Search is not available for this dataset
name
stringlengths 2
88
| description
stringlengths 31
8.62k
| public_tests
dict | private_tests
dict | solution_type
stringclasses 2
values | programming_language
stringclasses 5
values | solution
stringlengths 1
983k
|
---|---|---|---|---|---|---|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <cstdio>
#include <cstring>
#include <string>
#include <cmath>
#include <cassert>
#include <iostream>
#include <algorithm>
#include <stack>
#include <queue>
#include <vector>
#include <set>
#include <map>
#include <bitset>
#include <functional>
#include <numeric>
using namespace std;
#define repl(i,a,b) for(int i=(int)(a);i<(int)(b);i++)
#define rep(i,n) repl(i,0,n)
#define mp(a,b) make_pair((a),(b))
#define pb(a) push_back((a))
#define all(x) (x).begin(),(x).end()
#define dbg(x) cout<<#x"="<<((x))<<endl
#define fi first
#define se second
#define INF 2147483600
#define long long long
int main(){
int p,q;
cin>>p>>q;
int g = |
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int gcd(int x, int y) { return y == 0 ? x : gcd(y, x % y); }
int P, Q;
int main() {
cin >> P >> Q;
int v = Q / gcd(P, Q);
for (int d = 2; d * d <= v; ++d) {
while ((v / d) % d == 0) {
v /= d;
}
}
cout << max(2, v) << endl;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.Scanner;
import java.util.ArrayList;
public class Main {
Scanner sc = new Scanner(System.in);
public void run(){
int p = sc.nextInt();
int q = sc.nextInt();
calc(p, q);
}
public void calc(int p, int q){
int a = q;
int b = p;
int max = 0;
while(true){
int c = a % b;
if(c == 0){
max = b;
break;
}
else{
a = b;
b = c;
}
}
q = q / max;
int ans = -1;
char[] memo = new char[100000];
for(int i = 2; i < Math.min(q, 100000); i++){
if(memo[i] == 0){
long k = i;
while(true){
if(k > q || k >= 100000) break;
else if(k == q) {
ans = i;
break;
}
else{
memo[(int)k] = 1;
k = k * i;
}
}
}
if(ans != -1) break;
}
if(ans == -1) ans = q;
System.out.println(ans);
}
public static void main(String[] args){
new Main().run();
}
} |
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.Scanner;
import java.util.ArrayList;
public class Main {
Scanner sc = new Scanner(System.in);
public void run(){
int p = sc.nextInt();
int q = sc.nextInt();
calc(p, q);
}
public void calc(int p, int q){
int a = q;
int b = p;
int max = 0;
while(true){
int c = a % b;
if(c == 0){
max = b;
break;
}
else{
a = b;
b = c;
}
}
q = q / max;
int ans = -1;
char[] memo = new char[100000];
for(int i = 2; i < Math.min(q, 100000); i++){
if(memo[i] == 0){
long k = i;
while(true){
if(k == q) {
ans = i;
break;
}
else if(k > q) {
break;
}
else{
if(k < 100000) memo[(int)k] = 1;
k = k * i;
}
}
}
if(ans != -1) break;
}
if(ans == -1) ans = q;
System.out.println(ans);
}
public static void main(String[] args){
new Main().run();
}
} |
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | #include <bits/stdc++.h>
using namespace std;
int main() {
int p, q, r;
cin >> p >> q;
for (size_t i = p + 1 - 1; i >= 1; i--) {
if (!(p % i | q % i)) {
r = i;
break;
}
}
cout << q / r << endl;
return 0;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | // ?????¬???????????¬??????
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <string>
#include <cstring>
#include <deque>
#include <list>
#include <queue>
#include <stack>
#include <vector>
#include <utility>
#include <algorithm>
#include <map>
#include <set>
#include <complex>
#include <cmath>
#include <limits>
#include <cfloat>
#include <climits>
#include <ctime>
#include <cassert>
#include <numeric>
#include <functional>
using namespace std;
#define rep(i,a,n) for(int (i)=(a); (i)<(n); (i)++)
#define repq(i,a,n) for(int (i)=(a); (i)<=(n); (i)++)
#define repr(i,a,n) for(int (i)=(a); (i)>=(n); (i)--)
#define int long long int
template<typename T> void chmax(T &a, T b) {a = max(a, b);}
template<typename T> void chmin(T &a, T b) {a = min(a, b);}
template<typename T> void chadd(T &a, T b) {a = a + b;}
typedef pair<int, int> pii;
typedef long long ll;
int dx[] = {0, 0, 1, -1};
int dy[] = {1, -1, 0, 0};
constexpr ll INF = 1001001001001001LL;
constexpr ll MOD = 1000000007LL;
signed main() {
int p, q; cin >> p >> q;
int g = __gcd(p, q);
p /= g, q /= g;
if(p != 1) cout << q << endl;
else {
for(int i=2; i*i<=q; i++) {
int x = q;
while(x % i == 0) x /= i;
if(x == 1) {
cout << i << endl;
return 0;
}
}
cout << q << endl;
}
return 0;
} |
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include<iostream>
#include<vector>
using namespace std;
int gcd(int a, int b){
if(b==0) return a;
else return gcd(b, a%b);
}
int main(){
int p, q;
cin>> p>> q;
q=q/gcd(p, q);
vector<int> v;
for(int i=2; i*<=q; i++){
if(q%i==0){
v.push_back(i);
while(q%i==0) q/=i;
}
}
int r=1;
for(int i=0; i<v.size(); i++) r*=v[i];
cout<< r<< endl;
return 0;
} |
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include<iostream>
using namespace std:
int main(){
int p, q;
cin >> p >> q;
cout << q/__gcd(p, q) << endl;
} |
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long linf = 1e18;
const int inf = 1e9;
const double eps = 1e-12;
const double pi = acos(-1);
template <typename T>
istream& operator>>(istream& is, vector<T>& vec) {
for (auto&& x : vec) is >> x;
return is;
}
template <typename T>
ostream& operator<<(ostream& os, const vector<T>& vec) {
for (long long i = (0), __last_i = (vec.size()); i < __last_i; i++) {
if (i) os << " ";
os << vec[i];
}
return os;
}
template <typename T>
ostream& operator<<(ostream& os, const vector<vector<T> >& vec) {
for (long long i = (0), __last_i = (vec.size()); i < __last_i; i++) {
if (i) os << endl;
os << vec[i];
}
return os;
}
long long gcd(long long a, long long b) { return b == 0 ? a : gcd(b, a % b); }
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
long long p, q;
cin >> p >> q;
cout << max(2LL, q / gcd(p, q)) << endl;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int gcd(int x, int y) {
if (y == 0) return x;
return gcd(y, x % y);
}
int main() {
int p, q;
cin >> p >> q;
int d = gcd(p, q);
cout << q / d << endl;
return 0;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int gcd(int a, int b) {
if (b == 0)
return a;
else
return gcd(b, a % b);
}
int main() {
int p, q;
cin >> p >> q;
q = q / gcd(p, q);
vector<int> v;
for (int i = 2; i * i <= q; i++) {
if (q % i == 0) {
v.push_back(i);
while (q % i == 0) q /= i;
}
}
int r = 1;
for (int i = 0; i < v.size(); i++) r *= v[i];
cout << r << endl;
return 0;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | using System;
using System.Linq;
namespace _2706
{
class Program
{
static void Main(string[] args)
{
int[] x = Console.ReadLine().Split().Select(int.Parse).ToArray();
int a = x[0]; int b = x[1];
while (a != 0)
{
int z = b % a;
b = a; a = z;
}
Console.WriteLine(x[1] / b);
}
}
} |
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int p, q;
vector<int> primes;
const int MA = 30000000;
bool t[MA * 2];
void eratosu() {
t[1] = 1;
for (int i = 2; i <= MA; i++) {
if (t[i] == 0) {
primes.push_back(i);
for (int j = i * 2; j <= MA; j += i) t[j] = 1;
}
}
}
bool check(int x) {
int a = x;
int aa = x;
while (aa <= q) {
if (aa == q) return 1;
aa = aa * a;
}
return 0;
}
int gcd(int a, int b) {
if (b == 0) return a;
return gcd(b, a % b);
}
int main() {
eratosu();
cin >> p >> q;
int gc = gcd(p, q);
int np = p, nq = q;
p = np / gc;
q = nq / gc;
int ans = 1, qq = q;
int cnt = 0;
for (int i = 0; i < primes.size(); i++) {
int now = primes[i];
if (q % now == 0) ans *= now, cnt++;
while (q % now == 0) q /= now;
}
if (cnt == 0) ans *= q;
cout << ans << endl;
return 0;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int MAX_N = 100005;
map<int, int> mp;
int prime[MAX_N];
bool is_prime[MAX_N];
int sieve(int n) {
int p = 0;
for (int i = 0; i <= n; i++) {
is_prime[i] = true;
}
is_prime[0] = is_prime[1] = false;
for (int i = 2; i <= n; i++) {
if (is_prime[i]) {
prime[p++] = i;
for (int j = 2 * i; j <= n; j += i) {
is_prime[j] = false;
}
}
}
return p;
}
int gcd(int a, int b) {
if (a % b == 0) {
return b;
}
return gcd(b, a % b);
}
int main() {
int p, q;
cin >> p >> q;
q /= gcd(p, q);
int mx = (int)(sqrt(q + 1));
sieve(mx);
for (int i = 0; prime[i] != 0; i++) {
int hoge = prime[i];
int bf = q;
while (bf % hoge == 0 && bf != hoge) {
bf /= hoge;
}
if (bf == hoge) {
cout << bf << "\n";
return 0;
}
}
cout << q << "\n";
return 0;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long inf = (long long)1e9 + 10;
const long long linf = (long long)1e18 + 10;
const long long mod = (long long)(1e9 + 7);
const int dx[] = {0, 1, 0, -1};
const int dy[] = {1, 0, -1, 0};
const int ddx[] = {0, 1, 1, 1, 0, -1, -1, -1};
const int ddy[] = {1, 1, 0, -1, -1, -1, 0, 1};
const double eps = 1e-10;
long long mop(long long a, long long b, long long m = mod) {
long long r = 1;
a %= m;
for (; b; b >>= 1) {
if (b & 1) r = r * a % m;
a = a * a % m;
}
return r;
}
long long gcd(long long a, long long b) { return b ? gcd(b, a % b) : a; }
long long lcm(long long a, long long b) { return a * b / gcd(a, b); }
bool ool(int x, int y, int h, int w) {
return ((x < 0) || (h <= x) || (y < 0) || (w <= y));
}
bool deq(double a, double b) { return abs(a - b) < eps; }
struct oreno_initializer {
oreno_initializer() {
cin.tie(0);
ios::sync_with_stdio(0);
}
} oreno_initializer;
int p, q;
signed main() {
cin >> p >> q;
if (q == 1)
cout << 2 << '\n';
else {
for (int i = q; i <= 1e9; i += q)
if (i % p == 0) return cout << i / p << '\n', 0;
}
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int INF = INT_MAX, MOD = 1e9 + 7;
int gcd(int x, int y) {
if (x < y) swap(x, y);
if (!(x % y))
return y;
else
return gcd(y, x % y);
}
int main() {
int p, q;
cin >> p >> q;
int div = gcd(p, q);
cout << q / div << endl;
return 0;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int gcd(int a, int b) {
if (b == 0) return a;
return gcd(b, a % b);
}
bool isPrime[100000];
int main() {
int p, q;
cin >> p >> q;
int d = gcd(p, q);
q /= d;
fill(isPrime, isPrime + 100000, true);
isPrime[0] = isPrime[1] = false;
for (int i = 2; i < 100000; i++) {
if (!isPrime[i]) continue;
for (int k = 2; i * k < 100000; k++) isPrime[k * i] = false;
}
int r = -1;
vector<pair<int, int> > V;
int temp = q;
for (int i = 2; i <= q && i < 100000; i++) {
if (!isPrime[i]) continue;
if (temp % i == 0) {
int cnt = 0;
while (temp % i == 0) {
cnt++;
temp /= i;
}
if (r == -1) {
r = cnt;
} else {
r = gcd(r, cnt);
}
V.emplace_back(i, cnt);
}
}
if (r == -1 || r == 1) {
cout << q << endl;
return 0;
}
int ans = 1;
for (auto v : V) {
int k = v.first;
for (int i = 0; i < v.second / r; i++) ans *= k;
}
cout << ans << endl;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int gcd(int x, int y) {
if (y == 0) return x;
return gcd(y, x % y);
}
int main() {
int p, q;
cin >> p >> q;
int d = gcd(p, q);
q /= d;
for (long long i = 2; i * i < q; i++) {
long long x = i * i;
while (x < q) x *= i;
if (x == q) {
q = i;
break;
}
}
cout << q << endl;
return 0;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
const double EPS = (1e-10);
using namespace std;
using Int = long long;
const Int MOD = 1000000007;
void fast_input() {
cin.tie(0);
ios::sync_with_stdio(false);
}
template <typename T>
T gcd(T a, T b) {
return b != 0 ? gcd(b, a % b) : a;
}
template <typename T>
T lcm(T a, T b) {
return a * b / gcd(a, b);
}
vector<pair<int, int>> prime_factorization(int n) {
int k = n;
vector<pair<int, int>> ret;
for (int i = 2; i <= sqrt(n); i++) {
int cnt = 0;
while (k % i == 0) {
k /= i;
cnt++;
}
if (cnt) ret.push_back({i, cnt});
}
if (k > 1) ret.push_back({k, 1});
return ret;
}
int main(void) {
int p, q;
cin >> p >> q;
while (gcd(p, q) != 1) {
int tmp = gcd(p, q);
p /= tmp;
q /= tmp;
}
vector<pair<int, int>> qfac = prime_factorization(q);
int GCD = qfac[0].second;
for (int i = 0; i < qfac.size(); i++) {
GCD = gcd(GCD, qfac[i].second);
}
int ans = 1;
for (int i = 0; i < qfac.size(); i++) {
int lim = qfac[i].second / GCD;
for (int j = 0; j < lim; j++) {
ans *= qfac[i].first;
}
}
cout << ans << endl;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | # -*- coding: utf-8 -*-
p, q = map(int, input().split())
ret = q
for b in range(1, 100000):
if b ** 1000 * p % q == 0:
ret = min(ret, b)
print(ret) |
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
const double EPS = (1e-10);
using namespace std;
using Int = long long;
const Int MOD = 1000000007;
void fast_input() {
cin.tie(0);
ios::sync_with_stdio(false);
}
template <typename T>
T gcd(T a, T b) {
return b != 0 ? gcd(b, a % b) : a;
}
int main(void) {
int p, q;
cin >> p >> q;
while (gcd(p, q) != 1) {
int tmp = gcd(p, q);
p /= tmp;
q /= tmp;
}
cout << q << endl;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include<iostream>
#include<algorithm>
using namespace std;
int main(){
int p, q;
cin >> p >> q;
cout << q/__gcd(p, q) << endl;
} |
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | # -*- coding: utf-8 -*-
import math
p, q = map(int, input().split())
g = math.gcd(p, q)
p, q = p // g, q // g;
ret = q
for b in range(1, 40000):
if b ** 1000 * p % q == 0:
ret = min(ret, b)
print(ret) |
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int gcd(int x, int y) {
if (x < y) swap(x, y);
int z;
while (y) {
z = x % y;
x = y;
y = z;
}
return x;
}
int main() {
int p, q;
cin >> p >> q;
cout << q / gcd(p, q) << endl;
return 0;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long int gcd(long long int a, long long int b) {
if (b == 0)
return a;
else
return gcd(b, a % b);
}
int main() {
long long int a, b;
cin >> a >> b;
long long int c = b / gcd(a, b);
long long int ans = 1;
long long int ma = c;
for (long long int i = 2; i <= c; i++) {
if (c % i == 0) {
ans *= i;
while (c % i == 0) c /= i;
}
}
cout << ans << endl;
return 0;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
unsigned int p, q;
vector<int> yakusuu;
int main() {
cin >> p >> q;
for (int i = 1; i <= p / 2; i++) {
if (p % i == 0) {
yakusuu.push_back(i);
}
}
yakusuu.push_back(p);
for (int j = 0; j < yakusuu.size(); j++) {
if (q % yakusuu[j] == 0) q = q / yakusuu[j];
}
cout << q << endl;
return 0;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(){
int p,q;
cin>>p>>q;
int a=__gcd(p,q);
p/=a,q/=a;
int ans=q;
if(q%p==0) {
int ans=2;
while(q%ans)ans++;
}
cout <<ans<<endl;
return 0;
} |
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import math,string,itertools,fractions,heapq,collections,re,array,bisect,sys,random,time,copy,functools
sys.setrecursionlimit(10**7)
inf = 10**20
eps = 1.0 / 10**10
mod = 998244353
def LI(): return [int(x) for x in sys.stdin.readline().split()]
def LI_(): return [int(x)-1 for x in sys.stdin.readline().split()]
def LF(): return [float(x) for x in sys.stdin.readline().split()]
def LS(): return sys.stdin.readline().split()
def I(): return int(sys.stdin.readline())
def F(): return float(sys.stdin.readline())
def S(): return input()
def pf(s): return print(s, flush=True)
def main():
rr = []
while True:
p,q = LI()
g = fractions.gcd(p,q)
t = q//g
k = 1
while t % 4 == 0:
k *= 2
t //= 4
for i in range(3,int(math.sqrt(t))+2,2):
ii = i**2
while t % ii == 0:
k *= i
t //= ii
rr.append(t*k)
break
return '\n'.join(map(str, rr))
print(main())
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <iostream>
#include <cmath>
using namespace std;
int gcd(int a,int b){
if(a<b){swap(a,b);}
if(!b){return a;}
return gcd(b,a%b);
}
int main(){
int a=1,p,q,i,gc;
vector<int> cds;
cin>>p>>q;
gc=gcd(p,q);
p/=gc;q/=gc;
for(i=2;i<sqrt(q)+1;i++){
if(!(q%i)){
a*=i;
while(!(q%i)){q/=i;}
}
}
a*=q;
cout<<a<<endl;
return 0;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
#define all(c) (c).begin(), (c).end()
#define rep(i, n) for (int i = 0; i < (int)(n); i++)
int dx[4] = {1, 0, -1, 0};
int dy[4] = {0, 1, 0, -1};
int main() {
int p, q;
cin >> p >> q;
int g = __gcd(p, q);
int b = q / g;
int ans = 1;
rep(i, 1000006) if (i > 1) {
if (b % i == 0) {
ans *= i;
while (b % i == 0) b /= i;
}
}
cout << ans << endl;
return 0;
} |
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int p, q;
cin >> p >> q;
int x = 1, a = p, b = q;
for (int i = 2; i <= p; ++i) {
if (a % i == 0 && b % i == 0)
while (a % i == 0 && b % i == 0) {
x *= i;
a /= i, b /= i;
cout << x << ' ' << i << endl;
}
}
cout << q / x << endl;
return 0;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int p, q, x;
cin >> p >> q;
if (p < q) swap(p, q);
int a = p;
while (1) {
if (p % q != 0) {
x = p % q;
p = q;
q = x;
continue;
}
break;
}
cout << a / q << endl;
return 0;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long int gcd(long long int a, long long int b) {
if (b == 0)
return a;
else
return gcd(b, a % b);
}
queue<long long int> q;
vector<bool> prime(1000000000 + 1, true);
void make(long long int M) {
prime[0] = prime[1] = false;
long long int i;
for (i = 2; i * i <= M + 1; i++) {
if (prime[i]) {
long long int j = 2;
q.push(i);
while (i * j < M + 1) {
prime[i * j] = false;
j++;
}
}
}
return;
}
int main() {
long long int a, b;
cin >> a >> b;
long long int c = b / gcd(a, b);
long long int ans = 1;
long long int ma = c;
for (int i = 2; i * i < ma; i++) {
if (c % i == 0) {
ans *= i;
while (c % i == 0) c /= i;
}
}
ans *= c;
cout << ans << endl;
return 0;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b); }
int main() {
int p, q;
cin >> p >> q;
q /= gcd(p, q);
for (int i = 2; i < 32000; i++) {
long long int x = i;
while (x <= q) {
if (x == q) {
cout << i << endl;
return 0;
}
x *= i;
}
}
cout << q << endl;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
bool sosu(int n) {
if (n <= 1) return false;
for (int i = 2; i * i <= n; i++)
if (n % i == 0) return false;
return true;
}
long long gcd(long long a, long long b) {
while (b) b ^= a ^= b ^= a %= b;
return a;
}
int main() {
long long A, B, i = 2;
cin >> A >> B;
long long W = B / gcd(A, B);
one:;
for (int i = 2; i < sqrt(W); i++) {
if (W == i * i) {
W = i;
goto one;
}
}
cout << W << endl;
return 0;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include<iostream>
#include<algorithm>
#include<cstdio>
#include<cmath>
#include<math.h>
#include<string>
#include<string.h>
#include<stack>
#include<queue>
#include<vector>
#include<utility>
#include<set>
#include<map>
#include<stdlib.h>
#include<iomanip>
using namespace std;
#define ll long long
#define ld long double
#define EPS 0.0000000001
#define INF 1e9
#define MOD 1000000007
#define rep(i,n) for(i=0;i<n;i++)
#define loop(i,a,n) for(i=a;i<n;i++)
#define all(in) in.begin(),in.end()
#define shosu(x) fixed<<setprecision(x)
#define int ll
typedef vector<int> vi;
typedef pair<int,int> pii;
signed main(void) {
int i,j;
int p,q;
cin>>p>>q;
q=q/__gcd(p,q);
ll ans=1;
for(i=2;i*i<=q;i++)if(q%i==0){
ans*=i;
while(q%i==0)q/=i;
}
cout<<ans<<endl;
} |
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.InputMismatchException;
import java.util.NoSuchElementException;
public class Main {
static PrintWriter out;
static InputReader ir;
static void solve() {
int p = ir.nextInt();
if(p==0){
out.println(2);
System.exit(0);
}
int q = ir.nextInt();
int a = q / gcd(p, q);
boolean[] prime=sieveOfEratosthenes(a);
int ret=1;
for(int i=2;i<=Math.sqrt(a);i++){
if(!(a%i==0))
continue;
if(prime[i])
ret*=i;
if(prime[a/i])
ret*=a/i;
}
out.println(ret);
}
public static boolean[] sieveOfEratosthenes(int n) {
boolean[] res = new boolean[n + 1];
Arrays.fill(res, true);
res[0] = res[1] = false;
for (int i = 2; i <= Math.sqrt(n); i++) {
if (res[i]) {
for (int j = i + i; j <= n; j += i) {
res[j] = false;
}
}
}
return res;
}
public static int gcd(int a, int b) {
if (b == 0)
return a;
return gcd(b, a % b);
}
public static void main(String[] args) throws Exception {
ir = new InputReader(System.in);
out = new PrintWriter(System.out);
solve();
out.flush();
}
static class InputReader {
private InputStream in;
private byte[] buffer = new byte[1024];
private int curbuf;
private int lenbuf;
public InputReader(InputStream in) {
this.in = in;
this.curbuf = this.lenbuf = 0;
}
public boolean hasNextByte() {
if (curbuf >= lenbuf) {
curbuf = 0;
try {
lenbuf = in.read(buffer);
} catch (IOException e) {
throw new InputMismatchException();
}
if (lenbuf <= 0)
return false;
}
return true;
}
private int readByte() {
if (hasNextByte())
return buffer[curbuf++];
else
return -1;
}
private boolean isSpaceChar(int c) {
return !(c >= 33 && c <= 126);
}
private void skip() {
while (hasNextByte() && isSpaceChar(buffer[curbuf]))
curbuf++;
}
public boolean hasNext() {
skip();
return hasNextByte();
}
public String next() {
if (!hasNext())
throw new NoSuchElementException();
StringBuilder sb = new StringBuilder();
int b = readByte();
while (!isSpaceChar(b)) {
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
public int nextInt() {
if (!hasNext())
throw new NoSuchElementException();
int c = readByte();
while (isSpaceChar(c))
c = readByte();
boolean minus = false;
if (c == '-') {
minus = true;
c = readByte();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res = res * 10 + c - '0';
c = readByte();
} while (!isSpaceChar(c));
return (minus) ? -res : res;
}
public long nextLong() {
if (!hasNext())
throw new NoSuchElementException();
int c = readByte();
while (isSpaceChar(c))
c = readByte();
boolean minus = false;
if (c == '-') {
minus = true;
c = readByte();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res = res * 10 + c - '0';
c = readByte();
} while (!isSpaceChar(c));
return (minus) ? -res : res;
}
public double nextDouble() {
return Double.parseDouble(next());
}
public int[] nextIntArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public long[] nextLongArray(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public char[][] nextCharMap(int n, int m) {
char[][] map = new char[n][m];
for (int i = 0; i < n; i++)
map[i] = next().toCharArray();
return map;
}
}
} |
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long long a, b;
cin >> a >> b;
long long gcd;
long long c = max(a, b);
long long d = min(a, b);
while (true) {
if (c % d == 0) {
gcd = d;
goto C;
} else {
c -= d;
if (c <= d) {
swap(c, d);
}
}
}
C:
cout << b / gcd << endl;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long gcd(long long a, long long b) {
long long c;
while (a != 0) {
c = a;
a = b % a;
b = c;
}
return b;
}
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
long long p, q;
cin >> p >> q;
long long g = gcd(p, q);
long long res = q / g;
if (res == 1) res = 10;
cout << res << endl;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using vi = vector<int>;
using vvi = vector<vi>;
using vs = vector<string>;
using msi = map<string, int>;
using mii = map<int, int>;
using pii = pair<int, int>;
using vlai = valarray<int>;
using ll = long long;
constexpr int gcd(int a, int b) { return b ? gcd(b, a % b) : a; }
constexpr int lcm(int a, int b) { return a * b / gcd(a, b); }
int main() {
int p, q;
cin >> p >> q;
cout << q / gcd(p, q) << endl;
return 0;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
unsigned int p, q;
vector<int> yakusuu;
int main() {
cin >> p >> q;
for (int i = 1; i <= p / 2; i++) {
if (p % i == 0) {
yakusuu.push_back(i);
}
}
for (int j = 0; j < yakusuu.size(); j++) {
if (q % yakusuu[j] == 0) q = q / yakusuu[j];
}
cout << q << endl;
return 0;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int MAX_N=1e2; // 1e8=x, 1e7=? 1e6=o
int n[MAX_N+1]={};
vector <int> prime;
void eratos_sieve(){
for(int i=2;i<=MAX_N;i++){
if(!n[i]){
prime.push_back(i);
for(int j=i;j<=MAX_N;j+=i) n[j]=1;
}
}
}
int main(){
eratos_sieve();
int p,q,r=1;
cin>>p>>q;
p=q/__gcd(p,q);
for(int i=0;i<(int)prime.size();i++) if(!(p%prime[i])) r*=prime[i];
cout<<r<<endl;
return 0;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long p, q;
int main() {
cin >> p >> q;
for (long long i = 2; i <= 1000; i++) {
if (p * i % q == 0) {
cout << i << endl;
break;
}
}
return 0;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
int gcd(int a, int b) {
int t;
while (b) {
t = a % b;
a = b;
b = t;
}
return a;
}
int main(void) {
int a, b;
scanf("%d%d", &a, &b);
printf("%d\n", b / gcd(a, b));
return 0;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int p, q;
cin >> p >> q;
int x = 1, a = p, b = q;
for (int i = 2; i <= p; ++i) {
if (a % i == 0 && b % i == 0)
while (a % i == 0 && b % i == 0) {
x *= i;
a /= i, b /= i;
}
}
cout << q / x << endl;
return 0;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int p, q;
vector<int> primes;
const int MA = 10000000;
bool t[MA * 2];
void eratosu() {
t[1] = 1;
for (int i = 2; i <= MA; i++) {
if (t[i] == 0) {
primes.push_back(i);
for (int j = i * 2; j <= MA; j += i) t[j] = 1;
}
}
}
int main() {
eratosu();
cin >> p >> q;
for (int i = 0; i < primes.size(); i++) {
int now = primes[i];
if (now > p || now > q) break;
while (p % now == 0 && q % now == 0) p /= now, q /= now;
}
cout << q << endl;
return 0;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int inf = 1 << 29;
const long long INF = 1ll << 62;
const double pi = acos(-1);
const double eps = 1e-7;
const long long mod = 1e9 + 7;
const int dx[4] = {0, 1, 0, -1}, dy[4] = {1, 0, -1, 0};
long long gcd(long long a, long long b) {
if (!b) return a;
return gcd(b, a % b);
}
long long p, q;
int main() {
cin >> p >> q;
cout << q / gcd(p, q) << endl;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include<bits/stdc++.h>
using namespace std;
int main(){
int p,q;
cin>>p>>q;
p=q/__gcd(p,q);
int f=0;
for(int i=2;i*i<p;i++){
if(p%i)continue;
f=i;
break;
}
if(f==0){
cout<<p<<endl;
return 0;
}
int t=p;
while(t%f==0&&t!=1)t/=f;
if(t==1)cout<<f<<endl;
else cout<<p<<endl;
return 0;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include<bits/stdc++.h>
#define N 100005
using namespace std;
int p,q,t,ans,prime[N];
set<int> s;
int main(){
for(int i=0;i<N;i++)prime[i]=1;
prime[0]=prime[1]=0;
for(int i=0;i*i<N;i++){
if(!prime[i])continue;
for(int j=i*2;j<N;j+=i)
prime[j]=0;
}
cin>>p>>q;
t=q/__gcd(p,q);
for(int i=0;i*i<=t;i++)
if(prime[i]&&!(t%i)){
s.insert(i);
if(prime[t/i])s.insert(t/i);
}
ans=1;
set<int>::iterator ite=s.begin();
while(ite!=s.end()){
cout<<*ite<<endl;
ans*=(*ite);
ite++;
}
cout<<ans<<endl;
return 0;
} |
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long int gcd(long long int a, long long int b) {
if (b == 0)
return a;
else
return gcd(b, a % b);
}
queue<long long int> q;
vector<bool> prime(1000000000 + 1, true);
void make(long long int M) {
prime[0] = prime[1] = false;
for (long long int i = 2; i * i < M + 1; i++) {
if (prime[i]) {
long long int j = 2;
q.push(i);
while (i * j < M + 1) {
prime[i * j] = false;
j++;
}
}
}
return;
}
int main() {
long long int a, b;
cin >> a >> b;
make(max(a, b));
long long int c = b / gcd(a, b);
long long int ans = 1;
long long int ma = c;
while (!q.empty()) {
long long int d = q.front();
if (c % d == 0) {
ans *= d;
}
q.pop();
}
cout << ans << endl;
return 0;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | //
// Created by 拓真 on 2018/06/30.
//
#include "bits/stdc++.h"
using namespace std;
#define FOR(i,a,b) for(int i=a;i<b;i++)
#define rep(i,b) FOR(i,0,b)
#define int long long
int era[112345678];
void eratos(){
for(int i=0;i<112345;i++)era[i]=1;
era[0]=0;
era[1]=0;
for(int tar=2;tar<112345;tar++){
int bai=tar;
if(era[bai]==1){
//era[bai]=0;
for(int i=2;bai*i<112345;i++) {
era[bai * i] = 0;
}
}
}
}
signed main(){
int p,q;
cin>>p>>q;
p/=__gcd(p,q);
q/=__gcd(p,q);
eratos();
vector<int> sosu;
rep(i,112345){
if(era[i])sosu.push_back(i);
}
vector<int> bun;
rep(i,sosu.size()){
if((int)q%sosu[i]==0){
bun.push_back(sosu[i]);
}
}
int ans=1;
rep(i,(int)bun.size()&&__gcd(bun[i],p)==1){
ans*=bun[i];
}
cout<<ans<<endl;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | def gcd(a, b):
if a < b:
a, b = b, a
if b == 0:
return a
c = a % b
return gcd(b, c)
p, q = map(int, input().split())
g = gcd(p, q)
p //= g
q //= g
ret = q
for b in range(1, 40000):
if b ** 1000 * p % q == 0:
ret = min(ret, b)
print(ret) |
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(void) {
long long p, q;
cin >> p >> q;
long long m = 1;
for (int i = 1; i <= p; i++) {
if (p % i == 0 && q % i == 0) {
m = i;
}
}
cout << q / m << endl;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
class Point {
public:
double x, y;
Point(double x = 0, double y = 0) : x(x), y(y) {}
Point operator+(Point p) { return Point(x + p.x, y + p.y); }
Point operator-(Point p) { return Point(x - p.x, y - p.y); }
Point operator*(double a) { return Point(x * a, y * a); }
Point operator/(double a) { return Point(x / a, y / a); }
double absv() { return sqrt(norm()); }
double norm() { return x * x + y * y; }
bool operator<(const Point &p) const { return x != p.x ? x < p.x : y < p.y; }
bool operator==(const Point &p) const {
return fabs(x - p.x) < (1e-10) && fabs(y - p.y) < (1e-10);
}
};
struct Segment {
Point p1, p2;
};
double hen(Point a) {
if (fabs(a.x) < (1e-10) && a.y > 0)
return acos(0);
else if (fabs(a.x) < (1e-10) && a.y < 0)
return 3 * acos(0);
else if (fabs(a.y) < (1e-10) && a.x < 0)
return 2 * acos(0);
else if (fabs(a.y) < (1e-10) && a.x > 0)
return 0.0;
else if (a.y > 0)
return acos(a.x / a.absv());
else
return 2 * acos(0) + acos(-a.x / a.absv());
}
string itos(long long i) {
ostringstream s;
s << i;
return s.str();
}
long long gcd(long long v, long long b) {
if (v > b) return gcd(b, v);
if (v == b) return b;
if (b % v == 0) return v;
return gcd(v, b % v);
}
double dot(Point a, Point b) { return a.x * b.x + a.y * b.y; }
double cross(Point a, Point b) { return a.x * b.y - a.y * b.x; }
double distans(double x1, double y1, double x2, double y2) {
double rr = (x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2);
return sqrt(rr);
}
bool b[100020] = {0};
signed main() {
b[1] = 1;
for (long long i = 2; i < 100020; i++) {
if (b[i] == 1) continue;
long long d = 2 * i;
while (d < 100020) {
b[d] = 1;
d += i;
}
}
long long n, m;
cin >> n >> m;
m = m / gcd(n, m);
vector<long long> ve;
for (long long i = 2; i < 100020; i++) {
if (b[i] == 1) continue;
long long ko = 0;
while (1) {
if (m % i == 0) {
m /= i;
ko++;
if (ko == 1) ve.push_back(i);
} else
break;
}
}
if (m > 1) ve.push_back(m);
long long ans = 1;
for (long long i = 0; i < ve.size(); i++) ans += ve[i];
cout << ans << endl;
return 0;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | #import math
p, q = map(int, input().split())
#g = math.gcd(p, q)
#p //= g
#q //= g
ret = q
for b in range(1, 40000):
if b ** 1000 * p % q == 0:
ret = min(ret, b)
print(ret) |
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int p, q;
cin >> p >> q;
for (int i = 2; i < 1e9; i++) {
if (q % i == 0 && p % (q / i) == 0) {
cout << i << endl;
break;
}
}
return 0;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long INF = 1LL << 50;
int solve();
long long gcd(long long p, long long q) {
if (q == 0) {
return p;
}
return gcd(q, p % q);
}
int main(void) {
while (solve()) {
}
return 0;
}
int solve() {
long long p, q, g;
cin >> p >> q;
g = gcd(max(p, q), min(p, q));
p = p / g;
q = q / g;
const long long M = sqrt(10e15);
std::vector<bool> isPrime(M, true);
isPrime[1] = false;
for (long long i = 2; i < M; i++) {
if (isPrime[i] == false) {
continue;
}
for (long long j = 2; i * j < M; j++) {
isPrime[i * j] = false;
}
}
long long ans = 1;
for (long long i = 2; i < M; i++) {
if (isPrime[i] == true && q % i == 0) {
ans *= i;
}
}
if (ans == 1 && q > 1) {
ans = q;
}
cout << ans << endl;
return 0;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.Scanner;
public class Main{
public static void main(String args[]) {
Scanner scn = new Scanner(System.in);
long p = scn.nextLong(), q = scn.nextLong();
scn.close();
long qs;
long ans;
long bp = p,bq = q,buf = p;
while(bq % bp != 0) {
buf = bq % bp;
bq = bp;
bp = buf;
}
ans = q/buf;
for(int i = 2;i <= Math.sqrt(q/buf);i++) {
for(int j = 1;j <= buf;j++) {
if(p%j == 0 && q %j == 0) {
qs = q/j;
while(qs % i == 0) {
qs /= i;
}
if(qs == 1) {
ans = i;
break;
}
}
}
}
System.out.println(ans % buf == 0?ans/buf:ans);
}
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using std::cerr;
using std::cin;
using std::cout;
using std::endl;
int gcd(int p, int q) {
if (q > p) std::swap(p, q);
while (p % q != 0) {
int r = p % q;
p = q;
q = r;
}
return q;
}
int main(void) {
cout << std::fixed << std::setprecision(10);
cin.tie(0);
std::ios::sync_with_stdio(false);
int p, q;
cin >> p >> q;
int div = gcd(p, q);
p /= div;
q /= div;
for (int i = 2; i < 100000; i++) {
int tgt = q;
while (tgt % q == 0) {
tgt /= q;
}
if (tgt == 1) {
cout << q << endl;
return 0;
}
}
return 0;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int gcd(int a, int b) {
if (b == 0) return a;
return gcd(b, a % b);
}
int main() {
int p, q;
cin >> p >> q;
int ans = 1;
for (int i = 2; i <= q; i++) {
if (q % i != 0) continue;
ans *= i;
while (q % i == 0) q /= i;
}
cout << ans << endl;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
#define INF 1001000100010001000
#define MOD 1000000007
#define EPS 1e-10
#define int long long
#define rep(i, N) for (int i = 0; i < N; i++)
#define Rep(i, N) for (int i = 1; i < N; i++)
#define For(i, a, b) for (int i = (a); i < (b); i++)
#define pb push_back
#define mp make_pair
#define i_i pair<int, int>
#define vi vector<int>
#define vvi vector<vi >
#define vb vector<bool>
#define vvb vector<vb >
#define vp vector< i_i >
#define all(a) (a).begin(), (a).end()
#define Int(x) int x; scanf("%lld", &x);
//int dxy[5] = {0, 1, 0, -1, 0};
// assign??
vi prime;
int gcd(int a, int b)
{
if (a == 1) {
return b;
} else {
return gcd(b, b%a);
}
}
void pri()
{
vector<bool> state(5001, false);
for (int i = 2; i < 5000; i++) {
if (!state[i]) {
prime.pb(i);
for (int j = 2; i*j < 5000; j++) {
state[i*j] = true;
}
}
}
}
signed main()
{
pri();
Int(p)
Int(q)
while (p && q) {
if ( p >= q) {
cout << 2 << endl;
} else {
int ret = gcd(p, q);
int ans = 1;
while (ret != 1) {
rep(i, prime.length()) {
if (!(ret % prime[i])) {
ans *= prime[i];
ret /= prime[i];
}}}
cout << ans << endl;
}
cin >> p >> q;}
return 0;
} |
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define rep(i,n) for(int (i)=0;(i)<(int)(n);++(i))
#define each(itr,c) for(__typeof(c.begin()) itr=c.begin(); itr!=c.end(); ++itr)
#define all(x) (x).begin(),(x).end()
#define pb push_back
#define fi first
#define se second
int main()
{
int p,q;
cin >>p >>q;
int g=__gcd(p,q);
p/=g;
q/=g;
int ans=q;
for(int i=2; i*i<=q; ++i)
{
int t=i;
while(t*i<=q) t*=i;
if(t==q)
{
ans=i;
break;
}
}
cout << ans << endl;
return 0;
} |
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
using Pi = pair<int, int>;
using Pl = pair<ll, ll>;
using Ti = tuple<int, int, int>;
using Tl = tuple<ll, ll, ll>;
#define pb push_back
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define F first
#define S second
#define Get(t, i) get<(i)>((t))
#define all(v) (v).begin(), (v).end()
#define rep(i, n) for(int i = 0; i < (int)(n); i++)
#define reps(i, f, n) for(int i = (int)(f); i < (int)(n); i++)
#define each(a, b) for(auto& a : b)
const int inf = 1 << 25;
const ll INF = 1LL << 55;
int main()
{
ll p, q;
cin >> p >> q;
vector<int> factor;
q = q / __gcd(p, q);
for(int x = 2; x*x <= q; x++) {
if(q % x == 0) {
factor.push_back(x);
while(q % x == 0) q /= x;
}
}
if(q != 1) factor.push_back(q);
ll ans = 1;
rep(i, factor.size()) ans *= factor[i];
cout << ans << endl;
return 0;
} |
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(){
int p,q;
cin>>p>>q;
int a=__gcd(p,q);
p/=a,q/=a;
for(int i=2;i*i<=q;i++){
if(q%i!=0)continue;
int b=q/i;
while(q%(i*i)==0)q/=i;
while(q%(b*b)==0)q/=b;
}
cout <<q<<endl;
return 0;
} |
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using LL = long long;
using VI = vector<int>;
using VVI = vector<VI>;
using VL = vector<LL>;
using VVL = vector<VL>;
using VD = vector<double>;
using VVD = vector<VD>;
using PII = pair<int, int>;
using PDD = pair<double, double>;
using PLL = pair<LL, LL>;
using VPII = vector<PII>;
template <typename T>
using VT = vector<T>;
template <typename T>
inline bool chmax(T &a, T b) {
if (a < b) {
a = b;
return true;
}
return false;
}
template <typename T>
inline bool chmin(T &a, T b) {
if (a > b) {
a = b;
return true;
}
return false;
}
const int INF = 1e9;
const int MOD = INF + 7;
const LL LLINF = 1e18;
const double EPS = 1e-18;
bool ok(double n, int p) {
set<string> se{to_string(n)};
while (true) {
n *= p;
n -= (int)n;
if (n - EPS <= 0) return true;
if (se.count(to_string(n))) return false;
se.insert(to_string(n));
}
}
void solve(int p, int q) {
double div = 1. * p / q;
for (int i = 2;; i++) {
if (ok(div, i)) {
printf("%d\n", i);
return;
}
}
return;
}
signed main(void) {
LL n, m, p, a, b, c, x, y, z, q;
string s;
bool f = false;
while (cin >> n >> m, n) {
solve(n, m);
return 0;
}
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int gcd(int a, int b) {
while (a && b) {
if (a >= b)
a %= b;
else
b %= a;
}
return a + b;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int p, q;
cin >> p >> q;
int x = gcd(p, q);
cout << q / x << endl;
return 0;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int gcd(int x, int y) {
if (y == 0) return x;
return gcd(y, x % y);
}
void solve() {
int p, q;
cin >> p >> q;
int r = sqrt(p);
while (p != 1 && r * r == p) {
p = r;
r = sqrt(r);
}
r = sqrt(q);
while (q != 1 && r * r == q) {
q = r;
r = sqrt(r);
}
cout << q / gcd(p, q) << "\n";
}
int main() {
ios::sync_with_stdio(false);
cin.tie();
solve();
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.InputMismatchException;
import java.util.NoSuchElementException;
public class Main {
static PrintWriter out;
static InputReader ir;
static void solve() {
int p = ir.nextInt();
if(p==0){
out.println(2);
System.exit(0);
}
int q = ir.nextInt();
int a = q / gcd(p, q);
boolean[] prime=sieveOfEratosthenes(a);
int ret=1;
for(int i=1;i<=Math.sqrt(a);i++){
if(!(a%i==0))
continue;
if(prime[i])
ret*=i;
if(prime[a/i])
ret*=a/i;
}
out.println(ret);
}
public static boolean[] sieveOfEratosthenes(int n) {
boolean[] res = new boolean[n + 1];
Arrays.fill(res, true);
res[0] = res[1] = false;
for (int i = 2; i <= Math.sqrt(n); i++) {
if (res[i]) {
for (int j = i + i; j <= n; j += i) {
res[j] = false;
}
}
}
return res;
}
public static int gcd(int a, int b) {
if (b == 0)
return a;
return gcd(b, a % b);
}
public static void main(String[] args) throws Exception {
ir = new InputReader(System.in);
out = new PrintWriter(System.out);
solve();
out.flush();
}
static class InputReader {
private InputStream in;
private byte[] buffer = new byte[1024];
private int curbuf;
private int lenbuf;
public InputReader(InputStream in) {
this.in = in;
this.curbuf = this.lenbuf = 0;
}
public boolean hasNextByte() {
if (curbuf >= lenbuf) {
curbuf = 0;
try {
lenbuf = in.read(buffer);
} catch (IOException e) {
throw new InputMismatchException();
}
if (lenbuf <= 0)
return false;
}
return true;
}
private int readByte() {
if (hasNextByte())
return buffer[curbuf++];
else
return -1;
}
private boolean isSpaceChar(int c) {
return !(c >= 33 && c <= 126);
}
private void skip() {
while (hasNextByte() && isSpaceChar(buffer[curbuf]))
curbuf++;
}
public boolean hasNext() {
skip();
return hasNextByte();
}
public String next() {
if (!hasNext())
throw new NoSuchElementException();
StringBuilder sb = new StringBuilder();
int b = readByte();
while (!isSpaceChar(b)) {
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
public int nextInt() {
if (!hasNext())
throw new NoSuchElementException();
int c = readByte();
while (isSpaceChar(c))
c = readByte();
boolean minus = false;
if (c == '-') {
minus = true;
c = readByte();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res = res * 10 + c - '0';
c = readByte();
} while (!isSpaceChar(c));
return (minus) ? -res : res;
}
public long nextLong() {
if (!hasNext())
throw new NoSuchElementException();
int c = readByte();
while (isSpaceChar(c))
c = readByte();
boolean minus = false;
if (c == '-') {
minus = true;
c = readByte();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res = res * 10 + c - '0';
c = readByte();
} while (!isSpaceChar(c));
return (minus) ? -res : res;
}
public double nextDouble() {
return Double.parseDouble(next());
}
public int[] nextIntArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public long[] nextLongArray(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public char[][] nextCharMap(int n, int m) {
char[][] map = new char[n][m];
for (int i = 0; i < n; i++)
map[i] = next().toCharArray();
return map;
}
}
} |
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long solve(long long a, long long b) {
long long x = max(a, b), y = min(a, b);
if (x % y == 0)
return y;
else
return solve(x % y, y);
}
int main() {
long long p, q, r, ans;
vector<long long> prime(100000);
cin >> p >> q;
r = solve(p, q);
p /= r;
q /= r;
long long i = 2, j = 0, temp = q;
while (temp != 1) {
if (temp % i == 0) {
temp /= i;
prime[j]++;
} else {
if (i == 2)
i = 3;
else {
double ii;
ii = static_cast<double>(i);
if (ii > pow(temp, 0.5)) {
j++;
prime[j]++;
break;
} else
i += 2;
}
if (prime[j] > 0) j++;
}
}
sort(prime.begin(), prime.begin() + j);
if (prime[0] == 1)
;
else {
long long k = 2;
while (prime[0] != 1 && prime[0] >= k) {
if (prime[0] % k == 0) {
int all = 1;
for (int l = 0; l < j; l++) {
if (prime[l] % k != 0) {
if (k == 2)
k = 3;
else
k += 2;
all = 0;
break;
}
}
if (all = 1) {
long long qq;
double kk;
kk = static_cast<double>(k);
qq = pow(q, 1 / kk);
if (q % qq > 0)
q = qq;
else
q = qq;
for (int l = 0; l <= j; l++) prime[l] /= k;
}
} else {
if (k == 2)
k = 3;
else
k += 2;
}
}
}
cout << q << endl;
return 0;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.BitSet;
import java.util.InputMismatchException;
import java.util.NoSuchElementException;
public class Main {
static PrintWriter out;
static InputReader ir;
static void solve() {
int p=ir.nextInt();
int q=ir.nextInt();
out.println(q/gcd(p,q));
}
public static int gcd(int a,int b){
if(b==0)
return a;
return gcd(b,a%b);
}
public static void main(String[] args) throws Exception {
ir = new InputReader(System.in);
out = new PrintWriter(System.out);
solve();
out.flush();
}
static class InputReader {
private InputStream in;
private byte[] buffer = new byte[1024];
private int curbuf;
private int lenbuf;
public InputReader(InputStream in) {
this.in = in;
this.curbuf = this.lenbuf = 0;
}
public boolean hasNextByte() {
if (curbuf >= lenbuf) {
curbuf = 0;
try {
lenbuf = in.read(buffer);
} catch (IOException e) {
throw new InputMismatchException();
}
if (lenbuf <= 0)
return false;
}
return true;
}
private int readByte() {
if (hasNextByte())
return buffer[curbuf++];
else
return -1;
}
private boolean isSpaceChar(int c) {
return !(c >= 33 && c <= 126);
}
private void skip() {
while (hasNextByte() && isSpaceChar(buffer[curbuf]))
curbuf++;
}
public boolean hasNext() {
skip();
return hasNextByte();
}
public String next() {
if (!hasNext())
throw new NoSuchElementException();
StringBuilder sb = new StringBuilder();
int b = readByte();
while (!isSpaceChar(b)) {
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
public int nextInt() {
if (!hasNext())
throw new NoSuchElementException();
int c = readByte();
while (isSpaceChar(c))
c = readByte();
boolean minus = false;
if (c == '-') {
minus = true;
c = readByte();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res = res * 10 + c - '0';
c = readByte();
} while (!isSpaceChar(c));
return (minus) ? -res : res;
}
public long nextLong() {
if (!hasNext())
throw new NoSuchElementException();
int c = readByte();
while (isSpaceChar(c))
c = readByte();
boolean minus = false;
if (c == '-') {
minus = true;
c = readByte();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res = res * 10 + c - '0';
c = readByte();
} while (!isSpaceChar(c));
return (minus) ? -res : res;
}
public double nextDouble() {
return Double.parseDouble(next());
}
public int[] nextIntArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public long[] nextLongArray(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public char[][] nextCharMap(int n, int m) {
char[][] map = new char[n][m];
for (int i = 0; i < n; i++)
map[i] = next().toCharArray();
return map;
}
}
} |
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using std::cin;
using std::cout;
using std::endl;
int gcd(int p, int q) {
int p_temp;
while (1) {
if (q == 0) {
break;
}
p_temp = p;
p = q;
q = p_temp % q;
}
return p;
}
int main(void) {
int p;
int q;
cin >> p >> q;
cout << q / gcd(p, q) << endl;
return 0;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long solve(long long a, long long b) {
long long x = max(a, b), y = min(a, b);
if (x % y == 0)
return y;
else
return solve(x % y, y);
}
int main() {
long long p, q, r, ans;
vector<long long> prime(100000);
cin >> p >> q;
r = solve(p, q);
p /= r;
q /= r;
long long i = 2, j = 0, temp = q;
while (temp != 1) {
if (temp % i == 0) {
temp /= i;
prime[j]++;
} else {
if (i == 2)
i = 3;
else
i += 2;
if (prime[j] > 0) j++;
}
}
sort(prime.begin(), prime.begin() + j);
if (prime[0] == 1)
;
else {
long long k = 2;
while (prime[0] != 1 && prime[0] >= k) {
if (prime[0] % k == 0) {
int all = 1;
for (int l = 0; l < j; l++) {
if (prime[l] % k != 0) {
if (k == 2)
k = 3;
else
k += 2;
all = 0;
break;
}
}
if (all = 1) {
double kk;
kk = k;
q = pow(q, 1 / kk);
for (int l = 0; l <= j; l++) prime[l] /= k;
}
} else {
if (k == 2)
k = 3;
else
k += 2;
}
}
}
cout << q << endl;
return 0;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int gcd(int x, int y) { return y ? gcd(y, x % y) : x; }
void solve() {
int p, q;
cin >> p >> q;
cout << q / gcd(p, q) << "\n";
}
int main() {
ios::sync_with_stdio(false);
cin.tie();
solve();
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long gcd(long a, long b) { return b ? gcd(b, a % b) : a; }
long a, b;
int main() {
cin >> a >> b;
b /= gcd(a, b);
for (long i = 2; i * i <= b; i++) {
for (long j = i * i; j <= b; j *= i) {
if (b == j) {
cout << i << endl;
return 0;
}
}
}
cout << b << endl;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long p, q;
vector<int> yakusuu;
int main() {
cin >> p >> q;
for (int i = 1; i <= p / 2; i++) {
if (p % i == 0) {
yakusuu.push_back(i);
}
}
for (int j = 0; j < yakusuu.size(); j++) {
if (q % yakusuu[j] == 0) q = q / yakusuu[j];
}
cout << q << endl;
return 0;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int gcd(int a, int b) {
if (b == 0)
return a;
else
return gcd(b, a % b);
}
int main() {
int p, q;
cin >> p >> q;
q = q / gcd(p, q);
vector<int> v;
cout << q << endl;
for (int i = 2; i * i <= q; i++) {
if (q % i == 0) {
v.push_back(i);
while (q % i == 0) q /= i;
}
}
int r = 1;
for (int i = 0; i < v.size(); i++) r *= v[i];
cout << r * q << endl;
return 0;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long int gcd(long long int a, long long int b) {
if (b == 0)
return a;
else
return gcd(b, a % b);
}
queue<long long int> q;
vector<bool> prime(1000000000 + 1, true);
void make(long long int M) {
prime[0] = prime[1] = false;
long long int i;
for (i = 2; i * i <= M + 1; i++) {
if (prime[i]) {
long long int j = 2;
q.push(i);
while (i * j < M + 1) {
prime[i * j] = false;
j++;
}
}
}
for (; i <= M; i++) {
if (prime[i]) q.push(i);
}
return;
}
int main() {
long long int a, b;
cin >> a >> b;
make(max(a, b));
long long int c = b / gcd(a, b);
long long int ans = 1;
long long int ma = c;
while (!q.empty()) {
long long int d = q.front();
if (c % d == 0) {
ans *= d;
}
q.pop();
}
cout << ans << endl;
return 0;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long INF = 1LL << 50;
int solve();
long long gcd(long long p, long long q) {
if (q == 0) {
return p;
}
return gcd(q, p % q);
}
int main(void) {
while (solve()) {
}
return 0;
}
int solve() {
long long p, q, g;
cin >> p >> q;
g = gcd(max(p, q), min(p, q));
p = p / g;
q = q / g;
long long ans = 1;
const long long M = 10e9;
if (q > 1)
for (long long i = 2; i < M; i++) {
long double d = logl(q) / logl(i);
if (abs(d - static_cast<long long>(d)) < 10e-8) {
ans = i;
break;
}
}
cout << ans << endl;
return 0;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int euclid(int x, int y) {
int t;
while (x % y) {
x %= y;
t = x;
x = y;
y = t;
}
return y;
}
int main() {
int p, q, n, m, t = 2, ans = 1;
cin >> p >> q;
n = q / euclid(p, q);
m = n;
map<int, int> f;
while (n > 1 && t < sqrt(m)) {
if (!(n % t)) {
n /= t;
f[t] = 1;
}
while (!(n % t)) {
++f[t];
n /= t;
}
++t;
}
if (n != 1) f[n] = 1;
m = q;
for (auto itr = f.begin(); itr != f.end(); ++itr) m = min(m, itr->second);
for (auto itr = f.begin(); itr != f.end(); ++itr) {
m = euclid(m, itr->second);
}
for (auto itr = f.begin(); itr != f.end(); ++itr) {
for (int i = 0; i < itr->second / m; ++i) {
ans *= itr->first;
}
}
cout << ans << endl;
return 0;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.*;
public class Main{
public static void main(String args[]){
try(Scanner sc = new Scanner(System.in)){
long p = sc.nextLong(), q = sc.nextLong();
long memo = q/gcd(p,q);
long ans = memo;
int i = 0;
long[] X = new long[10000];
long x = 2;
while(memo!=1){
while(memo%x==0){
X[i++]=x;
memo/=x;
}
x++;
}
if(X[0]==X[i-1]){
System.out.println(X[0]);
} else {
System.out.println(ans);
}
}
}
private static long gcd(long p, long q){
if(p < q) {
return gcd(q, p);
}
if(q==0){
return p;
}
return gcd(q, p%q);
}
} |
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import static java.lang.Integer.parseInt;
/**
* Let's Solve Geometric Problems
*/
public class Main {
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
String line;
String[] words;
line = br.readLine();
long p, q;
p = parseInt(line.substring(0, line.indexOf(' ')));
q = parseInt(line.substring(line.indexOf(' ') + 1));
System.out.println(q / gcd(p, q));
}//end main
static long gcd(long a, long b) {
if (b == 0) return a;
return gcd(b, a % b);
}
} |
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include<bits/stdc++.h>
using namespace std;
int main(){
int q,p,t,ans=1,i,j,c=0;
cin>>q>>p;t=p;
p/=__gcd(q,p);
if(p!=t)for(i=2;i*i<=t;i++){
if(p%i==0){
p/=i;
ans*=i;
i--;
}
}
else ans=t;
cout<<ans<<endl;
} |
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long INF = 1LL << 50;
int solve();
long long gcd(long long p, long long q) {
if (q == 0) {
return p;
}
return gcd(q, p % q);
}
int main(void) {
while (solve()) {
}
return 0;
}
int solve() {
long long p, q, g;
cin >> p >> q;
g = gcd(max(p, q), min(p, q));
p = p / g;
q = q / g;
const long long M = sqrt(10e10);
std::vector<bool> isPrime(M, true);
isPrime[1] = false;
for (long long i = 2; i < M; i++) {
if (isPrime[i] == false) {
continue;
}
for (long long j = 2; i * j < M; j++) {
isPrime[i * j] = false;
}
}
long long ans = 1;
for (long long i = 2; i < M; i++) {
if (isPrime[i] == true && q % i == 0) {
ans *= i;
}
}
if (ans == 1 && q > 1) {
ans = q;
}
cout << ans << endl;
return 0;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int p, q, mi;
cin >> p >> q;
mi = (p, q);
while (p % q == 0) {
if (q == 1) break;
p /= q;
q /= q;
}
for (int i = 2; i * i <= mi; i++) {
while (p % i == 0 && q % i == 0) {
p /= i;
q /= i;
}
while (q % (mi / i) == 0 && p % (mi / i) == 0) {
p /= mi / i;
q /= mi / i;
}
}
cout << q << endl;
return 0;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(void) {
long long p, q;
cin >> p >> q;
long long m = 1;
for (int i = 1; i <= p; i++) {
if (p % i == 0 && q % i == 0) {
m = i;
}
}
cout << q / m << endl;
return 0;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int p, q, x, test;
cin >> p >> q;
if (p < q) swap(p, q);
test = p;
while (1) {
if (p % q != 0) {
x = p % q;
p = q;
q = x;
continue;
}
break;
}
cout << test / q << endl;
return 0;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int euclid(int x, int y) {
int t;
while (x % y) {
x %= y;
t = x;
x = y;
y = t;
}
return y;
}
int main() {
int p, q, n, m, t = 2, ans = 1;
cin >> p >> q;
n = q / euclid(p, q);
m = n;
map<int, int> f;
while (n > 1 && t < sqrt(m) + 1) {
if (!(n % t)) {
n /= t;
f[t] = 1;
}
while (!(n % t)) {
++f[t];
n /= t;
}
++t;
}
if (n != 1) f[n] = 1;
m = q;
for (auto itr = f.begin(); itr != f.end(); ++itr) m = min(m, itr->second);
for (auto itr = f.begin(); itr != f.end(); ++itr) {
m = euclid(m, itr->second);
}
for (auto itr = f.begin(); itr != f.end(); ++itr) {
for (int i = 0; i < itr->second / m; ++i) {
ans *= itr->first;
}
}
cout << ans << endl;
return 0;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using std::cin;
using std::cout;
using std::endl;
using std::fixed;
using std::list;
using std::make_pair;
using std::map;
using std::pair;
using std::priority_queue;
using std::queue;
using std::set;
using std::setprecision;
using std::stack;
using std::string;
using std::vector;
int gcd(int p, int q) {
int temp;
if (q == 0) {
return p;
} else {
temp = p % q;
p = q;
q = temp;
return gcd(p, q);
}
return 0;
}
bool prime_check(int number) {
if (number == 2) {
return true;
} else if (number % 2 == 0) {
return false;
}
for (int i = 3; i * i <= number; i++) {
if (number % i == 0) {
return false;
}
}
return true;
}
int main(void) {
int p;
int q;
int ans = 1;
cin >> p >> q;
q /= gcd(p, q);
for (int i = 2; i <= q; i++) {
if (prime_check(i) == true && q / q != 0) {
ans *= i;
}
}
cout << ans << endl;
return 0;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b); }
int main() {
long long int p, q;
cin >> p >> q;
q /= gcd(p, q);
for (int i = 2; i < 32000; i++) {
double x = log(q) / log(i);
if (ceil(x) == floor(x)) {
cout << i << endl;
return 0;
}
}
cout << q << endl;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
vector<long long> prime;
long long gcd(long long a, long long b) {
if (a == 1) {
return b;
} else {
return gcd(b, b % a);
}
}
void pri() {
vector<bool> state(5001, false);
for (long long i = 2; i < 5000; i++) {
if (!state[i]) {
prime.push_back(i);
for (long long j = 2; i * j < 5000; j++) {
state[i * j] = true;
}
}
}
}
signed main() {
pri();
long long p;
scanf("%lld", &p);
long long q;
scanf("%lld", &q);
while (p && q) {
if (p >= q) {
cout << 2 << endl;
} else {
long long ret = gcd(p, q);
long long ans = 1;
while (ret != 1) {
for (long long i = 0; i < prime.size(); i++) {
if (!(ret % prime[i])) {
ans *= prime[i];
ret /= prime[i];
}
}
}
cout << ans << endl;
}
cin >> p >> q;
}
return 0;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include<bits/stdc++.h>
using namespace std;
int main(){
int p,q,t,ans=1,num;
set<int> s;
cin>>p>>q;
num=t=q/__gcd(p,q);
for(int i=2;i<=num;i++){
if(!(num%i)){
s.insert(i);
while(!(num%i))num/=i;
}
}
set<int>::iterator ite=s.begin();
while(ite!=s.end())ans*=*ite,ite++;
if(ans==1)ans=t;
cout<<ans<<endl;
return 0;
} |
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include<bits/stdc++.h>
using namespace std;
int main(){
int p,q,t,ans;
cin>>p>>q;
ans=t=q/__gcd(p,q);
for(int i=2;i*i<=t;i++)
if(i*i==t)ans=i;
cout<<ans<<endl;
return 0;
} |
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | #include <bits/stdc++.h>
int in(void) {
int i;
scanf("%d", &i);
return i;
}
long long llin(void) {
long long i;
scanf("%lld", &i);
return i;
}
void print(int a) { printf("%d\n", a); }
void llprint(long long a) { printf("%lld\n", a); }
void print2(int a, int b) { printf("%d %d\n", a, b); }
long long max(long long a, long long b) { return a > b ? a : b; }
long long min(long long a, long long b) { return a < b ? a : b; }
int gcd(int a, int b) {
if (a % b == 0) {
return b;
}
return gcd(b, a % b);
}
int main(void) {
int p = in(), q = in();
int g = gcd(p, q);
int i, j;
p /= g;
q /= g;
for (i = 2; i < q; i++) {
for (j = 1; j <= q; j *= i) {
if (j == q) {
q = i;
break;
}
}
}
print(q);
return 0;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int p, q;
vector<int> primes;
const int MA = 30000000;
bool t[MA * 2];
void eratosu() {
t[1] = 1;
for (int i = 2; i <= MA; i++) {
if (t[i] == 0) {
primes.push_back(i);
for (int j = i * 2; j <= MA; j += i) t[j] = 1;
}
}
}
bool check(int x) {
int a = x;
int aa = x;
while (aa <= q) {
if (aa == q) return 1;
aa = aa * a;
}
return 0;
}
int gcd(int a, int b) {
if (b == 0) return a;
return gcd(b, a % b);
}
int main() {
eratosu();
cin >> p >> q;
int gc = gcd(p, q);
int np = p, nq = q;
p = np / gc;
q = nq / gc;
int ans = 1, qq = q;
for (int i = 0; i < primes.size(); i++) {
int now = primes[i];
if (q % now == 0) ans *= now;
while (q % now == 0) q /= now;
}
cout << ans << endl;
return 0;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include<bits/stdc++.h>
#define N 100005
using namespace std;
int p,q,t,ans,prime[N];
set<int> s;
int main(){
for(int i=0;i<N;i++)prime[i]=1;
prime[0]=prime[1]=0;
for(int i=0;i*i<N;i++){
if(!prime[i])continue;
for(int j=i*2;j<N;j+=i)
prime[j]=0;
}
cin>>p>>q;
t=q/__gcd(p,q);
for(int i=0;i*i<=t;i++)
if(prime[i]&&!(t%i)){
s.insert(i);
if(prime[t/i])s.insert(t/i);
}
ans=1;
set<int>::iterator ite=s.begin();
while(ite!=s.end()){
ans*=(*ite);
ite++;
}
if(ans==1)ans=t;
cout<<ans<<endl;
return 0;
} |
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int COU(int a, int b) {
if (a == b || a == 0) return 1;
while (true) {
if (a < b) {
int t = a;
a = b, b = t;
}
if (b == 0) return a;
a %= b;
}
}
int main() {
int p, q;
cin >> p >> q;
cout << q / COU(p, q) << endl;
return 0;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int dx[] = {-1, 0, 1, 0};
const int dy[] = {0, 1, 0, -1};
struct UnionFind {
vector<int> v;
UnionFind(int n) : v(n) {
for (int i = 0; i < n; i++) v[i] = i;
}
int find(int x) { return v[x] == x ? x : v[x] = find(v[x]); }
void unite(int x, int y) { v[find(x)] = find(y); }
};
long long gcd(long long a, long long b) {
if (a < b) swap(a, b);
while (a % b != 0) {
a %= b;
swap(a, b);
}
return b;
}
int main() {
map<int, int> mpii;
for (int i = (int)(1); i < (int)(40000); ++i) mpii[i * i] = i;
int p, q;
cin >> p >> q;
q /= gcd(p, q);
set<int> soinsu;
for (int i = (int)(2); i < (int)(sqrt(q) + 100); ++i) {
while (q % i == 0) {
q /= i;
soinsu.insert(i);
}
}
long long ans = 1;
for (int a : soinsu) ans *= a;
cout << ans << endl;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
#define all(c) (c).begin(), (c).end()
#define rep(i, n) for (int i = 0; i < (int)(n); i++)
int dx[4] = {1, 0, -1, 0};
int dy[4] = {0, 1, 0, -1};
int main() {
int p, q;
cin >> p >> q;
int g = __gcd(p, q);
int b = q / g;
rep(i, 100005) if (i > 1) {
while (b % i == 0 && b / i != 1) b /= i;
}
cout << b << endl;
return 0;
} |
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int gcd(int a, int b) {
if (b == 0) return a;
return gcd(b, a % b);
}
int main() {
int p, q;
cin >> p >> q;
int d = gcd(p, q);
cout << q / d << endl;
}
|
p01809 Let's Solve Geometric Problems | Let's solve the geometric problem
Mr. A is still solving geometric problems today. It is important to be aware of floating point errors when solving geometric problems.
Floating-point error is the error caused by the rounding that occurs when representing a number in binary finite decimal numbers. For example, 0.1 in decimal is an infinite decimal number of 0.00011001100110011 ... in binary, but an error occurs when rounding this to a finite number of digits.
Positive integers p and q are given in decimal notation. Find the b-ary system (b is an integer greater than or equal to 2) so that the rational number p / q can be expressed as a decimal number with a finite number of digits. If there are more than one, output the smallest one.
Constraints
* 0 <p <q <10 ^ 9
Input Format
Input is given from standard input in the following format.
p q
Output Format
Print the answer in one line.
Sample Input 1
1 2
Sample Output 1
2
1/2 is binary 0.1
Sample Input 2
21 30
Sample Output 2
Ten
21/30 is 0.7 in decimal
Example
Input
1 2
Output
2 | {
"input": [
"1 2"
],
"output": [
"2"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int gcd(int x, int y) { return (y == 0 ? x : gcd(y, x % y)); }
int main() {
int P, Q;
cin >> P >> Q;
int G = gcd(P, Q);
cout << std::max(2, Q / G) << endl;
return 0;
}
|
Subsets and Splits