|
import os |
|
import datasets |
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
|
|
_CITATION = """\ |
|
@InProceedings{huggingface:dataset, |
|
title = {A great new dataset}, |
|
author={huggingface, Inc. |
|
}, |
|
year={2020} |
|
} |
|
""" |
|
|
|
|
|
|
|
_DESCRIPTION = """\ |
|
SemEval 2023 Task 2: MultiCoNER II |
|
Multilingual Complex Named Entity Recognition |
|
""" |
|
|
|
|
|
_HOMEPAGE = "https://multiconer.github.io/" |
|
|
|
|
|
_LICENSE = "" |
|
|
|
|
|
|
|
|
|
_URLS = "" |
|
|
|
|
|
class Multiconer2Config(datasets.BuilderConfig): |
|
"""BuilderConfig for Multiconer2""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for Multiconer2. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(Multiconer2Config, self).__init__(**kwargs) |
|
|
|
|
|
class Multiconer2(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("1.0.0") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
BUILDER_CONFIGS = [ |
|
Multiconer2Config(name="bn", version=VERSION), |
|
Multiconer2Config(name="de", version=VERSION), |
|
Multiconer2Config(name="en", version=VERSION), |
|
Multiconer2Config(name="es", version=VERSION), |
|
Multiconer2Config(name="fa", version=VERSION), |
|
Multiconer2Config(name="fr", version=VERSION), |
|
Multiconer2Config(name="hi", version=VERSION), |
|
Multiconer2Config(name="it", version=VERSION), |
|
Multiconer2Config(name="pt", version=VERSION), |
|
Multiconer2Config(name="sv", version=VERSION), |
|
Multiconer2Config(name="uk", version=VERSION), |
|
Multiconer2Config(name="zh", version=VERSION), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "en" |
|
|
|
micro_to_macro_ner_mapping = { |
|
'O': "O", |
|
"B-AerospaceManufacturer": "B-Group", |
|
'I-AerospaceManufacturer': 'I-Group', |
|
'B-AnatomicalStructure': "B-Medical", |
|
'I-AnatomicalStructure': "I-Medical", |
|
'B-ArtWork': "B-CreativeWork", |
|
'I-ArtWork': "I-CreativeWork", |
|
'B-Artist': "B-Person", |
|
'I-Artist': "I-Person", |
|
'B-Athlete': "B-Person", |
|
'I-Athlete': "I-Person", |
|
'B-CarManufacturer': "B-Group", |
|
'I-CarManufacturer': "I-Group", |
|
'B-Cleric': "B-Person", |
|
'I-Cleric': "I-Person", |
|
'B-Clothing': "B-Product", |
|
'I-Clothing': "I-Product", |
|
'B-Disease': "B-Medical", |
|
'I-Disease': "I-Medical", |
|
'B-Drink': "B-Product", |
|
'I-Drink': "I-Product", |
|
'B-Facility': "B-Location", |
|
'I-Facility': "I-Location", |
|
'B-Food': "B-Product", |
|
'I-Food': "I-Product", |
|
'B-HumanSettlement': "B-Location", |
|
'I-HumanSettlement': "I-Location", |
|
'B-MedicalProcedure': "B-Medical", |
|
'I-MedicalProcedure': "I-Medical", |
|
'B-Medication/Vaccine': "B-Medical", |
|
'I-Medication/Vaccine': "I-Medical", |
|
'B-MusicalGRP': "B-Group", |
|
'I-MusicalGRP': "I-Group", |
|
'B-MusicalWork': "B-CreativeWork", |
|
'I-MusicalWork': "I-CreativeWork", |
|
'B-ORG': "B-Group", |
|
'I-ORG': "I-Group", |
|
'B-OtherLOC': "B-Location", |
|
'I-OtherLOC': "I-Location", |
|
'B-OtherPER': "B-Person", |
|
'I-OtherPER': "I-Person", |
|
'B-OtherPROD': "B-Product", |
|
'I-OtherPROD': "I-Product", |
|
'B-Politician': "B-Person", |
|
'I-Politician': "I-Person", |
|
'B-PrivateCorp': "B-Group", |
|
'I-PrivateCorp': "I-Group", |
|
'B-PublicCorp': "B-Group", |
|
'I-PublicCorp': "I-Group", |
|
'B-Scientist': "B-Person", |
|
'I-Scientist': "I-Person", |
|
'B-Software': "B-CreativeWork", |
|
'I-Software': "I-CreativeWork", |
|
'B-SportsGRP': "B-Group", |
|
'I-SportsGRP': "I-Group", |
|
'B-SportsManager': "B-Person", |
|
'I-SportsManager': "I-Person", |
|
'B-Station': 'B-Location', |
|
'I-Station': 'I-Location', |
|
'B-Symptom': "B-Medical", |
|
'I-Symptom': "I-Medical", |
|
'B-Vehicle': "B-Product", |
|
'I-Vehicle': "I-Product", |
|
'B-VisualWork': "B-CreativeWork", |
|
'I-VisualWork': "I-CreativeWork", |
|
'B-WrittenWork': "B-CreativeWork", |
|
'I-WrittenWork': "I-CreativeWork", |
|
} |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"tokens": datasets.Sequence(datasets.Value("string")), |
|
"ner_tags": datasets.Sequence( |
|
datasets.features.ClassLabel( |
|
names=['O', |
|
"B-AerospaceManufacturer", 'I-AerospaceManufacturer', |
|
'B-AnatomicalStructure', 'I-AnatomicalStructure', |
|
'B-ArtWork', 'I-ArtWork', |
|
'B-Artist', 'I-Artist', |
|
'B-Athlete', 'I-Athlete', |
|
'B-CarManufacturer', 'I-CarManufacturer', |
|
'B-Cleric', 'I-Cleric', |
|
'B-Clothing', 'I-Clothing', |
|
'B-Disease', 'I-Disease', |
|
'B-Drink', 'I-Drink', |
|
'B-Facility', 'I-Facility', |
|
'B-Food', 'I-Food', |
|
'B-HumanSettlement', 'I-HumanSettlement', |
|
'B-MedicalProcedure', 'I-MedicalProcedure', |
|
'B-Medication/Vaccine', 'I-Medication/Vaccine', |
|
'B-MusicalGRP', 'I-MusicalGRP', |
|
'B-MusicalWork', 'I-MusicalWork', |
|
'B-ORG', 'I-ORG', |
|
'B-OtherLOC', 'I-OtherLOC', |
|
'B-OtherPER', 'I-OtherPER', |
|
'B-OtherPROD', 'I-OtherPROD', |
|
'B-Politician', 'I-Politician', |
|
'B-PrivateCorp', 'I-PrivateCorp', |
|
'B-PublicCorp', 'I-PublicCorp', |
|
'B-Scientist', 'I-Scientist', |
|
'B-Software', 'I-Software', |
|
'B-SportsGRP', 'I-SportsGRP', |
|
'B-SportsManager', 'I-SportsManager', |
|
'B-Station', 'I-Station', |
|
'B-Symptom', 'I-Symptom', |
|
'B-Vehicle', 'I-Vehicle', |
|
'B-VisualWork', 'I-VisualWork', |
|
'B-WrittenWork', 'I-WrittenWork'] |
|
) |
|
), |
|
"ner_macro_tags": datasets.Sequence( |
|
datasets.features.ClassLabel( |
|
names=['O', |
|
"B-Location", "I-Location", |
|
"B-CreativeWork", "I-CreativeWork", |
|
"B-Group", "I-Group", |
|
"B-Person", "I-Person", |
|
"B-Product", "I-Product", |
|
"B-Medical", "I-Medical", |
|
] |
|
) |
|
), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage="https://www.aclweb.org/anthology/W03-0419/", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager): |
|
"""Returns SplitGenerators.""" |
|
|
|
downloaded_files = dl_manager.download_and_extract({ |
|
"train": f"{self.config.name}-train.conll", |
|
"dev": f"{self.config.name}-dev.conll", |
|
}) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
logger.info("⏳ Generating examples from = %s", filepath) |
|
with open(filepath, encoding="utf-8") as f: |
|
guid = 0 |
|
tokens = [] |
|
ner_tags = [] |
|
ner_macro_tags = [] |
|
for line in f: |
|
if line.startswith("#") or line == "" or line == "\n": |
|
if tokens: |
|
yield guid, { |
|
"id": str(guid), |
|
"tokens": tokens, |
|
"ner_tags": ner_tags, |
|
"ner_macro_tags": ner_macro_tags, |
|
} |
|
guid += 1 |
|
tokens = [] |
|
ner_tags = [] |
|
ner_macro_tags = [] |
|
else: |
|
|
|
splits = line.split(" _ _ ") |
|
tokens.append(splits[0]) |
|
ner_tags.append(splits[1].rstrip()) |
|
ner_macro_tags.append(self.micro_to_macro_ner_mapping[splits[1].rstrip()]) |
|
|
|
if tokens: |
|
yield guid, { |
|
"id": str(guid), |
|
"tokens": tokens, |
|
"ner_tags": ner_tags, |
|
"ner_macro_tags": ner_macro_tags, |
|
} |
|
|