, "chain_id": "39GXDJN2OTDC30CDI74Z8DY5CLHV8F_1_8"} {"score": 0.45919373631477356, "chain_id": "39GXDJN2OTDC30CDI74Z8DY5CLHV8F_1_9"} {"score": 0.029749423265457153, "chain_id": "39GXDJN2OTDC30CDI74Z8DY5CLHV8F_1_10"} {"score": 0.5044076442718506, "chain_id": "30OG32W0SUAG4WDVTJ48Q60ECSOENG_1_1"} {"score": 0.7609997987747192, "chain_id": "30OG32W0SUAG4WDVTJ48Q60ECSOENG_1_2"} {"score": 0.03562526777386665, "chain_id": "30OG32W0SUAG4WDVTJ48Q60ECSOENG_1_3"} {"score": 0.023143112659454346, "chain_id": "30OG32W0SUAG4WDVTJ48Q60ECSOENG_1_4"} {"score": 0.8711123466491699, "chain_id": "30OG32W0SUAG4WDVTJ48Q60ECSOENG_1_5"} {"score": 0.39749205112457275, "chain_id": "30OG32W0SUAG4WDVTJ48Q60ECSOENG_1_6"} {"score": 0.479006290435791, "chain_id": "30OG32W0SUAG4WDVTJ48Q60ECSOENG_1_7"} {"score": 0.12022969126701355, "chain_id": "30OG32W0SUAG4WDVTJ48Q60ECSOENG_1_8"} {"score": 0.0576484240591526, "chain_id": "30OG32W0SUAG4WDVTJ48Q60ECSOENG_1_9"} {"score": 0.35483160614967346, "chain_id": "30OG32W0SUAG4WDVTJ48Q60ECSOENG_1_10"} {"score": 0.829211413860321, "chain_id": "34QN5IT0TZQWAZBXFAGANK8FT2F80C_1_1"} {"score": 0.9119966626167297, "chain_id": "34QN5IT0TZQWAZBXFAGANK8FT2F80C_1_3"} {"score": 0.9486106038093567, "chain_id": "34QN5IT0TZQWAZBXFAGANK8FT2F80C_1_2"} {"score": 0.8627251386642456, "chain_id": "34QN5IT0TZQWAZBXFAGANK8FT2F80C_1_4"} {"score": 0.29766443371772766, "chain_id": "34QN5IT0TZQWAZBXFAGANK8FT2F80C_1_5"} {"score": 0.07481703162193298, "chain_id": "34QN5IT0TZQWAZBXFAGANK8FT2F80C_1_6"} {"score": 0.20970085263252258, "chain_id": "34QN5IT0TZQWAZBXFAGANK8FT2F80C_1_7"} {"score": 0.49609023332595825, "chain_id": "34QN5IT0TZQWAZBXFAGANK8FT2F80C_1_8"} {"score": 0.3934253454208374, "chain_id": "34QN5IT0TZQWAZBXFAGANK8FT2F80C_1_9"} {"score": 0.12640385329723358, "chain_id": "34QN5IT0TZQWAZBXFAGANK8FT2F80C_1_10"} {"score": 0.9875447750091553, "chain_id": "3TVSS0C0E1Z8G946BFKQLBD68L9TWK_1_1"} {"score": 0.983995258808136, "chain_id": "3TVSS0C0E1Z8G946BFKQLBD68L9TWK_1_4"} {"score": 0.843624472618103, "chain_id": "3TVSS0C0E1Z8G946BFKQLBD68L9TWK_1_2"} {"score": 0.9464990496635437, "chain_id": "3TVSS0C0E1Z8G946BFKQLBD68L9TWK_1_3"} {"score": 0.7463793158531189, "chain_id": "3TVSS0C0E1Z8G946BFKQLBD68L9TWK_1_5"} {"score": 0.7477670907974243, "chain_id": "3TVSS0C0E1Z8G946BFKQLBD68L9TWK_1_6"} {"score": 0.17975664138793945, "chain_id": "3TVSS0C0E1Z8G946BFKQLBD68L9TWK_1_7"} {"score": 0.3956267237663269, "chain_id": "3TVSS0C0E1Z8G946BFKQLBD68L9TWK_1_8"} {"score": 0.7807961702346802, "chain_id": "3TVSS0C0E1Z8G946BFKQLBD68L9TWK_1_9"} {"score": 0.7419318556785583, "chain_id": "3TVSS0C0E1Z8G946BFKQLBD68L9TWK_1_10"} {"score": 0.8194803595542908, "chain_id": "3L4D84MILZRW5GDC4MKMI2GAVW1HJ1_1_1"} {"score": 0.5975792407989502, "chain_id": "3L4D84MILZRW5GDC4MKMI2GAVW1HJ1_1_2"} {"score": 0.5441057682037354, "chain_id": "3L4D84MILZRW5GDC4MKMI2GAVW1HJ1_1_3"} {"score": 0.5414544343948364, "chain_id": "3L4D84MILZRW5GDC4MKMI2GAVW1HJ1_1_4"} {"score": 0.2546338737010956, "chain_id": "3L4D84MILZRW5GDC4MKMI2GAVW1HJ1_1_5"} {"score": 0.0690857544541359, "chain_id": "3L4D84MILZRW5GDC4MKMI2GAVW1HJ1_1_6"} {"score": 0.02273118495941162, "chain_id": "3L4D84MILZRW5GDC4MKMI2GAVW1HJ1_1_7"} {"score": 0.1655942052602768, "chain_id": "3L4D84MILZRW5GDC4MKMI2GAVW1HJ1_1_8"} {"score": 0.13911207020282745, "chain_id": "3L4D84MILZRW5GDC4MKMI2GAVW1HJ1_1_9"} {"score": 0.016323689371347427, "chain_id": "3L4D84MILZRW5GDC4MKMI2GAVW1HJ1_1_10"} {"score": 0.9278533458709717, "chain_id": "3OUYGIZWR7XHGRAE1RIL9635ITFP0B_1_4"} {"score": 0.06833024322986603, "chain_id": "3OUYGIZWR7XHGRAE1RIL9635ITFP0B_1_5"} {"score": 0.9841168522834778, "chain_id": "3OUYGIZWR7XHGRAE1RIL9635ITFP0B_1_1"} {"score": 0.18831689655780792, "chain_id": "3OUYGIZWR7XHGRAE1RIL9635ITFP0B_1_2"} {"score": 0.5428671836853027, "chain_id": "3OUYGIZWR7XHGRAE1RIL9635ITFP0B_1_3"} {"score": 0.0591110959649086, "chain_id": "3OUYGIZWR7XHGRAE1RIL9635ITFP0B_1_6"} {"score": 0.08829513192176819, "chain_id": "3OUYGIZWR7XHGRAE1RIL9635ITFP0B_1_7"} {"score": 0.2664435803890228, "chain_id": "3OUYGIZWR7XHGRAE1RIL9635ITFP0B_1_8"} {"score": 0.6357784271240234, "chain_id": "3OUYGIZWR7XHGRAE1RIL9635ITFP0B_1_9"} {"score": 0.38492289185523987, "chain_id": "3OUYGIZWR7XHGRAE1RIL9635ITFP0B_1_10"} {"score": 0.7819507122039795, "chain_id": "34BBWHLWHAAI7VOVH3LM74BXYL4IW2_1_1"} {"score": 0.5927941799163818, "chain_id": "34BBWHLWHAAI7VOVH3LM74BXYL4IW2_1_3"} {"score": 0.2835964560508728, "chain_id": "34BBWHLWHAAI7VOVH3LM74BXYL4IW2_1_4"} {"score": 0.859375, "chain_id": "34BBWHLWHAAI7VOVH3LM74BXYL4IW2_1_5"} {"score": 0.6676820516586304, "chain_id": "34BBWHLWHAAI7VOVH3LM74BXYL4IW2_1_9"} {"score": 0.5732062458992004, "chain_id": "34BBWHLWHAAI7VOVH3LM74BXYL4IW2_1_2"} {"score": 0.13067951798439026, "chain_id": "34BBWHLWHAAI7VOVH3LM74BXYL4IW2_1_6"} {"score": 0.3066531717777252, "chain_id": "34BBWHLWHAAI7VOVH3LM74BXYL4IW2_1_7"} {"score": 0.5214967131614685, "chain_id": "34BBWHLWHAAI7VOVH3LM74BXYL4IW2_1_8"} {"score": 0.02816029265522957, "chain_id": "34BBWHLWHAAI7VOVH3LM74BXYL4IW2_1_10"} {"score": 0.9634931683540344, "chain_id": "378XPAWRUCCL0ILSGYPUPFE665DAI1_1_1"} {"score": 0.41022172570228577, "chain_id": "378XPAWRUCCL0ILSGYPUPFE665DAI1_1_10"} {"score": 0.8491421937942505, "chain_id": "378XPAWRUCCL0ILSGYPUPFE665DAI1_1_2"} {"score": 0.1621745377779007, "chain_id": "378XPAWRUCCL0ILSGYPUPFE665DAI1_1_3"} {"score": 0.704455554485321, "chain_id": "378XPAWRUCCL0ILSGYPUPFE665DAI1_1_4"} {"score": 0.07314864546060562, "chain_id": "378XPAWRUCCL0ILSGYPUPFE665DAI1_1_5"} {"score": 0.033646468073129654, "chain_id": "378XPAWRUCCL0ILSGYPUPFE665DAI1_1_6"} {"score": 0.12426107376813889, "chain_id": "378XPAWRUCCL0ILSGYPUPFE665DAI1_1_7"} {"score": 0.36231452226638794, "chain_id": "378XPAWRUCCL0ILSGYPUPFE665DAI1_1_8"} {"score": 0.029483336955308914, "chain_id": "378XPAWRUCCL0ILSGYPUPFE665DAI1_1_9"} {"score": 0.9866265654563904, "chain_id": "31LM9EDVOLROFCZN7KFZNMD6IRNJNS_1_1"} {"score": 0.7317015528678894, "chain_id": "31LM9EDVOLROFCZN7KFZNMD6IRNJNS_1_3"} {"score": 0.929959774017334, "chain_id": "31LM9EDVOLROFCZN7KFZNMD6IRNJNS_1_5"} {"score": 0.33931639790534973, "chain_id": "31LM9EDVOLROFCZN7KFZNMD6IRNJNS_1_2"} {"score": 0.5502725839614868, "chain_id": "31LM9EDVOLROFCZN7KFZNMD6IRNJNS_1_4"} {"score": 0.14896328747272491, "chain_id": "31LM9EDVOLROFCZN7KFZNMD6IRNJNS_1_6"} {"score": 0.20638403296470642, "chain_id": "31LM9EDVOLROFCZN7KFZNMD6IRNJNS_1_7"} {"score": 0.061605922877788544, "chain_id": "31LM9EDVOLROFCZN7KFZNMD6IRNJNS_1_8"} {"score": 0.10335864126682281, "chain_id": "31LM9EDVOLROFCZN7KFZNMD6IRNJNS_1_9"} {"score": 0.019924620166420937, "chain_id": "31LM9EDVOLROFCZN7KFZNMD6IRNJNS_1_10"} {"score": 0.9295682311058044, "chain_id": "33M4IA01QG0APUW4HVBHNFQVGOLRXW_1_1"} {"score": 0.6743519902229309, "chain_id": "33M4IA01QG0APUW4HVBHNFQVGOLRXW_1_2"} {"score": 0.6874744892120361, "chain_id": "33M4IA01QG0APUW4HVBHNFQVGOLRXW_1_3"} {"score": 0.7928991317749023, "chain_id": "33M4IA01QG0APUW4HVBHNFQVGOLRXW_1_4"} {"score": 0.5249363780021667, "chain_id": "33M4IA01QG0APUW4HVBHNFQVGOLRXW_1_5"} {"score": 0.09393680840730667, "chain_id": "33M4IA01QG0APUW4HVBHNFQVGOLRXW_1_6"} {"score": 0.3095562756061554, "chain_id": "33M4IA01QG0APUW4HVBHNFQVGOLRXW_1_7"} {"score": 0.2318214327096939, "chain_id": "33M4IA01QG0APUW4HVBHNFQVGOLRXW_1_8"} {"score": 0.5446373820304871, "chain_id": "33M4IA01QG0APUW4HVBHNFQVGOLRXW_1_9"} {"score": 0.5662675499916077, "chain_id": "33M4IA01QG0APUW4HVBHNFQVGOLRXW_1_10"} {"score": 0.27169880270957947, "chain_id": "3ZAZR5XV01HVON700G97V57KOZCCZS_1_2"} {"score": 0.6983770132064819, "chain_id": "3ZAZR5XV01HVON700G97V57KOZCCZS_1_4"} {"score": 0.4668785631656647, "chain_id": "3ZAZR5XV01HVON700G97V57KOZCCZS_1_10"} {"score": 0.452419251203537, "chain_id": "3ZAZR5XV01HVON700G97V57KOZCCZS_1_1"} {"score": 0.05643746256828308, "chain_id": "3ZAZR5XV01HVON700G97V57KOZCCZS_1_3"} {"score": 0.8042400479316711, "chain_id": "3ZAZR5XV01HVON700G97V57KOZCCZS_1_5"} {"score": 0.03350486606359482, "chain_id": "3ZAZR5XV01HVON700G97V57KOZCCZS_1_6"} {"score": 0.03752212971448898, "chain_id": "3ZAZR5XV01HVON700G97V57KOZCCZS_1_7"} {"score": 0.033370837569236755, "chain_id": "3ZAZR5XV01HVON700G97V57KOZCCZS_1_8"} {"score": 0.32611703872680664, "chain_id": "3ZAZR5XV01HVON700G97V57KOZCCZS_1_9"} {"score": 0.8467742204666138, "chain_id": "3A1COHJ8NJU7LZHTDINVTC7W2MWH8V_1_1"} {"score": 0.6896348595619202, "chain_id": "3A1COHJ8NJU7LZHTDINVTC7W2MWH8V_1_2"} {"score": 0.5938934087753296, "chain_id": "3A1COHJ8NJU7LZHTDINVTC7W2MWH8V_1_3"} {"score": 0.7242074012756348, "chain_id": "3A1COHJ8NJU7LZHTDINVTC7W2MWH8V_1_4"} {"score": 0.9128597974777222, "chain_id": "3A1COHJ8NJU7LZHTDINVTC7W2MWH8V_1_6"} {"score": 0.48549824953079224, "chain_id": "3A1COHJ8NJU7LZHTDINVTC7W2MWH8V_1_5"} {"score": 0.07953467965126038, "chain_id": "3A1COHJ8NJU7LZHTDINVTC7W2MWH8V_1_7"} {"score": 0.042750246822834015, "chain_id": "3A1COHJ8NJU7LZHTDINVTC7W2MWH8V_1_8"} {"score": 0.7058132886886597, "chain_id": "3A1COHJ8NJU7LZHTDINVTC7W2MWH8V_1_9"} {"score": 0.03236018493771553, "chain_id": "3A1COHJ8NJU7LZHTDINVTC7W2MWH8V_1_10"} {"score": 0.9629665017127991, "chain_id": "369J354OFD96HP3U0X8FOYZ4ISJG62_1_2"} {"score": 0.618838906288147, "chain_id": "369J354OFD96HP3U0X8FOYZ4ISJG62_1_3"} {"score": 0.11247686296701431, "chain_id": "369J354OFD96HP3U0X8FOYZ4ISJG62_1_4"} {"score": 0.18600863218307495, "chain_id": "369J354OFD96HP3U0X8FOYZ4ISJG62_1_1"} {"score": 0.24578054249286652, "chain_id": "369J354OFD96HP3U0X8FOYZ4ISJG62_1_5"} {"score": 0.7976447343826294, "chain_id": "369J354OFD96HP3U0X8FOYZ4ISJG62_1_6"} {"score": 0.05585576966404915, "chain_id": "369J354OFD96HP3U0X8FOYZ4ISJG62_1_7"} {"score": 0.8176959156990051, "chain_id": "369J354OFD96HP3U0X8FOYZ4ISJG62_1_8"} {"score": 0.041836049407720566, "chain_id": "369J354OFD96HP3U0X8FOYZ4ISJG62_1_9"} {"score": 0.10076751559972763, "chain_id": "369J354OFD96HP3U0X8FOYZ4ISJG62_1_10"} {"score": 0.9195711016654968, "chain_id": "3QFUFYSY9YEMO23L6P9I9FFELSU4FZ_1_1"} {"score": 0.7071376442909241, "chain_id": "3QFUFYSY9YEMO23L6P9I9FFELSU4FZ_1_2"} {"score": 0.7420893907546997, "chain_id": "3QFUFYSY9YEMO23L6P9I9FFELSU4FZ_1_3"} {"score": 0.7837642431259155, "chain_id": "3QFUFYSY9YEMO23L6P9I9FFELSU4FZ_1_4"} {"score": 0.8640671968460083, "chain_id": "3QFUFYSY9YEMO23L6P9I9FFELSU4FZ_1_5"} {"score": 0.08973343670368195, "chain_id": "3QFUFYSY9YEMO23L6P9I9FFELSU4FZ_1_6"} {"score": 0.11315818130970001, "chain_id": "3QFUFYSY9YEMO23L6P9I9FFELSU4FZ_1_7"} {"score": 0.2040138989686966, "chain_id": "3QFUFYSY9YEMO23L6P9I9FFELSU4FZ_1_8"} {"score": 0.06659185886383057, "chain_id": "3QFUFYSY9YEMO23L6P9I9FFELSU4FZ_1_9"} {"score": 0.11688181757926941, "chain_id": "3QFUFYSY9YEMO23L6P9I9FFELSU4FZ_1_10"} {"score": 0.9870988726615906, "chain_id": "3MHW492WW0CROPEHC8EIDVZ0WX0VMB_1_1"} {"score": 0.985755205154419, "chain_id": "3MHW492WW0CROPEHC8EIDVZ0WX0VMB_1_3"} {"score": 0.9384202361106873, "chain_id": "3MHW492WW0CROPEHC8EIDVZ0WX0VMB_1_4"} {"score": 0.7043567895889282, "chain_id": "3MHW492WW0CROPEHC8EIDVZ0WX0VMB_1_2"} {"score": 0.04996756836771965, "chain_id": "3MHW492WW0CROPEHC8EIDVZ0WX0VMB_1_5"} {"score": 0.2675180733203888, "chain_id": "3MHW492WW0CROPEHC8EIDVZ0WX0VMB_1_6"} {"score": 0.14026328921318054, "chain_id": "3MHW492WW0CROPEHC8EIDVZ0WX0VMB_1_7"} {"score": 0.24148640036582947, "chain_id": "3MHW492WW0CROPEHC8EIDVZ0WX0VMB_1_8"} {"score": 0.4626893103122711, "chain_id": "3MHW492WW0CROPEHC8EIDVZ0WX0VMB_1_9"} {"score": 0.1697409600019455, "chain_id": "3MHW492WW0CROPEHC8EIDVZ0WX0VMB_1_10"} {"score": 0.9719617366790771, "chain_id": "3M81GAB8A0I30QE3ZKUZTSPY4NUQBZ_1_1"} {"score": 0.6661039590835571, "chain_id": "3M81GAB8A0I30QE3ZKUZTSPY4NUQBZ_1_2"} {"score": 0.7216684222221375, "chain_id": "3M81GAB8A0I30QE3ZKUZTSPY4NUQBZ_1_3"} {"score": 0.6511561870574951, "chain_id": "3M81GAB8A0I30QE3ZKUZTSPY4NUQBZ_1_4"} {"score": 0.9482269287109375, "chain_id": "3M81GAB8A0I30QE3ZKUZTSPY4NUQBZ_1_5"} {"score": 0.12856629490852356, "chain_id": "3M81GAB8A0I30QE3ZKUZTSPY4NUQBZ_1_6"} {"score": 0.5086728930473328, "chain_id": "3M81GAB8A0I30QE3ZKUZTSPY4NUQBZ_1_9"} {"score": 0.5660778284072876, "chain_id": "3M81GAB8A0I30QE3ZKUZTSPY4NUQBZ_1_7"} {"score": 0.18094637989997864, "chain_id": "3M81GAB8A0I30QE3ZKUZTSPY4NUQBZ_1_8"} {"score": 0.7019422650337219, "chain_id": "3M81GAB8A0I30QE3ZKUZTSPY4NUQBZ_1_10"} {"score": 0.596738874912262, "chain_id": "3EFE17QCRC4P4JW2RGT0A37XHPIHSV_1_1"} {"score": 0.31325653195381165, "chain_id": "3EFE17QCRC4P4JW2RGT0A37XHPIHSV_1_2"} {"score": 0.7797167897224426, "chain_id": "3EFE17QCRC4P4JW2RGT0A37XHPIHSV_1_4"} {"score": 0.1026708111166954, "chain_id": "3EFE17QCRC4P4JW2RGT0A37XHPIHSV_1_5"} {"score": 0.05521495267748833, "chain_id": "3EFE17QCRC4P4JW2RGT0A37XHPIHSV_1_10"} {"score": 0.2693959176540375, "chain_id": "3EFE17QCRC4P4JW2RGT0A37XHPIHSV_1_3"} {"score": 0.20922476053237915, "chain_id": "3EFE17QCRC4P4JW2RGT0A37XHPIHSV_1_6"} {"score": 0.03866250813007355, "chain_id": "3EFE17QCRC4P4JW2RGT0A37XHPIHSV_1_7"} {"score": 0.578667938709259, "chain_id": "3EFE17QCRC4P4JW2RGT0A37XHPIHSV_1_8"} {"score": 0.11968325823545456, "chain_id": "3EFE17QCRC4P4JW2RGT0A37XHPIHSV_1_9"} {"score": 0.9661473035812378, "chain_id": "3D8YOU6S9EJPM74PK2XWSD0VUFQ6UH_1_1"} {"score": 0.9834322333335876, "chain_id": "3D8YOU6S9EJPM74PK2XWSD0VUFQ6UH_1_2"} {"score": 0.9802258610725403, "chain_id": "3D8YOU6S9EJPM74PK2XWSD0VUFQ6UH_1_3"} {"score": 0.9783918857574463, "chain_id": "3D8YOU6S9EJPM74PK2XWSD0VUFQ6UH_1_4"} {"score": 0.7062279582023621, "chain_id": "3D8YOU6S9EJPM74PK2XWSD0VUFQ6UH_1_9"} {"score": 0.6544075012207031, "chain_id": "3D8YOU6S9EJPM74PK2XWSD0VUFQ6UH_1_5"} {"score": 0.048137228935956955, "chain_id": "3D8YOU6S9EJPM74PK2XWSD0VUFQ6UH_1_6"} {"score": 0.09363319724798203, "chain_id": "3D8YOU6S9EJPM74PK2XWSD0VUFQ6UH_1_7"} {"score": 0.47036662697792053, "chain_id": "3D8YOU6S9EJPM74PK2XWSD0VUFQ6UH_1_8"} {"score": 0.30176180601119995, "chain_id": "3D8YOU6S9EJPM74PK2XWSD0VUFQ6UH_1_10"} {"score": 0.9895752668380737, "chain_id": "3TR2532VIPTG8RTV83TILBRKD246J3_1_2"} {"score": 0.9799516797065735, "chain_id": "3TR2532VIPTG8RTV83TILBRKD246J3_1_3"} {"score": 0.9888218641281128, "chain_id": "3TR2532VIPTG8RTV83TILBRKD246J3_1_1"} {"score": 0.9749974608421326, "chain_id": "3TR2532VIPTG8RTV83TILBRKD246J3_1_4"} {"score": 0.6655460596084595, "chain_id": "3TR2532VIPTG8RTV83TILBRKD246J3_1_5"} {"score": 0.8093721866607666, "chain_id": "3TR2532VIPTG8RTV83TILBRKD246J3_1_6"} {"score": 0.7296346426010132, "chain_id": "3TR2532VIPTG8RTV83TILBRKD246J3_1_7"} {"score": 0.7458953857421875, "chain_id": "3TR2532VIPTG8RTV83TILBRKD246J3_1_8"} {"score": 0.281061053276062, "chain_id": "3TR2532VIPTG8RTV83TILBRKD246J3_1_9"} {"score": 0.6745439767837524, "chain_id": "3TR2532VIPTG8RTV83TILBRKD246J3_1_10"} {"score": 0.017503151670098305, "chain_id": "3NLZY2D53POFDZ0FQXJT7VL3H4UQLJ_1_1"} {"score": 0.028219612315297127, "chain_id": "3NLZY2D53POFDZ0FQXJT7VL3H4UQLJ_1_2"} {"score": 0.2314823418855667, "chain_id": "3NLZY2D53POFDZ0FQXJT7VL3H4UQLJ_1_3"} {"score": 0.03995344042778015, "chain_id": "3NLZY2D53POFDZ0FQXJT7VL3H4UQLJ_1_4"} {"score": 0.9695565104484558, "chain_id": "3NLZY2D53POFDZ0FQXJT7VL3H4UQLJ_1_5"} {"score": 0.0738288015127182, "chain_id": "3NLZY2D53POFDZ0FQXJT7VL3H4UQLJ_1_6"} {"score": 0.5860434770584106, "chain_id": "3NLZY2D53POFDZ0FQXJT7VL3H4UQLJ_1_7"} {"score": 0.7839118838310242, "chain_id": "3NLZY2D53POFDZ0FQXJT7VL3H4UQLJ_1_8"} {"score": 0.08360447734594345, "chain_id": "3NLZY2D53POFDZ0FQXJT7VL3H4UQLJ_1_9"} {"score": 0.0779280960559845, "chain_id": "3NLZY2D53POFDZ0FQXJT7VL3H4UQLJ_1_10"} {"score": 0.9915488958358765, "chain_id": "3DH6GAKTYYO8RQ85W8RWSWZ3RSXZY0_1_1"} {"score": 0.9900435209274292, "chain_id": "3DH6GAKTYYO8RQ85W8RWSWZ3RSXZY0_1_2"} {"score": 0.9878278970718384, "chain_id": "3DH6GAKTYYO8RQ85W8RWSWZ3RSXZY0_1_3"} {"score": 0.9322120547294617, "chain_id": "3DH6GAKTYYO8RQ85W8RWSWZ3RSXZY0_1_4"} {"score": 0.534045398235321, "chain_id": "3DH6GAKTYYO8RQ85W8RWSWZ3RSXZY0_1_5"} {"score": 0.5423410534858704, "chain_id": "3DH6GAKTYYO8RQ85W8RWSWZ3RSXZY0_1_6"} {"score": 0.6573696732521057, "chain_id": "3DH6GAKTYYO8RQ85W8RWSWZ3RSXZY0_1_7"} {"score": 0.3765729069709778, "chain_id": "3DH6GAKTYYO8RQ85W8RWSWZ3RSXZY0_1_8"} {"score": 0.5327286124229431, "chain_id": "3DH6GAKTYYO8RQ85W8RWSWZ3RSXZY0_1_9"} {"score": 0.37978869676589966, "chain_id": "3DH6GAKTYYO8RQ85W8RWSWZ3RSXZY0_1_10"} {"score": 0.9908934831619263, "chain_id": "3LRKMWOKB5GIQ5FY3NK1JSYYD822ZD_1_1"} {"score": 0.9887991547584534, "chain_id": "3LRKMWOKB5GIQ5FY3NK1JSYYD822ZD_1_2"} {"score": 0.9860347509384155, "chain_id": "3LRKMWOKB5GIQ5FY3NK1JSYYD822ZD_1_3"} {"score": 0.9114128351211548, "chain_id": "3LRKMWOKB5GIQ5FY3NK1JSYYD822ZD_1_4"} {"score": 0.5538778901100159, "chain_id": "3LRKMWOKB5GIQ5FY3NK1JSYYD822ZD_1_5"} {"score": 0.8833513855934143, "chain_id": "3LRKMWOKB5GIQ5FY3NK1JSYYD822ZD_1_6"} {"score": 0.5646101832389832, "chain_id": "3LRKMWOKB5GIQ5FY3NK1JSYYD822ZD_1_7"} {"score": 0.6830714344978333, "chain_id": "3LRKMWOKB5GIQ5FY3NK1JSYYD822ZD_1_8"} {"score": 0.7921743392944336, "chain_id": "3LRKMWOKB5GIQ5FY3NK1JSYYD822ZD_1_9"} {"score": 0.09353924542665482, "chain_id": "3LRKMWOKB5GIQ5FY3NK1JSYYD822ZD_1_10"} {"score": 0.9631717801094055, "chain_id": "3TS1AR6UQQDJ7PL48N7PCRZOD437FQ_1_1"} {"score": 0.9853000044822693, "chain_id": "3TS1AR6UQQDJ7PL48N7PCRZOD437FQ_1_2"} {"score": 0.8626927137374878, "chain_id": "3TS1AR6UQQDJ7PL48N7PCRZOD437FQ_1_3"} {"score": 0.8915784955024719, "chain_id": "3TS1AR6UQQDJ7PL48N7PCRZOD437FQ_1_4"} {"score": 0.14542604982852936, "chain_id": "3TS1AR6UQQDJ7PL48N7PCRZOD437FQ_1_5"} {"score": 0.20615051686763763, "chain_id": "3TS1AR6UQQDJ7PL48N7PCRZOD437FQ_1_6"} {"score": 0.4452858567237854, "chain_id": "3TS1AR6UQQDJ7PL48N7PCRZOD437FQ_1_7"} {"score": 0.5299932360649109, "chain_id": "3TS1AR6UQQDJ7PL48N7PCRZOD437FQ_1_8"} {"score": 0.1815817654132843, "chain_id": "3TS1AR6UQQDJ7PL48N7PCRZOD437FQ_1_9"} {"score": 0.405828058719635, "chain_id": "3TS1AR6UQQDJ7PL48N7PCRZOD437FQ_1_10"} {"score": 0.9132625460624695, "chain_id": "38F71OA9GTV2SSSRCT9EV9WE8XOMFE_1_1"} {"score": 0.6782987713813782, "chain_id": "38F71OA9GTV2SSSRCT9EV9WE8XOMFE_1_3"} {"score": 0.11074530333280563, "chain_id": "38F71OA9GTV2SSSRCT9EV9WE8XOMFE_1_4"} {"score": 0.03895919770002365, "chain_id": "38F71OA9GTV2SSSRCT9EV9WE8XOMFE_1_9"} {"score": 0.4848049581050873, "chain_id": "38F71OA9GTV2SSSRCT9EV9WE8XOMFE_1_2"} {"score": 0.06839422136545181, "chain_id": "38F71OA9GTV2SSSRCT9EV9WE8XOMFE_1_5"} {"score": 0.12588931620121002, "chain_id": "38F71OA9GTV2SSSRCT9EV9WE8XOMFE_1_6"} {"score": 0.1267748773097992, "chain_id": "38F71OA9GTV2SSSRCT9EV9WE8XOMFE_1_7"} {"score": 0.024982405826449394, "chain_id": "38F71OA9GTV2SSSRCT9EV9WE8XOMFE_1_8"} {"score": 0.1564793437719345, "chain_id": "38F71OA9GTV2SSSRCT9EV9WE8XOMFE_1_10"} {"score": 0.991077184677124, "chain_id": "3WYGZ5XF3WEG69XAX1WXNVNP6FGSKJ_1_1"} {"score": 0.9898922443389893, "chain_id": "3WYGZ5XF3WEG69XAX1WXNVNP6FGSKJ_1_2"} {"score": 0.9867663383483887, "chain_id": "3WYGZ5XF3WEG69XAX1WXNVNP6FGSKJ_1_3"} {"score": 0.9241418242454529, "chain_id": "3WYGZ5XF3WEG69XAX1WXNVNP6FGSKJ_1_4"} {"score": 0.6654770374298096, "chain_id": "3WYGZ5XF3WEG69XAX1WXNVNP6FGSKJ_1_5"} {"score": 0.6543934345245361, "chain_id": "3WYGZ5XF3WEG69XAX1WXNVNP6FGSKJ_1_6"} {"score": 0.741221010684967, "chain_id": "3WYGZ5XF3WEG69XAX1WXNVNP6FGSKJ_1_7"} {"score": 0.18610671162605286, "chain_id": "3WYGZ5XF3WEG69XAX1WXNVNP6FGSKJ_1_8"} {"score": 0.649863064289093, "chain_id": "3WYGZ5XF3WEG69XAX1WXNVNP6FGSKJ_1_9"} {"score": 0.47712698578834534, "chain_id": "3WYGZ5XF3WEG69XAX1WXNVNP6FGSKJ_1_10"} {"score": 0.991077184677124, "chain_id": "3UOUJI6MTDD25MOLLP6MSQDFO3SXU6_1_1"} {"score": 0.9898922443389893, "chain_id": "3UOUJI6MTDD25MOLLP6MSQDFO3SXU6_1_2"} {"score": 0.9867663383483887, "chain_id": "3UOUJI6MTDD25MOLLP6MSQDFO3SXU6_1_3"} {"score": 0.9241418242454529, "chain_id": "3UOUJI6MTDD25MOLLP6MSQDFO3SXU6_1_4"} {"score": 0.6654770374298096, "chain_id": "3UOUJI6MTDD25MOLLP6MSQDFO3SXU6_1_5"} {"score": 0.6543934345245361, "chain_id": "3UOUJI6MTDD25MOLLP6MSQDFO3SXU6_1_6"} {"score": 0.741221010684967, "chain_id": "3UOUJI6MTDD25MOLLP6MSQDFO3SXU6_1_7"} {"score": 0.18610671162605286, "chain_id": "3UOUJI6MTDD25MOLLP6MSQDFO3SXU6_1_8"} {"score": 0.649863064289093, "chain_id": "3UOUJI6MTDD25MOLLP6MSQDFO3SXU6_1_9"} {"score": 0.47712698578834534, "chain_id": "3UOUJI6MTDD25MOLLP6MSQDFO3SXU6_1_10"} {"score": 0.32737934589385986, "chain_id": "3IQ1VMJRYTJSPHSPC4JHCMF3BK3A9T_1_1"} {"score": 0.8184342384338379, "chain_id": "3IQ1VMJRYTJSPHSPC4JHCMF3BK3A9T_1_9"} {"score": 0.81525057554245, "chain_id": "3IQ1VMJRYTJSPHSPC4JHCMF3BK3A9T_1_10"} {"score": 0.08277253806591034, "chain_id": "3IQ1VMJRYTJSPHSPC4JHCMF3BK3A9T_1_2"} {"score": 0.13038593530654907, "chain_id": "3IQ1VMJRYTJSPHSPC4JHCMF3BK3A9T_1_3"} {"score": 0.05798537656664848, "chain_id": "3IQ1VMJRYTJSPHSPC4JHCMF3BK3A9T_1_4"} {"score": 0.0582110621035099, "chain_id": "3IQ1VMJRYTJSPHSPC4JHCMF3BK3A9T_1_5"} {"score": 0.09253848344087601, "chain_id": "3IQ1VMJRYTJSPHSPC4JHCMF3BK3A9T_1_6"} {"score": 0.10524901002645493, "chain_id": "3IQ1VMJRYTJSPHSPC4JHCMF3BK3A9T_1_7"} {"score": 0.03713088482618332, "chain_id": "3IQ1VMJRYTJSPHSPC4JHCMF3BK3A9T_1_8"} {"score": 0.23321394622325897, "chain_id": "3BEFOD78W6SSUCV2SCDV45ZNEA24MW_1_1"} {"score": 0.08409051597118378, "chain_id": "3BEFOD78W6SSUCV2SCDV45ZNEA24MW_1_2"} {"score": 0.3137383759021759, "chain_id": "3BEFOD78W6SSUCV2SCDV45ZNEA24MW_1_3"} {"score": 0.328973650932312, "chain_id": "3BEFOD78W6SSUCV2SCDV45ZNEA24MW_1_4"} {"score": 0.02379336953163147, "chain_id": "3BEFOD78W6SSUCV2SCDV45ZNEA24MW_1_5"} {"score": 0.02959377132356167, "chain_id": "3BEFOD78W6SSUCV2SCDV45ZNEA24MW_1_6"} {"score": 0.8309698104858398, "chain_id": "3BEFOD78W6SSUCV2SCDV45ZNEA24MW_1_7"} {"score": 0.05465365946292877, "chain_id": "3BEFOD78W6SSUCV2SCDV45ZNEA24MW_1_8"} {"score": 0.04873160272836685, "chain_id": "3BEFOD78W6SSUCV2SCDV45ZNEA24MW_1_9"} {"score": 0.9139986038208008, "chain_id": "3BEFOD78W6SSUCV2SCDV45ZNEA24MW_1_10"} {"score": 0.129815936088562, "chain_id": "3FPRZHYEPY6Q23676Q93HWQUR3NV3O_1_1"} {"score": 0.08594854921102524, "chain_id": "3FPRZHYEPY6Q23676Q93HWQUR3NV3O_1_2"} {"score": 0.04631809517741203, "chain_id": "3FPRZHYEPY6Q23676Q93HWQUR3NV3O_1_3"} {"score": 0.2024330198764801, "chain_id": "3FPRZHYEPY6Q23676Q93HWQUR3NV3O_1_4"} {"score": 0.042627278715372086, "chain_id": "3FPRZHYEPY6Q23676Q93HWQUR3NV3O_1_5"} {"score": 0.10660886019468307, "chain_id": "3FPRZHYEPY6Q23676Q93HWQUR3NV3O_1_6"} {"score": 0.4940270781517029, "chain_id": "3FPRZHYEPY6Q23676Q93HWQUR3NV3O_1_7"} {"score": 0.034983765333890915, "chain_id": "3FPRZHYEPY6Q23676Q93HWQUR3NV3O_1_8"} {"score": 0.9130019545555115, "chain_id": "3FPRZHYEPY6Q23676Q93HWQUR3NV3O_1_9"} {"score": 0.19406820833683014, "chain_id": "3FPRZHYEPY6Q23676Q93HWQUR3NV3O_1_10"} {"score": 0.28940802812576294, "chain_id": "32ZKVD547FMBTP8119I3GKWNODJ3B6_1_1"} {"score": 0.013334264978766441, "chain_id": "32ZKVD547FMBTP8119I3GKWNODJ3B6_1_2"} {"score": 0.021929116919636726, "chain_id": "32ZKVD547FMBTP8119I3GKWNODJ3B6_1_3"} {"score": 0.046795666217803955, "chain_id": "32ZKVD547FMBTP8119I3GKWNODJ3B6_1_4"} {"score": 0.6959851980209351, "chain_id": "32ZKVD547FMBTP8119I3GKWNODJ3B6_1_5"} {"score": 0.04719274863600731, "chain_id": "32ZKVD547FMBTP8119I3GKWNODJ3B6_1_6"} {"score": 0.6187950968742371, "chain_id": "32ZKVD547FMBTP8119I3GKWNODJ3B6_1_7"} {"score": 0.6204848885536194, "chain_id": "32ZKVD547FMBTP8119I3GKWNODJ3B6_1_8"} {"score": 0.07158520817756653, "chain_id": "32ZKVD547FMBTP8119I3GKWNODJ3B6_1_9"} {"score": 0.10767626017332077, "chain_id": "32ZKVD547FMBTP8119I3GKWNODJ3B6_1_10"} {"score": 0.9914871454238892, "chain_id": "3HFNH7HEMHDZR7MEF6MDU3GVEN0QGY_1_2"} {"score": 0.9906987547874451, "chain_id": "3HFNH7HEMHDZR7MEF6MDU3GVEN0QGY_1_3"} {"score": 0.9085816144943237, "chain_id": "3HFNH7HEMHDZR7MEF6MDU3GVEN0QGY_1_6"} {"score": 0.7733434438705444, "chain_id": "3HFNH7HEMHDZR7MEF6MDU3GVEN0QGY_1_1"} {"score": 0.9480693936347961, "chain_id": "3HFNH7HEMHDZR7MEF6MDU3GVEN0QGY_1_4"} {"score": 0.488272488117218, "chain_id": "3HFNH7HEMHDZR7MEF6MDU3GVEN0QGY_1_5"} {"score": 0.9591899514198303, "chain_id": "3HFNH7HEMHDZR7MEF6MDU3GVEN0QGY_1_7"} {"score": 0.8894907236099243, "chain_id": "3HFNH7HEMHDZR7MEF6MDU3GVEN0QGY_1_8"} {"score": 0.11296506971120834, "chain_id": "3HFNH7HEMHDZR7MEF6MDU3GVEN0QGY_1_9"} {"score": 0.08052133023738861, "chain_id": "3HFNH7HEMHDZR7MEF6MDU3GVEN0QGY_1_10"} {"score": 0.16783419251441956, "chain_id": "3KYQYYSHYV6TUBZ7Y3T1ZDIYMWKDOP_1_2"} {"score": 0.07342709600925446, "chain_id": "3KYQYYSHYV6TUBZ7Y3T1ZDIYMWKDOP_1_1"} {"score": 0.0335264578461647, "chain_id": "3KYQYYSHYV6TUBZ7Y3T1ZDIYMWKDOP_1_3"} {"score": 0.04852360114455223, "chain_id": "3KYQYYSHYV6TUBZ7Y3T1ZDIYMWKDOP_1_4"} {"score": 0.04252428933978081, "chain_id": "3KYQYYSHYV6TUBZ7Y3T1ZDIYMWKDOP_1_5"} {"score": 0.02305319532752037, "chain_id": "3KYQYYSHYV6TUBZ7Y3T1ZDIYMWKDOP_1_6"} {"score": 0.03819282352924347, "chain_id": "3KYQYYSHYV6TUBZ7Y3T1ZDIYMWKDOP_1_7"} {"score": 0.9530441761016846, "chain_id": "3KYQYYSHYV6TUBZ7Y3T1ZDIYMWKDOP_1_8"} {"score": 0.01658402942121029, "chain_id": "3KYQYYSHYV6TUBZ7Y3T1ZDIYMWKDOP_1_9"} {"score": 0.349844366312027, "chain_id": "3KYQYYSHYV6TUBZ7Y3T1ZDIYMWKDOP_1_10"} {"score": 0.957295835018158, "chain_id": "3VNXK88KKCHCH5VNNZAD89TGTUNV9V_1_1"} {"score": 0.9792176485061646, "chain_id": "3VNXK88KKCHCH5VNNZAD89TGTUNV9V_1_2"} {"score": 0.16662395000457764, "chain_id": "3VNXK88KKCHCH5VNNZAD89TGTUNV9V_1_3"} {"score": 0.16666074097156525, "chain_id": "3VNXK88KKCHCH5VNNZAD89TGTUNV9V_1_4"} {"score": 0.033045340329408646, "chain_id": "3VNXK88KKCHCH5VNNZAD89TGTUNV9V_1_5"} {"score": 0.2294481098651886, "chain_id": "3VNXK88KKCHCH5VNNZAD89TGTUNV9V_1_6"} {"score": 0.8392643332481384, "chain_id": "3VNXK88KKCHCH5VNNZAD89TGTUNV9V_1_7"} {"score": 0.8645846843719482, "chain_id": "3VNXK88KKCHCH5VNNZAD89TGTUNV9V_1_8"} {"score": 0.7611668705940247, "chain_id": "3VNXK88KKCHCH5VNNZAD89TGTUNV9V_1_9"} {"score": 0.06115814298391342, "chain_id": "3VNXK88KKCHCH5VNNZAD89TGTUNV9V_1_10"} {"score": 0.054505228996276855, "chain_id": "3IAEQB9FMEJ1ZK89PPKBG7VKR4AWDP_1_4"} {"score": 0.015492036007344723, "chain_id": "3IAEQB9FMEJ1ZK89PPKBG7VKR4AWDP_1_1"} {"score": 0.08158965408802032, "chain_id": "3IAEQB9FMEJ1ZK89PPKBG7VKR4AWDP_1_2"} {"score": 0.2987144887447357, "chain_id": "3IAEQB9FMEJ1ZK89PPKBG7VKR4AWDP_1_3"} {"score": 0.2742851972579956, "chain_id": "3IAEQB9FMEJ1ZK89PPKBG7VKR4AWDP_1_5"} {"score": 0.16781818866729736, "chain_id": "3IAEQB9FMEJ1ZK89PPKBG7VKR4AWDP_1_6"} {"score": 0.050513509660959244, "chain_id": "3IAEQB9FMEJ1ZK89PPKBG7VKR4AWDP_1_7"} {"score": 0.056275345385074615, "chain_id": "3IAEQB9FMEJ1ZK89PPKBG7VKR4AWDP_1_8"} {"score": 0.0898360162973404, "chain_id": "3IAEQB9FMEJ1ZK89PPKBG7VKR4AWDP_1_9"} {"score": 0.02211121656000614, "chain_id": "3IAEQB9FMEJ1ZK89PPKBG7VKR4AWDP_1_10"} {"score": 0.19656331837177277, "chain_id": "3QJOXOW4XJQAMESVHIP8DRBEUTSEMZ_1_1"} {"score": 0.9521797895431519, "chain_id": "3QJOXOW4XJQAMESVHIP8DRBEUTSEMZ_1_3"} {"score": 0.9306324124336243, "chain_id": "3QJOXOW4XJQAMESVHIP8DRBEUTSEMZ_1_4"} {"score": 0.9416998028755188, "chain_id": "3QJOXOW4XJQAMESVHIP8DRBEUTSEMZ_1_5"} {"score": 0.48514917492866516, "chain_id": "3QJOXOW4XJQAMESVHIP8DRBEUTSEMZ_1_2"} {"score": 0.12950584292411804, "chain_id": "3QJOXOW4XJQAMESVHIP8DRBEUTSEMZ_1_6"} {"score": 0.017216067761182785, "chain_id": "3QJOXOW4XJQAMESVHIP8DRBEUTSEMZ_1_7"} {"score": 0.13007961213588715, "chain_id": "3QJOXOW4XJQAMESVHIP8DRBEUTSEMZ_1_8"} {"score": 0.024353938177227974, "chain_id": "3QJOXOW4XJQAMESVHIP8DRBEUTSEMZ_1_9"} {"score": 0.011885792016983032, "chain_id": "3QJOXOW4XJQAMESVHIP8DRBEUTSEMZ_1_10"} {"score": 0.6876063346862793, "chain_id": "3I0BTBYZAXKBP52FSEE4MXWH9KE0Y7_1_1"} {"score": 0.9078419208526611, "chain_id": "3I0BTBYZAXKBP52FSEE4MXWH9KE0Y7_1_3"} {"score": 0.7120357155799866, "chain_id": "3I0BTBYZAXKBP52FSEE4MXWH9KE0Y7_1_10"} {"score": 0.8756476044654846, "chain_id": "3I0BTBYZAXKBP52FSEE4MXWH9KE0Y7_1_2"} {"score": 0.9041260480880737, "chain_id": "3I0BTBYZAXKBP52FSEE4MXWH9KE0Y7_1_4"} {"score": 0.1542125940322876, "chain_id": "3I0BTBYZAXKBP52FSEE4MXWH9KE0Y7_1_5"} {"score": 0.05431288108229637, "chain_id": "3I0BTBYZAXKBP52FSEE4MXWH9KE0Y7_1_6"} {"score": 0.04701181873679161, "chain_id": "3I0BTBYZAXKBP52FSEE4MXWH9KE0Y7_1_7"} {"score": 0.06294357776641846, "chain_id": "3I0BTBYZAXKBP52FSEE4MXWH9KE0Y7_1_8"} {"score": 0.024727627635002136, "chain_id": "3I0BTBYZAXKBP52FSEE4MXWH9KE0Y7_1_9"} {"score": 0.9829303622245789, "chain_id": "3WQQ9FUS6ATXUME7DQDZ714Y7CL8B6_1_1"} {"score": 0.7380220293998718, "chain_id": "3WQQ9FUS6ATXUME7DQDZ714Y7CL8B6_1_2"} {"score": 0.9840055704116821, "chain_id": "3WQQ9FUS6ATXUME7DQDZ714Y7CL8B6_1_4"} {"score": 0.8942990303039551, "chain_id": "3WQQ9FUS6ATXUME7DQDZ714Y7CL8B6_1_8"} {"score": 0.8953072428703308, "chain_id": "3WQQ9FUS6ATXUME7DQDZ714Y7CL8B6_1_3"} {"score": 0.9102696180343628, "chain_id": "3WQQ9FUS6ATXUME7DQDZ714Y7CL8B6_1_5"} {"score": 0.9648290872573853, "chain_id": "3WQQ9FUS6ATXUME7DQDZ714Y7CL8B6_1_6"} {"score": 0.6490530371665955, "chain_id": "3WQQ9FUS6ATXUME7DQDZ714Y7CL8B6_1_7"} {"score": 0.8097059726715088, "chain_id": "3WQQ9FUS6ATXUME7DQDZ714Y7CL8B6_1_9"} {"score": 0.24369293451309204, "chain_id": "3WQQ9FUS6ATXUME7DQDZ714Y7CL8B6_1_10"} {"score": 0.9832135438919067, "chain_id": "30H4UDGLT2HEJ5HLQW5J73AI9FVMPO_1_1"} {"score": 0.9248539805412292, "chain_id": "30H4UDGLT2HEJ5HLQW5J73AI9FVMPO_1_2"} {"score": 0.2984370291233063, "chain_id": "30H4UDGLT2HEJ5HLQW5J73AI9FVMPO_1_3"} {"score": 0.9635352492332458, "chain_id": "30H4UDGLT2HEJ5HLQW5J73AI9FVMPO_1_4"} {"score": 0.18292933702468872, "chain_id": "30H4UDGLT2HEJ5HLQW5J73AI9FVMPO_1_8"} {"score": 0.3887980878353119, "chain_id": "30H4UDGLT2HEJ5HLQW5J73AI9FVMPO_1_9"} {"score": 0.6219495534896851, "chain_id": "30H4UDGLT2HEJ5HLQW5J73AI9FVMPO_1_5"} {"score": 0.20778776705265045, "chain_id": "30H4UDGLT2HEJ5HLQW5J73AI9FVMPO_1_6"} {"score": 0.36046475172042847, "chain_id": "30H4UDGLT2HEJ5HLQW5J73AI9FVMPO_1_7"} {"score": 0.5215984582901001, "chain_id": "30H4UDGLT2HEJ5HLQW5J73AI9FVMPO_1_10"} {"score": 0.988740861415863, "chain_id": "33JKGHPFYCTEGK58AHSR3E5N921MN3_1_1"} {"score": 0.8900572657585144, "chain_id": "33JKGHPFYCTEGK58AHSR3E5N921MN3_1_2"} {"score": 0.9713899493217468, "chain_id": "33JKGHPFYCTEGK58AHSR3E5N921MN3_1_3"} {"score": 0.9737739562988281, "chain_id": "33JKGHPFYCTEGK58AHSR3E5N921MN3_1_4"} {"score": 0.9796929359436035, "chain_id": "33JKGHPFYCTEGK58AHSR3E5N921MN3_1_6"} {"score": 0.980834424495697, "chain_id": "33JKGHPFYCTEGK58AHSR3E5N921MN3_1_7"} {"score": 0.24587880074977875, "chain_id": "33JKGHPFYCTEGK58AHSR3E5N921MN3_1_5"} {"score": 0.4312998056411743, "chain_id": "33JKGHPFYCTEGK58AHSR3E5N921MN3_1_8"} {"score": 0.18498875200748444, "chain_id": "33JKGHPFYCTEGK58AHSR3E5N921MN3_1_9"} {"score": 0.37465402483940125, "chain_id": "33JKGHPFYCTEGK58AHSR3E5N921MN3_1_10"} {"score": 0.7303325533866882, "chain_id": "36AHBNMV1RB5OP394Q2Z14G04C4DY1_1_1"} {"score": 0.8049795627593994, "chain_id": "36AHBNMV1RB5OP394Q2Z14G04C4DY1_1_2"} {"score": 0.723331868648529, "chain_id": "36AHBNMV1RB5OP394Q2Z14G04C4DY1_1_4"} {"score": 0.30511611700057983, "chain_id": "36AHBNMV1RB5OP394Q2Z14G04C4DY1_1_3"} {"score": 0.7348768711090088, "chain_id": "36AHBNMV1RB5OP394Q2Z14G04C4DY1_1_5"} {"score": 0.042826373130083084, "chain_id": "36AHBNMV1RB5OP394Q2Z14G04C4DY1_1_6"} {"score": 0.05938122421503067, "chain_id": "36AHBNMV1RB5OP394Q2Z14G04C4DY1_1_7"} {"score": 0.14052174985408783, "chain_id": "36AHBNMV1RB5OP394Q2Z14G04C4DY1_1_8"} {"score": 0.9256489276885986, "chain_id": "36AHBNMV1RB5OP394Q2Z14G04C4DY1_1_9"} {"score": 0.07133755832910538, "chain_id": "36AHBNMV1RB5OP394Q2Z14G04C4DY1_1_10"} {"score": 0.9906548857688904, "chain_id": "3OVHNO1VE605TFDE0C4IFBP2BLCZDD_1_1"} {"score": 0.9850651621818542, "chain_id": "3OVHNO1VE605TFDE0C4IFBP2BLCZDD_1_4"} {"score": 0.9913500547409058, "chain_id": "3OVHNO1VE605TFDE0C4IFBP2BLCZDD_1_2"} {"score": 0.9765058159828186, "chain_id": "3OVHNO1VE605TFDE0C4IFBP2BLCZDD_1_3"} {"score": 0.08360092341899872, "chain_id": "3OVHNO1VE605TFDE0C4IFBP2BLCZDD_1_5"} {"score": 0.04759003221988678, "chain_id": "3OVHNO1VE605TFDE0C4IFBP2BLCZDD_1_6"} {"score": 0.5092600584030151, "chain_id": "3OVHNO1VE605TFDE0C4IFBP2BLCZDD_1_7"} {"score": 0.2916525602340698, "chain_id": "3OVHNO1VE605TFDE0C4IFBP2BLCZDD_1_8"} {"score": 0.7045870423316956, "chain_id": "3OVHNO1VE605TFDE0C4IFBP2BLCZDD_1_9"} {"score": 0.32712292671203613, "chain_id": "3OVHNO1VE605TFDE0C4IFBP2BLCZDD_1_10"} {"score": 0.029558580368757248, "chain_id": "3HL8HNGX450NL89XNK59QNQU31KF9C_1_1"} {"score": 0.5591843724250793, "chain_id": "3HL8HNGX450NL89XNK59QNQU31KF9C_1_2"} {"score": 0.08003950119018555, "chain_id": "3HL8HNGX450NL89XNK59QNQU31KF9C_1_3"} {"score": 0.45089560747146606, "chain_id": "3HL8HNGX450NL89XNK59QNQU31KF9C_1_4"} {"score": 0.047128643840551376, "chain_id": "3HL8HNGX450NL89XNK59QNQU31KF9C_1_5"} {"score": 0.20352308452129364, "chain_id": "3HL8HNGX450NL89XNK59QNQU31KF9C_1_6"} {"score": 0.03862004354596138, "chain_id": "3HL8HNGX450NL89XNK59QNQU31KF9C_1_7"} {"score": 0.02355284057557583, "chain_id": "3HL8HNGX450NL89XNK59QNQU31KF9C_1_8"} {"score": 0.28970015048980713, "chain_id": "3HL8HNGX450NL89XNK59QNQU31KF9C_1_9"} {"score": 0.9216275811195374, "chain_id": "3HL8HNGX450NL89XNK59QNQU31KF9C_1_10"} {"score": 0.05563349276781082, "chain_id": "3IJXV6UZ1XIDZZ79I9BGK53GPGIRI4_1_1"} {"score": 0.06202266737818718, "chain_id": "3IJXV6UZ1XIDZZ79I9BGK53GPGIRI4_1_2"} {"score": 0.016209090128540993, "chain_id": "3IJXV6UZ1XIDZZ79I9BGK53GPGIRI4_1_3"} {"score": 0.018769646063447, "chain_id": "3IJXV6UZ1XIDZZ79I9BGK53GPGIRI4_1_4"} {"score": 0.0161727461963892, "chain_id": "3IJXV6UZ1XIDZZ79I9BGK53GPGIRI4_1_5"} {"score": 0.0157439224421978, "chain_id": "3IJXV6UZ1XIDZZ79I9BGK53GPGIRI4_1_6"} {"score": 0.025548972189426422, "chain_id": "3IJXV6UZ1XIDZZ79I9BGK53GPGIRI4_1_7"} {"score": 0.022576957941055298, "chain_id": "3IJXV6UZ1XIDZZ79I9BGK53GPGIRI4_1_8"} {"score": 0.027435310184955597, "chain_id": "3IJXV6UZ1XIDZZ79I9BGK53GPGIRI4_1_9"} {"score": 0.01636459492146969, "chain_id": "3IJXV6UZ1XIDZZ79I9BGK53GPGIRI4_1_10"} {"score": 0.21434010565280914, "chain_id": "3BC8WZX3V3VQSYAS8W5PYX47CDTRR2_1_1"} {"score": 0.7735546827316284, "chain_id": "3BC8WZX3V3VQSYAS8W5PYX47CDTRR2_1_8"} {"score": 0.1919427216053009, "chain_id": "3BC8WZX3V3VQSYAS8W5PYX47CDTRR2_1_2"} {"score": 0.14894846081733704, "chain_id": "3BC8WZX3V3VQSYAS8W5PYX47CDTRR2_1_3"} {"score": 0.05757710337638855, "chain_id": "3BC8WZX3V3VQSYAS8W5PYX47CDTRR2_1_4"} {"score": 0.11987213045358658, "chain_id": "3BC8WZX3V3VQSYAS8W5PYX47CDTRR2_1_5"} {"score": 0.816821277141571, "chain_id": "3BC8WZX3V3VQSYAS8W5PYX47CDTRR2_1_6"} {"score": 0.04410555586218834, "chain_id": "3BC8WZX3V3VQSYAS8W5PYX47CDTRR2_1_7"} {"score": 0.45659661293029785, "chain_id": "3BC8WZX3V3VQSYAS8W5PYX47CDTRR2_1_9"} {"score": 0.485823392868042, "chain_id": "3BC8WZX3V3VQSYAS8W5PYX47CDTRR2_1_10"} {"score": 0.0501728318631649, "chain_id": "3SLE99ER0NCCEIFUMGDCKL1259QBZN_1_1"} {"score": 0.2985445261001587, "chain_id": "3SLE99ER0NCCEIFUMGDCKL1259QBZN_1_2"} {"score": 0.030387191101908684, "chain_id": "3SLE99ER0NCCEIFUMGDCKL1259QBZN_1_3"} {"score": 0.21450786292552948, "chain_id": "3SLE99ER0NCCEIFUMGDCKL1259QBZN_1_4"} {"score": 0.14085766673088074, "chain_id": "3SLE99ER0NCCEIFUMGDCKL1259QBZN_1_5"} {"score": 0.03372250497341156, "chain_id": "3SLE99ER0NCCEIFUMGDCKL1259QBZN_1_6"} {"score": 0.03156021237373352, "chain_id": "3SLE99ER0NCCEIFUMGDCKL1259QBZN_1_7"} {"score": 0.08227864652872086, "chain_id": "3SLE99ER0NCCEIFUMGDCKL1259QBZN_1_8"} {"score": 0.03202257305383682, "chain_id": "3SLE99ER0NCCEIFUMGDCKL1259QBZN_1_9"} {"score": 0.06434215605258942, "chain_id": "3SLE99ER0NCCEIFUMGDCKL1259QBZN_1_10"} {"score": 0.0385073684155941, "chain_id": "3QAVNHZ3EM3NQJTY11M7HV6Y8N7LA3_1_1"} {"score": 0.05023779347538948, "chain_id": "3QAVNHZ3EM3NQJTY11M7HV6Y8N7LA3_1_2"} {"score": 0.0365811362862587, "chain_id": "3QAVNHZ3EM3NQJTY11M7HV6Y8N7LA3_1_3"} {"score": 0.027283240109682083, "chain_id": "3QAVNHZ3EM3NQJTY11M7HV6Y8N7LA3_1_4"} {"score": 0.057540036737918854, "chain_id": "3QAVNHZ3EM3NQJTY11M7HV6Y8N7LA3_1_5"} {"score": 0.06736702471971512, "chain_id": "3QAVNHZ3EM3NQJTY11M7HV6Y8N7LA3_1_6"} {"score": 0.022848129272460938, "chain_id": "3QAVNHZ3EM3NQJTY11M7HV6Y8N7LA3_1_7"} {"score": 0.029304852709174156, "chain_id": "3QAVNHZ3EM3NQJTY11M7HV6Y8N7LA3_1_8"} {"score": 0.024119697511196136, "chain_id": "3QAVNHZ3EM3NQJTY11M7HV6Y8N7LA3_1_9"} {"score": 0.03647676855325699, "chain_id": "3QAVNHZ3EM3NQJTY11M7HV6Y8N7LA3_1_10"} {"score": 0.406666100025177, "chain_id": "3MX2NQ3YC9TLK7Y6KOYEKELZ1DK5XB_1_6"} {"score": 0.9884920120239258, "chain_id": "3MX2NQ3YC9TLK7Y6KOYEKELZ1DK5XB_1_1"} {"score": 0.7020227909088135, "chain_id": "3MX2NQ3YC9TLK7Y6KOYEKELZ1DK5XB_1_2"} {"score": 0.6617934703826904, "chain_id": "3MX2NQ3YC9TLK7Y6KOYEKELZ1DK5XB_1_3"} {"score": 0.05748935416340828, "chain_id": "3MX2NQ3YC9TLK7Y6KOYEKELZ1DK5XB_1_4"} {"score": 0.7074166536331177, "chain_id": "3MX2NQ3YC9TLK7Y6KOYEKELZ1DK5XB_1_5"} {"score": 0.16769801080226898, "chain_id": "3MX2NQ3YC9TLK7Y6KOYEKELZ1DK5XB_1_7"} {"score": 0.023283885791897774, "chain_id": "3MX2NQ3YC9TLK7Y6KOYEKELZ1DK5XB_1_8"} {"score": 0.025166450068354607, "chain_id": "3MX2NQ3YC9TLK7Y6KOYEKELZ1DK5XB_1_9"} {"score": 0.02553408592939377, "chain_id": "3MX2NQ3YC9TLK7Y6KOYEKELZ1DK5XB_1_10"} {"score": 0.11437473446130753, "chain_id": "3HOSI13XHZN2QE8I8UFLOJ6ZYE8DDV_1_1"} {"score": 0.13393154740333557, "chain_id": "3HOSI13XHZN2QE8I8UFLOJ6ZYE8DDV_1_2"} {"score": 0.02353694662451744, "chain_id": "3HOSI13XHZN2QE8I8UFLOJ6ZYE8DDV_1_3"} {"score": 0.025148218497633934, "chain_id": "3HOSI13XHZN2QE8I8UFLOJ6ZYE8DDV_1_4"} {"score": 0.024846414104104042, "chain_id": "3HOSI13XHZN2QE8I8UFLOJ6ZYE8DDV_1_5"} {"score": 0.02789623662829399, "chain_id": "3HOSI13XHZN2QE8I8UFLOJ6ZYE8DDV_1_6"} {"score": 0.017683567479252815, "chain_id": "3HOSI13XHZN2QE8I8UFLOJ6ZYE8DDV_1_7"} {"score": 0.02934141457080841, "chain_id": "3HOSI13XHZN2QE8I8UFLOJ6ZYE8DDV_1_8"} {"score": 0.06241413950920105, "chain_id": "3HOSI13XHZN2QE8I8UFLOJ6ZYE8DDV_1_9"} {"score": 0.0515478141605854, "chain_id": "3HOSI13XHZN2QE8I8UFLOJ6ZYE8DDV_1_10"} {"score": 0.7781425714492798, "chain_id": "31LVTDXBL79FP0FF3C8TCLV8MQ1RLZ_1_3"} {"score": 0.9835926294326782, "chain_id": "31LVTDXBL79FP0FF3C8TCLV8MQ1RLZ_1_5"} {"score": 0.040559180080890656, "chain_id": "31LVTDXBL79FP0FF3C8TCLV8MQ1RLZ_1_1"} {"score": 0.13615524768829346, "chain_id": "31LVTDXBL79FP0FF3C8TCLV8MQ1RLZ_1_2"} {"score": 0.6333134770393372, "chain_id": "31LVTDXBL79FP0FF3C8TCLV8MQ1RLZ_1_4"} {"score": 0.043476179242134094, "chain_id": "31LVTDXBL79FP0FF3C8TCLV8MQ1RLZ_1_6"} {"score": 0.016716094687581062, "chain_id": "31LVTDXBL79FP0FF3C8TCLV8MQ1RLZ_1_7"} {"score": 0.6694657802581787, "chain_id": "31LVTDXBL79FP0FF3C8TCLV8MQ1RLZ_1_8"} {"score": 0.02338511124253273, "chain_id": "31LVTDXBL79FP0FF3C8TCLV8MQ1RLZ_1_9"} {"score": 0.017865188419818878, "chain_id": "31LVTDXBL79FP0FF3C8TCLV8MQ1RLZ_1_10"} {"score": 0.037352304905653, "chain_id": "30OG32W0SUAG4WDVTJ48Q60EC67NE0_1_1"} {"score": 0.027624910697340965, "chain_id": "30OG32W0SUAG4WDVTJ48Q60EC67NE0_1_2"} {"score": 0.02336714044213295, "chain_id": "30OG32W0SUAG4WDVTJ48Q60EC67NE0_1_3"} {"score": 0.03739791363477707, "chain_id": "30OG32W0SUAG4WDVTJ48Q60EC67NE0_1_4"} {"score": 0.014191591180860996, "chain_id": "30OG32W0SUAG4WDVTJ48Q60EC67NE0_1_5"} {"score": 0.011287244036793709, "chain_id": "30OG32W0SUAG4WDVTJ48Q60EC67NE0_1_6"} {"score": 0.05137062072753906, "chain_id": "30OG32W0SUAG4WDVTJ48Q60EC67NE0_1_7"} {"score": 0.08908789604902267, "chain_id": "30OG32W0SUAG4WDVTJ48Q60EC67NE0_1_8"} {"score": 0.07870396971702576, "chain_id": "30OG32W0SUAG4WDVTJ48Q60EC67NE0_1_9"} {"score": 0.02678837440907955, "chain_id": "30OG32W0SUAG4WDVTJ48Q60EC67NE0_1_10"} {"score": 0.9884920120239258, "chain_id": "3OB0CAO74HOM058BQMLPSPVY892HY5_1_5"} {"score": 0.7020227909088135, "chain_id": "3OB0CAO74HOM058BQMLPSPVY892HY5_1_6"} {"score": 0.6617934703826904, "chain_id": "3OB0CAO74HOM058BQMLPSPVY892HY5_1_7"} {"score": 0.4385696351528168, "chain_id": "3OB0CAO74HOM058BQMLPSPVY892HY5_1_1"} {"score": 0.0987333357334137, "chain_id": "3OB0CAO74HOM058BQMLPSPVY892HY5_1_2"} {"score": 0.4768114984035492, "chain_id": "3OB0CAO74HOM058BQMLPSPVY892HY5_1_3"} {"score": 0.07012490928173065, "chain_id": "3OB0CAO74HOM058BQMLPSPVY892HY5_1_4"} {"score": 0.7074166536331177, "chain_id": "3OB0CAO74HOM058BQMLPSPVY892HY5_1_8"} {"score": 0.023283885791897774, "chain_id": "3OB0CAO74HOM058BQMLPSPVY892HY5_1_9"} {"score": 0.025166450068354607, "chain_id": "3OB0CAO74HOM058BQMLPSPVY892HY5_1_10"} {"score": 0.0289718396961689, "chain_id": "3KMS4QQVK2P724SORHWYGW4AUJEKFL_1_1"} {"score": 0.029523245990276337, "chain_id": "3KMS4QQVK2P724SORHWYGW4AUJEKFL_1_2"} {"score": 0.16770444810390472, "chain_id": "3KMS4QQVK2P724SORHWYGW4AUJEKFL_1_3"} {"score": 0.9465840458869934, "chain_id": "3KMS4QQVK2P724SORHWYGW4AUJEKFL_1_4"} {"score": 0.07988244295120239, "chain_id": "3KMS4QQVK2P724SORHWYGW4AUJEKFL_1_5"} {"score": 0.33485400676727295, "chain_id": "3KMS4QQVK2P724SORHWYGW4AUJEKFL_1_6"} {"score": 0.05966443568468094, "chain_id": "3KMS4QQVK2P724SORHWYGW4AUJEKFL_1_7"} {"score": 0.14758135378360748, "chain_id": "3KMS4QQVK2P724SORHWYGW4AUJEKFL_1_8"} {"score": 0.04024713113903999, "chain_id": "3KMS4QQVK2P724SORHWYGW4AUJEKFL_1_9"} {"score": 0.04901808127760887, "chain_id": "3KMS4QQVK2P724SORHWYGW4AUJEKFL_1_10"} {"score": 0.035198844969272614, "chain_id": "3P59JYT76LJM4T6ZXVVJX4XH5VF2TB_1_1"} {"score": 0.03031822107732296, "chain_id": "3P59JYT76LJM4T6ZXVVJX4XH5VF2TB_1_2"} {"score": 0.02831096388399601, "chain_id": "3P59JYT76LJM4T6ZXVVJX4XH5VF2TB_1_3"} {"score": 0.03139164298772812, "chain_id": "3P59JYT76LJM4T6ZXVVJX4XH5VF2TB_1_4"} {"score": 0.039116960018873215, "chain_id": "3P59JYT76LJM4T6ZXVVJX4XH5VF2TB_1_5"} {"score": 0.029999682679772377, "chain_id": "3P59JYT76LJM4T6ZXVVJX4XH5VF2TB_1_6"} {"score": 0.05880952626466751, "chain_id": "3P59JYT76LJM4T6ZXVVJX4XH5VF2TB_1_7"} {"score": 0.034649718552827835, "chain_id": "3P59JYT76LJM4T6ZXVVJX4XH5VF2TB_1_8"} {"score": 0.0686267763376236, "chain_id": "3P59JYT76LJM4T6ZXVVJX4XH5VF2TB_1_9"} {"score": 0.015772484242916107, "chain_id": "3P59JYT76LJM4T6ZXVVJX4XH5VF2TB_1_10"} {"score": 0.8798463344573975, "chain_id": "3TMFV4NEP8DPIPCI8H9VUFHJVPZW88_1_3"} {"score": 0.5590113997459412, "chain_id": "3TMFV4NEP8DPIPCI8H9VUFHJVPZW88_1_1"} {"score": 0.2252378761768341, "chain_id": "3TMFV4NEP8DPIPCI8H9VUFHJVPZW88_1_2"} {"score": 0.20724312961101532, "chain_id": "3TMFV4NEP8DPIPCI8H9VUFHJVPZW88_1_4"} {"score": 0.05051316320896149, "chain_id": "3TMFV4NEP8DPIPCI8H9VUFHJVPZW88_1_5"} {"score": 0.029898211359977722, "chain_id": "3TMFV4NEP8DPIPCI8H9VUFHJVPZW88_1_6"} {"score": 0.05040283873677254, "chain_id": "3TMFV4NEP8DPIPCI8H9VUFHJVPZW88_1_7"} {"score": 0.01623237505555153, "chain_id": "3TMFV4NEP8DPIPCI8H9VUFHJVPZW88_1_8"} {"score": 0.06796066462993622, "chain_id": "3TMFV4NEP8DPIPCI8H9VUFHJVPZW88_1_9"} {"score": 0.2034551203250885, "chain_id": "3TMFV4NEP8DPIPCI8H9VUFHJVPZW88_1_10"} {"score": 0.9937785267829895, "chain_id": "3WMINLGALB2UNFZSOOT8ECGBF12ACW_1_1"} {"score": 0.9682888984680176, "chain_id": "3WMINLGALB2UNFZSOOT8ECGBF12ACW_1_4"} {"score": 0.9363601207733154, "chain_id": "3WMINLGALB2UNFZSOOT8ECGBF12ACW_1_2"} {"score": 0.4095642566680908, "chain_id": "3WMINLGALB2UNFZSOOT8ECGBF12ACW_1_3"} {"score": 0.028301890939474106, "chain_id": "3WMINLGALB2UNFZSOOT8ECGBF12ACW_1_5"} {"score": 0.028301890939474106, "chain_id": "3WMINLGALB2UNFZSOOT8ECGBF12ACW_1_6"} {"score": 0.04112706333398819, "chain_id": "3WMINLGALB2UNFZSOOT8ECGBF12ACW_1_7"} {"score": 0.03147093579173088, "chain_id": "3WMINLGALB2UNFZSOOT8ECGBF12ACW_1_8"} {"score": 0.04112706333398819, "chain_id": "3WMINLGALB2UNFZSOOT8ECGBF12ACW_1_9"} {"score": 0.03147093579173088, "chain_id": "3WMINLGALB2UNFZSOOT8ECGBF12ACW_1_10"} {"score": 0.9906814694404602, "chain_id": "3LYA37P8IQMHPNG8MFA2X6DP212BKT_1_4"} {"score": 0.9855459928512573, "chain_id": "3LYA37P8IQMHPNG8MFA2X6DP212BKT_1_1"} {"score": 0.85010826587677, "chain_id": "3LYA37P8IQMHPNG8MFA2X6DP212BKT_1_2"} {"score": 0.9527543783187866, "chain_id": "3LYA37P8IQMHPNG8MFA2X6DP212BKT_1_3"} {"score": 0.9182422757148743, "chain_id": "3LYA37P8IQMHPNG8MFA2X6DP212BKT_1_5"} {"score": 0.9864099621772766, "chain_id": "3LYA37P8IQMHPNG8MFA2X6DP212BKT_1_6"} {"score": 0.9907711744308472, "chain_id": "3LYA37P8IQMHPNG8MFA2X6DP212BKT_1_7"} {"score": 0.9838387966156006, "chain_id": "3LYA37P8IQMHPNG8MFA2X6DP212BKT_1_8"} {"score": 0.9510803818702698, "chain_id": "3LYA37P8IQMHPNG8MFA2X6DP212BKT_1_9"} {"score": 0.9848570823669434, "chain_id": "3LYA37P8IQMHPNG8MFA2X6DP212BKT_1_10"} {"score": 0.9905219078063965, "chain_id": "3OONKJ5DKCI0FE1NK72V4NUYM9POB9_1_2"} {"score": 0.9762343764305115, "chain_id": "3OONKJ5DKCI0FE1NK72V4NUYM9POB9_1_3"} {"score": 0.8891420364379883, "chain_id": "3OONKJ5DKCI0FE1NK72V4NUYM9POB9_1_5"} {"score": 0.9872647523880005, "chain_id": "3OONKJ5DKCI0FE1NK72V4NUYM9POB9_1_1"} {"score": 0.9725279808044434, "chain_id": "3OONKJ5DKCI0FE1NK72V4NUYM9POB9_1_4"} {"score": 0.985161304473877, "chain_id": "3OONKJ5DKCI0FE1NK72V4NUYM9POB9_1_6"} {"score": 0.281639963388443, "chain_id": "3OONKJ5DKCI0FE1NK72V4NUYM9POB9_1_7"} {"score": 0.987406313419342, "chain_id": "3OONKJ5DKCI0FE1NK72V4NUYM9POB9_1_8"} {"score": 0.9829293489456177, "chain_id": "3OONKJ5DKCI0FE1NK72V4NUYM9POB9_1_9"} {"score": 0.8936595320701599, "chain_id": "3OONKJ5DKCI0FE1NK72V4NUYM9POB9_1_10"} {"score": 0.9936421513557434, "chain_id": "3GNA64GUZE31BAXUYA3MQ6P6RISQ5X_1_3"} {"score": 0.9695712327957153, "chain_id": "3GNA64GUZE31BAXUYA3MQ6P6RISQ5X_1_6"} {"score": 0.8795396685600281, "chain_id": "3GNA64GUZE31BAXUYA3MQ6P6RISQ5X_1_10"} {"score": 0.062008507549762726, "chain_id": "3GNA64GUZE31BAXUYA3MQ6P6RISQ5X_1_1"} {"score": 0.1481192260980606, "chain_id": "3GNA64GUZE31BAXUYA3MQ6P6RISQ5X_1_2"} {"score": 0.9398713111877441, "chain_id": "3GNA64GUZE31BAXUYA3MQ6P6RISQ5X_1_4"} {"score": 0.3801105320453644, "chain_id": "3GNA64GUZE31BAXUYA3MQ6P6RISQ5X_1_5"} {"score": 0.8127550482749939, "chain_id": "3GNA64GUZE31BAXUYA3MQ6P6RISQ5X_1_7"} {"score": 0.05649804323911667, "chain_id": "3GNA64GUZE31BAXUYA3MQ6P6RISQ5X_1_8"} {"score": 0.09897222369909286, "chain_id": "3GNA64GUZE31BAXUYA3MQ6P6RISQ5X_1_9"} {"score": 0.9934906959533691, "chain_id": "3SUWZRL0MYC8XB73U2IROVES7JD6E0_1_1"} {"score": 0.9863821268081665, "chain_id": "3SUWZRL0MYC8XB73U2IROVES7JD6E0_1_2"} {"score": 0.9699153900146484, "chain_id": "3SUWZRL0MYC8XB73U2IROVES7JD6E0_1_6"} {"score": 0.8909424543380737, "chain_id": "3SUWZRL0MYC8XB73U2IROVES7JD6E0_1_8"} {"score": 0.9393293857574463, "chain_id": "3SUWZRL0MYC8XB73U2IROVES7JD6E0_1_3"} {"score": 0.41023752093315125, "chain_id": "3SUWZRL0MYC8XB73U2IROVES7JD6E0_1_4"} {"score": 0.8105255365371704, "chain_id": "3SUWZRL0MYC8XB73U2IROVES7JD6E0_1_5"} {"score": 0.3394473195075989, "chain_id": "3SUWZRL0MYC8XB73U2IROVES7JD6E0_1_7"} {"score": 0.9564254879951477, "chain_id": "3SUWZRL0MYC8XB73U2IROVES7JD6E0_1_9"} {"score": 0.7043722867965698, "chain_id": "3SUWZRL0MYC8XB73U2IROVES7JD6E0_1_10"} {"score": 0.7384283542633057, "chain_id": "3A4TN5196KH9X276UU30VY3FVL1CHZ_1_1"} {"score": 0.9199666976928711, "chain_id": "3A4TN5196KH9X276UU30VY3FVL1CHZ_1_3"} {"score": 0.4997105896472931, "chain_id": "3A4TN5196KH9X276UU30VY3FVL1CHZ_1_4"} {"score": 0.5481834411621094, "chain_id": "3A4TN5196KH9X276UU30VY3FVL1CHZ_1_2"} {"score": 0.05095120146870613, "chain_id": "3A4TN5196KH9X276UU30VY3FVL1CHZ_1_5"} {"score": 0.03806207701563835, "chain_id": "3A4TN5196KH9X276UU30VY3FVL1CHZ_1_6"} {"score": 0.05139637365937233, "chain_id": "3A4TN5196KH9X276UU30VY3FVL1CHZ_1_7"} {"score": 0.040275637060403824, "chain_id": "3A4TN5196KH9X276UU30VY3FVL1CHZ_1_8"} {"score": 0.30363228917121887, "chain_id": "3A4TN5196KH9X276UU30VY3FVL1CHZ_1_9"} {"score": 0.22643981873989105, "chain_id": "3A4TN5196KH9X276UU30VY3FVL1CHZ_1_10"} {"score": 0.9916747212409973, "chain_id": "33IZTU6J810MQ9WHWKBMDPVR5HBSXD_1_6"} {"score": 0.9832156300544739, "chain_id": "33IZTU6J810MQ9WHWKBMDPVR5HBSXD_1_9"} {"score": 0.9783658981323242, "chain_id": "33IZTU6J810MQ9WHWKBMDPVR5HBSXD_1_1"} {"score": 0.5012376308441162, "chain_id": "33IZTU6J810MQ9WHWKBMDPVR5HBSXD_1_2"} {"score": 0.7810019254684448, "chain_id": "33IZTU6J810MQ9WHWKBMDPVR5HBSXD_1_3"} {"score": 0.6884953379631042, "chain_id": "33IZTU6J810MQ9WHWKBMDPVR5HBSXD_1_4"} {"score": 0.7366236448287964, "chain_id": "33IZTU6J810MQ9WHWKBMDPVR5HBSXD_1_5"} {"score": 0.6941609978675842, "chain_id": "33IZTU6J810MQ9WHWKBMDPVR5HBSXD_1_7"} {"score": 0.9795469641685486, "chain_id": "33IZTU6J810MQ9WHWKBMDPVR5HBSXD_1_8"} {"score": 0.9750202298164368, "chain_id": "33IZTU6J810MQ9WHWKBMDPVR5HBSXD_1_10"} {"score": 0.9937785267829895, "chain_id": "3YGXWBAF70GFLQJBFNJH19UBRN84CD_1_1"} {"score": 0.9682888984680176, "chain_id": "3YGXWBAF70GFLQJBFNJH19UBRN84CD_1_4"} {"score": 0.9363601207733154, "chain_id": "3YGXWBAF70GFLQJBFNJH19UBRN84CD_1_2"} {"score": 0.4095642566680908, "chain_id": "3YGXWBAF70GFLQJBFNJH19UBRN84CD_1_3"} {"score": 0.028301890939474106, "chain_id": "3YGXWBAF70GFLQJBFNJH19UBRN84CD_1_5"} {"score": 0.028301890939474106, "chain_id": "3YGXWBAF70GFLQJBFNJH19UBRN84CD_1_6"} {"score": 0.04112706333398819, "chain_id": "3YGXWBAF70GFLQJBFNJH19UBRN84CD_1_7"} {"score": 0.03147093579173088, "chain_id": "3YGXWBAF70GFLQJBFNJH19UBRN84CD_1_8"} {"score": 0.04112706333398819, "chain_id": "3YGXWBAF70GFLQJBFNJH19UBRN84CD_1_9"} {"score": 0.03147093579173088, "chain_id": "3YGXWBAF70GFLQJBFNJH19UBRN84CD_1_10"} {"score": 0.05384554713964462, "chain_id": "3BXQMRHWKZXRBAPH7I4DH9XHGI9UML_1_1"} {"score": 0.016460631042718887, "chain_id": "3BXQMRHWKZXRBAPH7I4DH9XHGI9UML_1_2"} {"score": 0.07216228544712067, "chain_id": "3BXQMRHWKZXRBAPH7I4DH9XHGI9UML_1_3"} {"score": 0.028170043602585793, "chain_id": "3BXQMRHWKZXRBAPH7I4DH9XHGI9UML_1_4"} {"score": 0.23144938051700592, "chain_id": "3BXQMRHWKZXRBAPH7I4DH9XHGI9UML_1_5"} {"score": 0.05494493618607521, "chain_id": "3BXQMRHWKZXRBAPH7I4DH9XHGI9UML_1_6"} {"score": 0.02194773405790329, "chain_id": "3BXQMRHWKZXRBAPH7I4DH9XHGI9UML_1_7"} {"score": 0.025241244584321976, "chain_id": "3BXQMRHWKZXRBAPH7I4DH9XHGI9UML_1_8"} {"score": 0.07948331534862518, "chain_id": "3BXQMRHWKZXRBAPH7I4DH9XHGI9UML_1_9"} {"score": 0.09735409915447235, "chain_id": "3BXQMRHWKZXRBAPH7I4DH9XHGI9UML_1_10"} {"score": 0.6317153573036194, "chain_id": "3G0WWMR1UVJ51Z302AZ8KNPSIR1QN8_1_1"} {"score": 0.174299418926239, "chain_id": "3G0WWMR1UVJ51Z302AZ8KNPSIR1QN8_1_2"} {"score": 0.38763174414634705, "chain_id": "3G0WWMR1UVJ51Z302AZ8KNPSIR1QN8_1_3"} {"score": 0.34957846999168396, "chain_id": "3G0WWMR1UVJ51Z302AZ8KNPSIR1QN8_1_4"} {"score": 0.06914262473583221, "chain_id": "3G0WWMR1UVJ51Z302AZ8KNPSIR1QN8_1_5"} {"score": 0.5489354133605957, "chain_id": "3G0WWMR1UVJ51Z302AZ8KNPSIR1QN8_1_6"} {"score": 0.026558728888630867, "chain_id": "3G0WWMR1UVJ51Z302AZ8KNPSIR1QN8_1_7"} {"score": 0.022044412791728973, "chain_id": "3G0WWMR1UVJ51Z302AZ8KNPSIR1QN8_1_8"} {"score": 0.041837725788354874, "chain_id": "3G0WWMR1UVJ51Z302AZ8KNPSIR1QN8_1_9"} {"score": 0.03594062104821205, "chain_id": "3G0WWMR1UVJ51Z302AZ8KNPSIR1QN8_1_10"} {"score": 0.2730647325515747, "chain_id": "3G5F9DBFOPW5WBD6LBY5LQR4DMEHVL_1_6"} {"score": 0.13656078279018402, "chain_id": "3G5F9DBFOPW5WBD6LBY5LQR4DMEHVL_1_1"} {"score": 0.12017170339822769, "chain_id": "3G5F9DBFOPW5WBD6LBY5LQR4DMEHVL_1_2"} {"score": 0.05990457907319069, "chain_id": "3G5F9DBFOPW5WBD6LBY5LQR4DMEHVL_1_3"} {"score": 0.3360719680786133, "chain_id": "3G5F9DBFOPW5WBD6LBY5LQR4DMEHVL_1_4"} {"score": 0.2599654197692871, "chain_id": "3G5F9DBFOPW5WBD6LBY5LQR4DMEHVL_1_5"} {"score": 0.055302370339632034, "chain_id": "3G5F9DBFOPW5WBD6LBY5LQR4DMEHVL_1_7"} {"score": 0.9147430062294006, "chain_id": "3G5F9DBFOPW5WBD6LBY5LQR4DMEHVL_1_8"} {"score": 0.031693823635578156, "chain_id": "3G5F9DBFOPW5WBD6LBY5LQR4DMEHVL_1_9"} {"score": 0.21910583972930908, "chain_id": "3G5F9DBFOPW5WBD6LBY5LQR4DMEHVL_1_10"} {"score": 0.5870486497879028, "chain_id": "3QL2OFSM96H17YTHXSYD0I0BFMNNC8_1_1"} {"score": 0.8497002720832825, "chain_id": "3QL2OFSM96H17YTHXSYD0I0BFMNNC8_1_3"} {"score": 0.9485198259353638, "chain_id": "3QL2OFSM96H17YTHXSYD0I0BFMNNC8_1_4"} {"score": 0.41258832812309265, "chain_id": "3QL2OFSM96H17YTHXSYD0I0BFMNNC8_1_2"} {"score": 0.06447559595108032, "chain_id": "3QL2OFSM96H17YTHXSYD0I0BFMNNC8_1_5"} {"score": 0.05939342454075813, "chain_id": "3QL2OFSM96H17YTHXSYD0I0BFMNNC8_1_6"} {"score": 0.05172823742032051, "chain_id": "3QL2OFSM96H17YTHXSYD0I0BFMNNC8_1_7"} {"score": 0.03562819957733154, "chain_id": "3QL2OFSM96H17YTHXSYD0I0BFMNNC8_1_8"} {"score": 0.02267969585955143, "chain_id": "3QL2OFSM96H17YTHXSYD0I0BFMNNC8_1_9"} {"score": 0.06156584247946739, "chain_id": "3QL2OFSM96H17YTHXSYD0I0BFMNNC8_1_10"} {"score": 0.9395163655281067, "chain_id": "3180JW2OT4BKPNTH3KJDT5DKF6AJ5D_1_2"} {"score": 0.8875075578689575, "chain_id": "3180JW2OT4BKPNTH3KJDT5DKF6AJ5D_1_4"} {"score": 0.5852980017662048, "chain_id": "3180JW2OT4BKPNTH3KJDT5DKF6AJ5D_1_7"} {"score": 0.46336281299591064, "chain_id": "3180JW2OT4BKPNTH3KJDT5DKF6AJ5D_1_1"} {"score": 0.421922892332077, "chain_id": "3180JW2OT4BKPNTH3KJDT5DKF6AJ5D_1_3"} {"score": 0.47290274500846863, "chain_id": "3180JW2OT4BKPNTH3KJDT5DKF6AJ5D_1_5"} {"score": 0.4413783848285675, "chain_id": "3180JW2OT4BKPNTH3KJDT5DKF6AJ5D_1_6"} {"score": 0.6172711849212646, "chain_id": "3180JW2OT4BKPNTH3KJDT5DKF6AJ5D_1_8"} {"score": 0.06355234980583191, "chain_id": "3180JW2OT4BKPNTH3KJDT5DKF6AJ5D_1_9"} {"score": 0.12000827491283417, "chain_id": "3180JW2OT4BKPNTH3KJDT5DKF6AJ5D_1_10"} {"score": 0.05722519010305405, "chain_id": "3SNLUL3WO4M75S7W763YHWISIG8ULG_1_1"} {"score": 0.05554254725575447, "chain_id": "3SNLUL3WO4M75S7W763YHWISIG8ULG_1_2"} {"score": 0.21604156494140625, "chain_id": "3SNLUL3WO4M75S7W763YHWISIG8ULG_1_3"} {"score": 0.07301443815231323, "chain_id": "3SNLUL3WO4M75S7W763YHWISIG8ULG_1_4"} {"score": 0.045306768268346786, "chain_id": "3SNLUL3WO4M75S7W763YHWISIG8ULG_1_5"} {"score": 0.020571302622556686, "chain_id": "3SNLUL3WO4M75S7W763YHWISIG8ULG_1_6"} {"score": 0.054041579365730286, "chain_id": "3SNLUL3WO4M75S7W763YHWISIG8ULG_1_7"} {"score": 0.024894384667277336, "chain_id": "3SNLUL3WO4M75S7W763YHWISIG8ULG_1_8"} {"score": 0.04655594378709793, "chain_id": "3SNLUL3WO4M75S7W763YHWISIG8ULG_1_9"} {"score": 0.03293755277991295, "chain_id": "3SNLUL3WO4M75S7W763YHWISIG8ULG_1_10"} {"score": 0.13142827153205872, "chain_id": "3KWTYT08702QKDHH65VQ9KQCII05LV_1_2"} {"score": 0.025894954800605774, "chain_id": "3KWTYT08702QKDHH65VQ9KQCII05LV_1_5"} {"score": 0.1665760576725006, "chain_id": "3KWTYT08702QKDHH65VQ9KQCII05LV_1_1"} {"score": 0.7258800864219666, "chain_id": "3KWTYT08702QKDHH65VQ9KQCII05LV_1_3"} {"score": 0.024101268500089645, "chain_id": "3KWTYT08702QKDHH65VQ9KQCII05LV_1_4"} {"score": 0.06701686233282089, "chain_id": "3KWTYT08702QKDHH65VQ9KQCII05LV_1_6"} {"score": 0.06118295341730118, "chain_id": "3KWTYT08702QKDHH65VQ9KQCII05LV_1_7"} {"score": 0.3373945653438568, "chain_id": "3KWTYT08702QKDHH65VQ9KQCII05LV_1_8"} {"score": 0.055162135511636734, "chain_id": "3KWTYT08702QKDHH65VQ9KQCII05LV_1_9"} {"score": 0.04086664319038391, "chain_id": "3KWTYT08702QKDHH65VQ9KQCII05LV_1_10"} {"score": 0.7726855278015137, "chain_id": "3JMSRU9HQITTC1M4VAQZ0NURPLOEV2_1_1"} {"score": 0.5201540589332581, "chain_id": "3JMSRU9HQITTC1M4VAQZ0NURPLOEV2_1_2"} {"score": 0.044241633266210556, "chain_id": "3JMSRU9HQITTC1M4VAQZ0NURPLOEV2_1_3"} {"score": 0.2297079712152481, "chain_id": "3JMSRU9HQITTC1M4VAQZ0NURPLOEV2_1_4"} {"score": 0.034936822950839996, "chain_id": "3JMSRU9HQITTC1M4VAQZ0NURPLOEV2_1_5"} {"score": 0.1277880221605301, "chain_id": "3JMSRU9HQITTC1M4VAQZ0NURPLOEV2_1_6"} {"score": 0.4471224844455719, "chain_id": "3JMSRU9HQITTC1M4VAQZ0NURPLOEV2_1_7"} {"score": 0.05514273792505264, "chain_id": "3JMSRU9HQITTC1M4VAQZ0NURPLOEV2_1_8"} {"score": 0.0970463827252388, "chain_id": "3JMSRU9HQITTC1M4VAQZ0NURPLOEV2_1_9"} {"score": 0.031751710921525955, "chain_id": "3JMSRU9HQITTC1M4VAQZ0NURPLOEV2_1_10"} {"score": 0.9243714213371277, "chain_id": "3X08E93BHVH4KWEOOKZTC7MFR7B66A_1_1"} {"score": 0.7563243508338928, "chain_id": "3X08E93BHVH4KWEOOKZTC7MFR7B66A_1_2"} {"score": 0.8402514457702637, "chain_id": "3X08E93BHVH4KWEOOKZTC7MFR7B66A_1_3"} {"score": 0.8592942953109741, "chain_id": "3X08E93BHVH4KWEOOKZTC7MFR7B66A_1_4"} {"score": 0.09608390182256699, "chain_id": "3X08E93BHVH4KWEOOKZTC7MFR7B66A_1_5"} {"score": 0.2293396145105362, "chain_id": "3X08E93BHVH4KWEOOKZTC7MFR7B66A_1_6"} {"score": 0.026695378124713898, "chain_id": "3X08E93BHVH4KWEOOKZTC7MFR7B66A_1_7"} {"score": 0.0226295106112957, "chain_id": "3X08E93BHVH4KWEOOKZTC7MFR7B66A_1_8"} {"score": 0.02292066626250744, "chain_id": "3X08E93BHVH4KWEOOKZTC7MFR7B66A_1_9"} {"score": 0.026296867057681084, "chain_id": "3X08E93BHVH4KWEOOKZTC7MFR7B66A_1_10"} {"score": 0.9580856561660767, "chain_id": "3KOPY89HM81HB86DP1VKE8F03NC3JS_1_1"} {"score": 0.8865735530853271, "chain_id": "3KOPY89HM81HB86DP1VKE8F03NC3JS_1_2"} {"score": 0.7744685411453247, "chain_id": "3KOPY89HM81HB86DP1VKE8F03NC3JS_1_3"} {"score": 0.9205316305160522, "chain_id": "3KOPY89HM81HB86DP1VKE8F03NC3JS_1_4"} {"score": 0.04317152127623558, "chain_id": "3KOPY89HM81HB86DP1VKE8F03NC3JS_1_5"} {"score": 0.12177427858114243, "chain_id": "3KOPY89HM81HB86DP1VKE8F03NC3JS_1_6"} {"score": 0.04884923994541168, "chain_id": "3KOPY89HM81HB86DP1VKE8F03NC3JS_1_7"} {"score": 0.09081585705280304, "chain_id": "3KOPY89HM81HB86DP1VKE8F03NC3JS_1_8"} {"score": 0.02322051115334034, "chain_id": "3KOPY89HM81HB86DP1VKE8F03NC3JS_1_9"} {"score": 0.043899063020944595, "chain_id": "3KOPY89HM81HB86DP1VKE8F03NC3JS_1_10"} {"score": 0.8089805245399475, "chain_id": "3634BBTX0OTGW920REBM3GPX2XBIFU_1_6"} {"score": 0.9554036259651184, "chain_id": "3634BBTX0OTGW920REBM3GPX2XBIFU_1_8"} {"score": 0.031721170991659164, "chain_id": "3634BBTX0OTGW920REBM3GPX2XBIFU_1_1"} {"score": 0.023509232327342033, "chain_id": "3634BBTX0OTGW920REBM3GPX2XBIFU_1_2"} {"score": 0.023509232327342033, "chain_id": "3634BBTX0OTGW920REBM3GPX2XBIFU_1_3"} {"score": 0.06034404784440994, "chain_id": "3634BBTX0OTGW920REBM3GPX2XBIFU_1_4"} {"score": 0.8028084635734558, "chain_id": "3634BBTX0OTGW920REBM3GPX2XBIFU_1_5"} {"score": 0.7419470548629761, "chain_id": "3634BBTX0OTGW920REBM3GPX2XBIFU_1_7"} {"score": 0.03782234340906143, "chain_id": "3634BBTX0OTGW920REBM3GPX2XBIFU_1_9"} {"score": 0.024735989049077034, "chain_id": "3634BBTX0OTGW920REBM3GPX2XBIFU_1_10"} {"score": 0.9753450155258179, "chain_id": "3X4JMASXCM8FCX94IM0KEMYG16Q0BP_1_1"} {"score": 0.8623677492141724, "chain_id": "3X4JMASXCM8FCX94IM0KEMYG16Q0BP_1_2"} {"score": 0.9624016880989075, "chain_id": "3X4JMASXCM8FCX94IM0KEMYG16Q0BP_1_3"} {"score": 0.8727531433105469, "chain_id": "3X4JMASXCM8FCX94IM0KEMYG16Q0BP_1_4"} {"score": 0.11621987819671631, "chain_id": "3X4JMASXCM8FCX94IM0KEMYG16Q0BP_1_5"} {"score": 0.0493813082575798, "chain_id": "3X4JMASXCM8FCX94IM0KEMYG16Q0BP_1_6"} {"score": 0.03822491317987442, "chain_id": "3X4JMASXCM8FCX94IM0KEMYG16Q0BP_1_7"} {"score": 0.08624905347824097, "chain_id": "3X4JMASXCM8FCX94IM0KEMYG16Q0BP_1_8"} {"score": 0.10340842604637146, "chain_id": "3X4JMASXCM8FCX94IM0KEMYG16Q0BP_1_9"} {"score": 0.05182913318276405, "chain_id": "3X4JMASXCM8FCX94IM0KEMYG16Q0BP_1_10"} {"score": 0.9212334156036377, "chain_id": "3NG53N1RLVIZYGFHWVV02L9N2S28PV_1_1"} {"score": 0.8320169448852539, "chain_id": "3NG53N1RLVIZYGFHWVV02L9N2S28PV_1_2"} {"score": 0.8401315808296204, "chain_id": "3NG53N1RLVIZYGFHWVV02L9N2S28PV_1_3"} {"score": 0.8411901593208313, "chain_id": "3NG53N1RLVIZYGFHWVV02L9N2S28PV_1_4"} {"score": 0.11778195202350616, "chain_id": "3NG53N1RLVIZYGFHWVV02L9N2S28PV_1_5"} {"score": 0.3082536458969116, "chain_id": "3NG53N1RLVIZYGFHWVV02L9N2S28PV_1_6"} {"score": 0.030502716079354286, "chain_id": "3NG53N1RLVIZYGFHWVV02L9N2S28PV_1_7"} {"score": 0.02144453302025795, "chain_id": "3NG53N1RLVIZYGFHWVV02L9N2S28PV_1_8"} {"score": 0.022314859554171562, "chain_id": "3NG53N1RLVIZYGFHWVV02L9N2S28PV_1_9"} {"score": 0.02521779201924801, "chain_id": "3NG53N1RLVIZYGFHWVV02L9N2S28PV_1_10"} {"score": 0.5983287692070007, "chain_id": "3XIQGXAUMC707BCP8HDBIYZVT99X7T_1_3"} {"score": 0.21116459369659424, "chain_id": "3XIQGXAUMC707BCP8HDBIYZVT99X7T_1_9"} {"score": 0.07293053716421127, "chain_id": "3XIQGXAUMC707BCP8HDBIYZVT99X7T_1_10"} {"score": 0.580913782119751, "chain_id": "3XIQGXAUMC707BCP8HDBIYZVT99X7T_1_1"} {"score": 0.6257460713386536, "chain_id": "3XIQGXAUMC707BCP8HDBIYZVT99X7T_1_2"} {"score": 0.408921480178833, "chain_id": "3XIQGXAUMC707BCP8HDBIYZVT99X7T_1_4"} {"score": 0.023026684299111366, "chain_id": "3XIQGXAUMC707BCP8HDBIYZVT99X7T_1_5"} {"score": 0.021469974890351295, "chain_id": "3XIQGXAUMC707BCP8HDBIYZVT99X7T_1_6"} {"score": 0.03107554465532303, "chain_id": "3XIQGXAUMC707BCP8HDBIYZVT99X7T_1_7"} {"score": 0.021920818835496902, "chain_id": "3XIQGXAUMC707BCP8HDBIYZVT99X7T_1_8"} {"score": 0.8621808290481567, "chain_id": "3R6BYFZZP7BDM4RVQ0BN6QCCQ9OFXY_1_1"} {"score": 0.11044476926326752, "chain_id": "3R6BYFZZP7BDM4RVQ0BN6QCCQ9OFXY_1_2"} {"score": 0.04725709930062294, "chain_id": "3R6BYFZZP7BDM4RVQ0BN6QCCQ9OFXY_1_3"} {"score": 0.36490848660469055, "chain_id": "3R6BYFZZP7BDM4RVQ0BN6QCCQ9OFXY_1_4"} {"score": 0.07420700043439865, "chain_id": "3R6BYFZZP7BDM4RVQ0BN6QCCQ9OFXY_1_5"} {"score": 0.06021294370293617, "chain_id": "3R6BYFZZP7BDM4RVQ0BN6QCCQ9OFXY_1_6"} {"score": 0.12379574775695801, "chain_id": "3R6BYFZZP7BDM4RVQ0BN6QCCQ9OFXY_1_7"} {"score": 0.03491450101137161, "chain_id": "3R6BYFZZP7BDM4RVQ0BN6QCCQ9OFXY_1_8"} {"score": 0.05130235105752945, "chain_id": "3R6BYFZZP7BDM4RVQ0BN6QCCQ9OFXY_1_9"} {"score": 0.6374764442443848, "chain_id": "3R6BYFZZP7BDM4RVQ0BN6QCCQ9OFXY_1_10"} {"score": 0.14610625803470612, "chain_id": "3K5TEWLKGVA5S6OQRTGQL2SJRCXVI0_1_1"} {"score": 0.07796294242143631, "chain_id": "3K5TEWLKGVA5S6OQRTGQL2SJRCXVI0_1_2"} {"score": 0.30580633878707886, "chain_id": "3K5TEWLKGVA5S6OQRTGQL2SJRCXVI0_1_3"} {"score": 0.06785538047552109, "chain_id": "3K5TEWLKGVA5S6OQRTGQL2SJRCXVI0_1_4"} {"score": 0.28424468636512756, "chain_id": "3K5TEWLKGVA5S6OQRTGQL2SJRCXVI0_1_5"} {"score": 0.0996258407831192, "chain_id": "3K5TEWLKGVA5S6OQRTGQL2SJRCXVI0_1_6"} {"score": 0.3783250153064728, "chain_id": "3K5TEWLKGVA5S6OQRTGQL2SJRCXVI0_1_7"} {"score": 0.07817210257053375, "chain_id": "3K5TEWLKGVA5S6OQRTGQL2SJRCXVI0_1_8"} {"score": 0.05015821382403374, "chain_id": "3K5TEWLKGVA5S6OQRTGQL2SJRCXVI0_1_9"} {"score": 0.019527221098542213, "chain_id": "3K5TEWLKGVA5S6OQRTGQL2SJRCXVI0_1_10"} {"score": 0.9063218832015991, "chain_id": "3I3WADAZ9Q3YQYKEJXBI11U6C6ZO5Q_1_1"} {"score": 0.8231459856033325, "chain_id": "3I3WADAZ9Q3YQYKEJXBI11U6C6ZO5Q_1_2"} {"score": 0.9031723737716675, "chain_id": "3I3WADAZ9Q3YQYKEJXBI11U6C6ZO5Q_1_3"} {"score": 0.8591108918190002, "chain_id": "3I3WADAZ9Q3YQYKEJXBI11U6C6ZO5Q_1_4"} {"score": 0.5589597821235657, "chain_id": "3I3WADAZ9Q3YQYKEJXBI11U6C6ZO5Q_1_5"} {"score": 0.4787376821041107, "chain_id": "3I3WADAZ9Q3YQYKEJXBI11U6C6ZO5Q_1_6"} {"score": 0.49215981364250183, "chain_id": "3I3WADAZ9Q3YQYKEJXBI11U6C6ZO5Q_1_7"} {"score": 0.10466288775205612, "chain_id": "3I3WADAZ9Q3YQYKEJXBI11U6C6ZO5Q_1_8"} {"score": 0.01972128637135029, "chain_id": "3I3WADAZ9Q3YQYKEJXBI11U6C6ZO5Q_1_9"} {"score": 0.3344670534133911, "chain_id": "3I3WADAZ9Q3YQYKEJXBI11U6C6ZO5Q_1_10"} {"score": 0.9226984977722168, "chain_id": "3PEIJLRY6TSFXQDQGPLNAEYC87NWXZ_1_1"} {"score": 0.8684446215629578, "chain_id": "3PEIJLRY6TSFXQDQGPLNAEYC87NWXZ_1_2"} {"score": 0.9887895584106445, "chain_id": "3PEIJLRY6TSFXQDQGPLNAEYC87NWXZ_1_3"} {"score": 0.6938542723655701, "chain_id": "3PEIJLRY6TSFXQDQGPLNAEYC87NWXZ_1_5"} {"score": 0.6892922520637512, "chain_id": "3PEIJLRY6TSFXQDQGPLNAEYC87NWXZ_1_9"} {"score": 0.9096857309341431, "chain_id": "3PEIJLRY6TSFXQDQGPLNAEYC87NWXZ_1_10"} {"score": 0.8330395221710205, "chain_id": "3PEIJLRY6TSFXQDQGPLNAEYC87NWXZ_1_4"} {"score": 0.8244547843933105, "chain_id": "3PEIJLRY6TSFXQDQGPLNAEYC87NWXZ_1_6"} {"score": 0.7261760234832764, "chain_id": "3PEIJLRY6TSFXQDQGPLNAEYC87NWXZ_1_7"} {"score": 0.6075165271759033, "chain_id": "3PEIJLRY6TSFXQDQGPLNAEYC87NWXZ_1_8"} {"score": 0.8476271033287048, "chain_id": "3OUYGIZWR7XHGRAE1RIL963554D0PT_1_10"} {"score": 0.024527058005332947, "chain_id": "3OUYGIZWR7XHGRAE1RIL963554D0PT_1_1"} {"score": 0.22360581159591675, "chain_id": "3OUYGIZWR7XHGRAE1RIL963554D0PT_1_2"} {"score": 0.02499089017510414, "chain_id": "3OUYGIZWR7XHGRAE1RIL963554D0PT_1_3"} {"score": 0.19317539036273956, "chain_id": "3OUYGIZWR7XHGRAE1RIL963554D0PT_1_4"} {"score": 0.22304020822048187, "chain_id": "3OUYGIZWR7XHGRAE1RIL963554D0PT_1_5"} {"score": 0.7825116515159607, "chain_id": "3OUYGIZWR7XHGRAE1RIL963554D0PT_1_6"} {"score": 0.22241230309009552, "chain_id": "3OUYGIZWR7XHGRAE1RIL963554D0PT_1_7"} {"score": 0.7001578211784363, "chain_id": "3OUYGIZWR7XHGRAE1RIL963554D0PT_1_8"} {"score": 0.3459976613521576, "chain_id": "3OUYGIZWR7XHGRAE1RIL963554D0PT_1_9"} {"score": 0.5228371024131775, "chain_id": "358UUM7WRZ2GAFQDZI7JTGD7E1T7RG_1_1"} {"score": 0.19624140858650208, "chain_id": "358UUM7WRZ2GAFQDZI7JTGD7E1T7RG_1_2"} {"score": 0.26935601234436035, "chain_id": "358UUM7WRZ2GAFQDZI7JTGD7E1T7RG_1_3"} {"score": 0.19272950291633606, "chain_id": "358UUM7WRZ2GAFQDZI7JTGD7E1T7RG_1_4"} {"score": 0.09480167180299759, "chain_id": "358UUM7WRZ2GAFQDZI7JTGD7E1T7RG_1_5"} {"score": 0.01637270301580429, "chain_id": "358UUM7WRZ2GAFQDZI7JTGD7E1T7RG_1_6"} {"score": 0.01637270301580429, "chain_id": "358UUM7WRZ2GAFQDZI7JTGD7E1T7RG_1_7"} {"score": 0.12174279242753983, "chain_id": "358UUM7WRZ2GAFQDZI7JTGD7E1T7RG_1_8"} {"score": 0.016830917447805405, "chain_id": "358UUM7WRZ2GAFQDZI7JTGD7E1T7RG_1_9"} {"score": 0.49971485137939453, "chain_id": "358UUM7WRZ2GAFQDZI7JTGD7E1T7RG_1_10"} {"score": 0.9860095977783203, "chain_id": "3I3WADAZ9Q3YQYKEJXBI11U6FT55OQ_1_1"} {"score": 0.9827760457992554, "chain_id": "3I3WADAZ9Q3YQYKEJXBI11U6FT55OQ_1_2"} {"score": 0.9546597003936768, "chain_id": "3I3WADAZ9Q3YQYKEJXBI11U6FT55OQ_1_3"} {"score": 0.9727162718772888, "chain_id": "3I3WADAZ9Q3YQYKEJXBI11U6FT55OQ_1_4"} {"score": 0.6507756114006042, "chain_id": "3I3WADAZ9Q3YQYKEJXBI11U6FT55OQ_1_5"} {"score": 0.22990374267101288, "chain_id": "3I3WADAZ9Q3YQYKEJXBI11U6FT55OQ_1_6"} {"score": 0.23511077463626862, "chain_id": "3I3WADAZ9Q3YQYKEJXBI11U6FT55OQ_1_7"} {"score": 0.10176905244588852, "chain_id": "3I3WADAZ9Q3YQYKEJXBI11U6FT55OQ_1_8"} {"score": 0.9777206182479858, "chain_id": "3I3WADAZ9Q3YQYKEJXBI11U6FT55OQ_1_9"} {"score": 0.24217934906482697, "chain_id": "3I3WADAZ9Q3YQYKEJXBI11U6FT55OQ_1_10"} {"score": 0.8346302509307861, "chain_id": "3KRVW3HTZNKBWXXDID9D28FTYEESMI_1_1"} {"score": 0.9319848418235779, "chain_id": "3KRVW3HTZNKBWXXDID9D28FTYEESMI_1_2"} {"score": 0.8066500425338745, "chain_id": "3KRVW3HTZNKBWXXDID9D28FTYEESMI_1_3"} {"score": 0.2862943112850189, "chain_id": "3KRVW3HTZNKBWXXDID9D28FTYEESMI_1_4"} {"score": 0.22277553379535675, "chain_id": "3KRVW3HTZNKBWXXDID9D28FTYEESMI_1_5"} {"score": 0.13009025156497955, "chain_id": "3KRVW3HTZNKBWXXDID9D28FTYEESMI_1_6"} {"score": 0.346798837184906, "chain_id": "3KRVW3HTZNKBWXXDID9D28FTYEESMI_1_7"} {"score": 0.41687503457069397, "chain_id": "3KRVW3HTZNKBWXXDID9D28FTYEESMI_1_8"} {"score": 0.7309994101524353, "chain_id": "3KRVW3HTZNKBWXXDID9D28FTYEESMI_1_9"} {"score": 0.6615251302719116, "chain_id": "3KRVW3HTZNKBWXXDID9D28FTYEESMI_1_10"} {"score": 0.9780628085136414, "chain_id": "3KGTPGBS6XK146LOX0LT20JJD742U5_1_1"} {"score": 0.8757359385490417, "chain_id": "3KGTPGBS6XK146LOX0LT20JJD742U5_1_5"} {"score": 0.790221095085144, "chain_id": "3KGTPGBS6XK146LOX0LT20JJD742U5_1_7"} {"score": 0.8623825311660767, "chain_id": "3KGTPGBS6XK146LOX0LT20JJD742U5_1_2"} {"score": 0.8664078116416931, "chain_id": "3KGTPGBS6XK146LOX0LT20JJD742U5_1_3"} {"score": 0.9491837620735168, "chain_id": "3KGTPGBS6XK146LOX0LT20JJD742U5_1_4"} {"score": 0.9376215934753418, "chain_id": "3KGTPGBS6XK146LOX0LT20JJD742U5_1_6"} {"score": 0.08509061485528946, "chain_id": "3KGTPGBS6XK146LOX0LT20JJD742U5_1_8"} {"score": 0.7501826286315918, "chain_id": "3KGTPGBS6XK146LOX0LT20JJD742U5_1_9"} {"score": 0.028852757066488266, "chain_id": "3KGTPGBS6XK146LOX0LT20JJD742U5_1_10"} {"score": 0.9867460131645203, "chain_id": "3XM0HYN6NKYG7HP89YH0UV59354EPE_1_1"} {"score": 0.9859749674797058, "chain_id": "3XM0HYN6NKYG7HP89YH0UV59354EPE_1_2"} {"score": 0.9482893347740173, "chain_id": "3XM0HYN6NKYG7HP89YH0UV59354EPE_1_3"} {"score": 0.9726763367652893, "chain_id": "3XM0HYN6NKYG7HP89YH0UV59354EPE_1_4"} {"score": 0.5502200126647949, "chain_id": "3XM0HYN6NKYG7HP89YH0UV59354EPE_1_5"} {"score": 0.13342557847499847, "chain_id": "3XM0HYN6NKYG7HP89YH0UV59354EPE_1_6"} {"score": 0.16093450784683228, "chain_id": "3XM0HYN6NKYG7HP89YH0UV59354EPE_1_7"} {"score": 0.07112611830234528, "chain_id": "3XM0HYN6NKYG7HP89YH0UV59354EPE_1_8"} {"score": 0.9767133593559265, "chain_id": "3XM0HYN6NKYG7HP89YH0UV59354EPE_1_9"} {"score": 0.16922292113304138, "chain_id": "3XM0HYN6NKYG7HP89YH0UV59354EPE_1_10"} {"score": 0.896294355392456, "chain_id": "38YMOXR4MUY2EBTUF2CXA1LSF98W65_1_1"} {"score": 0.10028928518295288, "chain_id": "38YMOXR4MUY2EBTUF2CXA1LSF98W65_1_2"} {"score": 0.12669654190540314, "chain_id": "38YMOXR4MUY2EBTUF2CXA1LSF98W65_1_10"} {"score": 0.8382030725479126, "chain_id": "38YMOXR4MUY2EBTUF2CXA1LSF98W65_1_3"} {"score": 0.3521723747253418, "chain_id": "38YMOXR4MUY2EBTUF2CXA1LSF98W65_1_4"} {"score": 0.3830278515815735, "chain_id": "38YMOXR4MUY2EBTUF2CXA1LSF98W65_1_5"} {"score": 0.2932344079017639, "chain_id": "38YMOXR4MUY2EBTUF2CXA1LSF98W65_1_6"} {"score": 0.34835079312324524, "chain_id": "38YMOXR4MUY2EBTUF2CXA1LSF98W65_1_7"} {"score": 0.42414650321006775, "chain_id": "38YMOXR4MUY2EBTUF2CXA1LSF98W65_1_8"} {"score": 0.7059732675552368, "chain_id": "38YMOXR4MUY2EBTUF2CXA1LSF98W65_1_9"} {"score": 0.9860095977783203, "chain_id": "3PPTZCWALQJZIOHJ5YA2FAW1S4FQZT_1_1"} {"score": 0.9827760457992554, "chain_id": "3PPTZCWALQJZIOHJ5YA2FAW1S4FQZT_1_2"} {"score": 0.9546597003936768, "chain_id": "3PPTZCWALQJZIOHJ5YA2FAW1S4FQZT_1_3"} {"score": 0.9727162718772888, "chain_id": "3PPTZCWALQJZIOHJ5YA2FAW1S4FQZT_1_4"} {"score": 0.9777206182479858, "chain_id": "3PPTZCWALQJZIOHJ5YA2FAW1S4FQZT_1_9"} {"score": 0.6507756114006042, "chain_id": "3PPTZCWALQJZIOHJ5YA2FAW1S4FQZT_1_5"} {"score": 0.22990374267101288, "chain_id": "3PPTZCWALQJZIOHJ5YA2FAW1S4FQZT_1_6"} {"score": 0.23511077463626862, "chain_id": "3PPTZCWALQJZIOHJ5YA2FAW1S4FQZT_1_7"} {"score": 0.10176905244588852, "chain_id": "3PPTZCWALQJZIOHJ5YA2FAW1S4FQZT_1_8"} {"score": 0.24217934906482697, "chain_id": "3PPTZCWALQJZIOHJ5YA2FAW1S4FQZT_1_10"} {"score": 0.9002193212509155, "chain_id": "34S6N1K2ZVI2061C77WZYHT2MM9LHZ_1_4"} {"score": 0.9524802565574646, "chain_id": "34S6N1K2ZVI2061C77WZYHT2MM9LHZ_1_7"} {"score": 0.4954172670841217, "chain_id": "34S6N1K2ZVI2061C77WZYHT2MM9LHZ_1_9"} {"score": 0.35063499212265015, "chain_id": "34S6N1K2ZVI2061C77WZYHT2MM9LHZ_1_10"} {"score": 0.9366441965103149, "chain_id": "34S6N1K2ZVI2061C77WZYHT2MM9LHZ_1_1"} {"score": 0.922120213508606, "chain_id": "34S6N1K2ZVI2061C77WZYHT2MM9LHZ_1_2"} {"score": 0.7347709536552429, "chain_id": "34S6N1K2ZVI2061C77WZYHT2MM9LHZ_1_3"} {"score": 0.6957268118858337, "chain_id": "34S6N1K2ZVI2061C77WZYHT2MM9LHZ_1_5"} {"score": 0.7563473582267761, "chain_id": "34S6N1K2ZVI2061C77WZYHT2MM9LHZ_1_6"} {"score": 0.8856726884841919, "chain_id": "34S6N1K2ZVI2061C77WZYHT2MM9LHZ_1_8"} {"score": 0.023804886266589165, "chain_id": "3DPNQGW4LLEQ59AA5W6EF921R4F647_1_1"} {"score": 0.0299697145819664, "chain_id": "3DPNQGW4LLEQ59AA5W6EF921R4F647_1_2"} {"score": 0.016257666051387787, "chain_id": "3DPNQGW4LLEQ59AA5W6EF921R4F647_1_3"} {"score": 0.027964025735855103, "chain_id": "3DPNQGW4LLEQ59AA5W6EF921R4F647_1_4"} {"score": 0.01809893362224102, "chain_id": "3DPNQGW4LLEQ59AA5W6EF921R4F647_1_5"} {"score": 0.018206236883997917, "chain_id": "3DPNQGW4LLEQ59AA5W6EF921R4F647_1_6"} {"score": 0.015062184073030949, "chain_id": "3DPNQGW4LLEQ59AA5W6EF921R4F647_1_7"} {"score": 0.04434873163700104, "chain_id": "3DPNQGW4LLEQ59AA5W6EF921R4F647_1_8"} {"score": 0.02278798818588257, "chain_id": "3DPNQGW4LLEQ59AA5W6EF921R4F647_1_9"} {"score": 0.032850585877895355, "chain_id": "3DPNQGW4LLEQ59AA5W6EF921R4F647_1_10"} {"score": 0.9499014019966125, "chain_id": "3A1COHJ8NJU7LZHTDINVTC7W2FOH89_1_1"} {"score": 0.9270567893981934, "chain_id": "3A1COHJ8NJU7LZHTDINVTC7W2FOH89_1_2"} {"score": 0.7670076489448547, "chain_id": "3A1COHJ8NJU7LZHTDINVTC7W2FOH89_1_3"} {"score": 0.8805373311042786, "chain_id": "3A1COHJ8NJU7LZHTDINVTC7W2FOH89_1_4"} {"score": 0.3004121780395508, "chain_id": "3A1COHJ8NJU7LZHTDINVTC7W2FOH89_1_5"} {"score": 0.22883276641368866, "chain_id": "3A1COHJ8NJU7LZHTDINVTC7W2FOH89_1_6"} {"score": 0.7336214184761047, "chain_id": "3A1COHJ8NJU7LZHTDINVTC7W2FOH89_1_7"} {"score": 0.5775091052055359, "chain_id": "3A1COHJ8NJU7LZHTDINVTC7W2FOH89_1_8"} {"score": 0.4110807180404663, "chain_id": "3A1COHJ8NJU7LZHTDINVTC7W2FOH89_1_9"} {"score": 0.5984405279159546, "chain_id": "3A1COHJ8NJU7LZHTDINVTC7W2FOH89_1_10"} {"score": 0.37075144052505493, "chain_id": "3DQQ64TANGKAOHBZUYB6G1C96NJPW3_1_2"} {"score": 0.8532643914222717, "chain_id": "3DQQ64TANGKAOHBZUYB6G1C96NJPW3_1_4"} {"score": 0.09351546317338943, "chain_id": "3DQQ64TANGKAOHBZUYB6G1C96NJPW3_1_1"} {"score": 0.4047551155090332, "chain_id": "3DQQ64TANGKAOHBZUYB6G1C96NJPW3_1_3"} {"score": 0.573059618473053, "chain_id": "3DQQ64TANGKAOHBZUYB6G1C96NJPW3_1_5"} {"score": 0.6851472854614258, "chain_id": "3DQQ64TANGKAOHBZUYB6G1C96NJPW3_1_6"} {"score": 0.471297025680542, "chain_id": "3DQQ64TANGKAOHBZUYB6G1C96NJPW3_1_7"} {"score": 0.04384404793381691, "chain_id": "3DQQ64TANGKAOHBZUYB6G1C96NJPW3_1_8"} {"score": 0.05722155421972275, "chain_id": "3DQQ64TANGKAOHBZUYB6G1C96NJPW3_1_9"} {"score": 0.6226058006286621, "chain_id": "3DQQ64TANGKAOHBZUYB6G1C96NJPW3_1_10"} {"score": 0.12018479406833649, "chain_id": "3TXMY6UCAENMAV69DKQU4CVGMDACQI_1_1"} {"score": 0.07358956336975098, "chain_id": "3TXMY6UCAENMAV69DKQU4CVGMDACQI_1_2"} {"score": 0.07444543391466141, "chain_id": "3TXMY6UCAENMAV69DKQU4CVGMDACQI_1_3"} {"score": 0.21969127655029297, "chain_id": "3TXMY6UCAENMAV69DKQU4CVGMDACQI_1_4"} {"score": 0.13876105844974518, "chain_id": "3TXMY6UCAENMAV69DKQU4CVGMDACQI_1_5"} {"score": 0.04494957998394966, "chain_id": "3TXMY6UCAENMAV69DKQU4CVGMDACQI_1_6"} {"score": 0.0481526143848896, "chain_id": "3TXMY6UCAENMAV69DKQU4CVGMDACQI_1_7"} {"score": 0.048390455543994904, "chain_id": "3TXMY6UCAENMAV69DKQU4CVGMDACQI_1_8"} {"score": 0.08433587104082108, "chain_id": "3TXMY6UCAENMAV69DKQU4CVGMDACQI_1_9"} {"score": 0.10995706915855408, "chain_id": "3TXMY6UCAENMAV69DKQU4CVGMDACQI_1_10"} {"score": 0.9917346239089966, "chain_id": "3YWRV122CSYCQLNDDHUUCRWM0O7U8A_1_1"} {"score": 0.9876000881195068, "chain_id": "3YWRV122CSYCQLNDDHUUCRWM0O7U8A_1_2"} {"score": 0.9763995409011841, "chain_id": "3YWRV122CSYCQLNDDHUUCRWM0O7U8A_1_7"} {"score": 0.9543662071228027, "chain_id": "3YWRV122CSYCQLNDDHUUCRWM0O7U8A_1_8"} {"score": 0.9758702516555786, "chain_id": "3YWRV122CSYCQLNDDHUUCRWM0O7U8A_1_9"} {"score": 0.9808985590934753, "chain_id": "3YWRV122CSYCQLNDDHUUCRWM0O7U8A_1_3"} {"score": 0.9639734625816345, "chain_id": "3YWRV122CSYCQLNDDHUUCRWM0O7U8A_1_4"} {"score": 0.4902268648147583, "chain_id": "3YWRV122CSYCQLNDDHUUCRWM0O7U8A_1_5"} {"score": 0.7731192111968994, "chain_id": "3YWRV122CSYCQLNDDHUUCRWM0O7U8A_1_6"} {"score": 0.6811910271644592, "chain_id": "3YWRV122CSYCQLNDDHUUCRWM0O7U8A_1_10"} {"score": 0.31360962986946106, "chain_id": "3DYGAII7PL754KFDIPC0OCUNI38PQ3_1_1"} {"score": 0.9283091425895691, "chain_id": "3DYGAII7PL754KFDIPC0OCUNI38PQ3_1_3"} {"score": 0.1025240495800972, "chain_id": "3DYGAII7PL754KFDIPC0OCUNI38PQ3_1_2"} {"score": 0.16814810037612915, "chain_id": "3DYGAII7PL754KFDIPC0OCUNI38PQ3_1_4"} {"score": 0.8818464279174805, "chain_id": "3DYGAII7PL754KFDIPC0OCUNI38PQ3_1_5"} {"score": 0.03153638169169426, "chain_id": "3DYGAII7PL754KFDIPC0OCUNI38PQ3_1_6"} {"score": 0.09551721066236496, "chain_id": "3DYGAII7PL754KFDIPC0OCUNI38PQ3_1_7"} {"score": 0.027555814012885094, "chain_id": "3DYGAII7PL754KFDIPC0OCUNI38PQ3_1_8"} {"score": 0.07692426443099976, "chain_id": "3DYGAII7PL754KFDIPC0OCUNI38PQ3_1_9"} {"score": 0.19254674017429352, "chain_id": "3DYGAII7PL754KFDIPC0OCUNI38PQ3_1_10"} {"score": 0.9577396512031555, "chain_id": "3CPLWGV3MOYZ90MEL8OMYSZ38SI9NS_1_1"} {"score": 0.665280818939209, "chain_id": "3CPLWGV3MOYZ90MEL8OMYSZ38SI9NS_1_2"} {"score": 0.9209901690483093, "chain_id": "3CPLWGV3MOYZ90MEL8OMYSZ38SI9NS_1_3"} {"score": 0.7588183879852295, "chain_id": "3CPLWGV3MOYZ90MEL8OMYSZ38SI9NS_1_4"} {"score": 0.07797693461179733, "chain_id": "3CPLWGV3MOYZ90MEL8OMYSZ38SI9NS_1_5"} {"score": 0.8886011242866516, "chain_id": "3CPLWGV3MOYZ90MEL8OMYSZ38SI9NS_1_6"} {"score": 0.19719047844409943, "chain_id": "3CPLWGV3MOYZ90MEL8OMYSZ38SI9NS_1_7"} {"score": 0.10257453471422195, "chain_id": "3CPLWGV3MOYZ90MEL8OMYSZ38SI9NS_1_8"} {"score": 0.08353136479854584, "chain_id": "3CPLWGV3MOYZ90MEL8OMYSZ38SI9NS_1_9"} {"score": 0.15027911961078644, "chain_id": "3CPLWGV3MOYZ90MEL8OMYSZ38SI9NS_1_10"} {"score": 0.24877136945724487, "chain_id": "3CPLWGV3MOYZ90MEL8OMYSZ38ZX9NL_1_5"} {"score": 0.5674701929092407, "chain_id": "3CPLWGV3MOYZ90MEL8OMYSZ38ZX9NL_1_1"} {"score": 0.5338695049285889, "chain_id": "3CPLWGV3MOYZ90MEL8OMYSZ38ZX9NL_1_2"} {"score": 0.9316073656082153, "chain_id": "3CPLWGV3MOYZ90MEL8OMYSZ38ZX9NL_1_3"} {"score": 0.24695853888988495, "chain_id": "3CPLWGV3MOYZ90MEL8OMYSZ38ZX9NL_1_4"} {"score": 0.03892253711819649, "chain_id": "3CPLWGV3MOYZ90MEL8OMYSZ38ZX9NL_1_6"} {"score": 0.36599770188331604, "chain_id": "3CPLWGV3MOYZ90MEL8OMYSZ38ZX9NL_1_7"} {"score": 0.1910007894039154, "chain_id": "3CPLWGV3MOYZ90MEL8OMYSZ38ZX9NL_1_8"} {"score": 0.032164182513952255, "chain_id": "3CPLWGV3MOYZ90MEL8OMYSZ38ZX9NL_1_9"} {"score": 0.06206713989377022, "chain_id": "3CPLWGV3MOYZ90MEL8OMYSZ38ZX9NL_1_10"} {"score": 0.9733274579048157, "chain_id": "3EF8EXOTT1UL15SY2XH1QF0314U1JS_1_1"} {"score": 0.9851828217506409, "chain_id": "3EF8EXOTT1UL15SY2XH1QF0314U1JS_1_2"} {"score": 0.7946199178695679, "chain_id": "3EF8EXOTT1UL15SY2XH1QF0314U1JS_1_3"} {"score": 0.12681247293949127, "chain_id": "3EF8EXOTT1UL15SY2XH1QF0314U1JS_1_4"} {"score": 0.45150530338287354, "chain_id": "3EF8EXOTT1UL15SY2XH1QF0314U1JS_1_5"} {"score": 0.4340212941169739, "chain_id": "3EF8EXOTT1UL15SY2XH1QF0314U1JS_1_6"} {"score": 0.4572664797306061, "chain_id": "3EF8EXOTT1UL15SY2XH1QF0314U1JS_1_7"} {"score": 0.19881252944469452, "chain_id": "3EF8EXOTT1UL15SY2XH1QF0314U1JS_1_8"} {"score": 0.21054424345493317, "chain_id": "3EF8EXOTT1UL15SY2XH1QF0314U1JS_1_9"} {"score": 0.13089102506637573, "chain_id": "3EF8EXOTT1UL15SY2XH1QF0314U1JS_1_10"} {"score": 0.9775230288505554, "chain_id": "3IJXV6UZ1XIDZZ79I9BGK53GTWXRIJ_1_1"} {"score": 0.6237416863441467, "chain_id": "3IJXV6UZ1XIDZZ79I9BGK53GTWXRIJ_1_3"} {"score": 0.8979552388191223, "chain_id": "3IJXV6UZ1XIDZZ79I9BGK53GTWXRIJ_1_2"} {"score": 0.8316547870635986, "chain_id": "3IJXV6UZ1XIDZZ79I9BGK53GTWXRIJ_1_4"} {"score": 0.47190871834754944, "chain_id": "3IJXV6UZ1XIDZZ79I9BGK53GTWXRIJ_1_5"} {"score": 0.3419429659843445, "chain_id": "3IJXV6UZ1XIDZZ79I9BGK53GTWXRIJ_1_6"} {"score": 0.6724469661712646, "chain_id": "3IJXV6UZ1XIDZZ79I9BGK53GTWXRIJ_1_7"} {"score": 0.5168236494064331, "chain_id": "3IJXV6UZ1XIDZZ79I9BGK53GTWXRIJ_1_8"} {"score": 0.24887171387672424, "chain_id": "3IJXV6UZ1XIDZZ79I9BGK53GTWXRIJ_1_9"} {"score": 0.26503047347068787, "chain_id": "3IJXV6UZ1XIDZZ79I9BGK53GTWXRIJ_1_10"} {"score": 0.9861202239990234, "chain_id": "3I3WADAZ9Q3YQYKEJXBI11U6DVJ5O6_1_1"} {"score": 0.14043757319450378, "chain_id": "3I3WADAZ9Q3YQYKEJXBI11U6DVJ5O6_1_3"} {"score": 0.02885049767792225, "chain_id": "3I3WADAZ9Q3YQYKEJXBI11U6DVJ5O6_1_6"} {"score": 0.10330656170845032, "chain_id": "3I3WADAZ9Q3YQYKEJXBI11U6DVJ5O6_1_8"} {"score": 0.09240715205669403, "chain_id": "3I3WADAZ9Q3YQYKEJXBI11U6DVJ5O6_1_9"} {"score": 0.9698346257209778, "chain_id": "3I3WADAZ9Q3YQYKEJXBI11U6DVJ5O6_1_10"} {"score": 0.06548668444156647, "chain_id": "3I3WADAZ9Q3YQYKEJXBI11U6DVJ5O6_1_2"} {"score": 0.1809939593076706, "chain_id": "3I3WADAZ9Q3YQYKEJXBI11U6DVJ5O6_1_4"} {"score": 0.7806289792060852, "chain_id": "3I3WADAZ9Q3YQYKEJXBI11U6DVJ5O6_1_5"} {"score": 0.13911259174346924, "chain_id": "3I3WADAZ9Q3YQYKEJXBI11U6DVJ5O6_1_7"} {"score": 0.3260151147842407, "chain_id": "34QN5IT0TZQWAZBXFAGANK8FIN608Q_1_2"} {"score": 0.6053037643432617, "chain_id": "34QN5IT0TZQWAZBXFAGANK8FIN608Q_1_4"} {"score": 0.43419525027275085, "chain_id": "34QN5IT0TZQWAZBXFAGANK8FIN608Q_1_1"} {"score": 0.148785799741745, "chain_id": "34QN5IT0TZQWAZBXFAGANK8FIN608Q_1_3"} {"score": 0.27875518798828125, "chain_id": "34QN5IT0TZQWAZBXFAGANK8FIN608Q_1_5"} {"score": 0.06630444526672363, "chain_id": "34QN5IT0TZQWAZBXFAGANK8FIN608Q_1_6"} {"score": 0.03946204483509064, "chain_id": "34QN5IT0TZQWAZBXFAGANK8FIN608Q_1_7"} {"score": 0.4203043580055237, "chain_id": "34QN5IT0TZQWAZBXFAGANK8FIN608Q_1_8"} {"score": 0.15700501203536987, "chain_id": "34QN5IT0TZQWAZBXFAGANK8FIN608Q_1_9"} {"score": 0.06413762271404266, "chain_id": "34QN5IT0TZQWAZBXFAGANK8FIN608Q_1_10"} {"score": 0.9871735572814941, "chain_id": "3X3OR7WPZZZ97V0J432TL403LR5L8K_1_1"} {"score": 0.9677687883377075, "chain_id": "3X3OR7WPZZZ97V0J432TL403LR5L8K_1_4"} {"score": 0.910638689994812, "chain_id": "3X3OR7WPZZZ97V0J432TL403LR5L8K_1_2"} {"score": 0.8611313700675964, "chain_id": "3X3OR7WPZZZ97V0J432TL403LR5L8K_1_3"} {"score": 0.2876832187175751, "chain_id": "3X3OR7WPZZZ97V0J432TL403LR5L8K_1_5"} {"score": 0.3523065745830536, "chain_id": "3X3OR7WPZZZ97V0J432TL403LR5L8K_1_6"} {"score": 0.15763480961322784, "chain_id": "3X3OR7WPZZZ97V0J432TL403LR5L8K_1_7"} {"score": 0.0874781608581543, "chain_id": "3X3OR7WPZZZ97V0J432TL403LR5L8K_1_8"} {"score": 0.3473472595214844, "chain_id": "3X3OR7WPZZZ97V0J432TL403LR5L8K_1_9"} {"score": 0.0905049592256546, "chain_id": "3X3OR7WPZZZ97V0J432TL403LR5L8K_1_10"} {"score": 0.04171469062566757, "chain_id": "3C5W7UE9CFPJSEJCCNF01GWLC84XMC_1_1"} {"score": 0.05899648740887642, "chain_id": "3C5W7UE9CFPJSEJCCNF01GWLC84XMC_1_2"} {"score": 0.10220953822135925, "chain_id": "3C5W7UE9CFPJSEJCCNF01GWLC84XMC_1_3"} {"score": 0.13552622497081757, "chain_id": "3C5W7UE9CFPJSEJCCNF01GWLC84XMC_1_4"} {"score": 0.8707379102706909, "chain_id": "3C5W7UE9CFPJSEJCCNF01GWLC84XMC_1_5"} {"score": 0.2485654354095459, "chain_id": "3C5W7UE9CFPJSEJCCNF01GWLC84XMC_1_6"} {"score": 0.1065327599644661, "chain_id": "3C5W7UE9CFPJSEJCCNF01GWLC84XMC_1_7"} {"score": 0.048127904534339905, "chain_id": "3C5W7UE9CFPJSEJCCNF01GWLC84XMC_1_8"} {"score": 0.036301903426647186, "chain_id": "3C5W7UE9CFPJSEJCCNF01GWLC84XMC_1_9"} {"score": 0.05608236789703369, "chain_id": "3C5W7UE9CFPJSEJCCNF01GWLC84XMC_1_10"} {"score": 0.9199439287185669, "chain_id": "333U7HK6I9EFT08AIQ1WRH1CQV5JDW_1_1"} {"score": 0.9285637736320496, "chain_id": "333U7HK6I9EFT08AIQ1WRH1CQV5JDW_1_3"} {"score": 0.6757284998893738, "chain_id": "333U7HK6I9EFT08AIQ1WRH1CQV5JDW_1_10"} {"score": 0.8411576747894287, "chain_id": "333U7HK6I9EFT08AIQ1WRH1CQV5JDW_1_2"} {"score": 0.22740276157855988, "chain_id": "333U7HK6I9EFT08AIQ1WRH1CQV5JDW_1_4"} {"score": 0.5785476565361023, "chain_id": "333U7HK6I9EFT08AIQ1WRH1CQV5JDW_1_5"} {"score": 0.7083947658538818, "chain_id": "333U7HK6I9EFT08AIQ1WRH1CQV5JDW_1_6"} {"score": 0.749603271484375, "chain_id": "333U7HK6I9EFT08AIQ1WRH1CQV5JDW_1_7"} {"score": 0.28459957242012024, "chain_id": "333U7HK6I9EFT08AIQ1WRH1CQV5JDW_1_8"} {"score": 0.10015558451414108, "chain_id": "333U7HK6I9EFT08AIQ1WRH1CQV5JDW_1_9"} {"score": 0.9725489616394043, "chain_id": "3LRKMWOKB5GIQ5FY3NK1JSYYD902ZD_1_1"} {"score": 0.9568439722061157, "chain_id": "3LRKMWOKB5GIQ5FY3NK1JSYYD902ZD_1_2"} {"score": 0.9702525734901428, "chain_id": "3LRKMWOKB5GIQ5FY3NK1JSYYD902ZD_1_4"} {"score": 0.13737532496452332, "chain_id": "3LRKMWOKB5GIQ5FY3NK1JSYYD902ZD_1_7"} {"score": 0.2102174013853073, "chain_id": "3LRKMWOKB5GIQ5FY3NK1JSYYD902ZD_1_8"} {"score": 0.6282076835632324, "chain_id": "3LRKMWOKB5GIQ5FY3NK1JSYYD902ZD_1_3"} {"score": 0.37347909808158875, "chain_id": "3LRKMWOKB5GIQ5FY3NK1JSYYD902ZD_1_5"} {"score": 0.8609185814857483, "chain_id": "3LRKMWOKB5GIQ5FY3NK1JSYYD902ZD_1_6"} {"score": 0.02804936282336712, "chain_id": "3LRKMWOKB5GIQ5FY3NK1JSYYD902ZD_1_9"} {"score": 0.05640992894768715, "chain_id": "3LRKMWOKB5GIQ5FY3NK1JSYYD902ZD_1_10"} {"score": 0.9893503785133362, "chain_id": "3VAR3R6G1P0HDG3GHVILDL4XFDN8OY_1_1"} {"score": 0.9889606833457947, "chain_id": "3VAR3R6G1P0HDG3GHVILDL4XFDN8OY_1_2"} {"score": 0.7754523754119873, "chain_id": "3VAR3R6G1P0HDG3GHVILDL4XFDN8OY_1_3"} {"score": 0.8167638778686523, "chain_id": "3VAR3R6G1P0HDG3GHVILDL4XFDN8OY_1_4"} {"score": 0.6521157622337341, "chain_id": "3VAR3R6G1P0HDG3GHVILDL4XFDN8OY_1_8"} {"score": 0.11133435368537903, "chain_id": "3VAR3R6G1P0HDG3GHVILDL4XFDN8OY_1_5"} {"score": 0.08610664308071136, "chain_id": "3VAR3R6G1P0HDG3GHVILDL4XFDN8OY_1_6"} {"score": 0.04439215734601021, "chain_id": "3VAR3R6G1P0HDG3GHVILDL4XFDN8OY_1_7"} {"score": 0.1658153235912323, "chain_id": "3VAR3R6G1P0HDG3GHVILDL4XFDN8OY_1_9"} {"score": 0.027444448322057724, "chain_id": "3VAR3R6G1P0HDG3GHVILDL4XFDN8OY_1_10"} {"score": 0.990253210067749, "chain_id": "3IXQG4FA2TXX8RXHIIJD7XZ9R3LB9M_1_1"} {"score": 0.9855931401252747, "chain_id": "3IXQG4FA2TXX8RXHIIJD7XZ9R3LB9M_1_2"} {"score": 0.9500805735588074, "chain_id": "3IXQG4FA2TXX8RXHIIJD7XZ9R3LB9M_1_4"} {"score": 0.2132723331451416, "chain_id": "3IXQG4FA2TXX8RXHIIJD7XZ9R3LB9M_1_7"} {"score": 0.8321226239204407, "chain_id": "3IXQG4FA2TXX8RXHIIJD7XZ9R3LB9M_1_8"} {"score": 0.6634834408760071, "chain_id": "3IXQG4FA2TXX8RXHIIJD7XZ9R3LB9M_1_3"} {"score": 0.8306535482406616, "chain_id": "3IXQG4FA2TXX8RXHIIJD7XZ9R3LB9M_1_5"} {"score": 0.6823092103004456, "chain_id": "3IXQG4FA2TXX8RXHIIJD7XZ9R3LB9M_1_6"} {"score": 0.9869462847709656, "chain_id": "3IXQG4FA2TXX8RXHIIJD7XZ9R3LB9M_1_9"} {"score": 0.9706674218177795, "chain_id": "3IXQG4FA2TXX8RXHIIJD7XZ9R3LB9M_1_10"} {"score": 0.47781410813331604, "chain_id": "31LM9EDVOLROFCZN7KFZNMD64A2JNV_1_10"} {"score": 0.02070550248026848, "chain_id": "31LM9EDVOLROFCZN7KFZNMD64A2JNV_1_1"} {"score": 0.023775722831487656, "chain_id": "31LM9EDVOLROFCZN7KFZNMD64A2JNV_1_2"} {"score": 0.13220183551311493, "chain_id": "31LM9EDVOLROFCZN7KFZNMD64A2JNV_1_3"} {"score": 0.10709592700004578, "chain_id": "31LM9EDVOLROFCZN7KFZNMD64A2JNV_1_4"} {"score": 0.09337398409843445, "chain_id": "31LM9EDVOLROFCZN7KFZNMD64A2JNV_1_5"} {"score": 0.08553724735975266, "chain_id": "31LM9EDVOLROFCZN7KFZNMD64A2JNV_1_6"} {"score": 0.03728407621383667, "chain_id": "31LM9EDVOLROFCZN7KFZNMD64A2JNV_1_7"} {"score": 0.044489409774541855, "chain_id": "31LM9EDVOLROFCZN7KFZNMD64A2JNV_1_8"} {"score": 0.02002808265388012, "chain_id": "31LM9EDVOLROFCZN7KFZNMD64A2JNV_1_9"} {"score": 0.9897879362106323, "chain_id": "3GU1KF0O4I0I0EDOZ7FATNZOXXZBPU_1_1"} {"score": 0.9889049530029297, "chain_id": "3GU1KF0O4I0I0EDOZ7FATNZOXXZBPU_1_2"} {"score": 0.9908676147460938, "chain_id": "3GU1KF0O4I0I0EDOZ7FATNZOXXZBPU_1_3"} {"score": 0.9908612966537476, "chain_id": "3GU1KF0O4I0I0EDOZ7FATNZOXXZBPU_1_4"} {"score": 0.5854811072349548, "chain_id": "3GU1KF0O4I0I0EDOZ7FATNZOXXZBPU_1_8"} {"score": 0.7598505616188049, "chain_id": "3GU1KF0O4I0I0EDOZ7FATNZOXXZBPU_1_5"} {"score": 0.4634622633457184, "chain_id": "3GU1KF0O4I0I0EDOZ7FATNZOXXZBPU_1_6"} {"score": 0.5650063753128052, "chain_id": "3GU1KF0O4I0I0EDOZ7FATNZOXXZBPU_1_7"} {"score": 0.45635056495666504, "chain_id": "3GU1KF0O4I0I0EDOZ7FATNZOXXZBPU_1_9"} {"score": 0.4338456988334656, "chain_id": "3GU1KF0O4I0I0EDOZ7FATNZOXXZBPU_1_10"} {"score": 0.9909544587135315, "chain_id": "323Q6SJS8IFG0ERGLWT134OIODRFH1_1_1"} {"score": 0.690481960773468, "chain_id": "323Q6SJS8IFG0ERGLWT134OIODRFH1_1_2"} {"score": 0.5944382548332214, "chain_id": "323Q6SJS8IFG0ERGLWT134OIODRFH1_1_4"} {"score": 0.3164958357810974, "chain_id": "323Q6SJS8IFG0ERGLWT134OIODRFH1_1_3"} {"score": 0.057061828672885895, "chain_id": "323Q6SJS8IFG0ERGLWT134OIODRFH1_1_5"} {"score": 0.05887964740395546, "chain_id": "323Q6SJS8IFG0ERGLWT134OIODRFH1_1_6"} {"score": 0.028464408591389656, "chain_id": "323Q6SJS8IFG0ERGLWT134OIODRFH1_1_7"} {"score": 0.01696067862212658, "chain_id": "323Q6SJS8IFG0ERGLWT134OIODRFH1_1_8"} {"score": 0.014493217691779137, "chain_id": "323Q6SJS8IFG0ERGLWT134OIODRFH1_1_9"} {"score": 0.03918904811143875, "chain_id": "323Q6SJS8IFG0ERGLWT134OIODRFH1_1_10"} {"score": 0.8290318846702576, "chain_id": "320DUZ38G7LI5KI1KG24X24923MGJZ_1_1"} {"score": 0.25071772933006287, "chain_id": "320DUZ38G7LI5KI1KG24X24923MGJZ_1_3"} {"score": 0.9733168482780457, "chain_id": "320DUZ38G7LI5KI1KG24X24923MGJZ_1_4"} {"score": 0.08237729966640472, "chain_id": "320DUZ38G7LI5KI1KG24X24923MGJZ_1_2"} {"score": 0.046678099781274796, "chain_id": "320DUZ38G7LI5KI1KG24X24923MGJZ_1_5"} {"score": 0.17900718748569489, "chain_id": "320DUZ38G7LI5KI1KG24X24923MGJZ_1_6"} {"score": 0.040459949523210526, "chain_id": "320DUZ38G7LI5KI1KG24X24923MGJZ_1_7"} {"score": 0.0494520477950573, "chain_id": "320DUZ38G7LI5KI1KG24X24923MGJZ_1_8"} {"score": 0.03315695375204086, "chain_id": "320DUZ38G7LI5KI1KG24X24923MGJZ_1_9"} {"score": 0.050434961915016174, "chain_id": "320DUZ38G7LI5KI1KG24X24923MGJZ_1_10"} {"score": 0.032915398478507996, "chain_id": "33OOO72IVHKZ2BY1UOKP9H634E8TCY_1_4"} {"score": 0.0793524757027626, "chain_id": "33OOO72IVHKZ2BY1UOKP9H634E8TCY_1_1"} {"score": 0.14169690012931824, "chain_id": "33OOO72IVHKZ2BY1UOKP9H634E8TCY_1_2"} {"score": 0.09563834965229034, "chain_id": "33OOO72IVHKZ2BY1UOKP9H634E8TCY_1_3"} {"score": 0.023879539221525192, "chain_id": "33OOO72IVHKZ2BY1UOKP9H634E8TCY_1_5"} {"score": 0.01635635271668434, "chain_id": "33OOO72IVHKZ2BY1UOKP9H634E8TCY_1_6"} {"score": 0.0801650658249855, "chain_id": "33OOO72IVHKZ2BY1UOKP9H634E8TCY_1_7"} {"score": 0.0974026620388031, "chain_id": "33OOO72IVHKZ2BY1UOKP9H634E8TCY_1_8"} {"score": 0.03169123828411102, "chain_id": "33OOO72IVHKZ2BY1UOKP9H634E8TCY_1_9"} {"score": 0.5168049335479736, "chain_id": "33OOO72IVHKZ2BY1UOKP9H634E8TCY_1_10"} {"score": 0.41471007466316223, "chain_id": "3NGI5ARFTT4HNGVWXAMLNBMFBF51PM_1_1"} {"score": 0.5376397371292114, "chain_id": "3NGI5ARFTT4HNGVWXAMLNBMFBF51PM_1_2"} {"score": 0.5782523155212402, "chain_id": "3NGI5ARFTT4HNGVWXAMLNBMFBF51PM_1_3"} {"score": 0.5214086771011353, "chain_id": "3NGI5ARFTT4HNGVWXAMLNBMFBF51PM_1_4"} {"score": 0.15681111812591553, "chain_id": "3NGI5ARFTT4HNGVWXAMLNBMFBF51PM_1_5"} {"score": 0.058484796434640884, "chain_id": "3NGI5ARFTT4HNGVWXAMLNBMFBF51PM_1_6"} {"score": 0.054213620722293854, "chain_id": "3NGI5ARFTT4HNGVWXAMLNBMFBF51PM_1_7"} {"score": 0.05692166090011597, "chain_id": "3NGI5ARFTT4HNGVWXAMLNBMFBF51PM_1_8"} {"score": 0.025510625913739204, "chain_id": "3NGI5ARFTT4HNGVWXAMLNBMFBF51PM_1_9"} {"score": 0.03493021801114082, "chain_id": "3NGI5ARFTT4HNGVWXAMLNBMFBF51PM_1_10"} {"score": 0.11750777810811996, "chain_id": "31HQ4X3T3S9RQFFSI18Y2V04XH3LS3_1_4"} {"score": 0.17913474142551422, "chain_id": "31HQ4X3T3S9RQFFSI18Y2V04XH3LS3_1_1"} {"score": 0.6298876404762268, "chain_id": "31HQ4X3T3S9RQFFSI18Y2V04XH3LS3_1_2"} {"score": 0.6251700520515442, "chain_id": "31HQ4X3T3S9RQFFSI18Y2V04XH3LS3_1_3"} {"score": 0.10640515387058258, "chain_id": "31HQ4X3T3S9RQFFSI18Y2V04XH3LS3_1_5"} {"score": 0.08433746546506882, "chain_id": "31HQ4X3T3S9RQFFSI18Y2V04XH3LS3_1_6"} {"score": 0.06434427201747894, "chain_id": "31HQ4X3T3S9RQFFSI18Y2V04XH3LS3_1_7"} {"score": 0.318341463804245, "chain_id": "31HQ4X3T3S9RQFFSI18Y2V04XH3LS3_1_8"} {"score": 0.03064829483628273, "chain_id": "31HQ4X3T3S9RQFFSI18Y2V04XH3LS3_1_9"} {"score": 0.22251766920089722, "chain_id": "31HQ4X3T3S9RQFFSI18Y2V04XH3LS3_1_10"} {"score": 0.18276262283325195, "chain_id": "39KFRKBFINUWSMUYUZGFCYSZ9D0OY9_1_1"} {"score": 0.6668729782104492, "chain_id": "39KFRKBFINUWSMUYUZGFCYSZ9D0OY9_1_2"} {"score": 0.4677380919456482, "chain_id": "39KFRKBFINUWSMUYUZGFCYSZ9D0OY9_1_3"} {"score": 0.10917705297470093, "chain_id": "39KFRKBFINUWSMUYUZGFCYSZ9D0OY9_1_4"} {"score": 0.09090514481067657, "chain_id": "39KFRKBFINUWSMUYUZGFCYSZ9D0OY9_1_5"} {"score": 0.016162460669875145, "chain_id": "39KFRKBFINUWSMUYUZGFCYSZ9D0OY9_1_6"} {"score": 0.07869858294725418, "chain_id": "39KFRKBFINUWSMUYUZGFCYSZ9D0OY9_1_7"} {"score": 0.0572570264339447, "chain_id": "39KFRKBFINUWSMUYUZGFCYSZ9D0OY9_1_8"} {"score": 0.05109001696109772, "chain_id": "39KFRKBFINUWSMUYUZGFCYSZ9D0OY9_1_9"} {"score": 0.10248950123786926, "chain_id": "39KFRKBFINUWSMUYUZGFCYSZ9D0OY9_1_10"} {"score": 0.04413823038339615, "chain_id": "3MTMREQS4VH31D5X5FT9Q6NE9RYAW5_1_2"} {"score": 0.09357275068759918, "chain_id": "3MTMREQS4VH31D5X5FT9Q6NE9RYAW5_1_1"} {"score": 0.039810661226511, "chain_id": "3MTMREQS4VH31D5X5FT9Q6NE9RYAW5_1_3"} {"score": 0.02803533896803856, "chain_id": "3MTMREQS4VH31D5X5FT9Q6NE9RYAW5_1_4"} {"score": 0.2630555331707001, "chain_id": "3MTMREQS4VH31D5X5FT9Q6NE9RYAW5_1_5"} {"score": 0.015978842973709106, "chain_id": "3MTMREQS4VH31D5X5FT9Q6NE9RYAW5_1_6"} {"score": 0.012813454493880272, "chain_id": "3MTMREQS4VH31D5X5FT9Q6NE9RYAW5_1_7"} {"score": 0.01729281060397625, "chain_id": "3MTMREQS4VH31D5X5FT9Q6NE9RYAW5_1_8"} {"score": 0.03130624070763588, "chain_id": "3MTMREQS4VH31D5X5FT9Q6NE9RYAW5_1_9"} {"score": 0.031755391508340836, "chain_id": "3MTMREQS4VH31D5X5FT9Q6NE9RYAW5_1_10"} {"score": 0.26784324645996094, "chain_id": "3G0WWMR1UVJ51Z302AZ8KNPSFZRQNB_1_1"} {"score": 0.9891402721405029, "chain_id": "3G0WWMR1UVJ51Z302AZ8KNPSFZRQNB_1_5"} {"score": 0.3929615616798401, "chain_id": "3G0WWMR1UVJ51Z302AZ8KNPSFZRQNB_1_6"} {"score": 0.9609915614128113, "chain_id": "3G0WWMR1UVJ51Z302AZ8KNPSFZRQNB_1_10"} {"score": 0.0775856301188469, "chain_id": "3G0WWMR1UVJ51Z302AZ8KNPSFZRQNB_1_2"} {"score": 0.8234437704086304, "chain_id": "3G0WWMR1UVJ51Z302AZ8KNPSFZRQNB_1_3"} {"score": 0.19200016558170319, "chain_id": "3G0WWMR1UVJ51Z302AZ8KNPSFZRQNB_1_4"} {"score": 0.08575283735990524, "chain_id": "3G0WWMR1UVJ51Z302AZ8KNPSFZRQNB_1_7"} {"score": 0.07934094220399857, "chain_id": "3G0WWMR1UVJ51Z302AZ8KNPSFZRQNB_1_8"} {"score": 0.06219494715332985, "chain_id": "3G0WWMR1UVJ51Z302AZ8KNPSFZRQNB_1_9"} {"score": 0.0505823940038681, "chain_id": "3QAVNHZ3EM3NQJTY11M7HV6Y9ATLA0_1_1"} {"score": 0.9324707984924316, "chain_id": "3QAVNHZ3EM3NQJTY11M7HV6Y9ATLA0_1_2"} {"score": 0.04492241516709328, "chain_id": "3QAVNHZ3EM3NQJTY11M7HV6Y9ATLA0_1_3"} {"score": 0.26808837056159973, "chain_id": "3QAVNHZ3EM3NQJTY11M7HV6Y9ATLA0_1_4"} {"score": 0.03918484225869179, "chain_id": "3QAVNHZ3EM3NQJTY11M7HV6Y9ATLA0_1_5"} {"score": 0.11620138585567474, "chain_id": "3QAVNHZ3EM3NQJTY11M7HV6Y9ATLA0_1_6"} {"score": 0.05093987286090851, "chain_id": "3QAVNHZ3EM3NQJTY11M7HV6Y9ATLA0_1_7"} {"score": 0.03090607561171055, "chain_id": "3QAVNHZ3EM3NQJTY11M7HV6Y9ATLA0_1_8"} {"score": 0.032010868191719055, "chain_id": "3QAVNHZ3EM3NQJTY11M7HV6Y9ATLA0_1_9"} {"score": 0.06153783202171326, "chain_id": "3QAVNHZ3EM3NQJTY11M7HV6Y9ATLA0_1_10"} {"score": 0.9920340180397034, "chain_id": "3GLB5JMZFXU52YI9AKGTU49WY3BGDC_1_1"} {"score": 0.9889084696769714, "chain_id": "3GLB5JMZFXU52YI9AKGTU49WY3BGDC_1_3"} {"score": 0.9929897785186768, "chain_id": "3GLB5JMZFXU52YI9AKGTU49WY3BGDC_1_2"} {"score": 0.9778028726577759, "chain_id": "3GLB5JMZFXU52YI9AKGTU49WY3BGDC_1_4"} {"score": 0.9167996048927307, "chain_id": "3GLB5JMZFXU52YI9AKGTU49WY3BGDC_1_5"} {"score": 0.040348902344703674, "chain_id": "3GLB5JMZFXU52YI9AKGTU49WY3BGDC_1_6"} {"score": 0.3250361979007721, "chain_id": "3GLB5JMZFXU52YI9AKGTU49WY3BGDC_1_7"} {"score": 0.030523071065545082, "chain_id": "3GLB5JMZFXU52YI9AKGTU49WY3BGDC_1_8"} {"score": 0.15418006479740143, "chain_id": "3GLB5JMZFXU52YI9AKGTU49WY3BGDC_1_9"} {"score": 0.15313179790973663, "chain_id": "3GLB5JMZFXU52YI9AKGTU49WY3BGDC_1_10"} {"score": 0.09302506595849991, "chain_id": "32N49TQG3GHQMO5SF5OD44401NVVAO_1_1"} {"score": 0.9861090779304504, "chain_id": "32N49TQG3GHQMO5SF5OD44401NVVAO_1_2"} {"score": 0.17717593908309937, "chain_id": "32N49TQG3GHQMO5SF5OD44401NVVAO_1_5"} {"score": 0.5954389572143555, "chain_id": "32N49TQG3GHQMO5SF5OD44401NVVAO_1_6"} {"score": 0.24494995176792145, "chain_id": "32N49TQG3GHQMO5SF5OD44401NVVAO_1_7"} {"score": 0.21951650083065033, "chain_id": "32N49TQG3GHQMO5SF5OD44401NVVAO_1_8"} {"score": 0.9518452286720276, "chain_id": "32N49TQG3GHQMO5SF5OD44401NVVAO_1_9"} {"score": 0.09815254807472229, "chain_id": "32N49TQG3GHQMO5SF5OD44401NVVAO_1_3"} {"score": 0.04857126623392105, "chain_id": "32N49TQG3GHQMO5SF5OD44401NVVAO_1_4"} {"score": 0.02302345633506775, "chain_id": "32N49TQG3GHQMO5SF5OD44401NVVAO_1_10"} {"score": 0.6487894058227539, "chain_id": "3X4JMASXCM8FCX94IM0KEMYGPD4B0G_1_2"} {"score": 0.8404378890991211, "chain_id": "3X4JMASXCM8FCX94IM0KEMYGPD4B0G_1_4"} {"score": 0.9912046790122986, "chain_id": "3X4JMASXCM8FCX94IM0KEMYGPD4B0G_1_1"} {"score": 0.669910192489624, "chain_id": "3X4JMASXCM8FCX94IM0KEMYGPD4B0G_1_3"} {"score": 0.044401347637176514, "chain_id": "3X4JMASXCM8FCX94IM0KEMYGPD4B0G_1_5"} {"score": 0.06056717410683632, "chain_id": "3X4JMASXCM8FCX94IM0KEMYGPD4B0G_1_6"} {"score": 0.19917038083076477, "chain_id": "3X4JMASXCM8FCX94IM0KEMYGPD4B0G_1_7"} {"score": 0.48971638083457947, "chain_id": "3X4JMASXCM8FCX94IM0KEMYGPD4B0G_1_8"} {"score": 0.04266708344221115, "chain_id": "3X4JMASXCM8FCX94IM0KEMYGPD4B0G_1_9"} {"score": 0.027303652837872505, "chain_id": "3X4JMASXCM8FCX94IM0KEMYGPD4B0G_1_10"} {"score": 0.21955005824565887, "chain_id": "3HMVI3QICJRBWUNXOXI402FRFQ3Y1K_1_1"} {"score": 0.5279000401496887, "chain_id": "3HMVI3QICJRBWUNXOXI402FRFQ3Y1K_1_2"} {"score": 0.1029423177242279, "chain_id": "3HMVI3QICJRBWUNXOXI402FRFQ3Y1K_1_3"} {"score": 0.11914025992155075, "chain_id": "3HMVI3QICJRBWUNXOXI402FRFQ3Y1K_1_4"} {"score": 0.9144681096076965, "chain_id": "3HMVI3QICJRBWUNXOXI402FRFQ3Y1K_1_5"} {"score": 0.14506489038467407, "chain_id": "3HMVI3QICJRBWUNXOXI402FRFQ3Y1K_1_6"} {"score": 0.8489692807197571, "chain_id": "3HMVI3QICJRBWUNXOXI402FRFQ3Y1K_1_7"} {"score": 0.2875129282474518, "chain_id": "3HMVI3QICJRBWUNXOXI402FRFQ3Y1K_1_8"} {"score": 0.9634696841239929, "chain_id": "3HMVI3QICJRBWUNXOXI402FRFQ3Y1K_1_9"} {"score": 0.8963300585746765, "chain_id": "3HMVI3QICJRBWUNXOXI402FRFQ3Y1K_1_10"} {"score": 0.9918265342712402, "chain_id": "3JAOYWH7VI39L0JT9V87L0VE5TWL9A_1_1"} {"score": 0.9928964972496033, "chain_id": "3JAOYWH7VI39L0JT9V87L0VE5TWL9A_1_2"} {"score": 0.9878752827644348, "chain_id": "3JAOYWH7VI39L0JT9V87L0VE5TWL9A_1_3"} {"score": 0.9821210503578186, "chain_id": "3JAOYWH7VI39L0JT9V87L0VE5TWL9A_1_4"} {"score": 0.05133301392197609, "chain_id": "3JAOYWH7VI39L0JT9V87L0VE5TWL9A_1_5"} {"score": 0.41314107179641724, "chain_id": "3JAOYWH7VI39L0JT9V87L0VE5TWL9A_1_6"} {"score": 0.04037247970700264, "chain_id": "3JAOYWH7VI39L0JT9V87L0VE5TWL9A_1_7"} {"score": 0.02462221309542656, "chain_id": "3JAOYWH7VI39L0JT9V87L0VE5TWL9A_1_8"} {"score": 0.14799456298351288, "chain_id": "3JAOYWH7VI39L0JT9V87L0VE5TWL9A_1_9"} {"score": 0.22681234776973724, "chain_id": "3JAOYWH7VI39L0JT9V87L0VE5TWL9A_1_10"} {"score": 0.9183309674263, "chain_id": "3K5TEWLKGVA5S6OQRTGQL2SJFL8VIH_1_2"} {"score": 0.09591341763734818, "chain_id": "3K5TEWLKGVA5S6OQRTGQL2SJFL8VIH_1_9"} {"score": 0.07485329359769821, "chain_id": "3K5TEWLKGVA5S6OQRTGQL2SJFL8VIH_1_1"} {"score": 0.5270535349845886, "chain_id": "3K5TEWLKGVA5S6OQRTGQL2SJFL8VIH_1_3"} {"score": 0.8446633219718933, "chain_id": "3K5TEWLKGVA5S6OQRTGQL2SJFL8VIH_1_4"} {"score": 0.6069665551185608, "chain_id": "3K5TEWLKGVA5S6OQRTGQL2SJFL8VIH_1_5"} {"score": 0.9731760025024414, "chain_id": "3K5TEWLKGVA5S6OQRTGQL2SJFL8VIH_1_6"} {"score": 0.12873773276805878, "chain_id": "3K5TEWLKGVA5S6OQRTGQL2SJFL8VIH_1_7"} {"score": 0.270154744386673, "chain_id": "3K5TEWLKGVA5S6OQRTGQL2SJFL8VIH_1_8"} {"score": 0.05144959315657616, "chain_id": "3K5TEWLKGVA5S6OQRTGQL2SJFL8VIH_1_10"} {"score": 0.978185772895813, "chain_id": "39L1G8WVWQQAGRQ9ZCPEA8JE71F31F_1_3"} {"score": 0.8346279263496399, "chain_id": "39L1G8WVWQQAGRQ9ZCPEA8JE71F31F_1_9"} {"score": 0.9933872818946838, "chain_id": "39L1G8WVWQQAGRQ9ZCPEA8JE71F31F_1_1"} {"score": 0.06669996678829193, "chain_id": "39L1G8WVWQQAGRQ9ZCPEA8JE71F31F_1_2"} {"score": 0.11417220532894135, "chain_id": "39L1G8WVWQQAGRQ9ZCPEA8JE71F31F_1_4"} {"score": 0.22433657944202423, "chain_id": "39L1G8WVWQQAGRQ9ZCPEA8JE71F31F_1_5"} {"score": 0.19893039762973785, "chain_id": "39L1G8WVWQQAGRQ9ZCPEA8JE71F31F_1_6"} {"score": 0.23939955234527588, "chain_id": "39L1G8WVWQQAGRQ9ZCPEA8JE71F31F_1_7"} {"score": 0.21735402941703796, "chain_id": "39L1G8WVWQQAGRQ9ZCPEA8JE71F31F_1_8"} {"score": 0.04374060779809952, "chain_id": "39L1G8WVWQQAGRQ9ZCPEA8JE71F31F_1_10"} {"score": 0.6115992665290833, "chain_id": "39N5ACM9HEMZCLYR1N1E2H4Y9U19PH_1_1"} {"score": 0.8077930212020874, "chain_id": "39N5ACM9HEMZCLYR1N1E2H4Y9U19PH_1_2"} {"score": 0.9902570247650146, "chain_id": "39N5ACM9HEMZCLYR1N1E2H4Y9U19PH_1_4"} {"score": 0.6228774189949036, "chain_id": "39N5ACM9HEMZCLYR1N1E2H4Y9U19PH_1_5"} {"score": 0.600833535194397, "chain_id": "39N5ACM9HEMZCLYR1N1E2H4Y9U19PH_1_8"} {"score": 0.07145863771438599, "chain_id": "39N5ACM9HEMZCLYR1N1E2H4Y9U19PH_1_3"} {"score": 0.8507488369941711, "chain_id": "39N5ACM9HEMZCLYR1N1E2H4Y9U19PH_1_6"} {"score": 0.9399642944335938, "chain_id": "39N5ACM9HEMZCLYR1N1E2H4Y9U19PH_1_7"} {"score": 0.3519127070903778, "chain_id": "39N5ACM9HEMZCLYR1N1E2H4Y9U19PH_1_9"} {"score": 0.7280954122543335, "chain_id": "39N5ACM9HEMZCLYR1N1E2H4Y9U19PH_1_10"} {"score": 0.026317913085222244, "chain_id": "3EJPLAJKEMF686YZQPW495FAQG6Z6W_1_1"} {"score": 0.06350862234830856, "chain_id": "3EJPLAJKEMF686YZQPW495FAQG6Z6W_1_2"} {"score": 0.05836887285113335, "chain_id": "3EJPLAJKEMF686YZQPW495FAQG6Z6W_1_3"} {"score": 0.0122615871950984, "chain_id": "3EJPLAJKEMF686YZQPW495FAQG6Z6W_1_4"} {"score": 0.04185209423303604, "chain_id": "3EJPLAJKEMF686YZQPW495FAQG6Z6W_1_5"} {"score": 0.024310512468218803, "chain_id": "3EJPLAJKEMF686YZQPW495FAQG6Z6W_1_6"} {"score": 0.038868021219968796, "chain_id": "3EJPLAJKEMF686YZQPW495FAQG6Z6W_1_7"} {"score": 0.04813770949840546, "chain_id": "3EJPLAJKEMF686YZQPW495FAQG6Z6W_1_8"} {"score": 0.021595342084765434, "chain_id": "3EJPLAJKEMF686YZQPW495FAQG6Z6W_1_9"} {"score": 0.054750844836235046, "chain_id": "3EJPLAJKEMF686YZQPW495FAQG6Z6W_1_10"} {"score": 0.7074708342552185, "chain_id": "3CTOC39K37PZCR70RDYARPRG216J73_1_2"} {"score": 0.034456051886081696, "chain_id": "3CTOC39K37PZCR70RDYARPRG216J73_1_1"} {"score": 0.14386408030986786, "chain_id": "3CTOC39K37PZCR70RDYARPRG216J73_1_3"} {"score": 0.05281465873122215, "chain_id": "3CTOC39K37PZCR70RDYARPRG216J73_1_4"} {"score": 0.8742287755012512, "chain_id": "3CTOC39K37PZCR70RDYARPRG216J73_1_5"} {"score": 0.250139981508255, "chain_id": "3CTOC39K37PZCR70RDYARPRG216J73_1_6"} {"score": 0.02399420738220215, "chain_id": "3CTOC39K37PZCR70RDYARPRG216J73_1_7"} {"score": 0.011619958095252514, "chain_id": "3CTOC39K37PZCR70RDYARPRG216J73_1_8"} {"score": 0.8500914573669434, "chain_id": "3CTOC39K37PZCR70RDYARPRG216J73_1_9"} {"score": 0.021027622744441032, "chain_id": "3CTOC39K37PZCR70RDYARPRG216J73_1_10"} {"score": 0.9414957761764526, "chain_id": "30MVJZJNHMC3QAVT6AWU5LIMXT9J9Y_1_1"} {"score": 0.03881162032485008, "chain_id": "30MVJZJNHMC3QAVT6AWU5LIMXT9J9Y_1_2"} {"score": 0.059177152812480927, "chain_id": "30MVJZJNHMC3QAVT6AWU5LIMXT9J9Y_1_3"} {"score": 0.19965504109859467, "chain_id": "30MVJZJNHMC3QAVT6AWU5LIMXT9J9Y_1_4"} {"score": 0.5170784592628479, "chain_id": "30MVJZJNHMC3QAVT6AWU5LIMXT9J9Y_1_5"} {"score": 0.019796593114733696, "chain_id": "30MVJZJNHMC3QAVT6AWU5LIMXT9J9Y_1_6"} {"score": 0.14471064507961273, "chain_id": "30MVJZJNHMC3QAVT6AWU5LIMXT9J9Y_1_7"} {"score": 0.13068874180316925, "chain_id": "30MVJZJNHMC3QAVT6AWU5LIMXT9J9Y_1_8"} {"score": 0.09943398833274841, "chain_id": "30MVJZJNHMC3QAVT6AWU5LIMXT9J9Y_1_9"} {"score": 0.033432163298130035, "chain_id": "30MVJZJNHMC3QAVT6AWU5LIMXT9J9Y_1_10"} {"score": 0.06482626497745514, "chain_id": "31LVTDXBL79FP0FF3C8TCLV8762LRB_1_1"} {"score": 0.14726126194000244, "chain_id": "31LVTDXBL79FP0FF3C8TCLV8762LRB_1_2"} {"score": 0.04978402331471443, "chain_id": "31LVTDXBL79FP0FF3C8TCLV8762LRB_1_3"} {"score": 0.028193844482302666, "chain_id": "31LVTDXBL79FP0FF3C8TCLV8762LRB_1_4"} {"score": 0.07738047093153, "chain_id": "31LVTDXBL79FP0FF3C8TCLV8762LRB_1_5"} {"score": 0.013159298337996006, "chain_id": "31LVTDXBL79FP0FF3C8TCLV8762LRB_1_6"} {"score": 0.026083920150995255, "chain_id": "31LVTDXBL79FP0FF3C8TCLV8762LRB_1_7"} {"score": 0.10268975049257278, "chain_id": "31LVTDXBL79FP0FF3C8TCLV8762LRB_1_8"} {"score": 0.07147204130887985, "chain_id": "31LVTDXBL79FP0FF3C8TCLV8762LRB_1_9"} {"score": 0.794677734375, "chain_id": "31LVTDXBL79FP0FF3C8TCLV8762LRB_1_10"} {"score": 0.9279277324676514, "chain_id": "3QXNC7EIPIUWO4U7K2MONG3QZYT09R_1_1"} {"score": 0.9172941446304321, "chain_id": "3QXNC7EIPIUWO4U7K2MONG3QZYT09R_1_3"} {"score": 0.9284862875938416, "chain_id": "3QXNC7EIPIUWO4U7K2MONG3QZYT09R_1_2"} {"score": 0.8931032419204712, "chain_id": "3QXNC7EIPIUWO4U7K2MONG3QZYT09R_1_4"} {"score": 0.06674002856016159, "chain_id": "3QXNC7EIPIUWO4U7K2MONG3QZYT09R_1_5"} {"score": 0.4601893126964569, "chain_id": "3QXNC7EIPIUWO4U7K2MONG3QZYT09R_1_6"} {"score": 0.33154067397117615, "chain_id": "3QXNC7EIPIUWO4U7K2MONG3QZYT09R_1_7"} {"score": 0.04611789807677269, "chain_id": "3QXNC7EIPIUWO4U7K2MONG3QZYT09R_1_8"} {"score": 0.03824414685368538, "chain_id": "3QXNC7EIPIUWO4U7K2MONG3QZYT09R_1_9"} {"score": 0.03273862600326538, "chain_id": "3QXNC7EIPIUWO4U7K2MONG3QZYT09R_1_10"} {"score": 0.4743693768978119, "chain_id": "3QAVNHZ3EM3NQJTY11M7HV6Y8NPLAL_1_1"} {"score": 0.14534810185432434, "chain_id": "3QAVNHZ3EM3NQJTY11M7HV6Y8NPLAL_1_2"} {"score": 0.5568785071372986, "chain_id": "3QAVNHZ3EM3NQJTY11M7HV6Y8NPLAL_1_3"} {"score": 0.022440379485487938, "chain_id": "3QAVNHZ3EM3NQJTY11M7HV6Y8NPLAL_1_4"} {"score": 0.30875304341316223, "chain_id": "3QAVNHZ3EM3NQJTY11M7HV6Y8NPLAL_1_5"} {"score": 0.025150245055556297, "chain_id": "3QAVNHZ3EM3NQJTY11M7HV6Y8NPLAL_1_6"} {"score": 0.27564316987991333, "chain_id": "3QAVNHZ3EM3NQJTY11M7HV6Y8NPLAL_1_7"} {"score": 0.15778006613254547, "chain_id": "3QAVNHZ3EM3NQJTY11M7HV6Y8NPLAL_1_8"} {"score": 0.19734936952590942, "chain_id": "3QAVNHZ3EM3NQJTY11M7HV6Y8NPLAL_1_9"} {"score": 0.7606523633003235, "chain_id": "3QAVNHZ3EM3NQJTY11M7HV6Y8NPLAL_1_10"} {"score": 0.8539673089981079, "chain_id": "3ZAK8W07I4DU8WIAIDHFJCQ4QNS0UT_1_2"} {"score": 0.6607425808906555, "chain_id": "3ZAK8W07I4DU8WIAIDHFJCQ4QNS0UT_1_1"} {"score": 0.8455579280853271, "chain_id": "3ZAK8W07I4DU8WIAIDHFJCQ4QNS0UT_1_3"} {"score": 0.7696303725242615, "chain_id": "3ZAK8W07I4DU8WIAIDHFJCQ4QNS0UT_1_4"} {"score": 0.21753273904323578, "chain_id": "3ZAK8W07I4DU8WIAIDHFJCQ4QNS0UT_1_5"} {"score": 0.054389141499996185, "chain_id": "3ZAK8W07I4DU8WIAIDHFJCQ4QNS0UT_1_6"} {"score": 0.021978911012411118, "chain_id": "3ZAK8W07I4DU8WIAIDHFJCQ4QNS0UT_1_7"} {"score": 0.014947704039514065, "chain_id": "3ZAK8W07I4DU8WIAIDHFJCQ4QNS0UT_1_8"} {"score": 0.24537131190299988, "chain_id": "3ZAK8W07I4DU8WIAIDHFJCQ4QNS0UT_1_9"} {"score": 0.025012804195284843, "chain_id": "3ZAK8W07I4DU8WIAIDHFJCQ4QNS0UT_1_10"} {"score": 0.8353644013404846, "chain_id": "3W8CV64QJ2Y7Z403IAT9T827ZP4H9H_1_1"} {"score": 0.9328896403312683, "chain_id": "3W8CV64QJ2Y7Z403IAT9T827ZP4H9H_1_2"} {"score": 0.918700635433197, "chain_id": "3W8CV64QJ2Y7Z403IAT9T827ZP4H9H_1_3"} {"score": 0.9179177284240723, "chain_id": "3W8CV64QJ2Y7Z403IAT9T827ZP4H9H_1_4"} {"score": 0.048076387494802475, "chain_id": "3W8CV64QJ2Y7Z403IAT9T827ZP4H9H_1_5"} {"score": 0.16809207201004028, "chain_id": "3W8CV64QJ2Y7Z403IAT9T827ZP4H9H_1_6"} {"score": 0.05705900490283966, "chain_id": "3W8CV64QJ2Y7Z403IAT9T827ZP4H9H_1_7"} {"score": 0.030288727954030037, "chain_id": "3W8CV64QJ2Y7Z403IAT9T827ZP4H9H_1_8"} {"score": 0.01783556304872036, "chain_id": "3W8CV64QJ2Y7Z403IAT9T827ZP4H9H_1_9"} {"score": 0.022558940574526787, "chain_id": "3W8CV64QJ2Y7Z403IAT9T827ZP4H9H_1_10"} {"score": 0.9899507164955139, "chain_id": "3MRNMEIQW55LOQWALBD97WE4725DL0_1_1"} {"score": 0.9918906688690186, "chain_id": "3MRNMEIQW55LOQWALBD97WE4725DL0_1_2"} {"score": 0.7552089691162109, "chain_id": "3MRNMEIQW55LOQWALBD97WE4725DL0_1_3"} {"score": 0.8751322031021118, "chain_id": "3MRNMEIQW55LOQWALBD97WE4725DL0_1_4"} {"score": 0.04846511781215668, "chain_id": "3MRNMEIQW55LOQWALBD97WE4725DL0_1_5"} {"score": 0.026261409744620323, "chain_id": "3MRNMEIQW55LOQWALBD97WE4725DL0_1_6"} {"score": 0.028304176405072212, "chain_id": "3MRNMEIQW55LOQWALBD97WE4725DL0_1_7"} {"score": 0.1500927358865738, "chain_id": "3MRNMEIQW55LOQWALBD97WE4725DL0_1_8"} {"score": 0.028186623007059097, "chain_id": "3MRNMEIQW55LOQWALBD97WE4725DL0_1_9"} {"score": 0.028535572811961174, "chain_id": "3MRNMEIQW55LOQWALBD97WE4725DL0_1_10"} {"score": 0.053054001182317734, "chain_id": "34Z02EIMISCF8J3LI8R5EG427UF0T2_1_1"} {"score": 0.07131120562553406, "chain_id": "34Z02EIMISCF8J3LI8R5EG427UF0T2_1_2"} {"score": 0.17813949286937714, "chain_id": "34Z02EIMISCF8J3LI8R5EG427UF0T2_1_3"} {"score": 0.04399215057492256, "chain_id": "34Z02EIMISCF8J3LI8R5EG427UF0T2_1_4"} {"score": 0.04398440942168236, "chain_id": "34Z02EIMISCF8J3LI8R5EG427UF0T2_1_5"} {"score": 0.021588796749711037, "chain_id": "34Z02EIMISCF8J3LI8R5EG427UF0T2_1_6"} {"score": 0.019839230924844742, "chain_id": "34Z02EIMISCF8J3LI8R5EG427UF0T2_1_7"} {"score": 0.014677558094263077, "chain_id": "34Z02EIMISCF8J3LI8R5EG427UF0T2_1_8"} {"score": 0.045818816870450974, "chain_id": "34Z02EIMISCF8J3LI8R5EG427UF0T2_1_9"} {"score": 0.06745817512273788, "chain_id": "34Z02EIMISCF8J3LI8R5EG427UF0T2_1_10"} {"score": 0.9326924681663513, "chain_id": "3BXQMRHWKZXRBAPH7I4DH9XHUEFMUP_1_1"} {"score": 0.9247098565101624, "chain_id": "3BXQMRHWKZXRBAPH7I4DH9XHUEFMUP_1_3"} {"score": 0.8900216221809387, "chain_id": "3BXQMRHWKZXRBAPH7I4DH9XHUEFMUP_1_5"} {"score": 0.7850642800331116, "chain_id": "3BXQMRHWKZXRBAPH7I4DH9XHUEFMUP_1_7"} {"score": 0.9526408910751343, "chain_id": "3BXQMRHWKZXRBAPH7I4DH9XHUEFMUP_1_8"} {"score": 0.6506475806236267, "chain_id": "3BXQMRHWKZXRBAPH7I4DH9XHUEFMUP_1_2"} {"score": 0.16667519509792328, "chain_id": "3BXQMRHWKZXRBAPH7I4DH9XHUEFMUP_1_4"} {"score": 0.8593460917472839, "chain_id": "3BXQMRHWKZXRBAPH7I4DH9XHUEFMUP_1_6"} {"score": 0.10010480135679245, "chain_id": "3BXQMRHWKZXRBAPH7I4DH9XHUEFMUP_1_9"} {"score": 0.31660887598991394, "chain_id": "3BXQMRHWKZXRBAPH7I4DH9XHUEFMUP_1_10"} {"score": 0.3987700045108795, "chain_id": "3QRYMNZ7FYGITFVSJET3PS0FGQITN5_1_10"} {"score": 0.4913410246372223, "chain_id": "3QRYMNZ7FYGITFVSJET3PS0FGQITN5_1_1"} {"score": 0.01565168984234333, "chain_id": "3QRYMNZ7FYGITFVSJET3PS0FGQITN5_1_2"} {"score": 0.9206908941268921, "chain_id": "3QRYMNZ7FYGITFVSJET3PS0FGQITN5_1_3"} {"score": 0.22703728079795837, "chain_id": "3QRYMNZ7FYGITFVSJET3PS0FGQITN5_1_4"} {"score": 0.9628204703330994, "chain_id": "3QRYMNZ7FYGITFVSJET3PS0FGQITN5_1_5"} {"score": 0.023421460762619972, "chain_id": "3QRYMNZ7FYGITFVSJET3PS0FGQITN5_1_6"} {"score": 0.16140291094779968, "chain_id": "3QRYMNZ7FYGITFVSJET3PS0FGQITN5_1_7"} {"score": 0.31095197796821594, "chain_id": "3QRYMNZ7FYGITFVSJET3PS0FGQITN5_1_8"} {"score": 0.058901917189359665, "chain_id": "3QRYMNZ7FYGITFVSJET3PS0FGQITN5_1_9"} {"score": 0.8270372152328491, "chain_id": "35L9RVQFCOH5JWO6GLO0P4PLDSJHUE_1_3"} {"score": 0.5986965298652649, "chain_id": "35L9RVQFCOH5JWO6GLO0P4PLDSJHUE_1_4"} {"score": 0.4301082193851471, "chain_id": "35L9RVQFCOH5JWO6GLO0P4PLDSJHUE_1_8"} {"score": 0.6964926719665527, "chain_id": "35L9RVQFCOH5JWO6GLO0P4PLDSJHUE_1_1"} {"score": 0.7131393551826477, "chain_id": "35L9RVQFCOH5JWO6GLO0P4PLDSJHUE_1_2"} {"score": 0.33659523725509644, "chain_id": "35L9RVQFCOH5JWO6GLO0P4PLDSJHUE_1_5"} {"score": 0.6626484990119934, "chain_id": "35L9RVQFCOH5JWO6GLO0P4PLDSJHUE_1_6"} {"score": 0.4109308421611786, "chain_id": "35L9RVQFCOH5JWO6GLO0P4PLDSJHUE_1_7"} {"score": 0.026484809815883636, "chain_id": "35L9RVQFCOH5JWO6GLO0P4PLDSJHUE_1_9"} {"score": 0.4153852164745331, "chain_id": "35L9RVQFCOH5JWO6GLO0P4PLDSJHUE_1_10"} {"score": 0.9765766859054565, "chain_id": "33CKWXB73JJE6OCUC8BVMF4HL6311D_1_1"} {"score": 0.6823785901069641, "chain_id": "33CKWXB73JJE6OCUC8BVMF4HL6311D_1_2"} {"score": 0.9745199084281921, "chain_id": "33CKWXB73JJE6OCUC8BVMF4HL6311D_1_3"} {"score": 0.8907992839813232, "chain_id": "33CKWXB73JJE6OCUC8BVMF4HL6311D_1_4"} {"score": 0.15953823924064636, "chain_id": "33CKWXB73JJE6OCUC8BVMF4HL6311D_1_5"} {"score": 0.16055704653263092, "chain_id": "33CKWXB73JJE6OCUC8BVMF4HL6311D_1_6"} {"score": 0.3020388185977936, "chain_id": "33CKWXB73JJE6OCUC8BVMF4HL6311D_1_7"} {"score": 0.5436290502548218, "chain_id": "33CKWXB73JJE6OCUC8BVMF4HL6311D_1_8"} {"score": 0.024015624076128006, "chain_id": "33CKWXB73JJE6OCUC8BVMF4HL6311D_1_9"} {"score": 0.05016092211008072, "chain_id": "33CKWXB73JJE6OCUC8BVMF4HL6311D_1_10"} {"score": 0.08022385835647583, "chain_id": "3YZ8UPK3VTLE2ODQUTAZEDS5LKRCU2_1_5"} {"score": 0.17183300852775574, "chain_id": "3YZ8UPK3VTLE2ODQUTAZEDS5LKRCU2_1_1"} {"score": 0.05045337975025177, "chain_id": "3YZ8UPK3VTLE2ODQUTAZEDS5LKRCU2_1_2"} {"score": 0.05830198526382446, "chain_id": "3YZ8UPK3VTLE2ODQUTAZEDS5LKRCU2_1_3"} {"score": 0.022869037464261055, "chain_id": "3YZ8UPK3VTLE2ODQUTAZEDS5LKRCU2_1_4"} {"score": 0.03940817341208458, "chain_id": "3YZ8UPK3VTLE2ODQUTAZEDS5LKRCU2_1_6"} {"score": 0.05156508833169937, "chain_id": "3YZ8UPK3VTLE2ODQUTAZEDS5LKRCU2_1_7"} {"score": 0.04557863995432854, "chain_id": "3YZ8UPK3VTLE2ODQUTAZEDS5LKRCU2_1_8"} {"score": 0.03576543927192688, "chain_id": "3YZ8UPK3VTLE2ODQUTAZEDS5LKRCU2_1_9"} {"score": 0.4791167974472046, "chain_id": "3YZ8UPK3VTLE2ODQUTAZEDS5LKRCU2_1_10"} {"score": 0.5829353928565979, "chain_id": "3RUIQRXJBBN4M2K2YSBXQ9M93WZLL9_1_1"} {"score": 0.26933953166007996, "chain_id": "3RUIQRXJBBN4M2K2YSBXQ9M93WZLL9_1_3"} {"score": 0.865505576133728, "chain_id": "3RUIQRXJBBN4M2K2YSBXQ9M93WZLL9_1_4"} {"score": 0.9533402919769287, "chain_id": "3RUIQRXJBBN4M2K2YSBXQ9M93WZLL9_1_6"} {"score": 0.9274705052375793, "chain_id": "3RUIQRXJBBN4M2K2YSBXQ9M93WZLL9_1_7"} {"score": 0.37793898582458496, "chain_id": "3RUIQRXJBBN4M2K2YSBXQ9M93WZLL9_1_2"} {"score": 0.833214521408081, "chain_id": "3RUIQRXJBBN4M2K2YSBXQ9M93WZLL9_1_5"} {"score": 0.624720573425293, "chain_id": "3RUIQRXJBBN4M2K2YSBXQ9M93WZLL9_1_8"} {"score": 0.903397798538208, "chain_id": "3RUIQRXJBBN4M2K2YSBXQ9M93WZLL9_1_9"} {"score": 0.6900392174720764, "chain_id": "3RUIQRXJBBN4M2K2YSBXQ9M93WZLL9_1_10"} {"score": 0.9796463847160339, "chain_id": "3WI0P0II61RWRORNQVA5T8N31Y7DRZ_1_1"} {"score": 0.9786531925201416, "chain_id": "3WI0P0II61RWRORNQVA5T8N31Y7DRZ_1_3"} {"score": 0.9841023087501526, "chain_id": "3WI0P0II61RWRORNQVA5T8N31Y7DRZ_1_4"} {"score": 0.6416722536087036, "chain_id": "3WI0P0II61RWRORNQVA5T8N31Y7DRZ_1_8"} {"score": 0.11262215673923492, "chain_id": "3WI0P0II61RWRORNQVA5T8N31Y7DRZ_1_9"} {"score": 0.9776080250740051, "chain_id": "3WI0P0II61RWRORNQVA5T8N31Y7DRZ_1_2"} {"score": 0.7676711082458496, "chain_id": "3WI0P0II61RWRORNQVA5T8N31Y7DRZ_1_5"} {"score": 0.04594719782471657, "chain_id": "3WI0P0II61RWRORNQVA5T8N31Y7DRZ_1_6"} {"score": 0.6806489825248718, "chain_id": "3WI0P0II61RWRORNQVA5T8N31Y7DRZ_1_7"} {"score": 0.8772367238998413, "chain_id": "3WI0P0II61RWRORNQVA5T8N31Y7DRZ_1_10"} {"score": 0.9903744459152222, "chain_id": "33F859I566CQNXF0GU75KEXXCE8BHP_1_1"} {"score": 0.9897474050521851, "chain_id": "33F859I566CQNXF0GU75KEXXCE8BHP_1_2"} {"score": 0.8604963421821594, "chain_id": "33F859I566CQNXF0GU75KEXXCE8BHP_1_3"} {"score": 0.9692124128341675, "chain_id": "33F859I566CQNXF0GU75KEXXCE8BHP_1_4"} {"score": 0.07605656236410141, "chain_id": "33F859I566CQNXF0GU75KEXXCE8BHP_1_5"} {"score": 0.5576391220092773, "chain_id": "33F859I566CQNXF0GU75KEXXCE8BHP_1_6"} {"score": 0.5827485918998718, "chain_id": "33F859I566CQNXF0GU75KEXXCE8BHP_1_7"} {"score": 0.6636814475059509, "chain_id": "33F859I566CQNXF0GU75KEXXCE8BHP_1_8"} {"score": 0.03598105534911156, "chain_id": "33F859I566CQNXF0GU75KEXXCE8BHP_1_9"} {"score": 0.04332379996776581, "chain_id": "33F859I566CQNXF0GU75KEXXCE8BHP_1_10"} {"score": 0.6000063419342041, "chain_id": "32Q90QCQ1SKFWQSSW6CSYEJA524KEZ_1_2"} {"score": 0.5096256136894226, "chain_id": "32Q90QCQ1SKFWQSSW6CSYEJA524KEZ_1_4"} {"score": 0.5099530816078186, "chain_id": "32Q90QCQ1SKFWQSSW6CSYEJA524KEZ_1_6"} {"score": 0.7596856355667114, "chain_id": "32Q90QCQ1SKFWQSSW6CSYEJA524KEZ_1_7"} {"score": 0.981027364730835, "chain_id": "32Q90QCQ1SKFWQSSW6CSYEJA524KEZ_1_8"} {"score": 0.8051241636276245, "chain_id": "32Q90QCQ1SKFWQSSW6CSYEJA524KEZ_1_9"} {"score": 0.9014667868614197, "chain_id": "32Q90QCQ1SKFWQSSW6CSYEJA524KEZ_1_1"} {"score": 0.2608264684677124, "chain_id": "32Q90QCQ1SKFWQSSW6CSYEJA524KEZ_1_3"} {"score": 0.29445919394493103, "chain_id": "32Q90QCQ1SKFWQSSW6CSYEJA524KEZ_1_5"} {"score": 0.3411307632923126, "chain_id": "32Q90QCQ1SKFWQSSW6CSYEJA524KEZ_1_10"} {"score": 0.36997294425964355, "chain_id": "3YW4XOSQKQKUFL3SEWLFXH9EIRW1U6_1_2"} {"score": 0.04669157788157463, "chain_id": "3YW4XOSQKQKUFL3SEWLFXH9EIRW1U6_1_4"} {"score": 0.6559773087501526, "chain_id": "3YW4XOSQKQKUFL3SEWLFXH9EIRW1U6_1_6"} {"score": 0.2724083364009857, "chain_id": "3YW4XOSQKQKUFL3SEWLFXH9EIRW1U6_1_1"} {"score": 0.5940114855766296, "chain_id": "3YW4XOSQKQKUFL3SEWLFXH9EIRW1U6_1_3"} {"score": 0.02310474030673504, "chain_id": "3YW4XOSQKQKUFL3SEWLFXH9EIRW1U6_1_5"} {"score": 0.2914750874042511, "chain_id": "3YW4XOSQKQKUFL3SEWLFXH9EIRW1U6_1_7"} {"score": 0.44303277134895325, "chain_id": "3YW4XOSQKQKUFL3SEWLFXH9EIRW1U6_1_8"} {"score": 0.08164437115192413, "chain_id": "3YW4XOSQKQKUFL3SEWLFXH9EIRW1U6_1_9"} {"score": 0.03239215165376663, "chain_id": "3YW4XOSQKQKUFL3SEWLFXH9EIRW1U6_1_10"} {"score": 0.9231166243553162, "chain_id": "3IXQG4FA2TXX8RXHIIJD7XZ9SCS9BA_1_1"} {"score": 0.8186090588569641, "chain_id": "3IXQG4FA2TXX8RXHIIJD7XZ9SCS9BA_1_5"} {"score": 0.7487332820892334, "chain_id": "3IXQG4FA2TXX8RXHIIJD7XZ9SCS9BA_1_6"} {"score": 0.9293065071105957, "chain_id": "3IXQG4FA2TXX8RXHIIJD7XZ9SCS9BA_1_7"} {"score": 0.9203543066978455, "chain_id": "3IXQG4FA2TXX8RXHIIJD7XZ9SCS9BA_1_2"} {"score": 0.9745396375656128, "chain_id": "3IXQG4FA2TXX8RXHIIJD7XZ9SCS9BA_1_3"} {"score": 0.750211775302887, "chain_id": "3IXQG4FA2TXX8RXHIIJD7XZ9SCS9BA_1_4"} {"score": 0.7597652077674866, "chain_id": "3IXQG4FA2TXX8RXHIIJD7XZ9SCS9BA_1_8"} {"score": 0.4619877338409424, "chain_id": "3IXQG4FA2TXX8RXHIIJD7XZ9SCS9BA_1_9"} {"score": 0.06915690004825592, "chain_id": "3IXQG4FA2TXX8RXHIIJD7XZ9SCS9BA_1_10"} {"score": 0.5032399892807007, "chain_id": "3JPSL1DZ5SYDEJWJDE2MUNANFM2ANZ_1_2"} {"score": 0.6813413500785828, "chain_id": "3JPSL1DZ5SYDEJWJDE2MUNANFM2ANZ_1_3"} {"score": 0.4865659773349762, "chain_id": "3JPSL1DZ5SYDEJWJDE2MUNANFM2ANZ_1_4"} {"score": 0.8904328942298889, "chain_id": "3JPSL1DZ5SYDEJWJDE2MUNANFM2ANZ_1_6"} {"score": 0.9602428078651428, "chain_id": "3JPSL1DZ5SYDEJWJDE2MUNANFM2ANZ_1_7"} {"score": 0.8490818738937378, "chain_id": "3JPSL1DZ5SYDEJWJDE2MUNANFM2ANZ_1_9"} {"score": 0.9781758189201355, "chain_id": "3JPSL1DZ5SYDEJWJDE2MUNANFM2ANZ_1_10"} {"score": 0.6055639386177063, "chain_id": "3JPSL1DZ5SYDEJWJDE2MUNANFM2ANZ_1_1"} {"score": 0.2836915850639343, "chain_id": "3JPSL1DZ5SYDEJWJDE2MUNANFM2ANZ_1_5"} {"score": 0.7852371335029602, "chain_id": "3JPSL1DZ5SYDEJWJDE2MUNANFM2ANZ_1_8"} {"score": 0.7644405364990234, "chain_id": "3S3AMIZX3U4SLM248YKA4DOH1LRCDR_1_1"} {"score": 0.8109359741210938, "chain_id": "3S3AMIZX3U4SLM248YKA4DOH1LRCDR_1_6"} {"score": 0.821462869644165, "chain_id": "3S3AMIZX3U4SLM248YKA4DOH1LRCDR_1_7"} {"score": 0.6904844641685486, "chain_id": "3S3AMIZX3U4SLM248YKA4DOH1LRCDR_1_9"} {"score": 0.8557685613632202, "chain_id": "3S3AMIZX3U4SLM248YKA4DOH1LRCDR_1_10"} {"score": 0.6754098534584045, "chain_id": "3S3AMIZX3U4SLM248YKA4DOH1LRCDR_1_2"} {"score": 0.8636941909790039, "chain_id": "3S3AMIZX3U4SLM248YKA4DOH1LRCDR_1_3"} {"score": 0.9277201294898987, "chain_id": "3S3AMIZX3U4SLM248YKA4DOH1LRCDR_1_4"} {"score": 0.9326534867286682, "chain_id": "3S3AMIZX3U4SLM248YKA4DOH1LRCDR_1_5"} {"score": 0.5721968412399292, "chain_id": "3S3AMIZX3U4SLM248YKA4DOH1LRCDR_1_8"} {"score": 0.9707947373390198, "chain_id": "35K3O9HUABC4G40EVVLVI1R5YDDEFW_1_3"} {"score": 0.443715363740921, "chain_id": "35K3O9HUABC4G40EVVLVI1R5YDDEFW_1_7"} {"score": 0.30840542912483215, "chain_id": "35K3O9HUABC4G40EVVLVI1R5YDDEFW_1_10"} {"score": 0.41981494426727295, "chain_id": "35K3O9HUABC4G40EVVLVI1R5YDDEFW_1_1"} {"score": 0.5064231157302856, "chain_id": "35K3O9HUABC4G40EVVLVI1R5YDDEFW_1_2"} {"score": 0.6009093523025513, "chain_id": "35K3O9HUABC4G40EVVLVI1R5YDDEFW_1_4"} {"score": 0.03338101506233215, "chain_id": "35K3O9HUABC4G40EVVLVI1R5YDDEFW_1_5"} {"score": 0.19845859706401825, "chain_id": "35K3O9HUABC4G40EVVLVI1R5YDDEFW_1_6"} {"score": 0.5253755450248718, "chain_id": "35K3O9HUABC4G40EVVLVI1R5YDDEFW_1_8"} {"score": 0.03369082137942314, "chain_id": "35K3O9HUABC4G40EVVLVI1R5YDDEFW_1_9"} {"score": 0.9905954599380493, "chain_id": "39JEC7537U0EF32QZJK4AZUO2H2VCV_1_1"} {"score": 0.8956401944160461, "chain_id": "39JEC7537U0EF32QZJK4AZUO2H2VCV_1_3"} {"score": 0.5456706285476685, "chain_id": "39JEC7537U0EF32QZJK4AZUO2H2VCV_1_4"} {"score": 0.08677656203508377, "chain_id": "39JEC7537U0EF32QZJK4AZUO2H2VCV_1_7"} {"score": 0.9912944436073303, "chain_id": "39JEC7537U0EF32QZJK4AZUO2H2VCV_1_2"} {"score": 0.06068357825279236, "chain_id": "39JEC7537U0EF32QZJK4AZUO2H2VCV_1_5"} {"score": 0.06284456700086594, "chain_id": "39JEC7537U0EF32QZJK4AZUO2H2VCV_1_6"} {"score": 0.052717164158821106, "chain_id": "39JEC7537U0EF32QZJK4AZUO2H2VCV_1_8"} {"score": 0.20396332442760468, "chain_id": "39JEC7537U0EF32QZJK4AZUO2H2VCV_1_9"} {"score": 0.04567604884505272, "chain_id": "39JEC7537U0EF32QZJK4AZUO2H2VCV_1_10"} {"score": 0.9101116061210632, "chain_id": "3JV9LGBJWTDW6V9Y0TU95YLV4HEOGF_1_9"} {"score": 0.7876293063163757, "chain_id": "3JV9LGBJWTDW6V9Y0TU95YLV4HEOGF_1_10"} {"score": 0.08210690319538116, "chain_id": "3JV9LGBJWTDW6V9Y0TU95YLV4HEOGF_1_1"} {"score": 0.2728193700313568, "chain_id": "3JV9LGBJWTDW6V9Y0TU95YLV4HEOGF_1_2"} {"score": 0.11197835952043533, "chain_id": "3JV9LGBJWTDW6V9Y0TU95YLV4HEOGF_1_3"} {"score": 0.047953661531209946, "chain_id": "3JV9LGBJWTDW6V9Y0TU95YLV4HEOGF_1_4"} {"score": 0.3545686900615692, "chain_id": "3JV9LGBJWTDW6V9Y0TU95YLV4HEOGF_1_5"} {"score": 0.09548737853765488, "chain_id": "3JV9LGBJWTDW6V9Y0TU95YLV4HEOGF_1_6"} {"score": 0.0897706151008606, "chain_id": "3JV9LGBJWTDW6V9Y0TU95YLV4HEOGF_1_7"} {"score": 0.13889311254024506, "chain_id": "3JV9LGBJWTDW6V9Y0TU95YLV4HEOGF_1_8"} {"score": 0.7502835988998413, "chain_id": "3PDJHANYK5FKHLY5K3QX9YB5WBQ6HM_1_1"} {"score": 0.1668655425310135, "chain_id": "3PDJHANYK5FKHLY5K3QX9YB5WBQ6HM_1_2"} {"score": 0.06811301410198212, "chain_id": "3PDJHANYK5FKHLY5K3QX9YB5WBQ6HM_1_3"} {"score": 0.22606171667575836, "chain_id": "3PDJHANYK5FKHLY5K3QX9YB5WBQ6HM_1_4"} {"score": 0.6344049572944641, "chain_id": "3PDJHANYK5FKHLY5K3QX9YB5WBQ6HM_1_5"} {"score": 0.4839573800563812, "chain_id": "3PDJHANYK5FKHLY5K3QX9YB5WBQ6HM_1_6"} {"score": 0.27934861183166504, "chain_id": "3PDJHANYK5FKHLY5K3QX9YB5WBQ6HM_1_7"} {"score": 0.08068130165338516, "chain_id": "3PDJHANYK5FKHLY5K3QX9YB5WBQ6HM_1_8"} {"score": 0.09382607787847519, "chain_id": "3PDJHANYK5FKHLY5K3QX9YB5WBQ6HM_1_9"} {"score": 0.40262770652770996, "chain_id": "3PDJHANYK5FKHLY5K3QX9YB5WBQ6HM_1_10"} {"score": 0.9399719834327698, "chain_id": "3GM6G9ZBKNWCBXAS7DE3CDBFXMPTMG_1_1"} {"score": 0.8071067929267883, "chain_id": "3GM6G9ZBKNWCBXAS7DE3CDBFXMPTMG_1_2"} {"score": 0.9531199336051941, "chain_id": "3GM6G9ZBKNWCBXAS7DE3CDBFXMPTMG_1_3"} {"score": 0.8995262980461121, "chain_id": "3GM6G9ZBKNWCBXAS7DE3CDBFXMPTMG_1_6"} {"score": 0.9160874485969543, "chain_id": "3GM6G9ZBKNWCBXAS7DE3CDBFXMPTMG_1_9"} {"score": 0.7913275957107544, "chain_id": "3GM6G9ZBKNWCBXAS7DE3CDBFXMPTMG_1_4"} {"score": 0.6696240901947021, "chain_id": "3GM6G9ZBKNWCBXAS7DE3CDBFXMPTMG_1_5"} {"score": 0.06928971409797668, "chain_id": "3GM6G9ZBKNWCBXAS7DE3CDBFXMPTMG_1_7"} {"score": 0.48637476563453674, "chain_id": "3GM6G9ZBKNWCBXAS7DE3CDBFXMPTMG_1_8"} {"score": 0.11045067757368088, "chain_id": "3GM6G9ZBKNWCBXAS7DE3CDBFXMPTMG_1_10"} {"score": 0.7604753375053406, "chain_id": "3PQ8K71NHXJ6U02U4AXH8HQNC80AAU_1_6"} {"score": 0.33216413855552673, "chain_id": "3PQ8K71NHXJ6U02U4AXH8HQNC80AAU_1_7"} {"score": 0.09856034815311432, "chain_id": "3PQ8K71NHXJ6U02U4AXH8HQNC80AAU_1_1"} {"score": 0.024888530373573303, "chain_id": "3PQ8K71NHXJ6U02U4AXH8HQNC80AAU_1_2"} {"score": 0.05233065038919449, "chain_id": "3PQ8K71NHXJ6U02U4AXH8HQNC80AAU_1_3"} {"score": 0.05030396208167076, "chain_id": "3PQ8K71NHXJ6U02U4AXH8HQNC80AAU_1_4"} {"score": 0.06912824511528015, "chain_id": "3PQ8K71NHXJ6U02U4AXH8HQNC80AAU_1_5"} {"score": 0.025567196309566498, "chain_id": "3PQ8K71NHXJ6U02U4AXH8HQNC80AAU_1_8"} {"score": 0.2611519396305084, "chain_id": "3PQ8K71NHXJ6U02U4AXH8HQNC80AAU_1_9"} {"score": 0.028364310041069984, "chain_id": "3PQ8K71NHXJ6U02U4AXH8HQNC80AAU_1_10"} {"score": 0.027416536584496498, "chain_id": "36PW28KO4ZV9KDJ6KFZ340GEXRVEAY_1_1"} {"score": 0.06030963361263275, "chain_id": "36PW28KO4ZV9KDJ6KFZ340GEXRVEAY_1_2"} {"score": 0.03329141438007355, "chain_id": "36PW28KO4ZV9KDJ6KFZ340GEXRVEAY_1_3"} {"score": 0.07109694182872772, "chain_id": "36PW28KO4ZV9KDJ6KFZ340GEXRVEAY_1_4"} {"score": 0.033076003193855286, "chain_id": "36PW28KO4ZV9KDJ6KFZ340GEXRVEAY_1_5"} {"score": 0.1873142272233963, "chain_id": "36PW28KO4ZV9KDJ6KFZ340GEXRVEAY_1_6"} {"score": 0.4893374741077423, "chain_id": "36PW28KO4ZV9KDJ6KFZ340GEXRVEAY_1_7"} {"score": 0.03872944042086601, "chain_id": "36PW28KO4ZV9KDJ6KFZ340GEXRVEAY_1_8"} {"score": 0.582735002040863, "chain_id": "36PW28KO4ZV9KDJ6KFZ340GEXRVEAY_1_9"} {"score": 0.1428345888853073, "chain_id": "36PW28KO4ZV9KDJ6KFZ340GEXRVEAY_1_10"} {"score": 0.08684368431568146, "chain_id": "39ZSFO5CA8V1A2JW4LRL1H50B11JUI_1_5"} {"score": 0.05864590406417847, "chain_id": "39ZSFO5CA8V1A2JW4LRL1H50B11JUI_1_1"} {"score": 0.0791584774851799, "chain_id": "39ZSFO5CA8V1A2JW4LRL1H50B11JUI_1_2"} {"score": 0.04576427489519119, "chain_id": "39ZSFO5CA8V1A2JW4LRL1H50B11JUI_1_3"} {"score": 0.12480663508176804, "chain_id": "39ZSFO5CA8V1A2JW4LRL1H50B11JUI_1_4"} {"score": 0.13752520084381104, "chain_id": "39ZSFO5CA8V1A2JW4LRL1H50B11JUI_1_6"} {"score": 0.029071614146232605, "chain_id": "39ZSFO5CA8V1A2JW4LRL1H50B11JUI_1_7"} {"score": 0.031947050243616104, "chain_id": "39ZSFO5CA8V1A2JW4LRL1H50B11JUI_1_8"} {"score": 0.028953734785318375, "chain_id": "39ZSFO5CA8V1A2JW4LRL1H50B11JUI_1_9"} {"score": 0.029763372614979744, "chain_id": "39ZSFO5CA8V1A2JW4LRL1H50B11JUI_1_10"} {"score": 0.193949893116951, "chain_id": "3IO1LGZLK9WROAXCHZWRWLI6SAR86Z_1_6"} {"score": 0.12624573707580566, "chain_id": "3IO1LGZLK9WROAXCHZWRWLI6SAR86Z_1_1"} {"score": 0.046626146882772446, "chain_id": "3IO1LGZLK9WROAXCHZWRWLI6SAR86Z_1_2"} {"score": 0.017483694478869438, "chain_id": "3IO1LGZLK9WROAXCHZWRWLI6SAR86Z_1_3"} {"score": 0.26780709624290466, "chain_id": "3IO1LGZLK9WROAXCHZWRWLI6SAR86Z_1_4"} {"score": 0.03569310903549194, "chain_id": "3IO1LGZLK9WROAXCHZWRWLI6SAR86Z_1_5"} {"score": 0.04552720487117767, "chain_id": "3IO1LGZLK9WROAXCHZWRWLI6SAR86Z_1_7"} {"score": 0.056305818259716034, "chain_id": "3IO1LGZLK9WROAXCHZWRWLI6SAR86Z_1_8"} {"score": 0.03965624049305916, "chain_id": "3IO1LGZLK9WROAXCHZWRWLI6SAR86Z_1_9"} {"score": 0.06719513237476349, "chain_id": "3IO1LGZLK9WROAXCHZWRWLI6SAR86Z_1_10"} {"score": 0.5292596817016602, "chain_id": "3LJ7UR74RHCYCUG24DSVHKONLFY4NE_1_3"} {"score": 0.10071811825037003, "chain_id": "3LJ7UR74RHCYCUG24DSVHKONLFY4NE_1_4"} {"score": 0.0474281944334507, "chain_id": "3LJ7UR74RHCYCUG24DSVHKONLFY4NE_1_8"} {"score": 0.2707118093967438, "chain_id": "3LJ7UR74RHCYCUG24DSVHKONLFY4NE_1_1"} {"score": 0.20060448348522186, "chain_id": "3LJ7UR74RHCYCUG24DSVHKONLFY4NE_1_2"} {"score": 0.7174620628356934, "chain_id": "3LJ7UR74RHCYCUG24DSVHKONLFY4NE_1_5"} {"score": 0.8289159536361694, "chain_id": "3LJ7UR74RHCYCUG24DSVHKONLFY4NE_1_6"} {"score": 0.7162730097770691, "chain_id": "3LJ7UR74RHCYCUG24DSVHKONLFY4NE_1_7"} {"score": 0.13409645855426788, "chain_id": "3LJ7UR74RHCYCUG24DSVHKONLFY4NE_1_9"} {"score": 0.06984971463680267, "chain_id": "3LJ7UR74RHCYCUG24DSVHKONLFY4NE_1_10"} {"score": 0.5655830502510071, "chain_id": "34YB12FSQYN86SOMNDFWDUWQA0ZGMV_1_1"} {"score": 0.024647753685712814, "chain_id": "34YB12FSQYN86SOMNDFWDUWQA0ZGMV_1_2"} {"score": 0.03424106538295746, "chain_id": "34YB12FSQYN86SOMNDFWDUWQA0ZGMV_1_3"} {"score": 0.08801060914993286, "chain_id": "34YB12FSQYN86SOMNDFWDUWQA0ZGMV_1_4"} {"score": 0.05478990077972412, "chain_id": "34YB12FSQYN86SOMNDFWDUWQA0ZGMV_1_5"} {"score": 0.048693299293518066, "chain_id": "34YB12FSQYN86SOMNDFWDUWQA0ZGMV_1_6"} {"score": 0.04759303480386734, "chain_id": "34YB12FSQYN86SOMNDFWDUWQA0ZGMV_1_7"} {"score": 0.5271979570388794, "chain_id": "34YB12FSQYN86SOMNDFWDUWQA0ZGMV_1_8"} {"score": 0.04822717234492302, "chain_id": "34YB12FSQYN86SOMNDFWDUWQA0ZGMV_1_9"} {"score": 0.03433947265148163, "chain_id": "34YB12FSQYN86SOMNDFWDUWQA0ZGMV_1_10"} {"score": 0.38162752985954285, "chain_id": "3Y9N9SS8LYA48M6LF599BAKNXI6D38_1_7"} {"score": 0.055841751396656036, "chain_id": "3Y9N9SS8LYA48M6LF599BAKNXI6D38_1_1"} {"score": 0.19445018470287323, "chain_id": "3Y9N9SS8LYA48M6LF599BAKNXI6D38_1_2"} {"score": 0.4586554169654846, "chain_id": "3Y9N9SS8LYA48M6LF599BAKNXI6D38_1_3"} {"score": 0.0844978466629982, "chain_id": "3Y9N9SS8LYA48M6LF599BAKNXI6D38_1_4"} {"score": 0.5940119624137878, "chain_id": "3Y9N9SS8LYA48M6LF599BAKNXI6D38_1_5"} {"score": 0.8605186939239502, "chain_id": "3Y9N9SS8LYA48M6LF599BAKNXI6D38_1_6"} {"score": 0.24437281489372253, "chain_id": "3Y9N9SS8LYA48M6LF599BAKNXI6D38_1_8"} {"score": 0.0513819195330143, "chain_id": "3Y9N9SS8LYA48M6LF599BAKNXI6D38_1_9"} {"score": 0.03545652702450752, "chain_id": "3Y9N9SS8LYA48M6LF599BAKNXI6D38_1_10"} {"score": 0.10567721724510193, "chain_id": "31LVTDXBL79FP0FF3C8TCLV8DAELR1_1_1"} {"score": 0.03580806404352188, "chain_id": "31LVTDXBL79FP0FF3C8TCLV8DAELR1_1_2"} {"score": 0.06136045232415199, "chain_id": "31LVTDXBL79FP0FF3C8TCLV8DAELR1_1_3"} {"score": 0.029245445504784584, "chain_id": "31LVTDXBL79FP0FF3C8TCLV8DAELR1_1_4"} {"score": 0.030770229175686836, "chain_id": "31LVTDXBL79FP0FF3C8TCLV8DAELR1_1_5"} {"score": 0.06736835837364197, "chain_id": "31LVTDXBL79FP0FF3C8TCLV8DAELR1_1_6"} {"score": 0.029455386102199554, "chain_id": "31LVTDXBL79FP0FF3C8TCLV8DAELR1_1_7"} {"score": 0.02930060401558876, "chain_id": "31LVTDXBL79FP0FF3C8TCLV8DAELR1_1_8"} {"score": 0.03172459825873375, "chain_id": "31LVTDXBL79FP0FF3C8TCLV8DAELR1_1_9"} {"score": 0.0594477653503418, "chain_id": "31LVTDXBL79FP0FF3C8TCLV8DAELR1_1_10"} {"score": 0.3807510733604431, "chain_id": "3M68NM076H6X6FC8G82RN2DBNG06RR_1_1"} {"score": 0.03199150413274765, "chain_id": "3M68NM076H6X6FC8G82RN2DBNG06RR_1_2"} {"score": 0.020731261000037193, "chain_id": "3M68NM076H6X6FC8G82RN2DBNG06RR_1_3"} {"score": 0.0888424664735794, "chain_id": "3M68NM076H6X6FC8G82RN2DBNG06RR_1_4"} {"score": 0.3651167154312134, "chain_id": "3M68NM076H6X6FC8G82RN2DBNG06RR_1_5"} {"score": 0.10620518773794174, "chain_id": "3M68NM076H6X6FC8G82RN2DBNG06RR_1_6"} {"score": 0.1336667537689209, "chain_id": "3M68NM076H6X6FC8G82RN2DBNG06RR_1_7"} {"score": 0.5623939037322998, "chain_id": "3M68NM076H6X6FC8G82RN2DBNG06RR_1_8"} {"score": 0.4704301953315735, "chain_id": "3M68NM076H6X6FC8G82RN2DBNG06RR_1_9"} {"score": 0.04204123467206955, "chain_id": "3M68NM076H6X6FC8G82RN2DBNG06RR_1_10"} {"score": 0.07414133101701736, "chain_id": "3J2UYBXQQLB96LS9MVJC36COE4606K_1_10"} {"score": 0.055035654455423355, "chain_id": "3J2UYBXQQLB96LS9MVJC36COE4606K_1_1"} {"score": 0.08866222947835922, "chain_id": "3J2UYBXQQLB96LS9MVJC36COE4606K_1_2"} {"score": 0.06423326581716537, "chain_id": "3J2UYBXQQLB96LS9MVJC36COE4606K_1_3"} {"score": 0.38982462882995605, "chain_id": "3J2UYBXQQLB96LS9MVJC36COE4606K_1_4"} {"score": 0.08443935215473175, "chain_id": "3J2UYBXQQLB96LS9MVJC36COE4606K_1_5"} {"score": 0.8172670602798462, "chain_id": "3J2UYBXQQLB96LS9MVJC36COE4606K_1_6"} {"score": 0.4406541585922241, "chain_id": "3J2UYBXQQLB96LS9MVJC36COE4606K_1_7"} {"score": 0.6549341678619385, "chain_id": "3J2UYBXQQLB96LS9MVJC36COE4606K_1_8"} {"score": 0.032632406800985336, "chain_id": "3J2UYBXQQLB96LS9MVJC36COE4606K_1_9"} {"score": 0.07097027450799942, "chain_id": "39RP059MEHSCFBGB7RNICJ5TV9JMB5_1_1"} {"score": 0.0941348671913147, "chain_id": "39RP059MEHSCFBGB7RNICJ5TV9JMB5_1_2"} {"score": 0.032484568655490875, "chain_id": "39RP059MEHSCFBGB7RNICJ5TV9JMB5_1_3"} {"score": 0.05733667314052582, "chain_id": "39RP059MEHSCFBGB7RNICJ5TV9JMB5_1_4"} {"score": 0.04979002848267555, "chain_id": "39RP059MEHSCFBGB7RNICJ5TV9JMB5_1_5"} {"score": 0.020131327211856842, "chain_id": "39RP059MEHSCFBGB7RNICJ5TV9JMB5_1_6"} {"score": 0.02029733918607235, "chain_id": "39RP059MEHSCFBGB7RNICJ5TV9JMB5_1_7"} {"score": 0.08126363903284073, "chain_id": "39RP059MEHSCFBGB7RNICJ5TV9JMB5_1_8"} {"score": 0.20158326625823975, "chain_id": "39RP059MEHSCFBGB7RNICJ5TV9JMB5_1_9"} {"score": 0.021954413503408432, "chain_id": "39RP059MEHSCFBGB7RNICJ5TV9JMB5_1_10"} {"score": 0.7006527185440063, "chain_id": "3CN4LGXD5XNSOTKGBF16Y0MUQFIY4B_1_1"} {"score": 0.6207588315010071, "chain_id": "3CN4LGXD5XNSOTKGBF16Y0MUQFIY4B_1_2"} {"score": 0.07465410977602005, "chain_id": "3CN4LGXD5XNSOTKGBF16Y0MUQFIY4B_1_3"} {"score": 0.2454422116279602, "chain_id": "3CN4LGXD5XNSOTKGBF16Y0MUQFIY4B_1_4"} {"score": 0.06170574203133583, "chain_id": "3CN4LGXD5XNSOTKGBF16Y0MUQFIY4B_1_5"} {"score": 0.026933113113045692, "chain_id": "3CN4LGXD5XNSOTKGBF16Y0MUQFIY4B_1_6"} {"score": 0.23270666599273682, "chain_id": "3CN4LGXD5XNSOTKGBF16Y0MUQFIY4B_1_7"} {"score": 0.41866275668144226, "chain_id": "3CN4LGXD5XNSOTKGBF16Y0MUQFIY4B_1_8"} {"score": 0.33193129301071167, "chain_id": "3CN4LGXD5XNSOTKGBF16Y0MUQFIY4B_1_9"} {"score": 0.11718444526195526, "chain_id": "3CN4LGXD5XNSOTKGBF16Y0MUQFIY4B_1_10"} {"score": 0.9843458533287048, "chain_id": "3H0W84IWBK11JU5NMQLPZQ5O0QERE7_1_1"} {"score": 0.9822606444358826, "chain_id": "3H0W84IWBK11JU5NMQLPZQ5O0QERE7_1_2"} {"score": 0.7200284600257874, "chain_id": "3H0W84IWBK11JU5NMQLPZQ5O0QERE7_1_3"} {"score": 0.8915992379188538, "chain_id": "3H0W84IWBK11JU5NMQLPZQ5O0QERE7_1_4"} {"score": 0.3994975984096527, "chain_id": "3H0W84IWBK11JU5NMQLPZQ5O0QERE7_1_5"} {"score": 0.06279066205024719, "chain_id": "3H0W84IWBK11JU5NMQLPZQ5O0QERE7_1_6"} {"score": 0.30334967374801636, "chain_id": "3H0W84IWBK11JU5NMQLPZQ5O0QERE7_1_7"} {"score": 0.2523154616355896, "chain_id": "3H0W84IWBK11JU5NMQLPZQ5O0QERE7_1_8"} {"score": 0.8846829533576965, "chain_id": "3H0W84IWBK11JU5NMQLPZQ5O0QERE7_1_9"} {"score": 0.5747057795524597, "chain_id": "3H0W84IWBK11JU5NMQLPZQ5O0QERE7_1_10"} {"score": 0.9907884001731873, "chain_id": "3PEIJLRY6TSFXQDQGPLNAEYC9FTXWN_1_1"} {"score": 0.9927444458007812, "chain_id": "3PEIJLRY6TSFXQDQGPLNAEYC9FTXWN_1_3"} {"score": 0.9932405948638916, "chain_id": "3PEIJLRY6TSFXQDQGPLNAEYC9FTXWN_1_4"} {"score": 0.9883500337600708, "chain_id": "3PEIJLRY6TSFXQDQGPLNAEYC9FTXWN_1_8"} {"score": 0.9900947213172913, "chain_id": "3PEIJLRY6TSFXQDQGPLNAEYC9FTXWN_1_9"} {"score": 0.990828275680542, "chain_id": "3PEIJLRY6TSFXQDQGPLNAEYC9FTXWN_1_10"} {"score": 0.9855754375457764, "chain_id": "3PEIJLRY6TSFXQDQGPLNAEYC9FTXWN_1_2"} {"score": 0.9612569808959961, "chain_id": "3PEIJLRY6TSFXQDQGPLNAEYC9FTXWN_1_5"} {"score": 0.8047016859054565, "chain_id": "3PEIJLRY6TSFXQDQGPLNAEYC9FTXWN_1_6"} {"score": 0.9934025406837463, "chain_id": "3PEIJLRY6TSFXQDQGPLNAEYC9FTXWN_1_7"} {"score": 0.7344279289245605, "chain_id": "3TVRFO09GKEZMW1RCBEL13HWC3QLXA_1_1"} {"score": 0.42881977558135986, "chain_id": "3TVRFO09GKEZMW1RCBEL13HWC3QLXA_1_2"} {"score": 0.9851194024085999, "chain_id": "3TVRFO09GKEZMW1RCBEL13HWC3QLXA_1_3"} {"score": 0.14652501046657562, "chain_id": "3TVRFO09GKEZMW1RCBEL13HWC3QLXA_1_4"} {"score": 0.6242241859436035, "chain_id": "3TVRFO09GKEZMW1RCBEL13HWC3QLXA_1_5"} {"score": 0.1524198353290558, "chain_id": "3TVRFO09GKEZMW1RCBEL13HWC3QLXA_1_6"} {"score": 0.09156589955091476, "chain_id": "3TVRFO09GKEZMW1RCBEL13HWC3QLXA_1_7"} {"score": 0.34786373376846313, "chain_id": "3TVRFO09GKEZMW1RCBEL13HWC3QLXA_1_8"} {"score": 0.056408412754535675, "chain_id": "3TVRFO09GKEZMW1RCBEL13HWC3QLXA_1_9"} {"score": 0.033079907298088074, "chain_id": "3TVRFO09GKEZMW1RCBEL13HWC3QLXA_1_10"} {"score": 0.7006527185440063, "chain_id": "33IZTU6J810MQ9WHWKBMDPVR4ZBXSH_1_1"} {"score": 0.6207588315010071, "chain_id": "33IZTU6J810MQ9WHWKBMDPVR4ZBXSH_1_2"} {"score": 0.07465410977602005, "chain_id": "33IZTU6J810MQ9WHWKBMDPVR4ZBXSH_1_3"} {"score": 0.2454422116279602, "chain_id": "33IZTU6J810MQ9WHWKBMDPVR4ZBXSH_1_4"} {"score": 0.06170574203133583, "chain_id": "33IZTU6J810MQ9WHWKBMDPVR4ZBXSH_1_5"} {"score": 0.026933113113045692, "chain_id": "33IZTU6J810MQ9WHWKBMDPVR4ZBXSH_1_6"} {"score": 0.23270666599273682, "chain_id": "33IZTU6J810MQ9WHWKBMDPVR4ZBXSH_1_7"} {"score": 0.41866275668144226, "chain_id": "33IZTU6J810MQ9WHWKBMDPVR4ZBXSH_1_8"} {"score": 0.33193129301071167, "chain_id": "33IZTU6J810MQ9WHWKBMDPVR4ZBXSH_1_9"} {"score": 0.11718444526195526, "chain_id": "33IZTU6J810MQ9WHWKBMDPVR4ZBXSH_1_10"} {"score": 0.39441636204719543, "chain_id": "3I02618YA05XWDMUZYW5YDRCLSBUPI_1_5"} {"score": 0.15510833263397217, "chain_id": "3I02618YA05XWDMUZYW5YDRCLSBUPI_1_6"} {"score": 0.1818496733903885, "chain_id": "3I02618YA05XWDMUZYW5YDRCLSBUPI_1_1"} {"score": 0.5197967290878296, "chain_id": "3I02618YA05XWDMUZYW5YDRCLSBUPI_1_2"} {"score": 0.20344193279743195, "chain_id": "3I02618YA05XWDMUZYW5YDRCLSBUPI_1_3"} {"score": 0.22665069997310638, "chain_id": "3I02618YA05XWDMUZYW5YDRCLSBUPI_1_4"} {"score": 0.5980919599533081, "chain_id": "3I02618YA05XWDMUZYW5YDRCLSBUPI_1_7"} {"score": 0.7358593940734863, "chain_id": "3I02618YA05XWDMUZYW5YDRCLSBUPI_1_8"} {"score": 0.2644544243812561, "chain_id": "3I02618YA05XWDMUZYW5YDRCLSBUPI_1_9"} {"score": 0.8485924005508423, "chain_id": "3I02618YA05XWDMUZYW5YDRCLSBUPI_1_10"} {"score": 0.9908158779144287, "chain_id": "3LYA37P8IQMHPNG8MFA2X6DP3BEBKQ_1_1"} {"score": 0.9927347898483276, "chain_id": "3LYA37P8IQMHPNG8MFA2X6DP3BEBKQ_1_3"} {"score": 0.9932489395141602, "chain_id": "3LYA37P8IQMHPNG8MFA2X6DP3BEBKQ_1_5"} {"score": 0.9435710310935974, "chain_id": "3LYA37P8IQMHPNG8MFA2X6DP3BEBKQ_1_6"} {"score": 0.92963707447052, "chain_id": "3LYA37P8IQMHPNG8MFA2X6DP3BEBKQ_1_7"} {"score": 0.504949152469635, "chain_id": "3LYA37P8IQMHPNG8MFA2X6DP3BEBKQ_1_8"} {"score": 0.9858382344245911, "chain_id": "3LYA37P8IQMHPNG8MFA2X6DP3BEBKQ_1_2"} {"score": 0.7426580786705017, "chain_id": "3LYA37P8IQMHPNG8MFA2X6DP3BEBKQ_1_4"} {"score": 0.8530617356300354, "chain_id": "3LYA37P8IQMHPNG8MFA2X6DP3BEBKQ_1_9"} {"score": 0.49291688203811646, "chain_id": "3LYA37P8IQMHPNG8MFA2X6DP3BEBKQ_1_10"} {"score": 0.19191870093345642, "chain_id": "39JEC7537U0EF32QZJK4AZUO122VC0_1_1"} {"score": 0.2857207953929901, "chain_id": "39JEC7537U0EF32QZJK4AZUO122VC0_1_2"} {"score": 0.15541501343250275, "chain_id": "39JEC7537U0EF32QZJK4AZUO122VC0_1_3"} {"score": 0.33030563592910767, "chain_id": "39JEC7537U0EF32QZJK4AZUO122VC0_1_4"} {"score": 0.2543206810951233, "chain_id": "39JEC7537U0EF32QZJK4AZUO122VC0_1_5"} {"score": 0.32910481095314026, "chain_id": "39JEC7537U0EF32QZJK4AZUO122VC0_1_6"} {"score": 0.5079098343849182, "chain_id": "39JEC7537U0EF32QZJK4AZUO122VC0_1_7"} {"score": 0.031055709347128868, "chain_id": "39JEC7537U0EF32QZJK4AZUO122VC0_1_8"} {"score": 0.14894254505634308, "chain_id": "39JEC7537U0EF32QZJK4AZUO122VC0_1_9"} {"score": 0.2584543824195862, "chain_id": "39JEC7537U0EF32QZJK4AZUO122VC0_1_10"} {"score": 0.9912336468696594, "chain_id": "3OLF68YTN901QRJ2FQJ9MI1EELWFAU_1_1"} {"score": 0.9921283721923828, "chain_id": "3OLF68YTN901QRJ2FQJ9MI1EELWFAU_1_2"} {"score": 0.9858461022377014, "chain_id": "3OLF68YTN901QRJ2FQJ9MI1EELWFAU_1_4"} {"score": 0.9934812784194946, "chain_id": "3OLF68YTN901QRJ2FQJ9MI1EELWFAU_1_5"} {"score": 0.9943599104881287, "chain_id": "3OLF68YTN901QRJ2FQJ9MI1EELWFAU_1_8"} {"score": 0.9930372834205627, "chain_id": "3OLF68YTN901QRJ2FQJ9MI1EELWFAU_1_9"} {"score": 0.993408203125, "chain_id": "3OLF68YTN901QRJ2FQJ9MI1EELWFAU_1_3"} {"score": 0.9346349835395813, "chain_id": "3OLF68YTN901QRJ2FQJ9MI1EELWFAU_1_6"} {"score": 0.9849306344985962, "chain_id": "3OLF68YTN901QRJ2FQJ9MI1EELWFAU_1_7"} {"score": 0.23848745226860046, "chain_id": "3OLF68YTN901QRJ2FQJ9MI1EELWFAU_1_10"} {"score": 0.0320216566324234, "chain_id": "3DBQWDE4Y6XG8DK2IIB5MCU1J02N5N_1_1"} {"score": 0.031387850642204285, "chain_id": "3DBQWDE4Y6XG8DK2IIB5MCU1J02N5N_1_2"} {"score": 0.11880000680685043, "chain_id": "3DBQWDE4Y6XG8DK2IIB5MCU1J02N5N_1_3"} {"score": 0.11946448683738708, "chain_id": "3DBQWDE4Y6XG8DK2IIB5MCU1J02N5N_1_4"} {"score": 0.05741419643163681, "chain_id": "3DBQWDE4Y6XG8DK2IIB5MCU1J02N5N_1_5"} {"score": 0.03234333172440529, "chain_id": "3DBQWDE4Y6XG8DK2IIB5MCU1J02N5N_1_6"} {"score": 0.033893853425979614, "chain_id": "3DBQWDE4Y6XG8DK2IIB5MCU1J02N5N_1_7"} {"score": 0.035317376255989075, "chain_id": "3DBQWDE4Y6XG8DK2IIB5MCU1J02N5N_1_8"} {"score": 0.026049189269542694, "chain_id": "3DBQWDE4Y6XG8DK2IIB5MCU1J02N5N_1_9"} {"score": 0.05326378718018532, "chain_id": "3DBQWDE4Y6XG8DK2IIB5MCU1J02N5N_1_10"} {"score": 0.2739390432834625, "chain_id": "37UEWGM5HT72ZTBBA2QAS6MUALVR1G_1_4"} {"score": 0.06295442581176758, "chain_id": "37UEWGM5HT72ZTBBA2QAS6MUALVR1G_1_9"} {"score": 0.4184707999229431, "chain_id": "37UEWGM5HT72ZTBBA2QAS6MUALVR1G_1_1"} {"score": 0.1369866281747818, "chain_id": "37UEWGM5HT72ZTBBA2QAS6MUALVR1G_1_2"} {"score": 0.4640263020992279, "chain_id": "37UEWGM5HT72ZTBBA2QAS6MUALVR1G_1_3"} {"score": 0.023762525990605354, "chain_id": "37UEWGM5HT72ZTBBA2QAS6MUALVR1G_1_5"} {"score": 0.026367323473095894, "chain_id": "37UEWGM5HT72ZTBBA2QAS6MUALVR1G_1_6"} {"score": 0.0237861517816782, "chain_id": "37UEWGM5HT72ZTBBA2QAS6MUALVR1G_1_7"} {"score": 0.024826809763908386, "chain_id": "37UEWGM5HT72ZTBBA2QAS6MUALVR1G_1_8"} {"score": 0.034630246460437775, "chain_id": "37UEWGM5HT72ZTBBA2QAS6MUALVR1G_1_10"} {"score": 0.8997067809104919, "chain_id": "3YDTZAI2WXFVYN9DZQUXKDBKIFM411_1_1"} {"score": 0.9913232326507568, "chain_id": "3YDTZAI2WXFVYN9DZQUXKDBKIFM411_1_2"} {"score": 0.03305363282561302, "chain_id": "3YDTZAI2WXFVYN9DZQUXKDBKIFM411_1_4"} {"score": 0.9895508885383606, "chain_id": "3YDTZAI2WXFVYN9DZQUXKDBKIFM411_1_6"} {"score": 0.025618722662329674, "chain_id": "3YDTZAI2WXFVYN9DZQUXKDBKIFM411_1_3"} {"score": 0.8877043128013611, "chain_id": "3YDTZAI2WXFVYN9DZQUXKDBKIFM411_1_5"} {"score": 0.07540274411439896, "chain_id": "3YDTZAI2WXFVYN9DZQUXKDBKIFM411_1_7"} {"score": 0.04719667509198189, "chain_id": "3YDTZAI2WXFVYN9DZQUXKDBKIFM411_1_8"} {"score": 0.021762201562523842, "chain_id": "3YDTZAI2WXFVYN9DZQUXKDBKIFM411_1_9"} {"score": 0.058050476014614105, "chain_id": "3YDTZAI2WXFVYN9DZQUXKDBKIFM411_1_10"} {"score": 0.924132227897644, "chain_id": "3WQQ9FUS6ATXUME7DQDZ714Y85XB88_1_1"} {"score": 0.991758406162262, "chain_id": "3WQQ9FUS6ATXUME7DQDZ714Y85XB88_1_2"} {"score": 0.025344405323266983, "chain_id": "3WQQ9FUS6ATXUME7DQDZ714Y85XB88_1_3"} {"score": 0.030144983902573586, "chain_id": "3WQQ9FUS6ATXUME7DQDZ714Y85XB88_1_4"} {"score": 0.9026458859443665, "chain_id": "3WQQ9FUS6ATXUME7DQDZ714Y85XB88_1_5"} {"score": 0.990179181098938, "chain_id": "3WQQ9FUS6ATXUME7DQDZ714Y85XB88_1_6"} {"score": 0.07156546413898468, "chain_id": "3WQQ9FUS6ATXUME7DQDZ714Y85XB88_1_7"} {"score": 0.042846955358982086, "chain_id": "3WQQ9FUS6ATXUME7DQDZ714Y85XB88_1_8"} {"score": 0.020176446065306664, "chain_id": "3WQQ9FUS6ATXUME7DQDZ714Y85XB88_1_9"} {"score": 0.05385642126202583, "chain_id": "3WQQ9FUS6ATXUME7DQDZ714Y85XB88_1_10"} {"score": 0.8997067809104919, "chain_id": "3VA45EW49NMZ2GJVIA96YBHP1YO1OW_1_1"} {"score": 0.9913232326507568, "chain_id": "3VA45EW49NMZ2GJVIA96YBHP1YO1OW_1_2"} {"score": 0.9895508885383606, "chain_id": "3VA45EW49NMZ2GJVIA96YBHP1YO1OW_1_6"} {"score": 0.025618722662329674, "chain_id": "3VA45EW49NMZ2GJVIA96YBHP1YO1OW_1_3"} {"score": 0.03305363282561302, "chain_id": "3VA45EW49NMZ2GJVIA96YBHP1YO1OW_1_4"} {"score": 0.8877043128013611, "chain_id": "3VA45EW49NMZ2GJVIA96YBHP1YO1OW_1_5"} {"score": 0.07540274411439896, "chain_id": "3VA45EW49NMZ2GJVIA96YBHP1YO1OW_1_7"} {"score": 0.04719667509198189, "chain_id": "3VA45EW49NMZ2GJVIA96YBHP1YO1OW_1_8"} {"score": 0.021762201562523842, "chain_id": "3VA45EW49NMZ2GJVIA96YBHP1YO1OW_1_9"} {"score": 0.058050476014614105, "chain_id": "3VA45EW49NMZ2GJVIA96YBHP1YO1OW_1_10"} {"score": 0.9206468462944031, "chain_id": "317HQ483I7RSK1FHP2UZBLY6SUANIJ_1_1"} {"score": 0.47758254408836365, "chain_id": "317HQ483I7RSK1FHP2UZBLY6SUANIJ_1_2"} {"score": 0.021104391664266586, "chain_id": "317HQ483I7RSK1FHP2UZBLY6SUANIJ_1_3"} {"score": 0.7963007688522339, "chain_id": "317HQ483I7RSK1FHP2UZBLY6SUANIJ_1_4"} {"score": 0.9855055212974548, "chain_id": "317HQ483I7RSK1FHP2UZBLY6SUANIJ_1_5"} {"score": 0.0218205563724041, "chain_id": "317HQ483I7RSK1FHP2UZBLY6SUANIJ_1_6"} {"score": 0.026637928560376167, "chain_id": "317HQ483I7RSK1FHP2UZBLY6SUANIJ_1_7"} {"score": 0.011374303139746189, "chain_id": "317HQ483I7RSK1FHP2UZBLY6SUANIJ_1_8"} {"score": 0.06141361966729164, "chain_id": "317HQ483I7RSK1FHP2UZBLY6SUANIJ_1_9"} {"score": 0.0493791401386261, "chain_id": "317HQ483I7RSK1FHP2UZBLY6SUANIJ_1_10"} {"score": 0.10732138901948929, "chain_id": "3IKZ72A5B4F8AADROUOE8OLEDLEFNJ_1_2"} {"score": 0.9366734623908997, "chain_id": "3IKZ72A5B4F8AADROUOE8OLEDLEFNJ_1_3"} {"score": 0.20296047627925873, "chain_id": "3IKZ72A5B4F8AADROUOE8OLEDLEFNJ_1_1"} {"score": 0.016115427017211914, "chain_id": "3IKZ72A5B4F8AADROUOE8OLEDLEFNJ_1_4"} {"score": 0.02141634374856949, "chain_id": "3IKZ72A5B4F8AADROUOE8OLEDLEFNJ_1_5"} {"score": 0.138248473405838, "chain_id": "3IKZ72A5B4F8AADROUOE8OLEDLEFNJ_1_6"} {"score": 0.09238224476575851, "chain_id": "3IKZ72A5B4F8AADROUOE8OLEDLEFNJ_1_7"} {"score": 0.024311283603310585, "chain_id": "3IKZ72A5B4F8AADROUOE8OLEDLEFNJ_1_8"} {"score": 0.04024963825941086, "chain_id": "3IKZ72A5B4F8AADROUOE8OLEDLEFNJ_1_9"} {"score": 0.04714168235659599, "chain_id": "3IKZ72A5B4F8AADROUOE8OLEDLEFNJ_1_10"} {"score": 0.9278419613838196, "chain_id": "31IBVUNM9SYLIFM0QLA5I5FRZO4FVO_1_1"} {"score": 0.4196975529193878, "chain_id": "31IBVUNM9SYLIFM0QLA5I5FRZO4FVO_1_4"} {"score": 0.9739547371864319, "chain_id": "31IBVUNM9SYLIFM0QLA5I5FRZO4FVO_1_2"} {"score": 0.09089501202106476, "chain_id": "31IBVUNM9SYLIFM0QLA5I5FRZO4FVO_1_3"} {"score": 0.12227396667003632, "chain_id": "31IBVUNM9SYLIFM0QLA5I5FRZO4FVO_1_5"} {"score": 0.08763636648654938, "chain_id": "31IBVUNM9SYLIFM0QLA5I5FRZO4FVO_1_6"} {"score": 0.0201403945684433, "chain_id": "31IBVUNM9SYLIFM0QLA5I5FRZO4FVO_1_7"} {"score": 0.06054585054516792, "chain_id": "31IBVUNM9SYLIFM0QLA5I5FRZO4FVO_1_8"} {"score": 0.048337846994400024, "chain_id": "31IBVUNM9SYLIFM0QLA5I5FRZO4FVO_1_9"} {"score": 0.01590302586555481, "chain_id": "31IBVUNM9SYLIFM0QLA5I5FRZO4FVO_1_10"} {"score": 0.06602673977613449, "chain_id": "30ZX6P7VF8USQQAUL1HFVYA8V6S2JO_1_1"} {"score": 0.8316957950592041, "chain_id": "30ZX6P7VF8USQQAUL1HFVYA8V6S2JO_1_2"} {"score": 0.4434759318828583, "chain_id": "30ZX6P7VF8USQQAUL1HFVYA8V6S2JO_1_3"} {"score": 0.10365650057792664, "chain_id": "30ZX6P7VF8USQQAUL1HFVYA8V6S2JO_1_4"} {"score": 0.05823842063546181, "chain_id": "30ZX6P7VF8USQQAUL1HFVYA8V6S2JO_1_5"} {"score": 0.07740908861160278, "chain_id": "30ZX6P7VF8USQQAUL1HFVYA8V6S2JO_1_6"} {"score": 0.04328101500868797, "chain_id": "30ZX6P7VF8USQQAUL1HFVYA8V6S2JO_1_7"} {"score": 0.014526484534144402, "chain_id": "30ZX6P7VF8USQQAUL1HFVYA8V6S2JO_1_8"} {"score": 0.02724079228937626, "chain_id": "30ZX6P7VF8USQQAUL1HFVYA8V6S2JO_1_9"} {"score": 0.025884998962283134, "chain_id": "30ZX6P7VF8USQQAUL1HFVYA8V6S2JO_1_10"} {"score": 0.9290180206298828, "chain_id": "3GM6G9ZBKNWCBXAS7DE3CDBFU9LTMJ_1_1"} {"score": 0.7934303283691406, "chain_id": "3GM6G9ZBKNWCBXAS7DE3CDBFU9LTMJ_1_2"} {"score": 0.9414936900138855, "chain_id": "3GM6G9ZBKNWCBXAS7DE3CDBFU9LTMJ_1_3"} {"score": 0.7862796783447266, "chain_id": "3GM6G9ZBKNWCBXAS7DE3CDBFU9LTMJ_1_5"} {"score": 0.025790229439735413, "chain_id": "3GM6G9ZBKNWCBXAS7DE3CDBFU9LTMJ_1_4"} {"score": 0.17037615180015564, "chain_id": "3GM6G9ZBKNWCBXAS7DE3CDBFU9LTMJ_1_6"} {"score": 0.5376143455505371, "chain_id": "3GM6G9ZBKNWCBXAS7DE3CDBFU9LTMJ_1_7"} {"score": 0.8895858526229858, "chain_id": "3GM6G9ZBKNWCBXAS7DE3CDBFU9LTMJ_1_8"} {"score": 0.07478835433721542, "chain_id": "3GM6G9ZBKNWCBXAS7DE3CDBFU9LTMJ_1_9"} {"score": 0.0932215079665184, "chain_id": "3GM6G9ZBKNWCBXAS7DE3CDBFU9LTMJ_1_10"} {"score": 0.987305223941803, "chain_id": "3V5Q80FXIXQH5C85IGPSFRTJZAR23Z_1_1"} {"score": 0.368375688791275, "chain_id": "3V5Q80FXIXQH5C85IGPSFRTJZAR23Z_1_2"} {"score": 0.47209104895591736, "chain_id": "3V5Q80FXIXQH5C85IGPSFRTJZAR23Z_1_3"} {"score": 0.7132428884506226, "chain_id": "3V5Q80FXIXQH5C85IGPSFRTJZAR23Z_1_4"} {"score": 0.42470547556877136, "chain_id": "3V5Q80FXIXQH5C85IGPSFRTJZAR23Z_1_5"} {"score": 0.3600069284439087, "chain_id": "3V5Q80FXIXQH5C85IGPSFRTJZAR23Z_1_6"} {"score": 0.4190509021282196, "chain_id": "3V5Q80FXIXQH5C85IGPSFRTJZAR23Z_1_7"} {"score": 0.4454507827758789, "chain_id": "3V5Q80FXIXQH5C85IGPSFRTJZAR23Z_1_8"} {"score": 0.9388449788093567, "chain_id": "3V5Q80FXIXQH5C85IGPSFRTJZAR23Z_1_9"} {"score": 0.30255022644996643, "chain_id": "3V5Q80FXIXQH5C85IGPSFRTJZAR23Z_1_10"} {"score": 0.3958849608898163, "chain_id": "3TXWC2NHNZPWPDEJT458XM99VVBS9G_1_7"} {"score": 0.36603522300720215, "chain_id": "3TXWC2NHNZPWPDEJT458XM99VVBS9G_1_9"} {"score": 0.8227921724319458, "chain_id": "3TXWC2NHNZPWPDEJT458XM99VVBS9G_1_10"} {"score": 0.04568244889378548, "chain_id": "3TXWC2NHNZPWPDEJT458XM99VVBS9G_1_1"} {"score": 0.07468406856060028, "chain_id": "3TXWC2NHNZPWPDEJT458XM99VVBS9G_1_2"} {"score": 0.2503489851951599, "chain_id": "3TXWC2NHNZPWPDEJT458XM99VVBS9G_1_3"} {"score": 0.06316410005092621, "chain_id": "3TXWC2NHNZPWPDEJT458XM99VVBS9G_1_4"} {"score": 0.3258571922779083, "chain_id": "3TXWC2NHNZPWPDEJT458XM99VVBS9G_1_5"} {"score": 0.28732994198799133, "chain_id": "3TXWC2NHNZPWPDEJT458XM99VVBS9G_1_6"} {"score": 0.0833570584654808, "chain_id": "3TXWC2NHNZPWPDEJT458XM99VVBS9G_1_8"} {"score": 0.10672290623188019, "chain_id": "3V0Z7YWSIYZ1HLAO2QVYYML2O2N2VD_1_1"} {"score": 0.12987761199474335, "chain_id": "3V0Z7YWSIYZ1HLAO2QVYYML2O2N2VD_1_2"} {"score": 0.06371332705020905, "chain_id": "3V0Z7YWSIYZ1HLAO2QVYYML2O2N2VD_1_3"} {"score": 0.07075466215610504, "chain_id": "3V0Z7YWSIYZ1HLAO2QVYYML2O2N2VD_1_4"} {"score": 0.3104087710380554, "chain_id": "3V0Z7YWSIYZ1HLAO2QVYYML2O2N2VD_1_5"} {"score": 0.5281332731246948, "chain_id": "3V0Z7YWSIYZ1HLAO2QVYYML2O2N2VD_1_6"} {"score": 0.43182703852653503, "chain_id": "3V0Z7YWSIYZ1HLAO2QVYYML2O2N2VD_1_7"} {"score": 0.5119349360466003, "chain_id": "3V0Z7YWSIYZ1HLAO2QVYYML2O2N2VD_1_8"} {"score": 0.10055939108133316, "chain_id": "3V0Z7YWSIYZ1HLAO2QVYYML2O2N2VD_1_9"} {"score": 0.08452124893665314, "chain_id": "3V0Z7YWSIYZ1HLAO2QVYYML2O2N2VD_1_10"} {"score": 0.9885385632514954, "chain_id": "3R9WASFE2ZF2RZRARIZ83BSNMG7ZF2_1_1"} {"score": 0.9845596551895142, "chain_id": "3R9WASFE2ZF2RZRARIZ83BSNMG7ZF2_1_2"} {"score": 0.9800254106521606, "chain_id": "3R9WASFE2ZF2RZRARIZ83BSNMG7ZF2_1_4"} {"score": 0.97098708152771, "chain_id": "3R9WASFE2ZF2RZRARIZ83BSNMG7ZF2_1_5"} {"score": 0.6869246959686279, "chain_id": "3R9WASFE2ZF2RZRARIZ83BSNMG7ZF2_1_7"} {"score": 0.848770260810852, "chain_id": "3R9WASFE2ZF2RZRARIZ83BSNMG7ZF2_1_10"} {"score": 0.965081512928009, "chain_id": "3R9WASFE2ZF2RZRARIZ83BSNMG7ZF2_1_3"} {"score": 0.029524529352784157, "chain_id": "3R9WASFE2ZF2RZRARIZ83BSNMG7ZF2_1_6"} {"score": 0.16819708049297333, "chain_id": "3R9WASFE2ZF2RZRARIZ83BSNMG7ZF2_1_8"} {"score": 0.6000270843505859, "chain_id": "3R9WASFE2ZF2RZRARIZ83BSNMG7ZF2_1_9"} {"score": 0.8465388417243958, "chain_id": "3CP1TO84PT0KJRV9WZDLUOR3CE425Q_1_5"} {"score": 0.3535071015357971, "chain_id": "3CP1TO84PT0KJRV9WZDLUOR3CE425Q_1_8"} {"score": 0.12718945741653442, "chain_id": "3CP1TO84PT0KJRV9WZDLUOR3CE425Q_1_1"} {"score": 0.08334921300411224, "chain_id": "3CP1TO84PT0KJRV9WZDLUOR3CE425Q_1_2"} {"score": 0.9627270102500916, "chain_id": "3CP1TO84PT0KJRV9WZDLUOR3CE425Q_1_3"} {"score": 0.7160776853561401, "chain_id": "3CP1TO84PT0KJRV9WZDLUOR3CE425Q_1_4"} {"score": 0.7899752259254456, "chain_id": "3CP1TO84PT0KJRV9WZDLUOR3CE425Q_1_6"} {"score": 0.32939523458480835, "chain_id": "3CP1TO84PT0KJRV9WZDLUOR3CE425Q_1_7"} {"score": 0.06963679939508438, "chain_id": "3CP1TO84PT0KJRV9WZDLUOR3CE425Q_1_9"} {"score": 0.0615462101995945, "chain_id": "3CP1TO84PT0KJRV9WZDLUOR3CE425Q_1_10"} {"score": 0.20551429688930511, "chain_id": "3ZAZR5XV01HVON700G97V57KPELCZW_1_3"} {"score": 0.5000284910202026, "chain_id": "3ZAZR5XV01HVON700G97V57KPELCZW_1_4"} {"score": 0.1805732548236847, "chain_id": "3ZAZR5XV01HVON700G97V57KPELCZW_1_5"} {"score": 0.39626559615135193, "chain_id": "3ZAZR5XV01HVON700G97V57KPELCZW_1_1"} {"score": 0.39241862297058105, "chain_id": "3ZAZR5XV01HVON700G97V57KPELCZW_1_2"} {"score": 0.20801270008087158, "chain_id": "3ZAZR5XV01HVON700G97V57KPELCZW_1_6"} {"score": 0.08857738971710205, "chain_id": "3ZAZR5XV01HVON700G97V57KPELCZW_1_7"} {"score": 0.12519589066505432, "chain_id": "3ZAZR5XV01HVON700G97V57KPELCZW_1_8"} {"score": 0.49884623289108276, "chain_id": "3ZAZR5XV01HVON700G97V57KPELCZW_1_9"} {"score": 0.6955850720405579, "chain_id": "3ZAZR5XV01HVON700G97V57KPELCZW_1_10"} {"score": 0.5058310627937317, "chain_id": "3LO69W1SU3CO0A61N1EHDHH18YYGLM_1_1"} {"score": 0.08914405852556229, "chain_id": "3LO69W1SU3CO0A61N1EHDHH18YYGLM_1_5"} {"score": 0.5832900404930115, "chain_id": "3LO69W1SU3CO0A61N1EHDHH18YYGLM_1_2"} {"score": 0.3156430125236511, "chain_id": "3LO69W1SU3CO0A61N1EHDHH18YYGLM_1_3"} {"score": 0.18954232335090637, "chain_id": "3LO69W1SU3CO0A61N1EHDHH18YYGLM_1_4"} {"score": 0.45220690965652466, "chain_id": "3LO69W1SU3CO0A61N1EHDHH18YYGLM_1_6"} {"score": 0.025060994550585747, "chain_id": "3LO69W1SU3CO0A61N1EHDHH18YYGLM_1_7"} {"score": 0.35557088255882263, "chain_id": "3LO69W1SU3CO0A61N1EHDHH18YYGLM_1_8"} {"score": 0.521947979927063, "chain_id": "3LO69W1SU3CO0A61N1EHDHH18YYGLM_1_9"} {"score": 0.03179319575428963, "chain_id": "3LO69W1SU3CO0A61N1EHDHH18YYGLM_1_10"} {"score": 0.3515814244747162, "chain_id": "3KYQYYSHYV6TUBZ7Y3T1ZDIYP2IODD_1_1"} {"score": 0.06633555889129639, "chain_id": "3KYQYYSHYV6TUBZ7Y3T1ZDIYP2IODD_1_2"} {"score": 0.3754913806915283, "chain_id": "3KYQYYSHYV6TUBZ7Y3T1ZDIYP2IODD_1_3"} {"score": 0.1338878571987152, "chain_id": "3KYQYYSHYV6TUBZ7Y3T1ZDIYP2IODD_1_4"} {"score": 0.1329999566078186, "chain_id": "3KYQYYSHYV6TUBZ7Y3T1ZDIYP2IODD_1_5"} {"score": 0.15215833485126495, "chain_id": "3KYQYYSHYV6TUBZ7Y3T1ZDIYP2IODD_1_6"} {"score": 0.04995296150445938, "chain_id": "3KYQYYSHYV6TUBZ7Y3T1ZDIYP2IODD_1_7"} {"score": 0.10842160135507584, "chain_id": "3KYQYYSHYV6TUBZ7Y3T1ZDIYP2IODD_1_8"} {"score": 0.06544142216444016, "chain_id": "3KYQYYSHYV6TUBZ7Y3T1ZDIYP2IODD_1_9"} {"score": 0.02670017071068287, "chain_id": "3KYQYYSHYV6TUBZ7Y3T1ZDIYP2IODD_1_10"} {"score": 0.14412999153137207, "chain_id": "3QXNC7EIPIUWO4U7K2MONG3Q18S90L_1_1"} {"score": 0.18295909464359283, "chain_id": "3QXNC7EIPIUWO4U7K2MONG3Q18S90L_1_2"} {"score": 0.6689203977584839, "chain_id": "3QXNC7EIPIUWO4U7K2MONG3Q18S90L_1_3"} {"score": 0.30761370062828064, "chain_id": "3QXNC7EIPIUWO4U7K2MONG3Q18S90L_1_4"} {"score": 0.15772469341754913, "chain_id": "3QXNC7EIPIUWO4U7K2MONG3Q18S90L_1_5"} {"score": 0.6581021547317505, "chain_id": "3QXNC7EIPIUWO4U7K2MONG3Q18S90L_1_6"} {"score": 0.3094988763332367, "chain_id": "3QXNC7EIPIUWO4U7K2MONG3Q18S90L_1_7"} {"score": 0.06369046121835709, "chain_id": "3QXNC7EIPIUWO4U7K2MONG3Q18S90L_1_8"} {"score": 0.33415454626083374, "chain_id": "3QXNC7EIPIUWO4U7K2MONG3Q18S90L_1_9"} {"score": 0.16017886996269226, "chain_id": "3QXNC7EIPIUWO4U7K2MONG3Q18S90L_1_10"} {"score": 0.9851886034011841, "chain_id": "3TK8OJTYM1KX9SBU4O6AUZTV1UHVPX_1_4"} {"score": 0.9516305327415466, "chain_id": "3TK8OJTYM1KX9SBU4O6AUZTV1UHVPX_1_6"} {"score": 0.5682913064956665, "chain_id": "3TK8OJTYM1KX9SBU4O6AUZTV1UHVPX_1_8"} {"score": 0.8523452281951904, "chain_id": "3TK8OJTYM1KX9SBU4O6AUZTV1UHVPX_1_9"} {"score": 0.4723266661167145, "chain_id": "3TK8OJTYM1KX9SBU4O6AUZTV1UHVPX_1_10"} {"score": 0.9627131819725037, "chain_id": "3TK8OJTYM1KX9SBU4O6AUZTV1UHVPX_1_1"} {"score": 0.5879288911819458, "chain_id": "3TK8OJTYM1KX9SBU4O6AUZTV1UHVPX_1_2"} {"score": 0.9787657856941223, "chain_id": "3TK8OJTYM1KX9SBU4O6AUZTV1UHVPX_1_3"} {"score": 0.9559016823768616, "chain_id": "3TK8OJTYM1KX9SBU4O6AUZTV1UHVPX_1_5"} {"score": 0.05319760739803314, "chain_id": "3TK8OJTYM1KX9SBU4O6AUZTV1UHVPX_1_7"} {"score": 0.9826524257659912, "chain_id": "3VJ40NV2QIM0B0V4KTTG4H0KPCBTOF_1_1"} {"score": 0.985463559627533, "chain_id": "3VJ40NV2QIM0B0V4KTTG4H0KPCBTOF_1_2"} {"score": 0.05735810846090317, "chain_id": "3VJ40NV2QIM0B0V4KTTG4H0KPCBTOF_1_3"} {"score": 0.07454711943864822, "chain_id": "3VJ40NV2QIM0B0V4KTTG4H0KPCBTOF_1_4"} {"score": 0.08458852022886276, "chain_id": "3VJ40NV2QIM0B0V4KTTG4H0KPCBTOF_1_5"} {"score": 0.06432401388883591, "chain_id": "3VJ40NV2QIM0B0V4KTTG4H0KPCBTOF_1_6"} {"score": 0.7555290460586548, "chain_id": "3VJ40NV2QIM0B0V4KTTG4H0KPCBTOF_1_7"} {"score": 0.7734763622283936, "chain_id": "3VJ40NV2QIM0B0V4KTTG4H0KPCBTOF_1_8"} {"score": 0.8871147632598877, "chain_id": "3VJ40NV2QIM0B0V4KTTG4H0KPCBTOF_1_9"} {"score": 0.8550819754600525, "chain_id": "3VJ40NV2QIM0B0V4KTTG4H0KPCBTOF_1_10"} {"score": 0.043707359582185745, "chain_id": "3Z4AIRP3C6CMWPXNJ1W2HO8I93FX1H_1_1"} {"score": 0.03130752220749855, "chain_id": "3Z4AIRP3C6CMWPXNJ1W2HO8I93FX1H_1_2"} {"score": 0.01699080318212509, "chain_id": "3Z4AIRP3C6CMWPXNJ1W2HO8I93FX1H_1_3"} {"score": 0.05234465003013611, "chain_id": "3Z4AIRP3C6CMWPXNJ1W2HO8I93FX1H_1_4"} {"score": 0.10521847754716873, "chain_id": "3Z4AIRP3C6CMWPXNJ1W2HO8I93FX1H_1_5"} {"score": 0.04195462912321091, "chain_id": "3Z4AIRP3C6CMWPXNJ1W2HO8I93FX1H_1_6"} {"score": 0.013586437329649925, "chain_id": "3Z4AIRP3C6CMWPXNJ1W2HO8I93FX1H_1_7"} {"score": 0.01938318833708763, "chain_id": "3Z4AIRP3C6CMWPXNJ1W2HO8I93FX1H_1_8"} {"score": 0.1093851625919342, "chain_id": "36ZN444YTRXA2MFTQHUCQAYBE3JOIX_1_9"} {"score": 0.048042621463537216, "chain_id": "36ZN444YTRXA2MFTQHUCQAYBE3JOIX_1_1"} {"score": 0.01609884761273861, "chain_id": "36ZN444YTRXA2MFTQHUCQAYBE3JOIX_1_2"} {"score": 0.033259328454732895, "chain_id": "36ZN444YTRXA2MFTQHUCQAYBE3JOIX_1_3"} {"score": 0.024381551891565323, "chain_id": "36ZN444YTRXA2MFTQHUCQAYBE3JOIX_1_4"} {"score": 0.02839028090238571, "chain_id": "36ZN444YTRXA2MFTQHUCQAYBE3JOIX_1_5"} {"score": 0.03330624848604202, "chain_id": "36ZN444YTRXA2MFTQHUCQAYBE3JOIX_1_6"} {"score": 0.03928065299987793, "chain_id": "36ZN444YTRXA2MFTQHUCQAYBE3JOIX_1_7"} {"score": 0.0187983475625515, "chain_id": "36ZN444YTRXA2MFTQHUCQAYBE3JOIX_1_8"} {"score": 0.06148061156272888, "chain_id": "36ZN444YTRXA2MFTQHUCQAYBE3JOIX_1_10"} {"score": 0.06650079786777496, "chain_id": "3FE2ERCCZX72J82X3CKWZ7ZN2ESOPJ_1_1"} {"score": 0.014495001174509525, "chain_id": "3FE2ERCCZX72J82X3CKWZ7ZN2ESOPJ_1_2"} {"score": 0.019783541560173035, "chain_id": "3FE2ERCCZX72J82X3CKWZ7ZN2ESOPJ_1_3"} {"score": 0.015451934188604355, "chain_id": "3FE2ERCCZX72J82X3CKWZ7ZN2ESOPJ_1_4"} {"score": 0.12255995720624924, "chain_id": "3FE2ERCCZX72J82X3CKWZ7ZN2ESOPJ_1_5"} {"score": 0.017815707251429558, "chain_id": "3FE2ERCCZX72J82X3CKWZ7ZN2ESOPJ_1_6"} {"score": 0.012211249209940434, "chain_id": "3FE2ERCCZX72J82X3CKWZ7ZN2ESOPJ_1_7"} {"score": 0.014907967299222946, "chain_id": "3FE2ERCCZX72J82X3CKWZ7ZN2ESOPJ_1_8"} {"score": 0.013155657798051834, "chain_id": "3FE2ERCCZX72J82X3CKWZ7ZN2ESOPJ_1_9"} {"score": 0.013566805981099606, "chain_id": "3FE2ERCCZX72J82X3CKWZ7ZN2ESOPJ_1_10"} {"score": 0.9219794869422913, "chain_id": "3300DTYQT2G17TQN9BWPU0VJ3EZQEB_1_1"} {"score": 0.06277632713317871, "chain_id": "3300DTYQT2G17TQN9BWPU0VJ3EZQEB_1_4"} {"score": 0.04173741862177849, "chain_id": "3300DTYQT2G17TQN9BWPU0VJ3EZQEB_1_2"} {"score": 0.015329399146139622, "chain_id": "3300DTYQT2G17TQN9BWPU0VJ3EZQEB_1_3"} {"score": 0.019067998975515366, "chain_id": "3300DTYQT2G17TQN9BWPU0VJ3EZQEB_1_5"} {"score": 0.020428618416190147, "chain_id": "3300DTYQT2G17TQN9BWPU0VJ3EZQEB_1_6"} {"score": 0.028147991746664047, "chain_id": "3300DTYQT2G17TQN9BWPU0VJ3EZQEB_1_7"} {"score": 0.025210067629814148, "chain_id": "3300DTYQT2G17TQN9BWPU0VJ3EZQEB_1_8"} {"score": 0.015144134871661663, "chain_id": "3300DTYQT2G17TQN9BWPU0VJ3EZQEB_1_9"} {"score": 0.020034193992614746, "chain_id": "3300DTYQT2G17TQN9BWPU0VJ3EZQEB_1_10"} {"score": 0.10401622951030731, "chain_id": "3VHHR074H3G57HV0UYAN74487O77LM_1_1"} {"score": 0.30089786648750305, "chain_id": "3VHHR074H3G57HV0UYAN74487O77LM_1_2"} {"score": 0.1442192643880844, "chain_id": "3VHHR074H3G57HV0UYAN74487O77LM_1_3"} {"score": 0.6799950003623962, "chain_id": "3VHHR074H3G57HV0UYAN74487O77LM_1_4"} {"score": 0.20149381458759308, "chain_id": "3VHHR074H3G57HV0UYAN74487O77LM_1_5"} {"score": 0.1354808211326599, "chain_id": "3VHHR074H3G57HV0UYAN74487O77LM_1_6"} {"score": 0.024992236867547035, "chain_id": "3VHHR074H3G57HV0UYAN74487O77LM_1_7"} {"score": 0.07836493849754333, "chain_id": "3VHHR074H3G57HV0UYAN74487O77LM_1_8"} {"score": 0.37044987082481384, "chain_id": "3VHHR074H3G57HV0UYAN74487O77LM_1_9"} {"score": 0.024419989436864853, "chain_id": "3VHHR074H3G57HV0UYAN74487O77LM_1_10"} {"score": 0.011173826642334461, "chain_id": "38JBBYETQO9UIO3PBEPCRXUELFAE4A_1_1"} {"score": 0.2931155562400818, "chain_id": "38JBBYETQO9UIO3PBEPCRXUELFAE4A_1_2"} {"score": 0.05516725033521652, "chain_id": "38JBBYETQO9UIO3PBEPCRXUELFAE4A_1_3"} {"score": 0.11365234851837158, "chain_id": "38JBBYETQO9UIO3PBEPCRXUELFAE4A_1_4"} {"score": 0.03716769069433212, "chain_id": "38JBBYETQO9UIO3PBEPCRXUELFAE4A_1_5"} {"score": 0.6423879265785217, "chain_id": "38JBBYETQO9UIO3PBEPCRXUELFAE4A_1_6"} {"score": 0.014776034280657768, "chain_id": "38JBBYETQO9UIO3PBEPCRXUELFAE4A_1_7"} {"score": 0.7167470455169678, "chain_id": "38JBBYETQO9UIO3PBEPCRXUELFAE4A_1_8"} {"score": 0.5008384585380554, "chain_id": "38JBBYETQO9UIO3PBEPCRXUELFAE4A_1_9"} {"score": 0.4278374910354614, "chain_id": "38JBBYETQO9UIO3PBEPCRXUELFAE4A_1_10"} {"score": 0.21678997576236725, "chain_id": "34Z02EIMISCF8J3LI8R5EG427HIT08_1_1"} {"score": 0.15817666053771973, "chain_id": "34Z02EIMISCF8J3LI8R5EG427HIT08_1_2"} {"score": 0.018164528533816338, "chain_id": "34Z02EIMISCF8J3LI8R5EG427HIT08_1_3"} {"score": 0.1963764876127243, "chain_id": "34Z02EIMISCF8J3LI8R5EG427HIT08_1_4"} {"score": 0.04869338497519493, "chain_id": "34Z02EIMISCF8J3LI8R5EG427HIT08_1_5"} {"score": 0.037998225539922714, "chain_id": "34Z02EIMISCF8J3LI8R5EG427HIT08_1_6"} {"score": 0.0654330626130104, "chain_id": "34Z02EIMISCF8J3LI8R5EG427HIT08_1_7"} {"score": 0.05110878869891167, "chain_id": "34Z02EIMISCF8J3LI8R5EG427HIT08_1_8"} {"score": 0.021991493180394173, "chain_id": "34Z02EIMISCF8J3LI8R5EG427HIT08_1_9"} {"score": 0.012979069724678993, "chain_id": "34Z02EIMISCF8J3LI8R5EG427HIT08_1_10"} {"score": 0.03339776024222374, "chain_id": "3LS2AMNW5FPNJK3C3PZLZCPXLP5OQ9_1_1"} {"score": 0.6976304650306702, "chain_id": "3LS2AMNW5FPNJK3C3PZLZCPXLP5OQ9_1_2"} {"score": 0.9554104804992676, "chain_id": "3LS2AMNW5FPNJK3C3PZLZCPXLP5OQ9_1_3"} {"score": 0.9757919311523438, "chain_id": "3LS2AMNW5FPNJK3C3PZLZCPXLP5OQ9_1_4"} {"score": 0.7946673631668091, "chain_id": "3LS2AMNW5FPNJK3C3PZLZCPXLP5OQ9_1_5"} {"score": 0.030118871480226517, "chain_id": "3LS2AMNW5FPNJK3C3PZLZCPXLP5OQ9_1_6"} {"score": 0.03924992308020592, "chain_id": "3LS2AMNW5FPNJK3C3PZLZCPXLP5OQ9_1_7"} {"score": 0.019459104165434837, "chain_id": "3LS2AMNW5FPNJK3C3PZLZCPXLP5OQ9_1_8"} {"score": 0.023676395416259766, "chain_id": "3LS2AMNW5FPNJK3C3PZLZCPXLP5OQ9_1_9"} {"score": 0.015927424654364586, "chain_id": "3LS2AMNW5FPNJK3C3PZLZCPXLP5OQ9_1_10"} {"score": 0.9061035513877869, "chain_id": "3FK0YFF9PZFAEC8QQ0F90RIDYC6VV5_1_3"} {"score": 0.6475719213485718, "chain_id": "3FK0YFF9PZFAEC8QQ0F90RIDYC6VV5_1_1"} {"score": 0.8971995115280151, "chain_id": "3FK0YFF9PZFAEC8QQ0F90RIDYC6VV5_1_2"} {"score": 0.8158969879150391, "chain_id": "3FK0YFF9PZFAEC8QQ0F90RIDYC6VV5_1_4"} {"score": 0.043872177600860596, "chain_id": "3FK0YFF9PZFAEC8QQ0F90RIDYC6VV5_1_5"} {"score": 0.018540313467383385, "chain_id": "3FK0YFF9PZFAEC8QQ0F90RIDYC6VV5_1_6"} {"score": 0.044568125158548355, "chain_id": "3FK0YFF9PZFAEC8QQ0F90RIDYC6VV5_1_7"} {"score": 0.058590829372406006, "chain_id": "3FK0YFF9PZFAEC8QQ0F90RIDYC6VV5_1_8"} {"score": 0.02208712510764599, "chain_id": "3FK0YFF9PZFAEC8QQ0F90RIDYC6VV5_1_9"} {"score": 0.01715671643614769, "chain_id": "3FK0YFF9PZFAEC8QQ0F90RIDYC6VV5_1_10"} {"score": 0.05657956376671791, "chain_id": "34T446B1C0DYM21AWMWFP64YKB60CH_1_1"} {"score": 0.027397368103265762, "chain_id": "34T446B1C0DYM21AWMWFP64YKB60CH_1_2"} {"score": 0.06821084767580032, "chain_id": "34T446B1C0DYM21AWMWFP64YKB60CH_1_3"} {"score": 0.024693720042705536, "chain_id": "34T446B1C0DYM21AWMWFP64YKB60CH_1_4"} {"score": 0.021101204678416252, "chain_id": "34T446B1C0DYM21AWMWFP64YKB60CH_1_5"} {"score": 0.8355462551116943, "chain_id": "34T446B1C0DYM21AWMWFP64YKB60CH_1_6"} {"score": 0.10812168568372726, "chain_id": "34T446B1C0DYM21AWMWFP64YKB60CH_1_7"} {"score": 0.04498578608036041, "chain_id": "34T446B1C0DYM21AWMWFP64YKB60CH_1_8"} {"score": 0.07745622843503952, "chain_id": "34T446B1C0DYM21AWMWFP64YKB60CH_1_9"} {"score": 0.031198104843497276, "chain_id": "34T446B1C0DYM21AWMWFP64YKB60CH_1_10"} {"score": 0.18841660022735596, "chain_id": "3KB8R4ZV1E6CN1KPWOPNZELW97NGBL_1_3"} {"score": 0.16303598880767822, "chain_id": "3KB8R4ZV1E6CN1KPWOPNZELW97NGBL_1_1"} {"score": 0.03828192502260208, "chain_id": "3KB8R4ZV1E6CN1KPWOPNZELW97NGBL_1_2"} {"score": 0.08202600479125977, "chain_id": "3KB8R4ZV1E6CN1KPWOPNZELW97NGBL_1_4"} {"score": 0.09020529687404633, "chain_id": "3KB8R4ZV1E6CN1KPWOPNZELW97NGBL_1_5"} {"score": 0.03925536945462227, "chain_id": "3KB8R4ZV1E6CN1KPWOPNZELW97NGBL_1_6"} {"score": 0.12944869697093964, "chain_id": "3KB8R4ZV1E6CN1KPWOPNZELW97NGBL_1_7"} {"score": 0.07989498227834702, "chain_id": "3KB8R4ZV1E6CN1KPWOPNZELW97NGBL_1_8"} {"score": 0.04559154435992241, "chain_id": "3KB8R4ZV1E6CN1KPWOPNZELW97NGBL_1_9"} {"score": 0.09966009855270386, "chain_id": "3KB8R4ZV1E6CN1KPWOPNZELW97NGBL_1_10"} {"score": 0.02252502739429474, "chain_id": "3WMINLGALB2UNFZSOOT8ECGBTZKACO_1_1"} {"score": 0.02225193940103054, "chain_id": "3WMINLGALB2UNFZSOOT8ECGBTZKACO_1_2"} {"score": 0.02728070318698883, "chain_id": "3WMINLGALB2UNFZSOOT8ECGBTZKACO_1_3"} {"score": 0.020387372002005577, "chain_id": "3WMINLGALB2UNFZSOOT8ECGBTZKACO_1_4"} {"score": 0.03686683252453804, "chain_id": "3WMINLGALB2UNFZSOOT8ECGBTZKACO_1_5"} {"score": 0.013882538303732872, "chain_id": "3WMINLGALB2UNFZSOOT8ECGBTZKACO_1_6"} {"score": 0.016720000654459, "chain_id": "3WMINLGALB2UNFZSOOT8ECGBTZKACO_1_7"} {"score": 0.022230740636587143, "chain_id": "3WMINLGALB2UNFZSOOT8ECGBTZKACO_1_8"} {"score": 0.057648662477731705, "chain_id": "3WMINLGALB2UNFZSOOT8ECGBTZKACO_1_9"} {"score": 0.025028148666024208, "chain_id": "3WMINLGALB2UNFZSOOT8ECGBTZKACO_1_10"} {"score": 0.0981735959649086, "chain_id": "3U8YCDAGXPF2G3BT14XA9BTFNNS0Q0_1_1"} {"score": 0.01989079639315605, "chain_id": "3U8YCDAGXPF2G3BT14XA9BTFNNS0Q0_1_2"} {"score": 0.01761375367641449, "chain_id": "3U8YCDAGXPF2G3BT14XA9BTFNNS0Q0_1_3"} {"score": 0.17305050790309906, "chain_id": "3U8YCDAGXPF2G3BT14XA9BTFNNS0Q0_1_4"} {"score": 0.8349778056144714, "chain_id": "3U8YCDAGXPF2G3BT14XA9BTFNNS0Q0_1_5"} {"score": 0.01580335758626461, "chain_id": "3U8YCDAGXPF2G3BT14XA9BTFNNS0Q0_1_6"} {"score": 0.02487715519964695, "chain_id": "3U8YCDAGXPF2G3BT14XA9BTFNNS0Q0_1_7"} {"score": 0.015513977967202663, "chain_id": "3U8YCDAGXPF2G3BT14XA9BTFNNS0Q0_1_8"} {"score": 0.010946708731353283, "chain_id": "3U8YCDAGXPF2G3BT14XA9BTFNNS0Q0_1_9"} {"score": 0.5511491298675537, "chain_id": "3U8YCDAGXPF2G3BT14XA9BTFNNS0Q0_1_10"} {"score": 0.9801046848297119, "chain_id": "3U5JL4WY5K83OOU66JF4FMFLLHY4XY_1_1"} {"score": 0.902777373790741, "chain_id": "3U5JL4WY5K83OOU66JF4FMFLLHY4XY_1_2"} {"score": 0.2279651015996933, "chain_id": "3U5JL4WY5K83OOU66JF4FMFLLHY4XY_1_3"} {"score": 0.8159409165382385, "chain_id": "3U5JL4WY5K83OOU66JF4FMFLLHY4XY_1_4"} {"score": 0.08228273689746857, "chain_id": "3U5JL4WY5K83OOU66JF4FMFLLHY4XY_1_5"} {"score": 0.02088942751288414, "chain_id": "3U5JL4WY5K83OOU66JF4FMFLLHY4XY_1_6"} {"score": 0.03823690488934517, "chain_id": "3U5JL4WY5K83OOU66JF4FMFLLHY4XY_1_7"} {"score": 0.2666260004043579, "chain_id": "3U5JL4WY5K83OOU66JF4FMFLLHY4XY_1_8"} {"score": 0.016091879457235336, "chain_id": "3U5JL4WY5K83OOU66JF4FMFLLHY4XY_1_9"} {"score": 0.16175656020641327, "chain_id": "3U5JL4WY5K83OOU66JF4FMFLLHY4XY_1_10"} {"score": 0.9811722636222839, "chain_id": "32N49TQG3GHQMO5SF5OD4440XJHAVD_1_1"} {"score": 0.9441102147102356, "chain_id": "32N49TQG3GHQMO5SF5OD4440XJHAVD_1_2"} {"score": 0.4301004707813263, "chain_id": "32N49TQG3GHQMO5SF5OD4440XJHAVD_1_3"} {"score": 0.7252141237258911, "chain_id": "32N49TQG3GHQMO5SF5OD4440XJHAVD_1_4"} {"score": 0.6944835186004639, "chain_id": "32N49TQG3GHQMO5SF5OD4440XJHAVD_1_5"} {"score": 0.08772557973861694, "chain_id": "32N49TQG3GHQMO5SF5OD4440XJHAVD_1_6"} {"score": 0.133445143699646, "chain_id": "32N49TQG3GHQMO5SF5OD4440XJHAVD_1_7"} {"score": 0.041044287383556366, "chain_id": "32N49TQG3GHQMO5SF5OD4440XJHAVD_1_8"} {"score": 0.07658170163631439, "chain_id": "32N49TQG3GHQMO5SF5OD4440XJHAVD_1_9"} {"score": 0.24697719514369965, "chain_id": "32N49TQG3GHQMO5SF5OD4440XJHAVD_1_10"} {"score": 0.9557174444198608, "chain_id": "3GGAI1SQEVXVPG8HLRJDN3BB6WECMU_1_2"} {"score": 0.5436840057373047, "chain_id": "3GGAI1SQEVXVPG8HLRJDN3BB6WECMU_1_3"} {"score": 0.7107616066932678, "chain_id": "3GGAI1SQEVXVPG8HLRJDN3BB6WECMU_1_1"} {"score": 0.8926669359207153, "chain_id": "3GGAI1SQEVXVPG8HLRJDN3BB6WECMU_1_4"} {"score": 0.037813540548086166, "chain_id": "3GGAI1SQEVXVPG8HLRJDN3BB6WECMU_1_5"} {"score": 0.04161790758371353, "chain_id": "3GGAI1SQEVXVPG8HLRJDN3BB6WECMU_1_6"} {"score": 0.3720884323120117, "chain_id": "3GGAI1SQEVXVPG8HLRJDN3BB6WECMU_1_7"} {"score": 0.7552136778831482, "chain_id": "3GGAI1SQEVXVPG8HLRJDN3BB6WECMU_1_8"} {"score": 0.06258253008127213, "chain_id": "3GGAI1SQEVXVPG8HLRJDN3BB6WECMU_1_9"} {"score": 0.11803384870290756, "chain_id": "3GGAI1SQEVXVPG8HLRJDN3BB6WECMU_1_10"} {"score": 0.37491852045059204, "chain_id": "3QFUFYSY9YEMO23L6P9I9FFEJ95F4H_1_1"} {"score": 0.574634313583374, "chain_id": "3QFUFYSY9YEMO23L6P9I9FFEJ95F4H_1_2"} {"score": 0.10008551925420761, "chain_id": "3QFUFYSY9YEMO23L6P9I9FFEJ95F4H_1_3"} {"score": 0.06474816054105759, "chain_id": "3QFUFYSY9YEMO23L6P9I9FFEJ95F4H_1_4"} {"score": 0.29439881443977356, "chain_id": "3QFUFYSY9YEMO23L6P9I9FFEJ95F4H_1_5"} {"score": 0.7160665392875671, "chain_id": "3QFUFYSY9YEMO23L6P9I9FFEJ95F4H_1_6"} {"score": 0.5839754939079285, "chain_id": "3QFUFYSY9YEMO23L6P9I9FFEJ95F4H_1_7"} {"score": 0.48307719826698303, "chain_id": "3QFUFYSY9YEMO23L6P9I9FFEJ95F4H_1_8"} {"score": 0.3504844903945923, "chain_id": "3QFUFYSY9YEMO23L6P9I9FFEJ95F4H_1_9"} {"score": 0.8311302065849304, "chain_id": "3QFUFYSY9YEMO23L6P9I9FFEJ95F4H_1_10"} {"score": 0.6124433279037476, "chain_id": "33PPUNGG384ZUPWJIDZ2K066NYOZRP_1_1"} {"score": 0.15199847519397736, "chain_id": "33PPUNGG384ZUPWJIDZ2K066NYOZRP_1_2"} {"score": 0.07977047562599182, "chain_id": "33PPUNGG384ZUPWJIDZ2K066NYOZRP_1_3"} {"score": 0.08704067021608353, "chain_id": "33PPUNGG384ZUPWJIDZ2K066NYOZRP_1_4"} {"score": 0.0572381317615509, "chain_id": "33PPUNGG384ZUPWJIDZ2K066NYOZRP_1_5"} {"score": 0.2217738777399063, "chain_id": "33PPUNGG384ZUPWJIDZ2K066NYOZRP_1_6"} {"score": 0.2122350037097931, "chain_id": "33PPUNGG384ZUPWJIDZ2K066NYOZRP_1_7"} {"score": 0.1754588782787323, "chain_id": "33PPUNGG384ZUPWJIDZ2K066NYOZRP_1_8"} {"score": 0.2804451286792755, "chain_id": "33PPUNGG384ZUPWJIDZ2K066NYOZRP_1_9"} {"score": 0.3814610540866852, "chain_id": "33PPUNGG384ZUPWJIDZ2K066NYOZRP_1_10"} {"score": 0.9442885518074036, "chain_id": "3MX2NQ3YC9TLK7Y6KOYEKELZNHG5X1_1_1"} {"score": 0.9222685694694519, "chain_id": "3MX2NQ3YC9TLK7Y6KOYEKELZNHG5X1_1_3"} {"score": 0.7393324375152588, "chain_id": "3MX2NQ3YC9TLK7Y6KOYEKELZNHG5X1_1_2"} {"score": 0.8028088808059692, "chain_id": "3MX2NQ3YC9TLK7Y6KOYEKELZNHG5X1_1_4"} {"score": 0.012067971751093864, "chain_id": "3MX2NQ3YC9TLK7Y6KOYEKELZNHG5X1_1_5"} {"score": 0.5990684628486633, "chain_id": "3MX2NQ3YC9TLK7Y6KOYEKELZNHG5X1_1_6"} {"score": 0.21520189940929413, "chain_id": "3MX2NQ3YC9TLK7Y6KOYEKELZNHG5X1_1_7"} {"score": 0.0738210380077362, "chain_id": "3MX2NQ3YC9TLK7Y6KOYEKELZNHG5X1_1_8"} {"score": 0.13869334757328033, "chain_id": "3MX2NQ3YC9TLK7Y6KOYEKELZNHG5X1_1_9"} {"score": 0.028810057789087296, "chain_id": "3MX2NQ3YC9TLK7Y6KOYEKELZNHG5X1_1_10"} {"score": 0.9702327251434326, "chain_id": "379J5II41OFQGWAAH6OTDEWPT2PELB_1_1"} {"score": 0.9570897221565247, "chain_id": "379J5II41OFQGWAAH6OTDEWPT2PELB_1_2"} {"score": 0.20730231702327728, "chain_id": "379J5II41OFQGWAAH6OTDEWPT2PELB_1_7"} {"score": 0.2810819745063782, "chain_id": "379J5II41OFQGWAAH6OTDEWPT2PELB_1_8"} {"score": 0.48915398120880127, "chain_id": "379J5II41OFQGWAAH6OTDEWPT2PELB_1_3"} {"score": 0.08924774825572968, "chain_id": "379J5II41OFQGWAAH6OTDEWPT2PELB_1_4"} {"score": 0.28567802906036377, "chain_id": "379J5II41OFQGWAAH6OTDEWPT2PELB_1_5"} {"score": 0.13675442337989807, "chain_id": "379J5II41OFQGWAAH6OTDEWPT2PELB_1_6"} {"score": 0.029645659029483795, "chain_id": "379J5II41OFQGWAAH6OTDEWPT2PELB_1_9"} {"score": 0.023010892793536186, "chain_id": "379J5II41OFQGWAAH6OTDEWPT2PELB_1_10"} {"score": 0.03652810677886009, "chain_id": "3I2PTA7R3TT4TTIX5X7SSV8OL0CQKO_1_1"} {"score": 0.4423617720603943, "chain_id": "3I2PTA7R3TT4TTIX5X7SSV8OL0CQKO_1_2"} {"score": 0.08256098628044128, "chain_id": "3I2PTA7R3TT4TTIX5X7SSV8OL0CQKO_1_3"} {"score": 0.49008357524871826, "chain_id": "3I2PTA7R3TT4TTIX5X7SSV8OL0CQKO_1_4"} {"score": 0.045736778527498245, "chain_id": "3I2PTA7R3TT4TTIX5X7SSV8OL0CQKO_1_5"} {"score": 0.0241134874522686, "chain_id": "3I2PTA7R3TT4TTIX5X7SSV8OL0CQKO_1_6"} {"score": 0.2481575757265091, "chain_id": "3I2PTA7R3TT4TTIX5X7SSV8OL0CQKO_1_7"} {"score": 0.06069185212254524, "chain_id": "3I2PTA7R3TT4TTIX5X7SSV8OL0CQKO_1_8"} {"score": 0.09304334968328476, "chain_id": "3I2PTA7R3TT4TTIX5X7SSV8OL0CQKO_1_9"} {"score": 0.03675992414355278, "chain_id": "3I2PTA7R3TT4TTIX5X7SSV8OL0CQKO_1_10"} {"score": 0.04992837458848953, "chain_id": "3QBD8R3Z21IGUFGE5SS8W9OS9G3O4T_1_1"} {"score": 0.06485694646835327, "chain_id": "3QBD8R3Z21IGUFGE5SS8W9OS9G3O4T_1_2"} {"score": 0.0568777471780777, "chain_id": "3QBD8R3Z21IGUFGE5SS8W9OS9G3O4T_1_3"} {"score": 0.04957747086882591, "chain_id": "3QBD8R3Z21IGUFGE5SS8W9OS9G3O4T_1_4"} {"score": 0.029648978263139725, "chain_id": "3QBD8R3Z21IGUFGE5SS8W9OS9G3O4T_1_5"} {"score": 0.025286998599767685, "chain_id": "3QBD8R3Z21IGUFGE5SS8W9OS9G3O4T_1_6"} {"score": 0.48162102699279785, "chain_id": "3QBD8R3Z21IGUFGE5SS8W9OS9G3O4T_1_7"} {"score": 0.8289049863815308, "chain_id": "3QBD8R3Z21IGUFGE5SS8W9OS9G3O4T_1_8"} {"score": 0.01369687169790268, "chain_id": "3QBD8R3Z21IGUFGE5SS8W9OS9G3O4T_1_9"} {"score": 0.013297866098582745, "chain_id": "3QBD8R3Z21IGUFGE5SS8W9OS9G3O4T_1_10"} {"score": 0.9638262987136841, "chain_id": "3P1L2B7AD1OCSNNZBKRPIQQ3V2KOL8_1_1"} {"score": 0.9300445914268494, "chain_id": "3P1L2B7AD1OCSNNZBKRPIQQ3V2KOL8_1_2"} {"score": 0.36356648802757263, "chain_id": "3P1L2B7AD1OCSNNZBKRPIQQ3V2KOL8_1_3"} {"score": 0.9324454069137573, "chain_id": "3P1L2B7AD1OCSNNZBKRPIQQ3V2KOL8_1_4"} {"score": 0.29491713643074036, "chain_id": "3P1L2B7AD1OCSNNZBKRPIQQ3V2KOL8_1_5"} {"score": 0.35630589723587036, "chain_id": "3P1L2B7AD1OCSNNZBKRPIQQ3V2KOL8_1_6"} {"score": 0.059914812445640564, "chain_id": "3P1L2B7AD1OCSNNZBKRPIQQ3V2KOL8_1_7"} {"score": 0.15095160901546478, "chain_id": "3P1L2B7AD1OCSNNZBKRPIQQ3V2KOL8_1_8"} {"score": 0.21249574422836304, "chain_id": "3P1L2B7AD1OCSNNZBKRPIQQ3V2KOL8_1_9"} {"score": 0.10646486282348633, "chain_id": "3P1L2B7AD1OCSNNZBKRPIQQ3V2KOL8_1_10"} {"score": 0.6260544061660767, "chain_id": "3HUTX6F6VUM6R11R1E9K3URUR37O21_1_1"} {"score": 0.051288433372974396, "chain_id": "3HUTX6F6VUM6R11R1E9K3URUR37O21_1_2"} {"score": 0.09334775060415268, "chain_id": "3HUTX6F6VUM6R11R1E9K3URUR37O21_1_3"} {"score": 0.14934870600700378, "chain_id": "3HUTX6F6VUM6R11R1E9K3URUR37O21_1_4"} {"score": 0.19350869953632355, "chain_id": "3HUTX6F6VUM6R11R1E9K3URUR37O21_1_5"} {"score": 0.40014174580574036, "chain_id": "3HUTX6F6VUM6R11R1E9K3URUR37O21_1_6"} {"score": 0.3476385772228241, "chain_id": "3HUTX6F6VUM6R11R1E9K3URUR37O21_1_7"} {"score": 0.3940916359424591, "chain_id": "3HUTX6F6VUM6R11R1E9K3URUR37O21_1_8"} {"score": 0.17960546910762787, "chain_id": "3HUTX6F6VUM6R11R1E9K3URUR37O21_1_9"} {"score": 0.06682023406028748, "chain_id": "3HUTX6F6VUM6R11R1E9K3URUR37O21_1_10"} {"score": 0.9733428359031677, "chain_id": "3TK8OJTYM1KX9SBU4O6AUZTV2IMPV9_1_4"} {"score": 0.13051094114780426, "chain_id": "3TK8OJTYM1KX9SBU4O6AUZTV2IMPV9_1_1"} {"score": 0.04810451716184616, "chain_id": "3TK8OJTYM1KX9SBU4O6AUZTV2IMPV9_1_2"} {"score": 0.028842482715845108, "chain_id": "3TK8OJTYM1KX9SBU4O6AUZTV2IMPV9_1_3"} {"score": 0.05851084366440773, "chain_id": "3TK8OJTYM1KX9SBU4O6AUZTV2IMPV9_1_5"} {"score": 0.01876188814640045, "chain_id": "3TK8OJTYM1KX9SBU4O6AUZTV2IMPV9_1_6"} {"score": 0.10882007330656052, "chain_id": "3TK8OJTYM1KX9SBU4O6AUZTV2IMPV9_1_7"} {"score": 0.019618552178144455, "chain_id": "3TK8OJTYM1KX9SBU4O6AUZTV2IMPV9_1_8"} {"score": 0.027538854628801346, "chain_id": "3TK8OJTYM1KX9SBU4O6AUZTV2IMPV9_1_9"} {"score": 0.050183895975351334, "chain_id": "3TK8OJTYM1KX9SBU4O6AUZTV2IMPV9_1_10"} {"score": 0.9413265585899353, "chain_id": "32N49TQG3GHQMO5SF5OD44404J5VAT_1_1"} {"score": 0.6278968453407288, "chain_id": "32N49TQG3GHQMO5SF5OD44404J5VAT_1_2"} {"score": 0.029164355248212814, "chain_id": "32N49TQG3GHQMO5SF5OD44404J5VAT_1_9"} {"score": 0.0345325842499733, "chain_id": "32N49TQG3GHQMO5SF5OD44404J5VAT_1_3"} {"score": 0.14665505290031433, "chain_id": "32N49TQG3GHQMO5SF5OD44404J5VAT_1_4"} {"score": 0.13644711673259735, "chain_id": "32N49TQG3GHQMO5SF5OD44404J5VAT_1_5"} {"score": 0.07580530643463135, "chain_id": "32N49TQG3GHQMO5SF5OD44404J5VAT_1_6"} {"score": 0.8029125332832336, "chain_id": "32N49TQG3GHQMO5SF5OD44404J5VAT_1_7"} {"score": 0.15409933030605316, "chain_id": "32N49TQG3GHQMO5SF5OD44404J5VAT_1_8"} {"score": 0.03152432292699814, "chain_id": "32N49TQG3GHQMO5SF5OD44404J5VAT_1_10"} {"score": 0.4914538264274597, "chain_id": "3E1QT0TDFP87HUSDJ05GTO8BZTN8IC_1_1"} {"score": 0.09199605137109756, "chain_id": "3E1QT0TDFP87HUSDJ05GTO8BZTN8IC_1_2"} {"score": 0.09199605137109756, "chain_id": "3E1QT0TDFP87HUSDJ05GTO8BZTN8IC_1_3"} {"score": 0.5062057971954346, "chain_id": "3E1QT0TDFP87HUSDJ05GTO8BZTN8IC_1_4"} {"score": 0.07050807774066925, "chain_id": "3E1QT0TDFP87HUSDJ05GTO8BZTN8IC_1_5"} {"score": 0.0626477599143982, "chain_id": "3E1QT0TDFP87HUSDJ05GTO8BZTN8IC_1_6"} {"score": 0.14568525552749634, "chain_id": "3E1QT0TDFP87HUSDJ05GTO8BZTN8IC_1_7"} {"score": 0.7133998870849609, "chain_id": "3E1QT0TDFP87HUSDJ05GTO8BZTN8IC_1_8"} {"score": 0.6326968669891357, "chain_id": "3E1QT0TDFP87HUSDJ05GTO8BZTN8IC_1_9"} {"score": 0.16897250711917877, "chain_id": "3E1QT0TDFP87HUSDJ05GTO8BZTN8IC_1_10"} {"score": 0.9785436987876892, "chain_id": "3HUTX6F6VUM6R11R1E9K3URUW242OF_1_1"} {"score": 0.8690801858901978, "chain_id": "3HUTX6F6VUM6R11R1E9K3URUW242OF_1_2"} {"score": 0.2151927798986435, "chain_id": "3HUTX6F6VUM6R11R1E9K3URUW242OF_1_3"} {"score": 0.9726438522338867, "chain_id": "3HUTX6F6VUM6R11R1E9K3URUW242OF_1_4"} {"score": 0.2810271382331848, "chain_id": "3HUTX6F6VUM6R11R1E9K3URUW242OF_1_5"} {"score": 0.3284761309623718, "chain_id": "3HUTX6F6VUM6R11R1E9K3URUW242OF_1_8"} {"score": 0.9300126433372498, "chain_id": "3HUTX6F6VUM6R11R1E9K3URUW242OF_1_6"} {"score": 0.033453088253736496, "chain_id": "3HUTX6F6VUM6R11R1E9K3URUW242OF_1_7"} {"score": 0.19927842915058136, "chain_id": "3HUTX6F6VUM6R11R1E9K3URUW242OF_1_9"} {"score": 0.07250146567821503, "chain_id": "3HUTX6F6VUM6R11R1E9K3URUW242OF_1_10"} {"score": 0.9372816681861877, "chain_id": "3E47SOBEYQV9TXIQ0CLLVA4USOVICQ_1_1"} {"score": 0.920660674571991, "chain_id": "3E47SOBEYQV9TXIQ0CLLVA4USOVICQ_1_2"} {"score": 0.6328613758087158, "chain_id": "3E47SOBEYQV9TXIQ0CLLVA4USOVICQ_1_3"} {"score": 0.8925496339797974, "chain_id": "3E47SOBEYQV9TXIQ0CLLVA4USOVICQ_1_4"} {"score": 0.8458051085472107, "chain_id": "3E47SOBEYQV9TXIQ0CLLVA4USOVICQ_1_6"} {"score": 0.2688213288784027, "chain_id": "3E47SOBEYQV9TXIQ0CLLVA4USOVICQ_1_9"} {"score": 0.8565037250518799, "chain_id": "3E47SOBEYQV9TXIQ0CLLVA4USOVICQ_1_10"} {"score": 0.16903503239154816, "chain_id": "3E47SOBEYQV9TXIQ0CLLVA4USOVICQ_1_5"} {"score": 0.052244238555431366, "chain_id": "3E47SOBEYQV9TXIQ0CLLVA4USOVICQ_1_7"} {"score": 0.05473557114601135, "chain_id": "3E47SOBEYQV9TXIQ0CLLVA4USOVICQ_1_8"} {"score": 0.9122827649116516, "chain_id": "3BQU611VFPJEKYIKKY5HGR4J4EM991_1_1"} {"score": 0.9237146377563477, "chain_id": "3BQU611VFPJEKYIKKY5HGR4J4EM991_1_2"} {"score": 0.04364433512091637, "chain_id": "3BQU611VFPJEKYIKKY5HGR4J4EM991_1_3"} {"score": 0.038071103394031525, "chain_id": "3BQU611VFPJEKYIKKY5HGR4J4EM991_1_4"} {"score": 0.027930209413170815, "chain_id": "3BQU611VFPJEKYIKKY5HGR4J4EM991_1_5"} {"score": 0.029362428933382034, "chain_id": "3BQU611VFPJEKYIKKY5HGR4J4EM991_1_6"} {"score": 0.03729819506406784, "chain_id": "3BQU611VFPJEKYIKKY5HGR4J4EM991_1_7"} {"score": 0.0937233492732048, "chain_id": "3BQU611VFPJEKYIKKY5HGR4J4EM991_1_8"} {"score": 0.031414128839969635, "chain_id": "3BQU611VFPJEKYIKKY5HGR4J4EM991_1_9"} {"score": 0.04310606047511101, "chain_id": "3BQU611VFPJEKYIKKY5HGR4J4EM991_1_10"} {"score": 0.13154636323451996, "chain_id": "3CTOC39K37PZCR70RDYARPRG690J7H_1_1"} {"score": 0.033245909959077835, "chain_id": "3CTOC39K37PZCR70RDYARPRG690J7H_1_2"} {"score": 0.12546423077583313, "chain_id": "3CTOC39K37PZCR70RDYARPRG690J7H_1_3"} {"score": 0.06373145431280136, "chain_id": "3CTOC39K37PZCR70RDYARPRG690J7H_1_4"} {"score": 0.8020957708358765, "chain_id": "3CTOC39K37PZCR70RDYARPRG690J7H_1_5"} {"score": 0.8099273443222046, "chain_id": "3CTOC39K37PZCR70RDYARPRG690J7H_1_6"} {"score": 0.312520295381546, "chain_id": "3CTOC39K37PZCR70RDYARPRG690J7H_1_7"} {"score": 0.244354709982872, "chain_id": "3CTOC39K37PZCR70RDYARPRG690J7H_1_8"} {"score": 0.08922423422336578, "chain_id": "3CTOC39K37PZCR70RDYARPRG690J7H_1_9"} {"score": 0.04714424908161163, "chain_id": "3CTOC39K37PZCR70RDYARPRG690J7H_1_10"} {"score": 0.9860212206840515, "chain_id": "38F5OAUN5NB3LLCA3DVPFCB14XF7HQ_1_1"} {"score": 0.42981693148612976, "chain_id": "38F5OAUN5NB3LLCA3DVPFCB14XF7HQ_1_2"} {"score": 0.7884041666984558, "chain_id": "38F5OAUN5NB3LLCA3DVPFCB14XF7HQ_1_3"} {"score": 0.725070059299469, "chain_id": "38F5OAUN5NB3LLCA3DVPFCB14XF7HQ_1_4"} {"score": 0.0514121875166893, "chain_id": "38F5OAUN5NB3LLCA3DVPFCB14XF7HQ_1_5"} {"score": 0.3984871804714203, "chain_id": "38F5OAUN5NB3LLCA3DVPFCB14XF7HQ_1_6"} {"score": 0.026861364021897316, "chain_id": "38F5OAUN5NB3LLCA3DVPFCB14XF7HQ_1_7"} {"score": 0.17641489207744598, "chain_id": "38F5OAUN5NB3LLCA3DVPFCB14XF7HQ_1_8"} {"score": 0.0528733916580677, "chain_id": "38F5OAUN5NB3LLCA3DVPFCB14XF7HQ_1_9"} {"score": 0.03839084878563881, "chain_id": "38F5OAUN5NB3LLCA3DVPFCB14XF7HQ_1_10"} {"score": 0.9793986082077026, "chain_id": "3IOEN3P9S7I9DADRIENCHBVYSXK61C_1_1"} {"score": 0.6550308465957642, "chain_id": "3IOEN3P9S7I9DADRIENCHBVYSXK61C_1_2"} {"score": 0.6256632804870605, "chain_id": "3IOEN3P9S7I9DADRIENCHBVYSXK61C_1_3"} {"score": 0.3166775405406952, "chain_id": "3IOEN3P9S7I9DADRIENCHBVYSXK61C_1_4"} {"score": 0.19763332605361938, "chain_id": "3IOEN3P9S7I9DADRIENCHBVYSXK61C_1_5"} {"score": 0.0368405319750309, "chain_id": "3IOEN3P9S7I9DADRIENCHBVYSXK61C_1_6"} {"score": 0.09972836822271347, "chain_id": "3IOEN3P9S7I9DADRIENCHBVYSXK61C_1_7"} {"score": 0.05708976462483406, "chain_id": "3IOEN3P9S7I9DADRIENCHBVYSXK61C_1_8"} {"score": 0.015471656806766987, "chain_id": "3IOEN3P9S7I9DADRIENCHBVYSXK61C_1_9"} {"score": 0.29672306776046753, "chain_id": "3IOEN3P9S7I9DADRIENCHBVYSXK61C_1_10"} {"score": 0.17820051312446594, "chain_id": "32ZKVD547FMBTP8119I3GKWN4KKB39_1_1"} {"score": 0.02862040512263775, "chain_id": "32ZKVD547FMBTP8119I3GKWN4KKB39_1_2"} {"score": 0.5427024364471436, "chain_id": "32ZKVD547FMBTP8119I3GKWN4KKB39_1_3"} {"score": 0.03753683716058731, "chain_id": "32ZKVD547FMBTP8119I3GKWN4KKB39_1_4"} {"score": 0.02266225405037403, "chain_id": "32ZKVD547FMBTP8119I3GKWN4KKB39_1_5"} {"score": 0.39440596103668213, "chain_id": "32ZKVD547FMBTP8119I3GKWN4KKB39_1_6"} {"score": 0.04193280264735222, "chain_id": "32ZKVD547FMBTP8119I3GKWN4KKB39_1_7"} {"score": 0.16941598057746887, "chain_id": "32ZKVD547FMBTP8119I3GKWN4KKB39_1_8"} {"score": 0.06460995972156525, "chain_id": "32ZKVD547FMBTP8119I3GKWN4KKB39_1_9"} {"score": 0.13471679389476776, "chain_id": "32ZKVD547FMBTP8119I3GKWN4KKB39_1_10"} {"score": 0.16854095458984375, "chain_id": "3EQHHY4HQSRAYL3GVEYAWSL4Y7H5GG_1_1"} {"score": 0.01442934200167656, "chain_id": "3EQHHY4HQSRAYL3GVEYAWSL4Y7H5GG_1_2"} {"score": 0.0427875742316246, "chain_id": "3EQHHY4HQSRAYL3GVEYAWSL4Y7H5GG_1_3"} {"score": 0.12291258573532104, "chain_id": "3EQHHY4HQSRAYL3GVEYAWSL4Y7H5GG_1_4"} {"score": 0.06866514682769775, "chain_id": "3EQHHY4HQSRAYL3GVEYAWSL4Y7H5GG_1_5"} {"score": 0.06003596633672714, "chain_id": "3EQHHY4HQSRAYL3GVEYAWSL4Y7H5GG_1_6"} {"score": 0.3087683916091919, "chain_id": "3EQHHY4HQSRAYL3GVEYAWSL4Y7H5GG_1_7"} {"score": 0.038922738283872604, "chain_id": "3EQHHY4HQSRAYL3GVEYAWSL4Y7H5GG_1_8"} {"score": 0.14311625063419342, "chain_id": "3EQHHY4HQSRAYL3GVEYAWSL4Y7H5GG_1_9"} {"score": 0.0401749424636364, "chain_id": "3EQHHY4HQSRAYL3GVEYAWSL4Y7H5GG_1_10"} {"score": 0.02005976252257824, "chain_id": "3JZQSN0I3Q920IW51QBJI4CHA92GFK_1_1"} {"score": 0.015939267352223396, "chain_id": "3JZQSN0I3Q920IW51QBJI4CHA92GFK_1_2"} {"score": 0.017219610512256622, "chain_id": "3JZQSN0I3Q920IW51QBJI4CHA92GFK_1_3"} {"score": 0.01528843306005001, "chain_id": "3JZQSN0I3Q920IW51QBJI4CHA92GFK_1_4"} {"score": 0.08931013941764832, "chain_id": "3JZQSN0I3Q920IW51QBJI4CHA92GFK_1_5"} {"score": 0.04815658926963806, "chain_id": "3JZQSN0I3Q920IW51QBJI4CHA92GFK_1_6"} {"score": 0.09187071770429611, "chain_id": "3JZQSN0I3Q920IW51QBJI4CHA92GFK_1_7"} {"score": 0.11663711816072464, "chain_id": "3JZQSN0I3Q920IW51QBJI4CHA92GFK_1_8"} {"score": 0.03829651698470116, "chain_id": "3JZQSN0I3Q920IW51QBJI4CHA92GFK_1_9"} {"score": 0.07733125984668732, "chain_id": "3JZQSN0I3Q920IW51QBJI4CHA92GFK_1_10"} {"score": 0.03233117237687111, "chain_id": "3DY4FPOOA1NIL5R9HGAZZUTA1QNVRY_1_1"} {"score": 0.06539224088191986, "chain_id": "3DY4FPOOA1NIL5R9HGAZZUTA1QNVRY_1_2"} {"score": 0.06875448673963547, "chain_id": "3DY4FPOOA1NIL5R9HGAZZUTA1QNVRY_1_3"} {"score": 0.36761173605918884, "chain_id": "3DY4FPOOA1NIL5R9HGAZZUTA1QNVRY_1_4"} {"score": 0.12227274477481842, "chain_id": "3DY4FPOOA1NIL5R9HGAZZUTA1QNVRY_1_5"} {"score": 0.0510932058095932, "chain_id": "3DY4FPOOA1NIL5R9HGAZZUTA1QNVRY_1_6"} {"score": 0.04838709533214569, "chain_id": "3DY4FPOOA1NIL5R9HGAZZUTA1QNVRY_1_7"} {"score": 0.02692732773721218, "chain_id": "3DY4FPOOA1NIL5R9HGAZZUTA1QNVRY_1_8"} {"score": 0.7707823514938354, "chain_id": "3DY4FPOOA1NIL5R9HGAZZUTA1QNVRY_1_9"} {"score": 0.12030671536922455, "chain_id": "3DY4FPOOA1NIL5R9HGAZZUTA1QNVRY_1_10"} {"score": 0.8384106755256653, "chain_id": "35K3O9HUABC4G40EVVLVI1R5AFUFEU_1_1"} {"score": 0.8384106755256653, "chain_id": "35K3O9HUABC4G40EVVLVI1R5AFUFEU_1_2"} {"score": 0.11092481762170792, "chain_id": "35K3O9HUABC4G40EVVLVI1R5AFUFEU_1_3"} {"score": 0.19794291257858276, "chain_id": "35K3O9HUABC4G40EVVLVI1R5AFUFEU_1_4"} {"score": 0.07673142105340958, "chain_id": "35K3O9HUABC4G40EVVLVI1R5AFUFEU_1_5"} {"score": 0.03344293683767319, "chain_id": "35K3O9HUABC4G40EVVLVI1R5AFUFEU_1_6"} {"score": 0.013386091217398643, "chain_id": "35K3O9HUABC4G40EVVLVI1R5AFUFEU_1_7"} {"score": 0.02977406419813633, "chain_id": "35K3O9HUABC4G40EVVLVI1R5AFUFEU_1_8"} {"score": 0.06415440887212753, "chain_id": "35K3O9HUABC4G40EVVLVI1R5AFUFEU_1_9"} {"score": 0.02269689179956913, "chain_id": "35K3O9HUABC4G40EVVLVI1R5AFUFEU_1_10"} {"score": 0.37326279282569885, "chain_id": "36TFCYNS449X00I1LQZN9BOPTWPXH5_1_4"} {"score": 0.3606208264827728, "chain_id": "36TFCYNS449X00I1LQZN9BOPTWPXH5_1_9"} {"score": 0.1413130909204483, "chain_id": "36TFCYNS449X00I1LQZN9BOPTWPXH5_1_1"} {"score": 0.7526001930236816, "chain_id": "36TFCYNS449X00I1LQZN9BOPTWPXH5_1_2"} {"score": 0.05759165808558464, "chain_id": "36TFCYNS449X00I1LQZN9BOPTWPXH5_1_3"} {"score": 0.3496326804161072, "chain_id": "36TFCYNS449X00I1LQZN9BOPTWPXH5_1_5"} {"score": 0.03452694043517113, "chain_id": "36TFCYNS449X00I1LQZN9BOPTWPXH5_1_6"} {"score": 0.030416741967201233, "chain_id": "36TFCYNS449X00I1LQZN9BOPTWPXH5_1_7"} {"score": 0.11173219233751297, "chain_id": "36TFCYNS449X00I1LQZN9BOPTWPXH5_1_8"} {"score": 0.07117951661348343, "chain_id": "36TFCYNS449X00I1LQZN9BOPTWPXH5_1_10"} {"score": 0.9825626611709595, "chain_id": "3LOTDFNYA7YYX4M5GVF147Y54GAFW2_1_1"} {"score": 0.9564521908760071, "chain_id": "3LOTDFNYA7YYX4M5GVF147Y54GAFW2_1_3"} {"score": 0.4116779565811157, "chain_id": "3LOTDFNYA7YYX4M5GVF147Y54GAFW2_1_6"} {"score": 0.8590763211250305, "chain_id": "3LOTDFNYA7YYX4M5GVF147Y54GAFW2_1_10"} {"score": 0.809370756149292, "chain_id": "3LOTDFNYA7YYX4M5GVF147Y54GAFW2_1_2"} {"score": 0.4242537021636963, "chain_id": "3LOTDFNYA7YYX4M5GVF147Y54GAFW2_1_4"} {"score": 0.8646987080574036, "chain_id": "3LOTDFNYA7YYX4M5GVF147Y54GAFW2_1_5"} {"score": 0.19071261584758759, "chain_id": "3LOTDFNYA7YYX4M5GVF147Y54GAFW2_1_7"} {"score": 0.05456475540995598, "chain_id": "3LOTDFNYA7YYX4M5GVF147Y54GAFW2_1_8"} {"score": 0.04919658973813057, "chain_id": "3LOTDFNYA7YYX4M5GVF147Y54GAFW2_1_9"} {"score": 0.1202094703912735, "chain_id": "3S0TNUHWKTHQ9JCRRM452RSYCBV8D5_1_10"} {"score": 0.4218917787075043, "chain_id": "3S0TNUHWKTHQ9JCRRM452RSYCBV8D5_1_1"} {"score": 0.9715226292610168, "chain_id": "3S0TNUHWKTHQ9JCRRM452RSYCBV8D5_1_2"} {"score": 0.39493730664253235, "chain_id": "3S0TNUHWKTHQ9JCRRM452RSYCBV8D5_1_3"} {"score": 0.939578115940094, "chain_id": "3S0TNUHWKTHQ9JCRRM452RSYCBV8D5_1_4"} {"score": 0.8778170943260193, "chain_id": "3S0TNUHWKTHQ9JCRRM452RSYCBV8D5_1_5"} {"score": 0.14851707220077515, "chain_id": "3S0TNUHWKTHQ9JCRRM452RSYCBV8D5_1_6"} {"score": 0.5546610951423645, "chain_id": "3S0TNUHWKTHQ9JCRRM452RSYCBV8D5_1_7"} {"score": 0.7075504064559937, "chain_id": "3S0TNUHWKTHQ9JCRRM452RSYCBV8D5_1_8"} {"score": 0.6840738654136658, "chain_id": "3S0TNUHWKTHQ9JCRRM452RSYCBV8D5_1_9"} {"score": 0.9796438217163086, "chain_id": "3I02618YA05XWDMUZYW5YDRCM9TPUU_1_1"} {"score": 0.9794799089431763, "chain_id": "3I02618YA05XWDMUZYW5YDRCM9TPUU_1_2"} {"score": 0.9673639535903931, "chain_id": "3I02618YA05XWDMUZYW5YDRCM9TPUU_1_3"} {"score": 0.5773493051528931, "chain_id": "3I02618YA05XWDMUZYW5YDRCM9TPUU_1_7"} {"score": 0.926590085029602, "chain_id": "3I02618YA05XWDMUZYW5YDRCM9TPUU_1_8"} {"score": 0.943450391292572, "chain_id": "3I02618YA05XWDMUZYW5YDRCM9TPUU_1_4"} {"score": 0.4940052628517151, "chain_id": "3I02618YA05XWDMUZYW5YDRCM9TPUU_1_5"} {"score": 0.558013379573822, "chain_id": "3I02618YA05XWDMUZYW5YDRCM9TPUU_1_6"} {"score": 0.21335142850875854, "chain_id": "3I02618YA05XWDMUZYW5YDRCM9TPUU_1_9"} {"score": 0.10678723454475403, "chain_id": "3I02618YA05XWDMUZYW5YDRCM9TPUU_1_10"} {"score": 0.9873680472373962, "chain_id": "3HWRJOOET51DK9501FLUP0AKP7IES0_1_1"} {"score": 0.9770893454551697, "chain_id": "3HWRJOOET51DK9501FLUP0AKP7IES0_1_3"} {"score": 0.2625569999217987, "chain_id": "3HWRJOOET51DK9501FLUP0AKP7IES0_1_6"} {"score": 0.821988046169281, "chain_id": "3HWRJOOET51DK9501FLUP0AKP7IES0_1_10"} {"score": 0.8947615623474121, "chain_id": "3HWRJOOET51DK9501FLUP0AKP7IES0_1_2"} {"score": 0.5838497281074524, "chain_id": "3HWRJOOET51DK9501FLUP0AKP7IES0_1_4"} {"score": 0.8418757319450378, "chain_id": "3HWRJOOET51DK9501FLUP0AKP7IES0_1_5"} {"score": 0.13193458318710327, "chain_id": "3HWRJOOET51DK9501FLUP0AKP7IES0_1_7"} {"score": 0.04096521437168121, "chain_id": "3HWRJOOET51DK9501FLUP0AKP7IES0_1_8"} {"score": 0.04806977137923241, "chain_id": "3HWRJOOET51DK9501FLUP0AKP7IES0_1_9"} {"score": 0.983146607875824, "chain_id": "3DQQ64TANGKAOHBZUYB6G1C9A0WWPH_1_1"} {"score": 0.9731060266494751, "chain_id": "3DQQ64TANGKAOHBZUYB6G1C9A0WWPH_1_3"} {"score": 0.23300118744373322, "chain_id": "3DQQ64TANGKAOHBZUYB6G1C9A0WWPH_1_6"} {"score": 0.8628008365631104, "chain_id": "3DQQ64TANGKAOHBZUYB6G1C9A0WWPH_1_2"} {"score": 0.6266837120056152, "chain_id": "3DQQ64TANGKAOHBZUYB6G1C9A0WWPH_1_4"} {"score": 0.8094238638877869, "chain_id": "3DQQ64TANGKAOHBZUYB6G1C9A0WWPH_1_5"} {"score": 0.1242581158876419, "chain_id": "3DQQ64TANGKAOHBZUYB6G1C9A0WWPH_1_7"} {"score": 0.040466152131557465, "chain_id": "3DQQ64TANGKAOHBZUYB6G1C9A0WWPH_1_8"} {"score": 0.047473784536123276, "chain_id": "3DQQ64TANGKAOHBZUYB6G1C9A0WWPH_1_9"} {"score": 0.7785788178443909, "chain_id": "3DQQ64TANGKAOHBZUYB6G1C9A0WWPH_1_10"} {"score": 0.1055155098438263, "chain_id": "3AQF3RZ558H03P7ZPD2X6DZSK436FY_1_3"} {"score": 0.6445529460906982, "chain_id": "3AQF3RZ558H03P7ZPD2X6DZSK436FY_1_1"} {"score": 0.06526731699705124, "chain_id": "3AQF3RZ558H03P7ZPD2X6DZSK436FY_1_2"} {"score": 0.0868285596370697, "chain_id": "3AQF3RZ558H03P7ZPD2X6DZSK436FY_1_4"} {"score": 0.051892973482608795, "chain_id": "3AQF3RZ558H03P7ZPD2X6DZSK436FY_1_5"} {"score": 0.017946962267160416, "chain_id": "3AQF3RZ558H03P7ZPD2X6DZSK436FY_1_6"} {"score": 0.016580404713749886, "chain_id": "3AQF3RZ558H03P7ZPD2X6DZSK436FY_1_7"} {"score": 0.8000346422195435, "chain_id": "3AQF3RZ558H03P7ZPD2X6DZSK436FY_1_8"} {"score": 0.10256002843379974, "chain_id": "3AQF3RZ558H03P7ZPD2X6DZSK436FY_1_9"} {"score": 0.11532667279243469, "chain_id": "3AQF3RZ558H03P7ZPD2X6DZSK436FY_1_10"} {"score": 0.20346413552761078, "chain_id": "3AWETUDC92RM1QT0SQ5T685F1RYZIT_1_1"} {"score": 0.8731870055198669, "chain_id": "3AWETUDC92RM1QT0SQ5T685F1RYZIT_1_2"} {"score": 0.33461451530456543, "chain_id": "3AWETUDC92RM1QT0SQ5T685F1RYZIT_1_4"} {"score": 0.6469814777374268, "chain_id": "3AWETUDC92RM1QT0SQ5T685F1RYZIT_1_7"} {"score": 0.2729649543762207, "chain_id": "3AWETUDC92RM1QT0SQ5T685F1RYZIT_1_8"} {"score": 0.21492546796798706, "chain_id": "3AWETUDC92RM1QT0SQ5T685F1RYZIT_1_3"} {"score": 0.03815823048353195, "chain_id": "3AWETUDC92RM1QT0SQ5T685F1RYZIT_1_5"} {"score": 0.22118929028511047, "chain_id": "3AWETUDC92RM1QT0SQ5T685F1RYZIT_1_6"} {"score": 0.2861438989639282, "chain_id": "3AWETUDC92RM1QT0SQ5T685F1RYZIT_1_9"} {"score": 0.029086677357554436, "chain_id": "3AWETUDC92RM1QT0SQ5T685F1RYZIT_1_10"} {"score": 0.1850355863571167, "chain_id": "3NC5L260MOLQSVD3P9ORNDLJ11PFOE_1_6"} {"score": 0.09181347489356995, "chain_id": "3NC5L260MOLQSVD3P9ORNDLJ11PFOE_1_1"} {"score": 0.8257176280021667, "chain_id": "3NC5L260MOLQSVD3P9ORNDLJ11PFOE_1_2"} {"score": 0.11647084355354309, "chain_id": "3NC5L260MOLQSVD3P9ORNDLJ11PFOE_1_3"} {"score": 0.3192174434661865, "chain_id": "3NC5L260MOLQSVD3P9ORNDLJ11PFOE_1_4"} {"score": 0.11763497442007065, "chain_id": "3NC5L260MOLQSVD3P9ORNDLJ11PFOE_1_5"} {"score": 0.02712339162826538, "chain_id": "3NC5L260MOLQSVD3P9ORNDLJ11PFOE_1_7"} {"score": 0.6451728940010071, "chain_id": "3NC5L260MOLQSVD3P9ORNDLJ11PFOE_1_8"} {"score": 0.02170667238533497, "chain_id": "3NC5L260MOLQSVD3P9ORNDLJ11PFOE_1_9"} {"score": 0.021121691912412643, "chain_id": "3NC5L260MOLQSVD3P9ORNDLJ11PFOE_1_10"} {"score": 0.9931634664535522, "chain_id": "3CPLWGV3MOYZ90MEL8OMYSZ385SN96_1_1"} {"score": 0.7480411529541016, "chain_id": "3CPLWGV3MOYZ90MEL8OMYSZ385SN96_1_2"} {"score": 0.8205676674842834, "chain_id": "3CPLWGV3MOYZ90MEL8OMYSZ385SN96_1_3"} {"score": 0.8724973797798157, "chain_id": "3CPLWGV3MOYZ90MEL8OMYSZ385SN96_1_4"} {"score": 0.6654886603355408, "chain_id": "3CPLWGV3MOYZ90MEL8OMYSZ385SN96_1_5"} {"score": 0.8731579184532166, "chain_id": "3CPLWGV3MOYZ90MEL8OMYSZ385SN96_1_6"} {"score": 0.781036376953125, "chain_id": "3CPLWGV3MOYZ90MEL8OMYSZ385SN96_1_7"} {"score": 0.9800149202346802, "chain_id": "3CPLWGV3MOYZ90MEL8OMYSZ385SN96_1_8"} {"score": 0.8854208588600159, "chain_id": "3CPLWGV3MOYZ90MEL8OMYSZ385SN96_1_9"} {"score": 0.7284432053565979, "chain_id": "3CPLWGV3MOYZ90MEL8OMYSZ385SN96_1_10"} {"score": 0.214212566614151, "chain_id": "3VFJCI1K4ZYZ381ESLBDZTQ0DFHRGU_1_1"} {"score": 0.05136697366833687, "chain_id": "3VFJCI1K4ZYZ381ESLBDZTQ0DFHRGU_1_3"} {"score": 0.7923832535743713, "chain_id": "3VFJCI1K4ZYZ381ESLBDZTQ0DFHRGU_1_4"} {"score": 0.9431554079055786, "chain_id": "3VFJCI1K4ZYZ381ESLBDZTQ0DFHRGU_1_6"} {"score": 0.06026478111743927, "chain_id": "3VFJCI1K4ZYZ381ESLBDZTQ0DFHRGU_1_7"} {"score": 0.771210253238678, "chain_id": "3VFJCI1K4ZYZ381ESLBDZTQ0DFHRGU_1_8"} {"score": 0.04515543580055237, "chain_id": "3VFJCI1K4ZYZ381ESLBDZTQ0DFHRGU_1_2"} {"score": 0.045243773609399796, "chain_id": "3VFJCI1K4ZYZ381ESLBDZTQ0DFHRGU_1_5"} {"score": 0.02506859228014946, "chain_id": "3VFJCI1K4ZYZ381ESLBDZTQ0DFHRGU_1_9"} {"score": 0.9623396396636963, "chain_id": "3VFJCI1K4ZYZ381ESLBDZTQ0DFHRGU_1_10"} {"score": 0.32473933696746826, "chain_id": "31T4R4OBOSFC4D1UHLHO4LELF8XC73_1_1"} {"score": 0.6003976464271545, "chain_id": "31T4R4OBOSFC4D1UHLHO4LELF8XC73_1_2"} {"score": 0.01861424930393696, "chain_id": "31T4R4OBOSFC4D1UHLHO4LELF8XC73_1_3"} {"score": 0.016135141253471375, "chain_id": "31T4R4OBOSFC4D1UHLHO4LELF8XC73_1_4"} {"score": 0.022804921492934227, "chain_id": "31T4R4OBOSFC4D1UHLHO4LELF8XC73_1_5"} {"score": 0.6590448021888733, "chain_id": "31T4R4OBOSFC4D1UHLHO4LELF8XC73_1_6"} {"score": 0.0779382735490799, "chain_id": "31T4R4OBOSFC4D1UHLHO4LELF8XC73_1_7"} {"score": 0.0458078570663929, "chain_id": "31T4R4OBOSFC4D1UHLHO4LELF8XC73_1_8"} {"score": 0.09477932006120682, "chain_id": "31T4R4OBOSFC4D1UHLHO4LELF8XC73_1_9"} {"score": 0.053582772612571716, "chain_id": "31T4R4OBOSFC4D1UHLHO4LELF8XC73_1_10"} {"score": 0.7880358099937439, "chain_id": "3A7Y0R2P2ONTR6DR9Q28LO447L7XJJ_1_3"} {"score": 0.8494555354118347, "chain_id": "3A7Y0R2P2ONTR6DR9Q28LO447L7XJJ_1_4"} {"score": 0.35392525792121887, "chain_id": "3A7Y0R2P2ONTR6DR9Q28LO447L7XJJ_1_5"} {"score": 0.8518862128257751, "chain_id": "3A7Y0R2P2ONTR6DR9Q28LO447L7XJJ_1_6"} {"score": 0.9504674673080444, "chain_id": "3A7Y0R2P2ONTR6DR9Q28LO447L7XJJ_1_1"} {"score": 0.9588498473167419, "chain_id": "3A7Y0R2P2ONTR6DR9Q28LO447L7XJJ_1_2"} {"score": 0.9537092447280884, "chain_id": "3A7Y0R2P2ONTR6DR9Q28LO447L7XJJ_1_7"} {"score": 0.8041806817054749, "chain_id": "3A7Y0R2P2ONTR6DR9Q28LO447L7XJJ_1_8"} {"score": 0.7247335910797119, "chain_id": "3A7Y0R2P2ONTR6DR9Q28LO447L7XJJ_1_9"} {"score": 0.1881871223449707, "chain_id": "3A7Y0R2P2ONTR6DR9Q28LO447L7XJJ_1_10"} {"score": 0.9632719159126282, "chain_id": "374TNBHA8BUZDY7E9C8J13NZNZ6YQK_1_1"} {"score": 0.8587329387664795, "chain_id": "374TNBHA8BUZDY7E9C8J13NZNZ6YQK_1_2"} {"score": 0.8589411377906799, "chain_id": "374TNBHA8BUZDY7E9C8J13NZNZ6YQK_1_7"} {"score": 0.06821277737617493, "chain_id": "374TNBHA8BUZDY7E9C8J13NZNZ6YQK_1_9"} {"score": 0.9239509701728821, "chain_id": "374TNBHA8BUZDY7E9C8J13NZNZ6YQK_1_3"} {"score": 0.8866487741470337, "chain_id": "374TNBHA8BUZDY7E9C8J13NZNZ6YQK_1_4"} {"score": 0.4113549590110779, "chain_id": "374TNBHA8BUZDY7E9C8J13NZNZ6YQK_1_5"} {"score": 0.1444053202867508, "chain_id": "374TNBHA8BUZDY7E9C8J13NZNZ6YQK_1_6"} {"score": 0.2686096131801605, "chain_id": "374TNBHA8BUZDY7E9C8J13NZNZ6YQK_1_8"} {"score": 0.3635387718677521, "chain_id": "374TNBHA8BUZDY7E9C8J13NZNZ6YQK_1_10"} {"score": 0.04311505705118179, "chain_id": "3F6HPJW4JDZEWAATS00UKO4GXUBW27_1_2"} {"score": 0.9476605653762817, "chain_id": "3F6HPJW4JDZEWAATS00UKO4GXUBW27_1_6"} {"score": 0.05285045877099037, "chain_id": "3F6HPJW4JDZEWAATS00UKO4GXUBW27_1_7"} {"score": 0.7650109529495239, "chain_id": "3F6HPJW4JDZEWAATS00UKO4GXUBW27_1_8"} {"score": 0.9607446193695068, "chain_id": "3F6HPJW4JDZEWAATS00UKO4GXUBW27_1_10"} {"score": 0.18584595620632172, "chain_id": "3F6HPJW4JDZEWAATS00UKO4GXUBW27_1_1"} {"score": 0.05136697366833687, "chain_id": "3F6HPJW4JDZEWAATS00UKO4GXUBW27_1_3"} {"score": 0.7611142992973328, "chain_id": "3F6HPJW4JDZEWAATS00UKO4GXUBW27_1_4"} {"score": 0.04108928143978119, "chain_id": "3F6HPJW4JDZEWAATS00UKO4GXUBW27_1_5"} {"score": 0.024033280089497566, "chain_id": "3F6HPJW4JDZEWAATS00UKO4GXUBW27_1_9"} {"score": 0.18234467506408691, "chain_id": "35K3O9HUABC4G40EVVLVI1R5ZUNFE6_1_1"} {"score": 0.7753292322158813, "chain_id": "35K3O9HUABC4G40EVVLVI1R5ZUNFE6_1_4"} {"score": 0.9412473440170288, "chain_id": "35K3O9HUABC4G40EVVLVI1R5ZUNFE6_1_6"} {"score": 0.05303419753909111, "chain_id": "35K3O9HUABC4G40EVVLVI1R5ZUNFE6_1_7"} {"score": 0.7558279037475586, "chain_id": "35K3O9HUABC4G40EVVLVI1R5ZUNFE6_1_8"} {"score": 0.04701714217662811, "chain_id": "35K3O9HUABC4G40EVVLVI1R5ZUNFE6_1_2"} {"score": 0.05674714595079422, "chain_id": "35K3O9HUABC4G40EVVLVI1R5ZUNFE6_1_3"} {"score": 0.04182294011116028, "chain_id": "35K3O9HUABC4G40EVVLVI1R5ZUNFE6_1_5"} {"score": 0.023562954738736153, "chain_id": "35K3O9HUABC4G40EVVLVI1R5ZUNFE6_1_9"} {"score": 0.9637272953987122, "chain_id": "35K3O9HUABC4G40EVVLVI1R5ZUNFE6_1_10"} {"score": 0.9825589656829834, "chain_id": "3OB0CAO74HOM058BQMLPSPVYXPYYH3_1_1"} {"score": 0.9903897643089294, "chain_id": "3OB0CAO74HOM058BQMLPSPVYXPYYH3_1_2"} {"score": 0.58482426404953, "chain_id": "3OB0CAO74HOM058BQMLPSPVYXPYYH3_1_3"} {"score": 0.9013376235961914, "chain_id": "3OB0CAO74HOM058BQMLPSPVYXPYYH3_1_4"} {"score": 0.8763706684112549, "chain_id": "3OB0CAO74HOM058BQMLPSPVYXPYYH3_1_7"} {"score": 0.9501082897186279, "chain_id": "3OB0CAO74HOM058BQMLPSPVYXPYYH3_1_5"} {"score": 0.24694277346134186, "chain_id": "3OB0CAO74HOM058BQMLPSPVYXPYYH3_1_6"} {"score": 0.31797224283218384, "chain_id": "3OB0CAO74HOM058BQMLPSPVYXPYYH3_1_8"} {"score": 0.09196104109287262, "chain_id": "3OB0CAO74HOM058BQMLPSPVYXPYYH3_1_9"} {"score": 0.09662456065416336, "chain_id": "3OB0CAO74HOM058BQMLPSPVYXPYYH3_1_10"} {"score": 0.669204831123352, "chain_id": "3ZR9AIQJUB8VRYOV37QX68SAFF0040_1_5"} {"score": 0.19202911853790283, "chain_id": "3ZR9AIQJUB8VRYOV37QX68SAFF0040_1_6"} {"score": 0.8611013293266296, "chain_id": "3ZR9AIQJUB8VRYOV37QX68SAFF0040_1_1"} {"score": 0.8236163258552551, "chain_id": "3ZR9AIQJUB8VRYOV37QX68SAFF0040_1_2"} {"score": 0.6050009727478027, "chain_id": "3ZR9AIQJUB8VRYOV37QX68SAFF0040_1_3"} {"score": 0.5454185605049133, "chain_id": "3ZR9AIQJUB8VRYOV37QX68SAFF0040_1_4"} {"score": 0.2547372877597809, "chain_id": "3ZR9AIQJUB8VRYOV37QX68SAFF0040_1_7"} {"score": 0.7751531600952148, "chain_id": "3ZR9AIQJUB8VRYOV37QX68SAFF0040_1_8"} {"score": 0.10231832414865494, "chain_id": "3ZR9AIQJUB8VRYOV37QX68SAFF0040_1_9"} {"score": 0.5233879685401917, "chain_id": "3ZR9AIQJUB8VRYOV37QX68SAFF0040_1_10"} {"score": 0.7291103005409241, "chain_id": "3G2UL9A02DDNOWST7U4LILMBIK876N_1_1"} {"score": 0.16920152306556702, "chain_id": "3G2UL9A02DDNOWST7U4LILMBIK876N_1_3"} {"score": 0.1727638691663742, "chain_id": "3G2UL9A02DDNOWST7U4LILMBIK876N_1_10"} {"score": 0.6885530948638916, "chain_id": "3G2UL9A02DDNOWST7U4LILMBIK876N_1_2"} {"score": 0.05573464184999466, "chain_id": "3G2UL9A02DDNOWST7U4LILMBIK876N_1_4"} {"score": 0.12512466311454773, "chain_id": "3G2UL9A02DDNOWST7U4LILMBIK876N_1_5"} {"score": 0.5531158447265625, "chain_id": "3G2UL9A02DDNOWST7U4LILMBIK876N_1_6"} {"score": 0.5042633414268494, "chain_id": "3G2UL9A02DDNOWST7U4LILMBIK876N_1_7"} {"score": 0.08953291177749634, "chain_id": "3G2UL9A02DDNOWST7U4LILMBIK876N_1_8"} {"score": 0.5048033595085144, "chain_id": "3G2UL9A02DDNOWST7U4LILMBIK876N_1_9"} {"score": 0.9227306246757507, "chain_id": "37TRT2X24QQME3AQ4UAQWRDCNKEJBU_1_4"} {"score": 0.28917357325553894, "chain_id": "37TRT2X24QQME3AQ4UAQWRDCNKEJBU_1_5"} {"score": 0.8277022242546082, "chain_id": "37TRT2X24QQME3AQ4UAQWRDCNKEJBU_1_1"} {"score": 0.4304412007331848, "chain_id": "37TRT2X24QQME3AQ4UAQWRDCNKEJBU_1_2"} {"score": 0.23808550834655762, "chain_id": "37TRT2X24QQME3AQ4UAQWRDCNKEJBU_1_3"} {"score": 0.14238208532333374, "chain_id": "37TRT2X24QQME3AQ4UAQWRDCNKEJBU_1_6"} {"score": 0.17642055451869965, "chain_id": "37TRT2X24QQME3AQ4UAQWRDCNKEJBU_1_7"} {"score": 0.23750227689743042, "chain_id": "37TRT2X24QQME3AQ4UAQWRDCNKEJBU_1_8"} {"score": 0.5427939295768738, "chain_id": "37TRT2X24QQME3AQ4UAQWRDCNKEJBU_1_9"} {"score": 0.08564585447311401, "chain_id": "37TRT2X24QQME3AQ4UAQWRDCNKEJBU_1_10"} {"score": 0.9657419919967651, "chain_id": "384PI804XS0ETJQ6T8MF4B8GV6AS0U_1_1"} {"score": 0.8643925189971924, "chain_id": "384PI804XS0ETJQ6T8MF4B8GV6AS0U_1_4"} {"score": 0.5450475215911865, "chain_id": "384PI804XS0ETJQ6T8MF4B8GV6AS0U_1_8"} {"score": 0.47473496198654175, "chain_id": "384PI804XS0ETJQ6T8MF4B8GV6AS0U_1_10"} {"score": 0.8201829195022583, "chain_id": "384PI804XS0ETJQ6T8MF4B8GV6AS0U_1_2"} {"score": 0.5524961948394775, "chain_id": "384PI804XS0ETJQ6T8MF4B8GV6AS0U_1_3"} {"score": 0.4939960539340973, "chain_id": "384PI804XS0ETJQ6T8MF4B8GV6AS0U_1_5"} {"score": 0.09056214243173599, "chain_id": "384PI804XS0ETJQ6T8MF4B8GV6AS0U_1_6"} {"score": 0.369128555059433, "chain_id": "384PI804XS0ETJQ6T8MF4B8GV6AS0U_1_7"} {"score": 0.15732009708881378, "chain_id": "384PI804XS0ETJQ6T8MF4B8GV6AS0U_1_9"} {"score": 0.7225006818771362, "chain_id": "3NLZY2D53POFDZ0FQXJT7VL3GKJQL3_1_2"} {"score": 0.9404172897338867, "chain_id": "3NLZY2D53POFDZ0FQXJT7VL3GKJQL3_1_3"} {"score": 0.7114068269729614, "chain_id": "3NLZY2D53POFDZ0FQXJT7VL3GKJQL3_1_4"} {"score": 0.4802230894565582, "chain_id": "3NLZY2D53POFDZ0FQXJT7VL3GKJQL3_1_5"} {"score": 0.45373958349227905, "chain_id": "3NLZY2D53POFDZ0FQXJT7VL3GKJQL3_1_6"} {"score": 0.4918138086795807, "chain_id": "3NLZY2D53POFDZ0FQXJT7VL3GKJQL3_1_8"} {"score": 0.8908689022064209, "chain_id": "3NLZY2D53POFDZ0FQXJT7VL3GKJQL3_1_1"} {"score": 0.5830057859420776, "chain_id": "3NLZY2D53POFDZ0FQXJT7VL3GKJQL3_1_7"} {"score": 0.08952134847640991, "chain_id": "3NLZY2D53POFDZ0FQXJT7VL3GKJQL3_1_9"} {"score": 0.25437769293785095, "chain_id": "3NLZY2D53POFDZ0FQXJT7VL3GKJQL3_1_10"} {"score": 0.507226288318634, "chain_id": "3LO69W1SU3CO0A61N1EHDHH1B9TLGB_1_1"} {"score": 0.20223049819469452, "chain_id": "3LO69W1SU3CO0A61N1EHDHH1B9TLGB_1_2"} {"score": 0.6222405433654785, "chain_id": "3LO69W1SU3CO0A61N1EHDHH1B9TLGB_1_3"} {"score": 0.3197760283946991, "chain_id": "3LO69W1SU3CO0A61N1EHDHH1B9TLGB_1_4"} {"score": 0.01921486109495163, "chain_id": "3LO69W1SU3CO0A61N1EHDHH1B9TLGB_1_5"} {"score": 0.20007523894309998, "chain_id": "3LO69W1SU3CO0A61N1EHDHH1B9TLGB_1_6"} {"score": 0.05101653188467026, "chain_id": "3LO69W1SU3CO0A61N1EHDHH1B9TLGB_1_7"} {"score": 0.03340328857302666, "chain_id": "3LO69W1SU3CO0A61N1EHDHH1B9TLGB_1_8"} {"score": 0.3033924996852875, "chain_id": "3LO69W1SU3CO0A61N1EHDHH1B9TLGB_1_9"} {"score": 0.13844719529151917, "chain_id": "3LO69W1SU3CO0A61N1EHDHH1B9TLGB_1_10"} {"score": 0.41251349449157715, "chain_id": "3LOZAJ85YDCTLAFJ25WGM7IN7KN2XP_1_1"} {"score": 0.3687959313392639, "chain_id": "3LOZAJ85YDCTLAFJ25WGM7IN7KN2XP_1_2"} {"score": 0.46565136313438416, "chain_id": "3LOZAJ85YDCTLAFJ25WGM7IN7KN2XP_1_3"} {"score": 0.6570301651954651, "chain_id": "3LOZAJ85YDCTLAFJ25WGM7IN7KN2XP_1_4"} {"score": 0.9444075226783752, "chain_id": "3LOZAJ85YDCTLAFJ25WGM7IN7KN2XP_1_6"} {"score": 0.9478194713592529, "chain_id": "3LOZAJ85YDCTLAFJ25WGM7IN7KN2XP_1_7"} {"score": 0.22971481084823608, "chain_id": "3LOZAJ85YDCTLAFJ25WGM7IN7KN2XP_1_9"} {"score": 0.9329063296318054, "chain_id": "3LOZAJ85YDCTLAFJ25WGM7IN7KN2XP_1_5"} {"score": 0.8140560388565063, "chain_id": "3LOZAJ85YDCTLAFJ25WGM7IN7KN2XP_1_8"} {"score": 0.9641981720924377, "chain_id": "3LOZAJ85YDCTLAFJ25WGM7IN7KN2XP_1_10"} {"score": 0.9137376546859741, "chain_id": "3SBEHTYCWN2MW0JVW43AS1WDZ8QYIN_1_5"} {"score": 0.07196665555238724, "chain_id": "3SBEHTYCWN2MW0JVW43AS1WDZ8QYIN_1_9"} {"score": 0.37285494804382324, "chain_id": "3SBEHTYCWN2MW0JVW43AS1WDZ8QYIN_1_1"} {"score": 0.05613686516880989, "chain_id": "3SBEHTYCWN2MW0JVW43AS1WDZ8QYIN_1_2"} {"score": 0.5567802786827087, "chain_id": "3SBEHTYCWN2MW0JVW43AS1WDZ8QYIN_1_3"} {"score": 0.9050872921943665, "chain_id": "3SBEHTYCWN2MW0JVW43AS1WDZ8QYIN_1_4"} {"score": 0.08890809118747711, "chain_id": "3SBEHTYCWN2MW0JVW43AS1WDZ8QYIN_1_6"} {"score": 0.06293460726737976, "chain_id": "3SBEHTYCWN2MW0JVW43AS1WDZ8QYIN_1_7"} {"score": 0.4937765300273895, "chain_id": "3SBEHTYCWN2MW0JVW43AS1WDZ8QYIN_1_8"} {"score": 0.03564877063035965, "chain_id": "3SBEHTYCWN2MW0JVW43AS1WDZ8QYIN_1_10"} {"score": 0.8898991942405701, "chain_id": "3VAR3R6G1P0HDG3GHVILDL4XATDO8V_1_1"} {"score": 0.549602746963501, "chain_id": "3VAR3R6G1P0HDG3GHVILDL4XATDO8V_1_2"} {"score": 0.02377162128686905, "chain_id": "3VAR3R6G1P0HDG3GHVILDL4XATDO8V_1_3"} {"score": 0.05784239619970322, "chain_id": "3VAR3R6G1P0HDG3GHVILDL4XATDO8V_1_4"} {"score": 0.026000412181019783, "chain_id": "3VAR3R6G1P0HDG3GHVILDL4XATDO8V_1_5"} {"score": 0.6195244789123535, "chain_id": "3VAR3R6G1P0HDG3GHVILDL4XATDO8V_1_6"} {"score": 0.48388436436653137, "chain_id": "3VAR3R6G1P0HDG3GHVILDL4XATDO8V_1_7"} {"score": 0.037743695080280304, "chain_id": "3VAR3R6G1P0HDG3GHVILDL4XATDO8V_1_8"} {"score": 0.09558628499507904, "chain_id": "3VAR3R6G1P0HDG3GHVILDL4XATDO8V_1_9"} {"score": 0.3329949378967285, "chain_id": "3VAR3R6G1P0HDG3GHVILDL4XATDO8V_1_10"} {"score": 0.10667096078395844, "chain_id": "31LM9EDVOLROFCZN7KFZNMD60TTJNK_1_3"} {"score": 0.09150847047567368, "chain_id": "31LM9EDVOLROFCZN7KFZNMD60TTJNK_1_1"} {"score": 0.08685626834630966, "chain_id": "31LM9EDVOLROFCZN7KFZNMD60TTJNK_1_2"} {"score": 0.02077862247824669, "chain_id": "31LM9EDVOLROFCZN7KFZNMD60TTJNK_1_4"} {"score": 0.05891876667737961, "chain_id": "31LM9EDVOLROFCZN7KFZNMD60TTJNK_1_5"} {"score": 0.12729111313819885, "chain_id": "31LM9EDVOLROFCZN7KFZNMD60TTJNK_1_6"} {"score": 0.5131028294563293, "chain_id": "31LM9EDVOLROFCZN7KFZNMD60TTJNK_1_7"} {"score": 0.16251814365386963, "chain_id": "31LM9EDVOLROFCZN7KFZNMD60TTJNK_1_8"} {"score": 0.038752224296331406, "chain_id": "31LM9EDVOLROFCZN7KFZNMD60TTJNK_1_9"} {"score": 0.47940874099731445, "chain_id": "31LM9EDVOLROFCZN7KFZNMD60TTJNK_1_10"} {"score": 0.05705438554286957, "chain_id": "3M1CVSFP604YHG9BT6U3YH5SIKEQAZ_1_1"} {"score": 0.027819301933050156, "chain_id": "3M1CVSFP604YHG9BT6U3YH5SIKEQAZ_1_2"} {"score": 0.018887275829911232, "chain_id": "3M1CVSFP604YHG9BT6U3YH5SIKEQAZ_1_3"} {"score": 0.05530038848519325, "chain_id": "3M1CVSFP604YHG9BT6U3YH5SIKEQAZ_1_4"} {"score": 0.031873445957899094, "chain_id": "3M1CVSFP604YHG9BT6U3YH5SIKEQAZ_1_5"} {"score": 0.03618212044239044, "chain_id": "3M1CVSFP604YHG9BT6U3YH5SIKEQAZ_1_6"} {"score": 0.028398364782333374, "chain_id": "3M1CVSFP604YHG9BT6U3YH5SIKEQAZ_1_7"} {"score": 0.03241768851876259, "chain_id": "3M1CVSFP604YHG9BT6U3YH5SIKEQAZ_1_8"} {"score": 0.08552878350019455, "chain_id": "3M1CVSFP604YHG9BT6U3YH5SIKEQAZ_1_9"} {"score": 0.058425914496183395, "chain_id": "3M1CVSFP604YHG9BT6U3YH5SIKEQAZ_1_10"} {"score": 0.20100541412830353, "chain_id": "3V5Q80FXIXQH5C85IGPSFRTJT4D324_1_1"} {"score": 0.49129530787467957, "chain_id": "3V5Q80FXIXQH5C85IGPSFRTJT4D324_1_2"} {"score": 0.12391183525323868, "chain_id": "3V5Q80FXIXQH5C85IGPSFRTJT4D324_1_3"} {"score": 0.5171208381652832, "chain_id": "3V5Q80FXIXQH5C85IGPSFRTJT4D324_1_4"} {"score": 0.26295819878578186, "chain_id": "3V5Q80FXIXQH5C85IGPSFRTJT4D324_1_5"} {"score": 0.045819707214832306, "chain_id": "3V5Q80FXIXQH5C85IGPSFRTJT4D324_1_6"} {"score": 0.19558599591255188, "chain_id": "3V5Q80FXIXQH5C85IGPSFRTJT4D324_1_7"} {"score": 0.05173434317111969, "chain_id": "3V5Q80FXIXQH5C85IGPSFRTJT4D324_1_8"} {"score": 0.05099257454276085, "chain_id": "3V5Q80FXIXQH5C85IGPSFRTJT4D324_1_9"} {"score": 0.026679880917072296, "chain_id": "3V5Q80FXIXQH5C85IGPSFRTJT4D324_1_10"} {"score": 0.2600262463092804, "chain_id": "3YMU66OBIN7MEENBWGZJLPOUMS0GH7_1_1"} {"score": 0.15558598935604095, "chain_id": "3YMU66OBIN7MEENBWGZJLPOUMS0GH7_1_2"} {"score": 0.04336703196167946, "chain_id": "3YMU66OBIN7MEENBWGZJLPOUMS0GH7_1_3"} {"score": 0.09111856669187546, "chain_id": "3YMU66OBIN7MEENBWGZJLPOUMS0GH7_1_4"} {"score": 0.19273261725902557, "chain_id": "3YMU66OBIN7MEENBWGZJLPOUMS0GH7_1_5"} {"score": 0.04219653457403183, "chain_id": "3YMU66OBIN7MEENBWGZJLPOUMS0GH7_1_6"} {"score": 0.21929802000522614, "chain_id": "3YMU66OBIN7MEENBWGZJLPOUMS0GH7_1_7"} {"score": 0.05562572553753853, "chain_id": "3YMU66OBIN7MEENBWGZJLPOUMS0GH7_1_8"} {"score": 0.043623290956020355, "chain_id": "3YMU66OBIN7MEENBWGZJLPOUMS0GH7_1_9"} {"score": 0.07488968968391418, "chain_id": "3YMU66OBIN7MEENBWGZJLPOUMS0GH7_1_10"} {"score": 0.07710454612970352, "chain_id": "3TS1AR6UQQDJ7PL48N7PCRZO7C27FZ_1_1"} {"score": 0.08871620893478394, "chain_id": "3TS1AR6UQQDJ7PL48N7PCRZO7C27FZ_1_2"} {"score": 0.06165222078561783, "chain_id": "3TS1AR6UQQDJ7PL48N7PCRZO7C27FZ_1_3"} {"score": 0.05256262421607971, "chain_id": "3TS1AR6UQQDJ7PL48N7PCRZO7C27FZ_1_4"} {"score": 0.05664495751261711, "chain_id": "3TS1AR6UQQDJ7PL48N7PCRZO7C27FZ_1_5"} {"score": 0.1825229525566101, "chain_id": "3TS1AR6UQQDJ7PL48N7PCRZO7C27FZ_1_6"} {"score": 0.07734936475753784, "chain_id": "3TS1AR6UQQDJ7PL48N7PCRZO7C27FZ_1_7"} {"score": 0.06673472374677658, "chain_id": "3TS1AR6UQQDJ7PL48N7PCRZO7C27FZ_1_8"} {"score": 0.046738192439079285, "chain_id": "3TS1AR6UQQDJ7PL48N7PCRZO7C27FZ_1_9"} {"score": 0.16695688664913177, "chain_id": "3TS1AR6UQQDJ7PL48N7PCRZO7C27FZ_1_10"} {"score": 0.9123125672340393, "chain_id": "3QEMNNSB2XYM9578HHCZORW3YWJ7DI_1_2"} {"score": 0.9071104526519775, "chain_id": "3QEMNNSB2XYM9578HHCZORW3YWJ7DI_1_3"} {"score": 0.8968566656112671, "chain_id": "3QEMNNSB2XYM9578HHCZORW3YWJ7DI_1_4"} {"score": 0.7788392305374146, "chain_id": "3QEMNNSB2XYM9578HHCZORW3YWJ7DI_1_5"} {"score": 0.9370175004005432, "chain_id": "3QEMNNSB2XYM9578HHCZORW3YWJ7DI_1_7"} {"score": 0.1564686894416809, "chain_id": "3QEMNNSB2XYM9578HHCZORW3YWJ7DI_1_1"} {"score": 0.970737874507904, "chain_id": "3QEMNNSB2XYM9578HHCZORW3YWJ7DI_1_6"} {"score": 0.4204248785972595, "chain_id": "3QEMNNSB2XYM9578HHCZORW3YWJ7DI_1_8"} {"score": 0.7092394232749939, "chain_id": "3QEMNNSB2XYM9578HHCZORW3YWJ7DI_1_9"} {"score": 0.9214490652084351, "chain_id": "3QEMNNSB2XYM9578HHCZORW3YWJ7DI_1_10"} {"score": 0.6595115065574646, "chain_id": "3IXEICO792IAMUP0KX7MNHET5T0T68_1_1"} {"score": 0.9468364119529724, "chain_id": "3IXEICO792IAMUP0KX7MNHET5T0T68_1_2"} {"score": 0.9658678770065308, "chain_id": "3IXEICO792IAMUP0KX7MNHET5T0T68_1_3"} {"score": 0.9391937255859375, "chain_id": "3IXEICO792IAMUP0KX7MNHET5T0T68_1_4"} {"score": 0.022379836067557335, "chain_id": "3IXEICO792IAMUP0KX7MNHET5T0T68_1_5"} {"score": 0.024492355063557625, "chain_id": "3IXEICO792IAMUP0KX7MNHET5T0T68_1_6"} {"score": 0.37049975991249084, "chain_id": "3IXEICO792IAMUP0KX7MNHET5T0T68_1_7"} {"score": 0.03341865539550781, "chain_id": "3IXEICO792IAMUP0KX7MNHET5T0T68_1_8"} {"score": 0.07298371940851212, "chain_id": "3IXEICO792IAMUP0KX7MNHET5T0T68_1_9"} {"score": 0.015674732625484467, "chain_id": "3IXEICO792IAMUP0KX7MNHET5T0T68_1_10"} {"score": 0.6121972799301147, "chain_id": "3G5F9DBFOPW5WBD6LBY5LQR4BS1VHW_1_1"} {"score": 0.9611775875091553, "chain_id": "3G5F9DBFOPW5WBD6LBY5LQR4BS1VHW_1_9"} {"score": 0.9570435285568237, "chain_id": "3G5F9DBFOPW5WBD6LBY5LQR4BS1VHW_1_2"} {"score": 0.039136409759521484, "chain_id": "3G5F9DBFOPW5WBD6LBY5LQR4BS1VHW_1_3"} {"score": 0.02350773476064205, "chain_id": "3G5F9DBFOPW5WBD6LBY5LQR4BS1VHW_1_4"} {"score": 0.4332660734653473, "chain_id": "3G5F9DBFOPW5WBD6LBY5LQR4BS1VHW_1_5"} {"score": 0.07844137400388718, "chain_id": "3G5F9DBFOPW5WBD6LBY5LQR4BS1VHW_1_6"} {"score": 0.12226562201976776, "chain_id": "3G5F9DBFOPW5WBD6LBY5LQR4BS1VHW_1_7"} {"score": 0.9123250246047974, "chain_id": "3G5F9DBFOPW5WBD6LBY5LQR4BS1VHW_1_8"} {"score": 0.5749903321266174, "chain_id": "3G5F9DBFOPW5WBD6LBY5LQR4BS1VHW_1_10"} {"score": 0.9753310680389404, "chain_id": "3NPI0JQDAO4IW075ZT6VTH5A00VPTJ_1_1"} {"score": 0.8709502816200256, "chain_id": "3NPI0JQDAO4IW075ZT6VTH5A00VPTJ_1_3"} {"score": 0.9778732061386108, "chain_id": "3NPI0JQDAO4IW075ZT6VTH5A00VPTJ_1_8"} {"score": 0.9563980102539062, "chain_id": "3NPI0JQDAO4IW075ZT6VTH5A00VPTJ_1_2"} {"score": 0.9469307661056519, "chain_id": "3NPI0JQDAO4IW075ZT6VTH5A00VPTJ_1_4"} {"score": 0.2596448063850403, "chain_id": "3NPI0JQDAO4IW075ZT6VTH5A00VPTJ_1_5"} {"score": 0.6506345868110657, "chain_id": "3NPI0JQDAO4IW075ZT6VTH5A00VPTJ_1_6"} {"score": 0.4108152389526367, "chain_id": "3NPI0JQDAO4IW075ZT6VTH5A00VPTJ_1_7"} {"score": 0.07473696768283844, "chain_id": "3NPI0JQDAO4IW075ZT6VTH5A00VPTJ_1_9"} {"score": 0.3748806118965149, "chain_id": "3NPI0JQDAO4IW075ZT6VTH5A00VPTJ_1_10"} {"score": 0.9868444204330444, "chain_id": "3DI28L7YXADDQP66OW6ATZNBUAI1EH_1_3"} {"score": 0.9547449946403503, "chain_id": "3DI28L7YXADDQP66OW6ATZNBUAI1EH_1_7"} {"score": 0.8756271600723267, "chain_id": "3DI28L7YXADDQP66OW6ATZNBUAI1EH_1_8"} {"score": 0.9870931506156921, "chain_id": "3DI28L7YXADDQP66OW6ATZNBUAI1EH_1_1"} {"score": 0.9669545292854309, "chain_id": "3DI28L7YXADDQP66OW6ATZNBUAI1EH_1_2"} {"score": 0.6017292141914368, "chain_id": "3DI28L7YXADDQP66OW6ATZNBUAI1EH_1_4"} {"score": 0.13154742121696472, "chain_id": "3DI28L7YXADDQP66OW6ATZNBUAI1EH_1_5"} {"score": 0.9463115334510803, "chain_id": "3DI28L7YXADDQP66OW6ATZNBUAI1EH_1_6"} {"score": 0.19280141592025757, "chain_id": "3DI28L7YXADDQP66OW6ATZNBUAI1EH_1_9"} {"score": 0.0355888232588768, "chain_id": "3DI28L7YXADDQP66OW6ATZNBUAI1EH_1_10"} {"score": 0.19042262434959412, "chain_id": "3BWI6RSP7G8R1BL8DCNJU9EOXWIE7R_1_1"} {"score": 0.24923454225063324, "chain_id": "3BWI6RSP7G8R1BL8DCNJU9EOXWIE7R_1_2"} {"score": 0.09590952843427658, "chain_id": "3BWI6RSP7G8R1BL8DCNJU9EOXWIE7R_1_3"} {"score": 0.04243480786681175, "chain_id": "3BWI6RSP7G8R1BL8DCNJU9EOXWIE7R_1_4"} {"score": 0.13771934807300568, "chain_id": "3BWI6RSP7G8R1BL8DCNJU9EOXWIE7R_1_5"} {"score": 0.03412945568561554, "chain_id": "3BWI6RSP7G8R1BL8DCNJU9EOXWIE7R_1_6"} {"score": 0.05711529776453972, "chain_id": "3BWI6RSP7G8R1BL8DCNJU9EOXWIE7R_1_7"} {"score": 0.02454688772559166, "chain_id": "3BWI6RSP7G8R1BL8DCNJU9EOXWIE7R_1_8"} {"score": 0.02437150478363037, "chain_id": "3BWI6RSP7G8R1BL8DCNJU9EOXWIE7R_1_9"} {"score": 0.1026318147778511, "chain_id": "3BWI6RSP7G8R1BL8DCNJU9EOXWIE7R_1_10"} {"score": 0.8677151799201965, "chain_id": "3SITXWYCNV8N9NFFLYPRN0LRXFTBX3_1_1"} {"score": 0.9662438035011292, "chain_id": "3SITXWYCNV8N9NFFLYPRN0LRXFTBX3_1_3"} {"score": 0.8924311995506287, "chain_id": "3SITXWYCNV8N9NFFLYPRN0LRXFTBX3_1_10"} {"score": 0.7390774488449097, "chain_id": "3SITXWYCNV8N9NFFLYPRN0LRXFTBX3_1_2"} {"score": 0.7166509032249451, "chain_id": "3SITXWYCNV8N9NFFLYPRN0LRXFTBX3_1_4"} {"score": 0.07298184931278229, "chain_id": "3SITXWYCNV8N9NFFLYPRN0LRXFTBX3_1_5"} {"score": 0.487682580947876, "chain_id": "3SITXWYCNV8N9NFFLYPRN0LRXFTBX3_1_6"} {"score": 0.7349413633346558, "chain_id": "3SITXWYCNV8N9NFFLYPRN0LRXFTBX3_1_7"} {"score": 0.02858559973537922, "chain_id": "3SITXWYCNV8N9NFFLYPRN0LRXFTBX3_1_8"} {"score": 0.05392782762646675, "chain_id": "3SITXWYCNV8N9NFFLYPRN0LRXFTBX3_1_9"} {"score": 0.8730975985527039, "chain_id": "3X3OR7WPZZZ97V0J432TL403I028LJ_1_2"} {"score": 0.9899190664291382, "chain_id": "3X3OR7WPZZZ97V0J432TL403I028LJ_1_4"} {"score": 0.9736604690551758, "chain_id": "3X3OR7WPZZZ97V0J432TL403I028LJ_1_5"} {"score": 0.9490594267845154, "chain_id": "3X3OR7WPZZZ97V0J432TL403I028LJ_1_6"} {"score": 0.8088275194168091, "chain_id": "3X3OR7WPZZZ97V0J432TL403I028LJ_1_1"} {"score": 0.9772505164146423, "chain_id": "3X3OR7WPZZZ97V0J432TL403I028LJ_1_3"} {"score": 0.5436381101608276, "chain_id": "3X3OR7WPZZZ97V0J432TL403I028LJ_1_7"} {"score": 0.057776033878326416, "chain_id": "3X3OR7WPZZZ97V0J432TL403I028LJ_1_8"} {"score": 0.852643609046936, "chain_id": "3X3OR7WPZZZ97V0J432TL403I028LJ_1_9"} {"score": 0.4531160295009613, "chain_id": "3X3OR7WPZZZ97V0J432TL403I028LJ_1_10"} {"score": 0.9930194020271301, "chain_id": "3COPXFW7XBBJTHHI5KS3SQIEIB2KPJ_1_1"} {"score": 0.9890272617340088, "chain_id": "3COPXFW7XBBJTHHI5KS3SQIEIB2KPJ_1_2"} {"score": 0.9927254915237427, "chain_id": "3COPXFW7XBBJTHHI5KS3SQIEIB2KPJ_1_3"} {"score": 0.9039775729179382, "chain_id": "3COPXFW7XBBJTHHI5KS3SQIEIB2KPJ_1_4"} {"score": 0.12487666308879852, "chain_id": "3COPXFW7XBBJTHHI5KS3SQIEIB2KPJ_1_8"} {"score": 0.08035741746425629, "chain_id": "3COPXFW7XBBJTHHI5KS3SQIEIB2KPJ_1_5"} {"score": 0.03511691838502884, "chain_id": "3COPXFW7XBBJTHHI5KS3SQIEIB2KPJ_1_6"} {"score": 0.12795662879943848, "chain_id": "3COPXFW7XBBJTHHI5KS3SQIEIB2KPJ_1_7"} {"score": 0.09927283227443695, "chain_id": "3COPXFW7XBBJTHHI5KS3SQIEIB2KPJ_1_9"} {"score": 0.5734879374504089, "chain_id": "3COPXFW7XBBJTHHI5KS3SQIEIB2KPJ_1_10"} {"score": 0.8388729095458984, "chain_id": "39GHHAVOMFQ2T4PHPF03OD76CTZ4JC_1_1"} {"score": 0.655609667301178, "chain_id": "39GHHAVOMFQ2T4PHPF03OD76CTZ4JC_1_2"} {"score": 0.8127828240394592, "chain_id": "39GHHAVOMFQ2T4PHPF03OD76CTZ4JC_1_3"} {"score": 0.3541891276836395, "chain_id": "39GHHAVOMFQ2T4PHPF03OD76CTZ4JC_1_4"} {"score": 0.20652128756046295, "chain_id": "39GHHAVOMFQ2T4PHPF03OD76CTZ4JC_1_5"} {"score": 0.40452367067337036, "chain_id": "39GHHAVOMFQ2T4PHPF03OD76CTZ4JC_1_6"} {"score": 0.17748276889324188, "chain_id": "39GHHAVOMFQ2T4PHPF03OD76CTZ4JC_1_7"} {"score": 0.07201887667179108, "chain_id": "39GHHAVOMFQ2T4PHPF03OD76CTZ4JC_1_8"} {"score": 0.21665357053279877, "chain_id": "39GHHAVOMFQ2T4PHPF03OD76CTZ4JC_1_9"} {"score": 0.7836982607841492, "chain_id": "39GHHAVOMFQ2T4PHPF03OD76CTZ4JC_1_10"} {"score": 0.991576611995697, "chain_id": "3B4YI393V9VEUSAI2A5ZEHEZMW5SSL_1_1"} {"score": 0.9040723443031311, "chain_id": "3B4YI393V9VEUSAI2A5ZEHEZMW5SSL_1_2"} {"score": 0.9016364216804504, "chain_id": "3B4YI393V9VEUSAI2A5ZEHEZMW5SSL_1_4"} {"score": 0.22652201354503632, "chain_id": "3B4YI393V9VEUSAI2A5ZEHEZMW5SSL_1_5"} {"score": 0.9237200021743774, "chain_id": "3B4YI393V9VEUSAI2A5ZEHEZMW5SSL_1_6"} {"score": 0.980274498462677, "chain_id": "3B4YI393V9VEUSAI2A5ZEHEZMW5SSL_1_7"} {"score": 0.9132698178291321, "chain_id": "3B4YI393V9VEUSAI2A5ZEHEZMW5SSL_1_9"} {"score": 0.09229519218206406, "chain_id": "3B4YI393V9VEUSAI2A5ZEHEZMW5SSL_1_3"} {"score": 0.9599925875663757, "chain_id": "3B4YI393V9VEUSAI2A5ZEHEZMW5SSL_1_8"} {"score": 0.6633633971214294, "chain_id": "3B4YI393V9VEUSAI2A5ZEHEZMW5SSL_1_10"} {"score": 0.5672847628593445, "chain_id": "358010RM5ES2I1DLQFGROCFY5SGXVD_1_1"} {"score": 0.026940464973449707, "chain_id": "358010RM5ES2I1DLQFGROCFY5SGXVD_1_2"} {"score": 0.03843623772263527, "chain_id": "358010RM5ES2I1DLQFGROCFY5SGXVD_1_3"} {"score": 0.012274721637368202, "chain_id": "358010RM5ES2I1DLQFGROCFY5SGXVD_1_4"} {"score": 0.6300244331359863, "chain_id": "358010RM5ES2I1DLQFGROCFY5SGXVD_1_5"} {"score": 0.7793747186660767, "chain_id": "358010RM5ES2I1DLQFGROCFY5SGXVD_1_6"} {"score": 0.7176294922828674, "chain_id": "358010RM5ES2I1DLQFGROCFY5SGXVD_1_7"} {"score": 0.046665292233228683, "chain_id": "358010RM5ES2I1DLQFGROCFY5SGXVD_1_8"} {"score": 0.15539857745170593, "chain_id": "358010RM5ES2I1DLQFGROCFY5SGXVD_1_9"} {"score": 0.04810214042663574, "chain_id": "358010RM5ES2I1DLQFGROCFY5SGXVD_1_10"} {"score": 0.02039898931980133, "chain_id": "3ZPBJO59KP0J2UDKUQYBF4LXH4IDH8_1_1"} {"score": 0.029801685363054276, "chain_id": "3ZPBJO59KP0J2UDKUQYBF4LXH4IDH8_1_2"} {"score": 0.019129447638988495, "chain_id": "3ZPBJO59KP0J2UDKUQYBF4LXH4IDH8_1_3"} {"score": 0.03246943652629852, "chain_id": "3ZPBJO59KP0J2UDKUQYBF4LXH4IDH8_1_4"} {"score": 0.023985380306839943, "chain_id": "3ZPBJO59KP0J2UDKUQYBF4LXH4IDH8_1_5"} {"score": 0.09388952702283859, "chain_id": "3ZPBJO59KP0J2UDKUQYBF4LXH4IDH8_1_6"} {"score": 0.053435083478689194, "chain_id": "3ZPBJO59KP0J2UDKUQYBF4LXH4IDH8_1_7"} {"score": 0.04640437290072441, "chain_id": "3ZPBJO59KP0J2UDKUQYBF4LXH4IDH8_1_8"} {"score": 0.041978247463703156, "chain_id": "3ZPBJO59KP0J2UDKUQYBF4LXH4IDH8_1_9"} {"score": 0.055630914866924286, "chain_id": "3ZPBJO59KP0J2UDKUQYBF4LXH4IDH8_1_10"} {"score": 0.9838666915893555, "chain_id": "3AAJC4I4FGRIW1D6A8QTI9KFRGFJZE_1_1"} {"score": 0.6635459065437317, "chain_id": "3AAJC4I4FGRIW1D6A8QTI9KFRGFJZE_1_5"} {"score": 0.5723658204078674, "chain_id": "3AAJC4I4FGRIW1D6A8QTI9KFRGFJZE_1_6"} {"score": 0.5826608538627625, "chain_id": "3AAJC4I4FGRIW1D6A8QTI9KFRGFJZE_1_7"} {"score": 0.8434186577796936, "chain_id": "3AAJC4I4FGRIW1D6A8QTI9KFRGFJZE_1_2"} {"score": 0.8048439025878906, "chain_id": "3AAJC4I4FGRIW1D6A8QTI9KFRGFJZE_1_3"} {"score": 0.6612354516983032, "chain_id": "3AAJC4I4FGRIW1D6A8QTI9KFRGFJZE_1_4"} {"score": 0.04095875099301338, "chain_id": "3AAJC4I4FGRIW1D6A8QTI9KFRGFJZE_1_8"} {"score": 0.03956053778529167, "chain_id": "3AAJC4I4FGRIW1D6A8QTI9KFRGFJZE_1_9"} {"score": 0.23466959595680237, "chain_id": "3AAJC4I4FGRIW1D6A8QTI9KFRGFJZE_1_10"} {"score": 0.10889358818531036, "chain_id": "3GNCZX450IMDH48WTTFEYCFIRFBAP7_1_4"} {"score": 0.9899401068687439, "chain_id": "3GNCZX450IMDH48WTTFEYCFIRFBAP7_1_7"} {"score": 0.23216918110847473, "chain_id": "3GNCZX450IMDH48WTTFEYCFIRFBAP7_1_10"} {"score": 0.05620089918375015, "chain_id": "3GNCZX450IMDH48WTTFEYCFIRFBAP7_1_1"} {"score": 0.05811790004372597, "chain_id": "3GNCZX450IMDH48WTTFEYCFIRFBAP7_1_2"} {"score": 0.17988057434558868, "chain_id": "3GNCZX450IMDH48WTTFEYCFIRFBAP7_1_3"} {"score": 0.051997169852256775, "chain_id": "3GNCZX450IMDH48WTTFEYCFIRFBAP7_1_5"} {"score": 0.7987406849861145, "chain_id": "3GNCZX450IMDH48WTTFEYCFIRFBAP7_1_6"} {"score": 0.8331166505813599, "chain_id": "3GNCZX450IMDH48WTTFEYCFIRFBAP7_1_8"} {"score": 0.6241106986999512, "chain_id": "3GNCZX450IMDH48WTTFEYCFIRFBAP7_1_9"} {"score": 0.7295015454292297, "chain_id": "3UJ1CZ6IZHODOQC7QESRL647NP5S5W_1_5"} {"score": 0.8280764818191528, "chain_id": "3UJ1CZ6IZHODOQC7QESRL647NP5S5W_1_8"} {"score": 0.5561606884002686, "chain_id": "3UJ1CZ6IZHODOQC7QESRL647NP5S5W_1_1"} {"score": 0.6576045751571655, "chain_id": "3UJ1CZ6IZHODOQC7QESRL647NP5S5W_1_2"} {"score": 0.7987393140792847, "chain_id": "3UJ1CZ6IZHODOQC7QESRL647NP5S5W_1_3"} {"score": 0.7447609305381775, "chain_id": "3UJ1CZ6IZHODOQC7QESRL647NP5S5W_1_4"} {"score": 0.030584413558244705, "chain_id": "3UJ1CZ6IZHODOQC7QESRL647NP5S5W_1_6"} {"score": 0.013920615427196026, "chain_id": "3UJ1CZ6IZHODOQC7QESRL647NP5S5W_1_7"} {"score": 0.23129211366176605, "chain_id": "3UJ1CZ6IZHODOQC7QESRL647NP5S5W_1_9"} {"score": 0.08972518891096115, "chain_id": "3UJ1CZ6IZHODOQC7QESRL647NP5S5W_1_10"} {"score": 0.9490699172019958, "chain_id": "3DQQ64TANGKAOHBZUYB6G1C9AERWP4_1_3"} {"score": 0.96598881483078, "chain_id": "3DQQ64TANGKAOHBZUYB6G1C9AERWP4_1_4"} {"score": 0.20170822739601135, "chain_id": "3DQQ64TANGKAOHBZUYB6G1C9AERWP4_1_9"} {"score": 0.8705440163612366, "chain_id": "3DQQ64TANGKAOHBZUYB6G1C9AERWP4_1_1"} {"score": 0.4566705822944641, "chain_id": "3DQQ64TANGKAOHBZUYB6G1C9AERWP4_1_2"} {"score": 0.17224301397800446, "chain_id": "3DQQ64TANGKAOHBZUYB6G1C9AERWP4_1_5"} {"score": 0.18962536752223969, "chain_id": "3DQQ64TANGKAOHBZUYB6G1C9AERWP4_1_6"} {"score": 0.300541490316391, "chain_id": "3DQQ64TANGKAOHBZUYB6G1C9AERWP4_1_7"} {"score": 0.016791582107543945, "chain_id": "3DQQ64TANGKAOHBZUYB6G1C9AERWP4_1_8"} {"score": 0.26340505480766296, "chain_id": "3DQQ64TANGKAOHBZUYB6G1C9AERWP4_1_10"} {"score": 0.05878133326768875, "chain_id": "3CPLWGV3MOYZ90MEL8OMYSZ3LY59N4_1_1"} {"score": 0.06216033175587654, "chain_id": "3CPLWGV3MOYZ90MEL8OMYSZ3LY59N4_1_2"} {"score": 0.05432562902569771, "chain_id": "3CPLWGV3MOYZ90MEL8OMYSZ3LY59N4_1_3"} {"score": 0.06393332034349442, "chain_id": "3CPLWGV3MOYZ90MEL8OMYSZ3LY59N4_1_4"} {"score": 0.2870362102985382, "chain_id": "3CPLWGV3MOYZ90MEL8OMYSZ3LY59N4_1_5"} {"score": 0.07903248071670532, "chain_id": "3CPLWGV3MOYZ90MEL8OMYSZ3LY59N4_1_6"} {"score": 0.14126332104206085, "chain_id": "3CPLWGV3MOYZ90MEL8OMYSZ3LY59N4_1_7"} {"score": 0.030931660905480385, "chain_id": "3CPLWGV3MOYZ90MEL8OMYSZ3LY59N4_1_8"} {"score": 0.017358362674713135, "chain_id": "3CPLWGV3MOYZ90MEL8OMYSZ3LY59N4_1_9"} {"score": 0.03399306535720825, "chain_id": "3CPLWGV3MOYZ90MEL8OMYSZ3LY59N4_1_10"} {"score": 0.9152611494064331, "chain_id": "31EUONYN2V2FOSZTPOTV5ZO5MXDOVC_1_2"} {"score": 0.5675478577613831, "chain_id": "31EUONYN2V2FOSZTPOTV5ZO5MXDOVC_1_3"} {"score": 0.31397587060928345, "chain_id": "31EUONYN2V2FOSZTPOTV5ZO5MXDOVC_1_1"} {"score": 0.49796608090400696, "chain_id": "31EUONYN2V2FOSZTPOTV5ZO5MXDOVC_1_4"} {"score": 0.03460421413183212, "chain_id": "31EUONYN2V2FOSZTPOTV5ZO5MXDOVC_1_5"} {"score": 0.07857023179531097, "chain_id": "31EUONYN2V2FOSZTPOTV5ZO5MXDOVC_1_6"} {"score": 0.05302094668149948, "chain_id": "31EUONYN2V2FOSZTPOTV5ZO5MXDOVC_1_7"} {"score": 0.01990589313209057, "chain_id": "31EUONYN2V2FOSZTPOTV5ZO5MXDOVC_1_8"} {"score": 0.02114671654999256, "chain_id": "31EUONYN2V2FOSZTPOTV5ZO5MXDOVC_1_9"} {"score": 0.3170507848262787, "chain_id": "31EUONYN2V2FOSZTPOTV5ZO5MXDOVC_1_10"} {"score": 0.7402917742729187, "chain_id": "3DIP6YHAPCRV1PQRNHFP89AJ7XO8E5_1_1"} {"score": 0.9655640721321106, "chain_id": "3DIP6YHAPCRV1PQRNHFP89AJ7XO8E5_1_5"} {"score": 0.7648903727531433, "chain_id": "3DIP6YHAPCRV1PQRNHFP89AJ7XO8E5_1_7"} {"score": 0.9027394652366638, "chain_id": "3DIP6YHAPCRV1PQRNHFP89AJ7XO8E5_1_9"} {"score": 0.0968569964170456, "chain_id": "3DIP6YHAPCRV1PQRNHFP89AJ7XO8E5_1_2"} {"score": 0.08263739198446274, "chain_id": "3DIP6YHAPCRV1PQRNHFP89AJ7XO8E5_1_3"} {"score": 0.06310148537158966, "chain_id": "3DIP6YHAPCRV1PQRNHFP89AJ7XO8E5_1_4"} {"score": 0.061150066554546356, "chain_id": "3DIP6YHAPCRV1PQRNHFP89AJ7XO8E5_1_6"} {"score": 0.10117518156766891, "chain_id": "3DIP6YHAPCRV1PQRNHFP89AJ7XO8E5_1_8"} {"score": 0.04760640487074852, "chain_id": "3DIP6YHAPCRV1PQRNHFP89AJ7XO8E5_1_10"} {"score": 0.08878158032894135, "chain_id": "34V1S5K3GS0R2FGMMR25WHDHA7R96N_1_3"} {"score": 0.27395081520080566, "chain_id": "34V1S5K3GS0R2FGMMR25WHDHA7R96N_1_1"} {"score": 0.30657273530960083, "chain_id": "34V1S5K3GS0R2FGMMR25WHDHA7R96N_1_2"} {"score": 0.10709596425294876, "chain_id": "34V1S5K3GS0R2FGMMR25WHDHA7R96N_1_4"} {"score": 0.3051716983318329, "chain_id": "34V1S5K3GS0R2FGMMR25WHDHA7R96N_1_5"} {"score": 0.152327299118042, "chain_id": "34V1S5K3GS0R2FGMMR25WHDHA7R96N_1_6"} {"score": 0.02716139145195484, "chain_id": "34V1S5K3GS0R2FGMMR25WHDHA7R96N_1_7"} {"score": 0.16915485262870789, "chain_id": "34V1S5K3GS0R2FGMMR25WHDHA7R96N_1_8"} {"score": 0.04399985074996948, "chain_id": "34V1S5K3GS0R2FGMMR25WHDHA7R96N_1_9"} {"score": 0.07850237935781479, "chain_id": "34V1S5K3GS0R2FGMMR25WHDHA7R96N_1_10"} {"score": 0.9371589422225952, "chain_id": "37UEWGM5HT72ZTBBA2QAS6MU8IS1RF_1_2"} {"score": 0.9109808802604675, "chain_id": "37UEWGM5HT72ZTBBA2QAS6MU8IS1RF_1_3"} {"score": 0.6317013502120972, "chain_id": "37UEWGM5HT72ZTBBA2QAS6MU8IS1RF_1_9"} {"score": 0.4306640326976776, "chain_id": "37UEWGM5HT72ZTBBA2QAS6MU8IS1RF_1_1"} {"score": 0.1002872958779335, "chain_id": "37UEWGM5HT72ZTBBA2QAS6MU8IS1RF_1_4"} {"score": 0.04155878350138664, "chain_id": "37UEWGM5HT72ZTBBA2QAS6MU8IS1RF_1_5"} {"score": 0.13443580269813538, "chain_id": "37UEWGM5HT72ZTBBA2QAS6MU8IS1RF_1_6"} {"score": 0.2667769491672516, "chain_id": "37UEWGM5HT72ZTBBA2QAS6MU8IS1RF_1_7"} {"score": 0.02287575975060463, "chain_id": "37UEWGM5HT72ZTBBA2QAS6MU8IS1RF_1_8"} {"score": 0.550178050994873, "chain_id": "37UEWGM5HT72ZTBBA2QAS6MU8IS1RF_1_10"} {"score": 0.9797806739807129, "chain_id": "3RGU30DZTA7IXUENVJ0ZA7O6WIQMJP_1_1"} {"score": 0.944057285785675, "chain_id": "3RGU30DZTA7IXUENVJ0ZA7O6WIQMJP_1_4"} {"score": 0.761716902256012, "chain_id": "3RGU30DZTA7IXUENVJ0ZA7O6WIQMJP_1_2"} {"score": 0.9232766032218933, "chain_id": "3RGU30DZTA7IXUENVJ0ZA7O6WIQMJP_1_3"} {"score": 0.059294912964105606, "chain_id": "3RGU30DZTA7IXUENVJ0ZA7O6WIQMJP_1_5"} {"score": 0.0203122366219759, "chain_id": "3RGU30DZTA7IXUENVJ0ZA7O6WIQMJP_1_6"} {"score": 0.018798161298036575, "chain_id": "3RGU30DZTA7IXUENVJ0ZA7O6WIQMJP_1_7"} {"score": 0.07736842334270477, "chain_id": "3RGU30DZTA7IXUENVJ0ZA7O6WIQMJP_1_8"} {"score": 0.021748125553131104, "chain_id": "3RGU30DZTA7IXUENVJ0ZA7O6WIQMJP_1_9"} {"score": 0.02470923773944378, "chain_id": "3RGU30DZTA7IXUENVJ0ZA7O6WIQMJP_1_10"} {"score": 0.5237719416618347, "chain_id": "3S0TNUHWKTHQ9JCRRM452RSY9OT8DQ_1_1"} {"score": 0.4557165503501892, "chain_id": "3S0TNUHWKTHQ9JCRRM452RSY9OT8DQ_1_10"} {"score": 0.4119187593460083, "chain_id": "3S0TNUHWKTHQ9JCRRM452RSY9OT8DQ_1_2"} {"score": 0.27782589197158813, "chain_id": "3S0TNUHWKTHQ9JCRRM452RSY9OT8DQ_1_3"} {"score": 0.027700325474143028, "chain_id": "3S0TNUHWKTHQ9JCRRM452RSY9OT8DQ_1_4"} {"score": 0.3129349946975708, "chain_id": "3S0TNUHWKTHQ9JCRRM452RSY9OT8DQ_1_5"} {"score": 0.7985759973526001, "chain_id": "3S0TNUHWKTHQ9JCRRM452RSY9OT8DQ_1_6"} {"score": 0.12279020994901657, "chain_id": "3S0TNUHWKTHQ9JCRRM452RSY9OT8DQ_1_7"} {"score": 0.615582287311554, "chain_id": "3S0TNUHWKTHQ9JCRRM452RSY9OT8DQ_1_8"} {"score": 0.8866746425628662, "chain_id": "3S0TNUHWKTHQ9JCRRM452RSY9OT8DQ_1_9"} {"score": 0.8501101136207581, "chain_id": "32EYX73OY08I8Q29CQ0U38RRLGQURC_1_6"} {"score": 0.884676992893219, "chain_id": "32EYX73OY08I8Q29CQ0U38RRLGQURC_1_8"} {"score": 0.11442866176366806, "chain_id": "32EYX73OY08I8Q29CQ0U38RRLGQURC_1_1"} {"score": 0.649062991142273, "chain_id": "32EYX73OY08I8Q29CQ0U38RRLGQURC_1_2"} {"score": 0.4783647954463959, "chain_id": "32EYX73OY08I8Q29CQ0U38RRLGQURC_1_3"} {"score": 0.41176122426986694, "chain_id": "32EYX73OY08I8Q29CQ0U38RRLGQURC_1_4"} {"score": 0.3668137788772583, "chain_id": "32EYX73OY08I8Q29CQ0U38RRLGQURC_1_5"} {"score": 0.40353846549987793, "chain_id": "32EYX73OY08I8Q29CQ0U38RRLGQURC_1_7"} {"score": 0.20501410961151123, "chain_id": "32EYX73OY08I8Q29CQ0U38RRLGQURC_1_9"} {"score": 0.04619297385215759, "chain_id": "32EYX73OY08I8Q29CQ0U38RRLGQURC_1_10"} {"score": 0.9931579232215881, "chain_id": "3P4RDNWND55W1BOWA427IEHPH73IJ0_1_1"} {"score": 0.9931700229644775, "chain_id": "3P4RDNWND55W1BOWA427IEHPH73IJ0_1_2"} {"score": 0.992088794708252, "chain_id": "3P4RDNWND55W1BOWA427IEHPH73IJ0_1_3"} {"score": 0.9934792518615723, "chain_id": "3P4RDNWND55W1BOWA427IEHPH73IJ0_1_4"} {"score": 0.797666609287262, "chain_id": "3P4RDNWND55W1BOWA427IEHPH73IJ0_1_5"} {"score": 0.041131969541311264, "chain_id": "3P4RDNWND55W1BOWA427IEHPH73IJ0_1_6"} {"score": 0.19092996418476105, "chain_id": "3P4RDNWND55W1BOWA427IEHPH73IJ0_1_7"} {"score": 0.013852659612894058, "chain_id": "3P4RDNWND55W1BOWA427IEHPH73IJ0_1_8"} {"score": 0.025386832654476166, "chain_id": "3P4RDNWND55W1BOWA427IEHPH73IJ0_1_9"} {"score": 0.022900022566318512, "chain_id": "3P4RDNWND55W1BOWA427IEHPH73IJ0_1_10"} {"score": 0.048492394387722015, "chain_id": "39JEC7537U0EF32QZJK4AZUODJCCV1_1_7"} {"score": 0.1793692708015442, "chain_id": "39JEC7537U0EF32QZJK4AZUODJCCV1_1_1"} {"score": 0.10036386549472809, "chain_id": "39JEC7537U0EF32QZJK4AZUODJCCV1_1_2"} {"score": 0.06789931654930115, "chain_id": "39JEC7537U0EF32QZJK4AZUODJCCV1_1_3"} {"score": 0.13974498212337494, "chain_id": "39JEC7537U0EF32QZJK4AZUODJCCV1_1_4"} {"score": 0.09736977517604828, "chain_id": "39JEC7537U0EF32QZJK4AZUODJCCV1_1_5"} {"score": 0.04163971170783043, "chain_id": "39JEC7537U0EF32QZJK4AZUODJCCV1_1_6"} {"score": 0.29282885789871216, "chain_id": "39JEC7537U0EF32QZJK4AZUODJCCV1_1_8"} {"score": 0.03585021570324898, "chain_id": "39JEC7537U0EF32QZJK4AZUODJCCV1_1_9"} {"score": 0.053520213812589645, "chain_id": "39JEC7537U0EF32QZJK4AZUODJCCV1_1_10"} {"score": 0.9248103499412537, "chain_id": "3IAEQB9FMEJ1ZK89PPKBG7VK5TLWDS_1_4"} {"score": 0.9099322557449341, "chain_id": "3IAEQB9FMEJ1ZK89PPKBG7VK5TLWDS_1_1"} {"score": 0.9655501246452332, "chain_id": "3IAEQB9FMEJ1ZK89PPKBG7VK5TLWDS_1_2"} {"score": 0.3891332447528839, "chain_id": "3IAEQB9FMEJ1ZK89PPKBG7VK5TLWDS_1_3"} {"score": 0.018126243725419044, "chain_id": "3IAEQB9FMEJ1ZK89PPKBG7VK5TLWDS_1_5"} {"score": 0.013900495134294033, "chain_id": "3IAEQB9FMEJ1ZK89PPKBG7VK5TLWDS_1_6"} {"score": 0.22470398247241974, "chain_id": "3IAEQB9FMEJ1ZK89PPKBG7VK5TLWDS_1_7"} {"score": 0.9323638677597046, "chain_id": "3IAEQB9FMEJ1ZK89PPKBG7VK5TLWDS_1_8"} {"score": 0.032378822565078735, "chain_id": "3IAEQB9FMEJ1ZK89PPKBG7VK5TLWDS_1_9"} {"score": 0.012809830717742443, "chain_id": "3IAEQB9FMEJ1ZK89PPKBG7VK5TLWDS_1_10"} {"score": 0.7368147373199463, "chain_id": "3VHHR074H3G57HV0UYAN7448LBK7LN_1_1"} {"score": 0.9859920144081116, "chain_id": "3VHHR074H3G57HV0UYAN7448LBK7LN_1_5"} {"score": 0.9256269335746765, "chain_id": "3VHHR074H3G57HV0UYAN7448LBK7LN_1_7"} {"score": 0.9846070408821106, "chain_id": "3VHHR074H3G57HV0UYAN7448LBK7LN_1_2"} {"score": 0.9927776455879211, "chain_id": "3VHHR074H3G57HV0UYAN7448LBK7LN_1_3"} {"score": 0.9792460203170776, "chain_id": "3VHHR074H3G57HV0UYAN7448LBK7LN_1_4"} {"score": 0.8776112198829651, "chain_id": "3VHHR074H3G57HV0UYAN7448LBK7LN_1_6"} {"score": 0.3568742275238037, "chain_id": "3VHHR074H3G57HV0UYAN7448LBK7LN_1_8"} {"score": 0.8068726658821106, "chain_id": "3VHHR074H3G57HV0UYAN7448LBK7LN_1_9"} {"score": 0.056474924087524414, "chain_id": "3VHHR074H3G57HV0UYAN7448LBK7LN_1_10"} {"score": 0.9397361278533936, "chain_id": "3TK8OJTYM1KX9SBU4O6AUZTVC81VPK_1_1"} {"score": 0.985040545463562, "chain_id": "3TK8OJTYM1KX9SBU4O6AUZTVC81VPK_1_2"} {"score": 0.8654618859291077, "chain_id": "3TK8OJTYM1KX9SBU4O6AUZTVC81VPK_1_3"} {"score": 0.9077264666557312, "chain_id": "3TK8OJTYM1KX9SBU4O6AUZTVC81VPK_1_4"} {"score": 0.05928724631667137, "chain_id": "3TK8OJTYM1KX9SBU4O6AUZTVC81VPK_1_9"} {"score": 0.1782280057668686, "chain_id": "3TK8OJTYM1KX9SBU4O6AUZTVC81VPK_1_5"} {"score": 0.06339334696531296, "chain_id": "3TK8OJTYM1KX9SBU4O6AUZTVC81VPK_1_6"} {"score": 0.03679480776190758, "chain_id": "3TK8OJTYM1KX9SBU4O6AUZTVC81VPK_1_7"} {"score": 0.05029880255460739, "chain_id": "3TK8OJTYM1KX9SBU4O6AUZTVC81VPK_1_8"} {"score": 0.2763892114162445, "chain_id": "3TK8OJTYM1KX9SBU4O6AUZTVC81VPK_1_10"} {"score": 0.827564537525177, "chain_id": "3XLBSAQ9Z4BPC6C49Z1WFJF603F7ZV_1_5"} {"score": 0.8790101408958435, "chain_id": "3XLBSAQ9Z4BPC6C49Z1WFJF603F7ZV_1_6"} {"score": 0.041306812316179276, "chain_id": "3XLBSAQ9Z4BPC6C49Z1WFJF603F7ZV_1_1"} {"score": 0.2153109610080719, "chain_id": "3XLBSAQ9Z4BPC6C49Z1WFJF603F7ZV_1_2"} {"score": 0.07707159966230392, "chain_id": "3XLBSAQ9Z4BPC6C49Z1WFJF603F7ZV_1_3"} {"score": 0.029593754559755325, "chain_id": "3XLBSAQ9Z4BPC6C49Z1WFJF603F7ZV_1_4"} {"score": 0.48833954334259033, "chain_id": "3XLBSAQ9Z4BPC6C49Z1WFJF603F7ZV_1_7"} {"score": 0.06931349635124207, "chain_id": "3XLBSAQ9Z4BPC6C49Z1WFJF603F7ZV_1_8"} {"score": 0.06853901594877243, "chain_id": "3XLBSAQ9Z4BPC6C49Z1WFJF603F7ZV_1_9"} {"score": 0.1542142927646637, "chain_id": "3XLBSAQ9Z4BPC6C49Z1WFJF603F7ZV_1_10"} {"score": 0.9370269179344177, "chain_id": "3QXNC7EIPIUWO4U7K2MONG3QDPU09O_1_2"} {"score": 0.9041363000869751, "chain_id": "3QXNC7EIPIUWO4U7K2MONG3QDPU09O_1_3"} {"score": 0.5081300735473633, "chain_id": "3QXNC7EIPIUWO4U7K2MONG3QDPU09O_1_5"} {"score": 0.11312387883663177, "chain_id": "3QXNC7EIPIUWO4U7K2MONG3QDPU09O_1_8"} {"score": 0.3954760730266571, "chain_id": "3QXNC7EIPIUWO4U7K2MONG3QDPU09O_1_1"} {"score": 0.6651642322540283, "chain_id": "3QXNC7EIPIUWO4U7K2MONG3QDPU09O_1_4"} {"score": 0.07977721095085144, "chain_id": "3QXNC7EIPIUWO4U7K2MONG3QDPU09O_1_6"} {"score": 0.0334656685590744, "chain_id": "3QXNC7EIPIUWO4U7K2MONG3QDPU09O_1_7"} {"score": 0.21959811449050903, "chain_id": "3QXNC7EIPIUWO4U7K2MONG3QDPU09O_1_9"} {"score": 0.017824780195951462, "chain_id": "3QXNC7EIPIUWO4U7K2MONG3QDPU09O_1_10"} {"score": 0.8149022459983826, "chain_id": "3A7Y0R2P2ONTR6DR9Q28LO44K28XJV_1_3"} {"score": 0.44125139713287354, "chain_id": "3A7Y0R2P2ONTR6DR9Q28LO44K28XJV_1_1"} {"score": 0.7532663941383362, "chain_id": "3A7Y0R2P2ONTR6DR9Q28LO44K28XJV_1_2"} {"score": 0.14438781142234802, "chain_id": "3A7Y0R2P2ONTR6DR9Q28LO44K28XJV_1_4"} {"score": 0.43170228600502014, "chain_id": "3A7Y0R2P2ONTR6DR9Q28LO44K28XJV_1_5"} {"score": 0.08682089298963547, "chain_id": "3A7Y0R2P2ONTR6DR9Q28LO44K28XJV_1_6"} {"score": 0.12554210424423218, "chain_id": "3A7Y0R2P2ONTR6DR9Q28LO44K28XJV_1_7"} {"score": 0.1341239959001541, "chain_id": "3A7Y0R2P2ONTR6DR9Q28LO44K28XJV_1_8"} {"score": 0.09858568012714386, "chain_id": "3A7Y0R2P2ONTR6DR9Q28LO44K28XJV_1_9"} {"score": 0.3541208505630493, "chain_id": "3A7Y0R2P2ONTR6DR9Q28LO44K28XJV_1_10"} {"score": 0.9284783601760864, "chain_id": "3YHH42UU5BERP6VG9ZPESPULEMV0LC_1_1"} {"score": 0.17332731187343597, "chain_id": "3YHH42UU5BERP6VG9ZPESPULEMV0LC_1_2"} {"score": 0.09466678649187088, "chain_id": "3YHH42UU5BERP6VG9ZPESPULEMV0LC_1_3"} {"score": 0.024699067696928978, "chain_id": "3YHH42UU5BERP6VG9ZPESPULEMV0LC_1_4"} {"score": 0.03744608536362648, "chain_id": "3YHH42UU5BERP6VG9ZPESPULEMV0LC_1_5"} {"score": 0.020724868401885033, "chain_id": "3YHH42UU5BERP6VG9ZPESPULEMV0LC_1_6"} {"score": 0.026563894003629684, "chain_id": "3YHH42UU5BERP6VG9ZPESPULEMV0LC_1_7"} {"score": 0.030676621943712234, "chain_id": "3YHH42UU5BERP6VG9ZPESPULEMV0LC_1_8"} {"score": 0.038216251879930496, "chain_id": "3YHH42UU5BERP6VG9ZPESPULEMV0LC_1_9"} {"score": 0.024104217067360878, "chain_id": "3YHH42UU5BERP6VG9ZPESPULEMV0LC_1_10"} {"score": 0.9911412000656128, "chain_id": "3XUHV3NRVKXOYHYRFKGSHSX50H5H59_1_1"} {"score": 0.9915564060211182, "chain_id": "3XUHV3NRVKXOYHYRFKGSHSX50H5H59_1_2"} {"score": 0.9879387617111206, "chain_id": "3XUHV3NRVKXOYHYRFKGSHSX50H5H59_1_3"} {"score": 0.5454429388046265, "chain_id": "3XUHV3NRVKXOYHYRFKGSHSX50H5H59_1_4"} {"score": 0.3519054055213928, "chain_id": "3XUHV3NRVKXOYHYRFKGSHSX50H5H59_1_5"} {"score": 0.05270044878125191, "chain_id": "3XUHV3NRVKXOYHYRFKGSHSX50H5H59_1_6"} {"score": 0.3398987054824829, "chain_id": "3XUHV3NRVKXOYHYRFKGSHSX50H5H59_1_7"} {"score": 0.28911253809928894, "chain_id": "3XUHV3NRVKXOYHYRFKGSHSX50H5H59_1_8"} {"score": 0.7393916249275208, "chain_id": "3XUHV3NRVKXOYHYRFKGSHSX50H5H59_1_9"} {"score": 0.23339775204658508, "chain_id": "3XUHV3NRVKXOYHYRFKGSHSX50H5H59_1_10"} {"score": 0.9701636433601379, "chain_id": "3XC1O3LBOSLS5FS771DOC0WQXFSLTV_1_3"} {"score": 0.9537873268127441, "chain_id": "3XC1O3LBOSLS5FS771DOC0WQXFSLTV_1_5"} {"score": 0.21650849282741547, "chain_id": "3XC1O3LBOSLS5FS771DOC0WQXFSLTV_1_7"} {"score": 0.09075932949781418, "chain_id": "3XC1O3LBOSLS5FS771DOC0WQXFSLTV_1_1"} {"score": 0.09849830716848373, "chain_id": "3XC1O3LBOSLS5FS771DOC0WQXFSLTV_1_2"} {"score": 0.26058363914489746, "chain_id": "3XC1O3LBOSLS5FS771DOC0WQXFSLTV_1_4"} {"score": 0.03404556214809418, "chain_id": "3XC1O3LBOSLS5FS771DOC0WQXFSLTV_1_6"} {"score": 0.4648422300815582, "chain_id": "3XC1O3LBOSLS5FS771DOC0WQXFSLTV_1_8"} {"score": 0.573468804359436, "chain_id": "3XC1O3LBOSLS5FS771DOC0WQXFSLTV_1_9"} {"score": 0.05827384069561958, "chain_id": "3XC1O3LBOSLS5FS771DOC0WQXFSLTV_1_10"} {"score": 0.9500613212585449, "chain_id": "33LK57MYLT4BV4WWX2Z7AAB2B3RSZY_1_1"} {"score": 0.9513761401176453, "chain_id": "33LK57MYLT4BV4WWX2Z7AAB2B3RSZY_1_2"} {"score": 0.9844329357147217, "chain_id": "33LK57MYLT4BV4WWX2Z7AAB2B3RSZY_1_4"} {"score": 0.9320622682571411, "chain_id": "33LK57MYLT4BV4WWX2Z7AAB2B3RSZY_1_5"} {"score": 0.9219931364059448, "chain_id": "33LK57MYLT4BV4WWX2Z7AAB2B3RSZY_1_3"} {"score": 0.2440357208251953, "chain_id": "33LK57MYLT4BV4WWX2Z7AAB2B3RSZY_1_6"} {"score": 0.22360707819461823, "chain_id": "33LK57MYLT4BV4WWX2Z7AAB2B3RSZY_1_7"} {"score": 0.056213848292827606, "chain_id": "33LK57MYLT4BV4WWX2Z7AAB2B3RSZY_1_8"} {"score": 0.7196550965309143, "chain_id": "33LK57MYLT4BV4WWX2Z7AAB2B3RSZY_1_9"} {"score": 0.07539691030979156, "chain_id": "33LK57MYLT4BV4WWX2Z7AAB2B3RSZY_1_10"} {"score": 0.9234769344329834, "chain_id": "3E13VNJ1NNUP6U8SKFW1EEL3P3R1IV_1_1"} {"score": 0.9584911465644836, "chain_id": "3E13VNJ1NNUP6U8SKFW1EEL3P3R1IV_1_2"} {"score": 0.9619503021240234, "chain_id": "3E13VNJ1NNUP6U8SKFW1EEL3P3R1IV_1_4"} {"score": 0.9469819664955139, "chain_id": "3E13VNJ1NNUP6U8SKFW1EEL3P3R1IV_1_5"} {"score": 0.9547551870346069, "chain_id": "3E13VNJ1NNUP6U8SKFW1EEL3P3R1IV_1_6"} {"score": 0.9559493064880371, "chain_id": "3E13VNJ1NNUP6U8SKFW1EEL3P3R1IV_1_3"} {"score": 0.7728909850120544, "chain_id": "3E13VNJ1NNUP6U8SKFW1EEL3P3R1IV_1_7"} {"score": 0.9357352256774902, "chain_id": "3E13VNJ1NNUP6U8SKFW1EEL3P3R1IV_1_8"} {"score": 0.03410017117857933, "chain_id": "3E13VNJ1NNUP6U8SKFW1EEL3P3R1IV_1_9"} {"score": 0.9578048586845398, "chain_id": "3E13VNJ1NNUP6U8SKFW1EEL3P3R1IV_1_10"} {"score": 0.989385724067688, "chain_id": "34S6N1K2ZVI2061C77WZYHT2N01HLG_1_2"} {"score": 0.9872689247131348, "chain_id": "34S6N1K2ZVI2061C77WZYHT2N01HLG_1_3"} {"score": 0.26495078206062317, "chain_id": "34S6N1K2ZVI2061C77WZYHT2N01HLG_1_6"} {"score": 0.9873025417327881, "chain_id": "34S6N1K2ZVI2061C77WZYHT2N01HLG_1_1"} {"score": 0.6788386106491089, "chain_id": "34S6N1K2ZVI2061C77WZYHT2N01HLG_1_4"} {"score": 0.7591531872749329, "chain_id": "34S6N1K2ZVI2061C77WZYHT2N01HLG_1_5"} {"score": 0.3953125774860382, "chain_id": "34S6N1K2ZVI2061C77WZYHT2N01HLG_1_7"} {"score": 0.052270032465457916, "chain_id": "34S6N1K2ZVI2061C77WZYHT2N01HLG_1_8"} {"score": 0.39466920495033264, "chain_id": "34S6N1K2ZVI2061C77WZYHT2N01HLG_1_9"} {"score": 0.3549373149871826, "chain_id": "34S6N1K2ZVI2061C77WZYHT2N01HLG_1_10"} {"score": 0.9924431443214417, "chain_id": "3HRMW88U16PBVOD19BQTS29A1O10MB_1_1"} {"score": 0.9925919771194458, "chain_id": "3HRMW88U16PBVOD19BQTS29A1O10MB_1_2"} {"score": 0.4823726713657379, "chain_id": "3HRMW88U16PBVOD19BQTS29A1O10MB_1_4"} {"score": 0.08370941877365112, "chain_id": "3HRMW88U16PBVOD19BQTS29A1O10MB_1_9"} {"score": 0.6949993968009949, "chain_id": "3HRMW88U16PBVOD19BQTS29A1O10MB_1_3"} {"score": 0.26041871309280396, "chain_id": "3HRMW88U16PBVOD19BQTS29A1O10MB_1_5"} {"score": 0.5557044148445129, "chain_id": "3HRMW88U16PBVOD19BQTS29A1O10MB_1_6"} {"score": 0.05171849578619003, "chain_id": "3HRMW88U16PBVOD19BQTS29A1O10MB_1_7"} {"score": 0.7311990857124329, "chain_id": "3HRMW88U16PBVOD19BQTS29A1O10MB_1_8"} {"score": 0.09448745101690292, "chain_id": "3HRMW88U16PBVOD19BQTS29A1O10MB_1_10"} {"score": 0.09414617717266083, "chain_id": "3CN4LGXD5XNSOTKGBF16Y0MUSDEY45_1_1"} {"score": 0.03789866343140602, "chain_id": "3CN4LGXD5XNSOTKGBF16Y0MUSDEY45_1_2"} {"score": 0.10343729704618454, "chain_id": "3CN4LGXD5XNSOTKGBF16Y0MUSDEY45_1_3"} {"score": 0.18756303191184998, "chain_id": "3CN4LGXD5XNSOTKGBF16Y0MUSDEY45_1_4"} {"score": 0.06260009855031967, "chain_id": "3CN4LGXD5XNSOTKGBF16Y0MUSDEY45_1_5"} {"score": 0.02683061733841896, "chain_id": "3CN4LGXD5XNSOTKGBF16Y0MUSDEY45_1_6"} {"score": 0.1320200264453888, "chain_id": "3CN4LGXD5XNSOTKGBF16Y0MUSDEY45_1_7"} {"score": 0.1512463390827179, "chain_id": "3CN4LGXD5XNSOTKGBF16Y0MUSDEY45_1_8"} {"score": 0.05469933897256851, "chain_id": "3CN4LGXD5XNSOTKGBF16Y0MUSDEY45_1_9"} {"score": 0.21418710052967072, "chain_id": "3CN4LGXD5XNSOTKGBF16Y0MUSDEY45_1_10"} {"score": 0.9911412000656128, "chain_id": "3ON104KXQKVOZOPGWEJID31EH8SW4O_1_1"} {"score": 0.9879387617111206, "chain_id": "3ON104KXQKVOZOPGWEJID31EH8SW4O_1_3"} {"score": 0.5454429388046265, "chain_id": "3ON104KXQKVOZOPGWEJID31EH8SW4O_1_4"} {"score": 0.9915564060211182, "chain_id": "3ON104KXQKVOZOPGWEJID31EH8SW4O_1_2"} {"score": 0.3519054055213928, "chain_id": "3ON104KXQKVOZOPGWEJID31EH8SW4O_1_5"} {"score": 0.05270044878125191, "chain_id": "3ON104KXQKVOZOPGWEJID31EH8SW4O_1_6"} {"score": 0.3398987054824829, "chain_id": "3ON104KXQKVOZOPGWEJID31EH8SW4O_1_7"} {"score": 0.28911253809928894, "chain_id": "3ON104KXQKVOZOPGWEJID31EH8SW4O_1_8"} {"score": 0.7393916249275208, "chain_id": "3ON104KXQKVOZOPGWEJID31EH8SW4O_1_9"} {"score": 0.23339775204658508, "chain_id": "3ON104KXQKVOZOPGWEJID31EH8SW4O_1_10"} {"score": 0.975583553314209, "chain_id": "3X87C8JFV6A2HCV5A6GUJHZY5MBSQG_1_1"} {"score": 0.9818987846374512, "chain_id": "3X87C8JFV6A2HCV5A6GUJHZY5MBSQG_1_2"} {"score": 0.07144536077976227, "chain_id": "3X87C8JFV6A2HCV5A6GUJHZY5MBSQG_1_3"} {"score": 0.8955197334289551, "chain_id": "3X87C8JFV6A2HCV5A6GUJHZY5MBSQG_1_4"} {"score": 0.35928311944007874, "chain_id": "3X87C8JFV6A2HCV5A6GUJHZY5MBSQG_1_5"} {"score": 0.6139234304428101, "chain_id": "3X87C8JFV6A2HCV5A6GUJHZY5MBSQG_1_6"} {"score": 0.08803892880678177, "chain_id": "3X87C8JFV6A2HCV5A6GUJHZY5MBSQG_1_7"} {"score": 0.08229970186948776, "chain_id": "3X87C8JFV6A2HCV5A6GUJHZY5MBSQG_1_8"} {"score": 0.02350766211748123, "chain_id": "3X87C8JFV6A2HCV5A6GUJHZY5MBSQG_1_9"} {"score": 0.12838736176490784, "chain_id": "3X87C8JFV6A2HCV5A6GUJHZY5MBSQG_1_10"} {"score": 0.9286932945251465, "chain_id": "37U1UTWH9VLKATVW9NZP7G92PRQ8R7_1_3"} {"score": 0.9022470116615295, "chain_id": "37U1UTWH9VLKATVW9NZP7G92PRQ8R7_1_4"} {"score": 0.5733755230903625, "chain_id": "37U1UTWH9VLKATVW9NZP7G92PRQ8R7_1_9"} {"score": 0.9559585452079773, "chain_id": "37U1UTWH9VLKATVW9NZP7G92PRQ8R7_1_1"} {"score": 0.977510392665863, "chain_id": "37U1UTWH9VLKATVW9NZP7G92PRQ8R7_1_2"} {"score": 0.12998946011066437, "chain_id": "37U1UTWH9VLKATVW9NZP7G92PRQ8R7_1_5"} {"score": 0.8422825932502747, "chain_id": "37U1UTWH9VLKATVW9NZP7G92PRQ8R7_1_6"} {"score": 0.8573161363601685, "chain_id": "37U1UTWH9VLKATVW9NZP7G92PRQ8R7_1_7"} {"score": 0.9107280969619751, "chain_id": "37U1UTWH9VLKATVW9NZP7G92PRQ8R7_1_8"} {"score": 0.41937798261642456, "chain_id": "37U1UTWH9VLKATVW9NZP7G92PRQ8R7_1_10"} {"score": 0.8941967487335205, "chain_id": "3WETL7AQWT7949RS0ZRQDYWVIVD53J_1_9"} {"score": 0.9592616558074951, "chain_id": "3WETL7AQWT7949RS0ZRQDYWVIVD53J_1_10"} {"score": 0.07392957806587219, "chain_id": "3WETL7AQWT7949RS0ZRQDYWVIVD53J_1_1"} {"score": 0.03171267732977867, "chain_id": "3WETL7AQWT7949RS0ZRQDYWVIVD53J_1_2"} {"score": 0.038761042058467865, "chain_id": "3WETL7AQWT7949RS0ZRQDYWVIVD53J_1_3"} {"score": 0.025439172983169556, "chain_id": "3WETL7AQWT7949RS0ZRQDYWVIVD53J_1_4"} {"score": 0.08171079307794571, "chain_id": "3WETL7AQWT7949RS0ZRQDYWVIVD53J_1_5"} {"score": 0.09056725353002548, "chain_id": "3WETL7AQWT7949RS0ZRQDYWVIVD53J_1_6"} {"score": 0.23437395691871643, "chain_id": "3WETL7AQWT7949RS0ZRQDYWVIVD53J_1_7"} {"score": 0.2249758243560791, "chain_id": "3WETL7AQWT7949RS0ZRQDYWVIVD53J_1_8"} {"score": 0.9304951429367065, "chain_id": "3CPLWGV3MOYZ90MEL8OMYSZ3BC89NP_1_1"} {"score": 0.8457614779472351, "chain_id": "3CPLWGV3MOYZ90MEL8OMYSZ3BC89NP_1_2"} {"score": 0.47452083230018616, "chain_id": "3CPLWGV3MOYZ90MEL8OMYSZ3BC89NP_1_3"} {"score": 0.9155700206756592, "chain_id": "3CPLWGV3MOYZ90MEL8OMYSZ3BC89NP_1_4"} {"score": 0.7761457562446594, "chain_id": "3CPLWGV3MOYZ90MEL8OMYSZ3BC89NP_1_5"} {"score": 0.692997932434082, "chain_id": "3CPLWGV3MOYZ90MEL8OMYSZ3BC89NP_1_6"} {"score": 0.032247673720121384, "chain_id": "3CPLWGV3MOYZ90MEL8OMYSZ3BC89NP_1_7"} {"score": 0.13073614239692688, "chain_id": "3CPLWGV3MOYZ90MEL8OMYSZ3BC89NP_1_8"} {"score": 0.4521399438381195, "chain_id": "3CPLWGV3MOYZ90MEL8OMYSZ3BC89NP_1_9"} {"score": 0.7082409262657166, "chain_id": "3CPLWGV3MOYZ90MEL8OMYSZ3BC89NP_1_10"} {"score": 0.06435142457485199, "chain_id": "3EKVH9QMEY3FN4A2B5V4S0FVR702DM_1_1"} {"score": 0.02962491102516651, "chain_id": "3EKVH9QMEY3FN4A2B5V4S0FVR702DM_1_2"} {"score": 0.02412967011332512, "chain_id": "3EKVH9QMEY3FN4A2B5V4S0FVR702DM_1_3"} {"score": 0.02474788762629032, "chain_id": "3EKVH9QMEY3FN4A2B5V4S0FVR702DM_1_4"} {"score": 0.10786899924278259, "chain_id": "3EKVH9QMEY3FN4A2B5V4S0FVR702DM_1_5"} {"score": 0.07021905481815338, "chain_id": "3EKVH9QMEY3FN4A2B5V4S0FVR702DM_1_6"} {"score": 0.3357139229774475, "chain_id": "3EKVH9QMEY3FN4A2B5V4S0FVR702DM_1_7"} {"score": 0.04108813777565956, "chain_id": "3EKVH9QMEY3FN4A2B5V4S0FVR702DM_1_8"} {"score": 0.10226189345121384, "chain_id": "3EKVH9QMEY3FN4A2B5V4S0FVR702DM_1_9"} {"score": 0.028141168877482414, "chain_id": "3EKVH9QMEY3FN4A2B5V4S0FVR702DM_1_10"} {"score": 0.2816557288169861, "chain_id": "3XLBSAQ9Z4BPC6C49Z1WFJF6Q4U7Z2_1_1"} {"score": 0.5168759226799011, "chain_id": "3XLBSAQ9Z4BPC6C49Z1WFJF6Q4U7Z2_1_2"} {"score": 0.25391876697540283, "chain_id": "3XLBSAQ9Z4BPC6C49Z1WFJF6Q4U7Z2_1_3"} {"score": 0.4574108421802521, "chain_id": "3XLBSAQ9Z4BPC6C49Z1WFJF6Q4U7Z2_1_4"} {"score": 0.3300494849681854, "chain_id": "3XLBSAQ9Z4BPC6C49Z1WFJF6Q4U7Z2_1_5"} {"score": 0.4554673433303833, "chain_id": "3XLBSAQ9Z4BPC6C49Z1WFJF6Q4U7Z2_1_6"} {"score": 0.1464983969926834, "chain_id": "3XLBSAQ9Z4BPC6C49Z1WFJF6Q4U7Z2_1_7"} {"score": 0.13975656032562256, "chain_id": "3XLBSAQ9Z4BPC6C49Z1WFJF6Q4U7Z2_1_8"} {"score": 0.19901332259178162, "chain_id": "3XLBSAQ9Z4BPC6C49Z1WFJF6Q4U7Z2_1_9"} {"score": 0.13872723281383514, "chain_id": "3XLBSAQ9Z4BPC6C49Z1WFJF6Q4U7Z2_1_10"} {"score": 0.985104501247406, "chain_id": "3B4YI393V9VEUSAI2A5ZEHEZNDQSS5_1_1"} {"score": 0.9878128170967102, "chain_id": "3B4YI393V9VEUSAI2A5ZEHEZNDQSS5_1_2"} {"score": 0.8855710625648499, "chain_id": "3B4YI393V9VEUSAI2A5ZEHEZNDQSS5_1_3"} {"score": 0.9705913066864014, "chain_id": "3B4YI393V9VEUSAI2A5ZEHEZNDQSS5_1_7"} {"score": 0.6297586560249329, "chain_id": "3B4YI393V9VEUSAI2A5ZEHEZNDQSS5_1_9"} {"score": 0.6940547227859497, "chain_id": "3B4YI393V9VEUSAI2A5ZEHEZNDQSS5_1_4"} {"score": 0.8894538283348083, "chain_id": "3B4YI393V9VEUSAI2A5ZEHEZNDQSS5_1_5"} {"score": 0.39119935035705566, "chain_id": "3B4YI393V9VEUSAI2A5ZEHEZNDQSS5_1_6"} {"score": 0.9771032333374023, "chain_id": "3B4YI393V9VEUSAI2A5ZEHEZNDQSS5_1_8"} {"score": 0.7975403666496277, "chain_id": "3B4YI393V9VEUSAI2A5ZEHEZNDQSS5_1_10"} {"score": 0.7203274369239807, "chain_id": "3Y9N9SS8LYA48M6LF599BAKNU89D3O_1_1"} {"score": 0.3985511064529419, "chain_id": "3Y9N9SS8LYA48M6LF599BAKNU89D3O_1_2"} {"score": 0.17878098785877228, "chain_id": "3Y9N9SS8LYA48M6LF599BAKNU89D3O_1_3"} {"score": 0.3389628529548645, "chain_id": "3Y9N9SS8LYA48M6LF599BAKNU89D3O_1_4"} {"score": 0.2532750964164734, "chain_id": "3Y9N9SS8LYA48M6LF599BAKNU89D3O_1_5"} {"score": 0.3055393695831299, "chain_id": "3Y9N9SS8LYA48M6LF599BAKNU89D3O_1_6"} {"score": 0.17266309261322021, "chain_id": "3Y9N9SS8LYA48M6LF599BAKNU89D3O_1_7"} {"score": 0.8434653878211975, "chain_id": "3Y9N9SS8LYA48M6LF599BAKNU89D3O_1_8"} {"score": 0.12486838549375534, "chain_id": "3Y9N9SS8LYA48M6LF599BAKNU89D3O_1_9"} {"score": 0.25975301861763, "chain_id": "3Y9N9SS8LYA48M6LF599BAKNU89D3O_1_10"} {"score": 0.371199369430542, "chain_id": "31HQ4X3T3S9RQFFSI18Y2V04ZDLSLM_1_1"} {"score": 0.8755092620849609, "chain_id": "31HQ4X3T3S9RQFFSI18Y2V04ZDLSLM_1_2"} {"score": 0.49602678418159485, "chain_id": "31HQ4X3T3S9RQFFSI18Y2V04ZDLSLM_1_3"} {"score": 0.06325878202915192, "chain_id": "31HQ4X3T3S9RQFFSI18Y2V04ZDLSLM_1_4"} {"score": 0.7653234601020813, "chain_id": "31HQ4X3T3S9RQFFSI18Y2V04ZDLSLM_1_5"} {"score": 0.06852202862501144, "chain_id": "31HQ4X3T3S9RQFFSI18Y2V04ZDLSLM_1_6"} {"score": 0.7175394892692566, "chain_id": "31HQ4X3T3S9RQFFSI18Y2V04ZDLSLM_1_7"} {"score": 0.768619954586029, "chain_id": "31HQ4X3T3S9RQFFSI18Y2V04ZDLSLM_1_8"} {"score": 0.9119682908058167, "chain_id": "31HQ4X3T3S9RQFFSI18Y2V04ZDLSLM_1_9"} {"score": 0.06277018785476685, "chain_id": "31HQ4X3T3S9RQFFSI18Y2V04ZDLSLM_1_10"} {"score": 0.7039282321929932, "chain_id": "3SEPORI8WNY7V8A2G2DGPAHWKLDZA9_1_1"} {"score": 0.7259421944618225, "chain_id": "3SEPORI8WNY7V8A2G2DGPAHWKLDZA9_1_3"} {"score": 0.9485774636268616, "chain_id": "3SEPORI8WNY7V8A2G2DGPAHWKLDZA9_1_2"} {"score": 0.7526618838310242, "chain_id": "3SEPORI8WNY7V8A2G2DGPAHWKLDZA9_1_4"} {"score": 0.480444073677063, "chain_id": "3SEPORI8WNY7V8A2G2DGPAHWKLDZA9_1_5"} {"score": 0.038734495639801025, "chain_id": "3SEPORI8WNY7V8A2G2DGPAHWKLDZA9_1_6"} {"score": 0.2017560452222824, "chain_id": "3SEPORI8WNY7V8A2G2DGPAHWKLDZA9_1_7"} {"score": 0.1496296525001526, "chain_id": "3SEPORI8WNY7V8A2G2DGPAHWKLDZA9_1_8"} {"score": 0.04215997830033302, "chain_id": "3SEPORI8WNY7V8A2G2DGPAHWKLDZA9_1_9"} {"score": 0.27183234691619873, "chain_id": "3SEPORI8WNY7V8A2G2DGPAHWKLDZA9_1_10"} {"score": 0.9373577833175659, "chain_id": "3JV9LGBJWTDW6V9Y0TU95YLVYBSOGB_1_1"} {"score": 0.9307597279548645, "chain_id": "3JV9LGBJWTDW6V9Y0TU95YLVYBSOGB_1_2"} {"score": 0.9316142797470093, "chain_id": "3JV9LGBJWTDW6V9Y0TU95YLVYBSOGB_1_3"} {"score": 0.8835011124610901, "chain_id": "3JV9LGBJWTDW6V9Y0TU95YLVYBSOGB_1_10"} {"score": 0.4656927287578583, "chain_id": "3JV9LGBJWTDW6V9Y0TU95YLVYBSOGB_1_4"} {"score": 0.17284758388996124, "chain_id": "3JV9LGBJWTDW6V9Y0TU95YLVYBSOGB_1_5"} {"score": 0.03937001898884773, "chain_id": "3JV9LGBJWTDW6V9Y0TU95YLVYBSOGB_1_6"} {"score": 0.7646206617355347, "chain_id": "3JV9LGBJWTDW6V9Y0TU95YLVYBSOGB_1_7"} {"score": 0.5962219834327698, "chain_id": "3JV9LGBJWTDW6V9Y0TU95YLVYBSOGB_1_8"} {"score": 0.7792434096336365, "chain_id": "3JV9LGBJWTDW6V9Y0TU95YLVYBSOGB_1_9"} {"score": 0.9892157316207886, "chain_id": "3PMBY0YE272GIWPNWIF8IH5R8QV9C4_1_1"} {"score": 0.9866553544998169, "chain_id": "3PMBY0YE272GIWPNWIF8IH5R8QV9C4_1_2"} {"score": 0.11654862016439438, "chain_id": "3PMBY0YE272GIWPNWIF8IH5R8QV9C4_1_3"} {"score": 0.9637656211853027, "chain_id": "3PMBY0YE272GIWPNWIF8IH5R8QV9C4_1_4"} {"score": 0.48135048151016235, "chain_id": "3PMBY0YE272GIWPNWIF8IH5R8QV9C4_1_5"} {"score": 0.4770289361476898, "chain_id": "3PMBY0YE272GIWPNWIF8IH5R8QV9C4_1_6"} {"score": 0.6048957109451294, "chain_id": "3PMBY0YE272GIWPNWIF8IH5R8QV9C4_1_7"} {"score": 0.6323962807655334, "chain_id": "3PMBY0YE272GIWPNWIF8IH5R8QV9C4_1_8"} {"score": 0.5279843807220459, "chain_id": "3PMBY0YE272GIWPNWIF8IH5R8QV9C4_1_9"} {"score": 0.12232233583927155, "chain_id": "3PMBY0YE272GIWPNWIF8IH5R8QV9C4_1_10"} {"score": 0.10007143020629883, "chain_id": "3OCHAWUVGOJO2QJ9RB2KM34HK81XK6_1_1"} {"score": 0.02330140396952629, "chain_id": "3OCHAWUVGOJO2QJ9RB2KM34HK81XK6_1_2"} {"score": 0.04050569608807564, "chain_id": "3OCHAWUVGOJO2QJ9RB2KM34HK81XK6_1_3"} {"score": 0.04966859519481659, "chain_id": "3OCHAWUVGOJO2QJ9RB2KM34HK81XK6_1_4"} {"score": 0.06262548267841339, "chain_id": "3OCHAWUVGOJO2QJ9RB2KM34HK81XK6_1_5"} {"score": 0.053697939962148666, "chain_id": "3OCHAWUVGOJO2QJ9RB2KM34HK81XK6_1_6"} {"score": 0.0327845998108387, "chain_id": "3OCHAWUVGOJO2QJ9RB2KM34HK81XK6_1_7"} {"score": 0.07214315235614777, "chain_id": "3OCHAWUVGOJO2QJ9RB2KM34HK81XK6_1_8"} {"score": 0.04036815091967583, "chain_id": "3OCHAWUVGOJO2QJ9RB2KM34HK81XK6_1_9"} {"score": 0.023873278871178627, "chain_id": "3OCHAWUVGOJO2QJ9RB2KM34HK81XK6_1_10"} {"score": 0.03623440861701965, "chain_id": "3V0Z7YWSIYZ1HLAO2QVYYML2KMO2VE_1_4"} {"score": 0.04904032498598099, "chain_id": "3V0Z7YWSIYZ1HLAO2QVYYML2KMO2VE_1_6"} {"score": 0.34383049607276917, "chain_id": "3V0Z7YWSIYZ1HLAO2QVYYML2KMO2VE_1_10"} {"score": 0.09315416216850281, "chain_id": "3V0Z7YWSIYZ1HLAO2QVYYML2KMO2VE_1_1"} {"score": 0.33410096168518066, "chain_id": "3V0Z7YWSIYZ1HLAO2QVYYML2KMO2VE_1_2"} {"score": 0.029605641961097717, "chain_id": "3V0Z7YWSIYZ1HLAO2QVYYML2KMO2VE_1_3"} {"score": 0.02664381079375744, "chain_id": "3V0Z7YWSIYZ1HLAO2QVYYML2KMO2VE_1_5"} {"score": 0.10763447731733322, "chain_id": "3V0Z7YWSIYZ1HLAO2QVYYML2KMO2VE_1_7"} {"score": 0.03201819956302643, "chain_id": "3V0Z7YWSIYZ1HLAO2QVYYML2KMO2VE_1_8"} {"score": 0.07126771658658981, "chain_id": "3V0Z7YWSIYZ1HLAO2QVYYML2KMO2VE_1_9"} {"score": 0.07413273304700851, "chain_id": "39ZSFO5CA8V1A2JW4LRL1H508VHJUJ_1_1"} {"score": 0.03021029755473137, "chain_id": "39ZSFO5CA8V1A2JW4LRL1H508VHJUJ_1_2"} {"score": 0.11357197910547256, "chain_id": "39ZSFO5CA8V1A2JW4LRL1H508VHJUJ_1_3"} {"score": 0.0410899855196476, "chain_id": "39ZSFO5CA8V1A2JW4LRL1H508VHJUJ_1_4"} {"score": 0.24142299592494965, "chain_id": "39ZSFO5CA8V1A2JW4LRL1H508VHJUJ_1_5"} {"score": 0.33365097641944885, "chain_id": "39ZSFO5CA8V1A2JW4LRL1H508VHJUJ_1_6"} {"score": 0.03207913786172867, "chain_id": "39ZSFO5CA8V1A2JW4LRL1H508VHJUJ_1_7"} {"score": 0.1313140094280243, "chain_id": "39ZSFO5CA8V1A2JW4LRL1H508VHJUJ_1_8"} {"score": 0.04317371919751167, "chain_id": "39ZSFO5CA8V1A2JW4LRL1H508VHJUJ_1_9"} {"score": 0.05277268588542938, "chain_id": "39ZSFO5CA8V1A2JW4LRL1H508VHJUJ_1_10"} {"score": 0.8665762543678284, "chain_id": "3JBT3HLQF81EICG45LVDF56RN6OPZS_1_1"} {"score": 0.9299886226654053, "chain_id": "3JBT3HLQF81EICG45LVDF56RN6OPZS_1_4"} {"score": 0.4190259575843811, "chain_id": "3JBT3HLQF81EICG45LVDF56RN6OPZS_1_2"} {"score": 0.08959508687257767, "chain_id": "3JBT3HLQF81EICG45LVDF56RN6OPZS_1_3"} {"score": 0.0748099610209465, "chain_id": "3JBT3HLQF81EICG45LVDF56RN6OPZS_1_5"} {"score": 0.05029595270752907, "chain_id": "3JBT3HLQF81EICG45LVDF56RN6OPZS_1_6"} {"score": 0.043651171028614044, "chain_id": "3JBT3HLQF81EICG45LVDF56RN6OPZS_1_7"} {"score": 0.025844929739832878, "chain_id": "3JBT3HLQF81EICG45LVDF56RN6OPZS_1_8"} {"score": 0.03649374470114708, "chain_id": "3JBT3HLQF81EICG45LVDF56RN6OPZS_1_9"} {"score": 0.0572853684425354, "chain_id": "3JBT3HLQF81EICG45LVDF56RN6OPZS_1_10"} {"score": 0.8200407028198242, "chain_id": "3S06PH7KSR38YJS6S1VQNH5QWA7D1G_1_1"} {"score": 0.03357328847050667, "chain_id": "3S06PH7KSR38YJS6S1VQNH5QWA7D1G_1_2"} {"score": 0.13045024871826172, "chain_id": "3S06PH7KSR38YJS6S1VQNH5QWA7D1G_1_3"} {"score": 0.03768966346979141, "chain_id": "3S06PH7KSR38YJS6S1VQNH5QWA7D1G_1_4"} {"score": 0.03238387405872345, "chain_id": "3S06PH7KSR38YJS6S1VQNH5QWA7D1G_1_5"} {"score": 0.07609093189239502, "chain_id": "3S06PH7KSR38YJS6S1VQNH5QWA7D1G_1_6"} {"score": 0.1822500228881836, "chain_id": "3S06PH7KSR38YJS6S1VQNH5QWA7D1G_1_7"} {"score": 0.01868278533220291, "chain_id": "3S06PH7KSR38YJS6S1VQNH5QWA7D1G_1_8"} {"score": 0.09913386404514313, "chain_id": "3S06PH7KSR38YJS6S1VQNH5QWA7D1G_1_9"} {"score": 0.0640428215265274, "chain_id": "3S06PH7KSR38YJS6S1VQNH5QWA7D1G_1_10"} {"score": 0.9861311912536621, "chain_id": "3137ONMDKG4AU4W96FRD0MRHYQLGE0_1_1"} {"score": 0.9851925373077393, "chain_id": "3137ONMDKG4AU4W96FRD0MRHYQLGE0_1_2"} {"score": 0.3894752264022827, "chain_id": "3137ONMDKG4AU4W96FRD0MRHYQLGE0_1_9"} {"score": 0.3272625207901001, "chain_id": "3137ONMDKG4AU4W96FRD0MRHYQLGE0_1_3"} {"score": 0.09538961946964264, "chain_id": "3137ONMDKG4AU4W96FRD0MRHYQLGE0_1_4"} {"score": 0.11374291777610779, "chain_id": "3137ONMDKG4AU4W96FRD0MRHYQLGE0_1_5"} {"score": 0.13065317273139954, "chain_id": "3137ONMDKG4AU4W96FRD0MRHYQLGE0_1_6"} {"score": 0.8174380660057068, "chain_id": "3137ONMDKG4AU4W96FRD0MRHYQLGE0_1_7"} {"score": 0.7123695611953735, "chain_id": "3137ONMDKG4AU4W96FRD0MRHYQLGE0_1_8"} {"score": 0.13775019347667694, "chain_id": "3137ONMDKG4AU4W96FRD0MRHYQLGE0_1_10"} {"score": 0.9595767259597778, "chain_id": "35L9RVQFCOH5JWO6GLO0P4PL0CIUHH_1_1"} {"score": 0.9644328355789185, "chain_id": "35L9RVQFCOH5JWO6GLO0P4PL0CIUHH_1_2"} {"score": 0.4511675536632538, "chain_id": "35L9RVQFCOH5JWO6GLO0P4PL0CIUHH_1_3"} {"score": 0.0698520615696907, "chain_id": "35L9RVQFCOH5JWO6GLO0P4PL0CIUHH_1_4"} {"score": 0.1948462724685669, "chain_id": "35L9RVQFCOH5JWO6GLO0P4PL0CIUHH_1_5"} {"score": 0.15326550602912903, "chain_id": "35L9RVQFCOH5JWO6GLO0P4PL0CIUHH_1_6"} {"score": 0.08292423188686371, "chain_id": "35L9RVQFCOH5JWO6GLO0P4PL0CIUHH_1_7"} {"score": 0.047368429601192474, "chain_id": "35L9RVQFCOH5JWO6GLO0P4PL0CIUHH_1_8"} {"score": 0.30458030104637146, "chain_id": "35L9RVQFCOH5JWO6GLO0P4PL0CIUHH_1_9"} {"score": 0.646352231502533, "chain_id": "35L9RVQFCOH5JWO6GLO0P4PL0CIUHH_1_10"} {"score": 0.8206232786178589, "chain_id": "3SB5N7Y3O33B3EHFY8SYFXPD5R3G0B_1_1"} {"score": 0.919900119304657, "chain_id": "3SB5N7Y3O33B3EHFY8SYFXPD5R3G0B_1_3"} {"score": 0.03297882899641991, "chain_id": "3SB5N7Y3O33B3EHFY8SYFXPD5R3G0B_1_2"} {"score": 0.07507028430700302, "chain_id": "3SB5N7Y3O33B3EHFY8SYFXPD5R3G0B_1_4"} {"score": 0.04659107327461243, "chain_id": "3SB5N7Y3O33B3EHFY8SYFXPD5R3G0B_1_5"} {"score": 0.6771008372306824, "chain_id": "3SB5N7Y3O33B3EHFY8SYFXPD5R3G0B_1_6"} {"score": 0.747796893119812, "chain_id": "3SB5N7Y3O33B3EHFY8SYFXPD5R3G0B_1_7"} {"score": 0.6377186179161072, "chain_id": "3SB5N7Y3O33B3EHFY8SYFXPD5R3G0B_1_8"} {"score": 0.03696179762482643, "chain_id": "3SB5N7Y3O33B3EHFY8SYFXPD5R3G0B_1_9"} {"score": 0.020774411037564278, "chain_id": "3SB5N7Y3O33B3EHFY8SYFXPD5R3G0B_1_10"} {"score": 0.6508806347846985, "chain_id": "33PPO7FECVEJYPO408GWFGMCDAOIDF_1_1"} {"score": 0.7696019411087036, "chain_id": "33PPO7FECVEJYPO408GWFGMCDAOIDF_1_2"} {"score": 0.16439040005207062, "chain_id": "33PPO7FECVEJYPO408GWFGMCDAOIDF_1_3"} {"score": 0.11047597229480743, "chain_id": "33PPO7FECVEJYPO408GWFGMCDAOIDF_1_4"} {"score": 0.37113863229751587, "chain_id": "33PPO7FECVEJYPO408GWFGMCDAOIDF_1_5"} {"score": 0.09996318072080612, "chain_id": "33PPO7FECVEJYPO408GWFGMCDAOIDF_1_6"} {"score": 0.1312263309955597, "chain_id": "33PPO7FECVEJYPO408GWFGMCDAOIDF_1_7"} {"score": 0.10688218474388123, "chain_id": "33PPO7FECVEJYPO408GWFGMCDAOIDF_1_8"} {"score": 0.3555869162082672, "chain_id": "33PPO7FECVEJYPO408GWFGMCDAOIDF_1_9"} {"score": 0.3598127067089081, "chain_id": "33PPO7FECVEJYPO408GWFGMCDAOIDF_1_10"} {"score": 0.9854554533958435, "chain_id": "3JZQSN0I3Q920IW51QBJI4CHBR5FGN_1_1"} {"score": 0.9170889258384705, "chain_id": "3JZQSN0I3Q920IW51QBJI4CHBR5FGN_1_2"} {"score": 0.955203115940094, "chain_id": "3JZQSN0I3Q920IW51QBJI4CHBR5FGN_1_3"} {"score": 0.9288350939750671, "chain_id": "3JZQSN0I3Q920IW51QBJI4CHBR5FGN_1_4"} {"score": 0.07584678381681442, "chain_id": "3JZQSN0I3Q920IW51QBJI4CHBR5FGN_1_5"} {"score": 0.12949515879154205, "chain_id": "3JZQSN0I3Q920IW51QBJI4CHBR5FGN_1_6"} {"score": 0.024214336648583412, "chain_id": "3JZQSN0I3Q920IW51QBJI4CHBR5FGN_1_7"} {"score": 0.04442114382982254, "chain_id": "3JZQSN0I3Q920IW51QBJI4CHBR5FGN_1_8"} {"score": 0.05987384915351868, "chain_id": "3JZQSN0I3Q920IW51QBJI4CHBR5FGN_1_9"} {"score": 0.03869834169745445, "chain_id": "3JZQSN0I3Q920IW51QBJI4CHBR5FGN_1_10"} {"score": 0.9153101444244385, "chain_id": "3OS4RQUCR9E691OUL4J5HTLKWUQFBG_1_1"} {"score": 0.327162504196167, "chain_id": "3OS4RQUCR9E691OUL4J5HTLKWUQFBG_1_2"} {"score": 0.8351789712905884, "chain_id": "3OS4RQUCR9E691OUL4J5HTLKWUQFBG_1_3"} {"score": 0.37494418025016785, "chain_id": "3OS4RQUCR9E691OUL4J5HTLKWUQFBG_1_4"} {"score": 0.33511707186698914, "chain_id": "3OS4RQUCR9E691OUL4J5HTLKWUQFBG_1_5"} {"score": 0.5956321358680725, "chain_id": "3OS4RQUCR9E691OUL4J5HTLKWUQFBG_1_6"} {"score": 0.12173295021057129, "chain_id": "3OS4RQUCR9E691OUL4J5HTLKWUQFBG_1_7"} {"score": 0.5157716870307922, "chain_id": "3OS4RQUCR9E691OUL4J5HTLKWUQFBG_1_8"} {"score": 0.28656500577926636, "chain_id": "3OS4RQUCR9E691OUL4J5HTLKWUQFBG_1_9"} {"score": 0.06280107796192169, "chain_id": "3OS4RQUCR9E691OUL4J5HTLKWUQFBG_1_10"} {"score": 0.8328372240066528, "chain_id": "3T111IHZ5EPKOYE6EF537C4DBPA9RL_1_1"} {"score": 0.8132418394088745, "chain_id": "3T111IHZ5EPKOYE6EF537C4DBPA9RL_1_2"} {"score": 0.31080466508865356, "chain_id": "3T111IHZ5EPKOYE6EF537C4DBPA9RL_1_6"} {"score": 0.05086228623986244, "chain_id": "3T111IHZ5EPKOYE6EF537C4DBPA9RL_1_3"} {"score": 0.04940200597047806, "chain_id": "3T111IHZ5EPKOYE6EF537C4DBPA9RL_1_4"} {"score": 0.04488708823919296, "chain_id": "3T111IHZ5EPKOYE6EF537C4DBPA9RL_1_5"} {"score": 0.12674780189990997, "chain_id": "3T111IHZ5EPKOYE6EF537C4DBPA9RL_1_7"} {"score": 0.018627779558300972, "chain_id": "3T111IHZ5EPKOYE6EF537C4DBPA9RL_1_8"} {"score": 0.04691970348358154, "chain_id": "3T111IHZ5EPKOYE6EF537C4DBPA9RL_1_9"} {"score": 0.13956224918365479, "chain_id": "3T111IHZ5EPKOYE6EF537C4DBPA9RL_1_10"} {"score": 0.11114989966154099, "chain_id": "3S06PH7KSR38YJS6S1VQNH5QUTUD13_1_10"} {"score": 0.0534592904150486, "chain_id": "3S06PH7KSR38YJS6S1VQNH5QUTUD13_1_1"} {"score": 0.20848946273326874, "chain_id": "3S06PH7KSR38YJS6S1VQNH5QUTUD13_1_2"} {"score": 0.11582678556442261, "chain_id": "3S06PH7KSR38YJS6S1VQNH5QUTUD13_1_3"} {"score": 0.7728883624076843, "chain_id": "3S06PH7KSR38YJS6S1VQNH5QUTUD13_1_4"} {"score": 0.0352637805044651, "chain_id": "3S06PH7KSR38YJS6S1VQNH5QUTUD13_1_5"} {"score": 0.3690553307533264, "chain_id": "3S06PH7KSR38YJS6S1VQNH5QUTUD13_1_6"} {"score": 0.12561728060245514, "chain_id": "3S06PH7KSR38YJS6S1VQNH5QUTUD13_1_7"} {"score": 0.1640329360961914, "chain_id": "3S06PH7KSR38YJS6S1VQNH5QUTUD13_1_8"} {"score": 0.05541866272687912, "chain_id": "3S06PH7KSR38YJS6S1VQNH5QUTUD13_1_9"} {"score": 0.9478998184204102, "chain_id": "3AUQQEL7U5SULB7AN3RKFYSNPA50V3_1_1"} {"score": 0.9756757020950317, "chain_id": "3AUQQEL7U5SULB7AN3RKFYSNPA50V3_1_2"} {"score": 0.7035666704177856, "chain_id": "3AUQQEL7U5SULB7AN3RKFYSNPA50V3_1_4"} {"score": 0.6671239733695984, "chain_id": "3AUQQEL7U5SULB7AN3RKFYSNPA50V3_1_3"} {"score": 0.019838441163301468, "chain_id": "3AUQQEL7U5SULB7AN3RKFYSNPA50V3_1_5"} {"score": 0.02882516384124756, "chain_id": "3AUQQEL7U5SULB7AN3RKFYSNPA50V3_1_6"} {"score": 0.13676314055919647, "chain_id": "3AUQQEL7U5SULB7AN3RKFYSNPA50V3_1_7"} {"score": 0.05882963910698891, "chain_id": "3AUQQEL7U5SULB7AN3RKFYSNPA50V3_1_8"} {"score": 0.026430286467075348, "chain_id": "3AUQQEL7U5SULB7AN3RKFYSNPA50V3_1_9"} {"score": 0.05501439794898033, "chain_id": "3AUQQEL7U5SULB7AN3RKFYSNPA50V3_1_10"} {"score": 0.9898603558540344, "chain_id": "3RRCEFRB7MBWBLR51NNMQPOT3VPB4A_1_1"} {"score": 0.9400548934936523, "chain_id": "3RRCEFRB7MBWBLR51NNMQPOT3VPB4A_1_5"} {"score": 0.24321627616882324, "chain_id": "3RRCEFRB7MBWBLR51NNMQPOT3VPB4A_1_6"} {"score": 0.5583677887916565, "chain_id": "3RRCEFRB7MBWBLR51NNMQPOT3VPB4A_1_10"} {"score": 0.8543221354484558, "chain_id": "3RRCEFRB7MBWBLR51NNMQPOT3VPB4A_1_2"} {"score": 0.6206228733062744, "chain_id": "3RRCEFRB7MBWBLR51NNMQPOT3VPB4A_1_3"} {"score": 0.9362301230430603, "chain_id": "3RRCEFRB7MBWBLR51NNMQPOT3VPB4A_1_4"} {"score": 0.5604197382926941, "chain_id": "3RRCEFRB7MBWBLR51NNMQPOT3VPB4A_1_7"} {"score": 0.4671285152435303, "chain_id": "3RRCEFRB7MBWBLR51NNMQPOT3VPB4A_1_8"} {"score": 0.5804473161697388, "chain_id": "3RRCEFRB7MBWBLR51NNMQPOT3VPB4A_1_9"} {"score": 0.038478754460811615, "chain_id": "3KKG4CDWKIXDNSC8339QZJT3FVY495_1_1"} {"score": 0.015183629468083382, "chain_id": "3KKG4CDWKIXDNSC8339QZJT3FVY495_1_2"} {"score": 0.04515805467963219, "chain_id": "3KKG4CDWKIXDNSC8339QZJT3FVY495_1_3"} {"score": 0.0693303793668747, "chain_id": "3KKG4CDWKIXDNSC8339QZJT3FVY495_1_4"} {"score": 0.057956136763095856, "chain_id": "3KKG4CDWKIXDNSC8339QZJT3FVY495_1_5"} {"score": 0.018290700390934944, "chain_id": "3KKG4CDWKIXDNSC8339QZJT3FVY495_1_6"} {"score": 0.05897916108369827, "chain_id": "3KKG4CDWKIXDNSC8339QZJT3FVY495_1_7"} {"score": 0.02057814411818981, "chain_id": "3KKG4CDWKIXDNSC8339QZJT3FVY495_1_8"} {"score": 0.43323272466659546, "chain_id": "3KKG4CDWKIXDNSC8339QZJT3FVY495_1_9"} {"score": 0.05920135974884033, "chain_id": "3KKG4CDWKIXDNSC8339QZJT3FVY495_1_10"} {"score": 0.017445262521505356, "chain_id": "3T111IHZ5EPKOYE6EF537C4D8OY9R4_1_1"} {"score": 0.1103937104344368, "chain_id": "3T111IHZ5EPKOYE6EF537C4D8OY9R4_1_2"} {"score": 0.03125349059700966, "chain_id": "3T111IHZ5EPKOYE6EF537C4D8OY9R4_1_3"} {"score": 0.0166427381336689, "chain_id": "3T111IHZ5EPKOYE6EF537C4D8OY9R4_1_4"} {"score": 0.027569981291890144, "chain_id": "3T111IHZ5EPKOYE6EF537C4D8OY9R4_1_5"} {"score": 0.02527167834341526, "chain_id": "3T111IHZ5EPKOYE6EF537C4D8OY9R4_1_6"} {"score": 0.05757890269160271, "chain_id": "3T111IHZ5EPKOYE6EF537C4D8OY9R4_1_7"} {"score": 0.0396931953728199, "chain_id": "3T111IHZ5EPKOYE6EF537C4D8OY9R4_1_8"} {"score": 0.05047374963760376, "chain_id": "3T111IHZ5EPKOYE6EF537C4D8OY9R4_1_9"} {"score": 0.02872523106634617, "chain_id": "3T111IHZ5EPKOYE6EF537C4D8OY9R4_1_10"} {"score": 0.060079626739025116, "chain_id": "3U088ZLJVKS7007FDDWG10B1X0E0WJ_1_1"} {"score": 0.4571964740753174, "chain_id": "3U088ZLJVKS7007FDDWG10B1X0E0WJ_1_2"} {"score": 0.0540136955678463, "chain_id": "3U088ZLJVKS7007FDDWG10B1X0E0WJ_1_3"} {"score": 0.44360002875328064, "chain_id": "3U088ZLJVKS7007FDDWG10B1X0E0WJ_1_4"} {"score": 0.060300618410110474, "chain_id": "3U088ZLJVKS7007FDDWG10B1X0E0WJ_1_5"} {"score": 0.2242891490459442, "chain_id": "3U088ZLJVKS7007FDDWG10B1X0E0WJ_1_6"} {"score": 0.0686982274055481, "chain_id": "3U088ZLJVKS7007FDDWG10B1X0E0WJ_1_7"} {"score": 0.07322326302528381, "chain_id": "3U088ZLJVKS7007FDDWG10B1X0E0WJ_1_8"} {"score": 0.24867519736289978, "chain_id": "3U088ZLJVKS7007FDDWG10B1X0E0WJ_1_9"} {"score": 0.2965419292449951, "chain_id": "3U088ZLJVKS7007FDDWG10B1X0E0WJ_1_10"} {"score": 0.09923050552606583, "chain_id": "3TXMY6UCAENMAV69DKQU4CVGIU1CQ3_1_1"} {"score": 0.17064528167247772, "chain_id": "3TXMY6UCAENMAV69DKQU4CVGIU1CQ3_1_2"} {"score": 0.5405291318893433, "chain_id": "3TXMY6UCAENMAV69DKQU4CVGIU1CQ3_1_3"} {"score": 0.06580367684364319, "chain_id": "3TXMY6UCAENMAV69DKQU4CVGIU1CQ3_1_4"} {"score": 0.03045237436890602, "chain_id": "3TXMY6UCAENMAV69DKQU4CVGIU1CQ3_1_5"} {"score": 0.05288715660572052, "chain_id": "3TXMY6UCAENMAV69DKQU4CVGIU1CQ3_1_6"} {"score": 0.022661028429865837, "chain_id": "3TXMY6UCAENMAV69DKQU4CVGIU1CQ3_1_7"} {"score": 0.03221901133656502, "chain_id": "3TXMY6UCAENMAV69DKQU4CVGIU1CQ3_1_8"} {"score": 0.0314701609313488, "chain_id": "3TXMY6UCAENMAV69DKQU4CVGIU1CQ3_1_9"} {"score": 0.08094891905784607, "chain_id": "3TXMY6UCAENMAV69DKQU4CVGIU1CQ3_1_10"} {"score": 0.6553331613540649, "chain_id": "39GAF6DQWRZUS0SSJMVKT3BX946V1F_1_1"} {"score": 0.9599562883377075, "chain_id": "39GAF6DQWRZUS0SSJMVKT3BX946V1F_1_2"} {"score": 0.9804926514625549, "chain_id": "39GAF6DQWRZUS0SSJMVKT3BX946V1F_1_6"} {"score": 0.7804470062255859, "chain_id": "39GAF6DQWRZUS0SSJMVKT3BX946V1F_1_8"} {"score": 0.9609110951423645, "chain_id": "39GAF6DQWRZUS0SSJMVKT3BX946V1F_1_10"} {"score": 0.07809165120124817, "chain_id": "39GAF6DQWRZUS0SSJMVKT3BX946V1F_1_3"} {"score": 0.08037737756967545, "chain_id": "39GAF6DQWRZUS0SSJMVKT3BX946V1F_1_4"} {"score": 0.07146000117063522, "chain_id": "39GAF6DQWRZUS0SSJMVKT3BX946V1F_1_5"} {"score": 0.13866065442562103, "chain_id": "39GAF6DQWRZUS0SSJMVKT3BX946V1F_1_7"} {"score": 0.8920915722846985, "chain_id": "39GAF6DQWRZUS0SSJMVKT3BX946V1F_1_9"} {"score": 0.8483325839042664, "chain_id": "3R0T90IZ1SBVX6CVAOLIAYREQPFGCD_1_6"} {"score": 0.799140453338623, "chain_id": "3R0T90IZ1SBVX6CVAOLIAYREQPFGCD_1_1"} {"score": 0.4146888852119446, "chain_id": "3R0T90IZ1SBVX6CVAOLIAYREQPFGCD_1_2"} {"score": 0.891966700553894, "chain_id": "3R0T90IZ1SBVX6CVAOLIAYREQPFGCD_1_3"} {"score": 0.021455813199281693, "chain_id": "3R0T90IZ1SBVX6CVAOLIAYREQPFGCD_1_4"} {"score": 0.09312549978494644, "chain_id": "3R0T90IZ1SBVX6CVAOLIAYREQPFGCD_1_5"} {"score": 0.2552732527256012, "chain_id": "3R0T90IZ1SBVX6CVAOLIAYREQPFGCD_1_7"} {"score": 0.05716394633054733, "chain_id": "3R0T90IZ1SBVX6CVAOLIAYREQPFGCD_1_8"} {"score": 0.10330892354249954, "chain_id": "3R0T90IZ1SBVX6CVAOLIAYREQPFGCD_1_9"} {"score": 0.017235111445188522, "chain_id": "3R0T90IZ1SBVX6CVAOLIAYREQPFGCD_1_10"} {"score": 0.9216620922088623, "chain_id": "3XUHV3NRVKXOYHYRFKGSHSX5DAD5H4_1_1"} {"score": 0.8837831616401672, "chain_id": "3XUHV3NRVKXOYHYRFKGSHSX5DAD5H4_1_2"} {"score": 0.30978870391845703, "chain_id": "3XUHV3NRVKXOYHYRFKGSHSX5DAD5H4_1_6"} {"score": 0.4745659828186035, "chain_id": "3XUHV3NRVKXOYHYRFKGSHSX5DAD5H4_1_3"} {"score": 0.597590446472168, "chain_id": "3XUHV3NRVKXOYHYRFKGSHSX5DAD5H4_1_4"} {"score": 0.5063552856445312, "chain_id": "3XUHV3NRVKXOYHYRFKGSHSX5DAD5H4_1_5"} {"score": 0.3326197862625122, "chain_id": "3XUHV3NRVKXOYHYRFKGSHSX5DAD5H4_1_7"} {"score": 0.3399866223335266, "chain_id": "3XUHV3NRVKXOYHYRFKGSHSX5DAD5H4_1_8"} {"score": 0.24566875398159027, "chain_id": "3XUHV3NRVKXOYHYRFKGSHSX5DAD5H4_1_9"} {"score": 0.18306317925453186, "chain_id": "3XUHV3NRVKXOYHYRFKGSHSX5DAD5H4_1_10"} {"score": 0.5903520584106445, "chain_id": "3WI0P0II61RWRORNQVA5T8N3E4KDR1_1_1"} {"score": 0.8085780739784241, "chain_id": "3WI0P0II61RWRORNQVA5T8N3E4KDR1_1_2"} {"score": 0.6516692638397217, "chain_id": "3WI0P0II61RWRORNQVA5T8N3E4KDR1_1_5"} {"score": 0.5650129914283752, "chain_id": "3WI0P0II61RWRORNQVA5T8N3E4KDR1_1_3"} {"score": 0.3152865469455719, "chain_id": "3WI0P0II61RWRORNQVA5T8N3E4KDR1_1_4"} {"score": 0.5203465819358826, "chain_id": "3WI0P0II61RWRORNQVA5T8N3E4KDR1_1_6"} {"score": 0.18566718697547913, "chain_id": "3WI0P0II61RWRORNQVA5T8N3E4KDR1_1_7"} {"score": 0.0724666640162468, "chain_id": "3WI0P0II61RWRORNQVA5T8N3E4KDR1_1_8"} {"score": 0.1731821894645691, "chain_id": "3WI0P0II61RWRORNQVA5T8N3E4KDR1_1_9"} {"score": 0.03478375822305679, "chain_id": "3WI0P0II61RWRORNQVA5T8N3E4KDR1_1_10"} {"score": 0.767958402633667, "chain_id": "39ASUFLU6X6LGQRZVPRHO8RCE7NXEA_1_1"} {"score": 0.24601532518863678, "chain_id": "39ASUFLU6X6LGQRZVPRHO8RCE7NXEA_1_2"} {"score": 0.01816265471279621, "chain_id": "39ASUFLU6X6LGQRZVPRHO8RCE7NXEA_1_3"} {"score": 0.12739114463329315, "chain_id": "39ASUFLU6X6LGQRZVPRHO8RCE7NXEA_1_4"} {"score": 0.13207995891571045, "chain_id": "39ASUFLU6X6LGQRZVPRHO8RCE7NXEA_1_5"} {"score": 0.30529889464378357, "chain_id": "39ASUFLU6X6LGQRZVPRHO8RCE7NXEA_1_6"} {"score": 0.128875270485878, "chain_id": "39ASUFLU6X6LGQRZVPRHO8RCE7NXEA_1_7"} {"score": 0.48204678297042847, "chain_id": "39ASUFLU6X6LGQRZVPRHO8RCE7NXEA_1_8"} {"score": 0.051689263433218, "chain_id": "39ASUFLU6X6LGQRZVPRHO8RCE7NXEA_1_9"} {"score": 0.05322062224149704, "chain_id": "39ASUFLU6X6LGQRZVPRHO8RCE7NXEA_1_10"} {"score": 0.950742781162262, "chain_id": "3TVSS0C0E1Z8G946BFKQLBD6SCYTWB_1_1"} {"score": 0.39568936824798584, "chain_id": "3TVSS0C0E1Z8G946BFKQLBD6SCYTWB_1_6"} {"score": 0.2970902919769287, "chain_id": "3TVSS0C0E1Z8G946BFKQLBD6SCYTWB_1_2"} {"score": 0.0818534716963768, "chain_id": "3TVSS0C0E1Z8G946BFKQLBD6SCYTWB_1_3"} {"score": 0.35836610198020935, "chain_id": "3TVSS0C0E1Z8G946BFKQLBD6SCYTWB_1_4"} {"score": 0.4292200803756714, "chain_id": "3TVSS0C0E1Z8G946BFKQLBD6SCYTWB_1_5"} {"score": 0.9143308401107788, "chain_id": "3TVSS0C0E1Z8G946BFKQLBD6SCYTWB_1_7"} {"score": 0.9215296506881714, "chain_id": "3TVSS0C0E1Z8G946BFKQLBD6SCYTWB_1_8"} {"score": 0.49937567114830017, "chain_id": "3TVSS0C0E1Z8G946BFKQLBD6SCYTWB_1_9"} {"score": 0.2691768705844879, "chain_id": "3TVSS0C0E1Z8G946BFKQLBD6SCYTWB_1_10"} {"score": 0.9908350706100464, "chain_id": "3M1CVSFP604YHG9BT6U3YH5SGO6QAX_1_6"} {"score": 0.7944714426994324, "chain_id": "3M1CVSFP604YHG9BT6U3YH5SGO6QAX_1_7"} {"score": 0.9727277755737305, "chain_id": "3M1CVSFP604YHG9BT6U3YH5SGO6QAX_1_8"} {"score": 0.08033885806798935, "chain_id": "3M1CVSFP604YHG9BT6U3YH5SGO6QAX_1_1"} {"score": 0.036160413175821304, "chain_id": "3M1CVSFP604YHG9BT6U3YH5SGO6QAX_1_2"} {"score": 0.03589317575097084, "chain_id": "3M1CVSFP604YHG9BT6U3YH5SGO6QAX_1_3"} {"score": 0.09170092642307281, "chain_id": "3M1CVSFP604YHG9BT6U3YH5SGO6QAX_1_4"} {"score": 0.9569641351699829, "chain_id": "3M1CVSFP604YHG9BT6U3YH5SGO6QAX_1_5"} {"score": 0.10159562528133392, "chain_id": "3M1CVSFP604YHG9BT6U3YH5SGO6QAX_1_9"} {"score": 0.0427391454577446, "chain_id": "3M1CVSFP604YHG9BT6U3YH5SGO6QAX_1_10"} {"score": 0.9285199642181396, "chain_id": "3KV0LJBBH2KZVIX03O98CYAX6YURMU_1_2"} {"score": 0.04040679335594177, "chain_id": "3KV0LJBBH2KZVIX03O98CYAX6YURMU_1_1"} {"score": 0.12514188885688782, "chain_id": "3KV0LJBBH2KZVIX03O98CYAX6YURMU_1_3"} {"score": 0.32388603687286377, "chain_id": "3KV0LJBBH2KZVIX03O98CYAX6YURMU_1_4"} {"score": 0.18625657260417938, "chain_id": "3KV0LJBBH2KZVIX03O98CYAX6YURMU_1_5"} {"score": 0.16577745974063873, "chain_id": "3KV0LJBBH2KZVIX03O98CYAX6YURMU_1_6"} {"score": 0.4923850893974304, "chain_id": "3KV0LJBBH2KZVIX03O98CYAX6YURMU_1_7"} {"score": 0.5999857187271118, "chain_id": "3KV0LJBBH2KZVIX03O98CYAX6YURMU_1_8"} {"score": 0.05253418907523155, "chain_id": "3KV0LJBBH2KZVIX03O98CYAX6YURMU_1_9"} {"score": 0.0457100011408329, "chain_id": "3KV0LJBBH2KZVIX03O98CYAX6YURMU_1_10"} {"score": 0.03973516449332237, "chain_id": "3CFVK00FWLKM3HHVBO5V1Q4CCZN6LU_1_9"} {"score": 0.10633885115385056, "chain_id": "3CFVK00FWLKM3HHVBO5V1Q4CCZN6LU_1_1"} {"score": 0.03895881772041321, "chain_id": "3CFVK00FWLKM3HHVBO5V1Q4CCZN6LU_1_2"} {"score": 0.07940404117107391, "chain_id": "3CFVK00FWLKM3HHVBO5V1Q4CCZN6LU_1_3"} {"score": 0.1855773627758026, "chain_id": "3CFVK00FWLKM3HHVBO5V1Q4CCZN6LU_1_4"} {"score": 0.033763498067855835, "chain_id": "3CFVK00FWLKM3HHVBO5V1Q4CCZN6LU_1_5"} {"score": 0.09419643133878708, "chain_id": "3CFVK00FWLKM3HHVBO5V1Q4CCZN6LU_1_6"} {"score": 0.038977425545454025, "chain_id": "3CFVK00FWLKM3HHVBO5V1Q4CCZN6LU_1_7"} {"score": 0.02317507565021515, "chain_id": "3CFVK00FWLKM3HHVBO5V1Q4CCZN6LU_1_8"} {"score": 0.14399483799934387, "chain_id": "3CFVK00FWLKM3HHVBO5V1Q4CCZN6LU_1_10"} {"score": 0.49770379066467285, "chain_id": "3WYP994K17Q63GOUU3ULVY68Q51Y6B_1_1"} {"score": 0.9773462414741516, "chain_id": "3WYP994K17Q63GOUU3ULVY68Q51Y6B_1_3"} {"score": 0.5857381820678711, "chain_id": "3WYP994K17Q63GOUU3ULVY68Q51Y6B_1_2"} {"score": 0.9887199997901917, "chain_id": "3WYP994K17Q63GOUU3ULVY68Q51Y6B_1_4"} {"score": 0.03662234544754028, "chain_id": "3WYP994K17Q63GOUU3ULVY68Q51Y6B_1_5"} {"score": 0.031179914250969887, "chain_id": "3WYP994K17Q63GOUU3ULVY68Q51Y6B_1_6"} {"score": 0.05584404990077019, "chain_id": "3WYP994K17Q63GOUU3ULVY68Q51Y6B_1_7"} {"score": 0.03719054535031319, "chain_id": "3WYP994K17Q63GOUU3ULVY68Q51Y6B_1_8"} {"score": 0.023491889238357544, "chain_id": "3WYP994K17Q63GOUU3ULVY68Q51Y6B_1_9"} {"score": 0.023636404424905777, "chain_id": "3WYP994K17Q63GOUU3ULVY68Q51Y6B_1_10"} {"score": 0.9775456786155701, "chain_id": "3OLF68YTN901QRJ2FQJ9MI1EGJ0FAW_1_3"} {"score": 0.47255846858024597, "chain_id": "3OLF68YTN901QRJ2FQJ9MI1EGJ0FAW_1_1"} {"score": 0.15760701894760132, "chain_id": "3OLF68YTN901QRJ2FQJ9MI1EGJ0FAW_1_2"} {"score": 0.32161271572113037, "chain_id": "3OLF68YTN901QRJ2FQJ9MI1EGJ0FAW_1_4"} {"score": 0.8936588764190674, "chain_id": "3OLF68YTN901QRJ2FQJ9MI1EGJ0FAW_1_5"} {"score": 0.0433337427675724, "chain_id": "3OLF68YTN901QRJ2FQJ9MI1EGJ0FAW_1_6"} {"score": 0.2978527843952179, "chain_id": "3OLF68YTN901QRJ2FQJ9MI1EGJ0FAW_1_7"} {"score": 0.5638799667358398, "chain_id": "3OLF68YTN901QRJ2FQJ9MI1EGJ0FAW_1_8"} {"score": 0.042530957609415054, "chain_id": "3OLF68YTN901QRJ2FQJ9MI1EGJ0FAW_1_9"} {"score": 0.04987848922610283, "chain_id": "3OLF68YTN901QRJ2FQJ9MI1EGJ0FAW_1_10"} {"score": 0.3077777922153473, "chain_id": "3ERET4BTVM8Y1U1BOVW660IZB23K9V_1_1"} {"score": 0.09716838598251343, "chain_id": "3ERET4BTVM8Y1U1BOVW660IZB23K9V_1_2"} {"score": 0.08763743191957474, "chain_id": "3ERET4BTVM8Y1U1BOVW660IZB23K9V_1_3"} {"score": 0.024064822122454643, "chain_id": "3ERET4BTVM8Y1U1BOVW660IZB23K9V_1_4"} {"score": 0.049944501370191574, "chain_id": "3ERET4BTVM8Y1U1BOVW660IZB23K9V_1_5"} {"score": 0.05056395381689072, "chain_id": "3ERET4BTVM8Y1U1BOVW660IZB23K9V_1_6"} {"score": 0.10408812016248703, "chain_id": "3ERET4BTVM8Y1U1BOVW660IZB23K9V_1_7"} {"score": 0.05996761843562126, "chain_id": "3ERET4BTVM8Y1U1BOVW660IZB23K9V_1_8"} {"score": 0.03494657576084137, "chain_id": "3ERET4BTVM8Y1U1BOVW660IZB23K9V_1_9"} {"score": 0.38072001934051514, "chain_id": "3ERET4BTVM8Y1U1BOVW660IZB23K9V_1_10"} {"score": 0.9269133806228638, "chain_id": "3U4J9857OEATU89O3LLTT183WSWB73_1_1"} {"score": 0.9722198843955994, "chain_id": "3U4J9857OEATU89O3LLTT183WSWB73_1_2"} {"score": 0.4880606532096863, "chain_id": "3U4J9857OEATU89O3LLTT183WSWB73_1_8"} {"score": 0.3096214532852173, "chain_id": "3U4J9857OEATU89O3LLTT183WSWB73_1_3"} {"score": 0.31274887919425964, "chain_id": "3U4J9857OEATU89O3LLTT183WSWB73_1_4"} {"score": 0.8628719449043274, "chain_id": "3U4J9857OEATU89O3LLTT183WSWB73_1_5"} {"score": 0.9566511511802673, "chain_id": "3U4J9857OEATU89O3LLTT183WSWB73_1_6"} {"score": 0.04792344942688942, "chain_id": "3U4J9857OEATU89O3LLTT183WSWB73_1_7"} {"score": 0.20388296246528625, "chain_id": "3U4J9857OEATU89O3LLTT183WSWB73_1_9"} {"score": 0.021692924201488495, "chain_id": "3U4J9857OEATU89O3LLTT183WSWB73_1_10"} {"score": 0.7870141863822937, "chain_id": "3ZWFC4W1UU6TP85JH15VH8QODW1RF8_1_3"} {"score": 0.9351210594177246, "chain_id": "3ZWFC4W1UU6TP85JH15VH8QODW1RF8_1_5"} {"score": 0.8296969532966614, "chain_id": "3ZWFC4W1UU6TP85JH15VH8QODW1RF8_1_8"} {"score": 0.9348196387290955, "chain_id": "3ZWFC4W1UU6TP85JH15VH8QODW1RF8_1_1"} {"score": 0.9673051834106445, "chain_id": "3ZWFC4W1UU6TP85JH15VH8QODW1RF8_1_2"} {"score": 0.1968909502029419, "chain_id": "3ZWFC4W1UU6TP85JH15VH8QODW1RF8_1_4"} {"score": 0.18683917820453644, "chain_id": "3ZWFC4W1UU6TP85JH15VH8QODW1RF8_1_6"} {"score": 0.5183967351913452, "chain_id": "3ZWFC4W1UU6TP85JH15VH8QODW1RF8_1_7"} {"score": 0.7701874375343323, "chain_id": "3ZWFC4W1UU6TP85JH15VH8QODW1RF8_1_9"} {"score": 0.4430491030216217, "chain_id": "3ZWFC4W1UU6TP85JH15VH8QODW1RF8_1_10"} {"score": 0.9757862687110901, "chain_id": "3K9FOBBF2HIUA2NNA5RC31QY9XONLF_1_1"} {"score": 0.9736185669898987, "chain_id": "3K9FOBBF2HIUA2NNA5RC31QY9XONLF_1_2"} {"score": 0.9444557428359985, "chain_id": "3K9FOBBF2HIUA2NNA5RC31QY9XONLF_1_3"} {"score": 0.8384350538253784, "chain_id": "3K9FOBBF2HIUA2NNA5RC31QY9XONLF_1_9"} {"score": 0.8594325184822083, "chain_id": "3K9FOBBF2HIUA2NNA5RC31QY9XONLF_1_10"} {"score": 0.09312398731708527, "chain_id": "3K9FOBBF2HIUA2NNA5RC31QY9XONLF_1_4"} {"score": 0.8299717307090759, "chain_id": "3K9FOBBF2HIUA2NNA5RC31QY9XONLF_1_5"} {"score": 0.42406272888183594, "chain_id": "3K9FOBBF2HIUA2NNA5RC31QY9XONLF_1_6"} {"score": 0.7721505165100098, "chain_id": "3K9FOBBF2HIUA2NNA5RC31QY9XONLF_1_7"} {"score": 0.8629634380340576, "chain_id": "3K9FOBBF2HIUA2NNA5RC31QY9XONLF_1_8"} {"score": 0.9341188669204712, "chain_id": "36U2A8VAG1YD2V9JW7OM5HBQOURYK7_1_1"} {"score": 0.718771755695343, "chain_id": "36U2A8VAG1YD2V9JW7OM5HBQOURYK7_1_2"} {"score": 0.1788395792245865, "chain_id": "36U2A8VAG1YD2V9JW7OM5HBQOURYK7_1_4"} {"score": 0.8794098496437073, "chain_id": "36U2A8VAG1YD2V9JW7OM5HBQOURYK7_1_5"} {"score": 0.14653341472148895, "chain_id": "36U2A8VAG1YD2V9JW7OM5HBQOURYK7_1_8"} {"score": 0.2259674221277237, "chain_id": "36U2A8VAG1YD2V9JW7OM5HBQOURYK7_1_9"} {"score": 0.1485026329755783, "chain_id": "36U2A8VAG1YD2V9JW7OM5HBQOURYK7_1_3"} {"score": 0.0614602193236351, "chain_id": "36U2A8VAG1YD2V9JW7OM5HBQOURYK7_1_6"} {"score": 0.10412610322237015, "chain_id": "36U2A8VAG1YD2V9JW7OM5HBQOURYK7_1_7"} {"score": 0.052393838763237, "chain_id": "36U2A8VAG1YD2V9JW7OM5HBQOURYK7_1_10"} {"score": 0.969953179359436, "chain_id": "3G5F9DBFOPW5WBD6LBY5LQR4F6YHVB_1_4"} {"score": 0.5838521122932434, "chain_id": "3G5F9DBFOPW5WBD6LBY5LQR4F6YHVB_1_5"} {"score": 0.9832095503807068, "chain_id": "3G5F9DBFOPW5WBD6LBY5LQR4F6YHVB_1_6"} {"score": 0.703306257724762, "chain_id": "3G5F9DBFOPW5WBD6LBY5LQR4F6YHVB_1_8"} {"score": 0.9030343890190125, "chain_id": "3G5F9DBFOPW5WBD6LBY5LQR4F6YHVB_1_1"} {"score": 0.9878427982330322, "chain_id": "3G5F9DBFOPW5WBD6LBY5LQR4F6YHVB_1_2"} {"score": 0.873046875, "chain_id": "3G5F9DBFOPW5WBD6LBY5LQR4F6YHVB_1_3"} {"score": 0.987392008304596, "chain_id": "3G5F9DBFOPW5WBD6LBY5LQR4F6YHVB_1_7"} {"score": 0.19152623414993286, "chain_id": "3G5F9DBFOPW5WBD6LBY5LQR4F6YHVB_1_9"} {"score": 0.8672230839729309, "chain_id": "3G5F9DBFOPW5WBD6LBY5LQR4F6YHVB_1_10"} {"score": 0.9506452679634094, "chain_id": "386CSBG1OZLXUEX83TDRIC36P5YQ6U_1_3"} {"score": 0.9854682087898254, "chain_id": "386CSBG1OZLXUEX83TDRIC36P5YQ6U_1_4"} {"score": 0.9114052057266235, "chain_id": "386CSBG1OZLXUEX83TDRIC36P5YQ6U_1_9"} {"score": 0.8548688888549805, "chain_id": "386CSBG1OZLXUEX83TDRIC36P5YQ6U_1_10"} {"score": 0.9871609210968018, "chain_id": "386CSBG1OZLXUEX83TDRIC36P5YQ6U_1_1"} {"score": 0.6607890129089355, "chain_id": "386CSBG1OZLXUEX83TDRIC36P5YQ6U_1_2"} {"score": 0.8456385731697083, "chain_id": "386CSBG1OZLXUEX83TDRIC36P5YQ6U_1_5"} {"score": 0.829936683177948, "chain_id": "386CSBG1OZLXUEX83TDRIC36P5YQ6U_1_6"} {"score": 0.409974068403244, "chain_id": "386CSBG1OZLXUEX83TDRIC36P5YQ6U_1_7"} {"score": 0.6082670092582703, "chain_id": "386CSBG1OZLXUEX83TDRIC36P5YQ6U_1_8"} {"score": 0.9699829816818237, "chain_id": "3KMS4QQVK2P724SORHWYGW4AJZBFKY_1_2"} {"score": 0.7321716547012329, "chain_id": "3KMS4QQVK2P724SORHWYGW4AJZBFKY_1_4"} {"score": 0.9488534927368164, "chain_id": "3KMS4QQVK2P724SORHWYGW4AJZBFKY_1_6"} {"score": 0.7330936193466187, "chain_id": "3KMS4QQVK2P724SORHWYGW4AJZBFKY_1_1"} {"score": 0.2647087574005127, "chain_id": "3KMS4QQVK2P724SORHWYGW4AJZBFKY_1_3"} {"score": 0.45884063839912415, "chain_id": "3KMS4QQVK2P724SORHWYGW4AJZBFKY_1_5"} {"score": 0.694968044757843, "chain_id": "3KMS4QQVK2P724SORHWYGW4AJZBFKY_1_7"} {"score": 0.16085684299468994, "chain_id": "3KMS4QQVK2P724SORHWYGW4AJZBFKY_1_8"} {"score": 0.957347571849823, "chain_id": "3KMS4QQVK2P724SORHWYGW4AJZBFKY_1_9"} {"score": 0.6748356819152832, "chain_id": "3KMS4QQVK2P724SORHWYGW4AJZBFKY_1_10"} {"score": 0.9899371862411499, "chain_id": "3LO69W1SU3CO0A61N1EHDHH17A1LGH_1_1"} {"score": 0.499436616897583, "chain_id": "3LO69W1SU3CO0A61N1EHDHH17A1LGH_1_2"} {"score": 0.8687851428985596, "chain_id": "3LO69W1SU3CO0A61N1EHDHH17A1LGH_1_4"} {"score": 0.7624066472053528, "chain_id": "3LO69W1SU3CO0A61N1EHDHH17A1LGH_1_5"} {"score": 0.03577631711959839, "chain_id": "3LO69W1SU3CO0A61N1EHDHH17A1LGH_1_8"} {"score": 0.9814691543579102, "chain_id": "3LO69W1SU3CO0A61N1EHDHH17A1LGH_1_3"} {"score": 0.11536940932273865, "chain_id": "3LO69W1SU3CO0A61N1EHDHH17A1LGH_1_6"} {"score": 0.13510194420814514, "chain_id": "3LO69W1SU3CO0A61N1EHDHH17A1LGH_1_7"} {"score": 0.07377517968416214, "chain_id": "3LO69W1SU3CO0A61N1EHDHH17A1LGH_1_9"} {"score": 0.029939688742160797, "chain_id": "3LO69W1SU3CO0A61N1EHDHH17A1LGH_1_10"} {"score": 0.98636394739151, "chain_id": "3I33IC7ZWF1HPX7QRV422Z7P3R9A25_1_1"} {"score": 0.7166418433189392, "chain_id": "3I33IC7ZWF1HPX7QRV422Z7P3R9A25_1_2"} {"score": 0.9691680669784546, "chain_id": "3I33IC7ZWF1HPX7QRV422Z7P3R9A25_1_3"} {"score": 0.8038702011108398, "chain_id": "3I33IC7ZWF1HPX7QRV422Z7P3R9A25_1_4"} {"score": 0.11336824297904968, "chain_id": "3I33IC7ZWF1HPX7QRV422Z7P3R9A25_1_5"} {"score": 0.0271952822804451, "chain_id": "3I33IC7ZWF1HPX7QRV422Z7P3R9A25_1_6"} {"score": 0.6762306690216064, "chain_id": "3I33IC7ZWF1HPX7QRV422Z7P3R9A25_1_7"} {"score": 0.11547844111919403, "chain_id": "3I33IC7ZWF1HPX7QRV422Z7P3R9A25_1_8"} {"score": 0.0339152067899704, "chain_id": "3I33IC7ZWF1HPX7QRV422Z7P3R9A25_1_9"} {"score": 0.12267383933067322, "chain_id": "3I33IC7ZWF1HPX7QRV422Z7P3R9A25_1_10"} {"score": 0.8144210577011108, "chain_id": "3RSDURM96ALAGVH90LDJ7MYL3MYYE3_1_1"} {"score": 0.15469948947429657, "chain_id": "3RSDURM96ALAGVH90LDJ7MYL3MYYE3_1_2"} {"score": 0.2281503677368164, "chain_id": "3RSDURM96ALAGVH90LDJ7MYL3MYYE3_1_3"} {"score": 0.9357713460922241, "chain_id": "3RSDURM96ALAGVH90LDJ7MYL3MYYE3_1_4"} {"score": 0.4883854389190674, "chain_id": "3RSDURM96ALAGVH90LDJ7MYL3MYYE3_1_5"} {"score": 0.25121885538101196, "chain_id": "3RSDURM96ALAGVH90LDJ7MYL3MYYE3_1_6"} {"score": 0.08771539479494095, "chain_id": "3RSDURM96ALAGVH90LDJ7MYL3MYYE3_1_7"} {"score": 0.9155815839767456, "chain_id": "3RSDURM96ALAGVH90LDJ7MYL3MYYE3_1_8"} {"score": 0.2998414933681488, "chain_id": "3RSDURM96ALAGVH90LDJ7MYL3MYYE3_1_9"} {"score": 0.21889826655387878, "chain_id": "3RSDURM96ALAGVH90LDJ7MYL3MYYE3_1_10"} {"score": 0.7297110557556152, "chain_id": "3Z9WI9EOZZNRG0JUM7KYJHGNYLIHK5_1_2"} {"score": 0.1636526882648468, "chain_id": "3Z9WI9EOZZNRG0JUM7KYJHGNYLIHK5_1_3"} {"score": 0.9820927381515503, "chain_id": "3Z9WI9EOZZNRG0JUM7KYJHGNYLIHK5_1_4"} {"score": 0.38322529196739197, "chain_id": "3Z9WI9EOZZNRG0JUM7KYJHGNYLIHK5_1_5"} {"score": 0.9573777318000793, "chain_id": "3Z9WI9EOZZNRG0JUM7KYJHGNYLIHK5_1_10"} {"score": 0.9740628600120544, "chain_id": "3Z9WI9EOZZNRG0JUM7KYJHGNYLIHK5_1_1"} {"score": 0.9146682024002075, "chain_id": "3Z9WI9EOZZNRG0JUM7KYJHGNYLIHK5_1_6"} {"score": 0.9740043878555298, "chain_id": "3Z9WI9EOZZNRG0JUM7KYJHGNYLIHK5_1_7"} {"score": 0.9420827031135559, "chain_id": "3Z9WI9EOZZNRG0JUM7KYJHGNYLIHK5_1_8"} {"score": 0.2234923094511032, "chain_id": "3Z9WI9EOZZNRG0JUM7KYJHGNYLIHK5_1_9"} {"score": 0.03836963698267937, "chain_id": "3JMSRU9HQITTC1M4VAQZ0NURNNDVEA_1_1"} {"score": 0.07727673649787903, "chain_id": "3JMSRU9HQITTC1M4VAQZ0NURNNDVEA_1_2"} {"score": 0.13924387097358704, "chain_id": "3JMSRU9HQITTC1M4VAQZ0NURNNDVEA_1_3"} {"score": 0.030118046328425407, "chain_id": "3JMSRU9HQITTC1M4VAQZ0NURNNDVEA_1_4"} {"score": 0.043911222368478775, "chain_id": "3JMSRU9HQITTC1M4VAQZ0NURNNDVEA_1_5"} {"score": 0.07973483204841614, "chain_id": "3JMSRU9HQITTC1M4VAQZ0NURNNDVEA_1_6"} {"score": 0.09462511539459229, "chain_id": "3JMSRU9HQITTC1M4VAQZ0NURNNDVEA_1_7"} {"score": 0.059345487505197525, "chain_id": "3JMSRU9HQITTC1M4VAQZ0NURNNDVEA_1_8"} {"score": 0.04513835906982422, "chain_id": "3JMSRU9HQITTC1M4VAQZ0NURNNDVEA_1_9"} {"score": 0.1872275173664093, "chain_id": "3JMSRU9HQITTC1M4VAQZ0NURNNDVEA_1_10"} {"score": 0.893051266670227, "chain_id": "39DD6S19JPAALLREW7F2LT7NB2NZEQ_1_4"} {"score": 0.5037833452224731, "chain_id": "39DD6S19JPAALLREW7F2LT7NB2NZEQ_1_9"} {"score": 0.7990497350692749, "chain_id": "39DD6S19JPAALLREW7F2LT7NB2NZEQ_1_10"} {"score": 0.2599528729915619, "chain_id": "39DD6S19JPAALLREW7F2LT7NB2NZEQ_1_1"} {"score": 0.2501981556415558, "chain_id": "39DD6S19JPAALLREW7F2LT7NB2NZEQ_1_2"} {"score": 0.11996385455131531, "chain_id": "39DD6S19JPAALLREW7F2LT7NB2NZEQ_1_3"} {"score": 0.07628747075796127, "chain_id": "39DD6S19JPAALLREW7F2LT7NB2NZEQ_1_5"} {"score": 0.07408113777637482, "chain_id": "39DD6S19JPAALLREW7F2LT7NB2NZEQ_1_6"} {"score": 0.06967765092849731, "chain_id": "39DD6S19JPAALLREW7F2LT7NB2NZEQ_1_7"} {"score": 0.8004512190818787, "chain_id": "39DD6S19JPAALLREW7F2LT7NB2NZEQ_1_8"} {"score": 0.09752330183982849, "chain_id": "39KFRKBFINUWSMUYUZGFCYSZ9E0OYB_1_3"} {"score": 0.8878728747367859, "chain_id": "39KFRKBFINUWSMUYUZGFCYSZ9E0OYB_1_4"} {"score": 0.41167008876800537, "chain_id": "39KFRKBFINUWSMUYUZGFCYSZ9E0OYB_1_9"} {"score": 0.7565540075302124, "chain_id": "39KFRKBFINUWSMUYUZGFCYSZ9E0OYB_1_10"} {"score": 0.20929217338562012, "chain_id": "39KFRKBFINUWSMUYUZGFCYSZ9E0OYB_1_1"} {"score": 0.2032339870929718, "chain_id": "39KFRKBFINUWSMUYUZGFCYSZ9E0OYB_1_2"} {"score": 0.0698409453034401, "chain_id": "39KFRKBFINUWSMUYUZGFCYSZ9E0OYB_1_5"} {"score": 0.06198561564087868, "chain_id": "39KFRKBFINUWSMUYUZGFCYSZ9E0OYB_1_6"} {"score": 0.06101188808679581, "chain_id": "39KFRKBFINUWSMUYUZGFCYSZ9E0OYB_1_7"} {"score": 0.7448777556419373, "chain_id": "39KFRKBFINUWSMUYUZGFCYSZ9E0OYB_1_8"} {"score": 0.9610774517059326, "chain_id": "308Q0PEVB8C7VZBNOSBUTK3MOXI9IG_1_1"} {"score": 0.9881343841552734, "chain_id": "308Q0PEVB8C7VZBNOSBUTK3MOXI9IG_1_2"} {"score": 0.40472912788391113, "chain_id": "308Q0PEVB8C7VZBNOSBUTK3MOXI9IG_1_3"} {"score": 0.9231776595115662, "chain_id": "308Q0PEVB8C7VZBNOSBUTK3MOXI9IG_1_5"} {"score": 0.9683735966682434, "chain_id": "308Q0PEVB8C7VZBNOSBUTK3MOXI9IG_1_6"} {"score": 0.8457914590835571, "chain_id": "308Q0PEVB8C7VZBNOSBUTK3MOXI9IG_1_8"} {"score": 0.6790665984153748, "chain_id": "308Q0PEVB8C7VZBNOSBUTK3MOXI9IG_1_9"} {"score": 0.5501762628555298, "chain_id": "308Q0PEVB8C7VZBNOSBUTK3MOXI9IG_1_10"} {"score": 0.4815683364868164, "chain_id": "308Q0PEVB8C7VZBNOSBUTK3MOXI9IG_1_4"} {"score": 0.3745162785053253, "chain_id": "308Q0PEVB8C7VZBNOSBUTK3MOXI9IG_1_7"} {"score": 0.028930015861988068, "chain_id": "37UQDCYH6XU83M7U82CTUD2A114V7L_1_2"} {"score": 0.9068384766578674, "chain_id": "37UQDCYH6XU83M7U82CTUD2A114V7L_1_6"} {"score": 0.7488786578178406, "chain_id": "37UQDCYH6XU83M7U82CTUD2A114V7L_1_10"} {"score": 0.06813611090183258, "chain_id": "37UQDCYH6XU83M7U82CTUD2A114V7L_1_1"} {"score": 0.0951489731669426, "chain_id": "37UQDCYH6XU83M7U82CTUD2A114V7L_1_3"} {"score": 0.02244095876812935, "chain_id": "37UQDCYH6XU83M7U82CTUD2A114V7L_1_4"} {"score": 0.059602558612823486, "chain_id": "37UQDCYH6XU83M7U82CTUD2A114V7L_1_5"} {"score": 0.9695669412612915, "chain_id": "37UQDCYH6XU83M7U82CTUD2A114V7L_1_7"} {"score": 0.9051046967506409, "chain_id": "37UQDCYH6XU83M7U82CTUD2A114V7L_1_8"} {"score": 0.37679392099380493, "chain_id": "37UQDCYH6XU83M7U82CTUD2A114V7L_1_9"} {"score": 0.22052715718746185, "chain_id": "3W92K5RLWUGTGITBK9XWWTOE6JR5V6_1_1"} {"score": 0.4465635120868683, "chain_id": "3W92K5RLWUGTGITBK9XWWTOE6JR5V6_1_2"} {"score": 0.7486068606376648, "chain_id": "3W92K5RLWUGTGITBK9XWWTOE6JR5V6_1_5"} {"score": 0.32050177454948425, "chain_id": "3W92K5RLWUGTGITBK9XWWTOE6JR5V6_1_6"} {"score": 0.12523725628852844, "chain_id": "3W92K5RLWUGTGITBK9XWWTOE6JR5V6_1_10"} {"score": 0.9707133769989014, "chain_id": "3W92K5RLWUGTGITBK9XWWTOE6JR5V6_1_3"} {"score": 0.3575234115123749, "chain_id": "3W92K5RLWUGTGITBK9XWWTOE6JR5V6_1_4"} {"score": 0.02845439314842224, "chain_id": "3W92K5RLWUGTGITBK9XWWTOE6JR5V6_1_7"} {"score": 0.014018526300787926, "chain_id": "3W92K5RLWUGTGITBK9XWWTOE6JR5V6_1_8"} {"score": 0.03453104943037033, "chain_id": "3W92K5RLWUGTGITBK9XWWTOE6JR5V6_1_9"} {"score": 0.019798239693045616, "chain_id": "3Y9N9SS8LYA48M6LF599BAKNTDN3D1_1_5"} {"score": 0.41293588280677795, "chain_id": "3Y9N9SS8LYA48M6LF599BAKNTDN3D1_1_6"} {"score": 0.9479944705963135, "chain_id": "3Y9N9SS8LYA48M6LF599BAKNTDN3D1_1_10"} {"score": 0.014548501931130886, "chain_id": "3Y9N9SS8LYA48M6LF599BAKNTDN3D1_1_1"} {"score": 0.015624267980456352, "chain_id": "3Y9N9SS8LYA48M6LF599BAKNTDN3D1_1_2"} {"score": 0.019720159471035004, "chain_id": "3Y9N9SS8LYA48M6LF599BAKNTDN3D1_1_3"} {"score": 0.012439526617527008, "chain_id": "3Y9N9SS8LYA48M6LF599BAKNTDN3D1_1_4"} {"score": 0.014173097908496857, "chain_id": "3Y9N9SS8LYA48M6LF599BAKNTDN3D1_1_7"} {"score": 0.019233187660574913, "chain_id": "3Y9N9SS8LYA48M6LF599BAKNTDN3D1_1_8"} {"score": 0.01594424806535244, "chain_id": "3Y9N9SS8LYA48M6LF599BAKNTDN3D1_1_9"} {"score": 0.28380247950553894, "chain_id": "3NPFYT4IZC3J04NQ1KH5OBCOBJBXGC_1_1"} {"score": 0.23512743413448334, "chain_id": "3NPFYT4IZC3J04NQ1KH5OBCOBJBXGC_1_2"} {"score": 0.3146130442619324, "chain_id": "3NPFYT4IZC3J04NQ1KH5OBCOBJBXGC_1_3"} {"score": 0.9284481406211853, "chain_id": "3NPFYT4IZC3J04NQ1KH5OBCOBJBXGC_1_4"} {"score": 0.2687695622444153, "chain_id": "3NPFYT4IZC3J04NQ1KH5OBCOBJBXGC_1_5"} {"score": 0.2604295313358307, "chain_id": "3NPFYT4IZC3J04NQ1KH5OBCOBJBXGC_1_6"} {"score": 0.03829130530357361, "chain_id": "3NPFYT4IZC3J04NQ1KH5OBCOBJBXGC_1_7"} {"score": 0.18128599226474762, "chain_id": "3NPFYT4IZC3J04NQ1KH5OBCOBJBXGC_1_8"} {"score": 0.08111874014139175, "chain_id": "3NPFYT4IZC3J04NQ1KH5OBCOBJBXGC_1_9"} {"score": 0.2333095818758011, "chain_id": "3NPFYT4IZC3J04NQ1KH5OBCOBJBXGC_1_10"} {"score": 0.10297221690416336, "chain_id": "3PM8NZGV8YFADTH44GMHIPGQH9CQXY_1_1"} {"score": 0.05787428095936775, "chain_id": "3PM8NZGV8YFADTH44GMHIPGQH9CQXY_1_2"} {"score": 0.04627838730812073, "chain_id": "3PM8NZGV8YFADTH44GMHIPGQH9CQXY_1_3"} {"score": 0.047205403447151184, "chain_id": "3PM8NZGV8YFADTH44GMHIPGQH9CQXY_1_4"} {"score": 0.04809780791401863, "chain_id": "3PM8NZGV8YFADTH44GMHIPGQH9CQXY_1_5"} {"score": 0.23182415962219238, "chain_id": "3PM8NZGV8YFADTH44GMHIPGQH9CQXY_1_6"} {"score": 0.07872364670038223, "chain_id": "3PM8NZGV8YFADTH44GMHIPGQH9CQXY_1_7"} {"score": 0.03524450585246086, "chain_id": "3PM8NZGV8YFADTH44GMHIPGQH9CQXY_1_8"} {"score": 0.018991854041814804, "chain_id": "3PM8NZGV8YFADTH44GMHIPGQH9CQXY_1_9"} {"score": 0.08467073738574982, "chain_id": "3PM8NZGV8YFADTH44GMHIPGQH9CQXY_1_10"} {"score": 0.15970377624034882, "chain_id": "3RXPCZQMQPABA32XURWYT28N6B91GF_1_1"} {"score": 0.34651443362236023, "chain_id": "3RXPCZQMQPABA32XURWYT28N6B91GF_1_2"} {"score": 0.10467925667762756, "chain_id": "3RXPCZQMQPABA32XURWYT28N6B91GF_1_3"} {"score": 0.10675696283578873, "chain_id": "3RXPCZQMQPABA32XURWYT28N6B91GF_1_4"} {"score": 0.10008160769939423, "chain_id": "3RXPCZQMQPABA32XURWYT28N6B91GF_1_5"} {"score": 0.07854864001274109, "chain_id": "3RXPCZQMQPABA32XURWYT28N6B91GF_1_6"} {"score": 0.04594540596008301, "chain_id": "3RXPCZQMQPABA32XURWYT28N6B91GF_1_7"} {"score": 0.07275261729955673, "chain_id": "3RXPCZQMQPABA32XURWYT28N6B91GF_1_8"} {"score": 0.08363918960094452, "chain_id": "3RXPCZQMQPABA32XURWYT28N6B91GF_1_9"} {"score": 0.04967619851231575, "chain_id": "3RXPCZQMQPABA32XURWYT28N6B91GF_1_10"} {"score": 0.9175705313682556, "chain_id": "3YZ8UPK3VTLE2ODQUTAZEDS5JG6UCP_1_1"} {"score": 0.9029292464256287, "chain_id": "3YZ8UPK3VTLE2ODQUTAZEDS5JG6UCP_1_2"} {"score": 0.06937716156244278, "chain_id": "3YZ8UPK3VTLE2ODQUTAZEDS5JG6UCP_1_3"} {"score": 0.22018545866012573, "chain_id": "3YZ8UPK3VTLE2ODQUTAZEDS5JG6UCP_1_4"} {"score": 0.21997250616550446, "chain_id": "3YZ8UPK3VTLE2ODQUTAZEDS5JG6UCP_1_5"} {"score": 0.409977525472641, "chain_id": "3YZ8UPK3VTLE2ODQUTAZEDS5JG6UCP_1_6"} {"score": 0.11726798862218857, "chain_id": "3YZ8UPK3VTLE2ODQUTAZEDS5JG6UCP_1_7"} {"score": 0.24484334886074066, "chain_id": "3YZ8UPK3VTLE2ODQUTAZEDS5JG6UCP_1_8"} {"score": 0.061174534261226654, "chain_id": "3YZ8UPK3VTLE2ODQUTAZEDS5JG6UCP_1_9"} {"score": 0.1015675812959671, "chain_id": "3YZ8UPK3VTLE2ODQUTAZEDS5JG6UCP_1_10"} {"score": 0.10912932455539703, "chain_id": "3FUI0JHJPXX6QU4OMG3XY1YB5F3335_1_1"} {"score": 0.052789073437452316, "chain_id": "3FUI0JHJPXX6QU4OMG3XY1YB5F3335_1_2"} {"score": 0.10376982390880585, "chain_id": "3FUI0JHJPXX6QU4OMG3XY1YB5F3335_1_3"} {"score": 0.04108872637152672, "chain_id": "3FUI0JHJPXX6QU4OMG3XY1YB5F3335_1_4"} {"score": 0.0896637812256813, "chain_id": "3FUI0JHJPXX6QU4OMG3XY1YB5F3335_1_5"} {"score": 0.38412657380104065, "chain_id": "3FUI0JHJPXX6QU4OMG3XY1YB5F3335_1_6"} {"score": 0.26327475905418396, "chain_id": "3FUI0JHJPXX6QU4OMG3XY1YB5F3335_1_7"} {"score": 0.5199355483055115, "chain_id": "3FUI0JHJPXX6QU4OMG3XY1YB5F3335_1_8"} {"score": 0.3202895224094391, "chain_id": "3FUI0JHJPXX6QU4OMG3XY1YB5F3335_1_9"} {"score": 0.11618207395076752, "chain_id": "3FUI0JHJPXX6QU4OMG3XY1YB5F3335_1_10"} {"score": 0.061766400933265686, "chain_id": "34V1S5K3GS0R2FGMMR25WHDHF3B691_1_1"} {"score": 0.08852318674325943, "chain_id": "34V1S5K3GS0R2FGMMR25WHDHF3B691_1_2"} {"score": 0.22525502741336823, "chain_id": "34V1S5K3GS0R2FGMMR25WHDHF3B691_1_3"} {"score": 0.18707047402858734, "chain_id": "34V1S5K3GS0R2FGMMR25WHDHF3B691_1_4"} {"score": 0.056523360311985016, "chain_id": "34V1S5K3GS0R2FGMMR25WHDHF3B691_1_5"} {"score": 0.07388082891702652, "chain_id": "34V1S5K3GS0R2FGMMR25WHDHF3B691_1_6"} {"score": 0.21577316522598267, "chain_id": "34V1S5K3GS0R2FGMMR25WHDHF3B691_1_7"} {"score": 0.1019279733300209, "chain_id": "34V1S5K3GS0R2FGMMR25WHDHF3B691_1_8"} {"score": 0.11619658768177032, "chain_id": "34V1S5K3GS0R2FGMMR25WHDHF3B691_1_9"} {"score": 0.22553794085979462, "chain_id": "34V1S5K3GS0R2FGMMR25WHDHF3B691_1_10"} {"score": 0.12899740040302277, "chain_id": "3M1CVSFP604YHG9BT6U3YH5SIUPAQE_1_1"} {"score": 0.19953590631484985, "chain_id": "3M1CVSFP604YHG9BT6U3YH5SIUPAQE_1_2"} {"score": 0.02025803178548813, "chain_id": "3M1CVSFP604YHG9BT6U3YH5SIUPAQE_1_3"} {"score": 0.015339952893555164, "chain_id": "3M1CVSFP604YHG9BT6U3YH5SIUPAQE_1_4"} {"score": 0.014899369329214096, "chain_id": "3M1CVSFP604YHG9BT6U3YH5SIUPAQE_1_5"} {"score": 0.03337910771369934, "chain_id": "3M1CVSFP604YHG9BT6U3YH5SIUPAQE_1_6"} {"score": 0.01935611478984356, "chain_id": "3M1CVSFP604YHG9BT6U3YH5SIUPAQE_1_7"} {"score": 0.019140439108014107, "chain_id": "3M1CVSFP604YHG9BT6U3YH5SIUPAQE_1_8"} {"score": 0.020114561542868614, "chain_id": "3M1CVSFP604YHG9BT6U3YH5SIUPAQE_1_9"} {"score": 0.02730652689933777, "chain_id": "3M1CVSFP604YHG9BT6U3YH5SIUPAQE_1_10"} {"score": 0.9927700161933899, "chain_id": "324G5B4FB37SAL6E55O49KCK2EM076_1_1"} {"score": 0.9928163290023804, "chain_id": "324G5B4FB37SAL6E55O49KCK2EM076_1_2"} {"score": 0.9921533465385437, "chain_id": "324G5B4FB37SAL6E55O49KCK2EM076_1_3"} {"score": 0.9930577278137207, "chain_id": "324G5B4FB37SAL6E55O49KCK2EM076_1_4"} {"score": 0.033463265746831894, "chain_id": "324G5B4FB37SAL6E55O49KCK2EM076_1_6"} {"score": 0.9650779366493225, "chain_id": "324G5B4FB37SAL6E55O49KCK2EM076_1_7"} {"score": 0.9652075171470642, "chain_id": "324G5B4FB37SAL6E55O49KCK2EM076_1_8"} {"score": 0.9379726052284241, "chain_id": "324G5B4FB37SAL6E55O49KCK2EM076_1_10"} {"score": 0.033910080790519714, "chain_id": "324G5B4FB37SAL6E55O49KCK2EM076_1_5"} {"score": 0.6321719884872437, "chain_id": "324G5B4FB37SAL6E55O49KCK2EM076_1_9"} {"score": 0.9483044147491455, "chain_id": "3W2LOLRXLBE45UXXICWSXLITJHBRKF_1_1"} {"score": 0.9684011936187744, "chain_id": "3W2LOLRXLBE45UXXICWSXLITJHBRKF_1_2"} {"score": 0.2578470706939697, "chain_id": "3W2LOLRXLBE45UXXICWSXLITJHBRKF_1_3"} {"score": 0.2827787697315216, "chain_id": "3W2LOLRXLBE45UXXICWSXLITJHBRKF_1_5"} {"score": 0.3318272531032562, "chain_id": "3W2LOLRXLBE45UXXICWSXLITJHBRKF_1_4"} {"score": 0.6355707049369812, "chain_id": "3W2LOLRXLBE45UXXICWSXLITJHBRKF_1_6"} {"score": 0.8280319571495056, "chain_id": "3W2LOLRXLBE45UXXICWSXLITJHBRKF_1_7"} {"score": 0.32805657386779785, "chain_id": "3W2LOLRXLBE45UXXICWSXLITJHBRKF_1_8"} {"score": 0.3787441849708557, "chain_id": "3W2LOLRXLBE45UXXICWSXLITJHBRKF_1_9"} {"score": 0.14627858996391296, "chain_id": "3W2LOLRXLBE45UXXICWSXLITJHBRKF_1_10"} {"score": 0.06878671050071716, "chain_id": "3L4PIM1GQTFZPZMEMRXJ6TX4H3QYR1_1_9"} {"score": 0.07880356162786484, "chain_id": "3L4PIM1GQTFZPZMEMRXJ6TX4H3QYR1_1_1"} {"score": 0.06422373652458191, "chain_id": "3L4PIM1GQTFZPZMEMRXJ6TX4H3QYR1_1_2"} {"score": 0.18586209416389465, "chain_id": "3L4PIM1GQTFZPZMEMRXJ6TX4H3QYR1_1_3"} {"score": 0.27273789048194885, "chain_id": "3L4PIM1GQTFZPZMEMRXJ6TX4H3QYR1_1_4"} {"score": 0.253695547580719, "chain_id": "3L4PIM1GQTFZPZMEMRXJ6TX4H3QYR1_1_5"} {"score": 0.03488532081246376, "chain_id": "3L4PIM1GQTFZPZMEMRXJ6TX4H3QYR1_1_6"} {"score": 0.9534302353858948, "chain_id": "3L4PIM1GQTFZPZMEMRXJ6TX4H3QYR1_1_7"} {"score": 0.11573760956525803, "chain_id": "3L4PIM1GQTFZPZMEMRXJ6TX4H3QYR1_1_8"} {"score": 0.1850091964006424, "chain_id": "3L4PIM1GQTFZPZMEMRXJ6TX4H3QYR1_1_10"} {"score": 0.9919865131378174, "chain_id": "31LVTDXBL79FP0FF3C8TCLV88RFRL1_1_1"} {"score": 0.9920657277107239, "chain_id": "31LVTDXBL79FP0FF3C8TCLV88RFRL1_1_2"} {"score": 0.9895045757293701, "chain_id": "31LVTDXBL79FP0FF3C8TCLV88RFRL1_1_3"} {"score": 0.96481853723526, "chain_id": "31LVTDXBL79FP0FF3C8TCLV88RFRL1_1_5"} {"score": 0.9650829434394836, "chain_id": "31LVTDXBL79FP0FF3C8TCLV88RFRL1_1_6"} {"score": 0.9421709775924683, "chain_id": "31LVTDXBL79FP0FF3C8TCLV88RFRL1_1_7"} {"score": 0.9672998189926147, "chain_id": "31LVTDXBL79FP0FF3C8TCLV88RFRL1_1_8"} {"score": 0.9920685291290283, "chain_id": "31LVTDXBL79FP0FF3C8TCLV88RFRL1_1_4"} {"score": 0.09388666599988937, "chain_id": "31LVTDXBL79FP0FF3C8TCLV88RFRL1_1_9"} {"score": 0.12379266321659088, "chain_id": "31LVTDXBL79FP0FF3C8TCLV88RFRL1_1_10"} {"score": 0.9547975659370422, "chain_id": "33FBRBDW6OYG4R6DRQ9UILAGORH8CW_1_1"} {"score": 0.42127084732055664, "chain_id": "33FBRBDW6OYG4R6DRQ9UILAGORH8CW_1_2"} {"score": 0.5201781392097473, "chain_id": "33FBRBDW6OYG4R6DRQ9UILAGORH8CW_1_3"} {"score": 0.7135601043701172, "chain_id": "33FBRBDW6OYG4R6DRQ9UILAGORH8CW_1_4"} {"score": 0.024483071640133858, "chain_id": "33FBRBDW6OYG4R6DRQ9UILAGORH8CW_1_5"} {"score": 0.047616127878427505, "chain_id": "33FBRBDW6OYG4R6DRQ9UILAGORH8CW_1_6"} {"score": 0.017344901338219643, "chain_id": "33FBRBDW6OYG4R6DRQ9UILAGORH8CW_1_7"} {"score": 0.02347097359597683, "chain_id": "33FBRBDW6OYG4R6DRQ9UILAGORH8CW_1_8"} {"score": 0.022085661068558693, "chain_id": "33FBRBDW6OYG4R6DRQ9UILAGORH8CW_1_9"} {"score": 0.02440379373729229, "chain_id": "33FBRBDW6OYG4R6DRQ9UILAGORH8CW_1_10"} {"score": 0.954002857208252, "chain_id": "39DD6S19JPAALLREW7F2LT7NCN8EZX_1_3"} {"score": 0.9223288893699646, "chain_id": "39DD6S19JPAALLREW7F2LT7NCN8EZX_1_4"} {"score": 0.047359395772218704, "chain_id": "39DD6S19JPAALLREW7F2LT7NCN8EZX_1_6"} {"score": 0.45354214310646057, "chain_id": "39DD6S19JPAALLREW7F2LT7NCN8EZX_1_1"} {"score": 0.08448843657970428, "chain_id": "39DD6S19JPAALLREW7F2LT7NCN8EZX_1_2"} {"score": 0.10566884279251099, "chain_id": "39DD6S19JPAALLREW7F2LT7NCN8EZX_1_5"} {"score": 0.25458094477653503, "chain_id": "39DD6S19JPAALLREW7F2LT7NCN8EZX_1_7"} {"score": 0.271797239780426, "chain_id": "39DD6S19JPAALLREW7F2LT7NCN8EZX_1_8"} {"score": 0.09160985052585602, "chain_id": "39DD6S19JPAALLREW7F2LT7NCN8EZX_1_9"} {"score": 0.4848363995552063, "chain_id": "39DD6S19JPAALLREW7F2LT7NCN8EZX_1_10"} {"score": 0.17530816793441772, "chain_id": "3UNH76FOCS48SJ9MHJ12KU3UFVEYMY_1_2"} {"score": 0.9861637949943542, "chain_id": "3UNH76FOCS48SJ9MHJ12KU3UFVEYMY_1_3"} {"score": 0.9834437370300293, "chain_id": "3UNH76FOCS48SJ9MHJ12KU3UFVEYMY_1_4"} {"score": 0.24574480950832367, "chain_id": "3UNH76FOCS48SJ9MHJ12KU3UFVEYMY_1_6"} {"score": 0.1648341864347458, "chain_id": "3UNH76FOCS48SJ9MHJ12KU3UFVEYMY_1_9"} {"score": 0.47512564063072205, "chain_id": "3UNH76FOCS48SJ9MHJ12KU3UFVEYMY_1_1"} {"score": 0.26647838950157166, "chain_id": "3UNH76FOCS48SJ9MHJ12KU3UFVEYMY_1_5"} {"score": 0.6271229386329651, "chain_id": "3UNH76FOCS48SJ9MHJ12KU3UFVEYMY_1_7"} {"score": 0.6972605586051941, "chain_id": "3UNH76FOCS48SJ9MHJ12KU3UFVEYMY_1_8"} {"score": 0.4211880564689636, "chain_id": "3UNH76FOCS48SJ9MHJ12KU3UFVEYMY_1_10"} {"score": 0.8830859065055847, "chain_id": "3KB8R4ZV1E6CN1KPWOPNZELWZMVBG8_1_2"} {"score": 0.7290204763412476, "chain_id": "3KB8R4ZV1E6CN1KPWOPNZELWZMVBG8_1_3"} {"score": 0.9225864410400391, "chain_id": "3KB8R4ZV1E6CN1KPWOPNZELWZMVBG8_1_1"} {"score": 0.9768373966217041, "chain_id": "3KB8R4ZV1E6CN1KPWOPNZELWZMVBG8_1_4"} {"score": 0.018254252150654793, "chain_id": "3KB8R4ZV1E6CN1KPWOPNZELWZMVBG8_1_5"} {"score": 0.03069135546684265, "chain_id": "3KB8R4ZV1E6CN1KPWOPNZELWZMVBG8_1_6"} {"score": 0.04615394398570061, "chain_id": "3KB8R4ZV1E6CN1KPWOPNZELWZMVBG8_1_7"} {"score": 0.036515068262815475, "chain_id": "3KB8R4ZV1E6CN1KPWOPNZELWZMVBG8_1_8"} {"score": 0.029049668461084366, "chain_id": "3KB8R4ZV1E6CN1KPWOPNZELWZMVBG8_1_9"} {"score": 0.14821889996528625, "chain_id": "3KB8R4ZV1E6CN1KPWOPNZELWZMVBG8_1_10"} {"score": 0.9919865131378174, "chain_id": "3VNXK88KKCHCH5VNNZAD89TGY1H9VM_1_1"} {"score": 0.9920657277107239, "chain_id": "3VNXK88KKCHCH5VNNZAD89TGY1H9VM_1_2"} {"score": 0.9895045757293701, "chain_id": "3VNXK88KKCHCH5VNNZAD89TGY1H9VM_1_3"} {"score": 0.9920685291290283, "chain_id": "3VNXK88KKCHCH5VNNZAD89TGY1H9VM_1_4"} {"score": 0.96481853723526, "chain_id": "3VNXK88KKCHCH5VNNZAD89TGY1H9VM_1_5"} {"score": 0.9421709775924683, "chain_id": "3VNXK88KKCHCH5VNNZAD89TGY1H9VM_1_7"} {"score": 0.9672998189926147, "chain_id": "3VNXK88KKCHCH5VNNZAD89TGY1H9VM_1_8"} {"score": 0.9650829434394836, "chain_id": "3VNXK88KKCHCH5VNNZAD89TGY1H9VM_1_6"} {"score": 0.09388666599988937, "chain_id": "3VNXK88KKCHCH5VNNZAD89TGY1H9VM_1_9"} {"score": 0.12379266321659088, "chain_id": "3VNXK88KKCHCH5VNNZAD89TGY1H9VM_1_10"} {"score": 0.14296145737171173, "chain_id": "3FDJT1UU747F07ZZL5JPUKDXRDHK5H_1_2"} {"score": 0.9411361217498779, "chain_id": "3FDJT1UU747F07ZZL5JPUKDXRDHK5H_1_3"} {"score": 0.17169448733329773, "chain_id": "3FDJT1UU747F07ZZL5JPUKDXRDHK5H_1_4"} {"score": 0.6395418047904968, "chain_id": "3FDJT1UU747F07ZZL5JPUKDXRDHK5H_1_6"} {"score": 0.22798681259155273, "chain_id": "3FDJT1UU747F07ZZL5JPUKDXRDHK5H_1_1"} {"score": 0.5994134545326233, "chain_id": "3FDJT1UU747F07ZZL5JPUKDXRDHK5H_1_5"} {"score": 0.9139712452888489, "chain_id": "3FDJT1UU747F07ZZL5JPUKDXRDHK5H_1_7"} {"score": 0.44349735975265503, "chain_id": "3FDJT1UU747F07ZZL5JPUKDXRDHK5H_1_8"} {"score": 0.0724354088306427, "chain_id": "3FDJT1UU747F07ZZL5JPUKDXRDHK5H_1_9"} {"score": 0.07272373139858246, "chain_id": "3FDJT1UU747F07ZZL5JPUKDXRDHK5H_1_10"} {"score": 0.9875712394714355, "chain_id": "3GM6G9ZBKNWCBXAS7DE3CDBF13STML_1_1"} {"score": 0.9887337684631348, "chain_id": "3GM6G9ZBKNWCBXAS7DE3CDBF13STML_1_2"} {"score": 0.6298354268074036, "chain_id": "3GM6G9ZBKNWCBXAS7DE3CDBF13STML_1_3"} {"score": 0.8290703296661377, "chain_id": "3GM6G9ZBKNWCBXAS7DE3CDBF13STML_1_6"} {"score": 0.6890929341316223, "chain_id": "3GM6G9ZBKNWCBXAS7DE3CDBF13STML_1_4"} {"score": 0.6419202089309692, "chain_id": "3GM6G9ZBKNWCBXAS7DE3CDBF13STML_1_5"} {"score": 0.24655592441558838, "chain_id": "3GM6G9ZBKNWCBXAS7DE3CDBF13STML_1_7"} {"score": 0.11641914397478104, "chain_id": "3GM6G9ZBKNWCBXAS7DE3CDBF13STML_1_8"} {"score": 0.025746602565050125, "chain_id": "3GM6G9ZBKNWCBXAS7DE3CDBF13STML_1_9"} {"score": 0.0399320088326931, "chain_id": "3GM6G9ZBKNWCBXAS7DE3CDBF13STML_1_10"}
ContextualSP/lemon/propara_evaluator/aristo-leaderboard/eqasc/code/predictions/grc.test.predict/0
{ "file_path": "ContextualSP/lemon/propara_evaluator/aristo-leaderboard/eqasc/code/predictions/grc.test.predict", "repo_id": "ContextualSP", "token_count": 426542 }
252
from collections import OrderedDict, defaultdict from typing import NamedTuple, Dict, List from errors import corrupted_action_file from process.constants import LOCATION_UNKNOWN, NO_LOCATION, NO_ACTION, CREATE, MOVE, DESTROY from process import ProcessSummary, Process def _accumulate_action(locations, actions, num_steps, participant, action, before_location, after_location, step_id): existing_locations = locations.setdefault(participant, [LOCATION_UNKNOWN] * (1 + num_steps)) existing_actions = actions.setdefault(participant, [NO_ACTION] * num_steps) if step_id == 1: existing_locations[0] = before_location existing_locations[step_id] = after_location existing_actions[step_id - 1] = action return locations, actions def _num_sentences_in_actions_file(actions_filename: str) -> Dict[int, int]: num_sentences = defaultdict(int) # type: Dict[int, int] with open(actions_filename) as f: line_num = 0 for line in f: line_num += 1 try: process_id_str, step_id_str = line.strip().split('\t', 2)[:2] except ValueError as e: corrupted_action_file( filename=actions_filename, line_num=line_num, details=str(e) ) process_id = int(process_id_str) step_id = int(step_id_str) num_sentences[process_id] = max(num_sentences[process_id], step_id) if not num_sentences: corrupted_action_file(actions_filename, "no lines to iterate") return num_sentences class ActionFile(NamedTuple): filename: str # key = process_id # value = OrderedDict like this: # key = participant string (like "water vapor ; lifted vapor ; vapor") # value = list of location strings, length = 1 + number of sentences locations: Dict[int, Dict[str, List[str]]] # key = process_id # value = OrderedDict like this: # key = participant string (like "water vapor ; lifted vapor ; vapor") # value = list of actions (CREATE, DESTROY, MOVE or NONE), length = number of sentences actions: Dict[int, Dict[str, List[str]]] # key = process_id # value = number of sentences per process num_sentences: Dict[int, int] def has_process_id(self, process_id: int): return process_id in self.locations def summarize(self) -> Dict[int, ProcessSummary]: summary_by_process_id = dict() # type: Dict[int, ProcessSummary] for process_id in self.locations.keys(): locations = self.locations[process_id] actions = self.actions[process_id] p = Process(process_id=process_id, locations=locations, actions=actions, num_steps=self.num_sentences[process_id]) summary_by_process_id[p.process_id] = ProcessSummary( process_id=p.process_id, inputs=p.inputs(), outputs=p.outputs(), conversions=p.conversions(), moves=p.moves(), ) return summary_by_process_id def diff_participants(self, other: "ActionFile") -> List[str]: report: List[str] = [] for process_id in self.process_ids(): self_participants = self.participants(process_id) if not other.has_process_id(process_id): report.append(f"Process {process_id} missing in {other.filename}") continue other_participants = other.participants(process_id) process_report: List[str] = [] for p in self_participants: if p not in other_participants: process_report.append(f"Process {process_id} in {other.filename}: participant \"{p}\" is missing.") for op in other_participants: if op not in self_participants: process_report.append( f"Process {process_id} in {other.filename}: participant \"{op}\" is unexpected.") report += sorted(process_report) return report def process_ids(self) -> List[int]: return sorted(self.locations.keys()) def participants(self, process_id) -> List[str]: return sorted(self.locations[process_id].keys()) # Reads an actionfile from disk. @classmethod def from_file(cls, action_filename: str) -> "ActionFile": num_sentences = _num_sentences_in_actions_file(action_filename) locations = defaultdict(OrderedDict) # type: Dict[int, Dict[str, List[str]]] actions = defaultdict(OrderedDict) # type: Dict[int, Dict[str, List[str]]] line_num = 0 with open(action_filename) as f: for line in f: line_num += 1 try: process_id_str, step_id_str, participant, action, before_location, after_location = \ line.strip("\n\r").split('\t', 6)[:6] except ValueError as e: corrupted_action_file( filename=action_filename, line_num=line_num, details=str(e) ) process_id = int(process_id_str) step_id = int(step_id_str) if action == NO_ACTION: if before_location != after_location: corrupted_action_file( filename=action_filename, line_num=line_num, details=f"Unequal NONE locations: {before_location} -- {after_location}" ) elif action == CREATE: if before_location != '-': corrupted_action_file( filename=action_filename, line_num=line_num, details=f"Invalid CREATE before_location: {before_location}" ) before_location = NO_LOCATION if after_location == "" or after_location == '-': corrupted_action_file( filename=action_filename, line_num=line_num, details=f"Invalid CREATE after_location: {after_location}" ) elif action == DESTROY: if before_location == "" or before_location == '-': corrupted_action_file( filename=action_filename, line_num=line_num, details=f"Invalid DESTROY before_location: {before_location}" ) if after_location != '-': corrupted_action_file( filename=action_filename, line_num=line_num, details=f"Invalid DESTROY after_location: {after_location}" ) elif action == MOVE: if before_location == "" or before_location == '-': corrupted_action_file( filename=action_filename, line_num=line_num, details=f"Invalid MOVE before_location: {before_location}" ) if after_location == "" or after_location == '-': corrupted_action_file( filename=action_filename, line_num=line_num, details=f"Invalid MOVE after_location: {after_location}" ) else: corrupted_action_file( filename=action_filename, line_num=line_num, details=f"Invalid action: {action}" ) if before_location == "-": before_location = NO_LOCATION elif before_location == "?": before_location = LOCATION_UNKNOWN if after_location == "-": after_location = NO_LOCATION elif after_location == "?": after_location = LOCATION_UNKNOWN # update locations and actions for this process_id locations[process_id], actions[process_id] = \ _accumulate_action( locations[process_id], actions[process_id], num_sentences[process_id], participant, action, before_location, after_location, step_id, ) if not locations: corrupted_action_file(action_filename, "no lines to iterate") return cls( filename=action_filename, locations=locations, actions=actions, num_sentences=num_sentences )
ContextualSP/lemon/propara_evaluator/aristo-leaderboard/propara/evaluator/process/action_file.py/0
{ "file_path": "ContextualSP/lemon/propara_evaluator/aristo-leaderboard/propara/evaluator/process/action_file.py", "repo_id": "ContextualSP", "token_count": 4746 }
253
{ "id": "P1", "gold_label": "E" } { "id": "P2", "gold_label": "E" } { "id": "P3", "gold_label": "N" } { "id": "P4", "gold_label": "N" } { "id": "P5", "gold_label": "N" }
ContextualSP/lemon/propara_evaluator/aristo-leaderboard/scitail/evaluator/answers.jsonl/0
{ "file_path": "ContextualSP/lemon/propara_evaluator/aristo-leaderboard/scitail/evaluator/answers.jsonl", "repo_id": "ContextualSP", "token_count": 90 }
254
import random from random import shuffle import os from tqdm import tqdm def expand_numbers_in_text(text, delim=" ", ignore_chars=[","], reverse_num=False): number_pattern = r"[-+]?[.]?[\d]+(,\d+)*[\.]?\d*(?:[eE][-+]?\d+)?%?" num_char_spans = [(m.start(0), m.end(0)) for m in re.finditer(number_pattern, text)] if len(num_char_spans) == 0: return text out_text = "" last_e = -1 for i, (s, e) in enumerate(num_char_spans): out_text += text[:s] if i == 0 else text[last_e:s] num_str = delim.join([c for c in list(text[s:e]) if c not in ignore_chars]) out_text += num_str if not reverse_num else num_str[::-1] last_e = e out_text += text[last_e:] # append rest return out_text def random_sample_numbers(with_vars): # the number of var_numbers op_num = random.randint(1, 2) candi_num = 30 text_mapping = [chr(i) for i in list(range(65, 91)) + list(range(97, 122))] shuffle(text_mapping) var_numbers = [] real_numbers = [] candidate_numbers = [] for i in range(candi_num): # random sample a number # 1000 float number is_int = random.randint(0, 9) < 8 if is_int: final_num = str(random.randint(1, 100)) else: final_num = str(random.randint(1, 1000) / 10) if i <= op_num: var_numbers.append(text_mapping[i]) real_numbers.append(final_num) # random sample a + and - operator = random.choice(["*", "/"]) if i != op_num: var_numbers.append(operator) real_numbers.append(operator) if i >= op_num and not with_vars: break candidate_numbers.append(final_num) if with_vars: input_expression = " ".join(var_numbers) zipped_values = list(zip(text_mapping[:candi_num], candidate_numbers)) shuffle(zipped_values) candi_expression = " ".join(["{} = {} ;".format(var_name, var_value) for var_name, var_value in zipped_values]) input_line = input_expression + " col : " + candi_expression else: input_line = " ".join(real_numbers) # always plus 3 output_num = eval(" ".join(real_numbers)) + 1 if isinstance(output_num, int): output_line = str(output_num) else: output_line = "{:.1f}".format(eval(" ".join(real_numbers))) return input_line, output_line if __name__ == '__main__': output_dir = "pretrain_math" if not os.path.exists(output_dir): os.makedirs(output_dir) train_src_f = open(os.path.join(output_dir, "train.src"), "w", encoding="utf8") train_tgt_f = open(os.path.join(output_dir, "train.tgt"), "w", encoding="utf8") dev_src_f = open(os.path.join(output_dir, "dev.src"), "w", encoding="utf8") dev_tgt_f = open(os.path.join(output_dir, "dev.tgt"), "w", encoding="utf8") for _ in tqdm(range(4000000)): input_line, output_line = random_sample_numbers(with_vars=True) input_line = expand_numbers_in_text(input_line) output_line = expand_numbers_in_text(output_line) train_src_f.write(input_line + "\n") train_tgt_f.write(output_line + "\n") for _ in tqdm(range(20000)): input_line, output_line = random_sample_numbers(with_vars=True) input_line = expand_numbers_in_text(input_line) output_line = expand_numbers_in_text(output_line) dev_src_f.write(input_line + "\n") dev_tgt_f.write(output_line + "\n") train_src_f.close() train_tgt_f.close() dev_src_f.close() dev_tgt_f.close()
ContextualSP/poet/synthesize_math_corpus.py/0
{ "file_path": "ContextualSP/poet/synthesize_math_corpus.py", "repo_id": "ContextualSP", "token_count": 1702 }
255
#!/usr/bin/env bash split=mcd1 data_path=../data/$split/ key=$split-sketch model_path=../model/sketch_prediction-$key output_file=train_log-$key echo $output_file mkdir $model_path CUDA_VISIBLE_DEVICES=4 python3 main.py \ --src_path $data_path/train/train_encode.txt --trg_path $data_path/train/train_sketch.txt \ --src_vocabulary $data_path/vocab.cfq.tokens.src --trg_vocabulary $data_path/vocab.cfq.tokens.sketch \ --embedding_size 300 --batch_size 64 --validate_batch_size 64 \ --save_path $model_path/ --save_interval 500 --log_interval 500 --cuda \ --iterations 100 \ --validation_src_path $data_path/dev/dev_encode.txt --validation_trg_path $data_path/dev/dev_sketch.txt \ > $output_file
ContextualSP/poset_decoding/sketch_prediction/train.sh/0
{ "file_path": "ContextualSP/poset_decoding/sketch_prediction/train.sh", "repo_id": "ContextualSP", "token_count": 281 }
256
@ECHO OFF pushd %~dp0 REM Command file for Sphinx documentation if "%SPHINXBUILD%" == "" ( set SPHINXBUILD=sphinx-build ) set SOURCEDIR=source set BUILDDIR=_build set SPHINXPROJ=MatchZoo if "%1" == "" goto help %SPHINXBUILD% >NUL 2>NUL if errorlevel 9009 ( echo. echo.The 'sphinx-build' command was not found. Make sure you have Sphinx echo.installed, then set the SPHINXBUILD environment variable to point echo.to the full path of the 'sphinx-build' executable. Alternatively you echo.may add the Sphinx directory to PATH. echo. echo.If you don't have Sphinx installed, grab it from echo.http://sphinx-doc.org/ exit /b 1 ) %SPHINXBUILD% -M %1 %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% goto end :help %SPHINXBUILD% -M help %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% :end popd
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/docs/make.bat/0
{ "file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/docs/make.bat", "repo_id": "ContextualSP", "token_count": 321 }
257
"""Matchzoo DataPack, pair-wise tuple (feature) and context as input.""" import typing import inspect from pathlib import Path import functools import dill from tqdm import tqdm import numpy as np import pandas as pd import matchzoo tqdm.pandas() def _convert_to_list_index( index: typing.Union[int, slice, np.array], length: int ): if isinstance(index, int): index = [index] elif isinstance(index, slice): index = list(range(*index.indices(length))) return index class DataPack(object): """ Matchzoo :class:`DataPack` data structure, store dataframe and context. `DataPack` is a MatchZoo native data structure that most MatchZoo data handling processes build upon. A `DataPack` consists of three parts: `left`, `right` and `relation`, each one of is a `pandas.DataFrame`. :param relation: Store the relation between left document and right document use ids. :param left: Store the content or features for id_left. :param right: Store the content or features for id_right. Example: >>> left = [ ... ['qid1', 'query 1'], ... ['qid2', 'query 2'] ... ] >>> right = [ ... ['did1', 'document 1'], ... ['did2', 'document 2'] ... ] >>> relation = [['qid1', 'did1', 1], ['qid2', 'did2', 1]] >>> relation_df = pd.DataFrame(relation) >>> left = pd.DataFrame(left) >>> right = pd.DataFrame(right) >>> dp = DataPack( ... relation=relation_df, ... left=left, ... right=right, ... ) >>> len(dp) 2 """ DATA_FILENAME = 'data.dill' def __init__( self, relation: pd.DataFrame, left: pd.DataFrame, right: pd.DataFrame ): """:class:`DataPack` initializer.""" self._relation = relation self._left = left self._right = right @property def has_label(self) -> bool: """:return: `True` if `label` column exists, `False` other wise.""" return 'label' in self._relation.columns def __len__(self) -> int: """Get numer of rows in the class:`DataPack` object.""" return self._relation.shape[0] @property def frame(self) -> 'DataPack.FrameView': """ View the data pack as a :class:`pandas.DataFrame`. Returned data frame is created by merging the left data frame, the right dataframe and the relation data frame. Use `[]` to access an item or a slice of items. :return: A :class:`matchzoo.DataPack.FrameView` instance. Example: >>> import matchzoo as mz >>> data_pack = mz.datasets.toy.load_data() >>> type(data_pack.frame) <class 'matchzoo.data_pack.data_pack.DataPack.FrameView'> >>> frame_slice = data_pack.frame[0:5] >>> type(frame_slice) <class 'pandas.core.frame.DataFrame'> >>> list(frame_slice.columns) ['id_left', 'text_left', 'id_right', 'text_right', 'label'] >>> full_frame = data_pack.frame() >>> len(full_frame) == len(data_pack) True """ return DataPack.FrameView(self) def unpack(self) -> typing.Tuple[typing.Dict[str, np.array], typing.Optional[np.array]]: """ Unpack the data for training. The return value can be directly feed to `model.fit` or `model.fit_generator`. :return: A tuple of (X, y). `y` is `None` if `self` has no label. Example: >>> import matchzoo as mz >>> data_pack = mz.datasets.toy.load_data() >>> X, y = data_pack.unpack() >>> type(X) <class 'dict'> >>> sorted(X.keys()) ['id_left', 'id_right', 'text_left', 'text_right'] >>> type(y) <class 'numpy.ndarray'> >>> X, y = data_pack.drop_label().unpack() >>> type(y) <class 'NoneType'> """ frame = self.frame() columns = list(frame.columns) if self.has_label: columns.remove('label') y = np.vstack(np.asarray(frame['label'])) else: y = None x = frame[columns].to_dict(orient='list') for key, val in x.items(): x[key] = np.array(val) return x, y def __getitem__(self, index: typing.Union[int, slice, np.array] ) -> 'DataPack': """ Get specific item(s) as a new :class:`DataPack`. The returned :class:`DataPack` will be a copy of the subset of the original :class:`DataPack`. :param index: Index of the item(s) to get. :return: An instance of :class:`DataPack`. """ index = _convert_to_list_index(index, len(self)) relation = self._relation.loc[index].reset_index(drop=True) left = self._left.loc[relation['id_left'].unique()] right = self._right.loc[relation['id_right'].unique()] return DataPack(left=left.copy(), right=right.copy(), relation=relation.copy()) @property def relation(self): """`relation` getter.""" return self._relation @relation.setter def relation(self, value): """`relation` setter.""" self._relation = value @property def left(self) -> pd.DataFrame: """Get :meth:`left` of :class:`DataPack`.""" return self._left @property def right(self) -> pd.DataFrame: """Get :meth:`right` of :class:`DataPack`.""" return self._right def copy(self) -> 'DataPack': """:return: A deep copy.""" return DataPack(left=self._left.copy(), right=self._right.copy(), relation=self._relation.copy()) def save(self, dirpath: typing.Union[str, Path]): """ Save the :class:`DataPack` object. A saved :class:`DataPack` is represented as a directory with a :class:`DataPack` object (transformed user input as features and context), it will be saved by `pickle`. :param dirpath: directory path of the saved :class:`DataPack`. """ dirpath = Path(dirpath) data_file_path = dirpath.joinpath(self.DATA_FILENAME) if not dirpath.exists(): dirpath.mkdir(parents=True) dill.dump(self, open(data_file_path, mode='wb')) def _optional_inplace(func): """ Decorator that adds `inplace` key word argument to a method. Decorate any method that modifies inplace to make that inplace change optional. """ doc = ":param inplace: `True` to modify inplace, `False` to return " \ "a modified copy. (default: `False`)" def _clean(s): return s.replace(' ', '').replace('\n', '') if _clean(doc) not in _clean(inspect.getdoc(func)): raise NotImplementedError( f"`inplace` parameter of {func} not documented.\n" f"Please add the following line to its documentation:\n{doc}") @functools.wraps(func) def wrapper( self, *args, inplace: bool = False, **kwargs ) -> typing.Optional['DataPack']: if inplace: target = self else: target = self.copy() func(target, *args, **kwargs) if not inplace: return target return wrapper @_optional_inplace def drop_empty(self): """ Process empty data by removing corresponding rows. :param inplace: `True` to modify inplace, `False` to return a modified copy. (default: `False`) """ empty_left_id = self._left[ self._left['length_left'] == 0].index.tolist() empty_right_id = self._right[ self._right['length_right'] == 0].index.tolist() empty_id = self._relation[ self._relation['id_left'].isin(empty_left_id) | self._relation[ 'id_right'].isin(empty_right_id) ].index.tolist() self._left = self._left.drop(empty_left_id) self._right = self._right.drop(empty_right_id) self._relation = self._relation.drop(empty_id) self._relation.reset_index(drop=True, inplace=True) @_optional_inplace def shuffle(self): """ Shuffle the data pack by shuffling the relation column. :param inplace: `True` to modify inplace, `False` to return a modified copy. (default: `False`) Example: >>> import matchzoo as mz >>> import numpy.random >>> numpy.random.seed(0) >>> data_pack = mz.datasets.toy.load_data() >>> orig_ids = data_pack.relation['id_left'] >>> shuffled = data_pack.shuffle() >>> (shuffled.relation['id_left'] != orig_ids).any() True """ self._relation = self._relation.sample(frac=1) self._relation.reset_index(drop=True, inplace=True) @_optional_inplace def drop_label(self): """ Remove `label` column from the data pack. :param inplace: `True` to modify inplace, `False` to return a modified copy. (default: `False`) Example: >>> import matchzoo as mz >>> data_pack = mz.datasets.toy.load_data() >>> data_pack.has_label True >>> data_pack.drop_label(inplace=True) >>> data_pack.has_label False """ self._relation = self._relation.drop(columns='label') @_optional_inplace def append_text_length(self, verbose=1): """ Append `length_left` and `length_right` columns. :param inplace: `True` to modify inplace, `False` to return a modified copy. (default: `False`) :param verbose: Verbosity. Example: >>> import matchzoo as mz >>> data_pack = mz.datasets.toy.load_data() >>> 'length_left' in data_pack.frame[0].columns False >>> new_data_pack = data_pack.append_text_length(verbose=0) >>> 'length_left' in new_data_pack.frame[0].columns True >>> 'length_left' in data_pack.frame[0].columns False >>> data_pack.append_text_length(inplace=True, verbose=0) >>> 'length_left' in data_pack.frame[0].columns True """ self.apply_on_text(len, rename=('length_left', 'length_right'), inplace=True, verbose=verbose) @_optional_inplace def apply_on_text( self, func: typing.Callable, mode: str = 'both', rename: typing.Optional[str] = None, verbose: int = 1 ): """ Apply `func` to text columns based on `mode`. :param func: The function to apply. :param mode: One of "both", "left" and "right". :param rename: If set, use new names for results instead of replacing the original columns. To set `rename` in "both" mode, use a tuple of `str`, e.g. ("text_left_new_name", "text_right_new_name"). :param inplace: `True` to modify inplace, `False` to return a modified copy. (default: `False`) :param verbose: Verbosity. Examples:: >>> import matchzoo as mz >>> data_pack = mz.datasets.toy.load_data() >>> frame = data_pack.frame To apply `len` on the left text and add the result as 'length_left': >>> data_pack.apply_on_text(len, mode='left', ... rename='length_left', ... inplace=True, ... verbose=0) >>> list(frame[0].columns) # noqa: E501 ['id_left', 'text_left', 'length_left', 'id_right', 'text_right', 'label'] To do the same to the right text: >>> data_pack.apply_on_text(len, mode='right', ... rename='length_right', ... inplace=True, ... verbose=0) >>> list(frame[0].columns) # noqa: E501 ['id_left', 'text_left', 'length_left', 'id_right', 'text_right', 'length_right', 'label'] To do the same to the both texts at the same time: >>> data_pack.apply_on_text(len, mode='both', ... rename=('extra_left', 'extra_right'), ... inplace=True, ... verbose=0) >>> list(frame[0].columns) # noqa: E501 ['id_left', 'text_left', 'length_left', 'extra_left', 'id_right', 'text_right', 'length_right', 'extra_right', 'label'] To suppress outputs: >>> data_pack.apply_on_text(len, mode='both', verbose=0, ... inplace=True) """ if mode == 'both': self._apply_on_text_both(func, rename, verbose=verbose) elif mode == 'left': self._apply_on_text_left(func, rename, verbose=verbose) elif mode == 'right': self._apply_on_text_right(func, rename, verbose=verbose) else: raise ValueError(f"{mode} is not a valid mode type." f"Must be one of `left` `right` `both`.") def _apply_on_text_right(self, func, rename, verbose=1): name = rename or 'text_right' if verbose: tqdm.pandas(desc="Processing " + name + " with " + func.__name__) self._right[name] = self._right['text_right'].progress_apply(func) else: self._right[name] = self._right['text_right'].apply(func) def _apply_on_text_left(self, func, rename, verbose=1): name = rename or 'text_left' if verbose: tqdm.pandas(desc="Processing " + name + " with " + func.__name__) self._left[name] = self._left['text_left'].progress_apply(func) else: self._left[name] = self._left['text_left'].apply(func) def _apply_on_text_both(self, func, rename, verbose=1): left_name, right_name = rename or ('text_left', 'text_right') self._apply_on_text_left(func, rename=left_name, verbose=verbose) self._apply_on_text_right(func, rename=right_name, verbose=verbose) class FrameView(object): """FrameView.""" def __init__(self, data_pack: 'DataPack'): """ View a data pack as a frame. A slice of the view is genereated by merging three parts of the data pack being viewed into a big table. :param data_pack: :class:`DataPack` to view. Examples:: >>> import matchzoo as mz >>> data_pack = mz.datasets.toy.load_data() >>> frame = data_pack.frame Use `()` to get a full copy of the frame: >>> list(frame().columns) ['id_left', 'text_left', 'id_right', 'text_right', 'label'] >>> len(frame()) == len(data_pack) True Notice that a view is binded to the original data pack, so changing contents of the data pack will affect a view previously created: >>> data_pack.drop_label(inplace=True) >>> list(frame().columns) ['id_left', 'text_left', 'id_right', 'text_right'] To slice the view: >>> frame_slice = frame[3:5] >>> len(frame_slice) 2 """ self._data_pack = data_pack def __getitem__(self, index: typing.Union[int, slice, np.array] ) -> pd.DataFrame: """Slicer.""" dp = self._data_pack index = _convert_to_list_index(index, len(dp)) left_df = dp.left.loc[dp.relation['id_left'][index]].reset_index() right_df = dp.right.loc[ dp.relation['id_right'][index]].reset_index() joined_table = left_df.join(right_df) for column in dp.relation.columns: if column not in ['id_left', 'id_right']: labels = dp.relation[column][index].to_frame() labels = labels.reset_index(drop=True) joined_table = joined_table.join(labels) return joined_table def __call__(self): """:return: A full copy. Equivalant to `frame[:]`.""" return self[:] def load_data_pack(dirpath: typing.Union[str, Path]) -> DataPack: """ Load a :class:`DataPack`. The reverse function of :meth:`save`. :param dirpath: directory path of the saved model. :return: a :class:`DataPack` instance. """ dirpath = Path(dirpath) data_file_path = dirpath.joinpath(DataPack.DATA_FILENAME) dp = dill.load(open(data_file_path, 'rb')) return dp
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/data_pack/data_pack.py/0
{ "file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/data_pack/data_pack.py", "repo_id": "ContextualSP", "token_count": 8291 }
258
from .load_data import load_data
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/datasets/wiki_qa/__init__.py/0
{ "file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/datasets/wiki_qa/__init__.py", "repo_id": "ContextualSP", "token_count": 10 }
259
from .precision import Precision from .average_precision import AveragePrecision from .discounted_cumulative_gain import DiscountedCumulativeGain from .mean_reciprocal_rank import MeanReciprocalRank from .mean_average_precision import MeanAveragePrecision from .normalized_discounted_cumulative_gain import \ NormalizedDiscountedCumulativeGain from .accuracy import Accuracy from .cross_entropy import CrossEntropy def list_available() -> list: from matchzoo.engine.base_metric import BaseMetric from matchzoo.utils import list_recursive_concrete_subclasses return list_recursive_concrete_subclasses(BaseMetric)
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/metrics/__init__.py/0
{ "file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/metrics/__init__.py", "repo_id": "ContextualSP", "token_count": 186 }
260
"""An implementation of CDSSM (CLSM) model.""" import typing import torch from torch import nn import torch.nn.functional as F from matchzoo import preprocessors from matchzoo.engine.base_model import BaseModel from matchzoo.engine.param import Param from matchzoo.engine.param_table import ParamTable from matchzoo.engine.base_callback import BaseCallback from matchzoo.dataloader import callbacks from matchzoo.utils import TensorType, parse_activation from matchzoo.engine.base_preprocessor import BasePreprocessor class CDSSM(BaseModel): """ CDSSM Model implementation. Learning Semantic Representations Using Convolutional Neural Networks for Web Search. (2014a) A Latent Semantic Model with Convolutional-Pooling Structure for Information Retrieval. (2014b) Examples: >>> import matchzoo as mz >>> model = CDSSM() >>> model.params['task'] = mz.tasks.Ranking() >>> model.params['vocab_size'] = 4 >>> model.params['filters'] = 32 >>> model.params['kernel_size'] = 3 >>> model.params['conv_activation_func'] = 'relu' >>> model.build() """ @classmethod def get_default_params(cls) -> ParamTable: """:return: model default parameters.""" # set :attr:`with_multi_layer_perceptron` to False to support # user-defined variable dense layer units params = super().get_default_params(with_multi_layer_perceptron=True) params.add(Param(name='vocab_size', value=419, desc="Size of vocabulary.")) params.add(Param(name='filters', value=3, desc="Number of filters in the 1D convolution " "layer.")) params.add(Param(name='kernel_size', value=3, desc="Number of kernel size in the 1D " "convolution layer.")) params.add(Param(name='conv_activation_func', value='relu', desc="Activation function in the convolution" " layer.")) params.add(Param(name='dropout_rate', value=0.3, desc="The dropout rate.")) return params @classmethod def get_default_preprocessor( cls, truncated_mode: str = 'pre', truncated_length_left: typing.Optional[int] = None, truncated_length_right: typing.Optional[int] = None, filter_mode: str = 'df', filter_low_freq: float = 1, filter_high_freq: float = float('inf'), remove_stop_words: bool = False, ngram_size: typing.Optional[int] = 3, ) -> BasePreprocessor: """ Model default preprocessor. The preprocessor's transform should produce a correctly shaped data pack that can be used for training. :return: Default preprocessor. """ return preprocessors.BasicPreprocessor( truncated_mode=truncated_mode, truncated_length_left=truncated_length_left, truncated_length_right=truncated_length_right, filter_mode=filter_mode, filter_low_freq=filter_low_freq, filter_high_freq=filter_high_freq, remove_stop_words=remove_stop_words, ngram_size=ngram_size ) @classmethod def get_default_padding_callback( cls, fixed_length_left: int = None, fixed_length_right: int = None, pad_word_value: typing.Union[int, str] = 0, pad_word_mode: str = 'pre', with_ngram: bool = True, fixed_ngram_length: int = None, pad_ngram_value: typing.Union[int, str] = 0, pad_ngram_mode: str = 'pre' ) -> BaseCallback: """ Model default padding callback. The padding callback's on_batch_unpacked would pad a batch of data to a fixed length. :return: Default padding callback. """ return callbacks.BasicPadding( fixed_length_left=fixed_length_left, fixed_length_right=fixed_length_right, pad_word_value=pad_word_value, pad_word_mode=pad_word_mode, with_ngram=with_ngram, fixed_ngram_length=fixed_ngram_length, pad_ngram_value=pad_ngram_value, pad_ngram_mode=pad_ngram_mode ) def _create_base_network(self) -> nn.Module: """ Apply conv and maxpooling operation towards to each letter-ngram. The input shape is `fixed_text_length`*`number of letter-ngram`, as described in the paper, `n` is 3, `number of letter-trigram` is about 30,000 according to their observation. :return: A :class:`nn.Module` of CDSSM network, tensor in tensor out. """ pad = nn.ConstantPad1d((0, self._params['kernel_size'] - 1), 0) conv = nn.Conv1d( in_channels=self._params['vocab_size'], out_channels=self._params['filters'], kernel_size=self._params['kernel_size'] ) activation = parse_activation( self._params['conv_activation_func'] ) dropout = nn.Dropout(p=self._params['dropout_rate']) pool = nn.AdaptiveMaxPool1d(1) squeeze = Squeeze() mlp = self._make_multi_layer_perceptron_layer( self._params['filters'] ) return nn.Sequential( pad, conv, activation, dropout, pool, squeeze, mlp ) def build(self): """ Build model structure. CDSSM use Siamese architecture. """ self.net_left = self._create_base_network() self.net_right = self._create_base_network() self.out = self._make_output_layer(1) def forward(self, inputs): """Forward.""" # Process left & right input. input_left, input_right = inputs['ngram_left'], inputs['ngram_right'] input_left = input_left.transpose(1, 2) input_right = input_right.transpose(1, 2) input_left = self.net_left(input_left) input_right = self.net_right(input_right) # Dot product with cosine similarity. x = F.cosine_similarity(input_left, input_right) out = self.out(x.unsqueeze(dim=1)) return out def guess_and_fill_missing_params(self, verbose: int = 1): """ Guess and fill missing parameters in :attr:`params`. Use this method to automatically fill-in hyper parameters. This involves some guessing so the parameter it fills could be wrong. For example, the default task is `Ranking`, and if we do not set it to `Classification` manually for data packs prepared for classification, then the shape of the model output and the data will mismatch. :param verbose: Verbosity. """ super().guess_and_fill_missing_params(verbose) class Squeeze(nn.Module): """Squeeze.""" def forward(self, x): """Forward.""" return x.squeeze(dim=-1)
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/models/cdssm.py/0
{ "file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/models/cdssm.py", "repo_id": "ContextualSP", "token_count": 3087 }
261
"""matchzoo/models/README.md generater.""" from pathlib import Path import tabulate import inspect import pandas as pd import matchzoo def _generate(): full = _make_title() for model_class in matchzoo.models.list_available(): full += _make_model_class_subtitle(model_class) full += _make_doc_section_subsubtitle() full += _make_model_doc(model_class) model = model_class() full += _make_params_section_subsubtitle() full += _make_model_params_table(model) _write_to_files(full) def _make_title(): title = 'MatchZoo Model Reference' line = '*' * len(title) return line + '\n' + title + '\n' + line + '\n\n' def _make_model_class_subtitle(model_class): subtitle = model_class.__name__ line = '#' * len(subtitle) return subtitle + '\n' + line + '\n\n' def _make_doc_section_subsubtitle(): subsubtitle = 'Model Documentation' line = '*' * len(subsubtitle) return subsubtitle + '\n' + line + '\n\n' def _make_params_section_subsubtitle(): subsubtitle = 'Model Hyper Parameters' line = '*' * len(subsubtitle) return subsubtitle + '\n' + line + '\n\n' def _make_model_doc(model_class): return inspect.getdoc(model_class) + '\n\n' def _make_model_params_table(model): params = model.get_default_params() df = params.to_frame() df = df.rename({ 'Value': 'Default Value', 'Hyper-Space': 'Default Hyper-Space' }, axis='columns') return tabulate.tabulate(df, tablefmt='rst', headers='keys') + '\n\n' def _write_to_files(full): readme_file_path = Path(__file__).parent.joinpath('README.rst') doc_file_path = Path(__file__).parent.parent.parent. \ joinpath('docs').joinpath('source').joinpath('model_reference.rst') for file_path in readme_file_path, doc_file_path: with open(file_path, 'w', encoding='utf-8') as out_file: out_file.write(full) if __name__ == '__main__': _generate()
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/models/parameter_readme_generator.py/0
{ "file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/models/parameter_readme_generator.py", "repo_id": "ContextualSP", "token_count": 815 }
262
"""Bert Preprocessor.""" from pytorch_transformers import BertTokenizer from . import units from matchzoo import DataPack from matchzoo.engine.base_preprocessor import BasePreprocessor class BertPreprocessor(BasePreprocessor): """ Baisc preprocessor helper. :param mode: String, supported mode can be referred https://huggingface.co/pytorch-transformers/pretrained_models.html. """ def __init__(self, mode: str = 'bert-base-uncased'): """Initialization.""" super().__init__() self._tokenizer = BertTokenizer.from_pretrained(mode) def fit(self, data_pack: DataPack, verbose: int = 1): """Tokenizer is all BertPreprocessor's need.""" return def transform(self, data_pack: DataPack, verbose: int = 1) -> DataPack: """ Apply transformation on data. :param data_pack: Inputs to be preprocessed. :param verbose: Verbosity. :return: Transformed data as :class:`DataPack` object. """ data_pack = data_pack.copy() data_pack.apply_on_text(self._tokenizer.encode, mode='both', inplace=True, verbose=verbose) data_pack.append_text_length(inplace=True, verbose=verbose) data_pack.drop_empty(inplace=True) return data_pack
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/preprocessors/bert_preprocessor.py/0
{ "file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/preprocessors/bert_preprocessor.py", "repo_id": "ContextualSP", "token_count": 528 }
263
import nltk from .unit import Unit class StopRemoval(Unit): """ Process unit to remove stop words. Example: >>> unit = StopRemoval() >>> unit.transform(['a', 'the', 'test']) ['test'] >>> type(unit.stopwords) <class 'list'> """ def __init__(self, lang: str = 'english'): """Initialization.""" self._lang = lang self._stop = nltk.corpus.stopwords.words(self._lang) def transform(self, input_: list) -> list: """ Remove stopwords from list of tokenized tokens. :param input_: list of tokenized tokens. :param lang: language code for stopwords. :return tokens: list of tokenized tokens without stopwords. """ return [token for token in input_ if token not in self._stop] @property def stopwords(self) -> list: """ Get stopwords based on language. :params lang: language code. :return: list of stop words. """ return self._stop
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/preprocessors/units/stop_removal.py/0
{ "file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/preprocessors/units/stop_removal.py", "repo_id": "ContextualSP", "token_count": 478 }
264
import inspect def list_recursive_concrete_subclasses(base): """List all concrete subclasses of `base` recursively.""" return _filter_concrete(_bfs(base)) def _filter_concrete(classes): return list(filter(lambda c: not inspect.isabstract(c), classes)) def _bfs(base): return base.__subclasses__() + sum([ _bfs(subclass) for subclass in base.__subclasses__() ], [])
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/utils/list_recursive_subclasses.py/0
{ "file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/utils/list_recursive_subclasses.py", "repo_id": "ContextualSP", "token_count": 152 }
265
import pytest from matchzoo.engine.param import Param from matchzoo.engine.param_table import ParamTable from matchzoo.engine.hyper_spaces import quniform @pytest.fixture def param_table(): params = ParamTable() params.add(Param('ham', 'Parma Ham')) return params def test_get(param_table): assert param_table['ham'] == 'Parma Ham' def test_set(param_table): new_param = Param('egg', 'Over Easy') param_table.set('egg', new_param) assert 'egg' in param_table.keys() def test_keys(param_table): assert 'ham' in param_table.keys() def test_hyper_space(param_table): new_param = Param( name='my_param', value=1, hyper_space=quniform(low=1, high=5) ) param_table.add(new_param) hyper_space = param_table.hyper_space assert hyper_space
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/tests/engine/test_param_table.py/0
{ "file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/tests/engine/test_param_table.py", "repo_id": "ContextualSP", "token_count": 320 }
266
<jupyter_start><jupyter_code>%run init.ipynb preprocessor = mz.models.ArcI.get_default_preprocessor( filter_mode='df', filter_low_freq=2, ) train_pack_processed = preprocessor.fit_transform(train_pack_raw) dev_pack_processed = preprocessor.transform(dev_pack_raw) test_pack_processed = preprocessor.transform(test_pack_raw) preprocessor.context glove_embedding = mz.datasets.embeddings.load_glove_embedding(dimension=300) term_index = preprocessor.context['vocab_unit'].state['term_index'] embedding_matrix = glove_embedding.build_matrix(term_index) l2_norm = np.sqrt((embedding_matrix * embedding_matrix).sum(axis=1)) embedding_matrix = embedding_matrix / l2_norm[:, np.newaxis] trainset = mz.dataloader.Dataset( data_pack=train_pack_processed, mode='pair', num_dup=2, num_neg=1 ) testset = mz.dataloader.Dataset( data_pack=test_pack_processed ) padding_callback = mz.models.ArcI.get_default_padding_callback( fixed_length_left=10, fixed_length_right=100, pad_word_value=0, pad_word_mode='pre' ) trainloader = mz.dataloader.DataLoader( dataset=trainset, batch_size=20, stage='train', resample=True, sort=False, callback=padding_callback ) testloader = mz.dataloader.DataLoader( dataset=testset, batch_size=20, stage='dev', callback=padding_callback ) model = mz.models.ArcI() model.params['task'] = ranking_task model.params['embedding'] = embedding_matrix model.params['left_length'] = 10 model.params['right_length'] = 100 model.params['left_filters'] = [128] model.params['left_kernel_sizes'] = [3] model.params['left_pool_sizes'] = [4] model.params['right_filters'] = [128] model.params['right_kernel_sizes'] = [3] model.params['right_pool_sizes'] = [4] model.params['conv_activation_func'] = 'relu' model.params['mlp_num_layers'] = 1 model.params['mlp_num_units'] = 100 model.params['mlp_num_fan_out'] = 1 model.params['mlp_activation_func'] = 'relu' model.params['dropout_rate'] = 0.9 model.build() print(model) print('Trainable params: ', sum(p.numel() for p in model.parameters() if p.requires_grad)) optimizer = torch.optim.Adadelta(model.parameters()) trainer = mz.trainers.Trainer( model=model, optimizer=optimizer, trainloader=trainloader, validloader=testloader, validate_interval=None, epochs=10 ) trainer.run()<jupyter_output><empty_output>
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/tutorials/ranking/arci.ipynb/0
{ "file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/tutorials/ranking/arci.ipynb", "repo_id": "ContextualSP", "token_count": 939 }
267
{ "aggregation_loss_weight": 1.0, "aggregation_temperature": 1.0, "allow_empty_column_selection": false, "answer_loss_cutoff": null, "answer_loss_importance": 1.0, "architectures": [ "TapasModel" ], "attention_probs_dropout_prob": 0.0, "average_approximation_function": "ratio", "average_logits_per_cell": false, "cell_selection_preference": null, "disable_per_token_loss": false, "gradient_checkpointing": false, "hidden_act": "gelu", "hidden_dropout_prob": 0.07, "hidden_size": 1024, "huber_loss_delta": null, "init_cell_selection_weights_to_zero": false, "initializer_range": 0.02, "intermediate_size": 4096, "layer_norm_eps": 1e-12, "max_num_columns": 32, "max_num_rows": 64, "max_position_embeddings": 1024, "model_type": "tapas", "num_aggregation_labels": 0, "num_attention_heads": 16, "num_hidden_layers": 24, "pad_token_id": 0, "positive_label_weight": 10.0, "reset_position_index_per_cell": true, "select_one_column": true, "softmax_temperature": 1.0, "type_vocab_size": [ 3, 256, 256, 2, 256, 256, 10 ], "type_vocab_sizes": [ 3, 256, 256, 2, 256, 256, 10 ], "use_answer_as_supervision": null, "use_gumbel_for_aggregation": false, "use_gumbel_for_cells": false, "use_normalized_answer_loss": false, "vocab_size": 30522 }
ContextualSP/robustness_of_text_to_sql/CTA/tapas-torch/tapas_retrieval/tapas_nq_hn_retriever_large_table/config.json/0
{ "file_path": "ContextualSP/robustness_of_text_to_sql/CTA/tapas-torch/tapas_retrieval/tapas_nq_hn_retriever_large_table/config.json", "repo_id": "ContextualSP", "token_count": 716 }
268
set seed=1 set config_file=train_configs/concat.none.jsonnet set model_file=checkpoints_cosql/cosql_concat_none_model set tables_file=dataset_cosql/tables.json set database_path=dataset_cosql/database set dataset_path=dataset_cosql set train_data_path=dataset_cosql/train.json set validation_data_path=dataset_cosql/dev.json set pretrained_file=glove/glove.twitter.27B.100d.txt allennlp train -s %model_file% %config_file% ^ --include-package dataset_reader.sparc_reader ^ --include-package models.sparc_parser ^ -o {"""model.serialization_dir""":"""%model_file%""","""random_seed""":"""%seed%""","""numpy_seed""":"""%seed%""","""pytorch_seed""":"""%seed%""","""dataset_reader.tables_file""":"""%tables_file%""","""dataset_reader.database_path""":"""%database_path%""","""train_data_path""":"""%train_data_path%""","""validation_data_path""":"""%validation_data_path%""","""model.text_embedder.tokens.pretrained_file""":"""%pretrained_file%""","""model.dataset_path""":"""%dataset_path%"""}
ContextualSP/semantic_parsing_in_context/bash_files/windows/train_cosql.bat/0
{ "file_path": "ContextualSP/semantic_parsing_in_context/bash_files/windows/train_cosql.bat", "repo_id": "ContextualSP", "token_count": 377 }
269
import json import shutil import sys from allennlp.commands import main if __name__ == '__main__': serialization_dir = "checkpoints/debug_model" config_file = "train_configs_bert/concat.none.mem.jsonnet" overrides = json.dumps({ "dataset_reader.tables_file": "dataset_sparc/tables.json", "dataset_reader.database_path": "dataset_sparc/database", "train_data_path": "dataset_sparc/train.json", "validation_data_path": "dataset_sparc/dev.json", "model.dataset_path": "dataset_sparc", "model.serialization_dir": serialization_dir, }) # Training will fail if the serialization directory already # has stuff in it. If you are running the same training loop # over and over again for debugging purposes, it will. # Hence we wipe it out in advance. # BE VERY CAREFUL NOT TO DO THIS FOR ACTUAL TRAINING! shutil.rmtree(serialization_dir, ignore_errors=True) # in debug mode. sys.argv = [ "allennlp", # command name, not used by main "train", config_file, "-s", serialization_dir, "-f", "--include-package", "dataset_reader.sparc_reader", "--include-package", "models.sparc_parser", "-o", overrides ] main()
ContextualSP/semantic_parsing_in_context/debug.py/0
{ "file_path": "ContextualSP/semantic_parsing_in_context/debug.py", "repo_id": "ContextualSP", "token_count": 529 }
270
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import os from typing import Dict, List import matplotlib import torch from allennlp.data.vocabulary import Vocabulary from tensorboardX import SummaryWriter matplotlib.use('agg', warn=False, force=True) EMOJI_CORRECT = "&#128523;" EMOJI_ERROR = "&#128545;" class Visualizer(object): def __init__(self, summary_dir, validation_size, vocab: Vocabulary): """ :param summary_dir: folder to store the tensorboard X log files :param validation_size: """ if not os.path.exists(summary_dir): os.makedirs(summary_dir) self.log_writer = SummaryWriter(summary_dir) self.validation_size = validation_size self.global_step = 0 self.ind_to_token = vocab.get_token_from_index # define template self.sql_template = '**Utterance** : {0} \n\n**GroundTruth**: {3}\n\n{1} **SQL**: {2}' def log_sql(self, inter_utterance: Dict[str, torch.LongTensor], judge_result: List[int], ground_truth: List[str], encoder_mask: torch.LongTensor, inter_sql: List[str]): """ This method is designed to log latent rotated text into tensorboard """ logging_strs = [] if 'tokens' in inter_utterance: inter_tokens = inter_utterance['tokens'] name_space = 'tokens' else: inter_tokens = inter_utterance['bert'] name_space = 'bert' for inter_ind, token_seq in enumerate(inter_tokens): # fetch the actual sequence length and convert them into token str token_len = encoder_mask[inter_ind].sum().long().data.cpu().item() origin_tokens = [self.ind_to_token(ind, name_space) for ind in token_seq[:token_len].data.cpu().numpy()] # original string utterance_str = ' '.join(origin_tokens) # segment ids logging sql_str = ' , '.join(inter_sql[inter_ind]) emoji_str = EMOJI_CORRECT if judge_result[inter_ind] == 1 else EMOJI_ERROR # record the actual translating length for avoiding extra logging logging_str = self.sql_template.format(utterance_str, emoji_str, sql_str, ground_truth[inter_ind]) logging_strs.append(logging_str) # if not anyone, log into the EMPTY if len(logging_strs) == 0: logging_strs.append('*EMPTY*') # merge multiple segment logging_str = ('\n\n' + '=' * 120 + '\n\n').join(logging_strs) dev_case = self.global_step % self.validation_size dev_step = self.global_step // self.validation_size self.log_writer.add_text(f'{dev_case}-th Latent Interaction Text', logging_str, global_step=dev_step) def update_global_step(self): """ Update global step for logging :return: """ self.global_step += 1
ContextualSP/semantic_parsing_in_context/models/visualizer.py/0
{ "file_path": "ContextualSP/semantic_parsing_in_context/models/visualizer.py", "repo_id": "ContextualSP", "token_count": 1318 }
271
from easydict import EasyDict as edict import yaml cfg = edict() def _edict2dict(dest_dict, src_edict): if isinstance(dest_dict, dict) and isinstance(src_edict, dict): for k, v in src_edict.items(): if not isinstance(v, edict): dest_dict[k] = v else: dest_dict[k] = {} _edict2dict(dest_dict[k], v) else: return def gen_config(config_file): cfg_dict = {} _edict2dict(cfg_dict, cfg) with open(config_file, 'w') as f: yaml.dump(cfg_dict, f, default_flow_style=False) def _update_config(base_cfg, exp_cfg): if isinstance(base_cfg, edict) and isinstance(exp_cfg, edict): for k, v in exp_cfg.items(): base_cfg[k] = v else: return def update_config_from_file(filename): exp_config = None with open(filename) as f: exp_config = edict(yaml.safe_load(f)) _update_config(cfg, exp_config)
Cream/AutoFormer/lib/config.py/0
{ "file_path": "Cream/AutoFormer/lib/config.py", "repo_id": "Cream", "token_count": 470 }
272
import argparse import datetime import numpy as np import time import torch import torch.backends.cudnn as cudnn import json import yaml from pathlib import Path from timm.data import Mixup from timm.models import create_model from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy from timm.scheduler import create_scheduler from timm.optim import create_optimizer from timm.utils import NativeScaler from lib.datasets import build_dataset from supernet_engine import train_one_epoch, evaluate from lib.samplers import RASampler from lib import utils from lib.config import cfg, update_config_from_file from model.supernet_transformer import Vision_TransformerSuper def get_args_parser(): parser = argparse.ArgumentParser('AutoFormer training and evaluation script', add_help=False) parser.add_argument('--batch-size', default=64, type=int) parser.add_argument('--epochs', default=300, type=int) # config file parser.add_argument('--cfg',help='experiment configure file name',required=True,type=str) # custom parameters parser.add_argument('--platform', default='pai', type=str, choices=['itp', 'pai', 'aml'], help='Name of model to train') parser.add_argument('--teacher_model', default='', type=str, help='Name of teacher model to train') parser.add_argument('--relative_position', action='store_true') parser.add_argument('--gp', action='store_true') parser.add_argument('--change_qkv', action='store_true') parser.add_argument('--max_relative_position', type=int, default=14, help='max distance in relative position embedding') # Model parameters parser.add_argument('--model', default='', type=str, metavar='MODEL', help='Name of model to train') # AutoFormer config parser.add_argument('--mode', type=str, default='super', choices=['super', 'retrain'], help='mode of AutoFormer') parser.add_argument('--input-size', default=224, type=int) parser.add_argument('--patch_size', default=16, type=int) parser.add_argument('--drop', type=float, default=0.0, metavar='PCT', help='Dropout rate (default: 0.)') parser.add_argument('--drop-path', type=float, default=0.1, metavar='PCT', help='Drop path rate (default: 0.1)') parser.add_argument('--drop-block', type=float, default=None, metavar='PCT', help='Drop block rate (default: None)') parser.add_argument('--model-ema', action='store_true') parser.add_argument('--no-model-ema', action='store_false', dest='model_ema') # parser.set_defaults(model_ema=True) parser.add_argument('--model-ema-decay', type=float, default=0.99996, help='') parser.add_argument('--model-ema-force-cpu', action='store_true', default=False, help='') parser.add_argument('--rpe_type', type=str, default='bias', choices=['bias', 'direct']) parser.add_argument('--post_norm', action='store_true') parser.add_argument('--no_abs_pos', action='store_true') # Optimizer parameters parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER', help='Optimizer (default: "adamw"') parser.add_argument('--opt-eps', default=1e-8, type=float, metavar='EPSILON', help='Optimizer Epsilon (default: 1e-8)') parser.add_argument('--opt-betas', default=None, type=float, nargs='+', metavar='BETA', help='Optimizer Betas (default: None, use opt default)') parser.add_argument('--clip-grad', type=float, default=None, metavar='NORM', help='Clip gradient norm (default: None, no clipping)') parser.add_argument('--momentum', type=float, default=0.9, metavar='M', help='SGD momentum (default: 0.9)') parser.add_argument('--weight-decay', type=float, default=0.05, help='weight decay (default: 0.05)') # Learning rate schedule parameters parser.add_argument('--sched', default='cosine', type=str, metavar='SCHEDULER', help='LR scheduler (default: "cosine"') parser.add_argument('--lr', type=float, default=5e-4, metavar='LR', help='learning rate (default: 5e-4)') parser.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct', help='learning rate noise on/off epoch percentages') parser.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT', help='learning rate noise limit percent (default: 0.67)') parser.add_argument('--lr-noise-std', type=float, default=1.0, metavar='STDDEV', help='learning rate noise std-dev (default: 1.0)') parser.add_argument('--warmup-lr', type=float, default=1e-6, metavar='LR', help='warmup learning rate (default: 1e-6)') parser.add_argument('--min-lr', type=float, default=1e-5, metavar='LR', help='lower lr bound for cyclic schedulers that hit 0 (1e-5)') parser.add_argument('--lr-power', type=float, default=1.0, help='power of the polynomial lr scheduler') parser.add_argument('--decay-epochs', type=float, default=30, metavar='N', help='epoch interval to decay LR') parser.add_argument('--warmup-epochs', type=int, default=5, metavar='N', help='epochs to warmup LR, if scheduler supports') parser.add_argument('--cooldown-epochs', type=int, default=10, metavar='N', help='epochs to cooldown LR at min_lr, after cyclic schedule ends') parser.add_argument('--patience-epochs', type=int, default=10, metavar='N', help='patience epochs for Plateau LR scheduler (default: 10') parser.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE', help='LR decay rate (default: 0.1)') # Augmentation parameters parser.add_argument('--color-jitter', type=float, default=0.4, metavar='PCT', help='Color jitter factor (default: 0.4)') parser.add_argument('--aa', type=str, default='rand-m9-mstd0.5-inc1', metavar='NAME', help='Use AutoAugment policy. "v0" or "original". " + \ "(default: rand-m9-mstd0.5-inc1)'), parser.add_argument('--smoothing', type=float, default=0.1, help='Label smoothing (default: 0.1)') parser.add_argument('--train-interpolation', type=str, default='bicubic', help='Training interpolation (random, bilinear, bicubic default: "bicubic")') parser.add_argument('--repeated-aug', action='store_true') parser.add_argument('--no-repeated-aug', action='store_false', dest='repeated_aug') parser.set_defaults(repeated_aug=True) # * Random Erase params parser.add_argument('--reprob', type=float, default=0.25, metavar='PCT', help='Random erase prob (default: 0.25)') parser.add_argument('--remode', type=str, default='pixel', help='Random erase mode (default: "pixel")') parser.add_argument('--recount', type=int, default=1, help='Random erase count (default: 1)') parser.add_argument('--resplit', action='store_true', default=False, help='Do not random erase first (clean) augmentation split') # * Mixup params parser.add_argument('--mixup', type=float, default=0.8, help='mixup alpha, mixup enabled if > 0. (default: 0.8)') parser.add_argument('--cutmix', type=float, default=1.0, help='cutmix alpha, cutmix enabled if > 0. (default: 1.0)') parser.add_argument('--cutmix-minmax', type=float, nargs='+', default=None, help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)') parser.add_argument('--mixup-prob', type=float, default=1.0, help='Probability of performing mixup or cutmix when either/both is enabled') parser.add_argument('--mixup-switch-prob', type=float, default=0.5, help='Probability of switching to cutmix when both mixup and cutmix enabled') parser.add_argument('--mixup-mode', type=str, default='batch', help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"') # Dataset parameters parser.add_argument('--data-path', default='./data/imagenet/', type=str, help='dataset path') parser.add_argument('--data-set', default='IMNET', choices=['CIFAR', 'IMNET', 'INAT', 'INAT19'], type=str, help='Image Net dataset path') parser.add_argument('--inat-category', default='name', choices=['kingdom', 'phylum', 'class', 'order', 'supercategory', 'family', 'genus', 'name'], type=str, help='semantic granularity') parser.add_argument('--output_dir', default='./', help='path where to save, empty for no saving') parser.add_argument('--device', default='cuda', help='device to use for training / testing') parser.add_argument('--seed', default=0, type=int) parser.add_argument('--resume', default='', help='resume from checkpoint') parser.add_argument('--start_epoch', default=0, type=int, metavar='N', help='start epoch') parser.add_argument('--eval', action='store_true', help='Perform evaluation only') parser.add_argument('--num_workers', default=10, type=int) parser.add_argument('--dist-eval', action='store_true', default=False, help='Enabling distributed evaluation') parser.add_argument('--pin-mem', action='store_true', help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.') parser.add_argument('--no-pin-mem', action='store_false', dest='pin_mem', help='') parser.set_defaults(pin_mem=True) # distributed training parameters parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes') parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training') parser.add_argument('--amp', action='store_true') parser.add_argument('--no-amp', action='store_false', dest='amp') parser.set_defaults(amp=True) return parser def main(args): utils.init_distributed_mode(args) update_config_from_file(args.cfg) print(args) args_text = yaml.safe_dump(args.__dict__, default_flow_style=False) device = torch.device(args.device) # fix the seed for reproducibility seed = args.seed + utils.get_rank() torch.manual_seed(seed) np.random.seed(seed) # random.seed(seed) cudnn.benchmark = True dataset_train, args.nb_classes = build_dataset(is_train=True, args=args) dataset_val, _ = build_dataset(is_train=False, args=args) if args.distributed: num_tasks = utils.get_world_size() global_rank = utils.get_rank() if args.repeated_aug: sampler_train = RASampler( dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True ) else: sampler_train = torch.utils.data.DistributedSampler( dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True ) if args.dist_eval: if len(dataset_val) % num_tasks != 0: print( 'Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. ' 'This will slightly alter validation results as extra duplicate entries are added to achieve ' 'equal num of samples per-process.') sampler_val = torch.utils.data.DistributedSampler( dataset_val, num_replicas=num_tasks, rank=global_rank, shuffle=False) else: sampler_val = torch.utils.data.SequentialSampler(dataset_val) else: sampler_val = torch.utils.data.SequentialSampler(dataset_val) sampler_train = torch.utils.data.RandomSampler(dataset_train) data_loader_train = torch.utils.data.DataLoader( dataset_train, sampler=sampler_train, batch_size=args.batch_size, num_workers=args.num_workers, pin_memory=args.pin_mem, drop_last=True, ) data_loader_val = torch.utils.data.DataLoader( dataset_val, batch_size=int(2 * args.batch_size), sampler=sampler_val, num_workers=args.num_workers, pin_memory=args.pin_mem, drop_last=False ) mixup_fn = None mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None if mixup_active: mixup_fn = Mixup( mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax, prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode, label_smoothing=args.smoothing, num_classes=args.nb_classes) print(f"Creating SuperVisionTransformer") print(cfg) model = Vision_TransformerSuper(img_size=args.input_size, patch_size=args.patch_size, embed_dim=cfg.SUPERNET.EMBED_DIM, depth=cfg.SUPERNET.DEPTH, num_heads=cfg.SUPERNET.NUM_HEADS,mlp_ratio=cfg.SUPERNET.MLP_RATIO, qkv_bias=True, drop_rate=args.drop, drop_path_rate=args.drop_path, gp=args.gp, num_classes=args.nb_classes, max_relative_position=args.max_relative_position, relative_position=args.relative_position, change_qkv=args.change_qkv, abs_pos=not args.no_abs_pos) choices = {'num_heads': cfg.SEARCH_SPACE.NUM_HEADS, 'mlp_ratio': cfg.SEARCH_SPACE.MLP_RATIO, 'embed_dim': cfg.SEARCH_SPACE.EMBED_DIM , 'depth': cfg.SEARCH_SPACE.DEPTH} model.to(device) if args.teacher_model: teacher_model = create_model( args.teacher_model, pretrained=True, num_classes=args.nb_classes, ) teacher_model.to(device) teacher_loss = LabelSmoothingCrossEntropy(smoothing=args.smoothing) else: teacher_model = None teacher_loss = None model_ema = None model_without_ddp = model if args.distributed: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True) model_without_ddp = model.module n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) print('number of params:', n_parameters) linear_scaled_lr = args.lr * args.batch_size * utils.get_world_size() / 512.0 args.lr = linear_scaled_lr optimizer = create_optimizer(args, model_without_ddp) loss_scaler = NativeScaler() lr_scheduler, _ = create_scheduler(args, optimizer) # criterion = LabelSmoothingCrossEntropy() if args.mixup > 0.: # smoothing is handled with mixup label transform criterion = SoftTargetCrossEntropy() elif args.smoothing: criterion = LabelSmoothingCrossEntropy(smoothing=args.smoothing) else: criterion = torch.nn.CrossEntropyLoss() output_dir = Path(args.output_dir) if not output_dir.exists(): output_dir.mkdir(parents=True) # save config for later experiments with open(output_dir / "config.yaml", 'w') as f: f.write(args_text) if args.resume: if args.resume.startswith('https'): checkpoint = torch.hub.load_state_dict_from_url( args.resume, map_location='cpu', check_hash=True) else: checkpoint = torch.load(args.resume, map_location='cpu') model_without_ddp.load_state_dict(checkpoint['model']) if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint: optimizer.load_state_dict(checkpoint['optimizer']) lr_scheduler.load_state_dict(checkpoint['lr_scheduler']) args.start_epoch = checkpoint['epoch'] + 1 if 'scaler' in checkpoint: loss_scaler.load_state_dict(checkpoint['scaler']) if args.model_ema: utils._load_checkpoint_for_ema(model_ema, checkpoint['model_ema']) retrain_config = None if args.mode == 'retrain' and "RETRAIN" in cfg: retrain_config = {'layer_num': cfg.RETRAIN.DEPTH, 'embed_dim': [cfg.RETRAIN.EMBED_DIM]*cfg.RETRAIN.DEPTH, 'num_heads': cfg.RETRAIN.NUM_HEADS,'mlp_ratio': cfg.RETRAIN.MLP_RATIO} if args.eval: test_stats = evaluate(data_loader_val, model, device, mode = args.mode, retrain_config=retrain_config) print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%") return print("Start training") start_time = time.time() max_accuracy = 0.0 for epoch in range(args.start_epoch, args.epochs): if args.distributed: data_loader_train.sampler.set_epoch(epoch) train_stats = train_one_epoch( model, criterion, data_loader_train, optimizer, device, epoch, loss_scaler, args.clip_grad, model_ema, mixup_fn, amp=args.amp, teacher_model=teacher_model, teach_loss=teacher_loss, choices=choices, mode = args.mode, retrain_config=retrain_config, ) lr_scheduler.step(epoch) if args.output_dir: checkpoint_paths = [output_dir / 'checkpoint.pth'] for checkpoint_path in checkpoint_paths: utils.save_on_master({ 'model': model_without_ddp.state_dict(), 'optimizer': optimizer.state_dict(), 'lr_scheduler': lr_scheduler.state_dict(), 'epoch': epoch, # 'model_ema': get_state_dict(model_ema), 'scaler': loss_scaler.state_dict(), 'args': args, }, checkpoint_path) test_stats = evaluate(data_loader_val, model, device, amp=args.amp, choices=choices, mode = args.mode, retrain_config=retrain_config) print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%") max_accuracy = max(max_accuracy, test_stats["acc1"]) print(f'Max accuracy: {max_accuracy:.2f}%') log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, **{f'test_{k}': v for k, v in test_stats.items()}, 'epoch': epoch, 'n_parameters': n_parameters} if args.output_dir and utils.is_main_process(): with (output_dir / "log.txt").open("a") as f: f.write(json.dumps(log_stats) + "\n") total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print('Training time {}'.format(total_time_str)) if __name__ == '__main__': parser = argparse.ArgumentParser('AutoFormer training and evaluation script', parents=[get_args_parser()]) args = parser.parse_args() if args.output_dir: Path(args.output_dir).mkdir(parents=True, exist_ok=True) main(args)
Cream/AutoFormer/supernet_train.py/0
{ "file_path": "Cream/AutoFormer/supernet_train.py", "repo_id": "Cream", "token_count": 8777 }
273
from .alexnet import AlexNet from .vgg import VGG, make_vgg_layer from .resnet import ResNet, make_res_layer from .weight_init import (constant_init, xavier_init, normal_init, uniform_init, kaiming_init, caffe2_xavier_init) __all__ = [ 'AlexNet', 'VGG', 'make_vgg_layer', 'ResNet', 'make_res_layer', 'constant_init', 'xavier_init', 'normal_init', 'uniform_init', 'kaiming_init', 'caffe2_xavier_init' ]
Cream/CDARTS/CDARTS_detection/mmcv/cnn/__init__.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmcv/cnn/__init__.py", "repo_id": "Cream", "token_count": 192 }
274
import cv2 import numpy as np def iminvert(img): """Invert (negate) an image Args: img (ndarray): Image to be inverted. Returns: ndarray: The inverted image. """ return np.full_like(img, 255) - img def bgr2gray(img, keepdim=False): """Convert a BGR image to grayscale image. Args: img (ndarray): The input image. keepdim (bool): If False (by default), then return the grayscale image with 2 dims, otherwise 3 dims. Returns: ndarray: The converted grayscale image. """ out_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) if keepdim: out_img = out_img[..., None] return out_img def gray2bgr(img): """Convert a grayscale image to BGR image. Args: img (ndarray or str): The input image. Returns: ndarray: The converted BGR image. """ img = img[..., None] if img.ndim == 2 else img out_img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) return out_img def convert_color_factory(src, dst): code = getattr(cv2, 'COLOR_{}2{}'.format(src.upper(), dst.upper())) def convert_color(img): out_img = cv2.cvtColor(img, code) return out_img convert_color.__doc__ = """Convert a {0} image to {1} image. Args: img (ndarray or str): The input image. Returns: ndarray: The converted {1} image. """.format(src.upper(), dst.upper()) return convert_color bgr2rgb = convert_color_factory('bgr', 'rgb') rgb2bgr = convert_color_factory('rgb', 'bgr') bgr2hsv = convert_color_factory('bgr', 'hsv') hsv2bgr = convert_color_factory('hsv', 'bgr') bgr2hls = convert_color_factory('bgr', 'hls') hls2bgr = convert_color_factory('hls', 'bgr')
Cream/CDARTS/CDARTS_detection/mmcv/image/transforms/colorspace.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmcv/image/transforms/colorspace.py", "repo_id": "Cream", "token_count": 768 }
275
from ..utils import master_only from .hook import Hook class CheckpointHook(Hook): def __init__(self, interval=-1, save_optimizer=True, out_dir=None, **kwargs): self.interval = interval self.save_optimizer = save_optimizer self.out_dir = out_dir self.args = kwargs @master_only def after_train_epoch(self, runner): if not self.every_n_epochs(runner, self.interval): return if not self.out_dir: self.out_dir = runner.work_dir runner.save_checkpoint( self.out_dir, save_optimizer=self.save_optimizer, **self.args)
Cream/CDARTS/CDARTS_detection/mmcv/runner/hooks/checkpoint.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmcv/runner/hooks/checkpoint.py", "repo_id": "Cream", "token_count": 343 }
276
import logging import os import os.path as osp import time import math import torch import numpy as np import mmcv from . import hooks from .checkpoint import load_checkpoint, save_checkpoint from .hooks import (CheckpointHook, Hook, IterTimerHook, LrUpdaterHook, OptimizerHook, OptimizerArchHook, lr_updater) from .log_buffer import LogBuffer from .priority import get_priority from .utils import get_dist_info, get_host_info, get_time_str, obj_from_dict class Runner(object): """A training helper for PyTorch. Args: model (:obj:`torch.nn.Module`): The model to be run. batch_processor (callable): A callable method that process a data batch. The interface of this method should be `batch_processor(model, data, train_mode) -> dict` optimizer (dict or :obj:`torch.optim.Optimizer`): If it is a dict, runner will construct an optimizer according to it. work_dir (str, optional): The working directory to save checkpoints and logs. log_level (int): Logging level. logger (:obj:`logging.Logger`): Custom logger. If `None`, use the default logger. """ def __init__(self, model, batch_processor, optimizer=None, optimizer_arch=None, work_dir=None, log_level=logging.INFO, logger=None, arch_name=None): assert callable(batch_processor) self.model = model self.arch_name = arch_name if optimizer is not None: self.optimizer = self.init_optimizer(optimizer) else: self.optimizer = None if optimizer_arch is not None: self.optimizer_arch = self.init_optimizer(optimizer_arch) else: self.optimizer_arch = None self.batch_processor = batch_processor # create work_dir if mmcv.is_str(work_dir): self.work_dir = osp.abspath(work_dir) mmcv.mkdir_or_exist(self.work_dir) elif work_dir is None: self.work_dir = None else: raise TypeError('"work_dir" must be a str or None') # get model name from the model class if hasattr(self.model, 'module'): self._model_name = self.model.module.__class__.__name__ else: self._model_name = self.model.__class__.__name__ self._rank, self._world_size = get_dist_info() self.timestamp = get_time_str() if logger is None: self.logger = self.init_logger(work_dir, log_level) else: self.logger = logger self.log_buffer = LogBuffer() self.mode = None self._hooks = [] self._epoch = 0 self._iter = 0 self._inner_iter = 0 self._max_epochs = 0 self._max_iters = 0 @property def model_name(self): """str: Name of the model, usually the module class name.""" return self._model_name @property def rank(self): """int: Rank of current process. (distributed training)""" return self._rank @property def world_size(self): """int: Number of processes participating in the job. (distributed training)""" return self._world_size @property def hooks(self): """list[:obj:`Hook`]: A list of registered hooks.""" return self._hooks @property def epoch(self): """int: Current epoch.""" return self._epoch @property def iter(self): """int: Current iteration.""" return self._iter @property def inner_iter(self): """int: Iteration in an epoch.""" return self._inner_iter @property def max_epochs(self): """int: Maximum training epochs.""" return self._max_epochs @property def max_iters(self): """int: Maximum training iterations.""" return self._max_iters def init_optimizer(self, optimizer): """Init the optimizer. Args: optimizer (dict or :obj:`~torch.optim.Optimizer`): Either an optimizer object or a dict used for constructing the optimizer. Returns: :obj:`~torch.optim.Optimizer`: An optimizer object. Examples: >>> optimizer = dict(type='SGD', lr=0.01, momentum=0.9) >>> type(runner.init_optimizer(optimizer)) <class 'torch.optim.sgd.SGD'> """ if isinstance(optimizer, dict): optimizer = obj_from_dict(optimizer, torch.optim, dict(params=self.model.parameters())) elif not isinstance(optimizer, torch.optim.Optimizer): raise TypeError( 'optimizer must be either an Optimizer object or a dict, ' 'but got {}'.format(type(optimizer))) return optimizer def _add_file_handler(self, logger, filename=None, mode='w', level=logging.INFO): # TODO: move this method out of runner file_handler = logging.FileHandler(filename, mode) file_handler.setFormatter( logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')) file_handler.setLevel(level) logger.addHandler(file_handler) return logger def init_logger(self, log_dir=None, level=logging.INFO): """Init the logger. Args: log_dir(str, optional): Log file directory. If not specified, no log file will be used. level (int or str): See the built-in python logging module. Returns: :obj:`~logging.Logger`: Python logger. """ logging.basicConfig( format='%(asctime)s - %(levelname)s - %(message)s', level=level) logger = logging.getLogger(__name__) if log_dir and self.rank == 0: filename = '{}.log'.format(self.timestamp) log_file = osp.join(log_dir, filename) self._add_file_handler(logger, log_file, level=level) return logger def current_lr(self): """Get current learning rates. Returns: list: Current learning rate of all param groups. """ if self.optimizer is None: raise RuntimeError( 'lr is not applicable because optimizer does not exist.') return [group['lr'] for group in self.optimizer.param_groups] def register_hook(self, hook, priority='NORMAL'): """Register a hook into the hook list. Args: hook (:obj:`Hook`): The hook to be registered. priority (int or str or :obj:`Priority`): Hook priority. Lower value means higher priority. """ assert isinstance(hook, Hook) if hasattr(hook, 'priority'): raise ValueError('"priority" is a reserved attribute for hooks') priority = get_priority(priority) hook.priority = priority # insert the hook to a sorted list inserted = False for i in range(len(self._hooks) - 1, -1, -1): if priority >= self._hooks[i].priority: self._hooks.insert(i + 1, hook) inserted = True break if not inserted: self._hooks.insert(0, hook) def build_hook(self, args, hook_type=None): if isinstance(args, Hook): return args elif isinstance(args, dict): assert issubclass(hook_type, Hook) return hook_type(**args) else: raise TypeError('"args" must be either a Hook object' ' or dict, not {}'.format(type(args))) def call_hook(self, fn_name): for hook in self._hooks: getattr(hook, fn_name)(self) def load_checkpoint(self, filename, map_location='cpu', strict=False): self.logger.info('load checkpoint from %s', filename) return load_checkpoint(self.model, filename, map_location, strict, self.logger) def save_checkpoint(self, out_dir, filename_tmpl='epoch_{}.pth', save_optimizer=True, meta=None): if meta is None: meta = dict(epoch=self.epoch + 1, iter=self.iter) else: meta.update(epoch=self.epoch + 1, iter=self.iter) filename = filename_tmpl.format(self.epoch + 1) filepath = osp.join(out_dir, filename) linkpath = osp.join(out_dir, 'latest.pth') optimizer = self.optimizer if save_optimizer else None save_checkpoint(self.model, filepath, optimizer=optimizer, meta=meta) # use relative symlink mmcv.symlink(filename, linkpath) def train(self, data_loader, data_loader_arch, **kwargs): self.model.train() self.mode = 'train' self.data_loader = data_loader self._max_iters = self._max_epochs * len(data_loader) self.call_hook('before_train_epoch') for i, data_batch in enumerate(data_loader): self._inner_iter = i self.call_hook('before_train_iter') outputs = self.batch_processor( self.model, data_batch, train_mode=True, **kwargs) if not isinstance(outputs, dict): raise TypeError('batch_processor() must return a dict') if 'log_vars' in outputs: self.log_buffer.update(outputs['log_vars'], outputs['num_samples']) self.outputs = outputs self.call_hook('after_train_iter') self._iter += 1 self.call_hook('after_train_epoch') self._epoch += 1 def val(self, data_loader, data_loader_arch, **kwargs): self.model.eval() self.mode = 'val' self.data_loader = data_loader self.call_hook('before_val_epoch') for i, data_batch in enumerate(data_loader): self._inner_iter = i self.call_hook('before_val_iter') with torch.no_grad(): outputs = self.batch_processor( self.model, data_batch, train_mode=False, **kwargs) if not isinstance(outputs, dict): raise TypeError('batch_processor() must return a dict') if 'log_vars' in outputs: self.log_buffer.update(outputs['log_vars'], outputs['num_samples']) self.outputs = outputs self.call_hook('after_val_iter') self.call_hook('after_val_epoch') def resume(self, checkpoint, resume_optimizer=True, map_location='default'): if map_location == 'default': device_id = torch.cuda.current_device() checkpoint = self.load_checkpoint( checkpoint, map_location=lambda storage, loc: storage.cuda(device_id)) else: checkpoint = self.load_checkpoint( checkpoint, map_location=map_location) self._epoch = checkpoint['meta']['epoch'] self._iter = checkpoint['meta']['iter'] if 'optimizer' in checkpoint and resume_optimizer: self.optimizer.load_state_dict(checkpoint['optimizer']) self.logger.info('resumed epoch %d, iter %d', self.epoch, self.iter) def run(self, data_loaders, data_loaders_arch, workflow, max_epochs, **kwargs): """Start running. Args: data_loaders (list[:obj:`DataLoader`]): Dataloaders for training and validation. workflow (list[tuple]): A list of (phase, epochs) to specify the running order and epochs. E.g, [('train', 2), ('val', 1)] means running 2 epochs for training and 1 epoch for validation, iteratively. max_epochs (int): Total training epochs. """ assert isinstance(data_loaders, list) assert mmcv.is_list_of(workflow, tuple) assert len(data_loaders) == len(workflow) self._max_epochs = max_epochs work_dir = self.work_dir if self.work_dir is not None else 'NONE' self.logger.info('Start running, host: %s, work_dir: %s', get_host_info(), work_dir) self.logger.info('workflow: %s, max: %d epochs', workflow, max_epochs) self.call_hook('before_run') while self.epoch < max_epochs: for i, flow in enumerate(workflow): mode, epochs = flow if isinstance(mode, str): # self.train() if not hasattr(self, mode): raise ValueError( 'runner has no method named "{}" to run an epoch'. format(mode)) epoch_runner = getattr(self, mode) elif callable(mode): # custom train() epoch_runner = mode else: raise TypeError('mode in workflow must be a str or ' 'callable function, not {}'.format( type(mode))) for _ in range(epochs): if mode == 'train' and self.epoch >= max_epochs: return if data_loaders_arch is not None: epoch_runner(data_loaders[i], data_loaders_arch[i], **kwargs) else: epoch_runner(data_loaders[i], None, **kwargs) time.sleep(1) # wait for some hooks like loggers to finish self.call_hook('after_run') def register_lr_hooks(self, lr_config): if isinstance(lr_config, LrUpdaterHook): self.register_hook(lr_config) elif isinstance(lr_config, dict): assert 'policy' in lr_config # from .hooks import lr_updater hook_name = lr_config['policy'].title() + 'LrUpdaterHook' if not hasattr(lr_updater, hook_name): raise ValueError('"{}" does not exist'.format(hook_name)) hook_cls = getattr(lr_updater, hook_name) self.register_hook(hook_cls(**lr_config)) else: raise TypeError('"lr_config" must be either a LrUpdaterHook object' ' or dict, not {}'.format(type(lr_config))) def register_logger_hooks(self, log_config): log_interval = log_config['interval'] for info in log_config['hooks']: logger_hook = obj_from_dict( info, hooks, default_args=dict(interval=log_interval)) self.register_hook(logger_hook, priority='VERY_LOW') def register_training_hooks(self, lr_config, optimizer_config=None, optimizer_arch_config=None, checkpoint_config=None, log_config=None): """Register default hooks for training. Default hooks include: - LrUpdaterHook - OptimizerStepperHook - CheckpointSaverHook - IterTimerHook - LoggerHook(s) """ if optimizer_config is None: optimizer_config = {} if checkpoint_config is None: checkpoint_config = {} self.register_lr_hooks(lr_config) self.register_hook(self.build_hook(optimizer_config, OptimizerHook)) self.register_hook(self.build_hook(optimizer_arch_config, OptimizerArchHook)) self.register_hook(self.build_hook(checkpoint_config, CheckpointHook)) self.register_hook(IterTimerHook()) if log_config is not None: self.register_logger_hooks(log_config)
Cream/CDARTS/CDARTS_detection/mmcv/runner/runner.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmcv/runner/runner.py", "repo_id": "Cream", "token_count": 7773 }
277
STUFF = "Hi" import numpy as np cimport numpy as np np.import_array() cdef extern from "flow_warp.hpp": void FlowWarp(double* img, double* flow1, double* out, const int height, const int width, const int channels, const int filling_value, const int interpolateMode) def flow_warp_c(np.ndarray[double, ndim=3, mode="c"] img_array not None, np.ndarray[double, ndim=3, mode="c"] flow_array not None, int filling_value=0, int interpolate_mode=1): out_array = np.zeros_like(img_array) FlowWarp(<double*> np.PyArray_DATA(img_array), <double*> np.PyArray_DATA(flow_array), <double*> np.PyArray_DATA(out_array), out_array.shape[0], out_array.shape[1], out_array.shape[2], filling_value, interpolate_mode) return out_array
Cream/CDARTS/CDARTS_detection/mmcv/video/optflow_warp/flow_warp_module.pyx/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmcv/video/optflow_warp/flow_warp_module.pyx", "repo_id": "Cream", "token_count": 412 }
278
from __future__ import division import re from collections import OrderedDict import torch from mmcv.parallel import MMDataParallel, MMDistributedDataParallel from mmcv.runner import Runner, DistSamplerSeedHook, obj_from_dict from mmdet import datasets from mmdet.core import (DistEvalHook, DistOptimizerHook, DistOptimizerArchHook, Fp16OptimizerHook) from mmdet.datasets import DATASETS, build_dataloader, build_dataloader_arch from mmdet.models import RPN from .env import get_root_logger def parse_losses(losses): log_vars = OrderedDict() for loss_name, loss_value in losses.items(): if isinstance(loss_value, torch.Tensor): log_vars[loss_name] = loss_value.mean() elif isinstance(loss_value, list): log_vars[loss_name] = sum(_loss.mean() for _loss in loss_value) else: raise TypeError( '{} is not a tensor or list of tensors'.format(loss_name)) loss = sum(_value for _key, _value in log_vars.items() if 'loss' in _key) log_vars['loss'] = loss for name in log_vars: log_vars[name] = log_vars[name].item() return loss, log_vars def batch_processor(model, data, train_mode, **kwargs): losses = model(**data) losses_ = losses[0] loss_latency = losses[1] if loss_latency is not None: losses_['loss_latency'] = loss_latency loss, log_vars = parse_losses(losses_) outputs = dict( loss=loss, log_vars=log_vars, num_samples=len(data['img'].data)) return outputs def train_detector(model, dataset, cfg, distributed=False, validate=False, logger=None): if logger is None: logger = get_root_logger(cfg.log_level) # start training if distributed: _dist_train(model, dataset, cfg, validate=validate) else: _non_dist_train(model, dataset, cfg, validate=validate) def build_optimizer(model, optimizer_cfg, optimizer_exclude_arch): """Build optimizer from configs. Args: model (:obj:`nn.Module`): The model with parameters to be optimized. optimizer_cfg (dict): The config dict of the optimizer. Positional fields are: - type: class name of the optimizer. - lr: base learning rate. Optional fields are: - any arguments of the corresponding optimizer type, e.g., weight_decay, momentum, etc. - paramwise_options: a dict with 3 accepted fileds (bias_lr_mult, bias_decay_mult, norm_decay_mult). `bias_lr_mult` and `bias_decay_mult` will be multiplied to the lr and weight decay respectively for all bias parameters (except for the normalization layers), and `norm_decay_mult` will be multiplied to the weight decay for all weight and bias parameters of normalization layers. Returns: torch.optim.Optimizer: The initialized optimizer. Example: >>> model = torch.nn.modules.Conv1d(1, 1, 1) >>> optimizer_cfg = dict(type='SGD', lr=0.01, momentum=0.9, >>> weight_decay=0.0001) >>> optimizer = build_optimizer(model, optimizer_cfg) """ if hasattr(model, 'module'): model = model.module if hasattr(model, 'module'): # For distributed model model = model.module optimizer_cfg = optimizer_cfg.copy() paramwise_options = optimizer_cfg.pop('paramwise_options', None) # if no paramwise option is specified, just use the global setting if paramwise_options is None: if not optimizer_exclude_arch: params = model.parameters() else: params = [p for n, p in model.named_parameters() if 'alpha' not in n] return obj_from_dict(optimizer_cfg, torch.optim, dict(params=params)) else: assert isinstance(paramwise_options, dict) # get base lr and weight decay base_lr = optimizer_cfg['lr'] base_wd = optimizer_cfg.get('weight_decay', None) # weight_decay must be explicitly specified if mult is specified if ('bias_decay_mult' in paramwise_options or 'norm_decay_mult' in paramwise_options): assert base_wd is not None # get param-wise options bias_lr_mult = paramwise_options.get('bias_lr_mult', 1.) bias_decay_mult = paramwise_options.get('bias_decay_mult', 1.) norm_decay_mult = paramwise_options.get('norm_decay_mult', 1.) offset_lr_mult = paramwise_options.get('bias_decay_mult', 1.) # Noted by Jianyuan, for offset lr # set param-wise lr and weight decay params = [] for name, param in model.named_parameters(): param_group = {'params': [param]} if not param.requires_grad: # FP16 training needs to copy gradient/weight between master # weight copy and model weight, it is convenient to keep all # parameters here to align with model.parameters() params.append(param_group) continue # Noted by Jianyuan, for huang lang offset if 'offset' in name: param_group['lr'] = base_lr * offset_lr_mult # for norm layers, overwrite the weight decay of weight and bias # TODO: obtain the norm layer prefixes dynamically if re.search(r'(bn|gn)(\d+)?.(weight|bias)', name): if base_wd is not None: param_group['weight_decay'] = base_wd * norm_decay_mult # for other layers, overwrite both lr and weight decay of bias elif name.endswith('.bias'): param_group['lr'] = base_lr * bias_lr_mult if base_wd is not None: param_group['weight_decay'] = base_wd * bias_decay_mult # otherwise use the global settings params.append(param_group) optimizer_cls = getattr(torch.optim, optimizer_cfg.pop('type')) return optimizer_cls(params, **optimizer_cfg) def _dist_train(model, dataset, cfg, validate=False): # put model on gpus model = MMDistributedDataParallel(model.cuda()) # build runner optimizer = build_optimizer(model, cfg.optimizer, cfg.get('optimizer_exclude_arch')) arch_name = None optimizer_arch = None if 'optimizer_arch' in cfg: raise NotImplementedError runner = Runner(model, batch_processor, optimizer, optimizer_arch, cfg.work_dir, cfg.log_level, arch_name=arch_name) # fp16 setting fp16_cfg = cfg.get('fp16', None) if fp16_cfg is not None: optimizer_config = Fp16OptimizerHook(**cfg.optimizer_config, **fp16_cfg) else: optimizer_config = DistOptimizerHook(**cfg.optimizer_config) optimizer_arch_config = DistOptimizerArchHook(**cfg.optimizer_config) # register hooks runner.register_training_hooks(cfg.lr_config, optimizer_config, optimizer_arch_config, cfg.checkpoint_config, cfg.log_config) runner.register_hook(DistSamplerSeedHook()) # register eval hooks if validate: val_dataset_cfg = cfg.data.val eval_cfg = cfg.get('evaluation', {}) runner.register_hook(DistEvalHook(val_dataset_cfg, **eval_cfg)) if cfg.resume_from: runner.resume(cfg.resume_from) elif cfg.load_from: runner.load_checkpoint(cfg.load_from) if 'optimizer_arch' in cfg: raise NotImplementedError else: data_loaders = [ build_dataloader( dataset, cfg.data.imgs_per_gpu, cfg.data.workers_per_gpu, dist=True) ] runner.run(data_loaders, None, cfg.workflow, cfg.total_epochs) def _non_dist_train(model, dataset, cfg, validate=False): if validate: raise NotImplementedError('Built-in validation is not implemented ' 'yet in not-distributed training. Use ' 'distributed training or test.py and ' '*eval.py scripts instead.') # put model on gpus model = MMDataParallel(model, device_ids=range(cfg.gpus)).cuda() # build runner optimizer = build_optimizer(model, cfg.optimizer, cfg.get('optimizer_exclude_arch')) arch_name = None optimizer_arch = None if 'optimizer_arch' in cfg: raise NotImplementedError runner = Runner(model, batch_processor, optimizer, optimizer_arch, cfg.work_dir, cfg.log_level, arch_name=arch_name) # fp16 setting fp16_cfg = cfg.get('fp16', None) if fp16_cfg is not None: optimizer_config = Fp16OptimizerHook( **cfg.optimizer_config, **fp16_cfg, distributed=False) else: optimizer_config = cfg.optimizer_config optimizer_arch_config = cfg.optimizer_config runner.register_training_hooks(cfg.lr_config, optimizer_config, optimizer_arch_config, cfg.checkpoint_config, cfg.log_config) if cfg.resume_from: runner.resume(cfg.resume_from) elif cfg.load_from: runner.load_checkpoint(cfg.load_from) if 'optimizer_arch' in cfg: raise NotImplementedError else: data_loaders = [ build_dataloader( dataset, cfg.data.imgs_per_gpu, cfg.data.workers_per_gpu, cfg.gpus, dist=False) ] runner.run(data_loaders, None, cfg.workflow, cfg.total_epochs)
Cream/CDARTS/CDARTS_detection/mmdet/apis/train.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmdet/apis/train.py", "repo_id": "Cream", "token_count": 4481 }
279
from abc import ABCMeta, abstractmethod import torch from .sampling_result import SamplingResult class BaseSampler(metaclass=ABCMeta): def __init__(self, num, pos_fraction, neg_pos_ub=-1, add_gt_as_proposals=True, **kwargs): self.num = num self.pos_fraction = pos_fraction self.neg_pos_ub = neg_pos_ub self.add_gt_as_proposals = add_gt_as_proposals self.pos_sampler = self self.neg_sampler = self @abstractmethod def _sample_pos(self, assign_result, num_expected, **kwargs): pass @abstractmethod def _sample_neg(self, assign_result, num_expected, **kwargs): pass def sample(self, assign_result, bboxes, gt_bboxes, gt_labels=None, **kwargs): """Sample positive and negative bboxes. This is a simple implementation of bbox sampling given candidates, assigning results and ground truth bboxes. Args: assign_result (:obj:`AssignResult`): Bbox assigning results. bboxes (Tensor): Boxes to be sampled from. gt_bboxes (Tensor): Ground truth bboxes. gt_labels (Tensor, optional): Class labels of ground truth bboxes. Returns: :obj:`SamplingResult`: Sampling result. """ bboxes = bboxes[:, :4] gt_flags = bboxes.new_zeros((bboxes.shape[0], ), dtype=torch.uint8) if self.add_gt_as_proposals: bboxes = torch.cat([gt_bboxes, bboxes], dim=0) assign_result.add_gt_(gt_labels) gt_ones = bboxes.new_ones(gt_bboxes.shape[0], dtype=torch.uint8) gt_flags = torch.cat([gt_ones, gt_flags]) num_expected_pos = int(self.num * self.pos_fraction) pos_inds = self.pos_sampler._sample_pos( assign_result, num_expected_pos, bboxes=bboxes, **kwargs) # We found that sampled indices have duplicated items occasionally. # (may be a bug of PyTorch) pos_inds = pos_inds.unique() num_sampled_pos = pos_inds.numel() num_expected_neg = self.num - num_sampled_pos if self.neg_pos_ub >= 0: _pos = max(1, num_sampled_pos) neg_upper_bound = int(self.neg_pos_ub * _pos) if num_expected_neg > neg_upper_bound: num_expected_neg = neg_upper_bound neg_inds = self.neg_sampler._sample_neg( assign_result, num_expected_neg, bboxes=bboxes, **kwargs) neg_inds = neg_inds.unique() return SamplingResult(pos_inds, neg_inds, bboxes, gt_bboxes, assign_result, gt_flags)
Cream/CDARTS/CDARTS_detection/mmdet/core/bbox/samplers/base_sampler.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmdet/core/bbox/samplers/base_sampler.py", "repo_id": "Cream", "token_count": 1360 }
280
from .decorators import auto_fp16, force_fp32 from .hooks import Fp16OptimizerHook, wrap_fp16_model __all__ = ['auto_fp16', 'force_fp32', 'Fp16OptimizerHook', 'wrap_fp16_model']
Cream/CDARTS/CDARTS_detection/mmdet/core/fp16/__init__.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmdet/core/fp16/__init__.py", "repo_id": "Cream", "token_count": 73 }
281
import logging import os.path as osp import tempfile import mmcv import numpy as np from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval from mmdet.core import eval_recalls from mmdet.utils import print_log from .custom import CustomDataset from .registry import DATASETS @DATASETS.register_module class CocoDataset(CustomDataset): CLASSES = ('person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic_light', 'fire_hydrant', 'stop_sign', 'parking_meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports_ball', 'kite', 'baseball_bat', 'baseball_glove', 'skateboard', 'surfboard', 'tennis_racket', 'bottle', 'wine_glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot_dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted_plant', 'bed', 'dining_table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell_phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy_bear', 'hair_drier', 'toothbrush') def load_annotations(self, ann_file): self.coco = COCO(ann_file) self.cat_ids = self.coco.getCatIds() self.cat2label = { cat_id: i + 1 for i, cat_id in enumerate(self.cat_ids) } self.img_ids = self.coco.getImgIds() img_infos = [] for i in self.img_ids: info = self.coco.loadImgs([i])[0] info['filename'] = info['file_name'] img_infos.append(info) return img_infos def get_ann_info(self, idx): img_id = self.img_infos[idx]['id'] ann_ids = self.coco.getAnnIds(imgIds=[img_id]) ann_info = self.coco.loadAnns(ann_ids) return self._parse_ann_info(self.img_infos[idx], ann_info) def _filter_imgs(self, min_size=32): """Filter images too small or without ground truths.""" valid_inds = [] ids_with_ann = set(_['image_id'] for _ in self.coco.anns.values()) for i, img_info in enumerate(self.img_infos): if self.filter_empty_gt and self.img_ids[i] not in ids_with_ann: continue if min(img_info['width'], img_info['height']) >= min_size: valid_inds.append(i) return valid_inds def _parse_ann_info(self, img_info, ann_info): """Parse bbox and mask annotation. Args: ann_info (list[dict]): Annotation info of an image. with_mask (bool): Whether to parse mask annotations. Returns: dict: A dict containing the following keys: bboxes, bboxes_ignore, labels, masks, seg_map. "masks" are raw annotations and not decoded into binary masks. """ gt_bboxes = [] gt_labels = [] gt_bboxes_ignore = [] gt_masks_ann = [] for i, ann in enumerate(ann_info): if ann.get('ignore', False): continue x1, y1, w, h = ann['bbox'] if ann['area'] <= 0 or w < 1 or h < 1: continue bbox = [x1, y1, x1 + w - 1, y1 + h - 1] if ann.get('iscrowd', False): gt_bboxes_ignore.append(bbox) else: gt_bboxes.append(bbox) gt_labels.append(self.cat2label[ann['category_id']]) gt_masks_ann.append(ann['segmentation']) if gt_bboxes: gt_bboxes = np.array(gt_bboxes, dtype=np.float32) gt_labels = np.array(gt_labels, dtype=np.int64) else: gt_bboxes = np.zeros((0, 4), dtype=np.float32) gt_labels = np.array([], dtype=np.int64) if gt_bboxes_ignore: gt_bboxes_ignore = np.array(gt_bboxes_ignore, dtype=np.float32) else: gt_bboxes_ignore = np.zeros((0, 4), dtype=np.float32) seg_map = img_info['filename'].replace('jpg', 'png') ann = dict( bboxes=gt_bboxes, labels=gt_labels, bboxes_ignore=gt_bboxes_ignore, masks=gt_masks_ann, seg_map=seg_map) return ann def xyxy2xywh(self, bbox): _bbox = bbox.tolist() return [ _bbox[0], _bbox[1], _bbox[2] - _bbox[0] + 1, _bbox[3] - _bbox[1] + 1, ] def _proposal2json(self, results): json_results = [] for idx in range(len(self)): img_id = self.img_ids[idx] bboxes = results[idx] for i in range(bboxes.shape[0]): data = dict() data['image_id'] = img_id data['bbox'] = self.xyxy2xywh(bboxes[i]) data['score'] = float(bboxes[i][4]) data['category_id'] = 1 json_results.append(data) return json_results def _det2json(self, results): json_results = [] for idx in range(len(self)): img_id = self.img_ids[idx] result = results[idx] for label in range(len(result)): bboxes = result[label] for i in range(bboxes.shape[0]): data = dict() data['image_id'] = img_id data['bbox'] = self.xyxy2xywh(bboxes[i]) data['score'] = float(bboxes[i][4]) data['category_id'] = self.cat_ids[label] json_results.append(data) return json_results def _segm2json(self, results): bbox_json_results = [] segm_json_results = [] for idx in range(len(self)): img_id = self.img_ids[idx] det, seg = results[idx] for label in range(len(det)): # bbox results bboxes = det[label] for i in range(bboxes.shape[0]): data = dict() data['image_id'] = img_id data['bbox'] = self.xyxy2xywh(bboxes[i]) data['score'] = float(bboxes[i][4]) data['category_id'] = self.cat_ids[label] bbox_json_results.append(data) # segm results # some detectors use different scores for bbox and mask if isinstance(seg, tuple): segms = seg[0][label] mask_score = seg[1][label] else: segms = seg[label] mask_score = [bbox[4] for bbox in bboxes] for i in range(bboxes.shape[0]): data = dict() data['image_id'] = img_id data['bbox'] = self.xyxy2xywh(bboxes[i]) data['score'] = float(mask_score[i]) data['category_id'] = self.cat_ids[label] if isinstance(segms[i]['counts'], bytes): segms[i]['counts'] = segms[i]['counts'].decode() data['segmentation'] = segms[i] segm_json_results.append(data) return bbox_json_results, segm_json_results def results2json(self, results, outfile_prefix): """Dump the detection results to a json file. There are 3 types of results: proposals, bbox predictions, mask predictions, and they have different data types. This method will automatically recognize the type, and dump them to json files. Args: results (list[list | tuple | ndarray]): Testing results of the dataset. outfile_prefix (str): The filename prefix of the json files. If the prefix is "somepath/xxx", the json files will be named "somepath/xxx.bbox.json", "somepath/xxx.segm.json", "somepath/xxx.proposal.json". Returns: dict[str: str]: Possible keys are "bbox", "segm", "proposal", and values are corresponding filenames. """ result_files = dict() if isinstance(results[0], list): json_results = self._det2json(results) result_files['bbox'] = '{}.{}.json'.format(outfile_prefix, 'bbox') result_files['proposal'] = '{}.{}.json'.format( outfile_prefix, 'bbox') mmcv.dump(json_results, result_files['bbox']) elif isinstance(results[0], tuple): json_results = self._segm2json(results) result_files['bbox'] = '{}.{}.json'.format(outfile_prefix, 'bbox') result_files['proposal'] = '{}.{}.json'.format( outfile_prefix, 'bbox') result_files['segm'] = '{}.{}.json'.format(outfile_prefix, 'segm') mmcv.dump(json_results[0], result_files['bbox']) mmcv.dump(json_results[1], result_files['segm']) elif isinstance(results[0], np.ndarray): json_results = self._proposal2json(results) result_files['proposal'] = '{}.{}.json'.format( outfile_prefix, 'proposal') mmcv.dump(json_results, result_files['proposal']) else: raise TypeError('invalid type of results') return result_files def fast_eval_recall(self, results, proposal_nums, iou_thrs, logger=None): gt_bboxes = [] for i in range(len(self.img_ids)): ann_ids = self.coco.getAnnIds(imgIds=self.img_ids[i]) ann_info = self.coco.loadAnns(ann_ids) if len(ann_info) == 0: gt_bboxes.append(np.zeros((0, 4))) continue bboxes = [] for ann in ann_info: if ann.get('ignore', False) or ann['iscrowd']: continue x1, y1, w, h = ann['bbox'] bboxes.append([x1, y1, x1 + w - 1, y1 + h - 1]) bboxes = np.array(bboxes, dtype=np.float32) if bboxes.shape[0] == 0: bboxes = np.zeros((0, 4)) gt_bboxes.append(bboxes) recalls = eval_recalls( gt_bboxes, results, proposal_nums, iou_thrs, logger=logger) ar = recalls.mean(axis=1) return ar def evaluate(self, results, metric='bbox', logger=None, jsonfile_prefix=None, classwise=False, proposal_nums=(100, 300, 1000), iou_thrs=np.arange(0.5, 0.96, 0.05)): """Evaluation in COCO protocol. Args: results (list): Testing results of the dataset. metric (str | list[str]): Metrics to be evaluated. logger (logging.Logger | str | None): Logger used for printing related information during evaluation. Default: None. jsonfile_prefix (str | None): classwise (bool): Whether to evaluating the AP for each class. proposal_nums (Sequence[int]): Proposal number used for evaluating recalls, such as recall@100, recall@1000. Default: (100, 300, 1000). iou_thrs (Sequence[float]): IoU threshold used for evaluating recalls. If set to a list, the average recall of all IoUs will also be computed. Default: 0.5. Returns: dict[str: float] """ assert isinstance(results, list), 'results must be a list' assert len(results) == len(self), ( 'The length of results is not equal to the dataset len: {} != {}'. format(len(results), len(self))) metrics = metric if isinstance(metric, list) else [metric] allowed_metrics = ['bbox', 'segm', 'proposal', 'proposal_fast'] for metric in metrics: if metric not in allowed_metrics: raise KeyError('metric {} is not supported'.format(metric)) if jsonfile_prefix is None: tmp_dir = tempfile.TemporaryDirectory() jsonfile_prefix = osp.join(tmp_dir.name, 'results') else: tmp_dir = None result_files = self.results2json(results, jsonfile_prefix) eval_results = {} cocoGt = self.coco for metric in metrics: msg = 'Evaluating {}...'.format(metric) if logger is None: msg = '\n' + msg print_log(msg, logger=logger) if metric == 'proposal_fast': ar = self.fast_eval_recall( results, proposal_nums, iou_thrs, logger='silent') log_msg = [] for i, num in enumerate(proposal_nums): eval_results['AR@{}'.format(num)] = ar[i] log_msg.append('\nAR@{}\t{:.4f}'.format(num, ar[i])) log_msg = ''.join(log_msg) print_log(log_msg, logger=logger) continue if metric not in result_files: raise KeyError('{} is not in results'.format(metric)) try: cocoDt = cocoGt.loadRes(result_files[metric]) except IndexError: print_log( 'The testing results of the whole dataset is empty.', logger=logger, level=logging.ERROR) break iou_type = 'bbox' if metric == 'proposal' else metric cocoEval = COCOeval(cocoGt, cocoDt, iou_type) cocoEval.params.imgIds = self.img_ids if metric == 'proposal': cocoEval.params.useCats = 0 cocoEval.params.maxDets = list(proposal_nums) cocoEval.evaluate() cocoEval.accumulate() cocoEval.summarize() metric_items = [ 'AR@100', 'AR@300', 'AR@1000', 'AR_s@1000', 'AR_m@1000', 'AR_l@1000' ] for i, item in enumerate(metric_items): val = float('{:.3f}'.format(cocoEval.stats[i + 6])) eval_results[item] = val else: cocoEval.evaluate() cocoEval.accumulate() cocoEval.summarize() if classwise: # Compute per-category AP pass # TODO metric_items = [ 'mAP', 'mAP_50', 'mAP_75', 'mAP_s', 'mAP_m', 'mAP_l' ] for i in range(len(metric_items)): key = '{}_{}'.format(metric, metric_items[i]) val = float('{:.3f}'.format(cocoEval.stats[i])) eval_results[key] = val eval_results['{}_mAP_copypaste'.format(metric)] = ( '{ap[0]:.3f} {ap[1]:.3f} {ap[2]:.3f} {ap[3]:.3f} ' '{ap[4]:.3f} {ap[5]:.3f}').format(ap=cocoEval.stats[:6]) if tmp_dir is not None: tmp_dir.cleanup() return eval_results
Cream/CDARTS/CDARTS_detection/mmdet/datasets/coco.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmdet/datasets/coco.py", "repo_id": "Cream", "token_count": 8194 }
282
import os.path as osp import xml.etree.ElementTree as ET import mmcv from .registry import DATASETS from .xml_style import XMLDataset @DATASETS.register_module class WIDERFaceDataset(XMLDataset): """ Reader for the WIDER Face dataset in PASCAL VOC format. Conversion scripts can be found in https://github.com/sovrasov/wider-face-pascal-voc-annotations """ CLASSES = ('face', ) def __init__(self, **kwargs): super(WIDERFaceDataset, self).__init__(**kwargs) def load_annotations(self, ann_file): img_infos = [] img_ids = mmcv.list_from_file(ann_file) for img_id in img_ids: filename = '{}.jpg'.format(img_id) xml_path = osp.join(self.img_prefix, 'Annotations', '{}.xml'.format(img_id)) tree = ET.parse(xml_path) root = tree.getroot() size = root.find('size') width = int(size.find('width').text) height = int(size.find('height').text) folder = root.find('folder').text img_infos.append( dict( id=img_id, filename=osp.join(folder, filename), width=width, height=height)) return img_infos
Cream/CDARTS/CDARTS_detection/mmdet/datasets/wider_face.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmdet/datasets/wider_face.py", "repo_id": "Cream", "token_count": 645 }
283
""" PyTorch EfficientNet Family An implementation of EfficienNet that covers variety of related models with efficient architectures: * EfficientNet (B0-B8, L2 + Tensorflow pretrained AutoAug/RandAug/AdvProp/NoisyStudent weight ports) - EfficientNet: Rethinking Model Scaling for CNNs - https://arxiv.org/abs/1905.11946 - CondConv: Conditionally Parameterized Convolutions for Efficient Inference - https://arxiv.org/abs/1904.04971 - Adversarial Examples Improve Image Recognition - https://arxiv.org/abs/1911.09665 - Self-training with Noisy Student improves ImageNet classification - https://arxiv.org/abs/1911.04252 * MixNet (Small, Medium, and Large) - MixConv: Mixed Depthwise Convolutional Kernels - https://arxiv.org/abs/1907.09595 * MNasNet B1, A1 (SE), Small - MnasNet: Platform-Aware Neural Architecture Search for Mobile - https://arxiv.org/abs/1807.11626 * FBNet-C - FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable NAS - https://arxiv.org/abs/1812.03443 * Single-Path NAS Pixel1 - Single-Path NAS: Designing Hardware-Efficient ConvNets - https://arxiv.org/abs/1904.02877 * And likely more... Hacked together by Ross Wightman """ import torch import torch.nn as nn from torch.nn import functional as F import torch.utils.model_zoo as model_zoo from .efficientnet_builder import * from .feature_hooks import FeatureHooks from ..registry import BACKBONES IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406) IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225) IMAGENET_INCEPTION_MEAN = (0.5, 0.5, 0.5) IMAGENET_INCEPTION_STD = (0.5, 0.5, 0.5) def hard_sigmoid(x, inplace: bool = False): if inplace: return x.add_(3.).clamp_(0., 6.).div_(6.) else: return F.relu6(x + 3.) / 6. class HardSigmoid(nn.Module): def __init__(self, inplace: bool = False): super(HardSigmoid, self).__init__() self.inplace = inplace def forward(self, x): return hard_sigmoid(x, self.inplace) def adaptive_pool_feat_mult(pool_type='avg'): if pool_type == 'catavgmax': return 2 else: return 1 def adaptive_avgmax_pool2d(x, output_size=1): x_avg = F.adaptive_avg_pool2d(x, output_size) x_max = F.adaptive_max_pool2d(x, output_size) return 0.5 * (x_avg + x_max) def adaptive_catavgmax_pool2d(x, output_size=1): x_avg = F.adaptive_avg_pool2d(x, output_size) x_max = F.adaptive_max_pool2d(x, output_size) return torch.cat((x_avg, x_max), 1) def select_adaptive_pool2d(x, pool_type='avg', output_size=1): """Selectable global pooling function with dynamic input kernel size """ if pool_type == 'avg': x = F.adaptive_avg_pool2d(x, output_size) elif pool_type == 'avgmax': x = adaptive_avgmax_pool2d(x, output_size) elif pool_type == 'catavgmax': x = adaptive_catavgmax_pool2d(x, output_size) elif pool_type == 'max': x = F.adaptive_max_pool2d(x, output_size) else: assert False, 'Invalid pool type: %s' % pool_type return x class AdaptiveAvgMaxPool2d(nn.Module): def __init__(self, output_size=1): super(AdaptiveAvgMaxPool2d, self).__init__() self.output_size = output_size def forward(self, x): return adaptive_avgmax_pool2d(x, self.output_size) class AdaptiveCatAvgMaxPool2d(nn.Module): def __init__(self, output_size=1): super(AdaptiveCatAvgMaxPool2d, self).__init__() self.output_size = output_size def forward(self, x): return adaptive_catavgmax_pool2d(x, self.output_size) class SelectAdaptivePool2d(nn.Module): """Selectable global pooling layer with dynamic input kernel size """ def __init__(self, output_size=1, pool_type='avg', flatten=False): super(SelectAdaptivePool2d, self).__init__() self.output_size = output_size self.pool_type = pool_type self.flatten = flatten if pool_type == 'avgmax': self.pool = AdaptiveAvgMaxPool2d(output_size) elif pool_type == 'catavgmax': self.pool = AdaptiveCatAvgMaxPool2d(output_size) elif pool_type == 'max': self.pool = nn.AdaptiveMaxPool2d(output_size) else: if pool_type != 'avg': assert False, 'Invalid pool type: %s' % pool_type self.pool = nn.AdaptiveAvgPool2d(output_size) def forward(self, x): x = self.pool(x) if self.flatten: x = x.flatten(1) return x def feat_mult(self): return adaptive_pool_feat_mult(self.pool_type) def __repr__(self): return self.__class__.__name__ + ' (' \ + 'output_size=' + str(self.output_size) \ + ', pool_type=' + self.pool_type + ')' def create_conv2d(in_chs, out_chs, kernel_size, **kwargs): """ Select a 2d convolution implementation based on arguments Creates and returns one of torch.nn.Conv2d, Conv2dSame, MixedConv2d, or CondConv2d. Used extensively by EfficientNet, MobileNetv3 and related networks. """ assert 'groups' not in kwargs # only use 'depthwise' bool arg if isinstance(kernel_size, list): assert 'num_experts' not in kwargs # MixNet + CondConv combo not supported currently # We're going to use only lists for defining the MixedConv2d kernel groups, # ints, tuples, other iterables will continue to pass to normal conv and specify h, w. m = MixedConv2d(in_chs, out_chs, kernel_size, **kwargs) else: depthwise = kwargs.pop('depthwise', False) groups = out_chs if depthwise else 1 if 'num_experts' in kwargs and kwargs['num_experts'] > 0: m = CondConv2d(in_chs, out_chs, kernel_size, groups=groups, **kwargs) else: m = create_conv2d_pad(in_chs, out_chs, kernel_size, groups=groups, **kwargs) return m def conv_bn(inp, oup, stride, groups=1, act_fn=nn.ReLU): return nn.Sequential( nn.Conv2d(inp, oup, 3, stride, 1, bias=False, groups=groups), nn.BatchNorm2d(oup), act_fn(inplace=True) ) def conv_1x1_bn(inp, oup, groups=1, act_fn=nn.ReLU): return nn.Sequential( nn.Conv2d(inp, oup, 1, 1, 0, bias=False, groups=groups), nn.BatchNorm2d(oup), act_fn(inplace=True) ) __all__ = ['EfficientNet'] def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'conv_stem', 'classifier': 'classifier', **kwargs } default_cfgs = { 'mnasnet_050': _cfg(url=''), 'mnasnet_075': _cfg(url=''), 'mnasnet_100': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mnasnet_b1-74cb7081.pth'), 'mnasnet_140': _cfg(url=''), 'semnasnet_050': _cfg(url=''), 'semnasnet_075': _cfg(url=''), 'semnasnet_100': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mnasnet_a1-d9418771.pth'), 'semnasnet_140': _cfg(url=''), 'mnasnet_small': _cfg(url=''), 'mobilenetv2_100': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv2_100_ra-b33bc2c4.pth'), 'mobilenetv2_110d': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv2_110d_ra-77090ade.pth'), 'mobilenetv2_120d': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv2_120d_ra-5987e2ed.pth'), 'mobilenetv2_140': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv2_140_ra-21a4e913.pth'), 'fbnetc_100': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/fbnetc_100-c345b898.pth', interpolation='bilinear'), 'spnasnet_100': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/spnasnet_100-048bc3f4.pth', interpolation='bilinear'), 'efficientnet_b0': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b0_ra-3dd342df.pth'), 'efficientnet_b1': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b1-533bc792.pth', input_size=(3, 240, 240), pool_size=(8, 8)), 'efficientnet_b2': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b2_ra-bcdf34b7.pth', input_size=(3, 260, 260), pool_size=(9, 9)), 'efficientnet_b2a': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b2_ra-bcdf34b7.pth', input_size=(3, 288, 288), pool_size=(9, 9), crop_pct=1.0), 'efficientnet_b3': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b3_ra-a5e2fbc7.pth', input_size=(3, 300, 300), pool_size=(10, 10), crop_pct=0.904), 'efficientnet_b3a': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b3_ra-a5e2fbc7.pth', input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=1.0), 'efficientnet_b4': _cfg( url='', input_size=(3, 380, 380), pool_size=(12, 12), crop_pct=0.922), 'efficientnet_b5': _cfg( url='', input_size=(3, 456, 456), pool_size=(15, 15), crop_pct=0.934), 'efficientnet_b6': _cfg( url='', input_size=(3, 528, 528), pool_size=(17, 17), crop_pct=0.942), 'efficientnet_b7': _cfg( url='', input_size=(3, 600, 600), pool_size=(19, 19), crop_pct=0.949), 'efficientnet_b8': _cfg( url='', input_size=(3, 672, 672), pool_size=(21, 21), crop_pct=0.954), 'efficientnet_l2': _cfg( url='', input_size=(3, 800, 800), pool_size=(25, 25), crop_pct=0.961), 'efficientnet_es': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_es_ra-f111e99c.pth'), 'efficientnet_em': _cfg( url='', input_size=(3, 240, 240), pool_size=(8, 8), crop_pct=0.882), 'efficientnet_el': _cfg( url='', input_size=(3, 300, 300), pool_size=(10, 10), crop_pct=0.904), 'efficientnet_cc_b0_4e': _cfg(url=''), 'efficientnet_cc_b0_8e': _cfg(url=''), 'efficientnet_cc_b1_8e': _cfg(url='', input_size=(3, 240, 240), pool_size=(8, 8), crop_pct=0.882), 'efficientnet_lite0': _cfg( url=''), 'efficientnet_lite1': _cfg( url='', input_size=(3, 240, 240), pool_size=(8, 8), crop_pct=0.882), 'efficientnet_lite2': _cfg( url='', input_size=(3, 260, 260), pool_size=(9, 9), crop_pct=0.890), 'efficientnet_lite3': _cfg( url='', input_size=(3, 300, 300), pool_size=(10, 10), crop_pct=0.904), 'efficientnet_lite4': _cfg( url='', input_size=(3, 380, 380), pool_size=(12, 12), crop_pct=0.922), 'efficientnet_b1_pruned': _cfg( url='https://imvl-automl-sh.oss-cn-shanghai.aliyuncs.com/darts/hyperml/hyperml/job_45403/outputs/effnetb1_pruned_9ebb3fe6.pth', input_size=(3, 240, 240), pool_size=(8, 8), crop_pct=0.882, mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), 'efficientnet_b2_pruned': _cfg( url='https://imvl-automl-sh.oss-cn-shanghai.aliyuncs.com/darts/hyperml/hyperml/job_45403/outputs/effnetb2_pruned_203f55bc.pth', input_size=(3, 260, 260), pool_size=(9, 9), crop_pct=0.890, mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), 'efficientnet_b3_pruned': _cfg( url='https://imvl-automl-sh.oss-cn-shanghai.aliyuncs.com/darts/hyperml/hyperml/job_45403/outputs/effnetb3_pruned_5abcc29f.pth', input_size=(3, 300, 300), pool_size=(10, 10), crop_pct=0.904, mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), 'tf_efficientnet_b0': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b0_aa-827b6e33.pth', input_size=(3, 224, 224)), 'tf_efficientnet_b1': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b1_aa-ea7a6ee0.pth', input_size=(3, 240, 240), pool_size=(8, 8), crop_pct=0.882), 'tf_efficientnet_b2': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b2_aa-60c94f97.pth', input_size=(3, 260, 260), pool_size=(9, 9), crop_pct=0.890), 'tf_efficientnet_b3': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b3_aa-84b4657e.pth', input_size=(3, 300, 300), pool_size=(10, 10), crop_pct=0.904), 'tf_efficientnet_b4': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b4_aa-818f208c.pth', input_size=(3, 380, 380), pool_size=(12, 12), crop_pct=0.922), 'tf_efficientnet_b5': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b5_ra-9a3e5369.pth', input_size=(3, 456, 456), pool_size=(15, 15), crop_pct=0.934), 'tf_efficientnet_b6': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b6_aa-80ba17e4.pth', input_size=(3, 528, 528), pool_size=(17, 17), crop_pct=0.942), 'tf_efficientnet_b7': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b7_ra-6c08e654.pth', input_size=(3, 600, 600), pool_size=(19, 19), crop_pct=0.949), 'tf_efficientnet_b8': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b8_ra-572d5dd9.pth', input_size=(3, 672, 672), pool_size=(21, 21), crop_pct=0.954), 'tf_efficientnet_b0_ap': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b0_ap-f262efe1.pth', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, input_size=(3, 224, 224)), 'tf_efficientnet_b1_ap': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b1_ap-44ef0a3d.pth', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, input_size=(3, 240, 240), pool_size=(8, 8), crop_pct=0.882), 'tf_efficientnet_b2_ap': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b2_ap-2f8e7636.pth', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, input_size=(3, 260, 260), pool_size=(9, 9), crop_pct=0.890), 'tf_efficientnet_b3_ap': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b3_ap-aad25bdd.pth', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, input_size=(3, 300, 300), pool_size=(10, 10), crop_pct=0.904), 'tf_efficientnet_b4_ap': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b4_ap-dedb23e6.pth', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, input_size=(3, 380, 380), pool_size=(12, 12), crop_pct=0.922), 'tf_efficientnet_b5_ap': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b5_ap-9e82fae8.pth', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, input_size=(3, 456, 456), pool_size=(15, 15), crop_pct=0.934), 'tf_efficientnet_b6_ap': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b6_ap-4ffb161f.pth', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, input_size=(3, 528, 528), pool_size=(17, 17), crop_pct=0.942), 'tf_efficientnet_b7_ap': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b7_ap-ddb28fec.pth', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, input_size=(3, 600, 600), pool_size=(19, 19), crop_pct=0.949), 'tf_efficientnet_b8_ap': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b8_ap-00e169fa.pth', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, input_size=(3, 672, 672), pool_size=(21, 21), crop_pct=0.954), 'tf_efficientnet_b0_ns': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b0_ns-c0e6a31c.pth', input_size=(3, 224, 224)), 'tf_efficientnet_b1_ns': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b1_ns-99dd0c41.pth', input_size=(3, 240, 240), pool_size=(8, 8), crop_pct=0.882), 'tf_efficientnet_b2_ns': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b2_ns-00306e48.pth', input_size=(3, 260, 260), pool_size=(9, 9), crop_pct=0.890), 'tf_efficientnet_b3_ns': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b3_ns-9d44bf68.pth', input_size=(3, 300, 300), pool_size=(10, 10), crop_pct=0.904), 'tf_efficientnet_b4_ns': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b4_ns-d6313a46.pth', input_size=(3, 380, 380), pool_size=(12, 12), crop_pct=0.922), 'tf_efficientnet_b5_ns': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b5_ns-6f26d0cf.pth', input_size=(3, 456, 456), pool_size=(15, 15), crop_pct=0.934), 'tf_efficientnet_b6_ns': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b6_ns-51548356.pth', input_size=(3, 528, 528), pool_size=(17, 17), crop_pct=0.942), 'tf_efficientnet_b7_ns': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b7_ns-1dbc32de.pth', input_size=(3, 600, 600), pool_size=(19, 19), crop_pct=0.949), 'tf_efficientnet_l2_ns_475': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_l2_ns_475-bebbd00a.pth', input_size=(3, 475, 475), pool_size=(15, 15), crop_pct=0.936), 'tf_efficientnet_l2_ns': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_l2_ns-df73bb44.pth', input_size=(3, 800, 800), pool_size=(25, 25), crop_pct=0.96), 'tf_efficientnet_es': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_es-ca1afbfe.pth', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), input_size=(3, 224, 224), ), 'tf_efficientnet_em': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_em-e78cfe58.pth', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), input_size=(3, 240, 240), pool_size=(8, 8), crop_pct=0.882), 'tf_efficientnet_el': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_el-5143854e.pth', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), input_size=(3, 300, 300), pool_size=(10, 10), crop_pct=0.904), 'tf_efficientnet_cc_b0_4e': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_cc_b0_4e-4362b6b2.pth', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), 'tf_efficientnet_cc_b0_8e': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_cc_b0_8e-66184a25.pth', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), 'tf_efficientnet_cc_b1_8e': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_cc_b1_8e-f7c79ae1.pth', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, input_size=(3, 240, 240), pool_size=(8, 8), crop_pct=0.882), 'tf_efficientnet_lite0': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_lite0-0aa007d2.pth', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), interpolation='bicubic', # should be bilinear but bicubic better match for TF bilinear at low res ), 'tf_efficientnet_lite1': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_lite1-bde8b488.pth', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), input_size=(3, 240, 240), pool_size=(8, 8), crop_pct=0.882, interpolation='bicubic', # should be bilinear but bicubic better match for TF bilinear at low res ), 'tf_efficientnet_lite2': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_lite2-dcccb7df.pth', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), input_size=(3, 260, 260), pool_size=(9, 9), crop_pct=0.890, interpolation='bicubic', # should be bilinear but bicubic better match for TF bilinear at low res ), 'tf_efficientnet_lite3': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_lite3-b733e338.pth', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), input_size=(3, 300, 300), pool_size=(10, 10), crop_pct=0.904, interpolation='bilinear'), 'tf_efficientnet_lite4': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_lite4-741542c3.pth', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), input_size=(3, 380, 380), pool_size=(12, 12), crop_pct=0.920, interpolation='bilinear'), 'mixnet_s': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mixnet_s-a907afbc.pth'), 'mixnet_m': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mixnet_m-4647fc68.pth'), 'mixnet_l': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mixnet_l-5a9a2ed8.pth'), 'mixnet_xl': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mixnet_xl_ra-aac3c00c.pth'), 'mixnet_xxl': _cfg(), 'tf_mixnet_s': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mixnet_s-89d3354b.pth'), 'tf_mixnet_m': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mixnet_m-0f4d8805.pth'), 'tf_mixnet_l': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mixnet_l-6c92e0c8.pth'), } _DEBUG = False class EfficientNet(nn.Module): """ (Generic) EfficientNet A flexible and performant PyTorch implementation of efficient network architectures, including: * EfficientNet B0-B8, L2 * EfficientNet-EdgeTPU * EfficientNet-CondConv * MixNet S, M, L, XL * MnasNet A1, B1, and small * FBNet C * Single-Path NAS Pixel1 """ def __init__(self, block_args, num_classes=1000, num_features=1280, in_chans=3, stem_size=32, channel_multiplier=1.0, channel_divisor=8, channel_min=None, output_stride=32, pad_type='', fix_stem=False, act_layer=nn.ReLU, drop_rate=0., drop_path_rate=0., se_kwargs=None, norm_layer=nn.BatchNorm2d, norm_kwargs=None, global_pool='avg'): super(EfficientNet, self).__init__() norm_kwargs = norm_kwargs or {} self.num_classes = num_classes self.num_features = num_features self.drop_rate = drop_rate self._in_chs = in_chans # Stem if not fix_stem: stem_size = round_channels(stem_size, channel_multiplier, channel_divisor, channel_min) self.conv_stem = create_conv2d(self._in_chs, stem_size, 3, stride=2, padding=pad_type) self.bn1 = norm_layer(stem_size, **norm_kwargs) self.act1 = act_layer(inplace=True) self._in_chs = stem_size # Middle stages (IR/ER/DS Blocks) builder = EfficientNetBuilder( channel_multiplier, channel_divisor, channel_min, output_stride, pad_type, act_layer, se_kwargs, norm_layer, norm_kwargs, drop_path_rate, verbose=_DEBUG) self.blocks = nn.Sequential(*builder(self._in_chs, block_args)) self.feature_info = builder.features self._in_chs = builder.in_chs # Head + Pooling self.conv_head = create_conv2d(self._in_chs, self.num_features, 1, padding=pad_type) self.bn2 = norm_layer(self.num_features, **norm_kwargs) self.act2 = act_layer(inplace=True) self.global_pool = SelectAdaptivePool2d(pool_type=global_pool) # Classifier self.classifier = nn.Linear(self.num_features * self.global_pool.feat_mult(), self.num_classes) efficientnet_init_weights(self) def as_sequential(self): layers = [self.conv_stem, self.bn1, self.act1] layers.extend(self.blocks) layers.extend([self.conv_head, self.bn2, self.act2, self.global_pool]) layers.extend([nn.Flatten(), nn.Dropout(self.drop_rate), self.classifier]) return nn.Sequential(*layers) def get_classifier(self): return self.classifier def reset_classifier(self, num_classes, global_pool='avg'): self.num_classes = num_classes self.global_pool = SelectAdaptivePool2d(pool_type=global_pool) self.classifier = nn.Linear( self.num_features * self.global_pool.feat_mult(), num_classes) if num_classes else None def forward_features(self, x): x = self.conv_stem(x) x = self.bn1(x) x = self.act1(x) x = self.blocks(x) x = self.conv_head(x) x = self.bn2(x) x = self.act2(x) return x def forward(self, x): x = self.forward_features(x) x = self.global_pool(x) x = x.flatten(1) if self.drop_rate > 0.: x = F.dropout(x, p=self.drop_rate, training=self.training) return self.classifier(x) class EfficientNetFeatures(nn.Module): """ EfficientNet Feature Extractor A work-in-progress feature extraction module for EfficientNet, to use as a backbone for segmentation and object detection models. """ def __init__(self, block_args, out_indices=(0, 1, 2, 3, 4), feature_location='bottleneck', in_chans=3, stem_size=32, channel_multiplier=1.0, channel_divisor=8, channel_min=None, output_stride=32, pad_type='', fix_stem=False, act_layer=nn.ReLU, drop_rate=0., drop_path_rate=0., se_kwargs=None, norm_layer=nn.BatchNorm2d, norm_kwargs=None): super(EfficientNetFeatures, self).__init__() norm_kwargs = norm_kwargs or {} # TODO only create stages needed, currently all stages are created regardless of out_indices num_stages = max(out_indices) + 1 self.out_indices = out_indices self.feature_location = feature_location self.drop_rate = drop_rate self._in_chs = in_chans # Stem if not fix_stem: stem_size = round_channels(stem_size, channel_multiplier, channel_divisor, channel_min) self.conv_stem = create_conv2d(self._in_chs, stem_size, 3, stride=2, padding=pad_type) self.bn1 = norm_layer(stem_size, **norm_kwargs) self.act1 = act_layer(inplace=True) self._in_chs = stem_size # Middle stages (IR/ER/DS Blocks) builder = EfficientNetBuilder( channel_multiplier, channel_divisor, channel_min, output_stride, pad_type, act_layer, se_kwargs, norm_layer, norm_kwargs, drop_path_rate, feature_location=feature_location, verbose=_DEBUG) self.blocks = nn.Sequential(*builder(self._in_chs, block_args)) self._feature_info = builder.features # builder provides info about feature channels for each block self._stage_to_feature_idx = { v['stage_idx']: fi for fi, v in self._feature_info.items() if fi in self.out_indices} self._in_chs = builder.in_chs efficientnet_init_weights(self) if _DEBUG: for k, v in self._feature_info.items(): print('Feature idx: {}: Name: {}, Channels: {}'.format(k, v['name'], v['num_chs'])) # Register feature extraction hooks with FeatureHooks helper self.feature_hooks = None if feature_location != 'bottleneck': hooks = [dict( name=self._feature_info[idx]['module'], type=self._feature_info[idx]['hook_type']) for idx in out_indices] self.feature_hooks = FeatureHooks(hooks, self.named_modules()) def feature_channels(self, idx=None): """ Feature Channel Shortcut Returns feature channel count for each output index if idx == None. If idx is an integer, will return feature channel count for that feature block index (independent of out_indices setting). """ if isinstance(idx, int): return self._feature_info[idx]['num_chs'] return [self._feature_info[i]['num_chs'] for i in self.out_indices] def feature_info(self, idx=None): """ Feature Channel Shortcut Returns feature channel count for each output index if idx == None. If idx is an integer, will return feature channel count for that feature block index (independent of out_indices setting). """ if isinstance(idx, int): return self._feature_info[idx] return [self._feature_info[i] for i in self.out_indices] def forward(self, x): x = self.conv_stem(x) x = self.bn1(x) x = self.act1(x) if self.feature_hooks is None: features = [] for i, b in enumerate(self.blocks): x = b(x) if i in self._stage_to_feature_idx: features.append(x) return features else: self.blocks(x) return self.feature_hooks.get_output(x.device) def load_pretrained(model, cfg=None, num_classes=1000, in_chans=3, filter_fn=None, strict=True): if cfg is None: cfg = getattr(model, 'default_cfg') if cfg is None or 'url' not in cfg or not cfg['url']: logging.warning("Pretrained model URL is invalid, using random initialization.") return state_dict = model_zoo.load_url(cfg['url'], progress=False, map_location='cpu') if in_chans == 1: conv1_name = cfg['first_conv'] logging.info('Converting first conv (%s) from 3 to 1 channel' % conv1_name) conv1_weight = state_dict[conv1_name + '.weight'] state_dict[conv1_name + '.weight'] = conv1_weight.sum(dim=1, keepdim=True) elif in_chans != 3: assert False, "Invalid in_chans for pretrained weights" classifier_name = cfg['classifier'] if num_classes == 1000 and cfg['num_classes'] == 1001: # special case for imagenet trained models with extra background class in pretrained weights classifier_weight = state_dict[classifier_name + '.weight'] state_dict[classifier_name + '.weight'] = classifier_weight[1:] classifier_bias = state_dict[classifier_name + '.bias'] state_dict[classifier_name + '.bias'] = classifier_bias[1:] elif num_classes != cfg['num_classes']: # completely discard fully connected for all other differences between pretrained and created model del state_dict[classifier_name + '.weight'] del state_dict[classifier_name + '.bias'] strict = False if filter_fn is not None: state_dict = filter_fn(state_dict) model.load_state_dict(state_dict, strict=strict) def _create_model(model_kwargs, default_cfg, pretrained=False): if model_kwargs.pop('features_only', False): load_strict = False model_kwargs.pop('num_classes', 0) model_kwargs.pop('num_features', 0) model_kwargs.pop('head_conv', None) model_class = EfficientNetFeatures else: load_strict = True model_class = EfficientNet variant = model_kwargs.pop('variant', '') model = model_class(**model_kwargs) model.default_cfg = default_cfg if pretrained: load_pretrained( model, default_cfg, num_classes=model_kwargs.get('num_classes', 0), in_chans=model_kwargs.get('in_chans', 3), strict=load_strict) return model def _gen_mnasnet_a1(variant, channel_multiplier=1.0, pretrained=False, **kwargs): """Creates a mnasnet-a1 model. Ref impl: https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet Paper: https://arxiv.org/pdf/1807.11626.pdf. Args: channel_multiplier: multiplier to number of channels per layer. """ arch_def = [ # stage 0, 112x112 in ['ds_r1_k3_s1_e1_c16_noskip'], # stage 1, 112x112 in ['ir_r2_k3_s2_e6_c24'], # stage 2, 56x56 in ['ir_r3_k5_s2_e3_c40_se0.25'], # stage 3, 28x28 in ['ir_r4_k3_s2_e6_c80'], # stage 4, 14x14in ['ir_r2_k3_s1_e6_c112_se0.25'], # stage 5, 14x14in ['ir_r3_k5_s2_e6_c160_se0.25'], # stage 6, 7x7 in ['ir_r1_k3_s1_e6_c320'], ] model_kwargs = dict( block_args=decode_arch_def(arch_def), stem_size=32, channel_multiplier=channel_multiplier, norm_kwargs=resolve_bn_args(kwargs), **kwargs ) model = _create_model(model_kwargs, default_cfgs[variant], pretrained) return model def _gen_mnasnet_b1(variant, channel_multiplier=1.0, pretrained=False, **kwargs): """Creates a mnasnet-b1 model. Ref impl: https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet Paper: https://arxiv.org/pdf/1807.11626.pdf. Args: channel_multiplier: multiplier to number of channels per layer. """ arch_def = [ # stage 0, 112x112 in ['ds_r1_k3_s1_c16_noskip'], # stage 1, 112x112 in ['ir_r3_k3_s2_e3_c24'], # stage 2, 56x56 in ['ir_r3_k5_s2_e3_c40'], # stage 3, 28x28 in ['ir_r3_k5_s2_e6_c80'], # stage 4, 14x14in ['ir_r2_k3_s1_e6_c96'], # stage 5, 14x14in ['ir_r4_k5_s2_e6_c192'], # stage 6, 7x7 in ['ir_r1_k3_s1_e6_c320_noskip'] ] model_kwargs = dict( block_args=decode_arch_def(arch_def), stem_size=32, channel_multiplier=channel_multiplier, norm_kwargs=resolve_bn_args(kwargs), **kwargs ) model = _create_model(model_kwargs, default_cfgs[variant], pretrained) return model def _gen_mnasnet_small(variant, channel_multiplier=1.0, pretrained=False, **kwargs): """Creates a mnasnet-b1 model. Ref impl: https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet Paper: https://arxiv.org/pdf/1807.11626.pdf. Args: channel_multiplier: multiplier to number of channels per layer. """ arch_def = [ ['ds_r1_k3_s1_c8'], ['ir_r1_k3_s2_e3_c16'], ['ir_r2_k3_s2_e6_c16'], ['ir_r4_k5_s2_e6_c32_se0.25'], ['ir_r3_k3_s1_e6_c32_se0.25'], ['ir_r3_k5_s2_e6_c88_se0.25'], ['ir_r1_k3_s1_e6_c144'] ] model_kwargs = dict( block_args=decode_arch_def(arch_def), stem_size=8, channel_multiplier=channel_multiplier, norm_kwargs=resolve_bn_args(kwargs), **kwargs ) model = _create_model(model_kwargs, default_cfgs[variant], pretrained) return model def _gen_mobilenet_v2( variant, channel_multiplier=1.0, depth_multiplier=1.0, fix_stem_head=False, pretrained=False, **kwargs): """ Generate MobileNet-V2 network Ref impl: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet_v2.py Paper: https://arxiv.org/abs/1801.04381 """ arch_def = [ ['ds_r1_k3_s1_c16'], ['ir_r2_k3_s2_e6_c24'], ['ir_r3_k3_s2_e6_c32'], ['ir_r4_k3_s2_e6_c64'], ['ir_r3_k3_s1_e6_c96'], ['ir_r3_k3_s2_e6_c160'], ['ir_r1_k3_s1_e6_c320'], ] model_kwargs = dict( block_args=decode_arch_def(arch_def, depth_multiplier=depth_multiplier, fix_first_last=fix_stem_head), num_features=1280 if fix_stem_head else round_channels(1280, channel_multiplier, 8, None), stem_size=32, fix_stem=fix_stem_head, channel_multiplier=channel_multiplier, norm_kwargs=resolve_bn_args(kwargs), act_layer=nn.ReLU6, **kwargs ) model = _create_model(model_kwargs, default_cfgs[variant], pretrained) return model def _gen_fbnetc(variant, channel_multiplier=1.0, pretrained=False, **kwargs): """ FBNet-C Paper: https://arxiv.org/abs/1812.03443 Ref Impl: https://github.com/facebookresearch/maskrcnn-benchmark/blob/master/maskrcnn_benchmark/modeling/backbone/fbnet_modeldef.py NOTE: the impl above does not relate to the 'C' variant here, that was derived from paper, it was used to confirm some building block details """ arch_def = [ ['ir_r1_k3_s1_e1_c16'], ['ir_r1_k3_s2_e6_c24', 'ir_r2_k3_s1_e1_c24'], ['ir_r1_k5_s2_e6_c32', 'ir_r1_k5_s1_e3_c32', 'ir_r1_k5_s1_e6_c32', 'ir_r1_k3_s1_e6_c32'], ['ir_r1_k5_s2_e6_c64', 'ir_r1_k5_s1_e3_c64', 'ir_r2_k5_s1_e6_c64'], ['ir_r3_k5_s1_e6_c112', 'ir_r1_k5_s1_e3_c112'], ['ir_r4_k5_s2_e6_c184'], ['ir_r1_k3_s1_e6_c352'], ] model_kwargs = dict( block_args=decode_arch_def(arch_def), stem_size=16, num_features=1984, # paper suggests this, but is not 100% clear channel_multiplier=channel_multiplier, norm_kwargs=resolve_bn_args(kwargs), **kwargs ) model = _create_model(model_kwargs, default_cfgs[variant], pretrained) return model def _gen_spnasnet(variant, channel_multiplier=1.0, pretrained=False, **kwargs): """Creates the Single-Path NAS model from search targeted for Pixel1 phone. Paper: https://arxiv.org/abs/1904.02877 Args: channel_multiplier: multiplier to number of channels per layer. """ arch_def = [ # stage 0, 112x112 in ['ds_r1_k3_s1_c16_noskip'], # stage 1, 112x112 in ['ir_r3_k3_s2_e3_c24'], # stage 2, 56x56 in ['ir_r1_k5_s2_e6_c40', 'ir_r3_k3_s1_e3_c40'], # stage 3, 28x28 in ['ir_r1_k5_s2_e6_c80', 'ir_r3_k3_s1_e3_c80'], # stage 4, 14x14in ['ir_r1_k5_s1_e6_c96', 'ir_r3_k5_s1_e3_c96'], # stage 5, 14x14in ['ir_r4_k5_s2_e6_c192'], # stage 6, 7x7 in ['ir_r1_k3_s1_e6_c320_noskip'] ] model_kwargs = dict( block_args=decode_arch_def(arch_def), stem_size=32, channel_multiplier=channel_multiplier, norm_kwargs=resolve_bn_args(kwargs), **kwargs ) model = _create_model(model_kwargs, default_cfgs[variant], pretrained) return model def _gen_efficientnet(variant, channel_multiplier=1.0, depth_multiplier=1.0, pretrained=False, **kwargs): """Creates an EfficientNet model. Ref impl: https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/efficientnet_model.py Paper: https://arxiv.org/abs/1905.11946 EfficientNet params name: (channel_multiplier, depth_multiplier, resolution, dropout_rate) 'efficientnet-b0': (1.0, 1.0, 224, 0.2), 'efficientnet-b1': (1.0, 1.1, 240, 0.2), 'efficientnet-b2': (1.1, 1.2, 260, 0.3), 'efficientnet-b3': (1.2, 1.4, 300, 0.3), 'efficientnet-b4': (1.4, 1.8, 380, 0.4), 'efficientnet-b5': (1.6, 2.2, 456, 0.4), 'efficientnet-b6': (1.8, 2.6, 528, 0.5), 'efficientnet-b7': (2.0, 3.1, 600, 0.5), 'efficientnet-b8': (2.2, 3.6, 672, 0.5), 'efficientnet-l2': (4.3, 5.3, 800, 0.5), Args: channel_multiplier: multiplier to number of channels per layer depth_multiplier: multiplier to number of repeats per stage """ arch_def = [ ['ds_r1_k3_s1_e1_c16_se0.25'], ['ir_r2_k3_s2_e6_c24_se0.25'], ['ir_r2_k5_s2_e6_c40_se0.25'], ['ir_r3_k3_s2_e6_c80_se0.25'], ['ir_r3_k5_s1_e6_c112_se0.25'], ['ir_r4_k5_s2_e6_c192_se0.25'], ['ir_r1_k3_s1_e6_c320_se0.25'], ] model_kwargs = dict( block_args=decode_arch_def(arch_def, depth_multiplier), num_features=round_channels(1280, channel_multiplier, 8, None), stem_size=32, channel_multiplier=channel_multiplier, act_layer=Swish, norm_kwargs=resolve_bn_args(kwargs), variant=variant, **kwargs, ) model = _create_model(model_kwargs, default_cfgs[variant], pretrained) return model def _gen_efficientnet_edge(variant, channel_multiplier=1.0, depth_multiplier=1.0, pretrained=False, **kwargs): """ Creates an EfficientNet-EdgeTPU model Ref impl: https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet/edgetpu """ arch_def = [ # NOTE `fc` is present to override a mismatch between stem channels and in chs not # present in other models ['er_r1_k3_s1_e4_c24_fc24_noskip'], ['er_r2_k3_s2_e8_c32'], ['er_r4_k3_s2_e8_c48'], ['ir_r5_k5_s2_e8_c96'], ['ir_r4_k5_s1_e8_c144'], ['ir_r2_k5_s2_e8_c192'], ] model_kwargs = dict( block_args=decode_arch_def(arch_def, depth_multiplier), num_features=round_channels(1280, channel_multiplier, 8, None), stem_size=32, channel_multiplier=channel_multiplier, norm_kwargs=resolve_bn_args(kwargs), act_layer=nn.ReLU, **kwargs, ) model = _create_model(model_kwargs, default_cfgs[variant], pretrained) return model def _gen_efficientnet_condconv( variant, channel_multiplier=1.0, depth_multiplier=1.0, experts_multiplier=1, pretrained=False, **kwargs): """Creates an EfficientNet-CondConv model. Ref impl: https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet/condconv """ arch_def = [ ['ds_r1_k3_s1_e1_c16_se0.25'], ['ir_r2_k3_s2_e6_c24_se0.25'], ['ir_r2_k5_s2_e6_c40_se0.25'], ['ir_r3_k3_s2_e6_c80_se0.25'], ['ir_r3_k5_s1_e6_c112_se0.25_cc4'], ['ir_r4_k5_s2_e6_c192_se0.25_cc4'], ['ir_r1_k3_s1_e6_c320_se0.25_cc4'], ] # NOTE unlike official impl, this one uses `cc<x>` option where x is the base number of experts for each stage and # the expert_multiplier increases that on a per-model basis as with depth/channel multipliers model_kwargs = dict( block_args=decode_arch_def(arch_def, depth_multiplier, experts_multiplier=experts_multiplier), num_features=round_channels(1280, channel_multiplier, 8, None), stem_size=32, channel_multiplier=channel_multiplier, norm_kwargs=resolve_bn_args(kwargs), act_layer=Swish, **kwargs, ) model = _create_model(model_kwargs, default_cfgs[variant], pretrained) return model def _gen_efficientnet_lite(variant, channel_multiplier=1.0, depth_multiplier=1.0, pretrained=False, **kwargs): """Creates an EfficientNet-Lite model. Ref impl: https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet/lite Paper: https://arxiv.org/abs/1905.11946 EfficientNet params name: (channel_multiplier, depth_multiplier, resolution, dropout_rate) 'efficientnet-lite0': (1.0, 1.0, 224, 0.2), 'efficientnet-lite1': (1.0, 1.1, 240, 0.2), 'efficientnet-lite2': (1.1, 1.2, 260, 0.3), 'efficientnet-lite3': (1.2, 1.4, 280, 0.3), 'efficientnet-lite4': (1.4, 1.8, 300, 0.3), Args: channel_multiplier: multiplier to number of channels per layer depth_multiplier: multiplier to number of repeats per stage """ arch_def = [ ['ds_r1_k3_s1_e1_c16'], ['ir_r2_k3_s2_e6_c24'], ['ir_r2_k5_s2_e6_c40'], ['ir_r3_k3_s2_e6_c80'], ['ir_r3_k5_s1_e6_c112'], ['ir_r4_k5_s2_e6_c192'], ['ir_r1_k3_s1_e6_c320'], ] model_kwargs = dict( block_args=decode_arch_def(arch_def, depth_multiplier, fix_first_last=True), num_features=1280, stem_size=32, fix_stem=True, channel_multiplier=channel_multiplier, act_layer=nn.ReLU6, norm_kwargs=resolve_bn_args(kwargs), **kwargs, ) model = _create_model(model_kwargs, default_cfgs[variant], pretrained) return model def _gen_mixnet_s(variant, channel_multiplier=1.0, pretrained=False, **kwargs): """Creates a MixNet Small model. Ref impl: https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet/mixnet Paper: https://arxiv.org/abs/1907.09595 """ arch_def = [ # stage 0, 112x112 in ['ds_r1_k3_s1_e1_c16'], # relu # stage 1, 112x112 in ['ir_r1_k3_a1.1_p1.1_s2_e6_c24', 'ir_r1_k3_a1.1_p1.1_s1_e3_c24'], # relu # stage 2, 56x56 in ['ir_r1_k3.5.7_s2_e6_c40_se0.5_nsw', 'ir_r3_k3.5_a1.1_p1.1_s1_e6_c40_se0.5_nsw'], # swish # stage 3, 28x28 in ['ir_r1_k3.5.7_p1.1_s2_e6_c80_se0.25_nsw', 'ir_r2_k3.5_p1.1_s1_e6_c80_se0.25_nsw'], # swish # stage 4, 14x14in ['ir_r1_k3.5.7_a1.1_p1.1_s1_e6_c120_se0.5_nsw', 'ir_r2_k3.5.7.9_a1.1_p1.1_s1_e3_c120_se0.5_nsw'], # swish # stage 5, 14x14in ['ir_r1_k3.5.7.9.11_s2_e6_c200_se0.5_nsw', 'ir_r2_k3.5.7.9_p1.1_s1_e6_c200_se0.5_nsw'], # swish # 7x7 ] model_kwargs = dict( block_args=decode_arch_def(arch_def), num_features=1536, stem_size=16, channel_multiplier=channel_multiplier, norm_kwargs=resolve_bn_args(kwargs), **kwargs ) model = _create_model(model_kwargs, default_cfgs[variant], pretrained) return model def _gen_mixnet_m(variant, channel_multiplier=1.0, depth_multiplier=1.0, pretrained=False, **kwargs): """Creates a MixNet Medium-Large model. Ref impl: https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet/mixnet Paper: https://arxiv.org/abs/1907.09595 """ arch_def = [ # stage 0, 112x112 in ['ds_r1_k3_s1_e1_c24'], # relu # stage 1, 112x112 in ['ir_r1_k3.5.7_a1.1_p1.1_s2_e6_c32', 'ir_r1_k3_a1.1_p1.1_s1_e3_c32'], # relu # stage 2, 56x56 in ['ir_r1_k3.5.7.9_s2_e6_c40_se0.5_nsw', 'ir_r3_k3.5_a1.1_p1.1_s1_e6_c40_se0.5_nsw'], # swish # stage 3, 28x28 in ['ir_r1_k3.5.7_s2_e6_c80_se0.25_nsw', 'ir_r3_k3.5.7.9_a1.1_p1.1_s1_e6_c80_se0.25_nsw'], # swish # stage 4, 14x14in ['ir_r1_k3_s1_e6_c120_se0.5_nsw', 'ir_r3_k3.5.7.9_a1.1_p1.1_s1_e3_c120_se0.5_nsw'], # swish # stage 5, 14x14in ['ir_r1_k3.5.7.9_s2_e6_c200_se0.5_nsw', 'ir_r3_k3.5.7.9_p1.1_s1_e6_c200_se0.5_nsw'], # swish # 7x7 ] model_kwargs = dict( block_args=decode_arch_def(arch_def, depth_multiplier, depth_trunc='round'), num_features=1536, stem_size=24, channel_multiplier=channel_multiplier, norm_kwargs=resolve_bn_args(kwargs), **kwargs ) model = _create_model(model_kwargs, default_cfgs[variant], pretrained) return model def mnasnet_050(pretrained=False, **kwargs): """ MNASNet B1, depth multiplier of 0.5. """ model = _gen_mnasnet_b1('mnasnet_050', 0.5, pretrained=pretrained, **kwargs) return model def mnasnet_075(pretrained=False, **kwargs): """ MNASNet B1, depth multiplier of 0.75. """ model = _gen_mnasnet_b1('mnasnet_075', 0.75, pretrained=pretrained, **kwargs) return model def mnasnet_100(pretrained=False, **kwargs): """ MNASNet B1, depth multiplier of 1.0. """ model = _gen_mnasnet_b1('mnasnet_100', 1.0, pretrained=pretrained, **kwargs) return model def mnasnet_b1(pretrained=False, **kwargs): """ MNASNet B1, depth multiplier of 1.0. """ return mnasnet_100(pretrained, **kwargs) def mnasnet_140(pretrained=False, **kwargs): """ MNASNet B1, depth multiplier of 1.4 """ model = _gen_mnasnet_b1('mnasnet_140', 1.4, pretrained=pretrained, **kwargs) return model def semnasnet_050(pretrained=False, **kwargs): """ MNASNet A1 (w/ SE), depth multiplier of 0.5 """ model = _gen_mnasnet_a1('semnasnet_050', 0.5, pretrained=pretrained, **kwargs) return model def semnasnet_075(pretrained=False, **kwargs): """ MNASNet A1 (w/ SE), depth multiplier of 0.75. """ model = _gen_mnasnet_a1('semnasnet_075', 0.75, pretrained=pretrained, **kwargs) return model def semnasnet_100(pretrained=False, **kwargs): """ MNASNet A1 (w/ SE), depth multiplier of 1.0. """ model = _gen_mnasnet_a1('semnasnet_100', 1.0, pretrained=pretrained, **kwargs) return model def mnasnet_a1(pretrained=False, **kwargs): """ MNASNet A1 (w/ SE), depth multiplier of 1.0. """ return semnasnet_100(pretrained, **kwargs) def semnasnet_140(pretrained=False, **kwargs): """ MNASNet A1 (w/ SE), depth multiplier of 1.4. """ model = _gen_mnasnet_a1('semnasnet_140', 1.4, pretrained=pretrained, **kwargs) return model def mnasnet_small(pretrained=False, **kwargs): """ MNASNet Small, depth multiplier of 1.0. """ model = _gen_mnasnet_small('mnasnet_small', 1.0, pretrained=pretrained, **kwargs) return model def mobilenetv2_100(pretrained=False, **kwargs): """ MobileNet V2 w/ 1.0 channel multiplier """ model = _gen_mobilenet_v2('mobilenetv2_100', 1.0, pretrained=pretrained, **kwargs) return model def mobilenetv2_140(pretrained=False, **kwargs): """ MobileNet V2 w/ 1.4 channel multiplier """ model = _gen_mobilenet_v2('mobilenetv2_140', 1.4, pretrained=pretrained, **kwargs) return model def mobilenetv2_110d(pretrained=False, **kwargs): """ MobileNet V2 w/ 1.1 channel, 1.2 depth multipliers""" model = _gen_mobilenet_v2( 'mobilenetv2_110d', 1.1, depth_multiplier=1.2, fix_stem_head=True, pretrained=pretrained, **kwargs) return model def mobilenetv2_120d(pretrained=False, **kwargs): """ MobileNet V2 w/ 1.2 channel, 1.4 depth multipliers """ model = _gen_mobilenet_v2( 'mobilenetv2_120d', 1.2, depth_multiplier=1.4, fix_stem_head=True, pretrained=pretrained, **kwargs) return model def fbnetc_100(pretrained=False, **kwargs): """ FBNet-C """ if pretrained: # pretrained model trained with non-default BN epsilon kwargs['bn_eps'] = BN_EPS_TF_DEFAULT model = _gen_fbnetc('fbnetc_100', 1.0, pretrained=pretrained, **kwargs) return model def spnasnet_100(pretrained=False, **kwargs): """ Single-Path NAS Pixel1""" model = _gen_spnasnet('spnasnet_100', 1.0, pretrained=pretrained, **kwargs) return model def efficientnet_b0(pretrained=False, **kwargs): """ EfficientNet-B0 """ # NOTE for train, drop_rate should be 0.2, drop_path_rate should be 0.2 model = _gen_efficientnet( 'efficientnet_b0', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs) return model def efficientnet_b1(pretrained=False, **kwargs): """ EfficientNet-B1 """ # NOTE for train, drop_rate should be 0.2, drop_path_rate should be 0.2 model = _gen_efficientnet( 'efficientnet_b1', channel_multiplier=1.0, depth_multiplier=1.1, pretrained=pretrained, **kwargs) return model def efficientnet_b2(pretrained=False, **kwargs): """ EfficientNet-B2 """ # NOTE for train, drop_rate should be 0.3, drop_path_rate should be 0.2 model = _gen_efficientnet( 'efficientnet_b2', channel_multiplier=1.1, depth_multiplier=1.2, pretrained=pretrained, **kwargs) return model def efficientnet_b2a(pretrained=False, **kwargs): """ EfficientNet-B2 @ 288x288 w/ 1.0 test crop""" # NOTE for train, drop_rate should be 0.3, drop_path_rate should be 0.2 model = _gen_efficientnet( 'efficientnet_b2a', channel_multiplier=1.1, depth_multiplier=1.2, pretrained=pretrained, **kwargs) return model def efficientnet_b3(pretrained=False, **kwargs): """ EfficientNet-B3 """ # NOTE for train, drop_rate should be 0.3, drop_path_rate should be 0.2 model = _gen_efficientnet( 'efficientnet_b3', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs) return model def efficientnet_b3a(pretrained=False, **kwargs): """ EfficientNet-B3 @ 320x320 w/ 1.0 test crop-pct """ # NOTE for train, drop_rate should be 0.3, drop_path_rate should be 0.2 model = _gen_efficientnet( 'efficientnet_b3a', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs) return model def efficientnet_b4(pretrained=False, **kwargs): """ EfficientNet-B4 """ # NOTE for train, drop_rate should be 0.4, drop_path_rate should be 0.2 model = _gen_efficientnet( 'efficientnet_b4', channel_multiplier=1.4, depth_multiplier=1.8, pretrained=pretrained, **kwargs) return model def efficientnet_b5(pretrained=False, **kwargs): """ EfficientNet-B5 """ # NOTE for train, drop_rate should be 0.4, drop_path_rate should be 0.2 model = _gen_efficientnet( 'efficientnet_b5', channel_multiplier=1.6, depth_multiplier=2.2, pretrained=pretrained, **kwargs) return model def efficientnet_b6(pretrained=False, **kwargs): """ EfficientNet-B6 """ # NOTE for train, drop_rate should be 0.5, drop_path_rate should be 0.2 model = _gen_efficientnet( 'efficientnet_b6', channel_multiplier=1.8, depth_multiplier=2.6, pretrained=pretrained, **kwargs) return model def efficientnet_b7(pretrained=False, **kwargs): """ EfficientNet-B7 """ # NOTE for train, drop_rate should be 0.5, drop_path_rate should be 0.2 model = _gen_efficientnet( 'efficientnet_b7', channel_multiplier=2.0, depth_multiplier=3.1, pretrained=pretrained, **kwargs) return model def efficientnet_b8(pretrained=False, **kwargs): """ EfficientNet-B8 """ # NOTE for train, drop_rate should be 0.5, drop_path_rate should be 0.2 model = _gen_efficientnet( 'efficientnet_b8', channel_multiplier=2.2, depth_multiplier=3.6, pretrained=pretrained, **kwargs) return model def efficientnet_l2(pretrained=False, **kwargs): """ EfficientNet-L2.""" # NOTE for train, drop_rate should be 0.5, drop_path_rate should be 0.2 model = _gen_efficientnet( 'efficientnet_l2', channel_multiplier=4.3, depth_multiplier=5.3, pretrained=pretrained, **kwargs) return model def efficientnet_es(pretrained=False, **kwargs): """ EfficientNet-Edge Small. """ model = _gen_efficientnet_edge( 'efficientnet_es', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs) return model def efficientnet_em(pretrained=False, **kwargs): """ EfficientNet-Edge-Medium. """ model = _gen_efficientnet_edge( 'efficientnet_em', channel_multiplier=1.0, depth_multiplier=1.1, pretrained=pretrained, **kwargs) return model def efficientnet_el(pretrained=False, **kwargs): """ EfficientNet-Edge-Large. """ model = _gen_efficientnet_edge( 'efficientnet_el', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs) return model def efficientnet_cc_b0_4e(pretrained=False, **kwargs): """ EfficientNet-CondConv-B0 w/ 8 Experts """ # NOTE for train, drop_rate should be 0.2, drop_path_rate should be 0.2 model = _gen_efficientnet_condconv( 'efficientnet_cc_b0_4e', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs) return model def efficientnet_cc_b0_8e(pretrained=False, **kwargs): """ EfficientNet-CondConv-B0 w/ 8 Experts """ # NOTE for train, drop_rate should be 0.2, drop_path_rate should be 0.2 model = _gen_efficientnet_condconv( 'efficientnet_cc_b0_8e', channel_multiplier=1.0, depth_multiplier=1.0, experts_multiplier=2, pretrained=pretrained, **kwargs) return model def efficientnet_cc_b1_8e(pretrained=False, **kwargs): """ EfficientNet-CondConv-B1 w/ 8 Experts """ # NOTE for train, drop_rate should be 0.2, drop_path_rate should be 0.2 model = _gen_efficientnet_condconv( 'efficientnet_cc_b1_8e', channel_multiplier=1.0, depth_multiplier=1.1, experts_multiplier=2, pretrained=pretrained, **kwargs) return model def efficientnet_lite0(pretrained=False, **kwargs): """ EfficientNet-Lite0 """ # NOTE for train, drop_rate should be 0.2, drop_path_rate should be 0.2 model = _gen_efficientnet_lite( 'efficientnet_lite0', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs) return model def efficientnet_lite1(pretrained=False, **kwargs): """ EfficientNet-Lite1 """ # NOTE for train, drop_rate should be 0.2, drop_path_rate should be 0.2 model = _gen_efficientnet_lite( 'efficientnet_lite1', channel_multiplier=1.0, depth_multiplier=1.1, pretrained=pretrained, **kwargs) return model def efficientnet_lite2(pretrained=False, **kwargs): """ EfficientNet-Lite2 """ # NOTE for train, drop_rate should be 0.3, drop_path_rate should be 0.2 model = _gen_efficientnet_lite( 'efficientnet_lite2', channel_multiplier=1.1, depth_multiplier=1.2, pretrained=pretrained, **kwargs) return model def efficientnet_lite3(pretrained=False, **kwargs): """ EfficientNet-Lite3 """ # NOTE for train, drop_rate should be 0.3, drop_path_rate should be 0.2 model = _gen_efficientnet_lite( 'efficientnet_lite3', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs) return model def efficientnet_lite4(pretrained=False, **kwargs): """ EfficientNet-Lite4 """ # NOTE for train, drop_rate should be 0.4, drop_path_rate should be 0.2 model = _gen_efficientnet_lite( 'efficientnet_lite4', channel_multiplier=1.4, depth_multiplier=1.8, pretrained=pretrained, **kwargs) return model def efficientnet_b1_pruned(pretrained=False, **kwargs): """ EfficientNet-B1 Pruned. The pruning has been obtained using https://arxiv.org/pdf/2002.08258.pdf """ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' variant = 'efficientnet_b1_pruned' model = _gen_efficientnet( variant, channel_multiplier=1.0, depth_multiplier=1.1, pretrained=pretrained, **kwargs) return model def efficientnet_b2_pruned(pretrained=False, **kwargs): """ EfficientNet-B2 Pruned. The pruning has been obtained using https://arxiv.org/pdf/2002.08258.pdf """ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet( 'efficientnet_b2_pruned', channel_multiplier=1.1, depth_multiplier=1.2, pretrained=pretrained, **kwargs) return model def efficientnet_b3_pruned(pretrained=False, **kwargs): """ EfficientNet-B3 Pruned. The pruning has been obtained using https://arxiv.org/pdf/2002.08258.pdf """ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet( 'efficientnet_b3_pruned', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs) return model def tf_efficientnet_b0(pretrained=False, **kwargs): """ EfficientNet-B0. Tensorflow compatible variant """ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet( 'tf_efficientnet_b0', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs) return model def tf_efficientnet_b1(pretrained=False, **kwargs): """ EfficientNet-B1. Tensorflow compatible variant """ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet( 'tf_efficientnet_b1', channel_multiplier=1.0, depth_multiplier=1.1, pretrained=pretrained, **kwargs) return model def tf_efficientnet_b2(pretrained=False, **kwargs): """ EfficientNet-B2. Tensorflow compatible variant """ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet( 'tf_efficientnet_b2', channel_multiplier=1.1, depth_multiplier=1.2, pretrained=pretrained, **kwargs) return model def tf_efficientnet_b3(pretrained=False, **kwargs): """ EfficientNet-B3. Tensorflow compatible variant """ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet( 'tf_efficientnet_b3', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs) return model def tf_efficientnet_b4(pretrained=False, **kwargs): """ EfficientNet-B4. Tensorflow compatible variant """ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet( 'tf_efficientnet_b4', channel_multiplier=1.4, depth_multiplier=1.8, pretrained=pretrained, **kwargs) return model def tf_efficientnet_b5(pretrained=False, **kwargs): """ EfficientNet-B5. Tensorflow compatible variant """ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet( 'tf_efficientnet_b5', channel_multiplier=1.6, depth_multiplier=2.2, pretrained=pretrained, **kwargs) return model def tf_efficientnet_b6(pretrained=False, **kwargs): """ EfficientNet-B6. Tensorflow compatible variant """ # NOTE for train, drop_rate should be 0.5 kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet( 'tf_efficientnet_b6', channel_multiplier=1.8, depth_multiplier=2.6, pretrained=pretrained, **kwargs) return model def tf_efficientnet_b7(pretrained=False, **kwargs): """ EfficientNet-B7. Tensorflow compatible variant """ # NOTE for train, drop_rate should be 0.5 kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet( 'tf_efficientnet_b7', channel_multiplier=2.0, depth_multiplier=3.1, pretrained=pretrained, **kwargs) return model def tf_efficientnet_b8(pretrained=False, **kwargs): """ EfficientNet-B8. Tensorflow compatible variant """ # NOTE for train, drop_rate should be 0.5 kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet( 'tf_efficientnet_b8', channel_multiplier=2.2, depth_multiplier=3.6, pretrained=pretrained, **kwargs) return model def tf_efficientnet_b0_ap(pretrained=False, **kwargs): """ EfficientNet-B0 AdvProp. Tensorflow compatible variant """ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet( 'tf_efficientnet_b0_ap', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs) return model def tf_efficientnet_b1_ap(pretrained=False, **kwargs): """ EfficientNet-B1 AdvProp. Tensorflow compatible variant """ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet( 'tf_efficientnet_b1_ap', channel_multiplier=1.0, depth_multiplier=1.1, pretrained=pretrained, **kwargs) return model def tf_efficientnet_b2_ap(pretrained=False, **kwargs): """ EfficientNet-B2 AdvProp. Tensorflow compatible variant """ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet( 'tf_efficientnet_b2_ap', channel_multiplier=1.1, depth_multiplier=1.2, pretrained=pretrained, **kwargs) return model def tf_efficientnet_b3_ap(pretrained=False, **kwargs): """ EfficientNet-B3 AdvProp. Tensorflow compatible variant """ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet( 'tf_efficientnet_b3_ap', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs) return model def tf_efficientnet_b4_ap(pretrained=False, **kwargs): """ EfficientNet-B4 AdvProp. Tensorflow compatible variant """ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet( 'tf_efficientnet_b4_ap', channel_multiplier=1.4, depth_multiplier=1.8, pretrained=pretrained, **kwargs) return model def tf_efficientnet_b5_ap(pretrained=False, **kwargs): """ EfficientNet-B5 AdvProp. Tensorflow compatible variant """ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet( 'tf_efficientnet_b5_ap', channel_multiplier=1.6, depth_multiplier=2.2, pretrained=pretrained, **kwargs) return model def tf_efficientnet_b6_ap(pretrained=False, **kwargs): """ EfficientNet-B6 AdvProp. Tensorflow compatible variant """ # NOTE for train, drop_rate should be 0.5 kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet( 'tf_efficientnet_b6_ap', channel_multiplier=1.8, depth_multiplier=2.6, pretrained=pretrained, **kwargs) return model def tf_efficientnet_b7_ap(pretrained=False, **kwargs): """ EfficientNet-B7 AdvProp. Tensorflow compatible variant """ # NOTE for train, drop_rate should be 0.5 kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet( 'tf_efficientnet_b7_ap', channel_multiplier=2.0, depth_multiplier=3.1, pretrained=pretrained, **kwargs) return model def tf_efficientnet_b8_ap(pretrained=False, **kwargs): """ EfficientNet-B8 AdvProp. Tensorflow compatible variant """ # NOTE for train, drop_rate should be 0.5 kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet( 'tf_efficientnet_b8_ap', channel_multiplier=2.2, depth_multiplier=3.6, pretrained=pretrained, **kwargs) return model def tf_efficientnet_b0_ns(pretrained=False, **kwargs): """ EfficientNet-B0 NoisyStudent. Tensorflow compatible variant """ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet( 'tf_efficientnet_b0_ns', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs) return model def tf_efficientnet_b1_ns(pretrained=False, **kwargs): """ EfficientNet-B1 NoisyStudent. Tensorflow compatible variant """ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet( 'tf_efficientnet_b1_ns', channel_multiplier=1.0, depth_multiplier=1.1, pretrained=pretrained, **kwargs) return model def tf_efficientnet_b2_ns(pretrained=False, **kwargs): """ EfficientNet-B2 NoisyStudent. Tensorflow compatible variant """ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet( 'tf_efficientnet_b2_ns', channel_multiplier=1.1, depth_multiplier=1.2, pretrained=pretrained, **kwargs) return model def tf_efficientnet_b3_ns(pretrained=False, **kwargs): """ EfficientNet-B3 NoisyStudent. Tensorflow compatible variant """ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet( 'tf_efficientnet_b3_ns', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs) return model def tf_efficientnet_b4_ns(pretrained=False, **kwargs): """ EfficientNet-B4 NoisyStudent. Tensorflow compatible variant """ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet( 'tf_efficientnet_b4_ns', channel_multiplier=1.4, depth_multiplier=1.8, pretrained=pretrained, **kwargs) return model def tf_efficientnet_b5_ns(pretrained=False, **kwargs): """ EfficientNet-B5 NoisyStudent. Tensorflow compatible variant """ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet( 'tf_efficientnet_b5_ns', channel_multiplier=1.6, depth_multiplier=2.2, pretrained=pretrained, **kwargs) return model def tf_efficientnet_b6_ns(pretrained=False, **kwargs): """ EfficientNet-B6 NoisyStudent. Tensorflow compatible variant """ # NOTE for train, drop_rate should be 0.5 kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet( 'tf_efficientnet_b6_ns', channel_multiplier=1.8, depth_multiplier=2.6, pretrained=pretrained, **kwargs) return model def tf_efficientnet_b7_ns(pretrained=False, **kwargs): """ EfficientNet-B7 NoisyStudent. Tensorflow compatible variant """ # NOTE for train, drop_rate should be 0.5 kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet( 'tf_efficientnet_b7_ns', channel_multiplier=2.0, depth_multiplier=3.1, pretrained=pretrained, **kwargs) return model def tf_efficientnet_l2_ns_475(pretrained=False, **kwargs): """ EfficientNet-L2 NoisyStudent @ 475x475. Tensorflow compatible variant """ # NOTE for train, drop_rate should be 0.5 kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet( 'tf_efficientnet_l2_ns_475', channel_multiplier=4.3, depth_multiplier=5.3, pretrained=pretrained, **kwargs) return model def tf_efficientnet_l2_ns(pretrained=False, **kwargs): """ EfficientNet-L2 NoisyStudent. Tensorflow compatible variant """ # NOTE for train, drop_rate should be 0.5 kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet( 'tf_efficientnet_l2_ns', channel_multiplier=4.3, depth_multiplier=5.3, pretrained=pretrained, **kwargs) return model def tf_efficientnet_es(pretrained=False, **kwargs): """ EfficientNet-Edge Small. Tensorflow compatible variant """ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet_edge( 'tf_efficientnet_es', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs) return model def tf_efficientnet_em(pretrained=False, **kwargs): """ EfficientNet-Edge-Medium. Tensorflow compatible variant """ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet_edge( 'tf_efficientnet_em', channel_multiplier=1.0, depth_multiplier=1.1, pretrained=pretrained, **kwargs) return model def tf_efficientnet_el(pretrained=False, **kwargs): """ EfficientNet-Edge-Large. Tensorflow compatible variant """ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet_edge( 'tf_efficientnet_el', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs) return model def tf_efficientnet_cc_b0_4e(pretrained=False, **kwargs): """ EfficientNet-CondConv-B0 w/ 4 Experts. Tensorflow compatible variant """ # NOTE for train, drop_rate should be 0.2, drop_path_rate should be 0.2 kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet_condconv( 'tf_efficientnet_cc_b0_4e', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs) return model def tf_efficientnet_cc_b0_8e(pretrained=False, **kwargs): """ EfficientNet-CondConv-B0 w/ 8 Experts. Tensorflow compatible variant """ # NOTE for train, drop_rate should be 0.2, drop_path_rate should be 0.2 kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet_condconv( 'tf_efficientnet_cc_b0_8e', channel_multiplier=1.0, depth_multiplier=1.0, experts_multiplier=2, pretrained=pretrained, **kwargs) return model def tf_efficientnet_cc_b1_8e(pretrained=False, **kwargs): """ EfficientNet-CondConv-B1 w/ 8 Experts. Tensorflow compatible variant """ # NOTE for train, drop_rate should be 0.2, drop_path_rate should be 0.2 kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet_condconv( 'tf_efficientnet_cc_b1_8e', channel_multiplier=1.0, depth_multiplier=1.1, experts_multiplier=2, pretrained=pretrained, **kwargs) return model def tf_efficientnet_lite0(pretrained=False, **kwargs): """ EfficientNet-Lite0 """ # NOTE for train, drop_rate should be 0.2, drop_path_rate should be 0.2 kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet_lite( 'tf_efficientnet_lite0', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs) return model def tf_efficientnet_lite1(pretrained=False, **kwargs): """ EfficientNet-Lite1 """ # NOTE for train, drop_rate should be 0.2, drop_path_rate should be 0.2 kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet_lite( 'tf_efficientnet_lite1', channel_multiplier=1.0, depth_multiplier=1.1, pretrained=pretrained, **kwargs) return model def tf_efficientnet_lite2(pretrained=False, **kwargs): """ EfficientNet-Lite2 """ # NOTE for train, drop_rate should be 0.3, drop_path_rate should be 0.2 kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet_lite( 'tf_efficientnet_lite2', channel_multiplier=1.1, depth_multiplier=1.2, pretrained=pretrained, **kwargs) return model def tf_efficientnet_lite3(pretrained=False, **kwargs): """ EfficientNet-Lite3 """ # NOTE for train, drop_rate should be 0.3, drop_path_rate should be 0.2 kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet_lite( 'tf_efficientnet_lite3', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs) return model def tf_efficientnet_lite4(pretrained=False, **kwargs): """ EfficientNet-Lite4 """ # NOTE for train, drop_rate should be 0.4, drop_path_rate should be 0.2 kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet_lite( 'tf_efficientnet_lite4', channel_multiplier=1.4, depth_multiplier=1.8, pretrained=pretrained, **kwargs) return model def mixnet_s(pretrained=False, **kwargs): """Creates a MixNet Small model. """ model = _gen_mixnet_s( 'mixnet_s', channel_multiplier=1.0, pretrained=pretrained, **kwargs) return model def mixnet_m(pretrained=False, **kwargs): """Creates a MixNet Medium model. """ model = _gen_mixnet_m( 'mixnet_m', channel_multiplier=1.0, pretrained=pretrained, **kwargs) return model def mixnet_l(pretrained=False, **kwargs): """Creates a MixNet Large model. """ model = _gen_mixnet_m( 'mixnet_l', channel_multiplier=1.3, pretrained=pretrained, **kwargs) return model def mixnet_xl(pretrained=False, **kwargs): """Creates a MixNet Extra-Large model. Not a paper spec, experimental def by RW w/ depth scaling. """ model = _gen_mixnet_m( 'mixnet_xl', channel_multiplier=1.6, depth_multiplier=1.2, pretrained=pretrained, **kwargs) return model def mixnet_xxl(pretrained=False, **kwargs): """Creates a MixNet Double Extra Large model. Not a paper spec, experimental def by RW w/ depth scaling. """ model = _gen_mixnet_m( 'mixnet_xxl', channel_multiplier=2.4, depth_multiplier=1.3, pretrained=pretrained, **kwargs) return model def tf_mixnet_s(pretrained=False, **kwargs): """Creates a MixNet Small model. Tensorflow compatible variant """ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_mixnet_s( 'tf_mixnet_s', channel_multiplier=1.0, pretrained=pretrained, **kwargs) return model def tf_mixnet_m(pretrained=False, **kwargs): """Creates a MixNet Medium model. Tensorflow compatible variant """ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_mixnet_m( 'tf_mixnet_m', channel_multiplier=1.0, pretrained=pretrained, **kwargs) return model def tf_mixnet_l(pretrained=False, **kwargs): """Creates a MixNet Large model. Tensorflow compatible variant """ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_mixnet_m( 'tf_mixnet_l', channel_multiplier=1.3, pretrained=pretrained, **kwargs) return model def efficientnet_b0(pretrained=False, **kwargs): """ EfficientNet-B0 """ # NOTE for train, drop_rate should be 0.2, drop_path_rate should be 0.2 model = _gen_efficientnet( 'efficientnet_b0', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs) return model @BACKBONES.register_module class SSDEFFB0(nn.Module): def __init__(self, input_size, width_mult=1.0, activation_type='relu', single_scale=False): super(SSDEFFB0, self).__init__() self.input_size = input_size self.single_scale = single_scale self.width_mult = width_mult self.backbone = _gen_efficientnet('efficientnet_b0', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=True, features_only=True) # del self.backbone.blocks[3][2] for m in self.backbone.modules(): if isinstance(m, nn.BatchNorm2d): m.eval() m.weight.requires_grad = False m.bias.requires_grad = False # self.last_channel = self.backbone.blocks[-1][-1].conv.out_channels # self.backbone.blocks[-1][-1] # building last several layers self.extra_convs = [] if not self.single_scale: self.extra_convs.append(conv_1x1_bn(self.last_channel, 1280, act_fn=Swish)) self.extra_convs.append(conv_1x1_bn(1280, 256, act_fn=Swish)) self.extra_convs.append(conv_bn(256, 256, 2, groups=256, act_fn=Swish)) self.extra_convs.append(conv_1x1_bn(256, 512, groups=1, act_fn=Swish)) self.extra_convs.append(conv_1x1_bn(512, 128, act_fn=Swish)) self.extra_convs.append(conv_bn(128, 128, 2, groups=128, act_fn=Swish)) self.extra_convs.append(conv_1x1_bn(128, 256, act_fn=Swish)) self.extra_convs.append(conv_1x1_bn(256, 128, act_fn=Swish)) self.extra_convs.append(conv_bn(128, 128, 2, groups=128, act_fn=Swish)) self.extra_convs.append(conv_1x1_bn(128, 256, act_fn=Swish)) self.extra_convs.append(conv_1x1_bn(256, 64, act_fn=Swish)) self.extra_convs.append(conv_bn(64, 64, 2, groups=64, act_fn=Swish)) self.extra_convs.append(conv_1x1_bn(64, 128, act_fn=Swish)) self.extra_convs = nn.Sequential(*self.extra_convs) def init_weights(self, pretrained=None): if pretrained: state_dict = torch.load(pretrained) state_dict = state_dict['state_dict'] self.backbone.load_state_dict(state_dict, strict=True) else: print("No pretrained model!") return def forward(self, x): outputs = self.backbone(x) x = outputs[-1] outs = [] for i, conv in enumerate(self.extra_convs): x = conv(x) if i % 3 == 0: outs.append(x) if self.single_scale: # outs.append(x) return outputs[1:] return tuple(outs)
Cream/CDARTS/CDARTS_detection/mmdet/models/backbones/efficientnet.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmdet/models/backbones/efficientnet.py", "repo_id": "Cream", "token_count": 37124 }
284
# -------------------------------------------------------- # Copyright (c) 2019 Jianyuan Guo ([email protected]) # -------------------------------------------------------- # from .darts_head_search import DartsHead from .mbblock_head_search import MbblockHead def build_search_head(cfg): """Build head model from config dict. """ if cfg is not None: cfg_ = cfg.copy() head_type = cfg_.pop('type') if head_type == 'DARTS': raise NotImplementedError elif head_type == 'MBBlock': return MbblockHead(**cfg_) else: raise KeyError('Invalid head type {}'.fromat(head_type)) else: return None
Cream/CDARTS/CDARTS_detection/mmdet/models/bbox_heads/auto_head/build_head.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmdet/models/bbox_heads/auto_head/build_head.py", "repo_id": "Cream", "token_count": 264 }
285
from .two_stage import TwoStageDetector from ..registry import DETECTORS @DETECTORS.register_module class MaskRCNN(TwoStageDetector): def __init__(self, backbone, rpn_head, bbox_roi_extractor, bbox_head, mask_roi_extractor, mask_head, train_cfg, test_cfg, neck=None, shared_head=None, pretrained=None): super(MaskRCNN, self).__init__( backbone=backbone, neck=neck, shared_head=shared_head, rpn_head=rpn_head, bbox_roi_extractor=bbox_roi_extractor, bbox_head=bbox_head, mask_roi_extractor=mask_roi_extractor, mask_head=mask_head, train_cfg=train_cfg, test_cfg=test_cfg, pretrained=pretrained)
Cream/CDARTS/CDARTS_detection/mmdet/models/detectors/mask_rcnn.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmdet/models/detectors/mask_rcnn.py", "repo_id": "Cream", "token_count": 549 }
286
import functools import torch.nn.functional as F def reduce_loss(loss, reduction): """Reduce loss as specified. Args: loss (Tensor): Elementwise loss tensor. reduction (str): Options are "none", "mean" and "sum". Return: Tensor: Reduced loss tensor. """ reduction_enum = F._Reduction.get_enum(reduction) # none: 0, elementwise_mean:1, sum: 2 if reduction_enum == 0: return loss elif reduction_enum == 1: return loss.mean() elif reduction_enum == 2: return loss.sum() def weight_reduce_loss(loss, weight=None, reduction='mean', avg_factor=None): """Apply element-wise weight and reduce loss. Args: loss (Tensor): Element-wise loss. weight (Tensor): Element-wise weights. reduction (str): Same as built-in losses of PyTorch. avg_factor (float): Avarage factor when computing the mean of losses. Returns: Tensor: Processed loss values. """ # if weight is specified, apply element-wise weight if weight is not None: loss = loss * weight # if avg_factor is not specified, just reduce the loss if avg_factor is None: loss = reduce_loss(loss, reduction) else: # if reduction is mean, then average the loss by avg_factor if reduction == 'mean': loss = loss.sum() / avg_factor # if reduction is 'none', then do nothing, otherwise raise an error elif reduction != 'none': raise ValueError('avg_factor can not be used with reduction="sum"') return loss def weighted_loss(loss_func): """Create a weighted version of a given loss function. To use this decorator, the loss function must have the signature like `loss_func(pred, target, **kwargs)`. The function only needs to compute element-wise loss without any reduction. This decorator will add weight and reduction arguments to the function. The decorated function will have the signature like `loss_func(pred, target, weight=None, reduction='mean', avg_factor=None, **kwargs)`. :Example: >>> @weighted_loss >>> def l1_loss(pred, target): >>> return (pred - target).abs() >>> pred = torch.Tensor([0, 2, 3]) >>> target = torch.Tensor([1, 1, 1]) >>> weight = torch.Tensor([1, 0, 1]) >>> l1_loss(pred, target) tensor(1.3333) >>> l1_loss(pred, target, weight) tensor(1.) >>> l1_loss(pred, target, reduction='none') tensor([1., 1., 2.]) >>> l1_loss(pred, target, weight, avg_factor=2) tensor(1.5000) """ @functools.wraps(loss_func) def wrapper(pred, target, weight=None, reduction='mean', avg_factor=None, **kwargs): # get element-wise loss loss = loss_func(pred, target, **kwargs) loss = weight_reduce_loss(loss, weight, reduction, avg_factor) return loss return wrapper
Cream/CDARTS/CDARTS_detection/mmdet/models/losses/utils.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmdet/models/losses/utils.py", "repo_id": "Cream", "token_count": 1172 }
287
import torch import torch.nn as nn import torch.nn.functional as F from mmcv.cnn import xavier_init from mmcv.cnn import caffe2_xavier_init from mmdet.core import auto_fp16 from ..registry import NECKS from ..utils import ConvModule norm_cfg_ = { 'BN': nn.BatchNorm2d, 'SyncBN': nn.SyncBatchNorm, 'GN': nn.GroupNorm, } class MergingCell(nn.Module): def __init__(self, channels=256, with_conv=True, norm_type='BN'): super(MergingCell, self).__init__() self.with_conv = with_conv norm_layer = norm_cfg_[norm_type] if self.with_conv: self.conv_out = nn.Sequential( nn.ReLU(inplace=True), nn.Conv2d(channels, channels, 3, 1, 1), norm_layer(channels) ) def _binary_op(self, x1, x2): raise NotImplementedError def _resize(self, x, size): if x.shape[-2:] == size: return x elif x.shape[-2:] < size: return F.interpolate(x, size=size, mode='nearest') else: assert x.shape[-2] % size[-2] == 0 and x.shape[-1] % size[-1] == 0 kernel_size = x.shape[-1] // size[-1] x = F.max_pool2d(x, kernel_size=kernel_size, stride=kernel_size) # x = F.interpolate(x, size=size, mode='nearest') return x def forward(self, x1, x2, out_size): assert x1.shape[:2] == x2.shape[:2] assert len(out_size) == 2 x1 = self._resize(x1, out_size) x2 = self._resize(x2, out_size) x = self._binary_op(x1, x2) if self.with_conv: x = self.conv_out(x) return x class SumCell(MergingCell): def _binary_op(self, x1, x2): return x1 + x2 class GPCell(MergingCell): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.global_pool = nn.AdaptiveAvgPool2d((1, 1)) def _binary_op(self, x1, x2): x2_att = self.global_pool(x2).sigmoid() return x2 + x2_att * x1 @NECKS.register_module class NASFPN(nn.Module): def __init__(self, in_channels, out_channels, num_outs, start_level=0, end_level=-1, add_extra_convs=False, stack_times=7, lateral_kernel=1, norm_type='SyncBN'): super(NASFPN, self).__init__() assert isinstance(in_channels, list) self.in_channels = in_channels self.out_channels = out_channels self.num_ins = len(in_channels) self.num_outs = num_outs self.stack_times = stack_times self.norm_type = norm_type if end_level == -1: self.backbone_end_level = self.num_ins assert num_outs >= self.num_ins - start_level else: # if end_level < inputs, no extra level is allowed self.backbone_end_level = end_level assert end_level <= len(in_channels) assert num_outs == end_level - start_level self.start_level = start_level self.end_level = end_level self.add_extra_convs = add_extra_convs self.lateral_convs = nn.ModuleList() # for i in range(self.start_level, self.backbone_end_level): # RetinaNet (1,4) for i in range(self.start_level, self.start_level + num_outs): in_channel = in_channels[i] if i < self.backbone_end_level else in_channels[-1] padding = (lateral_kernel - 1) // 2 l_conv = nn.Conv2d(in_channel, out_channels, kernel_size=lateral_kernel, padding=padding) self.lateral_convs.append(l_conv) # add extra downsample layers (stride-2 pooling or conv) extra_levels = num_outs - self.backbone_end_level + self.start_level self.extra_downsamples = nn.ModuleList() for i in range(extra_levels): if self.add_extra_convs: extra_conv = nn.Conv2d(in_channels[-1], in_channels[-1], 3, stride=2, padding=1) self.extra_downsamples.append(extra_conv) else: self.extra_downsamples.append(nn.MaxPool2d(2, stride=2)) # add NAS FPN connections self.fpn_stages = nn.ModuleList() for _ in range(self.stack_times): stage = nn.ModuleDict() # gp(p6, p4) -> p4_1 stage['gp_64_4'] = GPCell(out_channels, norm_type=norm_type) # sum(p4_1, p4) -> p4_2 stage['sum_44_4'] = SumCell(out_channels, norm_type=norm_type) # sum(p4_2, p3) -> p3_out stage['sum_43_3'] = SumCell(out_channels, norm_type=norm_type) # sum(p3_out, p4_2) -> p4_out stage['sum_34_4'] = SumCell(out_channels, norm_type=norm_type) # sum(p5, gp(p4_out, p3_out)) -> p5_out stage['gp_43_5'] = GPCell(with_conv=False) stage['sum_55_5'] = SumCell(out_channels, norm_type=norm_type) # sum(p7, gp(p5_out, p4_2)) -> p7_out stage['gp_54_7'] = GPCell(with_conv=False) stage['sum_77_7'] = SumCell(out_channels, norm_type=norm_type) # gp(p7_out, p5_out) -> p6_out stage['gp_75_6'] = GPCell(out_channels, norm_type=norm_type) self.fpn_stages.append(stage) for m in self.modules(): if isinstance(m, nn.SyncBatchNorm): m._specify_ddp_gpu_num(1) def init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): caffe2_xavier_init(m) @auto_fp16() def forward(self, inputs): assert len(inputs) == len(self.in_channels) # build P6-P7 on top of P5 inputs = list(inputs) for downsample in self.extra_downsamples: inputs.append(downsample(inputs[-1])) # 1x1 on P3-P7 feats = [ lateral_conv(inputs[i + self.start_level]) for i, lateral_conv in enumerate(self.lateral_convs) ] p3, p4, p5, p6, p7 = feats for stage in self.fpn_stages: # gp(p6, p4) -> p4_1 p4_1 = stage['gp_64_4'](p6, p4, out_size=p4.shape[-2:]) # sum(p4_1, p4) -> p4_2 p4_2 = stage['sum_44_4'](p4_1, p4, out_size=p4.shape[-2:]) # sum(p4_2, p3) -> p3_out p3 = stage['sum_43_3'](p4_2, p3, out_size=p3.shape[-2:]) # sum(p3_out, p4_2) -> p4_out p4 = stage['sum_34_4'](p3, p4_2, out_size=p4.shape[-2:]) # sum(p5, gp(p4_out, p3_out)) -> p5_out p5_tmp = stage['gp_43_5'](p4, p3, out_size=p5.shape[-2:]) p5 = stage['sum_55_5'](p5, p5_tmp, out_size=p5.shape[-2:]) # sum(p7, gp(p5_out, p4_2)) -> p7_out p7_tmp = stage['gp_54_7'](p5, p4_2, out_size=p7.shape[-2:]) p7 = stage['sum_77_7'](p7, p7_tmp, out_size=p7.shape[-2:]) # gp(p7_out, p5_out) -> p6_out p6 = stage['gp_75_6'](p7, p5, out_size=p6.shape[-2:]) return tuple([p3, p4, p5, p6, p7])
Cream/CDARTS/CDARTS_detection/mmdet/models/necks/nas_fpn.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmdet/models/necks/nas_fpn.py", "repo_id": "Cream", "token_count": 3831 }
288
import numpy as np import torch.nn as nn def xavier_init(module, gain=1, bias=0, distribution='normal'): assert distribution in ['uniform', 'normal'] if distribution == 'uniform': nn.init.xavier_uniform_(module.weight, gain=gain) else: nn.init.xavier_normal_(module.weight, gain=gain) if hasattr(module, 'bias'): nn.init.constant_(module.bias, bias) def normal_init(module, mean=0, std=1, bias=0): nn.init.normal_(module.weight, mean, std) if hasattr(module, 'bias'): nn.init.constant_(module.bias, bias) def uniform_init(module, a=0, b=1, bias=0): nn.init.uniform_(module.weight, a, b) if hasattr(module, 'bias'): nn.init.constant_(module.bias, bias) def kaiming_init(module, mode='fan_out', nonlinearity='relu', bias=0, distribution='normal'): assert distribution in ['uniform', 'normal'] if distribution == 'uniform': nn.init.kaiming_uniform_( module.weight, mode=mode, nonlinearity=nonlinearity) else: nn.init.kaiming_normal_( module.weight, mode=mode, nonlinearity=nonlinearity) if hasattr(module, 'bias'): nn.init.constant_(module.bias, bias) def bias_init_with_prob(prior_prob): """ initialize conv/fc bias value according to giving probablity""" bias_init = float(-np.log((1 - prior_prob) / prior_prob)) return bias_init
Cream/CDARTS/CDARTS_detection/mmdet/models/utils/weight_init.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmdet/models/utils/weight_init.py", "repo_id": "Cream", "token_count": 652 }
289
from .functions.masked_conv import masked_conv2d from .modules.masked_conv import MaskedConv2d __all__ = ['masked_conv2d', 'MaskedConv2d']
Cream/CDARTS/CDARTS_detection/mmdet/ops/masked_conv/__init__.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmdet/ops/masked_conv/__init__.py", "repo_id": "Cream", "token_count": 54 }
290
from .roi_align import RoIAlign, roi_align __all__ = ['roi_align', 'RoIAlign']
Cream/CDARTS/CDARTS_detection/mmdet/ops/roi_align/__init__.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmdet/ops/roi_align/__init__.py", "repo_id": "Cream", "token_count": 35 }
291
from setuptools import setup from torch.utils.cpp_extension import BuildExtension, CUDAExtension setup( name='roi_pool', ext_modules=[ CUDAExtension('roi_pool_cuda', [ 'src/roi_pool_cuda.cpp', 'src/roi_pool_kernel.cu', ]) ], cmdclass={'build_ext': BuildExtension})
Cream/CDARTS/CDARTS_detection/mmdet/ops/roi_pool/setup.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmdet/ops/roi_pool/setup.py", "repo_id": "Cream", "token_count": 150 }
292
import contextlib import sys import time import torch if sys.version_info >= (3, 7): @contextlib.contextmanager def profile_time(trace_name, name, enabled=True, stream=None, end_stream=None): """Print time spent by CPU and GPU. Useful as a temporary context manager to find sweet spots of code suitable for async implementation. """ if (not enabled) or not torch.cuda.is_available(): yield return stream = stream if stream else torch.cuda.current_stream() end_stream = end_stream if end_stream else stream start = torch.cuda.Event(enable_timing=True) end = torch.cuda.Event(enable_timing=True) stream.record_event(start) try: cpu_start = time.monotonic() yield finally: cpu_end = time.monotonic() end_stream.record_event(end) end.synchronize() cpu_time = (cpu_end - cpu_start) * 1000 gpu_time = start.elapsed_time(end) msg = "{} {} cpu_time {:.2f} ms ".format(trace_name, name, cpu_time) msg += "gpu_time {:.2f} ms stream {}".format(gpu_time, stream) print(msg, end_stream)
Cream/CDARTS/CDARTS_detection/mmdet/utils/profiling.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmdet/utils/profiling.py", "repo_id": "Cream", "token_count": 685 }
293
# ------------------------------------------------------------------------------ # Loads Cityscapes semantic dataset. # Written by Bowen Cheng ([email protected]) # ------------------------------------------------------------------------------ import glob import os import numpy as np from .base_dataset import BaseDataset from .utils import DatasetDescriptor from ..transforms import build_transforms _CITYSCAPES_INFORMATION = DatasetDescriptor( splits_to_sizes={'train': 2975, 'trainval': 3475, 'val': 500, 'test': 1525}, num_classes=19, ignore_label=255, ) _CITYSCAPES_TRAIN_ID_TO_EVAL_ID = [7, 8, 11, 12, 13, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 31, 32, 33] # A map from data type to folder name that saves the data. _FOLDERS_MAP = { 'image': 'leftImg8bit', 'label': 'gtFine', } # A map from data type to filename postfix. _POSTFIX_MAP = { 'image': '_leftImg8bit', 'label': '_gtFine_labelTrainIds', } # A map from data type to data format. _DATA_FORMAT_MAP = { 'image': 'png', 'label': 'png', } class Cityscapes(BaseDataset): """ Cityscapes semantic segmentation dataset. Arguments: root: Str, root directory. split: Str, data split, e.g. train/val/test. is_train: Bool, for training or testing. crop_size: Tuple, crop size. mirror: Bool, whether to apply random horizontal flip. min_scale: Float, min scale in scale augmentation. max_scale: Float, max scale in scale augmentation. scale_step_size: Float, step size to select random scale. mean: Tuple, image mean. std: Tuple, image std. """ def __init__(self, root, split, is_train=True, crop_size=(513, 1025), mirror=True, min_scale=0.5, max_scale=2., scale_step_size=0.25, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), **kwargs): super(Cityscapes, self).__init__(root, split, is_train, crop_size, mirror, min_scale, max_scale, scale_step_size, mean, std) self.num_classes = _CITYSCAPES_INFORMATION.num_classes self.ignore_label = _CITYSCAPES_INFORMATION.ignore_label self.label_pad_value = (self.ignore_label, ) # Get image and annotation list. self.img_list = self._get_files('image', self.split) self.ann_list = self._get_files('label', self.split) assert len(self) == _CITYSCAPES_INFORMATION.splits_to_sizes[self.split] self.transform = build_transforms(self, is_train) def _get_files(self, data, dataset_split): """Gets files for the specified data type and dataset split. Args: data: String, desired data ('image' or 'label'). dataset_split: String, dataset split ('train', 'val', 'test') Returns: A list of sorted file names or None when getting label for test set. """ if data == 'label' and dataset_split == 'test': return None pattern = '*%s.%s' % (_POSTFIX_MAP[data], _DATA_FORMAT_MAP[data]) search_files = os.path.join( self.root, _FOLDERS_MAP[data], dataset_split, '*', pattern) filenames = glob.glob(search_files) return sorted(filenames) @staticmethod def train_id_to_eval_id(): return _CITYSCAPES_TRAIN_ID_TO_EVAL_ID def _convert_train_id_to_eval_id(self, prediction): """Converts the predicted label for evaluation. There are cases where the training labels are not equal to the evaluation labels. This function is used to perform the conversion so that we could evaluate the results on the evaluation server. Args: prediction: Semantic segmentation prediction. Returns: Semantic segmentation prediction whose labels have been changed. """ converted_prediction = prediction.copy() for train_id, eval_id in enumerate(self.train_id_to_eval_id()): converted_prediction[prediction == train_id] = eval_id return converted_prediction @staticmethod def create_label_colormap(): """Creates a label colormap used in CITYSCAPES segmentation benchmark. Returns: A colormap for visualizing segmentation results. """ colormap = np.zeros((256, 3), dtype=np.uint8) colormap[0] = [128, 64, 128] colormap[1] = [244, 35, 232] colormap[2] = [70, 70, 70] colormap[3] = [102, 102, 156] colormap[4] = [190, 153, 153] colormap[5] = [153, 153, 153] colormap[6] = [250, 170, 30] colormap[7] = [220, 220, 0] colormap[8] = [107, 142, 35] colormap[9] = [152, 251, 152] colormap[10] = [70, 130, 180] colormap[11] = [220, 20, 60] colormap[12] = [255, 0, 0] colormap[13] = [0, 0, 142] colormap[14] = [0, 0, 70] colormap[15] = [0, 60, 100] colormap[16] = [0, 80, 100] colormap[17] = [0, 0, 230] colormap[18] = [119, 11, 32] return colormap
Cream/CDARTS/CDARTS_segmentation/dataloaders/segdatasets/cityscapes.py/0
{ "file_path": "Cream/CDARTS/CDARTS_segmentation/dataloaders/segdatasets/cityscapes.py", "repo_id": "Cream", "token_count": 2451 }
294
# ------------------------------------------------------------------------------ # Reference: https://github.com/facebookresearch/detectron2/blob/master/detectron2/evaluation/panoptic_evaluation.py # Modified by Bowen Cheng ([email protected]) # ------------------------------------------------------------------------------ import contextlib import io import logging from collections import OrderedDict import os import json import numpy as np from fvcore.common.file_io import PathManager from segmentation.utils import save_annotation class CityscapesPanopticEvaluator: """ Evaluate panoptic segmentation """ def __init__(self, output_dir=None, train_id_to_eval_id=None, label_divisor=1000, void_label=255000, gt_dir='./datasets/cityscapes', split='val', num_classes=19): """ Args: corresponding pixels should be ignored. output_dir (str): an output directory to dump results. train_id_to_eval_id (list): maps training id to evaluation id. label_divisor (int): void_label (int): gt_dir (str): path to ground truth annotations. split (str): evaluation split. num_classes (int): number of classes. """ if output_dir is None: raise ValueError('Must provide a output directory.') self._output_dir = output_dir if self._output_dir: PathManager.mkdirs(self._output_dir) self._panoptic_dir = os.path.join(self._output_dir, 'predictions') if self._panoptic_dir: PathManager.mkdirs(self._panoptic_dir) self._predictions = [] self._predictions_json = os.path.join(output_dir, 'predictions.json') self._train_id_to_eval_id = train_id_to_eval_id self._label_divisor = label_divisor self._void_label = void_label self._num_classes = num_classes self._logger = logging.getLogger(__name__) self._gt_json_file = os.path.join(gt_dir, 'gtFine', 'cityscapes_panoptic_{}.json'.format(split)) self._gt_folder = os.path.join(gt_dir, 'gtFine', 'cityscapes_panoptic_{}'.format(split)) self._pred_json_file = os.path.join(output_dir, 'predictions.json') self._pred_folder = self._panoptic_dir self._resultsFile = os.path.join(output_dir, 'resultPanopticSemanticLabeling.json') @staticmethod def id2rgb(id_map): if isinstance(id_map, np.ndarray): id_map_copy = id_map.copy() rgb_shape = tuple(list(id_map.shape) + [3]) rgb_map = np.zeros(rgb_shape, dtype=np.uint8) for i in range(3): rgb_map[..., i] = id_map_copy % 256 id_map_copy //= 256 return rgb_map color = [] for _ in range(3): color.append(id_map % 256) id_map //= 256 return color def update(self, panoptic, image_filename=None, image_id=None): if image_filename is None: raise ValueError('Need to provide image_filename.') if image_id is None: raise ValueError('Need to provide image_id.') # Change void region. panoptic[panoptic == self._void_label] = 0 segments_info = [] for pan_lab in np.unique(panoptic): pred_class = pan_lab // self._label_divisor if self._train_id_to_eval_id is not None: pred_class = self._train_id_to_eval_id[pred_class] segments_info.append( { 'id': int(pan_lab), 'category_id': int(pred_class), } ) save_annotation(self.id2rgb(panoptic), self._panoptic_dir, image_filename, add_colormap=False) self._predictions.append( { 'image_id': image_id, 'file_name': image_filename + '.png', 'segments_info': segments_info, } ) def evaluate(self): import cityscapesscripts.evaluation.evalPanopticSemanticLabeling as cityscapes_eval gt_json_file = self._gt_json_file gt_folder = self._gt_folder pred_json_file = self._pred_json_file pred_folder = self._pred_folder resultsFile = self._resultsFile with open(gt_json_file, "r") as f: json_data = json.load(f) json_data["annotations"] = self._predictions with PathManager.open(self._predictions_json, "w") as f: f.write(json.dumps(json_data)) with contextlib.redirect_stdout(io.StringIO()): results = cityscapes_eval.evaluatePanoptic(gt_json_file, gt_folder, pred_json_file, pred_folder, resultsFile) self._logger.info(results) return results
Cream/CDARTS/CDARTS_segmentation/segmentation/evaluation/panoptic.py/0
{ "file_path": "Cream/CDARTS/CDARTS_segmentation/segmentation/evaluation/panoptic.py", "repo_id": "Cream", "token_count": 2162 }
295
from torch import nn from .criterion import RegularCE, OhemCE, DeepLabCE L1Loss = nn.L1Loss MSELoss = nn.MSELoss CrossEntropyLoss = nn.CrossEntropyLoss
Cream/CDARTS/CDARTS_segmentation/segmentation/model/loss/__init__.py/0
{ "file_path": "Cream/CDARTS/CDARTS_segmentation/segmentation/model/loss/__init__.py", "repo_id": "Cream", "token_count": 63 }
296
# ------------------------------------------------------------------------------ # This file contains primitives for multi-gpu communication. # This is useful when doing distributed training. # Reference: https://github.com/facebookresearch/detectron2/blob/master/detectron2/utils/comm.py # Modified by Bowen Cheng ([email protected]) # ------------------------------------------------------------------------------ import functools import logging import numpy as np import pickle import torch import torch.distributed as dist _LOCAL_PROCESS_GROUP = None """ A torch process group which only includes processes that on the same machine as the current process. This variable is set when processes are spawned by `launch()` in "engine/launch.py". """ def get_world_size() -> int: if not dist.is_available(): return 1 if not dist.is_initialized(): return 1 return dist.get_world_size() def get_rank() -> int: if not dist.is_available(): return 0 if not dist.is_initialized(): return 0 return dist.get_rank() def get_local_rank() -> int: """ Returns: The rank of the current process within the local (per-machine) process group. """ if not dist.is_available(): return 0 if not dist.is_initialized(): return 0 assert _LOCAL_PROCESS_GROUP is not None return dist.get_rank(group=_LOCAL_PROCESS_GROUP) def get_local_size() -> int: """ Returns: The size of the per-machine process group, i.e. the number of processes per machine. """ if not dist.is_available(): return 1 if not dist.is_initialized(): return 1 return dist.get_world_size(group=_LOCAL_PROCESS_GROUP) def is_main_process() -> bool: return get_rank() == 0 def synchronize(): """ Helper function to synchronize (barrier) among all processes when using distributed training """ if not dist.is_available(): return if not dist.is_initialized(): return world_size = dist.get_world_size() if world_size == 1: return dist.barrier() @functools.lru_cache() def _get_global_gloo_group(): """ Return a process group based on gloo backend, containing all the ranks The result is cached. """ if dist.get_backend() == "nccl": return dist.new_group(backend="gloo") else: return dist.group.WORLD def _serialize_to_tensor(data, group): backend = dist.get_backend(group) assert backend in ["gloo", "nccl"] device = torch.device("cpu" if backend == "gloo" else "cuda") buffer = pickle.dumps(data) if len(buffer) > 1024 ** 3: logger = logging.getLogger(__name__) logger.warning( "Rank {} trying to all-gather {:.2f} GB of data on device {}".format( get_rank(), len(buffer) / (1024 ** 3), device ) ) storage = torch.ByteStorage.from_buffer(buffer) tensor = torch.ByteTensor(storage).to(device=device) return tensor def _pad_to_largest_tensor(tensor, group): """ Returns: list[int]: size of the tensor, on each rank Tensor: padded tensor that has the max size """ world_size = dist.get_world_size(group=group) assert ( world_size >= 1 ), "comm.gather/all_gather must be called from ranks within the given group!" local_size = torch.tensor([tensor.numel()], dtype=torch.int64, device=tensor.device) size_list = [ torch.zeros([1], dtype=torch.int64, device=tensor.device) for _ in range(world_size) ] dist.all_gather(size_list, local_size, group=group) size_list = [int(size.item()) for size in size_list] max_size = max(size_list) # we pad the tensor because torch all_gather does not support # gathering tensors of different shapes if local_size != max_size: padding = torch.zeros((max_size - local_size,), dtype=torch.uint8, device=tensor.device) tensor = torch.cat((tensor, padding), dim=0) return size_list, tensor def all_gather(data, group=None): """ Run all_gather on arbitrary picklable data (not necessarily tensors). Args: data: any picklable object group: a torch process group. By default, will use a group which contains all ranks on gloo backend. Returns: list[data]: list of data gathered from each rank """ if get_world_size() == 1: return [data] if group is None: group = _get_global_gloo_group() if dist.get_world_size(group) == 1: return [data] tensor = _serialize_to_tensor(data, group) size_list, tensor = _pad_to_largest_tensor(tensor, group) max_size = max(size_list) # receiving Tensor from all ranks tensor_list = [ torch.empty((max_size,), dtype=torch.uint8, device=tensor.device) for _ in size_list ] dist.all_gather(tensor_list, tensor, group=group) data_list = [] for size, tensor in zip(size_list, tensor_list): buffer = tensor.cpu().numpy().tobytes()[:size] data_list.append(pickle.loads(buffer)) return data_list def gather(data, dst=0, group=None): """ Run gather on arbitrary picklable data (not necessarily tensors). Args: data: any picklable object dst (int): destination rank group: a torch process group. By default, will use a group which contains all ranks on gloo backend. Returns: list[data]: on dst, a list of data gathered from each rank. Otherwise, an empty list. """ if get_world_size() == 1: return [data] if group is None: group = _get_global_gloo_group() if dist.get_world_size(group=group) == 1: return [data] rank = dist.get_rank(group=group) tensor = _serialize_to_tensor(data, group) size_list, tensor = _pad_to_largest_tensor(tensor, group) # receiving Tensor from all ranks if rank == dst: max_size = max(size_list) tensor_list = [ torch.empty((max_size,), dtype=torch.uint8, device=tensor.device) for _ in size_list ] dist.gather(tensor, tensor_list, dst=dst, group=group) data_list = [] for size, tensor in zip(size_list, tensor_list): buffer = tensor.cpu().numpy().tobytes()[:size] data_list.append(pickle.loads(buffer)) return data_list else: dist.gather(tensor, [], dst=dst, group=group) return [] def shared_random_seed(): """ Returns: int: a random number that is the same across all workers. If workers need a shared RNG, they can use this shared seed to create one. All workers must call this function, otherwise it will deadlock. """ ints = np.random.randint(2 ** 31) all_ints = all_gather(ints) return all_ints[0] def reduce_dict(input_dict, average=True): """ Reduce the values in the dictionary from all processes so that process with rank 0 has the reduced results. Args: input_dict (dict): inputs to be reduced. All the values must be scalar CUDA Tensor. average (bool): whether to do average or sum Returns: a dict with the same keys as input_dict, after reduction. """ world_size = get_world_size() if world_size < 2: return input_dict with torch.no_grad(): names = [] values = [] # sort the keys so that they are consistent across processes for k in sorted(input_dict.keys()): names.append(k) values.append(input_dict[k]) values = torch.stack(values, dim=0) dist.reduce(values, dst=0) if dist.get_rank() == 0 and average: # only main process gets accumulated, so only divide by # world_size in this case values /= world_size reduced_dict = {k: v for k, v in zip(names, values)} return reduced_dict
Cream/CDARTS/CDARTS_segmentation/segmentation/utils/comm.py/0
{ "file_path": "Cream/CDARTS/CDARTS_segmentation/segmentation/utils/comm.py", "repo_id": "Cream", "token_count": 3158 }
297
import numpy as np from datasets.BaseDataset import BaseDataset class Cityscapes(BaseDataset): trans_labels = [7, 8, 11, 12, 13, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 31, 32, 33] @classmethod def get_class_colors(*args): return [[128, 64, 128], [244, 35, 232], [70, 70, 70], [102, 102, 156], [190, 153, 153], [153, 153, 153], [250, 170, 30], [220, 220, 0], [107, 142, 35], [152, 251, 152], [70, 130, 180], [220, 20, 60], [255, 0, 0], [0, 0, 142], [0, 0, 70], [0, 60, 100], [0, 80, 100], [0, 0, 230], [119, 11, 32]] @classmethod def get_class_names(*args): # class counting(gtFine) # 2953 2811 2934 970 1296 2949 1658 2808 2891 1654 2686 2343 1023 2832 # 359 274 142 513 1646 return ['road', 'sidewalk', 'building', 'wall', 'fence', 'pole', 'traffic light', 'traffic sign', 'vegetation', 'terrain', 'sky', 'person', 'rider', 'car', 'truck', 'bus', 'train', 'motorcycle', 'bicycle'] @classmethod def transform_label(cls, pred, name): label = np.zeros(pred.shape) ids = np.unique(pred) for id in ids: label[np.where(pred == id)] = cls.trans_labels[id] new_name = (name.split('.')[0]).split('_')[:-1] new_name = '_'.join(new_name) + '.png' print('Trans', name, 'to', new_name, ' ', np.unique(np.array(pred, np.uint8)), ' ---------> ', np.unique(np.array(label, np.uint8))) return label, new_name
Cream/CDARTS/CDARTS_segmentation/tools/datasets/cityscapes/cityscapes.py/0
{ "file_path": "Cream/CDARTS/CDARTS_segmentation/tools/datasets/cityscapes/cityscapes.py", "repo_id": "Cream", "token_count": 823 }
298
""" Common distribution utilities Hacked by Hongyuan Yu """ from copy import deepcopy import torch from torch import distributed as dist import logging from collections import OrderedDict _logger = logging.getLogger(__name__) def reduce_tensor(tensor, n): rt = tensor.clone() dist.all_reduce(rt, op=dist.ReduceOp.SUM) rt /= n return rt class ModelEma: """ Model Exponential Moving Average Keep a moving average of everything in the model state_dict (parameters and buffers). This is intended to allow functionality like https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage A smoothed version of the weights is necessary for some training schemes to perform well. E.g. Google's hyper-params for training MNASNet, MobileNet-V3, EfficientNet, etc that use RMSprop with a short 2.4-3 epoch decay period and slow LR decay rate of .96-.99 requires EMA smoothing of weights to match results. Pay attention to the decay constant you are using relative to your update count per epoch. To keep EMA from using GPU resources, set device='cpu'. This will save a bit of memory but disable validation of the EMA weights. Validation will have to be done manually in a separate process, or after the training stops converging. This class is sensitive where it is initialized in the sequence of model init, GPU assignment and distributed training wrappers. I've tested with the sequence in my own train.py for torch.DataParallel, apex.DDP, and single-GPU. """ def __init__(self, model, decay=0.9999, device='', resume=''): # make a copy of the model for accumulating moving average of weights self.ema = deepcopy(model) self.ema.eval() self.decay = decay self.device = device # perform ema on different device from model if set if device: self.ema.to(device=device) self.ema_has_module = hasattr(self.ema, 'module') if resume: self._load_checkpoint(resume) for p in self.ema.parameters(): p.requires_grad_(False) def _load_checkpoint(self, checkpoint_path): checkpoint = torch.load(checkpoint_path, map_location='cpu') assert isinstance(checkpoint, dict) if 'state_dict_ema' in checkpoint: new_state_dict = OrderedDict() for k, v in checkpoint['state_dict_ema'].items(): # ema model may have been wrapped by DataParallel, and need module prefix if self.ema_has_module: name = 'module.' + k if not k.startswith('module') else k else: name = k new_state_dict[name] = v self.ema.load_state_dict(new_state_dict) _logger.info("Loaded state_dict_ema") else: _logger.warning("Failed to find state_dict_ema, starting from loaded model weights") def update(self, model): # correct a mismatch in state dict keys needs_module = hasattr(model, 'module') and not self.ema_has_module with torch.no_grad(): msd = model.state_dict() for k, ema_v in self.ema.state_dict().items(): if needs_module: k = 'module.' + k model_v = msd[k].detach() if self.device: model_v = model_v.to(device=self.device) ema_v.copy_(ema_v * self.decay + (1. - self.decay) * model_v)
Cream/CDARTS/CDARTS_segmentation/tools/utils/dist_utils.py/0
{ "file_path": "Cream/CDARTS/CDARTS_segmentation/tools/utils/dist_utils.py", "repo_id": "Cream", "token_count": 1391 }
299
# encoding: utf-8 from __future__ import absolute_import from __future__ import division from __future__ import print_function import os.path as osp import sys import numpy as np from easydict import EasyDict as edict C = edict() config = C cfg = C C.seed = 12345 """please config ROOT_dir and user when u first using""" #C.repo_name = 'FasterSeg' #C.abs_dir = osp.realpath(".") #C.this_dir = C.abs_dir.split(osp.sep)[-1] #C.root_dir = C.abs_dir[:C.abs_dir.index(C.repo_name) + len(C.repo_name)] C.abs_dir = osp.realpath(".") C.root_dir = osp.realpath("..") C.this_dir = C.abs_dir.split(osp.sep)[-1] C.log_dir = osp.abspath(osp.join(C.root_dir, 'log', C.this_dir)) """Data Dir""" C.dataset_path = "../DATASET/cityscapes/" C.img_root_folder = C.dataset_path C.gt_root_folder = C.dataset_path C.train_source = osp.join(C.dataset_path, "cityscapes_train_fine.txt") C.train_eval_source = osp.join(C.dataset_path, "cityscapes_train_val_fine.txt") C.eval_source = osp.join(C.dataset_path, "cityscapes_val_fine.txt") C.test_source = osp.join(C.dataset_path, "cityscapes_test.txt") """Path Config""" def add_path(path): if path not in sys.path: sys.path.insert(0, path) add_path(osp.join(C.root_dir, 'tools')) add_path(C.root_dir) """Image Config""" C.num_classes = 19 C.background = -1 C.image_mean = np.array([0.485, 0.456, 0.406]) C.image_std = np.array([0.229, 0.224, 0.225]) C.target_size = 1024 C.down_sampling = 1 # first down_sampling then crop ...... C.gt_down_sampling = 1 C.num_train_imgs = 2975 C.num_eval_imgs = 500 """ Settings for network, this would be different for each kind of model""" C.bn_eps = 1e-5 C.bn_momentum = 0.1 """Train Config""" C.lr = 0.01 C.momentum = 0.9 C.weight_decay = 5e-4 C.nepochs = 600 C.niters_per_epoch = 1000 C.num_workers = 4 C.train_scale_array = [0.75, 1, 1.25] """Eval Config""" C.eval_stride_rate = 5 / 6 C.eval_scale_array = [1, ] C.eval_flip = False C.eval_base_size = 1024 C.eval_crop_size = 1024 C.eval_height = 1024 C.eval_width = 2048 C.layers = 16 """ Train Config """ C.mode = "teacher" # "teacher" or "student" if C.mode == "teacher": ##### train teacher model only #################################### C.arch_idx = [1] # 0 for teacher C.branch = [3] C.width_mult_list = [4./12, 6./12, 8./12, 10./12, 1.,] # C.stem_head_width = [(1, 1)] C.stem_head_width = [(8./12, 8./12)] C.load_path = "search-224x448_F12.L16_batch2-20200828-201547" # path to the searched directory C.load_epoch = "last" # "last" or "int" (e.g. "30"): which epoch to load from the searched architecture # C.batch_size = 12 C.batch_size = 4 C.Fch = 12 C.image_height = 512 C.image_width = 1024 C.save = "%dx%d_model_batch%d"%(C.image_height, C.image_width, C.batch_size) elif C.mode == "student": ##### train student with KL distillation from teacher ############## C.arch_idx = [0, 1] # 0 for teacher, 1 for student C.branch = [2, 2] C.width_mult_list = [4./12, 6./12, 8./12, 10./12, 1.,] C.stem_head_width = [(1, 1), (8./12, 8./12),] C.load_path = "fasterseg" # path to the searched directory C.teacher_path = "fasterseg" # where to load the pretrained teacher's weight C.load_epoch = "last" # "last" or "int" (e.g. "30") C.batch_size = 12 C.Fch = 12 C.image_height = 512 C.image_width = 1024 C.save = "%dx%d_student_batch%d"%(C.image_height, C.image_width, C.batch_size) ######################################## C.is_test = False # if True, prediction files for the test set will be generated C.is_eval = False # if True, the train.py will only do evaluation for once C.eval_path = "fasterseg" # path to pretrained directory to be evaluated
Cream/CDARTS/CDARTS_segmentation/train/config_train.py/0
{ "file_path": "Cream/CDARTS/CDARTS_segmentation/train/config_train.py", "repo_id": "Cream", "token_count": 1549 }
300
import numpy as np import torch class Seg_Metrics(object): def __init__(self, n_classes=19): self.n_classes = n_classes self.total_inter = np.zeros(n_classes) self.total_union = np.zeros(n_classes) def update(self, inter, union, N): self.total_inter += inter * N self.total_union += union * N def get_scores(self): idx = self.total_union > 0 IoU = 1.0 * self.total_inter[idx] / (np.spacing(1) + self.total_union[idx]) mIoU = IoU.mean() return mIoU def reset(self): self.total_inter = np.zeros(n_classes) self.total_union = np.zeros(n_classes) def batch_pix_accuracy(predict, target): """Batch Pixel Accuracy Args: predict: input 4D tensor target: label 3D tensor """ _, predict = torch.max(predict, 1) predict = predict.cpu().numpy() + 1 target = target.cpu().numpy() + 1 pixel_labeled = np.sum(target > 0) pixel_correct = np.sum((predict == target)*(target > 0)) assert pixel_correct <= pixel_labeled, \ "Correct area should be smaller than Labeled" return pixel_correct, pixel_labeled def batch_intersection_union(predict, target, nclass): """Batch Intersection of Union Args: predict: input 4D tensor target: label 3D tensor nclass: number of categories (int) """ _, predict = torch.max(predict, 1) mini = 1 maxi = nclass nbins = nclass predict = predict.cpu().numpy() + 1 target = target.cpu().numpy() + 1 k = (target >= 1) & (target <= nclass) # predict = predict * (target > 0).astype(predict.dtype) predict = predict * k.astype(predict.dtype) intersection = predict * (predict == target) # areas of intersection and union area_inter, _ = np.histogram(intersection, bins=nbins, range=(mini, maxi)) area_pred, _ = np.histogram(predict, bins=nbins, range=(mini, maxi)) area_lab, _ = np.histogram(target, bins=nbins, range=(mini, maxi)) area_union = area_pred + area_lab - area_inter assert (area_inter <= area_union).all(), \ "Intersection area should be smaller than Union area" return area_inter, area_union # ref https://github.com/CSAILVision/sceneparsing/blob/master/evaluationCode/utils_eval.py def pixel_accuracy(im_pred, im_lab): im_pred = np.asarray(im_pred) im_lab = np.asarray(im_lab) # Remove classes from unlabeled pixels in gt image. # We should not penalize detections in unlabeled portions of the image. pixel_labeled = np.sum(im_lab > 0) pixel_correct = np.sum((im_pred == im_lab) * (im_lab > 0)) #pixel_accuracy = 1.0 * pixel_correct / pixel_labeled return pixel_correct, pixel_labeled def intersection_and_union(im_pred, im_lab, num_class): im_pred = np.asarray(im_pred) im_lab = np.asarray(im_lab) # Remove classes from unlabeled pixels in gt image. im_pred = im_pred * (im_lab > 0) # Compute area intersection: intersection = im_pred * (im_pred == im_lab) area_inter, _ = np.histogram(intersection, bins=num_class-1, range=(1, num_class - 1)) # Compute area union: area_pred, _ = np.histogram(im_pred, bins=num_class-1, range=(1, num_class - 1)) area_lab, _ = np.histogram(im_lab, bins=num_class-1, range=(1, num_class - 1)) area_union = area_pred + area_lab - area_inter return area_inter, area_union
Cream/CDARTS/CDARTS_segmentation/train/seg_metrics.py/0
{ "file_path": "Cream/CDARTS/CDARTS_segmentation/train/seg_metrics.py", "repo_id": "Cream", "token_count": 1478 }
301
import torch import numpy as np import torchvision.datasets as dset import torchvision.transforms as transforms from datasets.data_utils import SubsetDistributedSampler from datasets.data_utils import CIFAR10Policy, Cutout def data_transforms_cifar(config, cutout=False): CIFAR_MEAN = [0.49139968, 0.48215827, 0.44653124] CIFAR_STD = [0.24703233, 0.24348505, 0.26158768] if config.use_aa: train_transform = transforms.Compose([ transforms.RandomCrop(32, padding=4, fill=128), transforms.RandomHorizontalFlip(), CIFAR10Policy(), transforms.ToTensor(), transforms.Normalize(CIFAR_MEAN, CIFAR_STD), ]) else: train_transform = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(CIFAR_MEAN, CIFAR_STD), ]) if cutout: train_transform.transforms.append(Cutout(config.cutout_length)) valid_transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(CIFAR_MEAN, CIFAR_STD), ]) return train_transform, valid_transform def get_search_datasets(config): dataset = config.dataset.lower() if dataset == 'cifar10': dset_cls = dset.CIFAR10 n_classes = 10 elif dataset == 'cifar100': dset_cls = dset.CIFAR100 n_classes = 100 else: raise Exception("Not support dataset!") train_transform, valid_transform = data_transforms_cifar(config, cutout=False) train_data = dset_cls(root=config.data_dir, train=True, download=True, transform=train_transform) test_data = dset_cls(root=config.data_dir, train=False, download=True, transform=valid_transform) num_train = len(train_data) # num_train = 512 indices = list(range(num_train)) split_mid = int(np.floor(0.5 * num_train)) train_sampler = SubsetDistributedSampler(train_data, indices[:split_mid]) valid_sampler = SubsetDistributedSampler(train_data, indices[split_mid:num_train]) train_loader = torch.utils.data.DataLoader( train_data, batch_size=config.batch_size, sampler=train_sampler, pin_memory=True, num_workers=config.workers) valid_loader = torch.utils.data.DataLoader( train_data, batch_size=config.batch_size, sampler=valid_sampler, pin_memory=True, num_workers=config.workers) return [train_loader, valid_loader], [train_sampler, valid_sampler] def get_augment_datasets(config): dataset = config.dataset.lower() if dataset == 'cifar10': dset_cls = dset.CIFAR10 elif dataset == 'cifar100': dset_cls = dset.CIFAR100 else: raise Exception("Not support dataset!") train_transform, valid_transform = data_transforms_cifar(config, cutout=True) train_data = dset_cls(root=config.data_dir, train=True, download=True, transform=train_transform) test_data = dset_cls(root=config.data_dir, train=False, download=True, transform=valid_transform) train_sampler = torch.utils.data.distributed.DistributedSampler(train_data) test_sampler = torch.utils.data.distributed.DistributedSampler(test_data) train_loader = torch.utils.data.DataLoader( train_data, batch_size=config.batch_size, sampler=train_sampler, pin_memory=True, num_workers=config.workers) test_loader = torch.utils.data.DataLoader( test_data, batch_size=config.batch_size, sampler=test_sampler, pin_memory=True, num_workers=config.workers) return [train_loader, test_loader], [train_sampler, test_sampler]
Cream/CDARTS/benchmark201/datasets/cifar.py/0
{ "file_path": "Cream/CDARTS/benchmark201/datasets/cifar.py", "repo_id": "Cream", "token_count": 1462 }
302
""" Genotypes - Genotype: normal/reduce gene + normal/reduce cell output connection (concat) - gene: discrete ops information (w/o output connection) - dag: real ops (can be mixed or discrete, but Genotype has only discrete information itself) """ from collections import namedtuple import torch import torch.nn as nn import torch.nn.functional as F from copy import deepcopy from models import ops Genotype = namedtuple('Genotype', 'normal normal_concat reduce reduce_concat') def to_dag(C_in, gene, reduction, bn_affine=True): """ generate discrete ops from gene """ dag = nn.ModuleList() for edges in gene: row = nn.ModuleList() for op_name, s_idx in edges: # reduction cell & from input nodes => stride = 2 stride = 2 if reduction and s_idx < 2 else 1 op = ops.OPS[op_name](C_in, stride, bn_affine) if not isinstance(op, ops.Identity): # Identity does not use drop path op = nn.Sequential( op, ops.DropPath_() ) op.s_idx = s_idx row.append(op) dag.append(row) return dag def from_str(s): """ generate genotype from string e.g. "Genotype( normal=[[('sep_conv_3x3', 0), ('sep_conv_3x3', 1)], [('sep_conv_3x3', 1), ('dil_conv_3x3', 2)], [('sep_conv_3x3', 1), ('sep_conv_3x3', 2)], [('sep_conv_3x3', 1), ('dil_conv_3x3', 4)]], normal_concat=range(2, 6), reduce=[[('max_pool_3x3', 0), ('max_pool_3x3', 1)], [('max_pool_3x3', 0), ('skip_connect', 2)], [('max_pool_3x3', 0), ('skip_connect', 2)], [('max_pool_3x3', 0), ('skip_connect', 2)]], reduce_concat=range(2, 6))" """ genotype = eval(s) return genotype def parse(alpha, beta, k): """ parse continuous alpha to discrete gene. alpha is ParameterList: ParameterList [ Parameter(n_edges1, n_ops), Parameter(n_edges2, n_ops), ... ] beta is ParameterList: ParameterList [ Parameter(n_edges1), Parameter(n_edges2), ... ] gene is list: [ [('node1_ops_1', node_idx), ..., ('node1_ops_k', node_idx)], [('node2_ops_1', node_idx), ..., ('node2_ops_k', node_idx)], ... ] each node has two edges (k=2) in CNN. """ gene = [] assert PRIMITIVES[-1] == 'none' # assume last PRIMITIVE is 'none' # 1) Convert the mixed op to discrete edge (single op) by choosing top-1 weight edge # 2) Choose top-k edges per node by edge score (top-1 weight in edge) # output the connect idx[(node_idx, connect_idx, op_idx).... () ()] connect_idx = [] for edges, w in zip(alpha, beta): # edges: Tensor(n_edges, n_ops) edge_max, primitive_indices = torch.topk((w.view(-1, 1) * edges)[:, :-1], 1) # ignore 'none' topk_edge_values, topk_edge_indices = torch.topk(edge_max.view(-1), k) node_gene = [] node_idx = [] for edge_idx in topk_edge_indices: prim_idx = primitive_indices[edge_idx] prim = PRIMITIVES[prim_idx] node_gene.append((prim, edge_idx.item())) node_idx.append((edge_idx.item(), prim_idx.item())) gene.append(node_gene) connect_idx.append(node_idx) return gene, connect_idx def parse_gumbel(alpha, beta, k): """ parse continuous alpha to discrete gene. alpha is ParameterList: ParameterList [ Parameter(n_edges1, n_ops), Parameter(n_edges2, n_ops), ... ] beta is ParameterList: ParameterList [ Parameter(n_edges1), Parameter(n_edges2), ... ] gene is list: [ [('node1_ops_1', node_idx), ..., ('node1_ops_k', node_idx)], [('node2_ops_1', node_idx), ..., ('node2_ops_k', node_idx)], ... ] each node has two edges (k=2) in CNN. """ gene = [] assert PRIMITIVES[-1] == 'none' # assume last PRIMITIVE is 'none' # 1) Convert the mixed op to discrete edge (single op) by choosing top-1 weight edge # 2) Choose top-k edges per node by edge score (top-1 weight in edge) # output the connect idx[(node_idx, connect_idx, op_idx).... () ()] connect_idx = [] for edges, w in zip(alpha, beta): # edges: Tensor(n_edges, n_ops) discrete_a = F.gumbel_softmax(edges[:, :-1].reshape(-1), tau=1, hard=True) for i in range(k-1): discrete_a = discrete_a + F.gumbel_softmax(edges[:, :-1].reshape(-1), tau=1, hard=True) discrete_a = discrete_a.reshape(-1, len(PRIMITIVES)-1) reserved_edge = (discrete_a>0).nonzero() node_gene = [] node_idx = [] for i in range(reserved_edge.shape[0]): edge_idx = reserved_edge[i][0].item() prim_idx = reserved_edge[i][1].item() prim = PRIMITIVES[prim_idx] node_gene.append((prim, edge_idx)) node_idx.append((edge_idx, prim_idx)) gene.append(node_gene) connect_idx.append(node_idx) return gene, connect_idx def get_combination(space, num): combs = [] for i in range(num): if i == 0: for func in space: combs.append( [(func, i)] ) else: new_combs = [] for string in combs: for func in space: xstring = string + [(func, i)] new_combs.append( xstring ) combs = new_combs return combs class Structure: def __init__(self, genotype): assert isinstance(genotype, list) or isinstance(genotype, tuple), 'invalid class of genotype : {:}'.format(type(genotype)) self.node_num = len(genotype) + 1 self.nodes = [] self.node_N = [] for idx, node_info in enumerate(genotype): assert isinstance(node_info, list) or isinstance(node_info, tuple), 'invalid class of node_info : {:}'.format(type(node_info)) assert len(node_info) >= 1, 'invalid length : {:}'.format(len(node_info)) for node_in in node_info: assert isinstance(node_in, list) or isinstance(node_in, tuple), 'invalid class of in-node : {:}'.format(type(node_in)) assert len(node_in) == 2 and node_in[1] <= idx, 'invalid in-node : {:}'.format(node_in) self.node_N.append( len(node_info) ) self.nodes.append( tuple(deepcopy(node_info)) ) def tolist(self, remove_str): # convert this class to the list, if remove_str is 'none', then remove the 'none' operation. # note that we re-order the input node in this function # return the-genotype-list and success [if unsuccess, it is not a connectivity] genotypes = [] for node_info in self.nodes: node_info = list( node_info ) node_info = sorted(node_info, key=lambda x: (x[1], x[0])) node_info = tuple(filter(lambda x: x[0] != remove_str, node_info)) if len(node_info) == 0: return None, False genotypes.append( node_info ) return genotypes, True def node(self, index): assert index > 0 and index <= len(self), 'invalid index={:} < {:}'.format(index, len(self)) return self.nodes[index] def tostr(self): strings = [] for node_info in self.nodes: string = '|'.join([x[0]+'~{:}'.format(x[1]) for x in node_info]) string = '|{:}|'.format(string) strings.append( string ) return '+'.join(strings) def check_valid(self): nodes = {0: True} for i, node_info in enumerate(self.nodes): sums = [] for op, xin in node_info: if op == 'none' or nodes[xin] is False: x = False else: x = True sums.append( x ) nodes[i+1] = sum(sums) > 0 return nodes[len(self.nodes)] def to_unique_str(self, consider_zero=False): # this is used to identify the isomorphic cell, which rerquires the prior knowledge of operation # two operations are special, i.e., none and skip_connect nodes = {0: '0'} for i_node, node_info in enumerate(self.nodes): cur_node = [] for op, xin in node_info: if consider_zero is None: x = '('+nodes[xin]+')' + '@{:}'.format(op) elif consider_zero: if op == 'none' or nodes[xin] == '#': x = '#' # zero elif op == 'skip_connect': x = nodes[xin] else: x = '('+nodes[xin]+')' + '@{:}'.format(op) else: if op == 'skip_connect': x = nodes[xin] else: x = '('+nodes[xin]+')' + '@{:}'.format(op) cur_node.append(x) nodes[i_node+1] = '+'.join( sorted(cur_node) ) return nodes[ len(self.nodes) ] def check_valid_op(self, op_names): for node_info in self.nodes: for inode_edge in node_info: #assert inode_edge[0] in op_names, 'invalid op-name : {:}'.format(inode_edge[0]) if inode_edge[0] not in op_names: return False return True def __repr__(self): return ('{name}({node_num} nodes with {node_info})'.format(name=self.__class__.__name__, node_info=self.tostr(), **self.__dict__)) def __len__(self): return len(self.nodes) + 1 def __getitem__(self, index): return self.nodes[index] @staticmethod def str2structure(xstr): assert isinstance(xstr, str), 'must take string (not {:}) as input'.format(type(xstr)) nodestrs = xstr.split('+') genotypes = [] for i, node_str in enumerate(nodestrs): inputs = list(filter(lambda x: x != '', node_str.split('|'))) for xinput in inputs: assert len(xinput.split('~')) == 2, 'invalid input length : {:}'.format(xinput) inputs = ( xi.split('~') for xi in inputs ) input_infos = tuple( (op, int(IDX)) for (op, IDX) in inputs) genotypes.append( input_infos ) return Structure( genotypes ) @staticmethod def str2fullstructure(xstr, default_name='none'): assert isinstance(xstr, str), 'must take string (not {:}) as input'.format(type(xstr)) nodestrs = xstr.split('+') genotypes = [] for i, node_str in enumerate(nodestrs): inputs = list(filter(lambda x: x != '', node_str.split('|'))) for xinput in inputs: assert len(xinput.split('~')) == 2, 'invalid input length : {:}'.format(xinput) inputs = ( xi.split('~') for xi in inputs ) input_infos = list( (op, int(IDX)) for (op, IDX) in inputs) all_in_nodes= list(x[1] for x in input_infos) for j in range(i): if j not in all_in_nodes: input_infos.append((default_name, j)) node_info = sorted(input_infos, key=lambda x: (x[1], x[0])) genotypes.append( tuple(node_info) ) return Structure( genotypes ) @staticmethod def gen_all(search_space, num, return_ori): assert isinstance(search_space, list) or isinstance(search_space, tuple), 'invalid class of search-space : {:}'.format(type(search_space)) assert num >= 2, 'There should be at least two nodes in a neural cell instead of {:}'.format(num) all_archs = get_combination(search_space, 1) for i, arch in enumerate(all_archs): all_archs[i] = [ tuple(arch) ] for inode in range(2, num): cur_nodes = get_combination(search_space, inode) new_all_archs = [] for previous_arch in all_archs: for cur_node in cur_nodes: new_all_archs.append( previous_arch + [tuple(cur_node)] ) all_archs = new_all_archs if return_ori: return all_archs else: return [Structure(x) for x in all_archs] ResNet_CODE = Structure( [(('nor_conv_3x3', 0), ), # node-1 (('nor_conv_3x3', 1), ), # node-2 (('skip_connect', 0), ('skip_connect', 2))] # node-3 ) AllConv3x3_CODE = Structure( [(('nor_conv_3x3', 0), ), # node-1 (('nor_conv_3x3', 0), ('nor_conv_3x3', 1)), # node-2 (('nor_conv_3x3', 0), ('nor_conv_3x3', 1), ('nor_conv_3x3', 2))] # node-3 ) AllFull_CODE = Structure( [(('skip_connect', 0), ('nor_conv_1x1', 0), ('nor_conv_3x3', 0), ('avg_pool_3x3', 0)), # node-1 (('skip_connect', 0), ('nor_conv_1x1', 0), ('nor_conv_3x3', 0), ('avg_pool_3x3', 0), ('skip_connect', 1), ('nor_conv_1x1', 1), ('nor_conv_3x3', 1), ('avg_pool_3x3', 1)), # node-2 (('skip_connect', 0), ('nor_conv_1x1', 0), ('nor_conv_3x3', 0), ('avg_pool_3x3', 0), ('skip_connect', 1), ('nor_conv_1x1', 1), ('nor_conv_3x3', 1), ('avg_pool_3x3', 1), ('skip_connect', 2), ('nor_conv_1x1', 2), ('nor_conv_3x3', 2), ('avg_pool_3x3', 2))] # node-3 ) AllConv1x1_CODE = Structure( [(('nor_conv_1x1', 0), ), # node-1 (('nor_conv_1x1', 0), ('nor_conv_1x1', 1)), # node-2 (('nor_conv_1x1', 0), ('nor_conv_1x1', 1), ('nor_conv_1x1', 2))] # node-3 ) AllIdentity_CODE = Structure( [(('skip_connect', 0), ), # node-1 (('skip_connect', 0), ('skip_connect', 1)), # node-2 (('skip_connect', 0), ('skip_connect', 1), ('skip_connect', 2))] # node-3 ) architectures = {'resnet' : ResNet_CODE, 'all_c3x3': AllConv3x3_CODE, 'all_c1x1': AllConv1x1_CODE, 'all_idnt': AllIdentity_CODE, 'all_full': AllFull_CODE}
Cream/CDARTS/benchmark201/utils/genotypes.py/0
{ "file_path": "Cream/CDARTS/benchmark201/utils/genotypes.py", "repo_id": "Cream", "token_count": 5956 }
303
import torch import torch.nn as nn import torch.nn.functional as F import lib.utils.genotypes as gt import logging import copy from lib.models import ops from lib.models.search_cells import SearchCell from lib.models.augment_cells import AugmentCell from lib.models.aux_head import AuxiliaryHeadCIFAR, AuxiliaryHeadImageNet, DistillHeadCIFAR, DistillHeadImagenet from lib.models.model_augment import ModelAug class CDARTSController(nn.Module): """ CDARTS Controller""" def __init__(self, config, criterion, n_nodes=4, stem_multiplier=3, genotypes={}): """ args: """ super(CDARTSController, self).__init__() # some settings self.n_nodes = n_nodes self.n_ops = len(gt.PRIMITIVES) self.criterion = criterion self.layer_num = config.layer_num self.c_in = config.input_channels self.num_classes = config.n_classes # cifar10 or imagenet self.model_type = config.model_type self.stem_multiplier = stem_multiplier self.init_channel = config.init_channels self.res_stem = config.res_stem self.ensemble_sum = config.ensemble_sum self.use_ensemble_param = config.ensemble_param self.use_beta = config.use_beta self.bn_affine = config.bn_affine self.repeat_cell = config.repeat_cell self.fix_head = config.fix_head self.share_fc = config.share_fc self.sample_pretrain = config.sample_pretrain if self.model_type == 'cifar': self.layers = [3, 3, 2] self.layers_reduction = [True, True, False] self.augment_layers = [7, 7, 6] self.nas_layers = nn.ModuleList([None, None, None]) elif self.model_type == 'imagenet': if self.res_stem: self.layers = [2, 2, 2, 2] self.nas_layers = nn.ModuleList([None, None, None, None]) self.layers_reduction = [False, True, True, True] self.augment_layers = [3, 4, 3, 4] else: self.layers = [3, 3, 2] self.nas_layers = nn.ModuleList([None, None, None]) self.layers_reduction = [True, True, False] self.augment_layers = [5, 5, 4] else: raise Exception("Wrong model type!") # use genotypes to generate search layers self.genotypes = genotypes self.connects = {} self.fc_super = None self.fc_nas = None self.distill_aux_c1 = None self.distill_aux_c2 = None self.feature_extractor = None self.gap = nn.AdaptiveAvgPool2d(1) self.super_layers = nn.ModuleList() self.super_layers_arch = nn.ModuleList() self.super_layers_pool = nn.ModuleList() self.super_layers_pool_arch = nn.ModuleList() self.model_main = None self.build_init_model() ######################## ---------------------------- ######################## ######################## Functions for update modules ######################## ######################## ---------------------------- ######################## def build_init_model(self): self.extractor_grad = True if self.model_type == 'cifar': self.feature_extractor = self.cifar_stem(self.init_channel * self.stem_multiplier) reduction_p = False elif self.model_type == 'imagenet': if self.res_stem: self.feature_extractor = self.resnet_stem(self.init_channel * self.stem_multiplier) reduction_p = False else: self.feature_extractor = self.imagenet_stem(self.init_channel * self.stem_multiplier) reduction_p = True else: raise Exception("error! not support now!") c_p = self.init_channel * self.stem_multiplier c_pp = self.init_channel * self.stem_multiplier c_cur = self.init_channel self.super_layers_pool_arch.append(self.pretrain_architecture_params(self.n_ops)) if self.repeat_cell: self.super_layers_arch.append(self.add_architecture_params(self.n_ops)) for layer_idx in range(self.layer_num): reduction = self.layers_reduction[layer_idx] super_layer = self.add_super_layer(c_cur, c_p, c_pp, reduction_p, reduction, self.layers[layer_idx]) super_layer_pool = self.add_super_layer(c_cur, c_p, c_pp, reduction_p, reduction, self.augment_layers[layer_idx], is_slim=self.sample_pretrain) super_layer_arch = self.add_architecture_params(self.n_ops) self.freeze_unused_params(super_layer_arch, reduction, self.layers[layer_idx]) self.super_layers.append(super_layer) self.super_layers_pool.append(super_layer_pool) if not self.repeat_cell: self.super_layers_arch.append(super_layer_arch) if reduction: c_p = c_cur * 2 * self.n_nodes else: c_p = c_cur * self.n_nodes if self.res_stem: c_pp = c_p reduction_p = False else: c_pp = c_cur * self.n_nodes reduction_p = reduction if layer_idx == self.layer_num-3: self.distill_aux_c1 = c_p if layer_idx == self.layer_num-2: self.distill_aux_c2 = c_p if reduction: c_cur = c_cur * 2 else: c_cur = c_cur self.fc_super = nn.Linear(c_p, self.num_classes) if self.share_fc: self.fc_nas = self.fc_super else: self.fc_nas = nn.Linear(c_p, self.num_classes) if self.use_ensemble_param: self.ensemble_param = nn.Parameter(0.333*torch.rand(3), requires_grad=True) else: self.ensemble_param = nn.Parameter(0.333*torch.ones(3), requires_grad=False) if self.model_type == 'cifar': self.distill_aux_head1 = DistillHeadCIFAR(self.distill_aux_c1, 6, self.num_classes, bn_affine=False) self.distill_aux_head2 = DistillHeadCIFAR(self.distill_aux_c2, 6, self.num_classes, bn_affine=False) elif self.model_type == 'imagenet': if self.res_stem: self.distill_aux_head1 = DistillHeadImagenet(self.distill_aux_c1, 14, self.num_classes, bn_affine=False) self.distill_aux_head2 = DistillHeadImagenet(self.distill_aux_c2, 6, self.num_classes, bn_affine=False) else: self.distill_aux_head1 = DistillHeadImagenet(self.distill_aux_c1, 6, self.num_classes, bn_affine=False) self.distill_aux_head2 = DistillHeadImagenet(self.distill_aux_c2, 5, self.num_classes, bn_affine=False) else: raise Exception("error! not support now!") self.fix_structure() def fix_structure(self): if self.fix_head: for n, p in self.distill_aux_head1.named_parameters(): p.requires_grad = False for n, p in self.distill_aux_head2.named_parameters(): p.requires_grad = False def fix_pre_layers(self, layer_idx=0): for i in range(layer_idx): for name, param in self.super_layers_arch[i].named_parameters(): param.requires_grad=False def build_nas_layers(self, layer_idx, best_genotype, same_structure=False): c_p = self.init_channel * self.stem_multiplier c_pp = self.init_channel * self.stem_multiplier c_cur = self.init_channel if self.model_type == 'cifar': reduction_p = False elif self.model_type == 'imagenet': if self.res_stem: reduction_p = False else: reduction_p = True else: raise Exception("error! not support now!") for i in range(self.layer_num): reduction = self.layers_reduction[i] if i == layer_idx: break if reduction: c_p = c_cur * 2 * self.n_nodes else: c_p = c_cur * self.n_nodes if self.res_stem: c_pp = c_p reduction_p = False else: c_pp = c_cur * self.n_nodes reduction_p = reduction if reduction: c_cur = c_cur * 2 else: c_cur = c_cur # once model search is well trained, transfor model params from model_search to model_main # genotype = self.generate_genotype(self.model_search.arch_params) if same_structure: nas_layer = self.generate_nas_layer(c_cur, c_p, c_pp, reduction_p, reduction, best_genotype, self.layers[layer_idx], bn_affine=self.bn_affine) else: nas_layer = self.generate_nas_layer(c_cur, c_p, c_pp, reduction_p, reduction, best_genotype, self.augment_layers[layer_idx], bn_affine=self.bn_affine) self.genotypes[layer_idx] = best_genotype self.nas_layers[layer_idx] = nas_layer def build_augment_model(self, init_channel, genotypes_dict): if len(genotypes_dict.keys()) == 0: raise Exception("error! genotypes is empty!") else: self.extractor_grad = True if self.model_type == 'cifar': feature_extractor = self.cifar_stem(self.init_channel * self.stem_multiplier) reduction_p = False elif self.model_type == 'imagenet': if self.res_stem: feature_extractor = self.resnet_stem(self.init_channel * self.stem_multiplier) reduction_p = False else: feature_extractor = self.imagenet_stem(self.init_channel * self.stem_multiplier) reduction_p = True else: raise Exception("error! not support now!") c_p = self.init_channel * self.stem_multiplier c_pp = self.init_channel * self.stem_multiplier c_cur = self.init_channel for layer_idx, genotype in genotypes_dict.items(): reduction = self.layers_reduction[layer_idx] nas_layer = self.generate_nas_layer(c_cur, c_p, c_pp, reduction_p, reduction, genotype, self.augment_layers[layer_idx]) self.nas_layers[layer_idx] = nas_layer if reduction: c_p = c_cur * 2 * self.n_nodes else: c_p = c_cur * self.n_nodes if self.res_stem: c_pp = c_p reduction_p = False else: c_pp = c_cur * self.n_nodes reduction_p = reduction if reduction: c_cur = c_cur * 2 else: c_cur = c_cur if layer_idx == self.layer_num-2: c_aux = c_p if self.model_type == 'cifar': aux_head = AuxiliaryHeadCIFAR(c_aux, 5, self.num_classes) elif self.model_type == 'imagenet': if self.res_stem: aux_head = AuxiliaryHeadImageNet(c_aux, 12, self.num_classes) else: aux_head = AuxiliaryHeadImageNet(c_aux, 5, self.num_classes) else: aux_head = None # super_layers = copy.deepcopy(self.super_layers) # super_layers_arch = copy.deepcopy(self.super_layers_arch) nas_layers = copy.deepcopy(self.nas_layers) fc = copy.deepcopy(self.fc_nas) self.model_main = ModelAug(feature_extractor, nas_layers, fc, n_nodes=self.n_nodes, aux_head=aux_head) def freeze_unused_params(self, super_layer_arch, reduction, cell_num): if not reduction: for name, param in super_layer_arch.named_parameters(): if name.startswith('1') or name.startswith('3'): param.requires_grad=False elif cell_num == 1 and reduction: for name, param in super_layer_arch.named_parameters(): if name.startswith('0') or name.startswith('2'): param.requires_grad=False else: pass def param_copy(self, target_model, model): if model: for target_param, param in zip(target_model.parameters(), model.parameters()): target_param.data.copy_(param.data) def param_copy_plus(self, target_model, model): model_dict_keys = model.state_dict().keys() for n, p in target_model.named_parameters(): if n in model_dict_keys: p.data.copy_(model.state_dict()[n]) def copy_params_from_super_layer(self, layer_idx): super_layer = self.super_layers_pool[layer_idx] nas_layer = self.nas_layers[layer_idx] connect_dict = self.connects[layer_idx] normal_cell_connect = connect_dict['normal'] reduce_cell_connect = connect_dict['reduce'] for super_cell, nas_cell in zip(super_layer, nas_layer): # copy preproc0 and preproc1 self.param_copy_plus(nas_cell.preproc0, super_cell.preproc0) self.param_copy_plus(nas_cell.preproc1, super_cell.preproc1) if super_cell.reduction: cell_connect = reduce_cell_connect else: cell_connect = normal_cell_connect for i, (super_hidden, nas_hidden) in enumerate(zip(super_cell.dag, nas_cell.dag)): hidden_connect = cell_connect[i] # k = 2 for j in range(len(hidden_connect)): connect = hidden_connect[j] super_edge = super_hidden[connect[0]] super_op = super_edge._ops[connect[1]] nas_edge = nas_hidden[j] if isinstance(nas_edge, ops.Identity): break nas_op = nas_edge[0] # copy params self.param_copy_plus(nas_op, super_op) # self.param_copy(super_op, nas_op) def copy_params_from_nas_layer(self, layer_idx): super_layer = self.super_layers_pool[layer_idx] nas_layer = self.nas_layers[layer_idx] connect_dict = self.connects[layer_idx] normal_cell_connect = connect_dict['normal'] reduce_cell_connect = connect_dict['reduce'] for super_cell, nas_cell in zip(super_layer, nas_layer): # copy preproc0 and preproc1 self.param_copy_plus(super_cell.preproc0, nas_cell.preproc0) self.param_copy_plus(super_cell.preproc1, nas_cell.preproc1) if super_cell.reduction: cell_connect = reduce_cell_connect else: cell_connect = normal_cell_connect for i, (super_hidden, nas_hidden) in enumerate(zip(super_cell.dag, nas_cell.dag)): hidden_connect = cell_connect[i] # k = 2 for j in range(len(hidden_connect)): connect = hidden_connect[j] super_edge = super_hidden[connect[0]] super_op = super_edge._ops[connect[1]] nas_edge = nas_hidden[j] if isinstance(nas_edge, ops.Identity): break nas_op = nas_edge[0] # copy params self.param_copy_plus(super_op, nas_op) # self.param_copy(super_op, nas_op) ######################## -------------------------- ######################## ######################## Functions for layer search ######################## ######################## -------------------------- ######################## def add_super_layer(self, C_cur, C_p, C_pp, reduction_p=False, reduction_cur=False, cell_num=3, is_slim=False): cells = nn.ModuleList() # reduction_idx = (cell_num + 1) // 2 - 1 # the first cell(block) is downsample # reduction_idx = 0 if self.res_stem: reduction_idx = 0 else: reduction_idx = cell_num - 1 for i in range(cell_num): if i == reduction_idx and reduction_cur: C_cur *= 2 reduction = True else: reduction = False cell = SearchCell(self.n_nodes, C_pp, C_p, C_cur, reduction_p, reduction, is_slim) reduction_p = reduction cells.append(cell) C_cur_out = C_cur * self.n_nodes C_pp, C_p = C_p, C_cur_out return cells def add_architecture_params(self, n_ops): arch_params = nn.ModuleList() alpha_normal = nn.ParameterList() alpha_reduce = nn.ParameterList() beta_normal = nn.ParameterList() beta_reduce = nn.ParameterList() for i in range(self.n_nodes): alpha_normal.append(nn.Parameter(1e-3*torch.randn(i+2, n_ops))) alpha_reduce.append(nn.Parameter(1e-3*torch.randn(i+2, n_ops))) if self.use_beta: beta_normal.append(nn.Parameter(1e-3*torch.randn(i+2))) beta_reduce.append(nn.Parameter(1e-3*torch.randn(i+2))) else: beta_normal.append(nn.Parameter(1e-1*torch.ones(i+2), requires_grad=False)) beta_reduce.append(nn.Parameter(1e-1*torch.ones(i+2), requires_grad=False)) arch_params.append(alpha_normal) arch_params.append(alpha_reduce) arch_params.append(beta_normal) arch_params.append(beta_reduce) return arch_params def pretrain_architecture_params(self, n_ops): arch_params = nn.ModuleList() alpha_normal = nn.ParameterList() alpha_reduce = nn.ParameterList() beta_normal = nn.ParameterList() beta_reduce = nn.ParameterList() for i in range(self.n_nodes): alpha_normal.append(nn.Parameter(1e-3*torch.ones(i+2, n_ops), requires_grad=False)) alpha_reduce.append(nn.Parameter(1e-3*torch.ones(i+2, n_ops), requires_grad=False)) beta_normal.append(nn.Parameter(1e-1*torch.ones(i+2), requires_grad=False)) beta_reduce.append(nn.Parameter(1e-1*torch.ones(i+2), requires_grad=False)) arch_params.append(alpha_normal) arch_params.append(alpha_reduce) arch_params.append(beta_normal) arch_params.append(beta_reduce) return arch_params ######################## ---------------------------- ######################## ######################## Functions for layer generate ######################## ######################## ---------------------------- ######################## def generate_nas_layer(self, C_cur, C_p, C_pp, reduction_p, reduction_cur, genotype, cell_num=3, bn_affine=True): cells = nn.ModuleList() # reduction_idx = (cell_num + 1) // 2 - 1 # the first cell(block) is downsample # reduction_idx = 0 if self.res_stem: reduction_idx = 0 else: reduction_idx = cell_num - 1 for i in range(cell_num): if i == reduction_idx and reduction_cur: C_cur *= 2 reduction = True else: reduction = False cell = AugmentCell(genotype, C_pp, C_p, C_cur, reduction_p, reduction, bn_affine) reduction_p = reduction cells.append(cell) C_cur_out = C_cur * len(cell.concat) C_pp, C_p = C_p, C_cur_out return cells ######################## ---------------------------- ######################## ######################## Functions for stem ######################## ######################## ---------------------------- ######################## def resnet_stem(self, inplanes=64): C_in = self.c_in feature_extractor = nn.ModuleList() stem = nn.Sequential( nn.Conv2d(C_in, inplanes, kernel_size=7, stride=2, padding=3, bias=False), nn.BatchNorm2d(inplanes), nn.ReLU(inplace=True), # the layer1 is concated with maxpool nn.MaxPool2d(kernel_size=3, stride=2, padding=1) ) feature_extractor.append(stem) return feature_extractor def cifar_stem(self, init_channel): C_in = self.c_in C_cur = init_channel feature_extractor = nn.ModuleList() stem = nn.Sequential( nn.Conv2d(C_in, C_cur, 3, 1, 1, bias=False), nn.BatchNorm2d(C_cur) ) feature_extractor.append(stem) return feature_extractor def imagenet_stem(self, init_channel): C_in = self.c_in C_cur = init_channel feature_extractor = nn.ModuleList() stem0 = nn.Sequential( nn.Conv2d(C_in, C_cur // 2, kernel_size=3, stride=2, padding=1, bias=False), nn.BatchNorm2d(C_cur // 2), nn.ReLU(inplace=True), nn.Conv2d(C_cur // 2, C_cur, 3, stride=2, padding=1, bias=False), nn.BatchNorm2d(C_cur), ) stem1 = nn.Sequential( nn.ReLU(inplace=True), nn.Conv2d(C_cur, C_cur, 3, stride=2, padding=1, bias=False), nn.BatchNorm2d(C_cur), ) feature_extractor.append(stem0) feature_extractor.append(stem1) return feature_extractor ######################## ---------------------------- ######################## ######################## Functions for forward ######################## ######################## ---------------------------- ######################## def extract_features(self, im): # feature_extractor is nn.ModuleList() if len(self.feature_extractor) == 1: s0 = self.feature_extractor[0](im) s1 = s0 return [s0, s1] elif len(self.feature_extractor) == 2: s0 = self.feature_extractor[0](im) s1 = self.feature_extractor[1](s0) return [s0, s1] else: raise NotImplementedError def init_arch_params(self, layer_idx): init_arch_params = self.add_architecture_params(n_ops=len(ops.PRIMITIVES)) for i in range(layer_idx, len(self.super_layers_arch)): target_arch = self.super_layers_arch[i] self.param_copy(target_arch, init_arch_params) for i in range(layer_idx, len(self.super_layers_pool_arch)): target_arch = self.super_layers_pool_arch[i] self.param_copy(target_arch, init_arch_params) del init_arch_params def freeze_arch_params(self, layer_idx=0): for i in range(self.super_layers_num): if i != layer_idx: for name, param in self.super_layers_arch[i].named_parameters(): param.requires_grad=False else: for name, param in self.super_layers_arch[i].named_parameters(): param.requires_grad=True def print_arch_params(self, logger, layer_idx=0): # remove formats if self.repeat_cell: alpha_normal, alpha_reduce, beta_normal, beta_reduce = self.super_layers_arch[0] else: alpha_normal, alpha_reduce, beta_normal, beta_reduce = self.super_layers_arch[layer_idx] org_formatters = [] for handler in logger.handlers: org_formatters.append(handler.formatter) handler.setFormatter(logging.Formatter("%(message)s")) logger.info("####### ALPHA #######") logger.info("# Alpha - normal") for alpha in alpha_normal: logger.info(F.softmax(alpha, dim=-1)) logger.info("\n# Alpha - reduce") for alpha in alpha_reduce: logger.info(F.softmax(alpha, dim=-1)) logger.info("#####################") if self.use_beta: logger.info("####### BETA #######") logger.info("# Beta - normal") for beta in beta_normal: logger.info(F.softmax(beta, dim=-1)) logger.info("\n# Beta - reduce") for beta in beta_reduce: logger.info(F.softmax(beta, dim=-1)) logger.info("#####################") def generate_genotype(self, layer_idx=0): # arch_params list if self.repeat_cell: alpha_normal, alpha_reduce, beta_normal, beta_reduce = self.super_layers_arch[0] else: alpha_normal, alpha_reduce, beta_normal, beta_reduce = self.super_layers_arch[layer_idx] weights_normal = [F.softmax(alpha, dim=-1) for alpha in alpha_normal] weights_reduce = [F.softmax(alpha, dim=-1) for alpha in alpha_reduce] weights_edge_normal = [F.softmax(beta, dim=0) for beta in beta_normal] weights_edge_reduce = [F.softmax(beta, dim=0) for beta in beta_reduce] gene_normal, connect_normal = gt.parse(weights_normal, weights_edge_normal, k=2) gene_reduce, connect_reduce = gt.parse(weights_reduce, weights_edge_reduce, k=2) connect_dict = {"normal": connect_normal, "reduce": connect_reduce} concat = range(2, 2+self.n_nodes) # concat all intermediate nodes return gt.Genotype(normal=gene_normal, normal_concat=concat, reduce=gene_reduce, reduce_concat=concat), connect_dict def generate_genotype_gumbel(self, layer_idx=0): # arch_params list if self.repeat_cell: alpha_normal, alpha_reduce, beta_normal, beta_reduce = self.super_layers_arch[0] else: alpha_normal, alpha_reduce, beta_normal, beta_reduce = self.super_layers_arch[layer_idx] weights_normal = [F.softmax(alpha, dim=-1) for alpha in alpha_normal] weights_reduce = [F.softmax(alpha, dim=-1) for alpha in alpha_reduce] weights_edge_normal = [F.softmax(beta, dim=0) for beta in beta_normal] weights_edge_reduce = [F.softmax(beta, dim=0) for beta in beta_reduce] gene_normal, connect_normal = gt.parse_gumbel(weights_normal, weights_edge_normal, k=2) gene_reduce, connect_reduce = gt.parse_gumbel(weights_reduce, weights_edge_reduce, k=2) connect_dict = {"normal": connect_normal, "reduce": connect_reduce} concat = range(2, 2+self.n_nodes) # concat all intermediate nodes return gt.Genotype(normal=gene_normal, normal_concat=concat, reduce=gene_reduce, reduce_concat=concat), connect_dict def get_aux_logits(self, idx, s1): if idx == self.layer_num-3: return self.distill_aux_head1(s1) if idx == self.layer_num-2: return self.distill_aux_head2(s1) return None def forward(self, x, layer_idx, super_flag=True, pretrain_flag=False, is_slim=False): # layer_idx, which stage we are # if super_flag, forward supernetwork else forward nas network # if pretrain_flag, foward supernetwork pool if pretrain_flag: super_layers_num = len(self.super_layers) nas_layers_num = 0 super_layers = self.super_layers_pool super_layers_arch = self.super_layers_pool_arch else: if super_flag: super_layers = self.super_layers super_layers_arch = self.super_layers_arch nas_layers = self.nas_layers nas_layers_num = len(self.nas_layers[:layer_idx]) super_layers_num = len(self.super_layers[layer_idx:]) else: nas_layers = self.nas_layers nas_layers_num = len(self.nas_layers) super_layers_num = 0 outputs = [] s0, s1 = self.extract_features(x) for i in range(nas_layers_num): s0, s1 = self.forward_nas_layer(s0, s1, nas_layers[i]) logit = self.get_aux_logits(i, s1) if logit is not None: outputs.append(logit) aux_logits = None for j in range(super_layers_num): k = nas_layers_num + j if self.repeat_cell or pretrain_flag: s0, s1 = self.forward_super_layer(s0, s1, super_layers[k], super_layers_arch[0], is_slim) if k == self.layer_num-2: aux_logits = self.distill_aux_head2(s1) else: s0, s1 = self.forward_super_layer(s0, s1, super_layers[k], super_layers_arch[k], is_slim) if not pretrain_flag: logit = self.get_aux_logits(k, s1) if logit is not None: outputs.append(logit) out = self.gap(s1) out = out.view(out.size(0), -1) # flatten if super_flag: logits = self.fc_super(out) else: logits = self.fc_nas(out) if pretrain_flag: return logits, aux_logits outputs.append(logits) logits_output = logits ensemble_param = F.softmax(self.ensemble_param, dim=0) if self.ensemble_sum: em_output = ensemble_param[0] * outputs[0] + ensemble_param[1] * outputs[1] + ensemble_param[2] * outputs[2] else: em_output = torch.cat((ensemble_param[0] * outputs[0], ensemble_param[1] * outputs[1], ensemble_param[2] * outputs[2]), 0) return logits_output, em_output # return em_output, em_output def process_alpha(self, alpha_param, beta_param): weights_normal = [F.softmax(alpha, dim=-1) for alpha in alpha_param] weights_edge_normal = [F.softmax(beta, dim=0) for beta in beta_param] output_alpha = nn.ParameterList() for alpha in weights_normal: output_alpha.append(nn.Parameter(torch.zeros_like(alpha), requires_grad=False)) connect_idx = [] k = 2 for idx, (edges, w) in enumerate(zip(weights_normal, weights_edge_normal)): # edges: Tensor(n_edges, n_ops) edge_max, primitive_indices = torch.topk((w.view(-1, 1) * edges)[:, :-1], 1) # ignore 'none' topk_edge_values, topk_edge_indices = torch.topk(edge_max.view(-1), k) node_idx = [] for edge_idx in topk_edge_indices: prim_idx = primitive_indices[edge_idx] node_idx.append((edge_idx.item(), prim_idx.item())) output_alpha[idx][edge_idx.item(), prim_idx.item()] = 1. connect_idx.append(node_idx) return output_alpha def forward_super_layer(self, s0, s1, super_layer, arch_params, is_slim=False): # arch_params: list # super_layer: cells (2 / 3) alpha_normal, alpha_reduce, beta_normal, beta_reduce = arch_params if is_slim: weights_normal = self.process_alpha(alpha_normal, beta_normal) weights_edge_normal = [F.softmax(beta, dim=0) for beta in beta_normal] weights_reduce = self.process_alpha(alpha_reduce, beta_reduce) weights_edge_reduce = [F.softmax(beta, dim=0) for beta in beta_reduce] else: weights_normal = [F.softmax(alpha, dim=-1) for alpha in alpha_normal] weights_edge_normal = [F.softmax(beta, dim=0) for beta in beta_normal] weights_reduce = [F.softmax(alpha, dim=-1) for alpha in alpha_reduce] weights_edge_reduce = [F.softmax(beta, dim=0) for beta in beta_reduce] for cell in super_layer: weights = weights_reduce if cell.reduction else weights_normal weights_edge = weights_edge_reduce if cell.reduction else weights_edge_normal s0, s1 = s1, cell(s0, s1, weights, weights_edge) return s0, s1 def forward_nas_layer(self, s0, s1, nas_layer): for cell in nas_layer: s0, s1 = s1, cell(s0, s1) return s0, s1 def loss(self, X, y): logits = self.forward(X) return self.criterion(logits, y) def add_alpha_regularization(self, operations, weight_decay=0.0005, method='L2', normal=True, reduce=True): if method == 'L2': reg_loss = torch.tensor(0.).to(torch.device("cuda")) for operation in operations: if self.repeat_cell: stage, operation = operation stage = 0 else: stage, operation = operation if normal: for node in self.super_layers_arch[stage][0]: for connection in node: reg_loss += connection[ops.PRIMITIVES.index(operation)] * \ connection[ops.PRIMITIVES.index(operation)] if reduce: for node in self.super_layers_arch[stage][1]: for connection in node: reg_loss += connection[ops.PRIMITIVES.index(operation)] * \ connection[ops.PRIMITIVES.index(operation)] return reg_loss * weight_decay elif method == 'L1': reg_loss = torch.tensor(0.).cuda() for operation in operations: if self.repeat_cell: stage, operation = operation stage = 0 else: stage, operation = operation if normal: for node in self.super_layers_arch[stage][0]: for connection in node: reg_loss += abs(connection[ops.PRIMITIVES.index(operation)]) if reduce: for node in self.super_layers_arch[stage][1]: for connection in node: reg_loss += abs(connection[ops.PRIMITIVES.index(operation)]) return reg_loss * weight_decay else: raise ValueError('Method isn\'t supported')
Cream/CDARTS/lib/models/cdarts_controller.py/0
{ "file_path": "Cream/CDARTS/lib/models/cdarts_controller.py", "repo_id": "Cream", "token_count": 16960 }
304
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. # Written by Hao Du and Houwen Peng # email: [email protected] and [email protected] from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from yacs.config import CfgNode as CN DEFAULT_CROP_PCT = 0.875 IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406) IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225) __C = CN() cfg = __C __C.AUTO_RESUME = True __C.DATA_DIR = './data/imagenet' __C.MODEL = 'cream' __C.RESUME_PATH = './experiments/ckps/resume.pth.tar' __C.SAVE_PATH = './experiments/ckps/' __C.SEED = 42 __C.LOG_INTERVAL = 50 __C.RECOVERY_INTERVAL = 0 __C.WORKERS = 4 __C.NUM_GPU = 1 __C.SAVE_IMAGES = False __C.AMP = False __C.OUTPUT = 'output/path/' __C.EVAL_METRICS = 'prec1' __C.TTA = 0 # Test or inference time augmentation __C.LOCAL_RANK = 0 __C.VERBOSE = False # dataset configs __C.DATASET = CN() __C.DATASET.NUM_CLASSES = 1000 __C.DATASET.IMAGE_SIZE = 224 # image patch size __C.DATASET.INTERPOLATION = 'bilinear' # Image resize interpolation type __C.DATASET.BATCH_SIZE = 32 # batch size __C.DATASET.NO_PREFECHTER = False __C.DATASET.PIN_MEM = True __C.DATASET.VAL_BATCH_MUL = 4 # model configs __C.NET = CN() __C.NET.SELECTION = 14 __C.NET.GP = 'avg' # type of global pool ["avg", "max", "avgmax", "avgmaxc"] __C.NET.DROPOUT_RATE = 0.0 # dropout rate # model ema parameters __C.NET.EMA = CN() __C.NET.EMA.USE = True __C.NET.EMA.FORCE_CPU = False # force model ema to be tracked on CPU __C.NET.EMA.DECAY = 0.9998 # optimizer configs __C.OPT = 'sgd' __C.OPT_EPS = 1e-2 __C.MOMENTUM = 0.9 __C.WEIGHT_DECAY = 1e-4 __C.OPTIMIZER = CN() __C.OPTIMIZER.NAME = 'sgd' __C.OPTIMIZER.MOMENTUM = 0.9 __C.OPTIMIZER.WEIGHT_DECAY = 1e-3 # scheduler configs __C.SCHED = 'sgd' __C.LR_NOISE_PCT = 0.67 __C.LR_NOISE_STD = 1.0 __C.WARMUP_LR = 1e-4 __C.MIN_LR = 1e-5 __C.EPOCHS = 200 __C.START_EPOCH = None __C.DECAY_EPOCHS = 30.0 __C.WARMUP_EPOCHS = 3 __C.COOLDOWN_EPOCHS = 10 __C.PATIENCE_EPOCHS = 10 __C.DECAY_RATE = 0.1 __C.LR = 1e-2 __C.LR_NOISE = None __C.META_LR = 1e-4 # data augmentation parameters __C.AUGMENTATION = CN() __C.AUGMENTATION.AA = 'rand-m9-mstd0.5' __C.AUGMENTATION.COLOR_JITTER = 0.4 __C.AUGMENTATION.RE_PROB = 0.2 # random erase prob __C.AUGMENTATION.RE_MODE = 'pixel' # random erase mode __C.AUGMENTATION.MIXUP = 0.0 # mixup alpha __C.AUGMENTATION.MIXUP_OFF_EPOCH = 0 # turn off mixup after this epoch __C.AUGMENTATION.SMOOTHING = 0.1 # label smoothing parameters # batch norm parameters (only works with gen_efficientnet based models # currently) __C.BATCHNORM = CN() __C.BATCHNORM.SYNC_BN = False __C.BATCHNORM.BN_TF = False __C.BATCHNORM.BN_MOMENTUM = 0.1 # batchnorm momentum override __C.BATCHNORM.BN_EPS = 1e-5 # batchnorm eps override # supernet training hyperparameters __C.SUPERNET = CN() __C.SUPERNET.UPDATE_ITER = 1300 __C.SUPERNET.SLICE = 4 __C.SUPERNET.POOL_SIZE = 10 __C.SUPERNET.RESUNIT = False __C.SUPERNET.DIL_CONV = False __C.SUPERNET.UPDATE_2ND = True __C.SUPERNET.FLOPS_MAXIMUM = 600 __C.SUPERNET.FLOPS_MINIMUM = 0 __C.SUPERNET.PICK_METHOD = 'meta' # pick teacher method __C.SUPERNET.META_STA_EPOCH = 20 # start using meta picking method __C.SUPERNET.HOW_TO_PROB = 'pre_prob' # sample method __C.SUPERNET.PRE_PROB = (0.05, 0.2, 0.05, 0.5, 0.05, 0.15) # sample prob in 'pre_prob'
Cream/Cream/lib/config.py/0
{ "file_path": "Cream/Cream/lib/config.py", "repo_id": "Cream", "token_count": 1555 }
305
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. # Written by Hao Du and Houwen Peng # email: [email protected] and [email protected] def search_for_layer(flops_op_dict, arch_def, flops_minimum, flops_maximum): sta_num = [1, 1, 1, 1, 1] order = [2, 3, 4, 1, 0, 2, 3, 4, 1, 0] limits = [3, 3, 3, 2, 2, 4, 4, 4, 4, 4] size_factor = 224 // 32 base_min_flops = sum([flops_op_dict[i][0][0] for i in range(5)]) base_max_flops = sum([flops_op_dict[i][5][0] for i in range(5)]) if base_min_flops > flops_maximum: while base_min_flops > flops_maximum and size_factor >= 2: size_factor = size_factor - 1 flops_minimum = flops_minimum * (7. / size_factor) flops_maximum = flops_maximum * (7. / size_factor) if size_factor < 2: return None, None, None elif base_max_flops < flops_minimum: cur_ptr = 0 while base_max_flops < flops_minimum and cur_ptr <= 9: if sta_num[order[cur_ptr]] >= limits[cur_ptr]: cur_ptr += 1 continue base_max_flops = base_max_flops + \ flops_op_dict[order[cur_ptr]][5][1] sta_num[order[cur_ptr]] += 1 if cur_ptr > 7 and base_max_flops < flops_minimum: return None, None, None cur_ptr = 0 while cur_ptr <= 9: if sta_num[order[cur_ptr]] >= limits[cur_ptr]: cur_ptr += 1 continue base_max_flops = base_max_flops + flops_op_dict[order[cur_ptr]][5][1] if base_max_flops <= flops_maximum: sta_num[order[cur_ptr]] += 1 else: break arch_def = [item[:i] for i, item in zip([1] + sta_num + [1], arch_def)] # print(arch_def) return sta_num, arch_def, size_factor * 32
Cream/Cream/lib/utils/search_structure_supernet.py/0
{ "file_path": "Cream/Cream/lib/utils/search_structure_supernet.py", "repo_id": "Cream", "token_count": 910 }
306
dataset_type = 'CocoDataset' data_root = 'data/coco/' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=2, workers_per_gpu=2, train=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_train2017.json', img_prefix=data_root + 'train2017/', pipeline=train_pipeline), val=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=test_pipeline), test=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=test_pipeline)) evaluation = dict(interval=1, metric='bbox')
Cream/EfficientViT/downstream/configs/_base_/datasets/coco_detection.py/0
{ "file_path": "Cream/EfficientViT/downstream/configs/_base_/datasets/coco_detection.py", "repo_id": "Cream", "token_count": 795 }
307
#!/usr/bin/env bash CONFIG=$1 CHECKPOINT=$2 GPUS=$3 PORT=${PORT:-29500} PYTHONPATH="$(dirname $0)/..":$PYTHONPATH \ python -m torch.distributed.launch --nproc_per_node=$GPUS --master_port=$PORT \ $(dirname "$0")/test.py $CONFIG $CHECKPOINT --launcher pytorch ${@:4}
Cream/EfficientViT/downstream/dist_test.sh/0
{ "file_path": "Cream/EfficientViT/downstream/dist_test.sh", "repo_id": "Cream", "token_count": 118 }
308
import torch import torch.distributed as dist import math class RASampler(torch.utils.data.Sampler): """Sampler that restricts data loading to a subset of the dataset for distributed, with repeated augmentation. It ensures that different each augmented version of a sample will be visible to a different process (GPU) Heavily based on torch.utils.data.DistributedSampler """ def __init__(self, dataset, num_replicas=None, rank=None, shuffle=True): if num_replicas is None: if not dist.is_available(): raise RuntimeError("Requires distributed package to be available") num_replicas = dist.get_world_size() if rank is None: if not dist.is_available(): raise RuntimeError("Requires distributed package to be available") rank = dist.get_rank() self.dataset = dataset self.num_replicas = num_replicas self.rank = rank self.epoch = 0 self.num_samples = int(math.ceil(len(self.dataset) * 3.0 / self.num_replicas)) self.total_size = self.num_samples * self.num_replicas # self.num_selected_samples = int(math.ceil(len(self.dataset) / self.num_replicas)) self.num_selected_samples = int(math.floor(len(self.dataset) // 256 * 256 / self.num_replicas)) self.shuffle = shuffle def __iter__(self): # deterministically shuffle based on epoch g = torch.Generator() g.manual_seed(self.epoch) if self.shuffle: indices = torch.randperm(len(self.dataset), generator=g).tolist() else: indices = list(range(len(self.dataset))) # add extra samples to make it evenly divisible indices = [ele for ele in indices for i in range(3)] indices += indices[:(self.total_size - len(indices))] assert len(indices) == self.total_size # subsample indices = indices[self.rank:self.total_size:self.num_replicas] assert len(indices) == self.num_samples return iter(indices[:self.num_selected_samples]) def __len__(self): return self.num_selected_samples def set_epoch(self, epoch): self.epoch = epoch
Cream/MiniViT/Mini-DeiT/samplers.py/0
{ "file_path": "Cream/MiniViT/Mini-DeiT/samplers.py", "repo_id": "Cream", "token_count": 911 }
309
import os import torch import numpy as np import torch.distributed as dist from torchvision import datasets, transforms from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.data import Mixup from timm.data import create_transform from timm.data.transforms import _pil_interp try: from timm.data import DatasetTar except ImportError: # for higher version of timm from timm.data import ImageDataset as DatasetTar from .cached_image_folder import CachedImageFolder from .samplers import SubsetRandomSampler def build_loader(config): config.defrost() dataset_train, config.MODEL.NUM_CLASSES = build_dataset(is_train=True, config=config) config.freeze() print(f"local rank {config.LOCAL_RANK} / global rank {dist.get_rank()} successfully build train dataset") dataset_val, _ = build_dataset(is_train=False, config=config) print(f"local rank {config.LOCAL_RANK} / global rank {dist.get_rank()} successfully build val dataset") num_tasks = dist.get_world_size() global_rank = dist.get_rank() if config.DATA.ZIP_MODE and config.DATA.CACHE_MODE == 'part': indices = np.arange(dist.get_rank(), len(dataset_train), dist.get_world_size()) sampler_train = SubsetRandomSampler(indices) else: sampler_train = torch.utils.data.DistributedSampler( dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True ) indices = np.arange(dist.get_rank(), len(dataset_val), dist.get_world_size()) sampler_val = SubsetRandomSampler(indices) data_loader_train = torch.utils.data.DataLoader( dataset_train, sampler=sampler_train, batch_size=config.DATA.BATCH_SIZE, num_workers=config.DATA.NUM_WORKERS, pin_memory=config.DATA.PIN_MEMORY, drop_last=True, ) data_loader_val = torch.utils.data.DataLoader( dataset_val, sampler=sampler_val, batch_size=config.DATA.BATCH_SIZE, shuffle=False, num_workers=config.DATA.NUM_WORKERS, pin_memory=config.DATA.PIN_MEMORY, drop_last=False ) # setup mixup / cutmix mixup_fn = None mixup_active = config.AUG.MIXUP > 0 or config.AUG.CUTMIX > 0. or config.AUG.CUTMIX_MINMAX is not None if mixup_active: mixup_fn = Mixup( mixup_alpha=config.AUG.MIXUP, cutmix_alpha=config.AUG.CUTMIX, cutmix_minmax=config.AUG.CUTMIX_MINMAX, prob=config.AUG.MIXUP_PROB, switch_prob=config.AUG.MIXUP_SWITCH_PROB, mode=config.AUG.MIXUP_MODE, label_smoothing=config.MODEL.LABEL_SMOOTHING, num_classes=config.MODEL.NUM_CLASSES) return dataset_train, dataset_val, data_loader_train, data_loader_val, mixup_fn def build_dataset(is_train, config): transform = build_transform(is_train, config) if config.DATA.DATASET == 'imagenet': prefix = 'train' if is_train else 'val' if config.DATA.LOAD_TAR: data_dir = os.path.join(config.DATA.DATA_PATH, f'{prefix}.tar') dataset = DatasetTar(data_dir, transform=transform) else: if config.DATA.ZIP_MODE: ann_file = prefix + "_map.txt" prefix = prefix + ".zip@/" dataset = CachedImageFolder(config.DATA.DATA_PATH, ann_file, prefix, transform, cache_mode=config.DATA.CACHE_MODE if is_train else 'part') else: root = os.path.join(config.DATA.DATA_PATH, prefix) dataset = datasets.ImageFolder(root, transform=transform) nb_classes = 1000 else: raise NotImplementedError("We only support ImageNet Now.") return dataset, nb_classes def build_transform(is_train, config): resize_im = config.DATA.IMG_SIZE > 32 if is_train: # this should always dispatch to transforms_imagenet_train transform = create_transform( input_size=config.DATA.IMG_SIZE, is_training=True, color_jitter=config.AUG.COLOR_JITTER if config.AUG.COLOR_JITTER > 0 else None, auto_augment=config.AUG.AUTO_AUGMENT if config.AUG.AUTO_AUGMENT != 'none' else None, re_prob=config.AUG.REPROB, re_mode=config.AUG.REMODE, re_count=config.AUG.RECOUNT, interpolation=config.DATA.INTERPOLATION, ) if not resize_im: # replace RandomResizedCropAndInterpolation with # RandomCrop transform.transforms[0] = transforms.RandomCrop(config.DATA.IMG_SIZE, padding=4) return transform t = [] if resize_im: if config.TEST.CROP: size = int((256 / 224) * config.DATA.IMG_SIZE) t.append( transforms.Resize(size, interpolation=_pil_interp(config.DATA.INTERPOLATION)), # to maintain same ratio w.r.t. 224 images ) t.append(transforms.CenterCrop(config.DATA.IMG_SIZE)) else: t.append( transforms.Resize((config.DATA.IMG_SIZE, config.DATA.IMG_SIZE), interpolation=_pil_interp(config.DATA.INTERPOLATION)) ) t.append(transforms.ToTensor()) t.append(transforms.Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD)) return transforms.Compose(t)
Cream/MiniViT/Mini-Swin/data/build.py/0
{ "file_path": "Cream/MiniViT/Mini-Swin/data/build.py", "repo_id": "Cream", "token_count": 2386 }
310
# Adapted from https://github.com/princeton-nlp/CoFiPruning/blob/main/models/l0_module.py # MIT license import math import numpy as np import torch import torch.nn as nn import torch.nn.functional as F class L0Module(nn.Module): limit_a, limit_b, epsilon = -.1, 1.1, 1e-6 all_types = ["hidden_z", "heads_z", "mha_z", "intermediate_z", "ffn_z"] def __init__(self, config, start_sparsity=0.0, target_sparsity=0.0, lagrangian_warmup=0, init_loga=0.5, temperature=2. / 3., pruning_type=["hidden", "heads", "intermediate", "layer"], magical_number=0.8, # from Wang et al. 2020 ): super(L0Module, self).__init__() self.magical_number = magical_number self.lagrangian_warmup = lagrangian_warmup self.pruning_type = pruning_type self.start_sparsity = start_sparsity self.target_sparsity = target_sparsity self.temperature = temperature self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size self.num_attention_heads = config.num_attention_heads self.dim_per_head = self.hidden_size // self.num_attention_heads self.num_hidden_layers = config.num_hidden_layers self.params_per_head_layer = self.hidden_size * \ self.hidden_size * 4 + self.hidden_size * 4 self.params_per_head = self.params_per_head_layer // self.num_attention_heads self.params_per_mlp_layer = self.hidden_size * self.intermediate_size * \ 2 + self.hidden_size + self.intermediate_size self.params_per_intermediate_dim = self.params_per_mlp_layer // self.intermediate_size # we ignore the parameters in normalization layers (it takes a very small amount) self.full_model_size = ( self.params_per_head_layer + self.params_per_mlp_layer) * self.num_hidden_layers self.prunable_model_size = 0 init_loga = init_loga if isinstance(init_loga, float) else 0.5 self.loga_mean = math.log( 1.0 - self.epsilon - init_loga) - math.log(init_loga + self.epsilon) self.types = [] self.z_logas = {} self.parameters_per_dim = {} self.sizes = {} self.shapes = {} self.hidden_loga = None self.hidden_type = None for t in pruning_type: self.initialize_one_module(t) self.lambda_1 = nn.Parameter(torch.tensor(10.00)) self.lambda_2 = nn.Parameter(torch.tensor(10.00)) def initialize_parameters(self, size, num_layer=None, mean=None): if num_layer is not None: loga = nn.Parameter(torch.Tensor(num_layer, size)) else: loga = nn.Parameter(torch.Tensor(size)) mean = mean or self.loga_mean # loga.data.normal_(mean, 1e-2) loga.data.normal_(mean, 0) return loga def initialize_one_module(self, module_name): default_mean = 10 if module_name == "intermediate": self.intermediate_loga = self.initialize_parameters( self.intermediate_size, self.num_hidden_layers, mean=default_mean) self.add_one_module( self.intermediate_loga, type_name="intermediate", parameter_per_dim=self.params_per_intermediate_dim, size=self.intermediate_size, shape=[self.num_hidden_layers, 1, 1, self.intermediate_size] ) self.prunable_model_size += self.params_per_mlp_layer * self.num_hidden_layers elif module_name == "heads": self.heads_loga = self.initialize_parameters( self.num_attention_heads, self.num_hidden_layers, mean=default_mean) self.add_one_module( self.heads_loga, type_name="heads", parameter_per_dim=self.params_per_head, size=self.num_attention_heads, shape=[self.num_hidden_layers, 1, self.num_attention_heads, 1, 1] ) self.prunable_model_size += self.params_per_head * \ self.num_hidden_layers * self.num_attention_heads elif module_name == "hidden": self.hidden_loga = self.initialize_parameters( self.hidden_size, mean=default_mean) self.add_one_module( self.hidden_loga, type_name="hidden", parameter_per_dim=self.hidden_size * 4 + self.hidden_size * 4 * 2, size=self.hidden_size, shape=[self.hidden_size] ) elif module_name == "layer": self.ffn_loga = self.initialize_parameters( self.num_hidden_layers, mean=default_mean) self.add_one_module( self.ffn_loga, type_name="ffn", parameter_per_dim=self.params_per_mlp_layer, size=1, shape=[self.num_hidden_layers] ) self.mha_loga = self.initialize_parameters( self.num_hidden_layers, mean=default_mean) self.add_one_module( self.mha_loga, type_name="mha", parameter_per_dim=self.params_per_head * self.num_attention_heads, size=1, shape=[self.num_hidden_layers] ) # ! init the z_logas def add_one_module(self, z_loga, type_name, parameter_per_dim, size, shape): self.types.append(type_name) self.z_logas[type_name] = z_loga self.parameters_per_dim[type_name] = parameter_per_dim self.sizes[type_name] = size self.shapes[type_name] = shape def constrain_parameters(self): for key in self.z_logas: self.z_logas[key].data.clamp_( min=math.log(1e-2), max=math.log(1e2)) def cdf_qz(self, x, loga): """Implements the CDF of the 'stretched' concrete distribution""" xn = (x - self.limit_a) / (self.limit_b - self.limit_a) logits = math.log(xn) - math.log(1.0 - xn) return torch.sigmoid(logits * self.temperature - loga).clamp(min=self.epsilon, max=1 - self.epsilon) def score_loga(self, loga): return 1.0 - self.cdf_qz(0.0, loga) def get_num_parameters_and_constraint(self, hidden=False): num_parameters = 0 layers = self.num_hidden_layers hidden_size = self.hidden_size heads = self.num_attention_heads device = self.z_logas[self.types[0]].device # 12 * 1 * 1 mha_score = self.score_loga(self.mha_loga).view( -1, 1, 1) if "mha" in self.types else torch.ones([layers, 1, 1]).to(device) # 12 * 12 * 1 heads_score = self.score_loga(self.heads_loga).unsqueeze( dim=-1) if "heads" in self.types else torch.ones([layers, heads, 1]).to(device) if "heads" not in self.parameters_per_dim: self.parameters_per_dim["heads"] = self.params_per_head if "intermediate" not in self.parameters_per_dim: self.parameters_per_dim["intermediate"] = self.params_per_intermediate_dim if hidden: hidden_score = self.score_loga( self.hidden_loga) if "hidden" in self.types else torch.ones([hidden_size]).to(device) heads_score = ( heads_score * mha_score) if mha_score is not None else heads_score # 38+106 heads_score = heads_score.reshape(-1) num_parameters += torch.outer(hidden_score, heads_score).sum( ) * self.parameters_per_dim["heads"] / self.hidden_size else: heads_score = heads_score * mha_score num_parameters += heads_score.sum() * \ self.parameters_per_dim["heads"] # 12 * 1 if 'ffn' in self.types: ffn_score = self.score_loga(self.ffn_loga).unsqueeze( dim=-1) if "ffn" in self.types else torch.ones([layers, 1]).to(device) else: ffn_score = 1 # 12 * 3072 intermediate_score = self.score_loga(self.intermediate_loga) if "intermediate" in self.types else torch.ones([ layers, hidden_size * 4]).to(device) intermediate_score = intermediate_score * ffn_score if hidden: intermediate_score = intermediate_score.reshape(-1) # 13893+22971 num_parameters += torch.sum(torch.outer(hidden_score, intermediate_score)) * 2 else: num_parameters += intermediate_score.sum() * \ self.parameters_per_dim["intermediate"] return num_parameters def get_target_sparsity(self, pruned_steps): target_sparsity = (self.target_sparsity - self.start_sparsity) * \ min(1, pruned_steps / self.lagrangian_warmup) + self.start_sparsity return target_sparsity def lagrangian_regularization(self, pruned_steps): target_sparsity = self.get_target_sparsity( pruned_steps) if self.lagrangian_warmup > 0 else self.target_sparsity expect_sparsity = 1 - self.get_num_parameters_and_constraint( "hidden" in self.types) / self.prunable_model_size # lagrangian_loss = ( # self.lambda_1 * (expect_sparsity - target_sparsity).abs() + # self.lambda_2 * (expect_sparsity - target_sparsity).square() # ) zero = torch.tensor(0.0, device=expect_sparsity.device) lagrangian_loss = ( self.lambda_1 * torch.maximum(target_sparsity - expect_sparsity, zero) + self.lambda_2 * torch.maximum(target_sparsity - expect_sparsity, zero).square() ) return lagrangian_loss, expect_sparsity.detach().item(), target_sparsity # during training def _sample_z(self, loga): # Uniform random numbers for the concrete distribution u = torch.zeros_like(loga).uniform_(self.epsilon, 1.0 - self.epsilon) # quantile concrete z = torch.sigmoid( (torch.log(u) - torch.log(1 - u) + loga) / self.temperature) z = z * (self.limit_b - self.limit_a) + self.limit_a z = F.hardtanh(z, min_val=0.0, max_val=1.0) return z # during inference def _deterministic_z(self, size, loga, soft=True): soft_mask = torch.sigmoid( loga / self.temperature * self.magical_number) if not soft: return soft_mask expected_num_zeros = size - self.score_loga(loga).sum().item() num_zeros = round(expected_num_zeros) if num_zeros > 0: if soft_mask.ndim == 0: soft_mask = torch.tensor(0).to(loga.device) else: _, indices = torch.topk(soft_mask, k=num_zeros, largest=False) soft_mask[indices] = 0. return soft_mask def get_z_from_zs(self, zs): numpified_zs = {} # for t in self.all_types: # name = t[:-2] for t in self.types: name = t numpified_zs[name] = (zs[t].squeeze().detach().cpu( ).numpy() > 0) if t in zs else np.ones(self.shapes[name]) return numpified_zs def calculate_model_size(self, zs): if zs is None: return {"pruned_sparsity": 0.0} layers = self.num_hidden_layers hidden_size = self.hidden_size heads = self.num_attention_heads device = self.z_logas[self.types[0]].device numpified_zs = self.get_z_from_zs(zs) hidden_z = numpified_zs["hidden"] if "hidden" in numpified_zs.keys() else np.ones([ hidden_size]) heads_z = numpified_zs["heads"] if "heads" in numpified_zs.keys() else np.ones([ layers, 1, heads, 1, 1]) mha_z = numpified_zs["mha"].reshape(-1, 1, 1, 1, 1) if "mha" in numpified_zs.keys( ) else np.ones([heads_z.shape[0], 1, 1, 1, 1]) intermediate_z = numpified_zs["intermediate"] if "intermediate" in numpified_zs.keys( ) else np.ones([layers, 1, 1, hidden_size * 4]) ffn_z = numpified_zs["ffn"].reshape(-1, 1, 1, 1) if "ffn" in numpified_zs.keys( ) else np.ones([heads_z.shape[0], 1, 1, 1]) remain_hidden = hidden_z.sum().item() remain_intermediate = intermediate_z.reshape( self.num_hidden_layers, self.intermediate_size).sum(-1).tolist() remain_heads = heads_z.reshape( self.num_hidden_layers, self.num_attention_heads).sum(-1).tolist() heads = np.outer((heads_z * mha_z).reshape(-1), hidden_z).sum().item() intermediate = np.outer( (intermediate_z * ffn_z).reshape(-1), hidden_z).sum().item() remain_model_size = heads * self.dim_per_head * 4 + intermediate * 2 pruned_model_size = self.prunable_model_size - remain_model_size results = { 'mha': mha_z.reshape(-1).astype(int).tolist(), 'ffn': ffn_z.reshape(-1).astype(int).tolist(), 'remain_hidden': remain_hidden, 'remain_intermediate': remain_intermediate, 'remain_heads': remain_heads, 'pruned_params': pruned_model_size, 'remain_params': remain_model_size, 'pruned_sparsity': pruned_model_size / self.prunable_model_size } return results def forward(self, soft=True): zs = {f"{t}_z": [] for t in self.types} if self.training: for i, t in enumerate(self.types): loga = self.z_logas[t] z = self._sample_z(loga) zs[f"{t}_z"] = z.reshape(self.shapes[t]) else: for i, t in enumerate(self.types): if t != "hidden": # hidden is not a per layer sample tmp = [] for loga in self.z_logas[t]: z = self._deterministic_z( self.sizes[t], loga.detach(), soft=soft) tmp.append(z.reshape(self.shapes[t][1:])) zs[f"{t}_z"] = torch.stack(tmp) else: zs[f"{t}_z"] = self._deterministic_z( self.sizes[t], self.hidden_loga.detach(), soft=soft) return zs @torch.no_grad() def l0_mask(self): zs = {f"{t}_z": [] for t in self.types} # self.magical_number = 1.0 def get_mask(loga): return torch.sigmoid( loga / self.temperature * self.magical_number) for t in self.types: if t == "hidden": zs[f"{t}_z"] = get_mask(self.hidden_loga) else: tmp = [] loga_all_layers = self.z_logas[t] for layer in range(len(loga_all_layers)): loga = loga_all_layers[layer] z = get_mask(loga) tmp.append(z.reshape(self.shapes[t][1:])) zs[f"{t}_z"] = torch.stack(tmp) return zs if __name__ == '__main__': from collections import namedtuple Config = namedtuple('Config', [ 'hidden_size', 'intermediate_size', 'num_attention_heads', 'num_hidden_layers']) config = Config(hidden_size=768, intermediate_size=4 * 768, num_attention_heads=12, num_hidden_layers=12) l0_module = L0Module(config, lagrangian_warmup=200, target_sparsity=0.5) l0_module.train() zs = l0_module() l0_module.eval() zs = l0_module() result = l0_module.calculate_model_size(zs) print(result)
Cream/TinyCLIP/src/open_clip/l0module.py/0
{ "file_path": "Cream/TinyCLIP/src/open_clip/l0module.py", "repo_id": "Cream", "token_count": 7704 }
311
""" CLIP tokenizer Copied from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI. """ import gzip import html import os from functools import lru_cache from typing import Union, List import ftfy import regex as re import torch @lru_cache() def default_bpe(): return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz") @lru_cache() def bytes_to_unicode(): """ Returns list of utf-8 byte and a corresponding list of unicode strings. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a signficant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. And avoids mapping to whitespace/control characters the bpe code barfs on. """ bs = list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8 + n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) def get_pairs(word): """Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs def basic_clean(text): text = ftfy.fix_text(text) text = html.unescape(html.unescape(text)) return text.strip() def whitespace_clean(text): text = re.sub(r'\s+', ' ', text) text = text.strip() return text class SimpleTokenizer(object): def __init__(self, bpe_path: str = default_bpe(), special_tokens=None): self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} merges = gzip.open(bpe_path).read().decode("utf-8").split('\n') merges = merges[1:49152 - 256 - 2 + 1] merges = [tuple(merge.split()) for merge in merges] vocab = list(bytes_to_unicode().values()) vocab = vocab + [v + '</w>' for v in vocab] for merge in merges: vocab.append(''.join(merge)) if not special_tokens: special_tokens = ['<start_of_text>', '<end_of_text>'] else: special_tokens = ['<start_of_text>', '<end_of_text>'] + special_tokens vocab.extend(special_tokens) self.encoder = dict(zip(vocab, range(len(vocab)))) self.decoder = {v: k for k, v in self.encoder.items()} self.bpe_ranks = dict(zip(merges, range(len(merges)))) self.cache = {t: t for t in special_tokens} special = "|".join(special_tokens) self.pat = re.compile( special + r"""|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE) self.vocab_size = len(self.encoder) self.all_special_ids = [self.encoder[t] for t in special_tokens] def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token[:-1]) + (token[-1] + '</w>',) pairs = get_pairs(word) if not pairs: return token + '</w>' while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get( pair, float('inf'))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) new_word.extend(word[i:j]) i = j except: new_word.extend(word[i:]) break if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = ' '.join(word) self.cache[token] = word return word def encode(self, text): bpe_tokens = [] text = whitespace_clean(basic_clean(text)).lower() for token in re.findall(self.pat, text): token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8')) bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' ')) return bpe_tokens def decode(self, tokens): text = ''.join([self.decoder[token] for token in tokens]) text = bytearray([self.byte_decoder[c] for c in text]).decode( 'utf-8', errors="replace").replace('</w>', ' ') return text _tokenizer = SimpleTokenizer() def tokenize(texts: Union[str, List[str]], context_length: int = 77) -> torch.LongTensor: """ Returns the tokenized representation of given input string(s) Parameters ---------- texts : Union[str, List[str]] An input string or a list of input strings to tokenize context_length : int The context length to use; all CLIP models use 77 as the context length Returns ------- A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length] """ if isinstance(texts, str): texts = [texts] sot_token = _tokenizer.encoder["<start_of_text>"] eot_token = _tokenizer.encoder["<end_of_text>"] all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts] result = torch.zeros(len(all_tokens), context_length, dtype=torch.long) for i, tokens in enumerate(all_tokens): if len(tokens) > context_length: tokens = tokens[:context_length] # Truncate tokens[-1] = eot_token result[i, :len(tokens)] = torch.tensor(tokens) return result class HFTokenizer: """HuggingFace tokenizer wrapper""" def __init__(self, tokenizer_name: str): from transformers import AutoTokenizer self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name) def save_pretrained(self, dest): self.tokenizer.save_pretrained(dest) def __call__(self, texts: Union[str, List[str]], context_length: int = 77) -> torch.Tensor: # same cleaning as for default tokenizer, except lowercasing # adding lower (for case-sensitive tokenizers) will make it more robust but less sensitive to nuance if isinstance(texts, str): texts = [texts] texts = [whitespace_clean(basic_clean(text)) for text in texts] input_ids = self.tokenizer( texts, return_tensors='pt', max_length=context_length, padding='max_length', truncation=True, ).input_ids return input_ids
Cream/TinyCLIP/src/open_clip/tokenizer.py/0
{ "file_path": "Cream/TinyCLIP/src/open_clip/tokenizer.py", "repo_id": "Cream", "token_count": 3499 }
312
import torch from contextlib import suppress # amp_bfloat16 is more stable than amp float16 for clip training def get_autocast(precision): if precision == 'amp': return torch.cuda.amp.autocast elif precision == 'amp_bfloat16': return lambda: torch.cuda.amp.autocast(dtype=torch.bfloat16) elif precision == 'fp32': return lambda: torch.cuda.amp.autocast(enabled=False) else: return suppress
Cream/TinyCLIP/src/training/precision.py/0
{ "file_path": "Cream/TinyCLIP/src/training/precision.py", "repo_id": "Cream", "token_count": 169 }
313
""" Quick n Simple Image Folder, Tarfile based DataSet Hacked together by / Copyright 2020 Ross Wightman """ import torch.utils.data as data import os import torch import logging from PIL import Image from .parsers import create_parser _logger = logging.getLogger(__name__) _ERROR_RETRY = 50 class ImageDataset(data.Dataset): def __init__( self, root, parser=None, class_map=None, load_bytes=False, transform=None, target_transform=None, ): if parser is None or isinstance(parser, str): parser = create_parser(parser or '', root=root, class_map=class_map) self.parser = parser self.load_bytes = load_bytes self.transform = transform self.target_transform = target_transform self._consecutive_errors = 0 def __getitem__(self, index): img, target = self.parser[index] try: img = img.read() if self.load_bytes else Image.open(img).convert('RGB') except Exception as e: _logger.warning(f'Skipped sample (index {index}, file {self.parser.filename(index)}). {str(e)}') self._consecutive_errors += 1 if self._consecutive_errors < _ERROR_RETRY: return self.__getitem__((index + 1) % len(self.parser)) else: raise e self._consecutive_errors = 0 if self.transform is not None: img = self.transform(img) if target is None: target = -1 elif self.target_transform is not None: target = self.target_transform(target) return img, target def __len__(self): return len(self.parser) def filename(self, index, basename=False, absolute=False): return self.parser.filename(index, basename, absolute) def filenames(self, basename=False, absolute=False): return self.parser.filenames(basename, absolute) class IterableImageDataset(data.IterableDataset): def __init__( self, root, parser=None, split='train', is_training=False, batch_size=None, repeats=0, download=False, transform=None, target_transform=None, ): assert parser is not None if isinstance(parser, str): self.parser = create_parser( parser, root=root, split=split, is_training=is_training, batch_size=batch_size, repeats=repeats, download=download) else: self.parser = parser self.transform = transform self.target_transform = target_transform self._consecutive_errors = 0 def __iter__(self): for img, target in self.parser: if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) yield img, target def __len__(self): if hasattr(self.parser, '__len__'): return len(self.parser) else: return 0 def filename(self, index, basename=False, absolute=False): assert False, 'Filename lookup by index not supported, use filenames().' def filenames(self, basename=False, absolute=False): return self.parser.filenames(basename, absolute) class AugMixDataset(torch.utils.data.Dataset): """Dataset wrapper to perform AugMix or other clean/augmentation mixes""" def __init__(self, dataset, num_splits=2): self.augmentation = None self.normalize = None self.dataset = dataset if self.dataset.transform is not None: self._set_transforms(self.dataset.transform) self.num_splits = num_splits def _set_transforms(self, x): assert isinstance(x, (list, tuple)) and len(x) == 3, 'Expecting a tuple/list of 3 transforms' self.dataset.transform = x[0] self.augmentation = x[1] self.normalize = x[2] @property def transform(self): return self.dataset.transform @transform.setter def transform(self, x): self._set_transforms(x) def _normalize(self, x): return x if self.normalize is None else self.normalize(x) def __getitem__(self, i): x, y = self.dataset[i] # all splits share the same dataset base transform x_list = [self._normalize(x)] # first split only normalizes (this is the 'clean' split) # run the full augmentation on the remaining splits for _ in range(self.num_splits - 1): x_list.append(self._normalize(self.augmentation(x))) return tuple(x_list), y def __len__(self): return len(self.dataset)
Cream/TinyViT/data/augmentation/dataset.py/0
{ "file_path": "Cream/TinyViT/data/augmentation/dataset.py", "repo_id": "Cream", "token_count": 2122 }
314
""" Random Erasing (Cutout) Originally inspired by impl at https://github.com/zhunzhong07/Random-Erasing, Apache 2.0 Copyright Zhun Zhong & Liang Zheng Hacked together by / Copyright 2020 Ross Wightman """ from .aug_random import random, np_random import numpy as np import math import torch def _get_pixels(per_pixel, rand_color, patch_size, dtype=torch.float32, device='cuda'): # NOTE I've seen CUDA illegal memory access errors being caused by the normal_() # paths, flip the order so normal is run on CPU if this becomes a problem # Issue has been fixed in master https://github.com/pytorch/pytorch/issues/19508 if not per_pixel and not rand_color: return torch.zeros((patch_size[0], 1, 1), dtype=dtype, device=device) if per_pixel: shape = patch_size elif rand_color: shape = (patch_size[0], 1, 1) # normal_ seed = random.randint(0, 1 << 30) bg = np.random.MT19937(seed) g = np.random.Generator(bg) x = g.normal(size=shape) return torch.tensor(x, dtype=dtype, device=device) class RandomErasing: """ Randomly selects a rectangle region in an image and erases its pixels. 'Random Erasing Data Augmentation' by Zhong et al. See https://arxiv.org/pdf/1708.04896.pdf This variant of RandomErasing is intended to be applied to either a batch or single image tensor after it has been normalized by dataset mean and std. Args: probability: Probability that the Random Erasing operation will be performed. min_area: Minimum percentage of erased area wrt input image area. max_area: Maximum percentage of erased area wrt input image area. min_aspect: Minimum aspect ratio of erased area. mode: pixel color mode, one of 'const', 'rand', or 'pixel' 'const' - erase block is constant color of 0 for all channels 'rand' - erase block is same per-channel random (normal) color 'pixel' - erase block is per-pixel random (normal) color max_count: maximum number of erasing blocks per image, area per box is scaled by count. per-image count is randomly chosen between 1 and this value. """ REF_H = 224 REF_W = 224 def __init__( self, probability=0.5, min_area=0.02, max_area=1/3, min_aspect=0.3, max_aspect=None, mode='const', min_count=1, max_count=None, num_splits=0, device='cuda'): self.probability = probability self.min_area = min_area self.max_area = max_area max_aspect = max_aspect or 1 / min_aspect self.log_aspect_ratio = (math.log(min_aspect), math.log(max_aspect)) self.min_count = min_count self.max_count = max_count or min_count self.num_splits = num_splits self.mode = mode.lower() self.rand_color = False self.per_pixel = False if self.mode == 'rand': self.rand_color = True # per block random normal elif self.mode == 'pixel': self.per_pixel = True # per pixel random normal else: assert not self.mode or self.mode == 'const' self.device = device def _erase(self, img, chan, img_h, img_w, dtype): if random.random() > self.probability: return count = self.min_count if self.min_count == self.max_count else \ random.randint(self.min_count, self.max_count) ref_h, ref_w = self.REF_H, self.REF_W ref_area = ref_h * ref_w area = img_h * img_w for _ in range(count): for attempt in range(10): r1 = random.uniform(self.min_area, self.max_area) target_area = r1 * ref_area / count r2 = random.uniform(*self.log_aspect_ratio) aspect_ratio = math.exp(r2) h = int(round(math.sqrt(target_area * aspect_ratio))) w = int(round(math.sqrt(target_area / aspect_ratio))) if w < ref_w and h < ref_h: top = random.randint(0, ref_h - h) left = random.randint(0, ref_w - w) # ref -> now top = min(int(round(top * img_h / ref_h)), img_h - 1) left = min(int(round(left * img_w / ref_w)), img_w - 1) h = min(int(round(h * img_h / ref_h)), img_h - top) w = min(int(round(w * img_w / ref_w)), img_w - left) img[:, top:top + h, left:left + w] = _get_pixels( self.per_pixel, self.rand_color, (chan, h, w), dtype=dtype, device=self.device) break def __call__(self, input): if len(input.size()) == 3: self._erase(input, *input.size(), input.dtype) else: batch_size, chan, img_h, img_w = input.size() # skip first slice of batch if num_splits is set (for clean portion of samples) batch_start = batch_size // self.num_splits if self.num_splits > 1 else 0 for i in range(batch_start, batch_size): self._erase(input[i], chan, img_h, img_w, input.dtype) return input def __repr__(self): # NOTE simplified state for repr fs = self.__class__.__name__ + f'(p={self.probability}, mode={self.mode}' fs += f', count=({self.min_count}, {self.max_count}))' return fs
Cream/TinyViT/data/augmentation/random_erasing.py/0
{ "file_path": "Cream/TinyViT/data/augmentation/random_erasing.py", "repo_id": "Cream", "token_count": 2458 }
315
# -------------------------------------------------------- # TinyViT Learning rate scheduler # Copyright (c) 2022 Microsoft # Based on the code: Swin Transformer # (https://github.com/microsoft/swin-transformer) # -------------------------------------------------------- import torch from timm.scheduler.cosine_lr import CosineLRScheduler from timm.scheduler.step_lr import StepLRScheduler from timm.scheduler.scheduler import Scheduler # Modified for TinyViT from tinyvit_utils import LRSchedulerWrapper def build_scheduler(config, optimizer, n_iter_per_epoch): num_steps = int(config.TRAIN.EPOCHS * n_iter_per_epoch) warmup_steps = int(config.TRAIN.WARMUP_EPOCHS * n_iter_per_epoch) decay_steps = int( config.TRAIN.LR_SCHEDULER.DECAY_EPOCHS * n_iter_per_epoch) lr_scheduler = None if config.TRAIN.LR_SCHEDULER.NAME == 'cosine': lr_scheduler = CosineLRScheduler( optimizer, t_initial=num_steps, lr_min=config.TRAIN.MIN_LR, warmup_lr_init=config.TRAIN.WARMUP_LR, warmup_t=warmup_steps, cycle_limit=1, t_in_epochs=False, ) elif config.TRAIN.LR_SCHEDULER.NAME == 'linear': lr_scheduler = LinearLRScheduler( optimizer, t_initial=num_steps, lr_min_rate=0.01, warmup_lr_init=config.TRAIN.WARMUP_LR, warmup_t=warmup_steps, t_in_epochs=False, ) elif config.TRAIN.LR_SCHEDULER.NAME == 'step': lr_scheduler = StepLRScheduler( optimizer, decay_t=decay_steps, decay_rate=config.TRAIN.LR_SCHEDULER.DECAY_RATE, warmup_lr_init=config.TRAIN.WARMUP_LR, warmup_t=warmup_steps, t_in_epochs=False, ) # Modified for TinyViT if config.TRAIN.LAYER_LR_DECAY != 1.0: lr_scheduler = LRSchedulerWrapper(lr_scheduler, optimizer) return lr_scheduler class LinearLRScheduler(Scheduler): def __init__(self, optimizer: torch.optim.Optimizer, t_initial: int, lr_min_rate: float, warmup_t=0, warmup_lr_init=0., t_in_epochs=True, noise_range_t=None, noise_pct=0.67, noise_std=1.0, noise_seed=42, initialize=True, ) -> None: super().__init__( optimizer, param_group_field="lr", noise_range_t=noise_range_t, noise_pct=noise_pct, noise_std=noise_std, noise_seed=noise_seed, initialize=initialize) self.t_initial = t_initial self.lr_min_rate = lr_min_rate self.warmup_t = warmup_t self.warmup_lr_init = warmup_lr_init self.t_in_epochs = t_in_epochs if self.warmup_t: self.warmup_steps = [(v - warmup_lr_init) / self.warmup_t for v in self.base_values] super().update_groups(self.warmup_lr_init) else: self.warmup_steps = [1 for _ in self.base_values] def _get_lr(self, t): if t < self.warmup_t: lrs = [self.warmup_lr_init + t * s for s in self.warmup_steps] else: t = t - self.warmup_t total_t = self.t_initial - self.warmup_t lrs = [v - ((v - v * self.lr_min_rate) * (t / total_t)) for v in self.base_values] return lrs def get_epoch_values(self, epoch: int): if self.t_in_epochs: return self._get_lr(epoch) else: return None def get_update_values(self, num_updates: int): if not self.t_in_epochs: return self._get_lr(num_updates) else: return None
Cream/TinyViT/lr_scheduler.py/0
{ "file_path": "Cream/TinyViT/lr_scheduler.py", "repo_id": "Cream", "token_count": 2032 }
316
Hiring research interns for neural architecture search projects: [email protected] # Rethinking and Improving Relative Position Encoding for Vision Transformer [[Paper]](https://openaccess.thecvf.com/content/ICCV2021/html/Wu_Rethinking_and_Improving_Relative_Position_Encoding_for_Vision_Transformer_ICCV_2021_paper.html) Object Detection: DETR with iRPE # Model Zoo We equip DETR models with contextual product shared-head RPE, and report their mAP on MSCOCO dataset. - Absolute Position Encoding: Sinusoid - Relative Position Encoding: iRPE (contextual product shared-head RPE) enc\_rpe2d | Backbone | #Buckets | epoch | AP | AP\_50 | AP\_75 | AP\_S | AP\_M | AP\_L | Link | Log ----------------------- | --------- | -------- | ----- | ----- | ------ | ------ | ----- | ----- | ----- | ---- | --- rpe-1.9-product-ctx-1-k | ResNet-50 | 7 x 7 | 150 | 0.409 | 0.614 | 0.429 | 0.195 | 0.443 | 0.605 | [link](https://github.com/wkcn/iRPE-model-zoo/releases/download/1.0/rpe-1.9-product-ctx-1-k.pth)| [log](https://github.com/wkcn/iRPE-model-zoo/releases/download/1.0/log_rpe-1.9-product-ctx-1-k.txt), [detail (188 MB)](https://github.com/wkcn/iRPE-model-zoo/releases/download/1.0/detail_rpe-1.9-product-ctx-1-k.log) rpe-2.0-product-ctx-1-k | ResNet-50 | 9 x 9 | 150 | 0.410 | 0.615 | 0.434 | 0.192 | 0.445 | 0.608 | [link](https://github.com/wkcn/iRPE-model-zoo/releases/download/1.0/rpe-2.0-product-ctx-1-k.pth)| [log](https://github.com/wkcn/iRPE-model-zoo/releases/download/1.0/log_rpe-2.0-product-ctx-1-k.txt), [detail (188 MB)](https://github.com/wkcn/iRPE-model-zoo/releases/download/1.0/detail_rpe-2.0-product-ctx-1-k.log) rpe-2.0-product-ctx-1-k | ResNet-50 | 9 x 9 | 300 | 0.422 | 0.623 | 0.446 | 0.205 | 0.457 | 0.613 | [link](https://github.com/wkcn/iRPE-model-zoo/releases/download/1.0/rpe-2.0-product-ctx-1-k_300epochs.pth)| [log](https://github.com/wkcn/iRPE-model-zoo/releases/download/1.0/log_rpe-2.0-product-ctx-1-k_300epochs.txt), [detail (375 MB)](https://github.com/wkcn/iRPE-model-zoo/releases/download/1.0/detail_rpe-2.0-product-ctx-1-k_300epochs.log) `--enc_rpe2d` is an argument to represent the attributions of relative position encoding. # Usage ## Setup 1. Install 3rd-party packages from [requirements.txt](./requirements.txt). ```bash pip install -r ./requirements.txt ``` 2. **[Optional, Recommend]** Build iRPE operators implemented by CUDA. Although iRPE can be implemented by PyTorch native functions, the backward speed of PyTorch index function is very slow. We implement CUDA operators for more efficient training and recommend to build it. `nvcc` is necessary to build CUDA operators. ```bash cd rpe_ops/ python setup.py install --user ``` ## Data Preparation You can download the MSCOCO dataset from [`https://cocodataset.org/#download`](https://cocodataset.org/#download). Please download the following files: - [2017 Train images [118K/18GB]](http://images.cocodataset.org/zips/train2017.zip) - [2017 Val images [5K/1GB]](http://images.cocodataset.org/zips/val2017.zip) - [2017 Train/Val annotations [241MB]](http://images.cocodataset.org/annotations/annotations_trainval2017.zip) After downloading them, move the three archieves into the same directory, then decompress the annotations archive by `unzip ./annotations_trainval2017.zip`. We **DO NOT** compress the images archieves. The dataset should be saved as follow, ``` coco_data ├── annotations │   ├── captions_train2017.json │   ├── captions_val2017.json │   ├── instances_train2017.json │   ├── instances_val2017.json │   ├── person_keypoints_train2017.json │   └── person_keypoints_val2017.json ├── train2017.zip └── val2017.zip ``` The zipfile `train2017.zip` and `val2017.zip` can also be decompressed. ``` coco_data ├── annotations │   ├── captions_train2017.json │   ├── captions_val2017.json │   ├── instances_train2017.json │   ├── instances_val2017.json │   ├── person_keypoints_train2017.json │   └── person_keypoints_val2017.json ├── train2017 │   └── 000000000009.jpg └── val2017 │   └── 000000000009.jpg ``` ## Argument for iRPE We add an extra argument `--enc_rpe2d rpe-{ratio}-{method}-{mode}-{shared_head}-{rpe_on}` for iRPE. It means that we add relative position encoding on all the encoder layers. Here is the format of the variables `ratio`, `method`, `mode`, `shared_head` and `rpe_on`. ```python Parameters ---------- ratio: float The ratio to control the number of buckets. Example: 1.9, 2.0, 2.5, 3.0 For the product method, ratio | The number of buckets ------|----------------------- 1.9 | 7 x 7 2.0 | 9 x 9 2.5 | 11 x 11 3.0 | 13 x 13 method: str The method name of image relative position encoding. Example: `euc` or `quant` or `cross` or `product` euc: Euclidean method quant: Quantization method cross: Cross method product: Product method mode: str The mode of image relative position encoding. Example: `bias` or `ctx` shared_head: bool Whether to share weight among different heads. Example: 0 or 1 0: Do not share encoding weight among different heads. 1: Share encoding weight among different heads. rpe_on: str Where RPE attaches. "q": RPE on queries "k": RPE on keys "v": RPE on values "qk": RPE on queries and keys "qkv": RPE on queries, keys and values ``` If we want a image relative position encoding with contextual product shared-head `9 x 9` buckets, the argument is `--enc_rpe2d rpe-2.0-product-ctx-1-k`. ## Training - Train a DETR-ResNet50 with iRPE (contextual product shared-head `9 x 9` buckets) for **150 epochs**: ```bash python -m torch.distributed.launch --nproc_per_node=8 --use_env main.py --lr_drop 100 --epochs 150 --coco_path ./coco_data --enc_rpe2d rpe-2.0-product-ctx-1-k --output_dir ./output' ``` - Train a DETR-ResNet50 with iRPE (contextual product shared-head `9 x 9` buckets) for **300 epochs**: ```bash python -m torch.distributed.launch --nproc_per_node=8 --use_env main.py --lr_drop 200 --epochs 300 --coco_path ./coco_data --enc_rpe2d rpe-2.0-product-ctx-1-k --output_dir ./output' ``` where `--nproc_per_node 8` means using 8 GPUs to train the model. `/coco_data` is the dataset folder, and `./output` is the model checkpoint folder. ## Evaluation The step is similar to training. Add the checkpoint path and the flag `--eval --resume <the checkpoint path>`. ```bash python -m torch.distributed.launch --nproc_per_node=8 --use_env main.py --lr_drop 100 --epochs 150 --coco_path ./coco_data --enc_rpe2d rpe-2.0-product-ctx-1-k --output_dir ./output --eval --resume rpe-2.0-product-ctx-1-k.pth' ``` ## Code Structure Our code is based on [DETR](https://github.com/facebookresearch/detr). The implementation of `MultiheadAttention` is based on PyTorch native operator ([module](https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/activation.py), [function](https://github.com/pytorch/pytorch/blob/master/torch/nn/functional.py)). Thank you! File | Description -----|------------ [`models/rpe_attention/irpe.py`](./models/rpe_attention/irpe.py) | The implementation of image relative position encoding [`models/rpe_attention/multi_head_attention.py`](./models/rpe_attention/multi_head_attention.py) | The nn.Module `MultiheadAttention` with iRPE [`models/rpe_attention/rpe_attention_function.py`](./models/rpe_attention/rpe_attention_function.py) | The function `rpe_multi_head_attention_forward` with iRPE [`rpe_ops`](./rpe_ops) | The CUDA implementation of iRPE operators for efficient training # Citing iRPE If this project is helpful for you, please cite it. Thank you! : ) ```bibtex @InProceedings{iRPE, title = {Rethinking and Improving Relative Position Encoding for Vision Transformer}, author = {Wu, Kan and Peng, Houwen and Chen, Minghao and Fu, Jianlong and Chao, Hongyang}, booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)}, month = {October}, year = {2021}, pages = {10033-10041} } ``` # License [Apache License](./LICENSE)
Cream/iRPE/DETR-with-iRPE/README.md/0
{ "file_path": "Cream/iRPE/DETR-with-iRPE/README.md", "repo_id": "Cream", "token_count": 3004 }
317
# Modify from https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/activation.py import warnings from typing import Optional, Tuple import torch from torch import Tensor from torch import nn from torch.nn.init import xavier_uniform_ from torch.nn.init import constant_ from torch.nn.init import xavier_normal_ from torch.nn.parameter import Parameter from torch.nn.modules.module import Module from torch.nn import functional as F from .rpe_attention_function import rpe_multi_head_attention_forward from . import irpe class RPEMultiheadAttention(nn.Module): r"""Allows the model to jointly attend to information from different representation subspaces. See `Attention Is All You Need <https://arxiv.org/abs/1706.03762>`_ .. math:: \text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O where :math:`head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)`. Args: embed_dim: total dimension of the model. num_heads: parallel attention heads. dropout: a Dropout layer on attn_output_weights. Default: 0.0. bias: add bias as module parameter. Default: True. add_bias_kv: add bias to the key and value sequences at dim=0. add_zero_attn: add a new batch of zeros to the key and value sequences at dim=1. kdim: total number of features in key. Default: None. vdim: total number of features in value. Default: None. Note that if :attr:`kdim` and :attr:`vdim` are None, they will be set to :attr:`embed_dim` such that query, key, and value have the same number of features. Examples:: >>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads) >>> attn_output, attn_output_weights = multihead_attn(query, key, value) """ bias_k: Optional[torch.Tensor] bias_v: Optional[torch.Tensor] def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None, rpe_config=None): super().__init__() self.embed_dim = embed_dim self.kdim = kdim if kdim is not None else embed_dim self.vdim = vdim if vdim is not None else embed_dim self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads assert self.head_dim * \ num_heads == self.embed_dim, "embed_dim must be divisible by num_heads" if self._qkv_same_embed_dim is False: self.q_proj_weight = Parameter(torch.Tensor(embed_dim, embed_dim)) self.k_proj_weight = Parameter(torch.Tensor(embed_dim, self.kdim)) self.v_proj_weight = Parameter(torch.Tensor(embed_dim, self.vdim)) self.register_parameter('in_proj_weight', None) else: self.in_proj_weight = Parameter( torch.empty(3 * embed_dim, embed_dim)) self.register_parameter('q_proj_weight', None) self.register_parameter('k_proj_weight', None) self.register_parameter('v_proj_weight', None) if bias: self.in_proj_bias = Parameter(torch.empty(3 * embed_dim)) else: self.register_parameter('in_proj_bias', None) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=True) if add_bias_kv: self.bias_k = Parameter(torch.empty(1, 1, embed_dim)) self.bias_v = Parameter(torch.empty(1, 1, embed_dim)) else: self.bias_k = self.bias_v = None self.add_zero_attn = add_zero_attn self._reset_parameters() self.rpe_q, self.rpe_k, self.rpe_v = \ irpe.build_rpe(rpe_config, head_dim=self.head_dim, num_heads=self.num_heads) for c in 'qkv': name = 'rpe_' + c rpe = getattr(self, name) if rpe is not None: print( f"The number of buckets on {name} in encoder:", rpe.num_buckets) def _reset_parameters(self): if self._qkv_same_embed_dim: xavier_uniform_(self.in_proj_weight) else: xavier_uniform_(self.q_proj_weight) xavier_uniform_(self.k_proj_weight) xavier_uniform_(self.v_proj_weight) if self.in_proj_bias is not None: constant_(self.in_proj_bias, 0.) constant_(self.out_proj.bias, 0.) if self.bias_k is not None: xavier_normal_(self.bias_k) if self.bias_v is not None: xavier_normal_(self.bias_v) def __setstate__(self, state): # Support loading old MultiheadAttention checkpoints generated by v1.1.0 if '_qkv_same_embed_dim' not in state: state['_qkv_same_embed_dim'] = True super().__setstate__(state) def forward(self, query: Tensor, key: Tensor, value: Tensor, key_padding_mask: Optional[Tensor] = None, need_weights: bool = True, attn_mask: Optional[Tensor] = None, hw=None) -> Tuple[Tensor, Optional[Tensor]]: r""" Args: query, key, value: map a query and a set of key-value pairs to an output. See "Attention Is All You Need" for more details. key_padding_mask: if provided, specified padding elements in the key will be ignored by the attention. When given a binary mask and a value is True, the corresponding value on the attention layer will be ignored. When given a byte mask and a value is non-zero, the corresponding value on the attention layer will be ignored need_weights: output attn_output_weights. attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all the batches while a 3D mask allows to specify a different mask for the entries of each batch. Shapes for inputs: - query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. - value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is the embedding dimension. - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length. If a ByteTensor is provided, the non-zero positions will be ignored while the position with the zero positions will be unchanged. If a BoolTensor is provided, the positions with the value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged. - attn_mask: if a 2D mask: :math:`(L, S)` where L is the target sequence length, S is the source sequence length. - hw: (height, width) of the feature map If a 3D mask: :math:`(N\cdot\text{num\_heads}, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. ``attn_mask`` ensure that position i is allowed to attend the unmasked positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True`` is not allowed to attend while ``False`` values will be unchanged. If a FloatTensor is provided, it will be added to the attention weight. Shapes for outputs: - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - attn_output_weights: :math:`(N, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. """ if not self._qkv_same_embed_dim: return rpe_multi_head_attention_forward( query, key, value, self.embed_dim, self.num_heads, self.in_proj_weight, self.in_proj_bias, self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, training=self.training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask, use_separate_proj_weight=True, q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight, v_proj_weight=self.v_proj_weight, rpe_q=self.rpe_q, rpe_k=self.rpe_k, rpe_v=self.rpe_v, hw=hw) else: return rpe_multi_head_attention_forward( query, key, value, self.embed_dim, self.num_heads, self.in_proj_weight, self.in_proj_bias, self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, training=self.training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask, rpe_q=self.rpe_q, rpe_k=self.rpe_k, rpe_v=self.rpe_v, hw=hw)
Cream/iRPE/DETR-with-iRPE/models/rpe_attention/multi_head_attention.py/0
{ "file_path": "Cream/iRPE/DETR-with-iRPE/models/rpe_attention/multi_head_attention.py", "repo_id": "Cream", "token_count": 4135 }
318
""" Vision Transformer (ViT) in PyTorch A PyTorch implement of Vision Transformers as described in 'An Image Is Worth 16 x 16 Words: Transformers for Image Recognition at Scale' - https://arxiv.org/abs/2010.11929 The official jax code is released and available at https://github.com/google-research/vision_transformer Status/TODO: * Models updated to be compatible with official impl. Args added to support backward compat for old PyTorch weights. * Weights ported from official jax impl for 384x384 base and small models, 16x16 and 32x32 patches. * Trained (supervised on ImageNet-1k) my custom 'small' patch model to 77.9, 'base' to 79.4 top-1 with this code. * Hopefully find time and GPUs for SSL or unsupervised pretraining on OpenImages w/ ImageNet fine-tune in future. Acknowledgments: * The paper authors for releasing code and weights, thanks! * I fixed my class token impl based on Phil Wang's https://github.com/lucidrains/vit-pytorch ... check it out for some einops/einsum fun * Simple transformer style inspired by Andrej Karpathy's https://github.com/karpathy/minGPT * Bert reference code checks against Huggingface Transformers and Tensorflow Bert Hacked together by / Copyright 2020 Ross Wightman Adapted from timm 0.3.2 """ import torch import torch.nn as nn from functools import partial from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.models.helpers import load_pretrained from timm.models.layers import DropPath, to_2tuple, trunc_normal_ from timm.models.resnet import resnet26d, resnet50d from timm.models.registry import register_model from timm.models.vision_transformer import _cfg, default_cfgs,\ Mlp, PatchEmbed try: from timm.models.vision_transformer import HybridEmbed except ImportError: # for higher version of timm from timm.models.vision_transformer_hybrid import HybridEmbed from irpe import build_rpe class RPEAttention(nn.Module): ''' Attention with image relative position encoding ''' def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., rpe_config=None): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights self.scale = qk_scale or head_dim ** -0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) # image relative position encoding self.rpe_q, self.rpe_k, self.rpe_v = \ build_rpe(rpe_config, head_dim=head_dim, num_heads=num_heads) def forward(self, x): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) q *= self.scale attn = (q @ k.transpose(-2, -1)) # image relative position on keys if self.rpe_k is not None: attn += self.rpe_k(q) # image relative position on queries if self.rpe_q is not None: attn += self.rpe_q(k * self.scale).transpose(2, 3) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) out = attn @ v # image relative position on values if self.rpe_v is not None: out += self.rpe_v(attn) x = out.transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class RPEBlock(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, rpe_config=None): super().__init__() self.norm1 = norm_layer(dim) self.attn = RPEAttention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, rpe_config=rpe_config) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, x): x = x + self.drop_path(self.attn(self.norm1(x))) x = x + self.drop_path(self.mlp(self.norm2(x))) return x class VisionTransformer(nn.Module): """ Vision Transformer with support for patch or hybrid CNN input stage and image relative position encoding """ def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., hybrid_backbone=None, norm_layer=nn.LayerNorm, rpe_config=None): super().__init__() self.num_classes = num_classes self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models if hybrid_backbone is not None: self.patch_embed = HybridEmbed( hybrid_backbone, img_size=img_size, in_chans=in_chans, embed_dim=embed_dim) else: self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) num_patches = self.patch_embed.num_patches self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) self.pos_drop = nn.Dropout(p=drop_rate) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule self.blocks = nn.ModuleList([ RPEBlock( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, rpe_config=rpe_config) for i in range(depth)]) self.norm = norm_layer(embed_dim) # NOTE as per official impl, we could have a pre-logits representation dense layer + tanh here #self.repr = nn.Linear(embed_dim, representation_size) #self.repr_act = nn.Tanh() # Classifier head self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() trunc_normal_(self.pos_embed, std=.02) trunc_normal_(self.cls_token, std=.02) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore def no_weight_decay(self): return {'pos_embed', 'cls_token'} def get_classifier(self): return self.head def reset_classifier(self, num_classes, global_pool=''): self.num_classes = num_classes self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() def forward_features(self, x): B = x.shape[0] x = self.patch_embed(x) cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks x = torch.cat((cls_tokens, x), dim=1) x = x + self.pos_embed x = self.pos_drop(x) for blk in self.blocks: x = blk(x) x = self.norm(x) return x[:, 0] def forward(self, x): x = self.forward_features(x) x = self.head(x) return x
Cream/iRPE/DeiT-with-iRPE/rpe_vision_transformer.py/0
{ "file_path": "Cream/iRPE/DeiT-with-iRPE/rpe_vision_transformer.py", "repo_id": "Cream", "token_count": 3582 }
319
from __future__ import absolute_import from __future__ import division from __future__ import print_function import logging import time import torch from timm.data import Mixup from torch.cuda.amp import autocast from core.evaluate import accuracy from utils.comm import comm def train_one_epoch(config, train_loader, model, criterion, optimizer, epoch, output_dir, tb_log_dir, writer_dict, scaler=None): batch_time = AverageMeter() data_time = AverageMeter() losses = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() logging.info('=> switch to train mode') model.train() aug = config.AUG mixup_fn = Mixup( mixup_alpha=aug.MIXUP, cutmix_alpha=aug.MIXCUT, cutmix_minmax=aug.MIXCUT_MINMAX if aug.MIXCUT_MINMAX else None, prob=aug.MIXUP_PROB, switch_prob=aug.MIXUP_SWITCH_PROB, mode=aug.MIXUP_MODE, label_smoothing=config.LOSS.LABEL_SMOOTHING, num_classes=config.MODEL.NUM_CLASSES ) if aug.MIXUP_PROB > 0.0 else None end = time.time() for i, (x, y) in enumerate(train_loader): # measure data loading time data_time.update(time.time() - end) # compute output x = x.cuda(non_blocking=True) y = y.cuda(non_blocking=True) if mixup_fn: x, y = mixup_fn(x, y) with autocast(enabled=config.AMP.ENABLED): if config.AMP.ENABLED and config.AMP.MEMORY_FORMAT == 'nwhc': x = x.contiguous(memory_format=torch.channels_last) y = y.contiguous(memory_format=torch.channels_last) outputs = model(x) loss = criterion(outputs, y) # compute gradient and do update step optimizer.zero_grad() is_second_order = hasattr(optimizer, 'is_second_order') \ and optimizer.is_second_order scaler.scale(loss).backward(create_graph=is_second_order) if config.TRAIN.CLIP_GRAD_NORM > 0.0: # Unscales the gradients of optimizer's assigned params in-place scaler.unscale_(optimizer) # Since the gradients of optimizer's assigned params are unscaled, clips as usual: torch.nn.utils.clip_grad_norm_( model.parameters(), config.TRAIN.CLIP_GRAD_NORM ) scaler.step(optimizer) scaler.update() # measure accuracy and record loss losses.update(loss.item(), x.size(0)) if mixup_fn: y = torch.argmax(y, dim=1) prec1, prec5 = accuracy(outputs, y, (1, 5)) top1.update(prec1, x.size(0)) top5.update(prec5, x.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % config.PRINT_FREQ == 0: msg = '=> Epoch[{0}][{1}/{2}]: ' \ 'Time {batch_time.val:.3f}s ({batch_time.avg:.3f}s)\t' \ 'Speed {speed:.1f} samples/s\t' \ 'Data {data_time.val:.3f}s ({data_time.avg:.3f}s)\t' \ 'Loss {loss.val:.5f} ({loss.avg:.5f})\t' \ 'Accuracy@1 {top1.val:.3f} ({top1.avg:.3f})\t' \ 'Accuracy@5 {top5.val:.3f} ({top5.avg:.3f})\t'.format( epoch, i, len(train_loader), batch_time=batch_time, speed=x.size(0)/batch_time.val, data_time=data_time, loss=losses, top1=top1, top5=top5) logging.info(msg) torch.cuda.synchronize() if writer_dict and comm.is_main_process(): writer = writer_dict['writer'] global_steps = writer_dict['train_global_steps'] writer.add_scalar('train_loss', losses.avg, global_steps) writer.add_scalar('train_top1', top1.avg, global_steps) writer_dict['train_global_steps'] = global_steps + 1 @torch.no_grad() def test(config, val_loader, model, criterion, output_dir, tb_log_dir, writer_dict=None, distributed=False, real_labels=None, valid_labels=None): batch_time = AverageMeter() losses = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() logging.info('=> switch to eval mode') model.eval() end = time.time() for i, (x, y) in enumerate(val_loader): # compute output x = x.cuda(non_blocking=True) y = y.cuda(non_blocking=True) outputs = model(x) if valid_labels: outputs = outputs[:, valid_labels] loss = criterion(outputs, y) if real_labels and not distributed: real_labels.add_result(outputs) # measure accuracy and record loss losses.update(loss.item(), x.size(0)) prec1, prec5 = accuracy(outputs, y, (1, 5)) top1.update(prec1, x.size(0)) top5.update(prec5, x.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() logging.info('=> synchronize...') comm.synchronize() top1_acc, top5_acc, loss_avg = map( _meter_reduce if distributed else lambda x: x.avg, [top1, top5, losses] ) if real_labels and not distributed: real_top1 = real_labels.get_accuracy(k=1) real_top5 = real_labels.get_accuracy(k=5) msg = '=> TEST using Reassessed labels:\t' \ 'Error@1 {error1:.3f}%\t' \ 'Error@5 {error5:.3f}%\t' \ 'Accuracy@1 {top1:.3f}%\t' \ 'Accuracy@5 {top5:.3f}%\t'.format( top1=real_top1, top5=real_top5, error1=100-real_top1, error5=100-real_top5 ) logging.info(msg) if comm.is_main_process(): msg = '=> TEST:\t' \ 'Loss {loss_avg:.4f}\t' \ 'Error@1 {error1:.3f}%\t' \ 'Error@5 {error5:.3f}%\t' \ 'Accuracy@1 {top1:.3f}%\t' \ 'Accuracy@5 {top5:.3f}%\t'.format( loss_avg=loss_avg, top1=top1_acc, top5=top5_acc, error1=100-top1_acc, error5=100-top5_acc ) logging.info(msg) if writer_dict and comm.is_main_process(): writer = writer_dict['writer'] global_steps = writer_dict['valid_global_steps'] writer.add_scalar('valid_loss', loss_avg, global_steps) writer.add_scalar('valid_top1', top1_acc, global_steps) writer_dict['valid_global_steps'] = global_steps + 1 logging.info('=> switch to train mode') model.train() return top1_acc def _meter_reduce(meter): rank = comm.local_rank meter_sum = torch.FloatTensor([meter.sum]).cuda(rank) meter_count = torch.FloatTensor([meter.count]).cuda(rank) torch.distributed.reduce(meter_sum, 0) torch.distributed.reduce(meter_count, 0) meter_avg = meter_sum / meter_count return meter_avg.item() class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count
CvT/lib/core/function.py/0
{ "file_path": "CvT/lib/core/function.py", "repo_id": "CvT", "token_count": 3597 }
320
from __future__ import absolute_import from __future__ import division from __future__ import print_function import torch from timm.scheduler import create_scheduler def build_lr_scheduler(cfg, optimizer, begin_epoch): if 'METHOD' not in cfg.TRAIN.LR_SCHEDULER: raise ValueError('Please set TRAIN.LR_SCHEDULER.METHOD!') elif cfg.TRAIN.LR_SCHEDULER.METHOD == 'MultiStep': lr_scheduler = torch.optim.lr_scheduler.MultiStepLR( optimizer, cfg.TRAIN.LR_SCHEDULER.MILESTONES, cfg.TRAIN.LR_SCHEDULER.GAMMA, begin_epoch - 1) elif cfg.TRAIN.LR_SCHEDULER.METHOD == 'CosineAnnealing': lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR( optimizer, cfg.TRAIN.END_EPOCH, cfg.TRAIN.LR_SCHEDULER.ETA_MIN, begin_epoch - 1 ) elif cfg.TRAIN.LR_SCHEDULER.METHOD == 'CyclicLR': lr_scheduler = torch.optim.lr_scheduler.CyclicLR( optimizer, base_lr=cfg.TRAIN.LR_SCHEDULER.BASE_LR, max_LR=cfg.TRAIN.LR_SCHEDULER.MAX_LR, step_size_up=cfg.TRAIN.LR_SCHEDULER.STEP_SIZE_UP ) elif cfg.TRAIN.LR_SCHEDULER.METHOD == 'timm': args = cfg.TRAIN.LR_SCHEDULER.ARGS lr_scheduler, _ = create_scheduler(args, optimizer) lr_scheduler.step(begin_epoch) else: raise ValueError('Unknown lr scheduler: {}'.format( cfg.TRAIN.LR_SCHEDULER.METHOD)) return lr_scheduler
CvT/lib/scheduler/build.py/0
{ "file_path": "CvT/lib/scheduler/build.py", "repo_id": "CvT", "token_count": 789 }
321
""" Copyright (C) Microsoft Corporation. All rights reserved.​ ​ Microsoft Corporation ("Microsoft") grants you a nonexclusive, perpetual, royalty-free right to use, copy, and modify the software code provided by us ("Software Code"). You may not sublicense the Software Code or any use of it (except to your affiliates and to vendors to perform work on your behalf) through distribution, network access, service agreement, lease, rental, or otherwise. This license does not purport to express any claim of ownership over data you may have shared with Microsoft in the creation of the Software Code. Unless applicable law gives you more rights, Microsoft reserves all other rights not expressly granted herein, whether by implication, estoppel or otherwise. ​ ​ THE SOFTWARE CODE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL MICROSOFT OR ITS LICENSORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THE SOFTWARE CODE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ import argparse from srcnn.utils import * import os import time from msanomalydetector.util import average_filter class gen(): def __init__(self, win_siz, step, nums): self.control = 0 self.win_siz = win_siz self.step = step self.number = nums def generate_train_data(self, value, back_k=0): def normalize(a): amin = np.min(a) amax = np.max(a) a = (a - amin) / (amax - amin + 1e-5) return 3 * a if back_k <= 5: back = back_k else: back = 5 length = len(value) tmp = [] for pt in range(self.win_siz, length - back, self.step): head = max(0, pt - self.win_siz) tail = min(length - back, pt) data = np.array(value[head:tail]) data = data.astype(np.float64) data = normalize(data) num = np.random.randint(1, self.number) ids = np.random.choice(self.win_siz, num, replace=False) lbs = np.zeros(self.win_siz, dtype=np.int64) if (self.win_siz - 6) not in ids: self.control += np.random.random() else: self.control = 0 if self.control > 100: ids[0] = self.win_siz - 6 self.control = 0 mean = np.mean(data) dataavg = average_filter(data) var = np.var(data) for id in ids: data[id] += (dataavg[id] + mean) * np.random.randn() * min((1 + var), 10) lbs[id] = 1 tmp.append([data.tolist(), lbs.tolist()]) return tmp def auto(dic): path_auto = os.getcwd() + '/auto.json' auto = {} for item, value in dic: if value != None: auto[item] = value with open(path_auto, 'w+') as f: json.dump(auto, f) def get_path(data): dir_ = os.getcwd() + '/' + data + '/' fadir = [_ for _ in os.listdir(dir_)] print(fadir, 'fadir') files = [] for eachdir in fadir: files += [dir_ + eachdir + '/' + _ for _ in os.listdir(dir_ + eachdir)] print(files, 'files') return files if __name__ == '__main__': parser = argparse.ArgumentParser(description='SRCNN') parser.add_argument('--data', type=str, required=True, help='location of the data file') parser.add_argument('--window', type=int, default=128, help='window size') parser.add_argument('--step', type=int, default=64, help='step') parser.add_argument('--seed', type=int, default=54321, help='random seed') parser.add_argument('--num', type=int, default=10, help='upper limit value for the number of anomaly points') args = parser.parse_args() np.random.seed(args.seed) auto(vars(args).items()) files = get_path(args.data) train_data_path = os.getcwd() + '/' + args.data + '_' + str(args.window) + '_train.json' total_time = 0 results = [] print("generating train data") generator = gen(args.window, args.step, args.num) for f in files: print('reading', f) in_timestamp, in_value = read_csv(f) in_label = [] if len(in_value) < args.window: print("value's length < window size", len(in_value), args.window) continue time_start = time.time() train_data = generator.generate_train_data(in_value) time_end = time.time() total_time += time_end - time_start results += train_data print('file num:', len(files)) print('total fake data size:', len(results)) with open(train_data_path, 'w+') as f: print(train_data_path) json.dump(results, f)
anomalydetector/srcnn/generate_data.py/0
{ "file_path": "anomalydetector/srcnn/generate_data.py", "repo_id": "anomalydetector", "token_count": 2168 }
322
{ "version": "0.2.0", "configurations": [ { "name": "All-Toy-NoPareto", "type": "python", "request": "launch", "program": "${cwd}/scripts/supergraph/main.py", "console": "integratedTerminal" }, { "name": "All-Toy-Pareto", "type": "python", "request": "launch", "program": "${cwd}/scripts/supergraph/main.py", "console": "integratedTerminal", "args": ["--nas.search.pareto.enabled", "True", "--nas.search.seed_train.trainer.epochs", "1", "--nas.search.post_train.trainer.epochs", "1"] }, { "name": "Darts-Full", "type": "python", "request": "launch", "program": "${cwd}/scripts/supergraph/main.py", "console": "integratedTerminal", "args": ["--full", "--algos", "darts"] }, { "name": "Darts-Search-Toy", "type": "python", "request": "launch", "program": "${cwd}/scripts/supergraph/main.py", "console": "integratedTerminal", "args": ["--no-eval", "--algos", "darts"] }, { "name": "Darts-Eval-Toy", "type": "python", "request": "launch", "program": "${cwd}/scripts/supergraph/main.py", "console": "integratedTerminal", "args": ["--no-search", "--algos", "darts", "--nas.eval.final_desc_filename", "models/darts/final_model_desc1.yaml"] }, { "name": "Darts-E2E-Toy", "type": "python", "request": "launch", "program": "${cwd}/scripts/supergraph/main.py", "console": "integratedTerminal", "args": ["--algos", "darts"] }, { "name": "Darts-Eval-ImageNet", "type": "python", "request": "launch", "program": "${cwd}/scripts/supergraph/main.py", "console": "integratedTerminal", "args": ["--full", "--algos", "darts", "--datasets", "imagenet", "--no-search", "--nas.eval.final_desc_filename", "models/darts/final_model_desc1.yaml"] }, { "name": "DiDarts-E2E-Toy", "type": "python", "request": "launch", "program": "${cwd}/scripts/supergraph/main.py", "console": "integratedTerminal", "args": ["--algos", "didarts"] }, { "name": "Darts-Food101-Toy", "type": "python", "request": "launch", "program": "${cwd}/scripts/supergraph/main.py", "console": "integratedTerminal", "args": ["--algos", "darts", "--datasets", "food101"] }, { "name": "Darts-ImageNet-Eval-Toy", "type": "python", "request": "launch", "program": "${cwd}/scripts/supergraph/main.py", "console": "integratedTerminal", "args": ["--no-search", "--algos", "darts", "--datasets", "imagenet", "--nas.eval.final_desc_filename", "models/darts/final_model_desc1.yaml"] }, { "name": "Petridish-Full", "type": "python", "request": "launch", "program": "${cwd}/scripts/supergraph/main.py", "console": "integratedTerminal", "args": ["--full", "--algos", "petridish"] }, { "name": "Petridish-Eval-ImageNet", "type": "python", "request": "launch", "program": "${cwd}/scripts/supergraph/main.py", "console": "integratedTerminal", "args": ["--full", "--algos", "petridish", "--datasets", "imagenet", "--no-search", "--nas.eval.final_desc_foldername", "models/petridish/pt_sweep_seed_36_epochs_600_scale_2.0/model_desc_gallery"] }, { "name": "Petridish-Toy", "type": "python", "request": "launch", "program": "${cwd}/scripts/supergraph/main.py", "console": "integratedTerminal", "args": ["--algos", "petridish", "--nas.search.pareto.enabled", "True"] }, { "name": "Xnas-Full", "type": "python", "request": "launch", "program": "${cwd}/scripts/supergraph/main.py", "console": "integratedTerminal", "args": ["--full", "--algos", "xnas"] }, { "name": "Xnas-Search-Toy", "type": "python", "request": "launch", "program": "${cwd}/scripts/supergraph/main.py", "console": "integratedTerminal", "args": ["--no-eval", "--algos", "xnas"] }, { "name": "Xnas-E2E-Toy", "type": "python", "request": "launch", "program": "${cwd}/scripts/supergraph/main.py", "console": "integratedTerminal", "args": ["--algos", "xnas"] }, { "name": "Divnas-Full", "type": "python", "request": "launch", "program": "${cwd}/scripts/supergraph/main.py", "console": "integratedTerminal", "args": ["--full", "--algos", "divnas"] }, { "name": "Divnas-Search-Toy", "type": "python", "request": "launch", "program": "${cwd}/scripts/supergraph/main.py", "console": "integratedTerminal", "args": ["--no-eval", "--algos", "divnas"] }, { "name": "Divnas-Eval-Full", "type": "python", "request": "launch", "program": "${cwd}/scripts/supergraph/main.py", "console": "integratedTerminal", "args": ["--no-search", "--full", "--algos", "divnas", "--nas.eval.final_desc_filename", "models/final_model_desc.yaml"] }, { "name": "Divnas-E2E-Toy", "type": "python", "request": "launch", "program": "${cwd}/scripts/supergraph/main.py", "console": "integratedTerminal", "args": ["--algos", "divnas"] }, { "name": "Gs-Full", "type": "python", "request": "launch", "program": "${cwd}/scripts/supergraph/main.py", "console": "integratedTerminal", "args": ["--full", "--algos", "gs"] }, { "name": "Gs-Search-Toy", "type": "python", "request": "launch", "program": "${cwd}/scripts/supergraph/main.py", "console": "integratedTerminal", "args": ["--no-eval", "--algos", "gs"] }, { "name": "Gs-E2E-Toy", "type": "python", "request": "launch", "program": "${cwd}/scripts/supergraph/main.py", "console": "integratedTerminal", "args": ["--algos", "gs"] }, { "name": "Random-Full", "type": "python", "request": "launch", "program": "${cwd}/scripts/supergraph/main.py", "console": "integratedTerminal", "args": ["--full", "--algos", "random"] }, { "name": "Random-Toy", "type": "python", "request": "launch", "program": "${cwd}/scripts/supergraph/main.py", "console": "integratedTerminal", "args": ["--algos", "random"] }, { "name": "Resnet-Toy", "type": "python", "request": "launch", "program": "${cwd}/scripts/supergraph/main.py", "console": "integratedTerminal", "args": ["--no-search", "--algos", "manual"] }, { "name": "Resnet-Full", "type": "python", "request": "launch", "program": "${cwd}/scripts/supergraph/main.py", "console": "integratedTerminal", "args": ["--no-search", "--full", "--algos", "manual"] }, { "name": "Manual-E2E-Toy", "type": "python", "request": "launch", "program": "${cwd}/scripts/supergraph/main.py", "console": "integratedTerminal", "args": ["--algos", "manual"] }, { "name": "TrainAug resnet50 cocob cifar10", "type": "python", "request": "launch", "program": "${cwd}/scripts/supergraph/augmented_train.py", "console": "integratedTerminal", "args": ["--config", "confs/aug_cifar.yaml;confs/aug_cifar_cocob_resnet50.yaml", "--aug", "fa_reduced_cifar10" ] }, { "name": "TrainAug resnet50 sgd cifar10", "type": "python", "request": "launch", "program": "${cwd}/scripts/supergraph/augmented_train.py", "console": "integratedTerminal", "args": ["--config", "confs/aug_cifar.yaml;confs/aug_cifar_sgd_resnet50.yaml", "--aug", "fa_reduced_cifar10" ] }, { "name": "Exprep", "type": "python", "request": "launch", "program": "${cwd}/scripts/supergraph/reports/exprep.py", "console": "integratedTerminal", "args": ["--results-dir", "C:\\Users\\dedey\\Documents\\archaiphilly\\phillytools\\bilevel_default_20200521", "--out-dir", "C:\\Users\\dedey\\archai_experiment_reports", "--collate"] }, { "name": "CurrentFile", "type": "python", "request": "launch", "program": "${file}", "console": "integratedTerminal", "args":[ ] } ] }
archai/.vscode/launch.json/0
{ "file_path": "archai/.vscode/launch.json", "repo_id": "archai", "token_count": 5507 }
323
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import contextlib import os import psutil import ray import torch import torch.distributed as dist from torch import Tensor, nn from torch.backends import cudnn from torch.cuda.amp import GradScaler from torch.nn import SyncBatchNorm from torch.nn.parallel import DistributedDataParallel from torch.optim.optimizer import Optimizer from archai.common import ml_utils, utils from archai.common.config import Config from archai.common.ordered_dict_logger import get_global_logger from archai.supergraph.utils.multi_optim import MultiOptim logger = get_global_logger() class ApexUtils: def __init__(self, apex_config:Config)->None: # region conf vars self._enabled = apex_config['enabled'] # global switch to disable anything apex self._distributed_enabled = apex_config['distributed_enabled'] # enable/disable distributed mode self._mixed_prec_enabled = apex_config['mixed_prec_enabled'] # enable/disable distributed mode # torch.amp has default 'O1' optimization level and cannot be configured further # torch.amp keeps BN in fp32 # There is no loss_scale option in torch.amp self._sync_bn = apex_config['sync_bn'] # should be replace BNs with sync BNs for distributed model self._scale_lr = apex_config['scale_lr'] # enable/disable distributed mode self._min_world_size = apex_config['min_world_size'] # allows to confirm we are indeed in distributed setting seed = apex_config['seed'] detect_anomaly = apex_config['detect_anomaly'] conf_gpu_ids = apex_config['gpus'] conf_ray = apex_config['ray'] self.ray_enabled = conf_ray['enabled'] self.ray_local_mode = conf_ray['local_mode'] # endregion self._scaler = None self._set_ranks(conf_gpu_ids) #_log_info({'apex_config': apex_config.to_dict()}) self._log_info({'ray.enabled': self.is_ray(), 'apex.enabled': self._enabled}) self._log_info({'torch.distributed.is_available': dist.is_available(), 'apex.distributed_enabled': self._distributed_enabled, 'apex.mixed_prec_enabled': self._mixed_prec_enabled}) if dist.is_available(): # dist.* properties are otherwise not accessible self._op_map = {'mean': dist.ReduceOp.SUM, 'sum': dist.ReduceOp.SUM, 'min': dist.ReduceOp.MIN, 'max': dist.ReduceOp.MAX} self._log_info({'gloo_available': dist.is_gloo_available(), 'mpi_available': dist.is_mpi_available(), 'nccl_available': dist.is_nccl_available()}) if self.is_mixed(): # init enable mixed precision assert cudnn.enabled, "Amp requires cudnn backend to be enabled." self._scaler = GradScaler() # enable distributed processing if self.is_dist(): assert not self.is_ray(), "Ray is not yet enabled for Apex distributed mode" assert dist.is_available() # distributed module is available assert dist.is_nccl_available() if not dist.is_initialized(): dist.init_process_group(backend='nccl', init_method='env://') assert dist.is_initialized() assert dist.get_world_size() == self.world_size assert dist.get_rank() == self.global_rank if self.is_ray(): assert not self.is_dist(), "Ray is not yet enabled for Apex distributed mode" if not ray.is_initialized(): ray.init(local_mode=self.ray_local_mode, include_dashboard=False, # for some reason Ray is detecting wrong number of GPUs num_gpus=torch.cuda.device_count()) ray_cpus = ray.nodes()[0]['Resources']['CPU'] ray_gpus = ray.nodes()[0]['Resources']['GPU'] self._log_info({'ray_cpus': ray_cpus, 'ray_gpus':ray_gpus}) assert self.world_size >= 1 assert not self._min_world_size or self.world_size >= self._min_world_size assert self.local_rank >= 0 and self.local_rank < self.world_size assert self.global_rank >= 0 and self.global_rank < self.world_size assert self._gpu < torch.cuda.device_count() torch.cuda.set_device(self._gpu) self.device = torch.device('cuda', self._gpu) self._setup_gpus(seed, detect_anomaly) self._log_info({'dist_initialized': dist.is_initialized() if dist.is_available() else False, 'world_size': self.world_size, 'gpu': self._gpu, 'gpu_ids':self.gpu_ids, 'local_rank': self.local_rank, 'global_rank': self.global_rank}) def _setup_gpus(self, seed:float, detect_anomaly:bool): utils.setup_cuda(seed, local_rank=self.local_rank) torch.autograd.set_detect_anomaly(detect_anomaly) self._log_info({'set_detect_anomaly': detect_anomaly, 'is_anomaly_enabled': torch.is_anomaly_enabled()}) self._log_info({'gpu_names': utils.cuda_device_names(), 'gpu_count': torch.cuda.device_count(), 'CUDA_VISIBLE_DEVICES': os.environ['CUDA_VISIBLE_DEVICES'] if 'CUDA_VISIBLE_DEVICES' in os.environ else 'NotSet', 'cudnn.enabled': cudnn.enabled, 'cudnn.benchmark': cudnn.benchmark, 'cudnn.deterministic': cudnn.deterministic, 'cudnn.version': cudnn.version() }) self._log_info({'memory': str(psutil.virtual_memory())}) self._log_info({'CPUs': str(psutil.cpu_count())}) # gpu_usage = os.popen( # 'nvidia-smi --query-gpu=memory.total,memory.used --format=csv,nounits,noheader' # ).read().split('\n') # for i, line in enumerate(gpu_usage): # vals = line.split(',') # if len(vals) == 2: # _log_info('GPU {} mem: {}, used: {}'.format(i, vals[0], vals[1])) def _set_ranks(self, conf_gpu_ids:str)->None: # this function needs to work even when torch.distributed is not available if 'WORLD_SIZE' in os.environ: self.world_size = int(os.environ['WORLD_SIZE']) else: self.world_size = 1 if 'LOCAL_RANK' in os.environ: self.local_rank = int(os.environ['LOCAL_RANK']) else: self.local_rank = 0 if 'RANK' in os.environ: self.global_rank = int(os.environ['RANK']) else: self.global_rank = 0 assert self.local_rank < torch.cuda.device_count(), \ f'local_rank={self.local_rank} but device_count={torch.cuda.device_count()}' \ ' Possible cause may be Pytorch is not GPU enabled or you have too few GPUs' self.gpu_ids = [int(i) for i in conf_gpu_ids.split(',') if i] # which GPU to use, we will use only 1 GPU per process to avoid complications with apex # remap if GPU IDs are specified if len(self.gpu_ids): assert len(self.gpu_ids) > self.local_rank self._gpu = self.gpu_ids[self.local_rank] else: self._gpu = self.local_rank % torch.cuda.device_count() def is_mixed(self)->bool: return self._enabled and self._mixed_prec_enabled def is_dist(self)->bool: return self._enabled and self._distributed_enabled and self.world_size > 1 def is_master(self)->bool: return self.global_rank == 0 def is_ray(self)->bool: return self.ray_enabled def _log_info(self, d:dict)->None: if logger is not None: logger.info(d, override_key=True) def sync_devices(self)->None: if self.is_dist(): torch.cuda.synchronize(self.device) def barrier(self)->None: if self.is_dist(): dist.barrier() # wait for all processes to come to this point def reduce(self, val, op='mean'): if self.is_dist(): if not isinstance(val, Tensor): rt = torch.tensor(val).to(self.device) converted = True else: rt = val.clone().to(self.device) converted = False r_op = self._op_map[op] dist.all_reduce(rt, op=r_op) if op=='mean': rt /= self.world_size if converted and len(rt.shape)==0: return rt.item() return rt else: return val def _get_one_optim(self, multi_optim:MultiOptim)->Optimizer: assert len(multi_optim)==1, \ 'Mixed precision is only supported for one optimizer' \ f' but {len(multi_optim)} optimizers were supplied' return multi_optim[0].optim def backward(self, loss:torch.Tensor)->None: if self.is_mixed(): self._scaler.scale(loss).backward() # pyright: ignore[reportGeneralTypeIssues, reportOptionalMemberAccess] else: loss.backward() def autocast(self): if self.is_mixed(): return torch.cuda.amp.autocast() else: return contextlib.nullcontext() def step(self, multi_optim:MultiOptim)->None: if self.is_mixed(): # self._scaler.unscale_ will be called automatically if it isn't called yet from grad clipping # https://pytorch.org/docs/stable/amp.html#torch.cuda.amp.GradScaler.step for optim_shed in multi_optim: self._scaler.step(optim_shed.optim) # pyright: ignore[reportOptionalMemberAccess] self._scaler.update() # pyright: ignore[reportOptionalMemberAccess] else: multi_optim.step() def to_amp(self, model:nn.Module, multi_optim:MultiOptim, batch_size:int)\ ->nn.Module: # conver BNs to sync BNs in distributed mode if self.is_dist() and self._sync_bn: model = SyncBatchNorm.convert_sync_batchnorm(model) self._log_info({'BNs_converted': True}) model = model.to(self.device) # scale LR if self.is_dist() and self._scale_lr: for optim_shed in multi_optim: optim = optim_shed.optim lr = ml_utils.get_optim_lr(optim) scaled_lr = lr * self.world_size / float(batch_size) ml_utils.set_optim_lr(optim, scaled_lr) self._log_info({'lr_scaled': True, 'old_lr': lr, 'new_lr': scaled_lr}) if self.is_dist(): model = DistributedDataParallel(model, device_ids=[self._gpu], output_device=self._gpu) return model def clip_grad(self, clip:float, model:nn.Module, multi_optim:MultiOptim)->None: if clip > 0.0: if self.is_mixed(): # https://pytorch.org/docs/stable/notes/amp_examples.html#working-with-multiple-models-losses-and-optimizers self._scaler.unscale_(multi_optim[0].optim) # pyright: ignore[reportOptionalMemberAccess] nn.utils.clip_grad_norm_(model.parameters(), clip) else: nn.utils.clip_grad_norm_(model.parameters(), clip) def state_dict(self): if self.is_mixed(): return self._scaler.state_dict() # pyright: ignore[reportOptionalMemberAccess] else: return None def load_state_dict(self, state_dict): if self.is_mixed(): self._scaler.load_state_dict(state_dict) # pyright: ignore[reportOptionalMemberAccess]
archai/archai/common/apex_utils.py/0
{ "file_path": "archai/archai/common/apex_utils.py", "repo_id": "archai", "token_count": 5466 }
324
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. # adapted from https://github.com/ildoonet/pystopwatch2/blob/master/pystopwatch2/watch.py import threading import time from collections import defaultdict from enum import Enum class _ClockState(Enum): PAUSE = 0 RUN = 1 class _Clock: tag_default = '__default1958__' th_lock = threading.Lock() def __init__(self): self.prev_time = time.time() self.sum = 0. self.state = _ClockState.PAUSE def __str__(self): return 'state=%s elapsed=%.4f prev_time=%.8f' % (self.state, self.sum, self.prev_time) def __repr__(self): return self.__str__() class StopWatch: stopwatch:'StopWatch' = None def __init__(self): self.clocks = defaultdict(lambda: _Clock()) def start(self, tag=None): if tag is None: tag = _Clock.tag_default with _Clock.th_lock: clock = self.clocks[tag] if clock.state == _ClockState.RUN: return clock.state = _ClockState.RUN clock.prev_time = time.time() def pause(self, tag=None): if tag is None: tag = _Clock.tag_default with _Clock.th_lock: clock = self.clocks[tag] clock.state = _ClockState.PAUSE delta = time.time() - clock.prev_time clock.sum += delta return clock.sum def clear(self, tag=None): if tag is None: tag = _Clock.tag_default del self.clocks[tag] def get_elapsed(self, tag=None): if tag is None: tag = _Clock.tag_default clock = self.clocks[tag] elapsed = clock.sum if clock.state == _ClockState.RUN: elapsed += time.time() - clock.prev_time return elapsed def keys(self): return self.clocks.keys() def __str__(self): return '\n'.join(['%s: %s' % (k, v) for k, v in self.clocks.items()]) def __repr__(self): return self.__str__() @staticmethod def set(instance:'StopWatch')->None: StopWatch.stopwatch = instance @staticmethod def get()->'StopWatch': return StopWatch.stopwatch
archai/archai/common/stopwatch.py/0
{ "file_path": "archai/archai/common/stopwatch.py", "repo_id": "archai", "token_count": 1019 }
325
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. from typing import Callable, Optional from overrides import overrides from torch.utils.data import Dataset from torchvision.datasets import ImageNet from torchvision.transforms import ToTensor from archai.api.dataset_provider import DatasetProvider from archai.common.ordered_dict_logger import OrderedDictLogger logger = OrderedDictLogger(source=__name__) class ImageNetDatasetProvider(DatasetProvider): """ImageNet dataset provider.""" def __init__( self, root: Optional[str] = "dataroot", ) -> None: """Initialize ImageNet dataset provider. Args: root: Root directory of dataset where is saved. """ super().__init__() self.root = root @overrides def get_train_dataset( self, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, loader: Optional[Callable] = None, ) -> Dataset: return ImageNet( self.root, split="train", transform=transform or ToTensor(), target_transform=target_transform, loader=loader, ) @overrides def get_val_dataset( self, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, loader: Optional[Callable] = None, ) -> Dataset: return ImageNet( self.root, split="val", transform=transform or ToTensor(), target_transform=target_transform, loader=loader, ) @overrides def get_test_dataset( self, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, loader: Optional[Callable] = None, ) -> Dataset: logger.warn("Testing set not available. Returning validation set ...") return self.get_val_dataset(transform=transform, target_transform=target_transform, loader=loader)
archai/archai/datasets/cv/imagenet_dataset_provider.py/0
{ "file_path": "archai/archai/datasets/cv/imagenet_dataset_provider.py", "repo_id": "archai", "token_count": 848 }
326
# Copyright (c) 2019-2020, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0. # https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/LanguageModeling/Transformer-XL/pytorch/data_utils.py from typing import Generator, Iterator, List, Optional, Tuple import numpy as np import torch from archai.common.distributed_utils import get_rank, get_world_size from archai.datasets.nlp.tokenizer_utils.tokenizer_base import TokenizerBase class LMOrderedIterator: """Iterator that provides contiguous batches of input tokens without padding.""" def __init__( self, input_ids: torch.LongTensor, bsz: int, bptt: int, device: Optional[torch.device] = None, mem_len: Optional[int] = 0, ext_len: Optional[int] = 0, warmup: Optional[bool] = True, ) -> None: """Initialize the iterator with the input sequence and batch parameters. Args: input_ids: Input sequence of tokens. bsz: Batch size. bptt: Sequence length (backpropagation through time). device: Device to place the iterator. mem_len: Length of memory (for Transformer-XL). ext_len: Length of extended context (for Transformer-XL). warmup: Whether warmup batches should be created. """ self.bsz = bsz self.bptt = bptt self.device = device or torch.device("cpu") self.ext_len = ext_len self.mem_len = mem_len self.warmup = warmup self.last_iter = None # Divides cleanly the inputs into batches and trims the remaining elements n_step = input_ids.size(0) // bsz input_ids = input_ids[: n_step * bsz] self.input_ids = input_ids.view(bsz, -1).contiguous() if self.device.type != "cpu": self.input_ids = self.input_ids.pin_memory() # Creates warmup batches if memory is being used if mem_len and warmup: self.warmup_batches = (mem_len + bptt - 1) // bptt self.warmup_elems = self.warmup_batches * bptt warmup_ids = self.input_ids.roll((self.warmup_elems, 1), (1, 0))[:, : self.warmup_elems] self.input_ids = torch.cat((warmup_ids, self.input_ids), dim=-1) # Chunks the inputs for distributed training (if available) world_size = get_world_size() rank = get_rank() self.input_ids = self.input_ids.chunk(world_size, dim=0)[rank] self.n_batch = (self.input_ids.size(1) + self.bptt - 1) // self.bptt def roll(self, seed: int) -> None: """Roll the data according to a random seed. This method shuffles the input sequence for each batch in the iterator by rolling/shifting the data according to the specified seed. This is useful for creating diverse training data and preventing overfitting. Args: seed: Seed used to roll/shift the data. """ rng = torch.Generator() rng.manual_seed(seed) for i in range(self.input_ids.size(0)): shift = torch.randint(0, self.input_ids.size(1), (1,), generator=rng) row = self.input_ids[i, :] row = torch.cat((row[shift:], row[:shift])) self.input_ids[i, :] = row def get_batch(self, i: int, bptt: Optional[int] = None) -> Tuple[torch.LongTensor, torch.LongTensor, int, bool]: """Get a batch of `bptt` size. Args: i: Identifier of batch. bptt: Sequence length. Returns: Tuple of inputs, labels, sequence length and whether batch is from warmup. """ if bptt is None: bptt = self.bptt seq_len = min(bptt, self.input_ids.size(1) - 1 - i) start_idx = max(0, i - self.ext_len) end_idx = i + seq_len input_ids = self.input_ids[:, start_idx:end_idx].to(self.device, non_blocking=True) labels = self.input_ids[:, i + 1 : i + 1 + seq_len].to(self.device, non_blocking=True) warmup = True if self.mem_len and self.warmup: warmup = i >= self.warmup_elems return input_ids, labels, seq_len, warmup def get_fixlen_iter(self, start: Optional[int] = 0) -> Generator[Tuple, None, None]: """Return a generator for generating fixed-length batches. This method returns a generator that yields fixed-length batches of the specified size, starting from the specified starting point. The batches are contiguous in the original sequence. Args: start: Starting point for the generator. Yields: Fixed-length batches. Example: >>> for batch in iterator.get_fixlen_iter(): >>> # Process the batch. >>> pass """ if start != 0: start += self.bptt for i in range(start, self.input_ids.size(1) - 1, self.bptt): self.last_iter = i yield self.get_batch(i) def get_varlen_iter( self, start: Optional[int] = 0, std: Optional[float] = 5.0, min_len: Optional[int] = 5, max_std: Optional[float] = 3.0, ) -> Generator[Tuple, None, None]: """Return a generator for generating variable-length batches. This method returns a generator that yields variable-length batches of data, starting from the specified starting point. The length of each batch is determined by a Gaussian distribution with the specified mean and standard deviation. Args: start: Starting point for the generator. std: Standard deviation. min_len: Minimum length. max_std: Max standard deviation. Yields: Variable-length batches. Example: >>> for batch in iterator.get_varlen_iter(): >>> # Process the batch. >>> pass """ max_len = self.bptt + max_std * std i = start while True: bptt = self.bptt if np.random.random() < 0.95 else self.bptt / 2.0 bptt = min(max_len, max(min_len, int(np.random.normal(bptt, std)))) input_ids, labels, seq_len = self.get_batch(i, bptt) i += seq_len yield input_ids, labels, seq_len if i >= self.input_ids.size(1) - 2: break def __iter__(self) -> Generator[Tuple, None, None]: return self.get_fixlen_iter() class LMMultiFileIterator: """Multi-file non-ordered iterator, i.e. tokens come from different files but are contiguous. """ def __init__( self, paths: List[str], vocab: TokenizerBase, bsz: int, bptt: int, device: Optional[str] = "cpu", mem_len: Optional[int] = 0, ext_len: Optional[int] = 0, n_chunks: Optional[int] = 16, shuffle: Optional[bool] = False, ) -> None: """Initialize by adding support to multi-file inputs and sharding files across GPUs, if distributed training is available. Args: paths: Paths to input files. vocab: Vocabulary/tokenizer. bsz: Batch size. bptt: Sequence length (backpropagation through time). device: Device to place the iterator. mem_len: Length of memory (for Transformer-XL). ext_len: Length of extended context (for Transformer-XL). n_chunks: Number of chunks (to avoid out of memory). shuffle: Whether shuffling should be used. """ self.vocab = vocab self.bsz = bsz self.bptt = bptt self.device = device self.ext_len = ext_len self.n_chunks = n_chunks self.shuffle = shuffle self.last_iter = None # For compatibility with LMOrderedIterator self.n_batch = -1 # Divides self.paths into world-size chunks and picks chunk for corresponding rank world_size = get_world_size() rank = get_rank() chunk_len = len(paths) // world_size + 1 # it causes a slight imbalance paths_chunks = [paths[i : i + chunk_len] for i in range(0, len(paths), chunk_len)] self.paths = paths_chunks[rank] def roll(self, seed: Optional[int] = 0) -> None: """Backward compatibility for using same API.""" pass def get_sequences(self, path: str) -> torch.LongTensor: """Get a tensor of sequences from an input file. Args: path: A path to the input file. Returns: Tensor with encoded inputs. """ sequences = self.vocab.encode_file(path) if self.shuffle: np.random.shuffle(sequences) return sequences def stream_iterator(self, iterator: Iterator) -> Generator[Tuple, None, None]: """Create a streaming-based iterator. Args: iterator: Iterator with chunks of sequences. Yields: Stream-based batch. """ input_ids = torch.LongTensor(self.bsz, self.bptt) labels = torch.LongTensor(self.bsz, self.bptt) n_retain = 0 while True: # input_ids: [bsz x n_retain+bptt] # labels: [bsz x bptt] input_ids[:, n_retain:].fill_(-1) labels.fill_(-1) valid_batch = True for i in range(self.bsz): n_filled = 0 try: while n_filled < self.bptt: stream = torch.LongTensor([next(iterator) for _ in range(self.bptt + 1)]) # Number of new tokens to be filled in n_tokens = min(len(stream) - 1, self.bptt - n_filled) # First n_tokens are retained from last batch input_ids[i, n_retain + n_filled : n_retain + n_filled + n_tokens] = stream[:n_tokens] labels[i, n_filled : n_filled + n_tokens] = stream[1 : n_tokens + 1] n_filled += n_tokens except StopIteration: valid_batch = False break if not valid_batch: return input_ids = input_ids.to(self.device) labels = labels.to(self.device) yield input_ids, labels, self.bptt, True n_retain = min(input_ids.size(1), self.ext_len) if n_retain > 0: input_ids[:, :n_retain] = input_ids[:, -n_retain:] input_ids.resize_(input_ids.size(0), n_retain + self.bptt) def __iter__(self) -> Generator[Tuple, None, None]: if self.shuffle: np.random.shuffle(self.paths) for path in self.paths: sequences = self.get_sequences(path) sequences_chunks = torch.chunk(sequences, self.n_chunks, 0) for i in range(self.n_chunks): iterator = iter(sequences_chunks[i]) for idx, batch in enumerate(self.stream_iterator(iterator)): yield batch self.last_iter = idx
archai/archai/datasets/nlp/nvidia_data_loader_utils.py/0
{ "file_path": "archai/archai/datasets/nlp/nvidia_data_loader_utils.py", "repo_id": "archai", "token_count": 5218 }
327
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import random from pathlib import Path from typing import Optional from overrides import overrides from archai.api.dataset_provider import DatasetProvider from archai.common.ordered_dict_logger import OrderedDictLogger from archai.discrete_search.api.search_objectives import SearchObjectives from archai.discrete_search.api.search_results import SearchResults from archai.discrete_search.api.search_space import DiscreteSearchSpace from archai.discrete_search.api.searcher import Searcher from archai.discrete_search.utils.multi_objective import get_non_dominated_sorting logger = OrderedDictLogger(source=__name__) class SuccessiveHalvingSearch(Searcher): """Successive Halving algorithm""" def __init__( self, search_space: DiscreteSearchSpace, objectives: SearchObjectives, dataset_provider: DatasetProvider, output_dir: str, num_iters: Optional[int] = 10, init_num_models: Optional[int] = 10, init_budget: Optional[float] = 1.0, budget_multiplier: Optional[float] = 2.0, seed: Optional[int] = 1, ) -> None: """Initialize the Successive Halving. Args: search_space: Discrete search space. search_objectives: Search objectives. dataset_provider: Dataset provider. output_dir: Output directory. num_iters: Number of iterations. init_num_models: Number of initial models to evaluate. init_budget: Initial budget. budget_multiplier: Budget multiplier. seed: Random seed. """ super(SuccessiveHalvingSearch, self).__init__() assert isinstance(search_space, DiscreteSearchSpace) # Search parameters self.search_space = search_space self.objectives = objectives self.dataset_provider = dataset_provider self.output_dir = Path(output_dir) self.num_iters = num_iters self.init_num_models = init_num_models self.init_budget = init_budget self.budget_multiplier = budget_multiplier self.output_dir.mkdir(exist_ok=True) # Utils self.iter_num = 0 self.num_sampled_models = 0 self.seed = seed self.search_state = SearchResults(search_space, objectives) self.rng = random.Random(seed) self.output_dir.mkdir(exist_ok=True, parents=True) @overrides def search(self) -> SearchResults: current_budget = self.init_budget population = [self.search_space.random_sample() for _ in range(self.init_num_models)] selected_models = population for i in range(self.num_iters): if len(selected_models) <= 1: logger.info(f"Search ended. Architecture selected: {selected_models[0].archid}") self.search_space.save_arch(selected_models[0], self.output_dir / "final_model") break self.on_start_iteration(i + 1) logger.info(f"Iteration {i+1}/{self.num_iters}") logger.info(f"Evaluating {len(selected_models)} models with budget {current_budget} ...") results = self.objectives.eval_all_objs( selected_models, budgets={obj_name: current_budget for obj_name in self.objectives.objectives}, ) # Logs results and saves iteration models self.search_state.add_iteration_results( selected_models, results, extra_model_data={"budget": [current_budget] * len(selected_models)} ) models_dir = self.output_dir / f"models_iter_{self.iter_num}" models_dir.mkdir(exist_ok=True) for model in selected_models: self.search_space.save_arch(model, str(models_dir / f"{model.archid}")) self.search_state.save_search_state(str(self.output_dir / f"search_state_{self.iter_num}.csv")) self.search_state.save_all_2d_pareto_evolution_plots(self.output_dir) # Keeps only the best `1/self.budget_multiplier` NDS frontiers logger.info("Choosing models for the next iteration ...") nds_frontiers = get_non_dominated_sorting(selected_models, results, self.objectives) nds_frontiers = nds_frontiers[: int(len(nds_frontiers) * 1 / self.budget_multiplier)] selected_models = [model for frontier in nds_frontiers for model in frontier["models"]] logger.info(f"Kept {len(selected_models)} models for next iteration.") # Update parameters for next iteration self.iter_num += 1 current_budget = current_budget * self.budget_multiplier return self.search_state
archai/archai/discrete_search/algos/successive_halving.py/0
{ "file_path": "archai/archai/discrete_search/algos/successive_halving.py", "repo_id": "archai", "token_count": 1997 }
328
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import copy import pathlib import shutil from typing import Any, Dict, Optional import torch from overrides import overrides from archai.discrete_search.api.archai_model import ArchaiModel from archai.discrete_search.api.model_evaluator import ModelEvaluator from archai.discrete_search.search_spaces.nlp.transformer_flex.search_space import ( TransformerFlexSearchSpace, ) from archai.onnx.export import export_to_onnx from archai.onnx.export_utils import prepare_model_for_onnx from archai.onnx.optimization import optimize_onnx TMP_FOLDER = pathlib.Path("tmp") class TransformerFlexOnnxMemory(ModelEvaluator): """Measure the memory usage of models from the Transformer-Flex search space.""" def __init__( self, search_space: TransformerFlexSearchSpace, use_past: Optional[bool] = True, validate: Optional[bool] = True, share_weights: Optional[bool] = True, opset: Optional[int] = 11, optimize: Optional[bool] = True, only_ort: Optional[bool] = False, ) -> None: """Initialize the evaluator. Args: search_space: The search space to use for loading the model. use_past: Whether to include past key/values in the model. validate: Whether to validate the exported model. share_weights: Whether to share the embedding and softmax weights. opset: Set of operations to use with ONNX. optimize: Whether to optimize the ONNX model. only_ort: Whether to only apply ORT optimization. """ assert search_space.arch_type in ["codegen", "gpt2", "gpt2-flex"] self.search_space = search_space # Benchmark settings self.use_past = use_past self.validate = validate self.share_weights = share_weights self.opset = opset self.optimize = optimize self.only_ort = only_ort def _load_and_prepare(self, config: Dict[str, Any]) -> torch.nn.Module: config = copy.deepcopy(config) if self.use_past: config["use_cache"] = True model = self.search_space._load_model_from_config(config) return prepare_model_for_onnx(model, self.search_space.arch_type) @overrides def evaluate(self, arch: ArchaiModel, budget: Optional[float] = None) -> float: model = self._load_and_prepare(arch.metadata["config"]) # There is a bug for Python < 3.10 when using TemporaryFile with Windows, # thus, we opted to manually save and remove the temporary file TMP_FOLDER.mkdir(parents=True, exist_ok=True) onnx_path = TMP_FOLDER / "model.onnx" onnx_config = export_to_onnx( model, onnx_path.as_posix(), task="causal-lm", use_past=self.use_past, validate=self.validate, share_weights=self.share_weights, opset=self.opset, ) if self.optimize: onnx_path = optimize_onnx(onnx_path.as_posix(), onnx_config, opt_level=0, only_ort=self.only_ort) memory = pathlib.Path(onnx_path).stat().st_size / (1024**2) shutil.rmtree(TMP_FOLDER) return memory
archai/archai/discrete_search/evaluators/nlp/transformer_flex_memory.py/0
{ "file_path": "archai/archai/discrete_search/evaluators/nlp/transformer_flex_memory.py", "repo_id": "archai", "token_count": 1378 }
329
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. from __future__ import annotations import json from collections import OrderedDict from copy import deepcopy from pathlib import Path from typing import Any, Dict, Optional, Union import yaml def build_arch_config(config_dict: Dict[str, Any]) -> ArchConfig: """Build an `ArchConfig` object from a sampled config dictionary. Args: config_dict: Config dictionary Returns: `ArchConfig` object. """ ARCH_CONFIGS = {"default": ArchConfig, "config_list": ArchConfigList} config_type = config_dict.get("_config_type", "default") return ARCH_CONFIGS[config_type](config_dict) class ArchConfig: """Store architecture configs.""" def __init__(self, config_dict: Dict[str, Union[dict, float, int, str]]) -> None: """Initialize the class. Args: config_dict: Configuration dictionary. """ # Set that stores all parameters used to build the model instance self._used_params = set() # Original config dictionary self._config_dict = deepcopy(config_dict) # ArchConfig nodes self.nodes = OrderedDict() for param_name, param in self._config_dict.items(): if isinstance(param, dict): self.nodes[param_name] = build_arch_config(param) else: self.nodes[param_name] = param def __repr__(self) -> str: class ArchConfigJsonEncoder(json.JSONEncoder): def default(self, o): if isinstance(o, ArchConfig): return o.to_dict(remove_metadata_info=True) return super().default(o) cls_name = self.__class__.__name__ return f"{cls_name}({json.dumps(self, cls=ArchConfigJsonEncoder, indent=4)})" def __contains__(self, param_name: str) -> bool: return param_name in self.nodes def get_used_params(self) -> Dict[str, Union[Dict, bool]]: """Get the parameter usage tree. Terminal nodes with value `True` represent architecture parameters that were used by calling `ArchConfig.pick(param_name)`. Returns: Used parameters. """ used_params = OrderedDict() for param_name, param in self.nodes.items(): used_params[param_name] = param_name in self._used_params if isinstance(param, ArchConfig): used_params[param_name] = param.get_used_params() return used_params def pick(self, param_name: str, default: Optional[Any] = None, record_usage: Optional[bool] = True) -> Any: """Pick an architecture parameter, possibly recording its usage. Args: param_name: Architecture parameter name default: Default value to return if parameter is not found. If `None`, an exception is raised. record_usage: If this parameter should be recorded as 'used' in `ArchConfig._used_params`. Returns: Parameter value. """ if param_name in self.nodes: param_value = self.nodes[param_name] else: if default is None: raise ValueError( f"Architecture parameter {param_name} not found in config and " f"no default value provided. Available parameters are: {self.nodes.keys()}" ) param_value = default if record_usage: self._used_params.add(param_name) return param_value def to_dict(self, remove_metadata_info: Optional[bool] = False) -> OrderedDict: """Convert `ArchConfig` object to an ordered dictionary. Args: remove_metadata_info: If keys used to store extra metadata should be removed. Returns: Ordered dictionary. """ return OrderedDict( (k, v.to_dict(remove_metadata_info)) if isinstance(v, ArchConfig) else (k, v) for k, v in self.nodes.items() if not remove_metadata_info or not k.startswith("_") ) def to_file(self, path: str) -> None: """Save `ArchConfig` object to a file. Args: path: Path to save the file to. """ path = Path(path) path = path.parent / f"{path.name}.json" if path.suffix == "" else path d = self.to_dict() if path.suffix == ".yaml": yaml.dump(d, open(path, "w", encoding="utf-8"), default_flow_style=False, sort_keys=False) elif path.suffix == ".json": json.dump(d, open(path, "w", encoding="utf-8"), indent=4) else: raise ValueError(f"Unsupported file extension {path.suffix}") @classmethod def from_file(cls, path: str) -> ArchConfig: """Load `ArchConfig` object from a file. Args: path: Path to load the file from. Returns: `ArchConfig` object. """ path = Path(path) path = path.parent / f"{path.name}.json" if path.suffix == "" else path if path.suffix == ".yaml": d = yaml.load(open(path, "r", encoding="utf-8"), Loader=yaml.Loader) elif path.suffix == ".json": d = json.load(open(path, "r", encoding="utf-8")) else: raise ValueError(f"Unsupported file extension {path.suffix}") return build_arch_config(d) class ArchConfigList(ArchConfig): """Store a list of architecture configs.""" def __init__(self, config: OrderedDict): """Initialize the class. Args: config: Configuration dictionary. """ super().__init__(config) assert "_configs" in config assert "_repeat_times" in config self.max_size = config["_repeat_times"] def __len__(self) -> int: self._used_params.add("_repeat_times") return self.max_size def __getitem__(self, idx: int) -> ArchConfig: if 0 <= idx < len(self): self._used_params.add("_repeat_times") return self.nodes["_configs"].pick(str(idx)) raise IndexError def __iter__(self): yield from [self[i] for i in range(len(self))] def pick(self, param_name: str, record_usage: Optional[bool] = True) -> None: raise ValueError( "Attempted to use .pick in an ArchConfigList instance. " "Select a config first using indexing (e.g `config_list[i]`)." ) def to_dict(self, remove_metadata_info: Optional[bool] = False) -> OrderedDict: if remove_metadata_info: return [ self.nodes["_configs"].pick(str(i), record_usage=False).to_dict(remove_metadata_info) for i in range(self.max_size) ][:self.max_size] return super().to_dict(remove_metadata_info)
archai/archai/discrete_search/search_spaces/config/arch_config.py/0
{ "file_path": "archai/archai/discrete_search/search_spaces/config/arch_config.py", "repo_id": "archai", "token_count": 3014 }
330
# coding=utf-8 # Copyright 2022 Salesforce authors, The EleutherAI, and HuggingFace Teams. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch CodeGen model.""" from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from transformers.activations import ACT2FN from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast from transformers.modeling_utils import PreTrainedModel from transformers.utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from transformers.models.codegen.configuration_codegen import CodeGenConfig from transformers.models.codegen.modeling_codegen import CodeGenPreTrainedModel from archai.discrete_search.search_spaces.config import ArchConfig from .block import CodeGenBlock logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "Salesforce/codegen-2B-mono" _CONFIG_FOR_DOC = "CodeGenConfig" _TOKENIZER_FOR_DOC = "GPT2Tokenizer" class CodeGenModel(CodeGenPreTrainedModel): def __init__(self, arch_config: ArchConfig, hf_config): super().__init__(hf_config) self.hf_config = hf_config self.hidden_size = arch_config.pick('hidden_size') self.vocab_size = hf_config.vocab_size self.wte = nn.Embedding(hf_config.vocab_size, self.hidden_size) self.embd_pdrop = hf_config.embd_pdrop self.resid_pdrop = hf_config.resid_pdrop self.embed_dropout = nn.Dropout(hf_config.embd_pdrop) self.h = nn.ModuleList([ CodeGenBlock( block_config, hf_config, self.hidden_size ) for block_config in arch_config.pick('hidden_layers') ]) self.ln_f = nn.LayerNorm(self.hidden_size, eps=hf_config.layer_norm_epsilon) self.rotary_dim = hf_config.rotary_dim self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.wte def set_input_embeddings(self, new_embeddings): self.wte = new_embeddings @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPast, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) batch_size = input_ids.shape[0] elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] batch_size = inputs_embeds.shape[0] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if token_type_ids is not None: token_type_ids = token_type_ids.view(-1, input_shape[-1]) if position_ids is not None: position_ids = position_ids.view(-1, input_shape[-1]) if past_key_values is None: past_length = 0 past_key_values = tuple([None] * len(self.h)) else: past_length = past_key_values[0][0].size(-2) if position_ids is None: position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device) position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1]) bin_attention_mask = attention_mask # Attention mask. if attention_mask is not None: if batch_size <= 0: raise ValueError("batch_size has to be defined and > 0") attention_mask = attention_mask.view(batch_size, -1) # We save the binarized attention mask for LocalAttention and LSHAttention bin_attention_mask = attention_mask.clone() # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. attention_mask = attention_mask[:, None, None, :] # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and the dtype's smallest value for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility bin_attention_mask = bin_attention_mask.to(dtype=self.dtype) # fp16 compatibility attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x num_attention_heads x N x N # head_mask has shape n_layer x batch x num_attention_heads x N x N head_mask = self.get_head_mask(head_mask, len(self.h)) if inputs_embeds is None: inputs_embeds = self.wte(input_ids) hidden_states = inputs_embeds if token_type_ids is not None: token_type_embeds = self.wte(token_type_ids) hidden_states = hidden_states + token_type_embeds hidden_states = self.embed_dropout(hidden_states) output_shape = input_shape + (hidden_states.size(-1),) presents = () if use_cache else None all_self_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None residual = None for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: if use_cache: logger.warning( "`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting " "`use_cache=False`..." ) use_cache = False def create_custom_forward(module): def custom_forward(*inputs): # None for past_key_value return module(*inputs, use_cache, output_attentions) return custom_forward hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, None, attention_mask, head_mask[i], bin_attention_mask ) else: hidden_states = block( hidden_states, layer_past=layer_past, attention_mask=attention_mask, head_mask=head_mask[i], use_cache=use_cache, output_attentions=output_attentions, bin_attention_mask=bin_attention_mask ) if use_cache is True: raise NotImplementedError if output_attentions: raise NotImplementedError hidden_states = self.ln_f(hidden_states) hidden_states = hidden_states.view(output_shape) # Add last hidden state if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class CodeGenForCausalLM(CodeGenPreTrainedModel): _keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"h\.\d+\.attn\.bias"] def __init__(self, arch_config: ArchConfig, hf_config): super().__init__(hf_config) self.config = hf_config self.transformer = CodeGenModel(arch_config, hf_config) self.lm_head = nn.Linear(arch_config.pick('hidden_size'), hf_config.vocab_size) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs): token_type_ids = kwargs.get("token_type_ids", None) # only last token for inputs_ids if past is defined in kwargs if past: input_ids = input_ids[:, -1].unsqueeze(-1) if token_type_ids is not None: token_type_ids = token_type_ids[:, -1].unsqueeze(-1) attention_mask = kwargs.get("attention_mask", None) position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past: position_ids = position_ids[:, -1].unsqueeze(-1) else: position_ids = None return { "input_ids": input_ids, "past_key_values": past, "use_cache": kwargs.get("use_cache"), "position_ids": position_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] # make sure sampling in fp16 works correctly and # compute loss in fp32 to match with mesh-tf version # https://github.com/EleutherAI/gpt-neo/blob/89ce74164da2fb16179106f54e2269b5da8db333/models/gpt2/gpt2.py#L179 lm_logits = self.lm_head(hidden_states).to(torch.float32) loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = lm_logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) loss = loss.to(hidden_states.dtype) if not return_dict: output = (lm_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=lm_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) @staticmethod def _reorder_cache(past: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor) -> Tuple[Tuple[torch.Tensor]]: """ This function is used to re-order the `past_key_values` cache if [`~PretrainedModel.beam_search`] or [`~PretrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct beam_idx at every generation step. """ return tuple( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past) for layer_past in past )
archai/archai/discrete_search/search_spaces/nlp/tfpp/backbones/codegen/model.py/0
{ "file_path": "archai/archai/discrete_search/search_spaces/nlp/tfpp/backbones/codegen/model.py", "repo_id": "archai", "token_count": 6869 }
331
from torch import nn from archai.discrete_search.search_spaces.config import ArchConfig class SeparableConv1d(nn.Module): def __init__(self, arch_config: ArchConfig, hidden_size: int, total_heads: int, op_heads: int, **kwargs): super().__init__() self.hidden_size = hidden_size self.total_heads = total_heads self.op_heads = op_heads self.op_size = op_heads * (hidden_size // total_heads) self.kernel_size = arch_config.pick('kernel_size') self.conv_map_in = nn.Linear(hidden_size, self.op_size) self.conv = nn.Conv1d( self.op_size, self.op_size, self.kernel_size, padding=(self.kernel_size-1), groups=self.op_size ) self.act = nn.ReLU() def forward(self, hidden_states, **kwargs): out = self.act(self.conv_map_in(hidden_states)) out = self.act(self.conv(out.transpose(-1,-2)).transpose(-1,-2)) # Removes padding to get back the original sequence length out = out[:, :hidden_states.shape[1], :] return out, None
archai/archai/discrete_search/search_spaces/nlp/tfpp/ops/sep_conv1d.py/0
{ "file_path": "archai/archai/discrete_search/search_spaces/nlp/tfpp/ops/sep_conv1d.py", "repo_id": "archai", "token_count": 520 }
332
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import torch import torch.nn.functional as F from overrides import overrides from torch import nn from archai.common.common import get_conf from archai.supergraph.algos.gumbelsoftmax.gs_op import GsOp from archai.supergraph.nas.finalizers import Finalizers from archai.supergraph.nas.model_desc import EdgeDesc, NodeDesc class GsFinalizers(Finalizers): @overrides def finalize_node(self, node:nn.ModuleList, node_index:int, node_desc:NodeDesc, max_final_edges:int, *args, **kwargs)->NodeDesc: conf = get_conf() gs_num_sample = conf['nas']['search']['model_desc']['cell']['gs']['num_sample'] # gather the alphas of all edges in this node node_alphas = [] for edge in node: if hasattr(edge._op, 'PRIMITIVES') and type(edge._op) == GsOp: alphas = [alpha for op, alpha in edge._op.ops()] node_alphas.extend(alphas) # TODO: will creating a tensor from a list of tensors preserve the graph? node_alphas = torch.Tensor(node_alphas) assert node_alphas.nelement() > 0 # sample ops via gumbel softmax sample_storage = [] for _ in range(gs_num_sample): sampled = F.gumbel_softmax(node_alphas, tau=1, hard=True, eps=1e-10, dim=-1) sample_storage.append(sampled) samples_summed = torch.sum(torch.stack(sample_storage, dim=0), dim=0) # send the sampled op weights to their # respective edges to be used for edge level finalize selected_edges = [] counter = 0 for _, edge in enumerate(node): if hasattr(edge._op, 'PRIMITIVES') and type(edge._op) == GsOp: this_edge_sampled_weights = samples_summed[counter:counter+len(edge._op.PRIMITIVES)] counter += len(edge._op.PRIMITIVES) # finalize the edge if this_edge_sampled_weights.bool().any(): op_desc, _ = edge._op.finalize(this_edge_sampled_weights) new_edge = EdgeDesc(op_desc, edge.input_ids) selected_edges.append(new_edge) # delete excess edges if len(selected_edges) > max_final_edges: # since these are sample edges there is no ordering # amongst them so we just arbitrarily select a few selected_edges = selected_edges[:max_final_edges] return NodeDesc(selected_edges, node_desc.conv_params)
archai/archai/supergraph/algos/gumbelsoftmax/gs_finalizers.py/0
{ "file_path": "archai/archai/supergraph/algos/gumbelsoftmax/gs_finalizers.py", "repo_id": "archai", "token_count": 1140 }
333
# Copyright 2019 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: skip-file # Generated by the protocol buffer compiler. DO NOT EDIT! # source: model_metrics.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='model_metrics.proto', package='nasbench', syntax='proto2', serialized_options=None, serialized_pb=_b('\n\x13model_metrics.proto\x12\x08nasbench\"s\n\x0cModelMetrics\x12\x31\n\x0f\x65valuation_data\x18\x01 \x03(\x0b\x32\x18.nasbench.EvaluationData\x12\x1c\n\x14trainable_parameters\x18\x02 \x01(\x05\x12\x12\n\ntotal_time\x18\x03 \x01(\x01\"\xa3\x01\n\x0e\x45valuationData\x12\x15\n\rcurrent_epoch\x18\x01 \x01(\x01\x12\x15\n\rtraining_time\x18\x02 \x01(\x01\x12\x16\n\x0etrain_accuracy\x18\x03 \x01(\x01\x12\x1b\n\x13validation_accuracy\x18\x04 \x01(\x01\x12\x15\n\rtest_accuracy\x18\x05 \x01(\x01\x12\x17\n\x0f\x63heckpoint_path\x18\x06 \x01(\t') ) _MODELMETRICS = _descriptor.Descriptor( name='ModelMetrics', full_name='nasbench.ModelMetrics', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='evaluation_data', full_name='nasbench.ModelMetrics.evaluation_data', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='trainable_parameters', full_name='nasbench.ModelMetrics.trainable_parameters', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='total_time', full_name='nasbench.ModelMetrics.total_time', index=2, number=3, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=33, serialized_end=148, ) _EVALUATIONDATA = _descriptor.Descriptor( name='EvaluationData', full_name='nasbench.EvaluationData', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='current_epoch', full_name='nasbench.EvaluationData.current_epoch', index=0, number=1, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='training_time', full_name='nasbench.EvaluationData.training_time', index=1, number=2, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='train_accuracy', full_name='nasbench.EvaluationData.train_accuracy', index=2, number=3, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='validation_accuracy', full_name='nasbench.EvaluationData.validation_accuracy', index=3, number=4, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='test_accuracy', full_name='nasbench.EvaluationData.test_accuracy', index=4, number=5, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='checkpoint_path', full_name='nasbench.EvaluationData.checkpoint_path', index=5, number=6, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=151, serialized_end=314, ) _MODELMETRICS.fields_by_name['evaluation_data'].message_type = _EVALUATIONDATA DESCRIPTOR.message_types_by_name['ModelMetrics'] = _MODELMETRICS DESCRIPTOR.message_types_by_name['EvaluationData'] = _EVALUATIONDATA _sym_db.RegisterFileDescriptor(DESCRIPTOR) ModelMetrics = _reflection.GeneratedProtocolMessageType('ModelMetrics', (_message.Message,), dict( DESCRIPTOR = _MODELMETRICS, __module__ = 'model_metrics_pb2' # @@protoc_insertion_point(class_scope:nasbench.ModelMetrics) )) _sym_db.RegisterMessage(ModelMetrics) EvaluationData = _reflection.GeneratedProtocolMessageType('EvaluationData', (_message.Message,), dict( DESCRIPTOR = _EVALUATIONDATA, __module__ = 'model_metrics_pb2' # @@protoc_insertion_point(class_scope:nasbench.EvaluationData) )) _sym_db.RegisterMessage(EvaluationData) # @@protoc_insertion_point(module_scope)
archai/archai/supergraph/algos/nasbench101/model_metrics_pb2.py/0
{ "file_path": "archai/archai/supergraph/algos/nasbench101/model_metrics_pb2.py", "repo_id": "archai", "token_count": 2728 }
334
import os from collections import namedtuple import torch import torch.nn as nn import torch.nn.functional as F __all__ = ['Inception3', 'inception_v3'] _InceptionOuputs = namedtuple('InceptionOuputs', ['logits', 'aux_logits']) def inception_v3(pretrained=False, progress=True, device='cpu', **kwargs): r"""Inception v3 model architecture from `"Rethinking the Inception Architecture for Computer Vision" <https://arxiv.org/abs/1512.00567>`_. .. note:: **Important**: In contrast to the other models the inception_v3 expects tensors with a size of N x 3 x 299 x 299, so ensure your images are sized accordingly. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr aux_logits (bool): If True, add an auxiliary branch that can improve training. Default: *True* transform_input (bool): If True, preprocesses the input according to the method with which it was trained on ImageNet. Default: *False* """ model = Inception3() if pretrained: script_dir = os.path.dirname(__file__) state_dict = torch.load(script_dir + '/state_dicts/inception_v3.pt', map_location=device) model.load_state_dict(state_dict) return model class Inception3(nn.Module): ## CIFAR10: aux_logits True->False def __init__(self, num_classes=10, aux_logits=False, transform_input=False): super(Inception3, self).__init__() self.aux_logits = aux_logits self.transform_input = transform_input ## CIFAR10: stride 2->1, padding 0 -> 1 self.Conv2d_1a_3x3 = BasicConv2d(3, 192, kernel_size=3, stride=1, padding=1) # self.Conv2d_2a_3x3 = BasicConv2d(32, 32, kernel_size=3) # self.Conv2d_2b_3x3 = BasicConv2d(32, 64, kernel_size=3, padding=1) # self.Conv2d_3b_1x1 = BasicConv2d(64, 80, kernel_size=1) # self.Conv2d_4a_3x3 = BasicConv2d(80, 192, kernel_size=3) self.Mixed_5b = InceptionA(192, pool_features=32) self.Mixed_5c = InceptionA(256, pool_features=64) self.Mixed_5d = InceptionA(288, pool_features=64) self.Mixed_6a = InceptionB(288) self.Mixed_6b = InceptionC(768, channels_7x7=128) self.Mixed_6c = InceptionC(768, channels_7x7=160) self.Mixed_6d = InceptionC(768, channels_7x7=160) self.Mixed_6e = InceptionC(768, channels_7x7=192) if aux_logits: self.AuxLogits = InceptionAux(768, num_classes) self.Mixed_7a = InceptionD(768) self.Mixed_7b = InceptionE(1280) self.Mixed_7c = InceptionE(2048) self.fc = nn.Linear(2048, num_classes) # for m in self.modules(): # if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear): # import scipy.stats as stats # stddev = m.stddev if hasattr(m, 'stddev') else 0.1 # X = stats.truncnorm(-2, 2, scale=stddev) # values = torch.as_tensor(X.rvs(m.weight.numel()), dtype=m.weight.dtype) # values = values.view(m.weight.size()) # with torch.no_grad(): # m.weight.copy_(values) # elif isinstance(m, nn.BatchNorm2d): # nn.init.constant_(m.weight, 1) # nn.init.constant_(m.bias, 0) def forward(self, x): if self.transform_input: x_ch0 = torch.unsqueeze(x[:, 0], 1) * (0.229 / 0.5) + (0.485 - 0.5) / 0.5 x_ch1 = torch.unsqueeze(x[:, 1], 1) * (0.224 / 0.5) + (0.456 - 0.5) / 0.5 x_ch2 = torch.unsqueeze(x[:, 2], 1) * (0.225 / 0.5) + (0.406 - 0.5) / 0.5 x = torch.cat((x_ch0, x_ch1, x_ch2), 1) # N x 3 x 299 x 299 x = self.Conv2d_1a_3x3(x) ## CIFAR10 # N x 32 x 149 x 149 # x = self.Conv2d_2a_3x3(x) # N x 32 x 147 x 147 # x = self.Conv2d_2b_3x3(x) # N x 64 x 147 x 147 # x = F.max_pool2d(x, kernel_size=3, stride=2) # N x 64 x 73 x 73 # x = self.Conv2d_3b_1x1(x) # N x 80 x 73 x 73 # x = self.Conv2d_4a_3x3(x) # N x 192 x 71 x 71 # x = F.max_pool2d(x, kernel_size=3, stride=2) # N x 192 x 35 x 35 x = self.Mixed_5b(x) # N x 256 x 35 x 35 x = self.Mixed_5c(x) # N x 288 x 35 x 35 x = self.Mixed_5d(x) # N x 288 x 35 x 35 x = self.Mixed_6a(x) # N x 768 x 17 x 17 x = self.Mixed_6b(x) # N x 768 x 17 x 17 x = self.Mixed_6c(x) # N x 768 x 17 x 17 x = self.Mixed_6d(x) # N x 768 x 17 x 17 x = self.Mixed_6e(x) # N x 768 x 17 x 17 if self.training and self.aux_logits: aux = self.AuxLogits(x) # N x 768 x 17 x 17 x = self.Mixed_7a(x) # N x 1280 x 8 x 8 x = self.Mixed_7b(x) # N x 2048 x 8 x 8 x = self.Mixed_7c(x) # N x 2048 x 8 x 8 # Adaptive average pooling x = F.adaptive_avg_pool2d(x, (1, 1)) # N x 2048 x 1 x 1 x = F.dropout(x, training=self.training) # N x 2048 x 1 x 1 x = x.view(x.size(0), -1) # N x 2048 x = self.fc(x) # N x 1000 (num_classes) if self.training and self.aux_logits: return _InceptionOuputs(x, aux) return x class InceptionA(nn.Module): def __init__(self, in_channels, pool_features): super(InceptionA, self).__init__() self.branch1x1 = BasicConv2d(in_channels, 64, kernel_size=1) self.branch5x5_1 = BasicConv2d(in_channels, 48, kernel_size=1) self.branch5x5_2 = BasicConv2d(48, 64, kernel_size=5, padding=2) self.branch3x3dbl_1 = BasicConv2d(in_channels, 64, kernel_size=1) self.branch3x3dbl_2 = BasicConv2d(64, 96, kernel_size=3, padding=1) self.branch3x3dbl_3 = BasicConv2d(96, 96, kernel_size=3, padding=1) self.branch_pool = BasicConv2d(in_channels, pool_features, kernel_size=1) def forward(self, x): branch1x1 = self.branch1x1(x) branch5x5 = self.branch5x5_1(x) branch5x5 = self.branch5x5_2(branch5x5) branch3x3dbl = self.branch3x3dbl_1(x) branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl) branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1) branch_pool = self.branch_pool(branch_pool) outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool] return torch.cat(outputs, 1) class InceptionB(nn.Module): def __init__(self, in_channels): super(InceptionB, self).__init__() self.branch3x3 = BasicConv2d(in_channels, 384, kernel_size=3, stride=2) self.branch3x3dbl_1 = BasicConv2d(in_channels, 64, kernel_size=1) self.branch3x3dbl_2 = BasicConv2d(64, 96, kernel_size=3, padding=1) self.branch3x3dbl_3 = BasicConv2d(96, 96, kernel_size=3, stride=2) def forward(self, x): branch3x3 = self.branch3x3(x) branch3x3dbl = self.branch3x3dbl_1(x) branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl) branch_pool = F.max_pool2d(x, kernel_size=3, stride=2) outputs = [branch3x3, branch3x3dbl, branch_pool] return torch.cat(outputs, 1) class InceptionC(nn.Module): def __init__(self, in_channels, channels_7x7): super(InceptionC, self).__init__() self.branch1x1 = BasicConv2d(in_channels, 192, kernel_size=1) c7 = channels_7x7 self.branch7x7_1 = BasicConv2d(in_channels, c7, kernel_size=1) self.branch7x7_2 = BasicConv2d(c7, c7, kernel_size=(1, 7), padding=(0, 3)) self.branch7x7_3 = BasicConv2d(c7, 192, kernel_size=(7, 1), padding=(3, 0)) self.branch7x7dbl_1 = BasicConv2d(in_channels, c7, kernel_size=1) self.branch7x7dbl_2 = BasicConv2d(c7, c7, kernel_size=(7, 1), padding=(3, 0)) self.branch7x7dbl_3 = BasicConv2d(c7, c7, kernel_size=(1, 7), padding=(0, 3)) self.branch7x7dbl_4 = BasicConv2d(c7, c7, kernel_size=(7, 1), padding=(3, 0)) self.branch7x7dbl_5 = BasicConv2d(c7, 192, kernel_size=(1, 7), padding=(0, 3)) self.branch_pool = BasicConv2d(in_channels, 192, kernel_size=1) def forward(self, x): branch1x1 = self.branch1x1(x) branch7x7 = self.branch7x7_1(x) branch7x7 = self.branch7x7_2(branch7x7) branch7x7 = self.branch7x7_3(branch7x7) branch7x7dbl = self.branch7x7dbl_1(x) branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl) branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl) branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl) branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl) branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1) branch_pool = self.branch_pool(branch_pool) outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool] return torch.cat(outputs, 1) class InceptionD(nn.Module): def __init__(self, in_channels): super(InceptionD, self).__init__() self.branch3x3_1 = BasicConv2d(in_channels, 192, kernel_size=1) self.branch3x3_2 = BasicConv2d(192, 320, kernel_size=3, stride=2) self.branch7x7x3_1 = BasicConv2d(in_channels, 192, kernel_size=1) self.branch7x7x3_2 = BasicConv2d(192, 192, kernel_size=(1, 7), padding=(0, 3)) self.branch7x7x3_3 = BasicConv2d(192, 192, kernel_size=(7, 1), padding=(3, 0)) self.branch7x7x3_4 = BasicConv2d(192, 192, kernel_size=3, stride=2) def forward(self, x): branch3x3 = self.branch3x3_1(x) branch3x3 = self.branch3x3_2(branch3x3) branch7x7x3 = self.branch7x7x3_1(x) branch7x7x3 = self.branch7x7x3_2(branch7x7x3) branch7x7x3 = self.branch7x7x3_3(branch7x7x3) branch7x7x3 = self.branch7x7x3_4(branch7x7x3) branch_pool = F.max_pool2d(x, kernel_size=3, stride=2) outputs = [branch3x3, branch7x7x3, branch_pool] return torch.cat(outputs, 1) class InceptionE(nn.Module): def __init__(self, in_channels): super(InceptionE, self).__init__() self.branch1x1 = BasicConv2d(in_channels, 320, kernel_size=1) self.branch3x3_1 = BasicConv2d(in_channels, 384, kernel_size=1) self.branch3x3_2a = BasicConv2d(384, 384, kernel_size=(1, 3), padding=(0, 1)) self.branch3x3_2b = BasicConv2d(384, 384, kernel_size=(3, 1), padding=(1, 0)) self.branch3x3dbl_1 = BasicConv2d(in_channels, 448, kernel_size=1) self.branch3x3dbl_2 = BasicConv2d(448, 384, kernel_size=3, padding=1) self.branch3x3dbl_3a = BasicConv2d(384, 384, kernel_size=(1, 3), padding=(0, 1)) self.branch3x3dbl_3b = BasicConv2d(384, 384, kernel_size=(3, 1), padding=(1, 0)) self.branch_pool = BasicConv2d(in_channels, 192, kernel_size=1) def forward(self, x): branch1x1 = self.branch1x1(x) branch3x3 = self.branch3x3_1(x) branch3x3 = [ self.branch3x3_2a(branch3x3), self.branch3x3_2b(branch3x3), ] branch3x3 = torch.cat(branch3x3, 1) branch3x3dbl = self.branch3x3dbl_1(x) branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) branch3x3dbl = [ self.branch3x3dbl_3a(branch3x3dbl), self.branch3x3dbl_3b(branch3x3dbl), ] branch3x3dbl = torch.cat(branch3x3dbl, 1) branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1) branch_pool = self.branch_pool(branch_pool) outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool] return torch.cat(outputs, 1) class InceptionAux(nn.Module): def __init__(self, in_channels, num_classes): super(InceptionAux, self).__init__() self.conv0 = BasicConv2d(in_channels, 128, kernel_size=1) self.conv1 = BasicConv2d(128, 768, kernel_size=5) self.conv1.stddev = 0.01 self.fc = nn.Linear(768, num_classes) self.fc.stddev = 0.001 def forward(self, x): # N x 768 x 17 x 17 x = F.avg_pool2d(x, kernel_size=5, stride=3) # N x 768 x 5 x 5 x = self.conv0(x) # N x 128 x 5 x 5 x = self.conv1(x) # N x 768 x 1 x 1 # Adaptive average pooling x = F.adaptive_avg_pool2d(x, (1, 1)) # N x 768 x 1 x 1 x = x.view(x.size(0), -1) # N x 768 x = self.fc(x) # N x 1000 return x class BasicConv2d(nn.Module): def __init__(self, in_channels, out_channels, **kwargs): super(BasicConv2d, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs) self.bn = nn.BatchNorm2d(out_channels, eps=0.001) def forward(self, x): x = self.conv(x) x = self.bn(x) return F.relu(x, inplace=True)
archai/archai/supergraph/models/inception.py/0
{ "file_path": "archai/archai/supergraph/models/inception.py", "repo_id": "archai", "token_count": 6820 }
335
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import os from typing import Callable, Optional, Type import torch from overrides import EnforceOverrides, overrides from torch import Tensor from archai.common import utils from archai.common.config import Config from archai.supergraph.datasets import data from archai.supergraph.nas.model import Model from archai.supergraph.nas.vis_model_desc import draw_model_desc from archai.supergraph.utils.checkpoint import CheckPoint from archai.supergraph.utils.trainer import Trainer TArchTrainer = Optional[Type['ArchTrainer']] class ArchTrainer(Trainer, EnforceOverrides): def __init__(self, conf_train: Config, model: Model, checkpoint:Optional[CheckPoint]) -> None: super().__init__(conf_train, model, checkpoint) self._l1_alphas = conf_train['l1_alphas'] self._plotsdir = conf_train['plotsdir'] # if l1 regularization is needed then cache alphas if self._l1_alphas > 0.0: self._alphas = list(self.model.all_owned().param_by_kind('alphas')) @overrides def compute_loss(self, lossfn: Callable, y: Tensor, logits: Tensor, aux_weight: float, aux_logits: Optional[Tensor]) -> Tensor: loss = super().compute_loss(lossfn, y, logits, aux_weight, aux_logits) # add L1 alpha regularization if self._l1_alphas > 0.0: l_extra = sum(torch.sum(a.abs()) for a in self._alphas) loss += self._l1_alphas * l_extra return loss @overrides def post_epoch(self, data_loaders:data.DataLoaders)->None: super().post_epoch(data_loaders) self._draw_model() # TODO: move this outside as utility def _draw_model(self) -> None: if not self._plotsdir: return train_metrics = self.get_metrics() if train_metrics: best_train, best_val, best_test = train_metrics.run_metrics.best_epoch() # if test is available and is best for this epoch then mark it as best is_best = best_test and best_test.index==train_metrics.cur_epoch().index # if val is available and is best for this epoch then mark it as best is_best = is_best or best_val and best_val.index==train_metrics.cur_epoch().index # if neither val or test availavle then use train metrics is_best = is_best or best_train.index==train_metrics.cur_epoch().index if is_best: # log model_desc as a image plot_filepath = utils.full_path(os.path.join( self._plotsdir, f"EP{train_metrics.cur_epoch().index:03d}"), create=True) draw_model_desc(self.model.finalize(), filepath=plot_filepath, caption=f"Epoch {train_metrics.cur_epoch().index}")
archai/archai/supergraph/nas/arch_trainer.py/0
{ "file_path": "archai/archai/supergraph/nas/arch_trainer.py", "repo_id": "archai", "token_count": 1344 }
336
import copy import json import os import time from collections import OrderedDict from typing import Optional import gorilla import numpy as np import ray import torch from hyperopt import hp from ray.tune import register_trainable, run_experiments from ray.tune.suggest import HyperOptSearch from ray.tune.trial import Trial from tqdm import tqdm from archai.common.common import expdir_abspath from archai.common.config import Config from archai.common.ordered_dict_logger import get_global_logger from archai.common.stopwatch import StopWatch from archai.supergraph.datasets.augmentation import ( augment_list, policy_decoder, remove_deplicates, ) from archai.supergraph.datasets.data import get_dataloaders from archai.supergraph.models import get_model, num_class from archai.supergraph.utils.augmented_trainer import train_and_eval from archai.supergraph.utils.metrics import Accumulator logger = get_global_logger() # this method is overriden version of ray.tune.trial_runner.TrialRunner.step using monkey patching def _step_w_log(self): original = gorilla.get_original_attribute(ray.tune.trial_runner.TrialRunner, "step") # collect counts by status for all trials cnts = OrderedDict() for status in [Trial.RUNNING, Trial.TERMINATED, Trial.PENDING, Trial.PAUSED, Trial.ERROR]: cnt = len(list(filter(lambda x: x.status == status, self._trials))) cnts[status] = cnt # get the best top1 accuracy from all finished trials so far best_top1_acc = 0.0 for trial in filter(lambda x: x.status == Trial.TERMINATED, self._trials): if not trial.last_result: # TODO: why would this happen? continue best_top1_acc = max(best_top1_acc, trial.last_result["top1_valid"]) # display best accuracy from all finished trial logger.info("iter", self._iteration, "top1_acc=%.3f" % best_top1_acc, cnts, end="\r") # call original step method return original(self) # override ray.tune.trial_runner.TrialRunner.step method so we can print best accuracy at each step patch = gorilla.Patch(ray.tune.trial_runner.TrialRunner, "step", _step_w_log, settings=gorilla.Settings(allow_hit=True)) gorilla.apply(patch) @ray.remote(num_gpus=torch.cuda.device_count(), max_calls=1) def _train_model(conf, dataroot, augment, val_ratio, val_fold, save_path=None, only_eval=False): Config.set_inst(conf) conf["autoaug"]["loader"]["aug"] = augment model_type = conf["autoaug"]["model"]["type"] result = train_and_eval(conf, val_ratio=val_ratio, val_fold=val_fold, save_path=save_path, only_eval=only_eval) return model_type, val_fold, result def _get_model_filepath(dataset, model, tag) -> Optional[str]: filename = "%s_%s_%s.model" % (dataset, model, tag) return expdir_abspath(filename) def _train_no_aug(conf): sw = StopWatch.get() # region conf vars conf_dataset = conf["dataset"] dataroot = conf["dataroot"] conf_loader = conf["autoaug"]["loader"] conf_model = conf["autoaug"]["model"] model_type = conf_model["type"] ds_name = conf_dataset["name"] aug = conf_loader["aug"] val_ratio = conf_loader["val_ratio"] epochs = conf_loader["epochs"] cv_num = conf_loader["cv_num"] # endregion logger.info("----- Train without Augmentations cv=%d ratio(test)=%.1f -----" % (cv_num, val_ratio)) sw.start(tag="train_no_aug") # for each fold, we will save model save_paths = [_get_model_filepath(ds_name, model_type, "ratio%.1f_fold%d" % (val_ratio, i)) for i in range(cv_num)] # Train model for each fold, save model in specified path, put result # in reqs list. These models are trained with aug specified in config. # TODO: configuration will be changed ('aug' key), # but do we really need deepcopy everywhere? reqs = [ # TODO: eliminate need for deep copy as only aug key is changed _train_model.remote( copy.deepcopy(copy.deepcopy(conf)), dataroot, aug, val_ratio, i, save_path=save_paths[i], only_eval=True ) for i in range(cv_num) ] # we now probe saved models for each fold to check the epoch number # they are on. When every fold crosses an epoch number, we update # the progress. tqdm_epoch = tqdm(range(epochs)) is_done = False for epoch in tqdm_epoch: while True: epochs_per_cv = OrderedDict() for cv_idx in range(cv_num): try: if os.path.exists(save_paths[cv_idx]): latest_ckpt = torch.load(save_paths[cv_idx]) if "epoch" not in latest_ckpt: epochs_per_cv["cv%d" % (cv_idx + 1)] = epochs continue else: continue epochs_per_cv["cv%d" % (cv_idx + 1)] = latest_ckpt["epoch"] except Exception: continue tqdm_epoch.set_postfix(epochs_per_cv) if len(epochs_per_cv) == cv_num and min(epochs_per_cv.values()) >= epochs: is_done = True if len(epochs_per_cv) == cv_num and min(epochs_per_cv.values()) >= epoch: break time.sleep(10) if is_done: break logger.info("getting results...") pretrain_results = ray.get(reqs) for r_model, r_cv, r_dict in pretrain_results: logger.info( "model=%s cv=%d top1_train=%.4f top1_valid=%.4f" % (r_model, r_cv + 1, r_dict["top1_train"], r_dict["top1_valid"]) ) logger.info("processed in %.4f secs" % sw.pause("train_no_aug")) def search(conf): sw = StopWatch.get() # region conf vars conf_dataset = conf["dataset"] dataroot = conf["dataroot"] redis_ip = conf["redis"] conf_loader = conf["autoaug"]["loader"] conf_model = conf["autoaug"]["model"] model_type = conf_model["type"] ds_name = conf_dataset["name"] aug = conf_loader["aug"] val_ratio = conf_loader["val_ratio"] epochs = conf_loader["epochs"] val_fold = conf_loader["val_fold"] cv_num = conf_loader["cv_num"] num_policy = conf["autoaug"]["num_policy"] num_op = conf["autoaug"]["num_op"] num_search = conf["autoaug"]["num_search"] num_result_per_cv = conf["autoaug"]["num_result_per_cv"] smoke_test = conf["smoke_test"] resume = conf["resume"] # endregion ray.init( redis_address=redis_ip, # allocate all GPUs on local node if cluster is not specified num_gpus=torch.cuda.device_count() if not redis_ip else None, ) # first train with no aug _train_no_aug(conf) # get values from config num_samples = 4 if smoke_test else num_search logger.info("----- Search Test-Time Augmentation Policies -----") sw.start(tag="search") save_paths = [_get_model_filepath(ds_name, model_type, "ratio%.1f_fold%d" % (val_ratio, i)) for i in range(cv_num)] copied_c = copy.deepcopy(conf) ops = augment_list(False) space = {} for i in range(num_policy): for j in range(num_op): space["policy_%d_%d" % (i, j)] = hp.choice("policy_%d_%d" % (i, j), list(range(0, len(ops)))) space["prob_%d_%d" % (i, j)] = hp.uniform("prob_%d_ %d" % (i, j), 0.0, 1.0) space["level_%d_%d" % (i, j)] = hp.uniform("level_%d_ %d" % (i, j), 0.0, 1.0) final_policy_set = [] total_computation = 0 reward_attr = "top1_valid" # top1_valid or minus_loss for _ in range(1): # run multiple times. for val_fold in range(cv_num): name = "search_%s_%s_fold%d_ratio%.1f" % (ds_name, model_type, val_fold, val_ratio) # logger.info(name) register_trainable(name, (lambda augs, rpt: _eval_tta(copy.deepcopy(copied_c), augs, rpt))) algo = HyperOptSearch(space, max_concurrent=4 * 20, reward_attr=reward_attr) exp_config = { name: { "run": name, "num_samples": num_samples, "resources_per_trial": {"gpu": 1}, "stop": {"training_iteration": num_policy}, "config": { "dataroot": dataroot, "save_path": save_paths[val_fold], "val_ratio": val_ratio, "val_fold": val_fold, "num_op": num_op, "num_policy": num_policy, }, } } results = run_experiments( exp_config, search_alg=algo, scheduler=None, verbose=0, queue_trials=True, resume=resume, raise_on_failed_trial=False, ) results = [x for x in results if x.last_result is not None] results = sorted(results, key=lambda x: x.last_result[reward_attr], reverse=True) # calculate computation usage for result in results: total_computation += result.last_result["elapsed_time"] for result in results[:num_result_per_cv]: final_policy = policy_decoder(result.config, num_policy, num_op) logger.info( "loss=%.12f top1_valid=%.4f %s" % (result.last_result["minus_loss"], result.last_result["top1_valid"], final_policy) ) final_policy = remove_deplicates(final_policy) final_policy_set.extend(final_policy) logger.info(json.dumps(final_policy_set)) logger.info("final_policy=%d" % len(final_policy_set)) logger.info("processed in %.4f secs, gpu hours=%.4f" % (sw.pause("search"), total_computation / 3600.0)) logger.info( "----- Train with Augmentations model=%s dataset=%s aug=%s ratio(test)=%.1f -----" % (model_type, ds_name, aug, val_ratio) ) sw.start(tag="train_aug") num_experiments = 5 default_path = [ _get_model_filepath(ds_name, model_type, "ratio%.1f_default%d" % (val_ratio, _)) for _ in range(num_experiments) ] augment_path = [ _get_model_filepath(ds_name, model_type, "ratio%.1f_augment%d" % (val_ratio, _)) for _ in range(num_experiments) ] reqs = [ _train_model.remote(copy.deepcopy(copied_c), dataroot, aug, 0.0, 0, save_path=default_path[_], only_eval=True) for _ in range(num_experiments) ] + [ _train_model.remote(copy.deepcopy(copied_c), dataroot, final_policy_set, 0.0, 0, save_path=augment_path[_]) for _ in range(num_experiments) ] tqdm_epoch = tqdm(range(epochs)) is_done = False for epoch in tqdm_epoch: while True: epochs = OrderedDict() for exp_idx in range(num_experiments): try: if os.path.exists(default_path[exp_idx]): latest_ckpt = torch.load(default_path[exp_idx]) epochs["default_exp%d" % (exp_idx + 1)] = latest_ckpt["epoch"] except: pass try: if os.path.exists(augment_path[exp_idx]): latest_ckpt = torch.load(augment_path[exp_idx]) epochs["augment_exp%d" % (exp_idx + 1)] = latest_ckpt["epoch"] except: pass tqdm_epoch.set_postfix(epochs) if len(epochs) == num_experiments * 2 and min(epochs.values()) >= epochs: is_done = True if len(epochs) == num_experiments * 2 and min(epochs.values()) >= epoch: break time.sleep(10) if is_done: break logger.info("getting results...") final_results = ray.get(reqs) for train_mode in ["default", "augment"]: avg = 0.0 for _ in range(num_experiments): r_model, r_cv, r_dict = final_results.pop(0) logger.info("[%s] top1_train=%.4f top1_test=%.4f" % (train_mode, r_dict["top1_train"], r_dict["top1_test"])) avg += r_dict["top1_test"] avg /= num_experiments logger.info("[%s] top1_test average=%.4f (#experiments=%d)" % (train_mode, avg, num_experiments)) logger.info("processed in %.4f secs" % sw.pause("train_aug")) logger.info(sw) def _eval_tta(conf, augment, reporter): Config.set_inst(conf) # region conf vars conf_dataset = conf["dataset"] conf_loader = conf["autoaug"]["loader"] conf_model = conf["autoaug"]["model"] ds_name = conf_dataset["name"] cutout = conf_loader["cutout"] n_workers = conf_loader["n_workers"] # endregion val_ratio, val_fold, save_path = augment["val_ratio"], augment["val_fold"], augment["save_path"] # setup - provided augmentation rules aug = policy_decoder(augment, augment["num_policy"], augment["num_op"]) # eval model = get_model(conf_model, num_class(ds_name)) ckpt = torch.load(save_path) if "model" in ckpt: model.load_state_dict(ckpt["model"]) else: model.load_state_dict(ckpt) model.eval() loaders = [] for _ in range(augment["num_policy"]): tl, validloader, tl2 = get_dataloaders( augment["dataroot"], ds_name, aug, cutout, load_train=True, load_test=True, val_ratio=val_ratio, val_fold=val_fold, n_workers=n_workers, ) loaders.append(iter(validloader)) del tl, tl2 # TODO: why exclude validloader? start_t = time.time() metrics = Accumulator() loss_fn = torch.nn.CrossEntropyLoss(reduction="none") try: while True: losses = [] corrects = [] for loader in loaders: data, label = next(loader) data, label = data.cuda(), label.cuda() pred = model(data) loss = loss_fn(pred, label) losses.append(loss.detach().cpu().numpy()) _, pred = pred.topk(1, 1, True, True) pred = pred.t() correct = pred.eq(label.view(1, -1).expand_as(pred)).detach().cpu().numpy() corrects.append(correct) del loss, correct, pred, data, label losses = np.concatenate(losses) losses_min = np.min(losses, axis=0).squeeze() corrects = np.concatenate(corrects) corrects_max = np.max(corrects, axis=0).squeeze() metrics.add_dict( {"minus_loss": -1 * np.sum(losses_min), "correct": np.sum(corrects_max), "cnt": len(corrects_max)} ) del corrects, corrects_max except StopIteration: pass del model metrics = metrics / "cnt" gpu_secs = (time.time() - start_t) * torch.cuda.device_count() reporter(minus_loss=metrics["minus_loss"], top1_valid=metrics["correct"], elapsed_time=gpu_secs, done=True) return metrics["correct"]
archai/archai/supergraph/utils/augmented_searcher.py/0
{ "file_path": "archai/archai/supergraph/utils/augmented_searcher.py", "repo_id": "archai", "token_count": 7179 }
337
__include__: 'darts.yaml' # just use darts defaults nas: eval: model_factory_spec: 'resnet18' #darts loader/trainer loader: train_batch: 128 #96 cutout: 0 trainer: aux_weight: 0.0 grad_clip: 0.0 drop_path_prob: 0.0 # probability that given edge will be dropped epochs: 200 optimizer: type: 'sgd' lr: 0.0333 #0.025 # init learning rate decay: 3.0e-4 # pytorch default is 0.0 momentum: 0.9 # pytorch default is 0.0 nesterov: False # pytorch default is False warmup: null lr_schedule: type: 'cosine' min_lr: 0.001 # min learning rate to se bet in eta_min param of scheduler # WRN schedule # loader: # train_batch: 128 # cutout: 0 # trainer: # aux_weight: 0.0 # grad_clip: 0.0 # drop_path_prob: 0.0 # probability that given edge will be dropped # epochs: 200 # optimizer: # type: 'sgd' # lr: 0.1 # init learning rate # decay: 5.0e-4 # pytorch default is 0.0 # momentum: 0.9 # pytorch default is 0.0 # lr_schedule: # type: 'multi_step' # milestones: [60, 120, 160] # gamma: 0.2 # Multi-step LR notes: # rule of thumb is decay by 10 at 50% and 75% of epochs as in densenet # but every one seem to be using their own schedule # if epochs <= 100: # return lr_scheduler.MultiStepLR(optimizer, [30, 60, 80]) # elif epochs <= 200: # wide resnet # return lr_scheduler.MultiStepLR(optimizer, [60, 120, 160]) # gamma=0.2. wd=5e-4 # elif epochs <= 270: # autoaugment # return lr_scheduler.MultiStepLR(optimizer, [90, 180, 240]) # elif epochs <= 300: # densenet # return lr_scheduler.MultiStepLR(optimizer, [150, 225]) # else: # extrapolating for autoaug sched # return lr_scheduler.MultiStepLR(optimizer, [i*90 for i in range(epochs//90)])
archai/confs/algos/manual.yaml/0
{ "file_path": "archai/confs/algos/manual.yaml", "repo_id": "archai", "token_count": 899 }
338