Search is not available for this dataset
name
stringlengths
2
88
description
stringlengths
31
8.62k
public_tests
dict
private_tests
dict
solution_type
stringclasses
2 values
programming_language
stringclasses
5 values
solution
stringlengths
1
983k
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; namespace ArCorder { class Program { class inner : IEquatable<inner> { string m_First; string m_Second; string m_Therd; public inner (string first, string second, string therd) { m_First = first; m_Second = second; m_Therd = therd; } public Boolean IsTarget() { if (m_First.First() != m_Second.First() && m_First.First() != m_Therd.First() && m_Second.First() != m_Therd.First()) { return true; } else { return false; } } public bool Equals(inner obj) { return obj.GetHashCode() == this.GetHashCode(); } public override int GetHashCode() { return this.m_First.GetHashCode() ^ this.m_Second.GetHashCode() ^ this.m_Therd.GetHashCode(); } } static void Main() { int max = int.Parse(Console.ReadLine()); List<string> names = new List<string>(); for (int i = 0; i < max; i++) { names.Add(Console.ReadLine()); } IEnumerable<string> targetNames = names.Where(x => x.StartsWith("M") || x.StartsWith("A") || x.StartsWith("R") || x.StartsWith("C") || x.StartsWith("H")); List<inner> allPatern = new List<inner>(); foreach (string first in targetNames){ foreach(string second in targetNames) { foreach (string therd in targetNames) { allPatern.Add(new inner(first, second, therd)); } } } Console.WriteLine(allPatern.Where(x => x.IsTarget()).Distinct().LongCount()); } } }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; namespace ConsoleApp93 { class Program { static void Main(string[] args) { int N = int.Parse(Console.ReadLine()); var S = new string[N]; var num_array = new int[5]; for (int i = 0; i < N; i++) { S[i] = Console.ReadLine(); } num_array[0] = S.Where(x => x[0] == 'M').Count(); num_array[1] = S.Where(x => x[0] == 'A').Count(); num_array[2] = S.Where(x => x[0] == 'R').Count(); num_array[3] = S.Where(x => x[0] == 'C').Count(); num_array[4] = S.Where(x => x[0] == 'H').Count(); int ans = 0; for (int i = 0; i < 5; i++) { for (int j = i + 1; j < 5; j++) { for (int k = j + 1; k < 5; k++) { ans += num_array[i] * num_array[j] * num_array[k]; } } } Console.WriteLine(ans); } } }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n, a[10]; long long total = 0; string s; cin >> n; for (int i = 0; i < n; i++) { cin >> s; if (s[0] == 'M') a[0]++; if (s[0] == 'A') a[1]++; if (s[0] == 'R') a[2]++; if (s[0] == 'C') a[3]++; if (s[0] == 'H') a[4]++; } for (int i = 0; i < 3; i++) { for (int j = i + 1; j < 4; j++) { for (int k = j + 1; k < 5; k++) { total += a[i] * a[j] * a[k]; } } } cout << total << endl; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; string S[5]; for (int i = 0; i < N; i++) cin >> S[N]; int count[5]; for (int i = 0; i < N; i++) { if (S[i][0] == 'M') { count[0] += 1; } else if (S[i][0] == 'A') { count[1] += 1; } else if (S[i][0] == 'R') { count[2] += 1; } else if (S[i][0] == 'C') { count[3] += 1; } else if (S[i][0] == 'H') { count[4] += 1; } } long long sum = 0; for (int i = 0; i < 3; i++) { for (int j = i + 1; j < 4; j++) { for (int k = j + 1; k < 5; k++) { sum += count[i] * count[j] * count[k]; } } } cout << sum << endl; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int INF = 1 << 30; const long long INFL = 1LL << 62; const int MOD = 1000000007; const int MAX = 100000; const int N = 100; int main() { int n; cin >> n; int c[26]; for (int i = 0; i < 26; i++) c[i] = 0; for (int i = 0; i < n; i++) { string s; cin >> s; c[s[0] - 'A']++; } string s[10] = {"MAR", "MAC", "MAH", "MRC", "MRH", "MCH", "ARC", "ACH", "ARH", "RCH"}; int ans = 0; for (int i = 0; i < 10; i++) { int tmp = 1; for (int j = 0; j < 3; j++) tmp *= c[s[i][j] - 'A']; ans += tmp; } cout << ans << endl; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<string> str(N); int M = 0, A = 0, R = 0, C = 0, H = 0; for (int64_t i = 0; i < N; i++) { cin >> str.at(i); } for (int64_t i = 0; i < N; i++) { if (str.at(i).at(0) == 'M') { M++; } else if (str.at(i).at(0) == 'A') { A++; } else if (str.at(i).at(0) == 'R') { R++; } else if (str.at(i).at(0) == 'C') { C++; } else if (str.at(i).at(0) == 'H') { H++; } } cout << M * A * R + M * A * C + M * A * H + M * R * C + M * R * H + M * C * H + A * R * C + A * R * H + A * C * H + R * C * H << endl; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long int n; cin >> n; map<char, long long int> mp; for (int i = 0; i < n; i++) { string tmp; cin >> tmp; if (tmp[0] != 'M' && tmp[0] != 'A' && tmp[0] != 'R' && tmp[0] != 'C' && tmp[0] != 'H') { } else { mp[tmp[0] - 'A']++; } } vector<long long int> arr; for (auto itr : mp) { arr.push_back(itr.second); } long long int ans = 0; if (arr.size() < 3) { ans = 0; } else { for (int i = 0; i < 5; i++) { for (int j = i + 1; j < 5; j++) { for (int k = j + 1; k < 5; k++) { ans += arr[i] * arr[j] * arr[k]; } } } } cout << ans << endl; return 0; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.*; public class Main{ public static void main(String[] args){ Scanner sc=new Scanner(System.in); int Num=sc.nextInt(); int mem[]=new int[5]; int ans=0; for(int i=0;i<Num;i++){ String str=sc.next(); char s=str.charAt(0); if(s=='M') mem[0]++; else if(s=='A') mem[1]++; else if(s=='R') mem[2]++; else if(s=='C') mem[3]++; else if(s=='H') mem[4]++; } for(int i=0;i<=2;i++){ for(int j=1;j<=3;j++){ for(int k=2;k<=4;k++){ if(i!=j && j!=k) ans+=mem[i]*mem[j]*mem[k]; } } } System.out.println(ans); } }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { unsigned long long N = 0; unsigned long long M, A, R, C, H; cin >> N; string s; for (int i = 0; i < N; i++) { cin >> s; if (s[0] == 'M') { M += 1; } else if (s[0] == 'A') { A += 1; } else if (s[0] == 'R') { R += 1; } else if (s[0] == 'C') { C += 1; } else if (s[0] == 'H') { H += 1; } } int sum = 0; sum += M * A * R; sum += M * A * C; sum += M * A * H; sum += M * R * C; sum += M * R * H; sum += M * C * H; sum += A * R * C; sum += A * R * H; sum += A * C * H; sum += R * C * H; printf("%d\n", sum); return 0; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { cin.tie(0); ios::sync_with_stdio(false); long long n, sum = 0, cnt = 1; string s; cin >> n; vector<long long> v(5); for (long long i = 0; i < n; i++) { cin >> s; if (s.substr(0, 1) == "M") v.at(0)++; if (s.substr(0, 1) == "A") v.at(1)++; if (s.substr(0, 1) == "R") v.at(2)++; if (s.substr(0, 1) == "C") v.at(3)++; if (s.substr(0, 1) == "H") v.at(4)++; } for (int i = 0; i < v.size(); i++) { if (v.at(i) == 0) cnt++; } sort(v.begin(), v.end()); do { sum += v.at(0) * v.at(1) * v.at(2); } while (next_permutation(v.begin(), v.end())); if (cnt == 0) { cout << sum << endl; } else { cout << sum / cnt << endl; } return 0; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> int main(void) { long long int sum = 0; long long int num[5], i, n, j, k, x; char name[11]; for (i = 0; i < 5; i++) num[i] = 0; scanf("%d", &n); while (n > 0) { scanf("%s", name); if (name[0] == 'M') num[0]++; else if (name[0] == 'A') num[1]++; else if (name[0] == 'R') num[2]++; else if (name[0] == 'C') num[3]++; else if (name[0] == 'H') num[4]++; n--; } for (i = 0; i < 5; i++) { x = 0; if (num[i] == 0) continue; for (j = i + 1; j < 5; j++) for (k = j + 1; k < 5; k++) x += num[j] * num[k]; sum += x * num[i]; } printf("%lld", sum); return 0; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; std::cin >> n; std::vector<string> s(n); for (int i = 0; i < (int)(n); i++) std::cin >> s[i]; std::map<char, int> map; for (int i = 0; i < (int)(n); i++) { map[s[i][0]]++; } string march = "MARCH"; int64_t sum = 0; for (int a = 0; a < 5; ++a) { for (int b = a + 1; b < 5; ++b) { for (int c = b + 1; c < 5; ++c) { sum += map[march[a]] * map[march[b]] * map[march[c]]; } } } std::cout << sum << std::endl; return 0; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MOD = 1000000007; long long int gcd(long long int a, long long int b) { return b ? gcd(b, a % b) : a; } int a[100010]; int main() { int n; cin >> n; vector<string> s(n); vector<long long int> name(5, 0); for (int i = 0; i < (n); ++i) { cin >> s[i]; if (s[i][0] == 'M') name[0]++; if (s[i][0] == 'A') name[1]++; if (s[i][0] == 'R') name[2]++; if (s[i][0] == 'C') name[3]++; if (s[i][0] == 'H') name[4]++; } long long int res = 0, ans; for (int bit = 0; bit < (1 << 5); bit++) { if (__builtin_popcount(bit) != 3) continue; cout << "bit" << bit; ans = 1; for (int i = 0; i < 5; i++) { if (bit & (1 << i)) { ans = ans * name[i]; } } cout << ans << endl; res += ans; } cout << res << endl; return 0; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> template <class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; } template <class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; } using namespace std; using P = pair<int, int>; using ll = long long; const ll INF = 1LL << 60; const double PI = 3.1415926535897932; const int MOD = 1e9 + 7; int main() { int n; cin >> n; map<char, ll> mci; for (int i = 0; i < (n); ++i) { string s; cin >> s; if (s[0] != 'M' && s[0] != 'A' && s[0] != 'R' && s[0] != 'C' && s[0] != 'H') { continue; } mci[s[0]]++; } if (mci.size() < 3) { cout << 0 << endl; return 0; } else if (mci.size() == 3) { ll res = 1; for (auto v : mci) { res *= v.second; } cout << res << endl; return 0; } vector<char> skip; ll ans = 0; for (auto v : mci) skip.push_back(v.first); for (auto sk : skip) { ll tmp = 1; for (auto v : mci) { if (v.first == sk) continue; tmp *= v.second; } ans += tmp; } cout << ans << endl; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> int main(void) { int N; scanf("%d", &N); int i, j, k; int c[5] = {0}; for (i = 0; i < N; i++) { char S[20]; scanf("%s", S); if (S[0] == 'M') { c[0]++; } else if (S[0] == 'A') { c[1]++; } else if (S[0] == 'R') { c[2]++; } else if (S[0] == 'C') { c[3]++; } else if (S[0] == 'H') { c[4]++; } } long count = 0; for (i = 0; i < 5; i++) { for (j = i; j < 5; j++) { for (k = j; k < 5; k++) { if (i != j && j != k && k != i) { count += c[i] * c[j] * c[k]; } } } } printf("%ld", count); }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N, cnt = 0; long long M = 0, A = 0, R = 0, C = 0, H = 0; string tmp; cin >> N; for (int i = 0; i < N; i++) { cin >> tmp; if (tmp[0] == 'M') M++; else if (tmp[0] == 'A') A++; else if (tmp[0] == 'R') R++; else if (tmp[0] == 'C') C++; else if (tmp[0] == 'H') H++; } cnt += M * A * R; cnt += M * A * C; cnt += M * A * H; cnt += M * R * C; cnt += M * R * H; cnt += M * C * H; cnt += A * R * C; cnt += A * R * H; cnt += A * C * H; cnt += R * C * H; cout << cnt << endl; return 0; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; map<char, int> head; int main() { int n; cin >> n; for (int i = 0; i < n; i++) { string s; cin >> s; if (s[0] == 'M') head['m'] += 1; else if (s[0] == 'A') head['a'] += 1; else if (s[0] == 'R') head['r'] += 1; else if (s[0] == 'C') head['c'] += 1; else if (s[0] == 'H') head['h'] += 1; } char idx[5] = {'m', 'a', 'r', 'c', 'h'}; int sele1[] = {0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2}; int sele2[] = {1, 1, 1, 2, 2, 3, 2, 2, 3, 3, 3}; int sele3[] = {2, 3, 4, 3, 4, 4, 3, 4, 4, 5, 4}; int sum = 0; for (int i = 0; i < 11; i++) { sum += head[idx[sele1[i]]] * head[idx[sele2[i]]] * head[idx[sele3[i]]]; } cout << sum << endl; return 0; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; long A[5] = {0, 0, 0, 0, 0}; cin >> N; vector<string> S(N); for (size_t i = 0; i < N; i++) { cin >> S.at(i); if (S.at(i).at(0) == 'M') { A[0]++; } else if (S.at(i).at(0) == 'A') { A[1]++; } else if (S.at(i).at(0) == 'R') { A[2]++; } else if (S.at(i).at(0) == 'C') { A[3]++; } else if (S.at(i).at(0) == 'H') { A[4]++; } long long ans = A[0] * A[1] * A[2] * A[3] * A[4]; cout << ans; } }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(void) { int n, ans, a, r, c, h, m; a = r = c = h = m = 0; string b; vector<string> vec; cin >> n; for (int i = 0; i < n; i++) { cin >> b; if (b[0] == 'A') a++; else if (b[0] == 'R') r++; else if (b[0] == 'C') c++; else if (b[0] == 'M') m++; else if (b[0] == 'H') h++; } cout << a * r * c + a * r * m + a * r * h + a * c * m + a * c * h + a * m * h + r * c * m + r * c * h + r * m * h + c * m * h << endl; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using P = pair<int, int>; int main() { int N; cin >> N; vector<string> S(N); for (int i = 0; i < N; i++) cin >> S[i]; int B[5] = {0}; for (int i = 0; i < N; i++) { if (S.at(i).at(0) == 'M') { B[0]++; } else if (S.at(i).at(0) == 'A') { B[1]++; } else if (S.at(i).at(0) == 'R') { B[2]++; } else if (S.at(i).at(0) == 'C') { B[3]++; } else if (S.at(i).at(0) == 'H') { B[4]++; } } long long x = B[0] * B[1] * B[2] + B[0] * B[1] * B[3] + B[0] * B[1] * B[4] + B[0] * B[2] * B[3] + B[0] * B[2] * B[4] + B[0] * B[3] * B[4] + B[1] * B[2] * B[3] + B[1] * B[2] * B[4] + B[1] * B[3] * B[4] + B[2] * B[3] * B[4]; cout << x << endl; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<string> vec(N); for (int i = 0; i < N; i++) { cin >> vec.at(i); } int M = 0; int A = 0; int R = 0; int C = 0; int H = 0; for (int j = 0; j < N; j++) { string S = vec.at(j); if (S.at(0) == 'M') { M++; } if (S.at(0) == 'A') { A++; } if (S.at(0) == 'R') { R++; } if (S.at(0) == 'C') { C++; } if (S.at(0) == 'H') { H++; } } vector<int> MARCH(5); MARCH.at(0) = M; MARCH.at(1) = A; MARCH.at(2) = R; MARCH.at(3) = C; MARCH.at(4) = H; sort(MARCH.begin(), MARCH.end()); int64_t ans = 0; if (MARCH.at(1) == 0 && MARCH.at(2) != 0) { ans = MARCH.at(2) * MARCH.at(3) * MARCH.at(4); } else if (MARCH.at(0) == 0) { ans += MARCH.at(2) * MARCH.at(3) * MARCH.at(4); ans += MARCH.at(1) * MARCH.at(3) * MARCH.at(4); ans += MARCH.at(1) * MARCH.at(2) * MARCH.at(4); ans += MARCH.at(2) * MARCH.at(3) * MARCH.at(1); } else { ans += MARCH.at(2) * MARCH.at(3) * MARCH.at(4); ans += MARCH.at(1) * MARCH.at(3) * MARCH.at(4); ans += MARCH.at(1) * MARCH.at(2) * MARCH.at(4); ans += MARCH.at(2) * MARCH.at(3) * MARCH.at(1); ans += MARCH.at(0) * MARCH.at(1) * MARCH.at(2); ans += MARCH.at(0) * MARCH.at(3) * MARCH.at(1); ans += MARCH.at(0) * MARCH.at(1) * MARCH.at(4); ans += MARCH.at(0) * MARCH.at(3) * MARCH.at(2); ans += MARCH.at(0) * MARCH.at(2) * MARCH.at(4); ans += MARCH.at(0) * MARCH.at(3) * MARCH.at(4); } cout << ans << endl; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
n = 0 s = [] N = gets.to_i N.times do si = gets.chomp s << si[0] if si[0] =~ /M|A|R|C|H/ end c = s.combination(3).to_a.map(&:uniq) c.each do |x| if x.length == 3 n += 1 end end p n
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; string s[N]; for (int i = 0; i < N; i++) { cin >> s[i]; } vector<int> nums(26); fill(nums.begin(), nums.end(), 0); for (int i = 0; i < N; i++) { nums[s[i][0] - 'A']++; } vector<int> fi(5); fi[0] = nums[0]; fi[1] = nums[2]; fi[2] = nums[7]; fi[3] = nums[12]; fi[4] = nums[17]; sort(fi.begin(), fi.end()); long long ans = fi[0] * fi[1] * fi[2] + fi[0] * fi[1] * fi[3] + fi[0] * fi[1] * fi[4] + fi[0] * fi[2] * fi[3] + fi[0] * fi[2] * fi[4] + fi[0] * fi[3] * fi[4] + fi[1] * fi[2] * fi[3] + fi[1] * fi[2] * fi[4] + fi[1] * fi[3] * fi[4] + fi[2] * fi[3] * fi[4]; cout << ans << endl; return 0; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.io.OutputStream; import java.util.StringTokenizer; import java.io.Writer; import java.io.IOException; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author palayutm */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); TaskC solver = new TaskC(); solver.solve(1, in, out); out.close(); } static class TaskC { public void solve(int testNumber, InputReader in, OutputWriter out) { String target = "MARCH"; int[] a = new int[5]; int n = in.nextInt(); for (int i = 0; i < n; i++) { String s = in.next(); char c = s.charAt(0); if (target.indexOf(c) >= 0) { a[target.indexOf(c)]++; } } long ans = 0; for (int i = 0; i < 5; i++) { for (int j = i + 1; j < 5; j++) { for (int k = j + 1; k < 5; k++) { ans += a[i] * a[j] * a[k]; } } } out.println(ans); } } static class OutputWriter extends PrintWriter { public OutputWriter(OutputStream out) { super(out); } public OutputWriter(Writer out) { super(out); } public void close() { super.close(); } } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<string> S; for (int i = 0; i < N; i++) { string tmps; cin >> tmps; if (tmps[0] == 'M' || tmps[0] == 'A' || tmps[0] == 'R' || tmps[0] == 'C' || tmps[0] == 'H') { S.push_back(tmps); } } if (S.size() == 0) { cout << 0 << endl; return 0; } sort(S.begin(), S.end()); vector<string> distincted; int cnt1 = 1; int cnt2 = 1; for (int i = 1; i < S.size(); i++) { if (S[i - 1] != S[i]) { cnt1++; } if (S[i - 1][0] != S[i][0]) { cnt2++; } } if (cnt2 < 3) { cout << 0 << endl; return 0; } int a = 1; for (int i = 0; i < 3; i++) { a *= cnt2 - i; } int x = a / (cnt2 - 3); x = x / 6; int y = cnt1 - cnt2; long long ans = x + y * 3; cout << ans << endl; return 0; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long n; cin >> n; long long m = 0, a = 0, r = 0, c = 0, h = 0; for (int i = 0; i < n; i++) { string s; cin >> s; if (s[0] == 'M') m++; if (s[0] == 'A') a++; if (s[0] == 'R') r++; if (s[0] == 'C') c++; if (s[0] == 'H') h++; } long long ans = 0; int d[5]; d[0] = m; d[1] = a; d[2] = r; d[3] = c; d[4] = h; for (int i = 0; i < 5; i++) { for (int j = i + 1; j < 5; j++) { for (int k = j + 1; k < 5; k++) { ans += d[i] * d[j] * d[k]; } } } cout << ans << endl; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long int a, c, d, e, f = 0, ans = 0, n, m; int b; int M = 0, A = 0, R = 0, C = 0, H = 0; int num[100000]; unsigned long long x, y; string s; cin >> n; b = 0; for (a = 0; a < n; a++) { cin >> s; if (s[0] == 'M') { M++; } else if (s[0] == 'A') { A++; } else if (s[0] == 'R') { R++; } else if (s[0] == 'C') { C++; } else if (s[0] == 'H') { H++; } } a = 0; a += M * A * R; a += M * A * C; a += M * A * H; a += M * R * C; a += M * R * H; a += M * C * H; a += A * R * C; a += A * R * H; a += A * C * H; a += R * C * H; cout << a << endl; return 0; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N, M[5] = {0}; cin >> N; string S[N]; for (int i = 0; i < N; i++) { cin >> S[i]; char s = S[i][0]; if (s == 'M') M[0]++; else if (s == 'A') M[1]++; else if (s == 'R') M[2]++; else if (s == 'C') M[3]++; else if (s == 'H') M[4]++; } long ans = 0; for (int i = 0; i <= 2; i++) { for (int j = i + 1; j <= 3; j++) { for (int k = j + 1; k <= 4; k++) ans += M[i] * M[j] * M[k]; } } cout << ans << endl; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; string s; int a[5] = {}; for (int i = 0; i < N; i++) { cin >> s; if (s[0] == 'M') { a[0]++; } else if (s[0] == 'A') { a[1]++; } else if (s[0] == 'R') { a[2]++; } else if (s[0] == 'C') { a[3]++; } else if (s[0] == 'H') { a[4]++; } } int Answer = 0; Answer += a[0] * a[1] * a[2]; Answer += a[1] * a[2] * a[3]; Answer += a[2] * a[3] * a[4]; Answer += a[3] * a[4] * a[0]; Answer += a[4] * a[0] * a[1]; Answer += a[0] * a[2] * a[4]; Answer += a[0] * a[2] * a[3]; Answer += a[0] * a[1] * a[3]; Answer += a[1] * a[3] * a[4]; Answer += a[1] * a[2] * a[4]; cout << Answer << endl; return 0; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int maxx = 1e5 + 7; const int Inf = 1 << 30; int n; string s[maxx]; long long ans; int dd[7]; void cnt(string t) { if (t[0] == 'M') dd[1]++; else if (t[0] == 'A') dd[2]++; else if (t[0] == 'R') dd[3]++; else if (t[0] == 'C') dd[4]++; else if (t[0] == 'H') dd[5]++; } int main() { cin >> n; for (int i = 1; i <= n; i++) { cin >> s[i]; cnt(s[i]); } int m = 0; for (int i = 1; i <= n; i++) m += dd[i]; if (m < 3) ans = 0; else if (m == 3) { bool flg = 1; for (int i = 1; i <= 5; i++) { if (dd[i] > 1) { flg = 0; break; } } if (flg) ans = 1; else ans = 0; } else { for (int i = 1; i <= 5; i++) for (int j = i + 1; j <= 5; j++) for (int k = j + 1; k <= 5; k++) ans += (long long)dd[i] * (long long)dd[j] * (long long)dd[k]; } cout << ans << endl; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int i, m = 0, a = 0, r = 0, c = 0, h = 0, n; cin >> n; char s[100000]; for (i = 0; i < n; i++) { cin >> s; if (s[0] == 'M') m++; else if (s[0] == 'A') a++; else if (s[0] == 'R') r++; else if (s[0] == 'C') c++; else if (s[0] == 'H') h++; } cout << m * a * r * +a * r * c + r * c * h + c * h * m + h * m * r << endl; return 0; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const double pi = acos(-1.0); long long gcd(long long x, long long y) { return (y == 0) ? x : gcd(y, x % y); } long long lcm(long long x, long long y) { return x / gcd(x, y) * y; } int main() { int n; int c[5] = {0, 0, 0, 0, 0}; long long ans = 0; int x[10] = {0, 0, 0, 0, 0, 0, 1, 1, 1, 2}; int y[10] = {1, 1, 1, 2, 2, 3, 2, 2, 3, 3}; int z[10] = {2, 3, 4, 3, 4, 4, 3, 4, 4, 4}; cin >> n; string s; for (int i = 0; i < n; i++) { cin >> s; if (s[0] == 'M') c[0]++; if (s[0] == 'A') c[1]++; if (s[0] == 'R') c[2]++; if (s[0] == 'C') c[3]++; if (s[0] == 'H') c[4]++; } for (int i = 0; i < 10; i++) ans += c[x[i]] * c[y[i]] * c[z[i]]; cout << ans << endl; return 0; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long int ans = 0; int main() { int n, f[10], i, g; char a[15]; memset(f, 0, sizeof(f)); scanf("%d", &n); for (i = 0; i < n; i++) { scanf("%s", a); if (a[0] == 'A') f[1] += 1; if (a[0] == 'M') f[2] += 1; if (a[0] == 'R') f[3] += 1; if (a[0] == 'H') f[4] += 1; if (a[0] == 'C') f[0] += 1; } for (i = 0; i < 3; i++) { for (int j = i + 1; j < 4; j++) { for (int k = j + 1; k < 5; k++) { ans += f[i] * f[j] * f[k]; } } } printf("%lld", ans); return 0; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; char a[100000 + 5][15], v[100000 + 5][15]; int n, k, num; int main() { int i, j, l; cin >> n; for (i = 0; i < n; i++) { cin >> a[i]; if (a[i][0] == 'M' || a[i][0] == 'A' || a[i][0] == 'R' || a[i][0] == 'C' || a[i][0] == 'H') { strcpy(v[k], a[i]); k++; } } for (i = 0; i < k; i++) for (j = i + 1; j < k; j++) for (l = j + 1; l < k; l++) if (v[i][0] != v[j][0] && v[j][0] != v[l][0] && v[l][0] != v[i][0]) num++; cout << num; return 0; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
#include <bits/stdc++.h> using namespace std; double euclid_distance(double a, double b) { return sqrt(a * a + b * b); } int gcd(long long int a, long long int b) { long long int r; if (a < b) { int tmp; tmp = a; a = b; b = tmp; } while (r != 0) { r = a % b; a = b; b = r; } return r; } void Integer_factorization(long long factor[], long long n) { long long a = 2; bool flag = false; for (int p = 2; p * p <= n; p++) { while (n % p == 0) { n /= p; factor[p]++; } } if (n != 1) factor[n]++; } void ys() { cout << "Yes" << endl; } void yb() { cout << "YES" << endl; } void ns() { cout << "No" << endl; } void nb() { cout << "NO" << endl; } void solve(void) { long long n; cin >> n; long long d[5] = {0}; int a[10] = {0, 0, 0, 0, 0, 0, 1, 1, 1, 2}; int b[10] = {1, 1, 1, 2, 2, 3, 2, 2, 3, 3}; int c[10] = {2, 3, 4, 3, 4, 4, 3, 4, 4, 4}; for (int(i) = (0); (i) < (n); (i)++) { string s; cin >> s; if (s[0] == 'M') d[0]++; if (s[0] == 'A') d[1]++; if (s[0] == 'R') d[2]++; if (s[0] == 'C') d[3]++; if (s[0] == 'H') d[4]++; } long long ans = 0; for (int(i) = (0); (i) < (10); (i)++) { ans += d[a[i]] * d[b[i]] * d[c[i]]; } cout << ans << endl; } int main() { cin.tie(0); ios::sync_with_stdio(false); solve(); }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <iostream> #include <math.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <queue> #include <stack> #include <vector> #include <algorithm> #include <map> #include <set> #include <deque> int main(){ int N; scanf("%d", &N); //std::vector<std::string > vec(N); std::map<std::string, int > mp; std::string S; for (int i=0; i<N; i++){ std::cin >> S; mp[S]++; } std::vector<int > count(5, 0); // 0:M, 1:A, 2:R, 3:C, 4:H char moji[5] = {'M', 'A', 'R', 'C', 'H'}; for (auto &entry : mp){ //printf("%c\n", entry.first[0]); for (int j=0; j<5; j++){ if (entry.first[0]==moji[j]){ count[j] += entry.second; } } } /*for (int i=0; i<5; i++){ printf("count[%d]=%d\n",i,count[i]); }*/ long long ans = 0; for (int i=0; i<5; i++){ for (int j=i+1; j<5; j++){ for (i
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
macro_rules! input { (source = $s:expr, $($r:tt)*) => { let mut iter = $s.split_whitespace(); let mut next = || { iter.next().unwrap() }; input_inner!{next, $($r)*} }; ($($r:tt)*) => { let stdin = std::io::stdin(); let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock())); let mut next = move || -> String{ bytes .by_ref() .map(|r|r.unwrap() as char) .skip_while(|c|c.is_whitespace()) .take_while(|c|!c.is_whitespace()) .collect() }; input_inner!{next, $($r)*} }; } macro_rules! input_inner { ($next:expr) => {}; ($next:expr, ) => {}; ($next:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($next, $t); input_inner!{$next $($r)*} }; } macro_rules! read_value { ($next:expr, ( $($t:tt),* )) => { ( $(read_value!($next, $t)),* ) }; ($next:expr, [ $t:tt ; $len:expr ]) => { (0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>() }; ($next:expr, chars) => { read_value!($next, String).chars().collect::<Vec<char>>() }; ($next:expr, usize1) => { read_value!($next, usize) - 1 }; ($next:expr, $t:ty) => { $next().parse::<$t>().expect("Parse error") }; } use std::cmp::max; use std::collections::HashMap; fn main(){ input!{ n:usize, sn:[chars;n], } let master = vec!['M','A','R','C','H']; let mut map = HashMap::new(); for s in sn { *map.entry(s[0]).or_insert(0) += 1; } let mut ans = 0; for bit in 0usize..(1<<5) { if bit.count_ones() != 3 { continue; } let mut sub = 1; for j in 0..5 { if bit&(1<<j) != 0 { sub *= map.get(&master[j]).cloned().unwrap_or(0); } } ans += sub; } println!("{}",ans); }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import itertools n=int(input()) list1=[] for j in range(n): s=input() if s[0]=='M' or s[0]=='A' or s[0]=='R' or s[0]=='C' or s[0]=='H': list1.append(s[0]) list1.sort() list2=list(itertools.combinations(list1, 3)) cnt=0 #for j in range(len(list2)): # if len(list2[j])==len(set(list2[j])): # cnt+=1 print(cnt)
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; string march("MARCH"); int main() { int N; cin >> N; vector<string> S(N); copy_n(istream_iterator<string>(cin), N, S.begin()); unordered_map<char, int> m; for (auto& item : S) { if (string::npos != march.find_first_of(item[0], 0)) { if (m.count(item[0])) ++(m[item[0]]); else m[item[0]] = 1; } } int64_t result = 0; for (char c1 = 'A'; c1 <= 'X'; ++c1) { for (char c2 = c1 + 1; c2 <= 'Y'; ++c2) { for (char c3 = c2 + 1; c3 <= 'Z'; ++c3) { result += m[c1] * m[c2] * m[c3]; } } } cout << result << endl; return 0; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> int main() { int n, i, j; int count[5] = {0, 0, 0, 0, 0}; int ans = 0, hal1 = 0, hal2 = 0; scanf("%d", &n); char s[11]; for (i = 0; i < n; i++) { scanf("%s", s); switch (s[0]) { case 'M': count[0]++; break; case 'A': count[1]++; break; case 'R': count[2]++; break; case 'C': count[3]++; break; case 'H': count[4]++; break; } } hal1 = count[0] * count[1]; hal2 = count[2] * count[3]; ans = hal1 * count[2] + hal1 * count[3] + hal1 * count[4] + count[1] * hal2 + count[1] * count[2] * count[4] + hal2 * count[4] + hal2 * count[0] + count[3] * count[4] * count[0] + count[3] * count[4] * count[1] + count[0] * count[2] * count[4]; printf("%d\n", ans); return 0; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N, cou[7] = {0}; long long ans = 0; int P[10] = {0, 0, 0, 0, 0, 0, 1, 1, 1, 2}; int Q[10] = {1, 1, 1, 2, 2, 3, 2, 2, 3, 3}; int R[10] = {2, 3, 4, 3, 4, 4, 3, 4, 4, 4}; string s; cin >> N; for (int i = 0; i < N; i++) { cin >> s; if (s[0] == 'M') { cou[0]++; cou[5]++; } else if (s[0] == 'A') { cou[1]++; cou[6]++; } else if (s[0] == 'R') { cou[2]++; } else if (s[0] == 'C') { cou[3]++; } else if (s[0] == 'H') { cou[4]++; } } for (int j = 0; j < 10; j++) { ans += cou[P[j]] * cou[Q[j]] * cou[R[j]]; } printf("%lld", ans); return 0; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(void) { int N; cin >> N; unsigned int names[5] = {0}; string march = "MARCH"; for (int i = 0; i < (int)(N); i++) { string str; cin >> str; for (int j = 0; j < (int)(5); j++) { if (str[0] == march[j]) names[j]++; } } unsigned long long comb = 0; for (int i = 0; i < (int)(5); i++) { for (int j = i + 1; j < 5; j++) { for (int k = j + 1; k < 5; k++) { comb += names[i] * names[j] * names[k]; } } } cout << comb << endl; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int MARCH[5] = {0}; string tmp; for (int i = 0; i < n; ++i) { cin >> tmp; if (tmp[0] == 'M') { ++MARCH[0]; } else if (tmp[0] == 'A') { ++MARCH[1]; } else if (tmp[0] == 'R') { ++MARCH[2]; } else if (tmp[0] == 'C') { ++MARCH[3]; } else if (tmp[0] == 'H') { ++MARCH[4]; } } long long total = 0; for (int i = 0; i < 3; ++i) { for (int j = i + 1; j < 4; ++j) { for (int k = j + 1; k < 5; ++k) { total += MARCH[i] * MARCH[j] * MARCH[k]; } } } cout << total << endl; return 0; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n, m = 0, a = 0, r = 0, c = 0, h = 0; string s[100010]; cin >> n; for (int i = 1; i <= n; i++) { cin >> s[i]; if (s[i][0] == 'M') m++; else if (s[i][0] == 'A') a++; else if (s[i][0] == 'R') r++; else if (s[i][0] == 'C') c++; else if (s[i][0] == 'H') h++; } long long d = m * a * r + m * a * c + m * a * h + m * r * c + m * r * h + m * c * h + a * r * c + a * r * h + a * c * h + r * c * h; cout << d; return 0; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #pragma GCC optimize("O3") using namespace std; long long GCD(long long a, long long b) { return b ? GCD(b, a % b) : a; } long long LCM(long long a, long long b) { return a / GCD(a, b) * b; } int dx[4] = {1, 0, -1, 0}; int dy[4] = {0, 1, 0, -1}; long long int cmp(pair<long long int, string> a, pair<long long int, string> b) { if (a.first != b.first) return a.first < b.first; else return a.second < b.second; } const int MAX = 510000; long long fac[MAX], finv[MAX], inv[MAX]; void COMinit() { fac[0] = fac[1] = 1; finv[0] = finv[1] = 1; inv[1] = 1; for (int i = 2; i < MAX; i++) { fac[i] = fac[i - 1] * i % 1000000007; inv[i] = 1000000007 - inv[1000000007 % i] * (1000000007 / i) % 1000000007; finv[i] = finv[i - 1] * inv[i] % 1000000007; } } long long COM(long long int n, long long int k) { if (n < k) return 0; if (n < 0 || k < 0) return 0; return fac[n] * (finv[k] * finv[n - k] % 1000000007) % 1000000007; } int main() { cin.tie(0); ios::sync_with_stdio(false); long long int n; cin >> n; vector<string> s(n); for (int i = 0; i < n; i++) cin >> s[i]; map<char, int> cnt; int dp[100005]; int m = 0, a = 0, r = 0, c = 0, h = 0; for (int i = 0; i < n; i++) { cnt[s[i][0]]++; if (s[i][0] == 'M') m++; else if (s[i][0] == 'A') a++; else if (s[i][0] == 'R') r++; else if (s[i][0] == 'C') c++; else if (s[i][0] == 'H') h++; } int cnn = 0; if (m) cnn++; if (a) cnn++; if (r) cnn++; if (c) cnn++; if (h) cnn++; int cac = 0; if (m == 1) cac++; if (a == 1) cac++; if (r == 1) cac++; if (c == 1) cac++; if (h == 1) cac++; COMinit(); cout << (long long int)(COM(cnn, 3)) * (1 > COM(m, 1) ? 1 : COM(m, 1)) * (1 > COM(a, 1) ? 1 : COM(a, 1)) * (1 > COM(r, 1) ? 1 : COM(r, 1)) * (1 > COM(c, 1) ? 1 : COM(c, 1)) * (1 > COM(h, 1) ? 1 : COM(h, 1)) - COM(cac, 3) * (1 > COM(m, 1) - 1 ? 1 : COM(m, 1) - 1) * (1 > COM(a, 1) - 1 ? 1 : COM(a, 1) - 1) * (1 > COM(r, 1) - 1 ? 1 : COM(r, 1) - 1) * (1 > COM(c, 1) - 1 ? 1 : COM(c, 1) - 1) * (1 > COM(h, 1) - 1 ? 1 : COM(h, 1) - 1) << endl; return 0; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
ips = [] ips.append(input()) while True: try: ips.append(input()) except (EOFError): break def mar(ips): march = ["M","A","R","C","H"] cnt = [0,0,0,0,0] num = int(ips[0]) names = [s for s in ips[1:] if s[0] in march] if len(names) ==0: return 0 for n in names: if n[0]=="M": cnt[0]+=1 elif n[0]=="A": cnt[1]+=1 elif n[0]=="R": cnt[2]+=1 elif n[0]=="C": cnt[3]+=1 elif n[0]=="H": cnt[4]+=1 m = cnt[0]*(cnt[1]*(sum(cnt[2:]))+cnt[2]*(sum(cnt[3:]))+cnt[3]*cnt[4]) a = cnt[1]*(cnt[2]*(sum(cnt[3:]))+cnt[3]*cnt[4]) r = cnt[2]*(cnt[3]*(cnt[4])) c = cnt[3]*cnt[4] return m+a+r+c print(mar(ips))
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
[<EntryPoint>] let main argv = let N = stdin.ReadLine() |> int let counter = [| for _ in 1..N -> stdin.ReadLine().[0] |] |> Array.countBy id |> Array.filter (fun (c, _) -> "MARCH".Contains(c.ToString())) let n = counter |> Array.length if n < 3 then 0 else let counts a b c = List.fold (fun total i -> total * (snd counter.[i])) 1 [a; b; c] let rec dfs a b c count = if a >= n-2 then count elif b = n-2 then dfs (a+1) (a+2) (a+3) (count + (counts a b c)) elif c = n-1 then dfs a (b+1) (b+2) (count + (counts a b c)) else dfs a b (c+1) (count + (counts a b c)) dfs 0 1 2 0 |> stdout.WriteLine 0 // return an integer exit code
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> int main(void) { int N; scanf("%d", &N); static char S[11]; int name[5] = {0}; for (int i = 0; i < N; i++) { scanf("%s", S[i]); switch (S[0]) { case 'M': name[0]++; break; case 'A': name[1]++; break; case 'R': name[2]++; break; case 'C': name[3]++; break; case 'H': name[4]++; break; } } int P[10] = {0, 0, 0, 0, 0, 0, 1, 1, 1, 2}; int Q[10] = {1, 1, 1, 2, 2, 3, 2, 2, 3, 3}; int R[10] = {2, 3, 4, 3, 4, 4, 3, 4, 4, 4}; long long int ans = 0; for (int i = 0; i < 10; i++) { ans += name[P[i]] * name[Q[i]] * name[R[i]]; } printf("%lld\n", ans); return 0; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.ArrayList; import java.util.Scanner; class Main{ public static void main(String[] args) { Scanner scan = new Scanner(System.in); long N = scan.nextInt(); ArrayList<String> namebox = new ArrayList<String>(); int[] judge = new int[5]; for(int i= 0;i < N;i++){ String x = scan.next(); namebox.add(x); if(x.charAt(0) == 'M'){ judge[0]++; }else if(x.charAt(0) == 'A'){ judge[1]++; }else if(x.charAt(0) == 'R'){ judge[2]++; }else if(x.charAt(0) == 'C'){ judge[3]++; }else if(x.charAt(0) == 'H'){ judge[4]++; } } long ans = (judge[0]*judge[1]*judge[2]) + (judge[0]*judge[1]*judge[3]) + (judge[0]*judge[1]*judge[4]) + (judge[0]*judge[2]*judge[3]) + (judge[0]*judge[2]*judge[4]) + (judge[0]*judge[3]*judge[4]) + (judge[1]*judge[2]*judge[3]) + (judge[1]*judge[2]*judge[4]) + (judge[1]*judge[3]*judge[4]) + (judge[2]*judge[3]*judge[4]) ; System.out.println(ans); } }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import sys from itertools import combinations from collections import Counter input = sys.stdin.readline def log(*args): print(*args, file=sys.stderr) def main(): n = int(input().rstrip()) s = [input()[0] for _ in range(n)] s = [v for v in range(n)] c = Counter(s) ans = 0 for x, y, z in combinations('MARCH', 3): ans += c[x] * c[y] * c[z] print(ans) if __name__ == '__main__': main()
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) dic = {} for c in "MARCH": dic[c] = 0 myset = set(list("MARCH")) for _ in range(N): c = input()[0] if c in myset: dic[c] += 1 res = 0 for i in range(N-2): for j in range(i+1, N-1): for k in range(j+1, N): res += dic["MARCH"[i]] * dic["MARCH"[j]] * dic["MARCH"[k]] print(res)
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.*; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int N = sc.nextInt(); int m = 0; int a = 0; int r = 0; int c = 0; int h = 0; for (int i = 0; i < N; i++) { String s = sc.next(); if (s.charAt(0) == 'M') m++; if (s.charAt(0) == 'A') a++; if (s.charAt(0) == 'R') r++; if (s.charAt(0) == 'C') c++; if (s.charAt(0) == 'H') h++; } long ans = 0; if (m > 0) { ans += (m * a * r) + (m * a * c) + (m * a * h) + (m * r * c) + (m * r * h) + (m * c * h); } if (a > 0) { ans += (a * r * c) + (a * r * h) + (a * c * h); } if (r > 0) { ans += (r * c * h); } System.out.println(ans); } }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
from itertools import combinations # input N = int(input()) S = [input()[0] for i in range(N)] # check cnt = 0 MARCH = ["M", "A", "R", "C", "H"] tops = [s for s in S if s in MARCH] for c in combinations(tops, 3): if len(tops) == 3 and len(tops) == len(set(tops)): cnt += 1 print(cnt)
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
cnt = 0 N = int(input()) S = {'M':0,'A':0,'R':0,'C':0,'H':0} march = ['M','A','R','C','H'] for i in range(N): s = input()[0] if s in march: S[s] += 1 for i in range(5**2): tmp = [] for j in range(5): if (i >> j) & 1: tmp.append(S[march[j]]) if len(tmp) == 3: cnt += tmp[0] * tmp[1] * tmp[2] print(cnt)
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.*; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int N = sc.nextInt(); int[] S = new int[5]; for (int i = 0; i < N; i++) { String name = sc.next(); if (name.charAt(0) == 'M') S[0]++; if (name.charAt(0) == 'A') S[1]++; if (name.charAt(0) == 'R') S[2]++; if (name.charAt(0) == 'C') S[3]++; if (name.charAt(0) == 'H') S[4]++; } long res = 0; for (int i = 0; i < 5; i++) { for (int j = i+1; j < 5; j++) { for (int k = j+1; k < 5; k++) { res += S[i] * S[j] * S[k]; } } } System.out.println(res); } }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) s = [input()[0] for i in range(n)] work = [0, 0, 0, 0, 0] for el in s: if el == "M": work[0] += 1 elif el == "A": work[1] += 1 elif el == "R": work[2] += 1 elif el == "C": work[3] += 1 elif el == "H": work[4] += 1 temp = sum(work) result = temp*(temp-1)*(temp-2)//6 for el in work: result -= el*(el-1)*(temp-2)//2 print(result)
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(void) { cin.tie(0); ios::sync_with_stdio(false); int n; cin >> n; string s[n]; for (int i = (0); i < (n); i++) cin >> s[i]; long long ct[5]; for (int i = (0); i < (5); i++) ct[i] = 0; for (int i = (0); i < (n); i++) { if (s[i][0] == 'M') { ct[0]++; } else if (s[i][0] == 'A') { ct[1]++; } else if (s[i][0] == 'R') { ct[2]++; } else if (s[i][0] == 'C') { ct[3]++; } else if (s[i][0] == 'H') { ct[4]++; } } long long ans; for (int i = (0); i < (5); i++) for (int j = (i + 1); j < (5); j++) for (int h = (j + 1); h < (5); h++) ans += ct[i] * ct[j] * ct[h]; return 0; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { map<char, int> m; int n; cin >> n; for (int i = 0; i < n; i++) { string s; cin >> s; m[s[0]]++; } vector<int> v(5); v[0] = m['M']; v[1] = m['A']; v[2] = m['R']; v[3] = m['C']; v[4] = m['H']; long long ans = 0; for (int i = 0; i < 5; i++) for (int j = i + 1; j < 5; j++) for (int z = j + 1; z < 5; z++) { ans += long long(v[i] * v[j] * v[z]); } cout << ans; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using Graph = vector<vector<int>>; const long long MOD = 1e9 + 7; int main() { int n; cin >> n; vector<int> march(5, 0); string s = "MARCH"; for (int i = 0; i < (int)(n); i++) { string t; cin >> t; for (int i = 0; i < (int)(5); i++) if (t[0] == s[i]) march[i]++; } long long ans = 0; for (int i = 0; i < 5; ++i) { for (int j = i + 1; j < 5; ++j) { for (int k = j + 1; k < 5; ++k) { ans += march[i] * march[j] * march[k]; } } } cout << ans << endl; return 0; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#[allow(unused_imports)] use proconio::marker::{Bytes, Chars}; use proconio::{fastout, input}; #[fastout] fn main() { input! { n: usize, s: [Chars; n] } let (mut m, mut a, mut r, mut c, mut h) = (0, 0, 0, 0, 0); for i in 0..n { if s[i][0] == 'M' { m += 1 } if s[i][0] == 'A' { a += 1 } if s[i][0] == 'R' { r += 1; } if s[i][0] == 'C' { c += 1; } if s[i][0] == 'H' { h += 1; } } let d = vec![m, a, r, c, h]; let p = [0, 0, 0, 0, 0, 0, 1, 1, 1, 2]; let q = [1, 1, 1, 2, 2, 3, 2, 2, 3, 3]; let t = [2, 3, 4, 3, 4, 4, 3, 4, 4, 4]; let mut ans = 0; for i in 0..10 { ans += d[p[i]] * d[q[i]] * d[t[i]]; } println!("{}", ans); }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
import java.util.Scanner object Main { def main(args: Array[String]): Unit = { val sc = new Scanner(System.in) val n = sc.nextInt() val a = Array(0, 0, 0, 0, 0) // m a r c h for(i <- 0 until n) { val s = sc.next() if (s.charAt(0) == 'M') { a(0) += 1 } else if (s.charAt(0) == 'A') { a(1) += 1 } else if (s.charAt(0) == 'R') { a(2) += 1 } else if (s.charAt(0) == 'C') { a(3) += 1 } else if (s.charAt(0) == 'H') { a(4) += 1 } } var ans = 0 for(i <- 0 until a.length) { for(j <- (i+1) until a.length) { for(k <- (j+1) until a.length) { ans += a(i)*a(j)*a(k) } } } println(ans) } }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) s = [] for i in range(n): s.append(str(input())) for i,j in enumerate(s): if j[0] != 'M' and j[0] != 'A' and j[0] != 'R' and j[0] != 'C' and j[0] != 'H': s.pop(i) import itertools count = 0 for i in itertools.combinations(s, 3): check = [] for j in i: check.append(j[0]) if len(list(set(check))) == 3: count += 1 print(count)
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> int main(void) { int N; scanf("%d", &N); char s[10]; int M = 0; int A = 0; int R = 0; int C = 0; int H = 0; for (int i = 0; i < N; i++) { scanf("%s", &s[10]); if (s[0] == 'M') { M++; break; } if (s[0] == 'A') { A++; break; } if (s[0] == 'R') { R++; break; } if (s[0] == 'C') { C++; break; } if (s[0] == 'H') { H++; break; } } long long int num = 0; num = M * A * R + M * A * C + M * A * H + M * R * C + M * R * H + M * C * H + A * R * C + A * R * H + A * C * H + R * C * H; printf("%lld", num); return 0; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; char s[20]; long long num[200]; long long sum = 0; long long jiecheng(long long x) { return x * (x - 1) * (x - 2) / 6; } int main() { int n; long long k; scanf("%d", &n); for (int i = 0; i < n; i++) { getchar(); scanf("%s", s); if (s[0] == 'M' || s[0] == 'A' || s[0] == 'R' || s[0] == 'C' || s[0] == 'H') { sum++; } num[s[0] - 'A']++; } if (sum < 3) printf("0\n"); else { k = jiecheng(sum); for (int i = 0; i < 26; i++) { if (num[i] > 1) { k = k - (sum - num[i]) * ((num[i] * num[i] - 1) / 2); } } if (k < 0) printf("0\n"); else printf("%lld\n", k); } return 0; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int inf = 1e9 + 7; int main() { int n; cin >> n; int m = 0, a = 0, r = 0, c = 0, h = 0; for (int i = (0); i < (n); i++) { string s; cin >> s; if (s[0] == 'M') m++; if (s[0] == 'A') a++; if (s[0] == 'R') r++; if (s[0] == 'C') c++; if (s[0] == 'H') h++; } cout << (long long)(m * a * r + m * a * c + m * a * h + m * r * c + m * r * h + m * c * h + a * r * c + a * r * h + a * c * h + r * c * h) << endl; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int num1 = 0; int num2 = 0; int num3 = 0; int num4 = 0; int num5 = 0; for (int i = 0; i < n; i++) { string tmp; cin >> tmp; if (tmp[0] == 'M') { num1 += 1; } else if (tmp[0] == 'A') { num2 += 1; } else if (tmp[0] == 'R') { num3 += 1; } else if (tmp[0] == 'C') { num4 += 1; } else if (tmp[0] == 'H') { num5 += 1; } } vector<long long int> ans(10); ans[0] = num1 * num2 * num3; ans[1] = num1 * num2 * num4; ans[2] = num1 * num2 * num5; ans[3] = num1 * num3 * num4; ans[4] = num1 * num3 * num5; ans[5] = num1 * num4 * num5; ans[6] = num2 * num3 * num4; ans[7] = num2 * num3 * num5; ans[8] = num2 * num4 * num5; ans[9] = num3 * num4 * num5; long long int sum = accumulate(ans.begin(), ans.end(), 0LL); cout << sum << endl; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> int main(void) { long long i, c0, c1, c2, N, m[5] = {0}; long long s; char name[14]; const char sign[7] = "MARCH"; scanf("%lld", &N); for (i = 0; i < N; i++) { scanf("%s", name); for (int j = 0; j < 5; j++) if (name[0] == sign[j]) m[j]++; } s = 0; for (c0 = 0; c0 < 5; c0++) for (c1 = c0 + 1; c1 < 5; c1++) for (c2 = c1 + 1; c2 < 5; c2++) s += m[c0] * m[c1] * m[c2]; printf("%d\n", s); return 0; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(void) { char march[] = {'M', 'A', 'R', 'C', 'H'}; int array[5]; memset(array, 0, sizeof(int) * 5); int n; scanf("%d", &n); for (int i = 0; i < n; i++) { char s[11]; scanf("%s", s); for (int j = 0; j < 5; j++) { if (s[0] == march[j]) { array[j]++; } } } long long int ans = 0L; for (int i = 0; i < 3; i++) { for (int j = i + 1; j < 4; j++) { for (int k = j + 1; k < 5; k++) { ans += array[i] * array[j] * array[k]; } } } printf("%lld\n", ans); return 0; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long N; cin >> N; multiset<char> S; for (int i = 0; i < (int)(N); i++) { string tmp; cin >> tmp; S.insert(tmp[0]); } size_t m_count = S.count('M'); size_t a_count = S.count('A'); size_t r_count = S.count('R'); size_t c_count = S.count('C'); size_t h_count = S.count('H'); vector<long long> tmp; if (m_count != 0) tmp.push_back(m_count); if (a_count != 0) tmp.push_back(a_count); if (r_count != 0) tmp.push_back(r_count); if (c_count != 0) tmp.push_back(c_count); if (h_count != 0) tmp.push_back(h_count); if (tmp.size() < 3) cout << 0 << endl; else if (tmp.size() == 3) { long long ans = 1; long long TMP = 0; for (int i = 0; i < (int)(tmp.size()); i++) { ans *= tmp[i]; TMP += tmp[i]; } if (ans > TMP) cout << TMP << endl; else cout << ans << endl; } else if (tmp.size() == 4) { long long ans = 0; ans += tmp[0] * (tmp[1] * tmp[2] + tmp[1] * tmp[3] + tmp[2] * tmp[3]); ans += tmp[1] * tmp[2] * tmp[3]; cout << ans << endl; } else { long long ans = 0; ans += tmp[0] * tmp[1] * (tmp[2] * tmp[3] + tmp[2] * tmp[4] + tmp[3] * tmp[4]); ans += tmp[0] * tmp[2] * (tmp[1] * tmp[3] + tmp[1] * tmp[4] + tmp[3] * tmp[4]); ans += tmp[0] * tmp[3] * (tmp[2] * tmp[1] + tmp[2] * tmp[4] + tmp[1] * tmp[4]); ans += tmp[0] * tmp[4] * (tmp[2] * tmp[3] + tmp[2] * tmp[1] + tmp[3] * tmp[1]); ans += tmp[1] * (tmp[2] * tmp[3] + tmp[2] * tmp[4] + tmp[3] * tmp[4]); ans += tmp[2] * tmp[3] * tmp[4]; cout << ans << endl; } }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import itertools N = int(input()) S = [input() for _ in range(N)] cnt = [0 for _ in range(5)] for s in S: if s[0] == "M": cnt[0] += 1 elif s[1] == "A": cnt[1] += 1 elif s[2] == "R": cnt[2] += 1 elif s[3] == "C": cnt[3] += 1 elif s[4] == "H": cnt[4] += 1 ans = 0 for i, j, k in itertools.permutations(cnt, r=3): ans += i * j * k print(ans)
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using uint = unsigned int; using ll = long long; using ull = unsigned long long; int cnt[5] = {}; int sum = 0; void recursive_comb(int *indexes, int s, int rest, function<void(int *)> f) { if (rest == 0) { f(indexes); } else { if (s < 0) return; recursive_comb(indexes, s - 1, rest, f); indexes[rest - 1] = s; recursive_comb(indexes, s - 1, rest - 1, f); } } void foreach_comb(int n, int k, function<void(int *)> f) { int indexes[k]; recursive_comb(indexes, n - 1, k, f); } int main() { int n; cin >> n; string s[n]; for (int i = 0; i < n; i++) { cin >> s[i]; if (s[i][0] == 'M') { cnt[0]++; } else if (s[i][0] == 'A') { cnt[1]++; } else if (s[i][0] == 'R') { cnt[2]++; } else if (s[i][0] == 'C') { cnt[3]++; } else if (s[i][0] == 'H') { cnt[4]++; } } foreach_comb(5, 3, [](int *indexes) { sum += cnt[indexes[0]] * cnt[indexes[1]] * cnt[indexes[2]]; }); cout << sum << endl; return 0; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
# -*- coding: utf-8 -*- N = int(input()) lines = [] for i in range(N): tmp = input()[0] if tmp in ["M","A","R","C","H"]:lines.append(tmp) def recl(persons, tmp, count): if len(tmp) == 3 and len(list(set(tmp))) == 3: count[0] += 1 return for idx, person in enumerate(persons): if len(persons) < 1:break recl( persons[idx+1:len(persons)] , tmp + [person], count) count = [0] recl(lines ,[] , count) print(count[0])
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; static const int INFTY = (1 << 30); int N, M; void func() { cin >> N; string tmpstr; int array[5] = {}; for (int i = (int)(0); i < (int)(N); ++i) { cin >> tmpstr; if (tmpstr[0] == 'M') ++array[0]; else if (tmpstr[0] == 'A') ++array[1]; else if (tmpstr[0] == 'R') ++array[2]; else if (tmpstr[0] == 'C') ++array[3]; else if (tmpstr[0] == 'H') ++array[4]; } ll ans = 0; for (int i = (int)(0); i < (int)(5); ++i) { for (int j = (int)(i + 1); j < (int)(5); ++j) { for (int k = (int)(j + 1); k < (int)(5); ++k) { ans += array[i] * array[j] * array[k]; } } } cout << ans << endl; } int main() { func(); }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long int N, set; char head; int node[5] = {0, 0, 0, 0, 0}; string S; cin >> N; for (int i = 0; i < N; i++) { cin >> S; head = S[0]; if (head == 'M') node[0] += 1; if (head == 'A') node[1] += 1; if (head == 'R') node[2] += 1; if (head == 'C') node[3] += 1; if (head == 'H') node[4] += 1; } set = 0; for (int i = 0; i < 5; i++) { for (int j = i + 1; j < 5; j++) { for (int k = j + 1; k < 5; k++) { set += node[i] * node[j] * node[k]; } } } cout << set << endl; return 0; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> template <class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; } template <class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; } using namespace std; using P = pair<int, int>; using ll = long long; const ll INF = 1LL << 60; const double PI = 3.1415926535897932; const int MOD = 1e9 + 7; int main() { int n; cin >> n; map<char, int> mci; for (int i = 0; i < (n); ++i) { string s; cin >> s; if (s[0] != 'M' && s[0] != 'A' && s[0] != 'R' && s[0] != 'C' && s[0] != 'H') { continue; } mci[s[0]]++; } vector<ll> fac(100); fac[0] = 1; for (int i = 0; i < 100; i++) { fac[i + 1] = fac[i] * (i + 1); } ll ans; ll countable = mci.size(); if (countable > 3) { ans = fac[countable] / (fac[countable - 3] * fac[3]); } else { cout << 0 << endl; return 0; } for (auto v : mci) { if (v.second >= 2) { ans *= v.second; if (countable > 3) { ans -= fac[countable - 1] / (fac[countable - 4] * fac[3]); } } } cout << ans << endl; return 0; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin>>N; int m=0,a=0,r=0,c=0,h=0; for(int i=0;i<N;i++){ string p; cin>>p; string name=p; char cap=name.at(0); if(cap=="M"){m++;} else if(cap=="A"){a++;} else if(cap=="R"){r++;} else if(cap=="C"){c++;} else if(cap=="H"){h++;} else{continue;} } int sum=m*a*r+m*a*c+m*a*h+m*r*c+m*r*h+m*c*h+a*r*c+a*r*h+a*c*h+r*c*h; cout<<sum<<endl; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int arr[6]; for (int i = 0; i < 5; i++) arr[i] = 0; int n; cin >> n; string d; map<string, bool> v; v.clear(); while (n--) { cin >> d; if (v.count(d) == 0) { v[d] = 0; switch (d[0]) { case 'A': arr[0]++; break; case 'C': arr[1]++; break; case 'H': arr[2]++; break; case 'M': arr[3]++; break; case 'R': arr[4]++; break; } } } int e = 0; for (int i = 0; i < 5 - 2; i++) for (int j = i + 1; j < 5 - 1; j++) for (int k = j + 1; k < 5; k++) e += (arr[i] * arr[j] * arr[k]); cout << e; return 0; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long int n, ans = 0; cin >> n; int cnt[26] = {}; char s[21]; for (int i = 0; i < n; ++i) { cin >> s; ++cnt[s[0] - 65]; } for (int i = 0; i < 24; ++i) for (int j = i + 1; j < 25; ++j) for (int k = j + 1; k < 26; ++k) ans += cnt[i] * cnt[j] * cnt[k]; cout << ans << '\n'; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> int main() { int N; scanf("%d", &N); char si1mojime[N]; char dammy; scanf("%c", &dammy); int i; char buff[100]; for (i = 0; i < N; i++) { gets(buff); si1mojime[i] = buff[0]; } int m, a, r, c, h; m = a = r = c = h = 0; for (i = 0; i < N; i++) { if (si1mojime[i] == 'M') { m += 1; } else if (si1mojime[i] == 'A') { a += 1; } else if (si1mojime[i] == 'R') { r += 1; } else if (si1mojime[i] == 'C') { c += 1; } else if (si1mojime[i] == 'H') { h += 1; } } int ans = 0; ans = m * a * r + m * a * c + m * a * h + m * r * c + m * r * h + m * c * h + a * r * c + a * r * h + a * c * h + r * c * h; printf("%d", ans); return 0; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n, a[100], ans; string s[10000]; int main() { scanf("%d", &n); for (int i = 1; i <= n; i++) cin >> s[i]; for (int i = 1; i <= n; i++) { if (s[i][0] == 'M') ++a[1]; if (s[i][0] == 'A') ++a[2]; if (s[i][0] == 'R') ++a[3]; if (s[i][0] == 'C') ++a[4]; if (s[i][0] == 'H') ++a[5]; } ans += a[1] * a[2] * a[3]; ans += a[1] * a[2] * a[4]; ans += a[1] * a[2] * a[5]; ans += a[1] * a[3] * a[4]; ans += a[1] * a[3] * a[5]; ans += a[1] * a[4] * a[5]; ans += a[2] * a[3] * a[4]; ans += a[2] * a[3] * a[5]; ans += a[3] * a[4] * a[5]; printf("%d\n", ans); return 0; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; char name[11]; int march[5] = {0}; for (int i = 0; i < n; i++) { cin >> name; if (name[0] == 'M') march[0]++; else if (name[0] == 'A') march[1]++; else if (name[0] == 'R') march[2]++; else if (name[0] == 'C') march[3]++; else if (name[0] == 'H') march[4]++; } long long combination = 0; for (int i = 0; i < 5; i++) { for (int j = i + 1; j < 5; j++) { for (int k = j + 1; k < 5; k++) { combination += march[i] * march[j] * march[k]; } } } cout << combination << endl; return 0; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include<iostream> #include<cstdio> int main(){ string s="MARCH"; int c[5] = {0}; int N; cin>>N; for(int i=0; i<N; i++){ string t; cin>>t; for(int i=0; i<5; i++){ if(t[0] == s[i]) c[i]++; } } int ans = 0; for(int i=0; i<5; i++){ for(int j=i+1; j<5; j++){ for(int k=j+1; k<5; j++){ ans += c[i]*c[k]*c[j]; } } } cout << ans << endl; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
from itertools import combinations import collections N = int(input()) A = [] for i in range(N): A.append(input()[0]) c = collections.Counter(A) if len(set(A)) >= 3: ans = 1 for i in c.values(): ans *= i else: ans = 0 print(ans)
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <iostream> #include <cmath> #include <cstdio> #include <algorithm> #include <cstring> #include <fstream> #include <sstream> using namespace std; int m,a,r,c,h; int d[5]; int p[10]={0,0,0,0,0,0,1,1,1,2}; int q[10]={1,1,1,2,2,3,2,2,3,3}; int r[10]={2,3,4,3,4,4,3,4,4,4}; int main () { string s ; int n; cin>>n; for(int i=0;i<n;i++) { cin>>s; if (s[0]=='M') m++; if (s[0]=='A') a++; if (s[0]=='R') r++; if (s[0]=='C') c++; if (s[0]=='H') h++; } d[0]=m,d[1]=a,d[2]=r,d[3]=c,D[4]=h; int res=0; for (int i=0;i<10;i++) res+=d[p[i]]*d[q[i]]*d[r[i]]; cout<<res; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> int main() { char s[10001][11]; int n; char march[] = {'M', 'A', 'R', 'C', 'H'}; long long int d[5] = {0, 0, 0, 0, 0}; int p[5] = {0, 1, 2, 3, 4}; scanf("%d", &n); for (int i = 0; i < n; i++) { scanf("%s", s[i]); for (int j = 0; j < 5; j++) if (s[i][0] == march[j]) d[j]++; } long long int sum = 0; for (int i = 0; i < 3; i++) { for (int j = i + 1; j < 4; j++) { for (int k = j + 1; k < 5; k++) { sum += d[i] * d[j] * d[k]; } } } printf("%d\n", sum); return 0; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.*; import java.util.*; /** * @author baito */ public class Main { static StringBuilder sb = new StringBuilder(); static FastScanner sc = new FastScanner(System.in); static int INF = 10000; static long MOD = 1000000007; static long[] f;//factorial static int[] y4 = {0, 1, 0, -1}; static int[] x4 = {1, 0, -1, 0}; static int[] y8 = {0, 1, 0, -1, -1, 1, 1, -1}; static int[] x8 = {1, 0, -1, 0, 1, -1, 1, -1}; static int N; static int m, a, r, c, h; public static void main(String[] args) { m = a = r = c = h = 0; N = sc.nextInt(); //longを忘れるなオーバーフローするぞ for (int i = 0; i < N; i++) { char t = sc.next().toCharArray()[0]; switch (t) { case 'M': m++; break; case 'A': a++; break; case 'R': r++; break; case 'C': c++; break; case 'H': h++; break; } } long ans = 0; ans += m * a * r; ans += m * a * c; ans += m * a * h; ans += m * r * c; ans += m * r * h; ans += m * c * h; ans += a * r * c; ans += a * r * h; ans += a * c * h; ans += r * c * h; System.out.println(ans); } //次の順列に書き換える、最大値ならfalseを返す public static boolean nextPermutation(int A[]) { int len = A.length; int pos = len - 2; for (; pos >= 0; pos--) { if (A[pos] < A[pos + 1]) break; } if (pos == -1) return false; //posより大きい最小の数を二分探索 int ok = pos + 1; int ng = len; while (Math.abs(ng - ok) > 1) { int mid = (ok + ng) / 2; if (A[mid] > A[pos]) ok = mid; else ng = mid; } swap(A, pos, ok); reverse(A, pos + 1, len - 1); return true; } //次の順列に書き換える、最小値ならfalseを返す public static boolean prevPermutation(int A[]) { int len = A.length; int pos = len - 2; for (; pos >= 0; pos--) { if (A[pos] > A[pos + 1]) break; } if (pos == -1) return false; //posより小さい最大の数を二分探索 int ok = pos + 1; int ng = len; while (Math.abs(ng - ok) > 1) { int mid = (ok + ng) / 2; if (A[mid] < A[pos]) ok = mid; else ng = mid; } swap(A, pos, ok); reverse(A, pos + 1, len - 1); return true; } //↓nCrをmod計算するために必要。 ***factorial(N)を呼ぶ必要がある*** static long ncr(int n, int r) { long result = f[n]; result = result * modInv(f[n - r]) % MOD; result = result * modInv(f[r]) % MOD; return result; } static long modInv(long n) { return modPow(n, MOD - 2); } static void factorial(int n) { f = new long[n + 1]; f[0] = f[1] = 1; for (int i = 2; i <= n; i++) { f[i] = (f[i - 1] * i) % MOD; } } static long modPow(long x, long n) { long res = 1L; while (n > 0) { if ((n & 1) == 1) { res = res * x % MOD; } x = x * x % MOD; n >>= 1; } return res; } //↑nCrをmod計算するために必要 static int gcd(int n, int r) { return r == 0 ? n : gcd(r, n % r); } static long gcd(long n, long r) { return r == 0 ? n : gcd(r, n % r); } static <T> void swap(T[] x, int i, int j) { T t = x[i]; x[i] = x[j]; x[j] = t; } static void swap(int[] x, int i, int j) { int t = x[i]; x[i] = x[j]; x[j] = t; } public static void reverse(int[] x) { int l = 0; int r = x.length - 1; while (l < r) { int temp = x[l]; x[l] = x[r]; x[r] = temp; l++; r--; } } public static void reverse(int[] x, int s, int e) { int l = s; int r = e; while (l < r) { int temp = x[l]; x[l] = x[r]; x[r] = temp; l++; r--; } } static int length(int a) { int cou = 0; while (a != 0) { a /= 10; cou++; } return cou; } static int length(long a) { int cou = 0; while (a != 0) { a /= 10; cou++; } return cou; } static int countC2(char[][] a, char c) { int co = 0; for (int i = 0; i < a.length; i++) for (int j = 0; j < a[0].length; j++) if (a[i][j] == c) co++; return co; } static void fill(int[][] a, int v) { for (int i = 0; i < a.length; i++) for (int j = 0; j < a[0].length; j++) a[i][j] = v; } static int max(int a, int b, int c) { return Math.max(a, Math.max(b, c)); } static int abs(int a) { return Math.abs(a); } static class FastScanner { private BufferedReader reader = null; private StringTokenizer tokenizer = null; public FastScanner(InputStream in) { reader = new BufferedReader(new InputStreamReader(in)); tokenizer = null; } public String next() { if (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } /*public String nextChar(){ return (char)next()[0]; }*/ public String nextLine() { if (tokenizer == null || !tokenizer.hasMoreTokens()) { try { return reader.readLine(); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken("\n"); } public long nextLong() { return Long.parseLong(next()); } public int nextInt() { return Integer.parseInt(next()); } public double nextDouble() { return Double.parseDouble(next()); } public int[] nextIntArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = nextInt(); } return a; } public int[][] nextIntArray2(int h, int w) { int[][] a = new int[h][w]; for (int hi = 0; hi < h; hi++) { for (int wi = 0; wi < w; wi++) { a[hi][wi] = nextInt(); } } return a; } public int[] nextIntArray21(int n, int scalar) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt() * scalar + nextInt(); return a; } public Integer[] nextIntegerArray(int n) { Integer[] a = new Integer[n]; for (int i = 0; i < n; i++) { a[i] = nextInt(); } return a; } public char[] nextCharArray(int n) { char[] a = next().toCharArray(); return a; } public char[][] nextCharArray2(int h, int w) { char[][] a = new char[h][w]; for (int i = 0; i < h; i++) { a[i] = next().toCharArray(); } return a; } //スペースが入っている場合 public char[][] nextCharArray2s(int h, int w) { char[][] a = new char[h][w]; for (int i = 0; i < h; i++) { a[i] = nextLine().replace(" ", "").toCharArray(); } return a; } public char[][] nextWrapCharArray2(int h, int w, char c) { char[][] a = new char[h + 2][w + 2]; //char c = '*'; int i; for (i = 0; i < w + 2; i++) a[0][i] = c; for (i = 1; i < h + 1; i++) { a[i] = (c + next() + c).toCharArray(); } for (i = 0; i < w + 2; i++) a[h + 1][i] = c; return a; } //スペースが入ってる時用 public char[][] nextWrapCharArray2s(int h, int w, char c) { char[][] a = new char[h + 2][w + 2]; //char c = '*'; int i; for (i = 0; i < w + 2; i++) a[0][i] = c; for (i = 1; i < h + 1; i++) { a[i] = (c + nextLine().replace(" ", "") + c).toCharArray(); } for (i = 0; i < w + 2; i++) a[h + 1][i] = c; return a; } public long[] nextLongArray(int n) { long[] a = new long[n]; for (int i = 0; i < n; i++) { a[i] = nextLong(); } return a; } public long[][] nextLongArray2(int h, int w) { long[][] a = new long[h][w]; for (int hi = 0; hi < h; hi++) { for (int wi = 0; wi < h; wi++) { a[h][w] = nextLong(); } } return a; } } }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #pragma GCC optimize("Ofast") const int INF = 1000000007; const long double EPS = 1e-15; const long double PI = acos(-1); using namespace std; using Graph = vector<vector<int>>; template <class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; } template <class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; } long long gcd(long long a, long long b) { return b ? gcd(b, a % b) : a; } long long lcm(long long a, long long b) { return (a * b) / gcd(a, b); } int solve() { int n; cin >> n; vector<long long> cnt(5); long long ans = 0; for (int i = 0; i < (n); ++i) { string tmp; cin >> tmp; char c = tmp[0]; if (c == 'M') cnt[0]++; if (c == 'A') cnt[1]++; if (c == 'R') cnt[2]++; if (c == 'C') cnt[3]++; if (c == 'H') cnt[4]++; } for (int i = 0; i < (5); ++i) for (int j = i + 1; j < (5); ++j) for (int k = j + 1; k < (5); ++k) { ans += (cnt[i] * cnt[j] * cnt[k]) % INF; ans %= INF; } cout << ans << endl; return 0; } int main() { solve(); return 0; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #pragma GCC optimize("O3") using namespace std; template <typename LenType = int> LenType readln(char* buf, LenType max) { LenType len = 0; while ((max-- > 0) && ((buf[len] = fgetc(stdin)) != '\n') && (buf[len] != EOF)) ++len; buf[len] = 0; return len; } template <typename T> int orderDesc(const void* p1, const void* p2) { const T& a = *static_cast<const T*>(p1); const T& b = *static_cast<const T*>(p2); return (a < b); } template <typename T> int orderAsc(const void* p1, const void* p2) { const T& a = *static_cast<const T*>(p1); const T& b = *static_cast<const T*>(p2); return (a > b); } int N; char S[10000][11]; int hashfunc(char c) { switch (c) { case 'M': return 0; case 'A': return 1; case 'R': return 2; case 'C': return 3; case 'H': return 4; } return -1; } void solve() { int counts[5] = {}; int hashcode; for (int i = 1; i <= N; ++i) { hashcode = hashfunc(S[i][0]); if (hashcode != -1) ++counts[hashcode]; } qsort(counts, 5, sizeof(int), orderDesc<int>); long long res = 0; for (int i = 0; i <= 3; ++i) { for (int j = i + 1; j <= 4; ++j) { for (int x = j + 1; x <= 5; ++x) { res += counts[i] * counts[j] * counts[x]; } } } cout << res << endl; } int main() { scanf("%d\n", &N); for (int i = 1; i <= N && !feof(stdin); ++i) { readln(S[i], 11); } solve(); return 0; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long N, ans; int m[256]; int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cin >> N; while (N--) { string s; cin >> s; m[s[0]]++; } ans += m['M'] * m['A'] * m['R']; ans += m['M'] * m['A'] * m['C']; ans += m['M'] * m['A'] * m['H']; ans += m['M'] * m['R'] * m['C']; ans += m['M'] * m['R'] * m['H']; ans += m['M'] * m['C'] * m['H']; ans += m['A'] * m['R'] * m['C']; ans += m['A'] * m['R'] * m['H']; ans += m['A'] * m['C'] * m['H']; ans += m['R'] * m['C'] * m['H']; cout << ans << '\n'; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int march[5]; for (int i = 0; i < 5; i++) march[i] = 0; for (int i = 0; i < n; i++) { string s; cin >> s; if (s[0] == 'M') march[0]++; else if (s[0] == 'A') march[1]++; else if (s[0] == 'R') march[2]++; else if (s[0] == 'C') march[3]++; else if (s[0] == 'H') march[4]++; } long long ans = 0; for (int i = 0; i < (1 << 5); i++) { int num = 0; int tmp = 1; for (int j = 0; j < 5; j++) { if ((i & (1 << j)) != 0) { num++; tmp *= march[j]; } } if (num == 3) { ans += tmp; } } cout << ans << endl; return 0; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n, x, y; string s[100005], a[100005]; char d, f, g; int main() { cin >> n; for (int i = 0; i < n; i++) { cin >> s[i]; if (s[i][0] == 'M' || s[i][0] == 'A' || s[i][0] == 'R' || s[i][0] == 'C' || s[i][0] == 'H') { a[x] = s[i]; x++; } } for (int i = 0; i < x; i++) { d = a[i][0]; for (int j = i + 1; j < x; j++) { f = a[j][0]; if (d != f) { for (int q = j + 1; q < x; q++) { g = a[q][0]; if (f != g && g != d) y++; } } } } cout << y; return 0; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.ArrayList; import java.util.List; import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); //入力 int N = sc.nextInt(); List<String> SList = new ArrayList<String>(); for (int i = 0; i < N; i++) { String S = sc.next(); SList.add(S); } int flagM=0; int countM=0; int flagA=0; int countA=0; int flagR=0; int countR=0; int flagC=0; int countC=0; int flagH=0; int countH=0; Long answer = (long)0; for (int i = 0; i < N; i++) { if (SList.get(i).substring(0,1).equals("M")) { flagM = 1; countM++; } else if (SList.get(i).substring(0,1).equals("A")) { flagA = 1; countA++; } else if (SList.get(i).substring(0,1).equals("R")) { flagR = 1; countR++; } else if (SList.get(i).substring(0,1).equals("C")) { flagC = 1; countC++; } else if (SList.get(i).substring(0,1).equals("H")) { flagH = 1; countH++; } else { } } if (flagM + flagA + flagR + flagC + flagH >2) { answer = answer + (long)((long)countM * (long)countA * (long)countR) + (long)((long)countM * (long)countA * (long)countC) + (long)((long)countM * (long)countA * (long)countH) + (long)((long)countM * (long)countR * (long)countC) + (long)((long)countM * (long)countR * (long)countH) + (long)((long)countM * (long)countC * (long)countH) + (long)((long)countA * (long)countR * (long)countC) + (long)((long)countA * (long)countR * (long)countH) + (long)((long)countR * (long)countC * (long)countH); } System.out.println(answer); } }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; public class Main { public static void main(String [] args){ Scanner sc =new Scanner(System.in); int N =sc.nextInt(); String s[] = new String[N]; int m=0; int a=0; int r=0; int c=0; int h=0; for (int i=0;i<N;i++) { s[i] = sc.nextLine(); if(s[i].startsWith("M")) { m++; } if(s[i].startsWith("A")) { a++; } if(s[i].startsWith("R")) { r++; } if(s[i].startsWith("C")) { c++; } if(s[i].startsWith("H")) { h++; } } long ans =m*a*r + m*a*c + m*a*h + a*r*c + a*r*h + r*c*h +m*r*c + m*c*h +a*c*h +m*r*h; System.out.println(ans); } }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using ll = long long; constexpr ll INF = 1000000000; using namespace std; int main() { cin.tie(0); ios::sync_with_stdio(false); int n; cin >> n; vector<string> s(n); for (int i = 0; i < (n); i++) cin >> s[i]; map<char, int> mp; vector<int> p(5); for (int i = 0; i < (n); i++) { if (s[i].at(0) == 'M') p[0]++; if (s[i].at(0) == 'A') p[1]++; if (s[i].at(0) == 'R') p[2]++; if (s[i].at(0) == 'C') p[3]++; if (s[i].at(0) == 'H') p[4]++; } int ans = 0; for (int i = 0; i < 5; i++) { for (int j = i + 1; j < 5; j++) { for (int k = j + 1; k < 5; k++) { ans += p[i] * p[j] * p[k]; } } } cout << ans << endl; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) S =[] for n in range(N): s = input() S.append(s[0]) NAME = ["M","A","R","C","H"] from itertools import permutations pattern = list(permutations(NAME,3)) LEN = len(S) cnt=0 for s1 in range(LEN-2): for s2 in range(s1+1,LEN-1): for s3 in range(s2+1,LEN): if (S[s1],S[s2],S[s3]) in pattern: cnt+=1 print(cnt)
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<int> V(5); for (int i = 0; i < (int)(N); i++) { string S; cin >> S; if (S[0] == 'M') V[0]++; if (S[0] == 'A') V[1]++; if (S[0] == 'R') V[2]++; if (S[0] == 'C') V[3]++; if (S[0] == 'H') V[4]++; } long long ans = 0; for (int i = 0; i <= 2; i++) { for (int j = i + 1; j <= 3; j++) { for (int k = j + 1; k <= 4; k++) { ans += V[i] * V[j] * V[k]; } } } cout << ans << endl; return 0; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; using VI = vector<int>; using VVI = vector<vector<int>>; using P = pair<int, int>; int main() { int n; cin >> n; string s; VI march(5, 0); for (int i = 0; i < (int)(n); i++) { cin >> s; switch (s[0]) { case 'M': march[0]++; break; case 'A': march[1]++; break; case 'R': march[2]++; break; case 'C': march[3]++; break; case 'H': march[4]++; break; default: break; } } ll ans = 0; for (int a = 0; a < (int)(3); a++) for (int b = (a + 1); b < (int)(4); b++) for (int c = (b + 1); c < (int)(5); c++) { ans += (ll)(march[a] * march[b] * march[c]); } cout << ans << endl; return 0; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <iostream> #include <map> #include <string> using namespace std; int main(){ map<int,int> name; map<string,int> name_to_int; name_to_int["M"]=0; name_to_int["A"]=1; name_to_int["R"]=2; name_to_int["C"]=3; name_to_int["H"]=4; int n; cin>>n; for(int i=0;i<n;i++){ string s; name[name_to_int[s[0]]]+=1; } int ans=0; for(int i=0;i<n;i++){ for(int j=i+1;j<n;j++){ for(int k=j+1;k<n;k++){ ans+=name[i]*name[j]*name[k]; } } } cout<<ans<<endl; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> int main() { int n, m = 0, i, j; long long int ans; scanf("%d", &n); char s[n + 1]; for (i = 0; i < n; i++) { scanf("%s", &s[i]); } long long int a[5]; for (i = 0; i < 5; i++) { a[i] = 0; } for (i = 0; s[i] != '\0'; i++) { if (s[i] == 'M') a[0]++; else if (s[i] == 'A') a[1]++; else if (s[i] == 'R') a[2]++; else if (s[i] == 'C') a[3]++; else if (s[i] == 'H') a[4]++; } ans = a[0] * a[1] * a[2] + a[0] * a[1] * a[3] + a[0] * a[1] * a[4] + a[0] * a[2] * a[3] + a[0] * a[2] * a[4] + a[0] * a[3] * a[4] + a[1] * a[2] * a[3] + a[1] * a[2] * a[4] + a[1] * a[3] * a[4] + a[2] * a[3] * a[4]; printf("%lld\n", ans); return 0; }
p03425 AtCoder Beginner Contest 089 - March
There are N people. The name of the i-th person is S_i. We would like to choose three people so that the following conditions are met: * The name of every chosen person begins with `M`, `A`, `R`, `C` or `H`. * There are no multiple people whose names begin with the same letter. How many such ways are there to choose three people, disregarding order? Note that the answer may not fit into a 32-bit integer type. Constraints * 1 \leq N \leq 10^5 * S_i consists of uppercase English letters. * 1 \leq |S_i| \leq 10 * S_i \neq S_j (i \neq j) Input Input is given from Standard Input in the following format: N S_1 : S_N Output If there are x ways to choose three people so that the given conditions are met, print x. Examples Input 5 MASHIKE RUMOI OBIRA HABORO HOROKANAI Output 2 Input 4 ZZ ZZZ Z ZZZZZZZZZZ Output 0 Input 5 CHOKUDAI RNG MAKOTO AOKI RINGO Output 7
{ "input": [ "5\nMASHIKE\nRUMOI\nOBIRA\nHABORO\nHOROKANAI", "5\nCHOKUDAI\nRNG\nMAKOTO\nAOKI\nRINGO", "4\nZZ\nZZZ\nZ\nZZZZZZZZZZ" ], "output": [ "2", "7", "0" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> int main(void) { int n; int head[5] = {}; std::cin >> n; std::string s[n]; for (int i = 0; i < n; i++) { std::cin >> s[i]; switch (s[i][0]) { case 'M': head[0]++; break; case 'A': head[1]++; break; case 'R': head[2]++; break; case 'C': head[3]++; break; case 'H': head[4]++; break; } } long long int total = 0; for (int i = 0; i < 5; i++) { for (int j = i + 1; j < 5; j++) { for (int k = j + 1; k < 5; k++) { total += head[i] * head[j] * head[k]; } } } std::cout << total << std::endl; return 0; }