|
--- |
|
license: mit |
|
task_categories: |
|
- object-detection |
|
- text-classification |
|
- zero-shot-classification |
|
language: |
|
- en |
|
- ar |
|
size_categories: |
|
- 10K<n<100K |
|
--- |
|
# ReceiptSense: Beyond Traditional OCR - A Dataset for Receipt Understanding |
|
|
|
[](https://arxiv.org/abs/2406.04493) |
|
[](https://huggingface.co/datasets/abdoelsayed/CORU) |
|
[]() |
|
|
|
## 🔥 News |
|
- **[2024]** ReceiptSense dataset is now publicly available! |
|
- **[2024]** Paper accepted and published |
|
|
|
## 📖 Abstract |
|
|
|
Multilingual OCR and information extraction from receipts remains challenging, particularly for complex scripts like Arabic. We introduce **ReceiptSense**, a comprehensive dataset designed for Arabic-English receipt understanding comprising: |
|
|
|
- **20,000** annotated receipts from diverse retail settings |
|
- **30,000** OCR-annotated images |
|
- **10,000** item-level annotations |
|
- **1,265** receipt images with **40 question-answer pairs each** for Receipt QA |
|
|
|
The dataset captures merchant names, item descriptions, prices, receipt numbers, and dates to support object detection, OCR, information extraction, and question-answering tasks. We establish baseline performance using traditional methods (Tesseract OCR) and advanced neural networks, demonstrating the dataset's effectiveness for processing complex, noisy real-world receipt layouts. |
|
|
|
## 🎯 Key Features |
|
|
|
### ✨ **Multilingual Support** |
|
- **Arabic-English** bilingual receipts |
|
- Real-world mixed-language content |
|
- Complex script handling for Arabic text |
|
|
|
### 📊 **Comprehensive Annotations** |
|
- **Object Detection**: Bounding boxes for key receipt elements |
|
- **OCR**: Character and word-level text recognition |
|
- **Information Extraction**: Structured data extraction |
|
- **Receipt QA**: Question-answering capabilities |
|
|
|
### 🏪 **Diverse Retail Environments** |
|
- Supermarkets and grocery stores |
|
- Restaurants and cafes |
|
- Clothing and retail shops |
|
- Various geographical regions |
|
|
|
### 🔧 **Real-world Challenges** |
|
- Noisy and degraded image quality |
|
- Complex receipt layouts |
|
- Mixed fonts and orientations |
|
- Authentic retail scenarios |
|
|
|
## 📈 Dataset Statistics |
|
|
|
| Component | Training | Validation | Test | Total | |
|
|-----------|----------|------------|------|-------| |
|
| **Key Information Detection** | 12,600 | 3,700 | 3,700 | **20,000** | |
|
| **OCR Dataset** | 21,000 | 4,500 | 4,500 | **30,000** | |
|
| **Item Information Extraction** | 7,000 | 1,500 | 1,500 | **10,000** | |
|
| **Receipt QA** | - | - | 1,265 | **1,265** | |
|
|
|
### Language Distribution |
|
- **Arabic**: 53.6% |
|
- **English**: 26.2% |
|
- **Mixed Language**: 20.3% |
|
|
|
### Receipt QA Coverage |
|
- **Merchant/Payment/Date Metadata**: 30% |
|
- **Item-level Information**: 50% |
|
- **Tax/Total/Payment Details**: 20% |
|
|
|
## 🖼️ Sample Images |
|
|
|
<div align="center"> |
|
|
|
| Sample 1 | Sample 2 | Sample 3 | Sample 4 | Sample 5 | |
|
|----------|----------|----------|----------|----------| |
|
| <img src="images/0cf392e3-e6bf-4bd7-85d5-7f91c73cdcaf.jpg" width="150" height="200"> | <img src="images/0dccefa6-6928-499e-8aae-15c04d18cc94.jpg" width="150" height="200"> | <img src="images/0dd4ada2-681e-42e7-b398-e093bc8b81c3.jpg" width="150" height="200"> | <img src="images/0ef51dc7-4a0a-47e6-bc59-41f609d1c98d.jpg" width="150" height="200"> | <img src="images/0f369dc1-1c5b-41b1-97bc-c9b94d53cd40.jpg" width="150" height="200"> | |
|
|
|
*Examples of annotated receipt images showcasing the variety of formats, languages, and complex text layouts* |
|
|
|
</div> |
|
|
|
## 🎯 Supported Tasks |
|
|
|
### 1. 🎯 **Key Information Detection** |
|
Extract essential receipt information including: |
|
- Merchant names |
|
- Transaction dates |
|
- Receipt numbers |
|
- Item lists and descriptions |
|
- Total amounts |
|
|
|
### 2. 🔍 **OCR (Optical Character Recognition)** |
|
Box-level text annotations for: |
|
- Multilingual text recognition |
|
- Complex layout understanding |
|
- Noisy image processing |
|
|
|
### 3. 📝 **Information Extraction** |
|
Detailed item-level analysis: |
|
- Item names and descriptions |
|
- Prices and quantities |
|
- Categories and classifications |
|
- Brands and packaging information |
|
|
|
### 4. ❓ **Receipt Question Answering** |
|
Comprehensive QA capabilities covering: |
|
- Receipt metadata queries |
|
- Item-specific questions |
|
- Transaction summary questions |
|
- Payment and tax information |
|
|
|
## 📥 Download Links |
|
|
|
### 🎯 Key Information Detection |
|
- **Training Set**: [Download (12.6K images)](https://huggingface.co/datasets/abdoelsayed/CORU/resolve/main/Receipt/train.zip?download=true) |
|
- **Validation Set**: [Download (3.7K images)](https://huggingface.co/datasets/abdoelsayed/CORU/resolve/main/Receipt/val.zip?download=true) |
|
- **Test Set**: [Download (3.7K images)](https://huggingface.co/datasets/abdoelsayed/CORU/resolve/main/Receipt/test.zip?download=true) |
|
|
|
### 🔍 OCR Dataset |
|
- **Training Set**: [Download (21K images)](https://huggingface.co/datasets/abdoelsayed/CORU/resolve/main/OCR/train.zip?download=true) |
|
- **Validation Set**: [Download (4.5K images)](https://huggingface.co/datasets/abdoelsayed/CORU/resolve/main/OCR/val.zip?download=true) |
|
- **Test Set**: [Download (4.5K images)](https://huggingface.co/datasets/abdoelsayed/CORU/resolve/main/OCR/test.zip?download=true) |
|
|
|
### 📝 Item Information Extraction |
|
- **Training Set**: [Download (7K items)](https://huggingface.co/datasets/abdoelsayed/CORU/resolve/main/IE/train.csv?download=true) |
|
- **Validation Set**: [Download (1.5K items)](https://huggingface.co/datasets/abdoelsayed/CORU/resolve/main/IE/val.csv?download=true) |
|
- **Test Set**: [Download (1.5K items)](https://huggingface.co/datasets/abdoelsayed/CORU/resolve/main/IE/test.csv?download=true) |
|
|
|
### ❓ Receipt Question Answering |
|
- **Test Set**: [Download (1,265 receipts with 50.6K QA pairs)](https://huggingface.co/datasets/abdoelsayed/CORU/resolve/main/QA/test.zip?download=true) |
|
|
|
> ⚠️ **Note**: All receipt datasets have been updated to include PII-redacted versions for privacy protection. |
|
|
|
## 🏆 Baseline Results |
|
|
|
### Object Detection Performance |
|
| Model | Backbone | Precision | Recall | mAP50 | mAP50-95 | |
|
|-------|----------|-----------|--------|-------|----------| |
|
| **YOLOv7** | - | **76.0%** | **85.6%** | **79.2%** | 43.7% | |
|
| YOLOv8 | - | 74.6% | 81.0% | 76.1% | 45.3% | |
|
| YOLOv9 | - | 75.7% | 83.4% | 77.9% | **46.7%** | |
|
| DINO | Swin-T | - | - | - | **32.2%** (Avg IoU) | |
|
|
|
### OCR Performance |
|
| Model | CER ↓ | WER ↓ | |
|
|-------|-------|-------| |
|
| Tesseract | 15.56% | 30.78% | |
|
| Attention-Gated CNN-BiGRU | 14.85% | 27.22% | |
|
| Our OCR Model | 7.83% | 27.24% | |
|
| **Azura OCR** | **6.39%** | **25.97%** | |
|
|
|
### Receipt QA Performance |
|
| Model | Precision | Recall | Exact Match | Contains | |
|
|-------|-----------|--------|-------------|----------| |
|
| **GPT-4o** | **37.7%** | **36.4%** | **35.0%** | **29.1%** | |
|
| Llama3.2 (11B) | 32.6% | 31.3% | 31.6% | 25.9% | |
|
| Phi3.5 | 28.4% | 29.1% | 28.8% | 23.7% | |
|
| Internvl2 (8B) | 24.2% | 23.8% | 23.1% | 19.4% | |
|
|
|
## 🚀 Getting Started |
|
|
|
### Quick Start |
|
```python |
|
# Install required packages |
|
pip install datasets transformers torch |
|
|
|
# Load the dataset |
|
from datasets import load_dataset |
|
|
|
# Load Receipt QA dataset |
|
qa_dataset = load_dataset("abdoelsayed/CORU", "qa") |
|
|
|
# Load OCR dataset |
|
ocr_dataset = load_dataset("abdoelsayed/CORU", "ocr") |
|
|
|
# Load Information Extraction dataset |
|
ie_dataset = load_dataset("abdoelsayed/CORU", "ie") |
|
``` |
|
|
|
### Dataset Structure |
|
``` |
|
ReceiptSense/ |
|
├── Receipt/ # Key Information Detection |
|
│ ├── images/ # Receipt images |
|
│ └── annotations/ # YOLO/COCO format annotations |
|
├── OCR/ # OCR Dataset |
|
│ ├── images/ # Text line images |
|
│ └── labels/ # Character annotations |
|
├── IE/ # Information Extraction |
|
│ └── data.csv # Structured item data |
|
└── QA/ # Receipt Question Anshwering |
|
├── images/ # Receipt images |
|
└── qa_pairs.json # Question-answer pairs |
|
``` |
|
|
|
## 🔬 Applications |
|
|
|
- **💳 Expense Management**: Automated expense tracking and categorization |
|
- **📦 Inventory Management**: Real-time inventory updates from receipt data |
|
- **🏪 Retail Analytics**: Customer behavior and purchasing pattern analysis |
|
- **🤖 Document AI**: Multilingual document understanding systems |
|
- **📱 Mobile Apps**: Receipt scanning and digitization applications |
|
|
|
## 🤝 Comparison with Existing Datasets |
|
|
|
| Dataset | Images | Categories | Languages | Item IE | Receipt QA | Year | |
|
|---------|--------|------------|-----------|---------|------------|------| |
|
| SROIE | 1,000 | 4 | English | ✓ | ✗ | 2019 | |
|
| CORD | 1,000 | 8 | English | ✓ | ✗ | 2019 | |
|
| MC-OCR | 2,436 | 4 | EN + Vietnamese | ✓ | ✗ | 2021 | |
|
| UIT | 2,147 | 4 | EN + Vietnamese | ✓ | ✗ | 2022 | |
|
| **ReceiptSense** | **20,000** | **5** | **Arabic + English** | **✓** | **✓** | **2024** | |
|
|
|
## 🏛️ Ethics and Privacy |
|
|
|
- All receipts collected with explicit user consent through the DISCO application |
|
- Comprehensive 4-step PII redaction process implemented |
|
- Privacy protocols strictly followed during data collection |
|
- Independent verification and cross-checking procedures |
|
|
|
## 👥 Authors |
|
|
|
**Abdelrahman Abdallah¹**, **Mahmoud Abdalla²**, **Mahmoud SalahEldin Kasem²**, **Mohamed Mahmoud²**, **Ibrahim Abdelhalim³**, **Mohamed Elkasaby⁴**, **Yasser Elbendary⁴**, **Adam Jatowt¹** |
|
|
|
¹University of Innsbruck, Innsbruck, Tyrol, Austria |
|
²Chungbuk National University, Cheongju, Republic of Korea |
|
³University of Louisville, Louisville, USA |
|
⁴DISCO, Cairo, Egypt |
|
|
|
## 📚 Citation |
|
|
|
If you find ReceiptSense useful for your research, please consider citing our paper: |
|
|
|
```bibtex |
|
@article{abdallah2024receiptsense, |
|
title={ReceiptSense: Beyond Traditional OCR - A Dataset for Receipt Understanding}, |
|
author={Abdelrahman Abdallah and Mahmoud Abdalla and Mahmoud SalahEldin Kasem and Mohamed Mahmoud and Ibrahim Abdelhalim and Mohamed Elkasaby and Yasser Elbendary and Adam Jatowt}, |
|
year={2024}, |
|
journal={ACM Conference Proceedings}, |
|
note={Comprehensive multilingual receipt understanding dataset} |
|
} |
|
``` |
|
|
|
## 📄 License |
|
|
|
This dataset is released under the MIT License. See [LICENSE](LICENSE) file for details. |
|
|
|
## 🔗 Links |
|
|
|
- 📄 **Paper**: [arXiv:2406.04493](https://arxiv.org/abs/2406.04493) |
|
- 🤗 **HuggingFace**: [abdoelsayed/CORU](https://huggingface.co/datasets/abdoelsayed/CORU) |
|
- 💼 **DISCO App**: [https://discoapp.ai/](https://discoapp.ai/) |
|
- 📧 **Contact**: [[email protected]](mailto:[email protected]) |
|
|
|
--- |
|
|
|
<div align="center"> |
|
|
|
**🌟 Star this repository if you find it helpful! 🌟** |
|
|
|
 |
|
|
|
</div> |
|
|