Search is not available for this dataset
name
stringlengths
2
88
description
stringlengths
31
8.62k
public_tests
dict
private_tests
dict
solution_type
stringclasses
2 values
programming_language
stringclasses
5 values
solution
stringlengths
1
983k
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
java
import java.util.*; public class test7 { public static void main(String[] args) { Scanner s= new Scanner(System.in); int ar[]=new int[3]; for(int i=0;i<3;i++) { ar[i]=s.nextInt(); } for(int i=ar[2];i<100;i++) { if(i%ar[2]==0&&(i<ar[0]||i>ar[1])) { System.out.println(i); break; } } } }
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
java
//var input = readline() var t = parseInt(readline()) for(var i=0; i<t; i++) { var n = readline().split(' ') var a = parseInt(n[0]) var b = parseInt(n[1]) var c = parseInt(n[2]) var s = a + b if(a>c) print(c) else if(a == c) print(s) else { if(s%c == 0) { print(s) } } } //
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
java
import java.io.*; import java.util.*; public class CodingLegacy { static HashMap<String,Long> map = new HashMap<>(); public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; ScanReader in = new ScanReader(inputStream); PrintWriter out = new PrintWriter(outputStream); Palindrome solver = new Palindrome(); int t = 1; t = in.nextInt(); for (int i = 0; i < t; i++) { solver.solve(i + 1, in, out); } out.close(); } static class Palindrome { static long mod = 1000000007; static long maxX = (long) 1e18; static long mod2 = 998244353; void solve(int testNumber, ScanReader in, PrintWriter out) { long l = in.nextLong(),r = in.nextLong(),d = in.nextLong(); out.println((r/d)*d + d); } boolean isVovel(char a){ return a == 'a' || a == 'e' || a == 'i' || a == 'o' || a == 'u'; } } static class ScanReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; private BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); public ScanReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } public int nextInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public double nextDouble() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } double res = 0; while (!isSpaceChar(c) && c != '.') { if (c == 'e' || c == 'E') return res * Math.pow(10, nextInt()); if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } if (c == '.') { c = read(); double m = 1; while (!isSpaceChar(c)) { if (c == 'e' || c == 'E') return res * Math.pow(10, nextInt()); if (c < '0' || c > '9') throw new InputMismatchException(); m /= 10; res += (c - '0') * m; c = read(); } } return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public String next() { return readString(); } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } }
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int t; cin >> t; while (t--) { int a1, a2, a3; cin >> a1 >> a2 >> a3; if (a1 > a3) { cout << a3 << endl; continue; } else cout << a3 * a2 / a3 + a3 << endl; } return 0; }
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
java
import java.io.*; import java.util.*; public class minimumInteger { public static void main (String[] args) throws Exception{ BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); PrintWriter out = new PrintWriter(System.out); int q = Integer.parseInt(br.readLine()); for(int i=0;i<q;i++) { StringTokenizer st = new StringTokenizer(br.readLine()); long l= Integer.parseInt(st.nextToken()); long r= Integer.parseInt(st.nextToken()); long d= Integer.parseInt(st.nextToken()); long x=d; while(x%d!=0&&(x<l||x>r)) { x++; }//end while if(x==l) { x+=(r-l)+1; }//end if while(x%d!=0) { x++; }//end while out.println(x); }//end for i out.close(); }//end main }
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
python2
q=input() while q: l,r,d=map(int,raw_input().split()) if float(l/d) > 1: print d else: temp=r/d print d*(temp+1) q-=1
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
python3
q = int(input()) for i in range(q): data = input().split(" ") l = int(data[0]) r = int(data[1]) d = int(data[2]) if(d == 1): print(1) continue result = d * ((l - 1) // d) if(result == 0): result = d * ((r // d) + 1) print(result)
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
java
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.HashMap; import java.util.LinkedList; import java.util.Scanner; import java.util.StringTokenizer; public class csdCDc { public static void main(String[] args) throws NumberFormatException, IOException { BufferedReader br= new BufferedReader(new InputStreamReader( System.in)); Scanner sc =new Scanner(System.in); int n =Integer.parseInt(br.readLine()); for(int i=0;i<n;i++) { StringTokenizer st =new StringTokenizer(br.readLine()); int x=Integer.parseInt(st.nextToken()); int y=Integer.parseInt(st.nextToken()); int d=Integer.parseInt(st.nextToken()); if(d<x || d>y) { System.out.println(d); } else { int g=((y-x)/d+1)*d; System.out.println(g+d); } } } }
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
python2
from __future__ import division, print_function import os,sys from io import BytesIO, IOBase if sys.version_info[0] < 3: from __builtin__ import xrange as range from future_builtins import ascii, filter, hex, map, oct, zip def ii(): return int(input()) def si(): return input() def mi(): return map(int,input().split(" ")) def msi(): return map(str,input().split(" ")) def li(): return list(mi()) def dmain(): sys.setrecursionlimit(1000000) threading.stack_size(1024000) thread = threading.Thread(target=main) thread.start() #from math import * def gcd(x, y): while y: x, y = y, x % y return x def checkPrime(n) : # Check Prime Number or not if (n <= 1) : return False if (n <= 3) : return True if (n % 2 == 0 or n % 3 == 0) : return False i = 5 while(i * i <= n) : if (n % i == 0 or n % (i + 2) == 0) : return False i = i + 6 return True def read(): sys.stdin = open('input.txt', 'r') sys.stdout = open('output.txt', 'w') def main(): for _ in range(ii()): l,r,d=mi() if l!=1 and d==1: print(1) else: div=(int(r/d)+1)*d if l%d==0: res=(int(l/d)-1)*d else: res=(int(l/d))*d if res>0: print(res) else: print(div) # region fastio # template taken from https://github.com/cheran-senthil/PyRival/blob/master/templates/template.py BUFSIZE = 8192 class FastIO(IOBase): newlines = 0 def __init__(self, file): self._fd = file.fileno() self.buffer = BytesIO() self.writable = "x" in file.mode or "r" not in file.mode self.write = self.buffer.write if self.writable else None def read(self): while True: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) if not b: break ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines = 0 return self.buffer.read() def readline(self): while self.newlines == 0: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) self.newlines = b.count(b"\n") + (not b) ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines -= 1 return self.buffer.readline() def flush(self): if self.writable: os.write(self._fd, self.buffer.getvalue()) self.buffer.truncate(0), self.buffer.seek(0) class IOWrapper(IOBase): def __init__(self, file): self.buffer = FastIO(file) self.flush = self.buffer.flush self.writable = self.buffer.writable self.write = lambda s: self.buffer.write(s.encode("ascii")) self.read = lambda: self.buffer.read().decode("ascii") self.readline = lambda: self.buffer.readline().decode("ascii") def print(*args, **kwargs): """Prints the values to a stream, or to sys.stdout by default.""" sep, file = kwargs.pop("sep", " "), kwargs.pop("file", sys.stdout) at_start = True for x in args: if not at_start: file.write(sep) file.write(str(x)) at_start = False file.write(kwargs.pop("end", "\n")) if kwargs.pop("flush", False): file.flush() if sys.version_info[0] < 3: sys.stdin, sys.stdout = FastIO(sys.stdin), FastIO(sys.stdout) else: sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout) input = lambda: sys.stdin.readline().rstrip("\r\n") # endregion if __name__ == "__main__": #read() main() #dmain() # Comment Read()
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
python2
q=int(input()) while 1: try: l,r,d=map(int,input().split()) if d<l or d>r: print(d) else: i=(r/d+1)*d print(i) except: break
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
java
import java.util.*; public class MyClass { public static void main(String args[]) { Scanner sc = new Scanner(System.in); int q=sc.nextInt(); while(q-- > 0) { int l =sc.nextInt(); int r= sc.nextInt(); int d=sc.nextInt(); if(l%d==0) { if(l-d >0) { System.out.println(d); continue; } if(l+d > r) { System.out.println(l+d); continue; } } if(l%d!=0) { if(l-(l%d)>0 && (l-(l%d))%d==0) { System.out.println(l-(l%d)); continue ; } if(l+(l%d)>r && (l+(l%d))%d==0) { System.out.println(l+(l%d)); continue ; } } if(r%d==0) { System.out.println(r+d); continue; } if(r%d!=0) { System.out.println(r+(d-(r%d))); } } } }
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n, a, b, c, x; cin >> n; int arr[n]; for (int i = 0; i < n; i++) { cin >> a >> b >> c; if (c < a) { arr[i] = c; } else { for (int j = c; j < 500; j++) { if (j > b && j % c == 0) { arr[i] = j; break; } } } } for (int i = 0; i < n; i++) { cout << arr[i] << endl; } }
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int t, n; cin >> t; while (t--) { int r, l, d, x; cin >> r >> l >> d; if (d < r || d > l) cout << d << endl; else if (d >= r && d <= l) cout << ((r + l) / d) * d << endl; } return 0; }
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
python2
t=input() while t: t=t-1 l,r,d=raw_input().split() l=int(l) r=int(r) d=int(d) if d<l: print d elif d>r: print d else: for w in range(1,100000): if d*w>r: print d*w break
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
python3
for _ in range(int(input())): s=[int(n) for n in input().split()] l=s[0] r=s[1] d=s[2] p=0 if l>d: print(l) p=1 if p==0: j=r//d+1 print(j*d)
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
python3
def min(x, y): return y ^ ((x ^ y) & -(x < y)) # Function to find maximum of x and y def max(x, y): return x ^ ((x ^ y) & -(x < y)) # Driver program to test above functions x = 15 y = 6 print("Minimum of", x, "and", y, "is", end=" ") print(min(x, y)) print("Maximum of", x, "and", y, "is", end=" ") print(max(x, y))
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); int n; cin >> n; for (int i = 0; i < n; i++) { int l, r, d; cin >> l >> r >> d; for (int j = 1; j < r; j++) { int k = j * d; if ((k > r || k < l)) { cout << k << "\n"; break; } } } return 0; }
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long a, n, m, d; cin >> a; for (long long i = 0; i < a; i++) { cin >> n >> m >> d; cout << ((m / d) + 1) * d << endl; } }
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
java
import java.util.Scanner; import java.util.*; public class Main{ public static void main(String args[]){ Scanner scanner = new Scanner(System.in); int queries = scanner.nextInt(); //nΓΊmero de testes scanner.nextLine(); int[] results = new int[queries]; //array para guardar os resultados de cada teste e imprimir no final for(int q = 1; q <=queries; q++){ String query = scanner.nextLine(); String[] numbers = query.split(" "); int l = Integer.parseInt(numbers[0]); // essa soluΓ§Γ£o sΓ³ funciona para inputs com unidades apenas int r = Integer.parseInt(numbers[1]); // (ex: 2 4 2; 3 5 6; etc) para outras que tΓͺm dezenas (ex: int d = Integer.parseInt(numbers[2]); // 2 10 4) eu nΓ£o sei como fazer int i = 1; int candidate = d; //candidato a soluΓ§Γ£o while(true){ candidate = candidate*i; if(candidate < l || candidate > r){ break; } i++; } results[q-1] = candidate; } for(int number:results){ System.out.println(number); } } }
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { freopen("a.txt", "r", stdin); int t; cin >> t; while (t--) { long long int l, r, d; cin >> l >> r >> d; long long int ls, rs; ls = d; if (ls >= l) { ls = 1987654321; } if (r % d == 0) { rs = d + r; } else { rs = d * (r / d + 1); } if (ls >= rs) printf("%lld\n", rs); else printf("%lld\n", ls); } }
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
java
import java.util.*; public class a{ public static void main(String[] args) { Scanner in=new Scanner(System.in); long a=in.nextLong(); long b=in.nextLong(); long d=in.nextLong(); System.out.println(d*b); } }
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
java
import java.util.Scanner; public class Main { public static void main(String[] args) { final Scanner scanner = new Scanner(System.in); final int n = scanner.nextInt(); for (int i = 0; i < n; i++) { int l = scanner.nextInt(); int r = scanner.nextInt(); int d = scanner.nextInt(); if (d < l || r < d) { System.out.println(1); } else { if (r % d == 0) { System.out.println(d * ((r / d) + 1)); } else { System.out.println(d * Math.ceil(1.0 * r / d)); } } } } }
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
java
import java.util.Scanner; /** * @author: miaolei * @date: 2019/1/18 * @description: */ public class SolutionCF1101A { public static void main(String[] args) { Scanner scan = new Scanner(System.in); int q = scan.nextInt(); for (int i = 0; i < q; i++) { int l = scan.nextInt(); int r = scan.nextInt(); int d = scan.nextInt(); if (d < l){ System.out.println(d); }else { if (d < l || d > r){ System.out.println(d); }else if(d == 1000000000){ System.out.println(d+1); }else if(d==1){ System.out.println(1); }else { int res = d; while (res >= l && res<=r && res<1000000000){ for (int j = 2; j < 1000000000; j++) { res = d*j; if (res>=100000000 || res>r){ break; } } } System.out.println(res); } } } } }
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int t; cin >> t; while (t--) { long long l, r, d, x = 0, k = 0; cin >> l >> r >> d; if (l > d) { cout << d << endl; continue; } if ((l + r) % d == 0) { x = (l + r); } if (d * 2 > r) { k = d * 2; } if (x && k) { cout << min(x, k) << endl; } else if (x) { cout << x << endl; } else { cout << k << endl; } } return 0; }
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int q; cin >> q; while (q--) { int l, r, d; cin >> l >> r >> d; if (d < l) { cout << d; } else { cout << d * (1 + (floor)(r / d)); } cout << endl; } }
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
python3
t=int(input()) sum=0 for i in range(1,t+1,1): a,b,c=map(int,input().split()) m=min(a,b,c) s=min(a+b,b+c) print(m)
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
python3
n=int(input()) for k in range(n): a,b,c=map(int,input().split()) print((b//c)*c+c)
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
python3
n=int(input()) l=[] for i in range(n): l+=[list(input().split())] a=0 b=0 minn=0 maxx=0 for i in range(n): if l[i][0]=='+': a=min(int(l[i][1]),int(l[i][2])) b=max(int(l[i][1]),int(l[i][2])) if a>minn: minn=a if b>maxx: maxx=b else: a1=min(int(l[i][1]),int(l[i][2])) a2=max(int(l[i][1]),int(l[i][2])) a3=minn a4=maxx if a1>=a3 and a2>=a4: print("YES") else: print("NO")
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
python3
t=int(input()) sum=0 for i in range(1,t+1,1): a,b,c=map(int,input().split()) m=min(a,b,c) if(m%c==0): if(a<=m & m<=b): sum=a+b else: sum=min(a,b,c) else: sum=min(a+b,b+c) print(sum)
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
python3
q=int(input()) for j in range(q): l,r,d = map(int,input().split(" ")) flag=True i=2 x=d j=0 if d == 1: if l-1 !=0: print(l-1) else: print(r+1) else: while flag: if x in range(l,r+1): x=d*i else: print(x) break i=i+1
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { ios::sync_with_stdio(0); cin.tie(0); cout.tie(0); int t; cin >> t; while (t--) { long long a, b, c; cin >> a >> b >> c; if (c < a && c > b) { cout << c << "\n"; } else { cout << (b / c + 1) * c << "\n"; } } }
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
python3
t=int(input()) for i in range(t): s=list(map(int,input().split(" "))) l=s[0] r=s[1] d=s[2] for j in range(d,1000,d): #print(j) if(j<l or j>r): print(j) break
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int q; int main() { scanf("%d", &q); for (int j = 0; j < q; j++) { int l, r, d; scanf("%d %d %d", &l, &r, &d); int ans1 = l - (l % d), ans2 = r + (d - (r % d)); if (l % 2 == 0) ans1 = l - d; if (ans1 > 0) { printf("%d\n", ans1); } else { printf("%d\n", ans2); } } return 0; }
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long q, a, b, c, n, d = 0, f; cin >> q; f = q; while (q--) { cin >> a >> b >> c; n = max(a, b); a = min(a, b); for (int i = 1;; i++) { if (i * c <= a || i * c >= n) { cout << i * c; d++; if (d < f) cout << endl; break; } } } return 0; }
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
python3
q = int(input()) a = [] for i in range(0,q): l,r,m = map(int,input().split()) if l==1 and m==1:q = 1 else:q = 0 if m==1 and q==0:a.append(1) elif l % m != 0 and q==0 and l // m >= 1: a.append(m) else: if m > r:a.append(m) elif (r // m) * m > r:a.append((r // m) * m) else:a.append((r // m + 1) * m) for i in range(0,len(a)): print(a[i])
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
python3
import sys input=sys.stdin.readline from collections import defaultdict as dc from collections import Counter from bisect import bisect_right, bisect_left import math from operator import itemgetter from heapq import heapify, heappop, heappush from queue import PriorityQueue as pq for _ in range(int(input())): l,r,d=map(int,input().split()) x=r//d print((x+1)*d)
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
java
import java.io.*; import java.util.*; public class Main { private static int solveQuery(int l, int r, int d) { if (d == 1) return 1; if (l <= d) return d * (r / d + 1); return d * (l / d); } public static void main(String[] args) throws IOException { final BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int Q = Integer.valueOf(br.readLine()); StringTokenizer st; while (Q-- > 0) { st = new StringTokenizer(br.readLine()); int l = Integer.valueOf(st.nextToken()); int r = Integer.valueOf(st.nextToken()); int d = Integer.valueOf(st.nextToken()); System.out.println(solveQuery(l, r, d)); } br.close(); } }
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int q; cin >> q; while (q > 0) { int l, r, d; int x = 1; cin >> l >> r >> d; while ((x % d != 0) && ((x <= l) || (x >= r))) { x++; if (x == l) { x = r + 1; } } cout << x << endl; q--; } return 0; }
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
python3
n = int(input()) for i in range(0,n): a = list(map(int,input().split())) num =a[2] if( a[0] == 1): print(a[1]+a[2]) else: while(1): if num not in range(a[0],a[1]+1): print(num) break num += a[2]
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
java
import java.util.Scanner; public class CR58_1 { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int t = sc.nextInt(); for(int j = 1; j <= t; j++) { long l = sc.nextLong(); long r = sc.nextLong(); long d = sc.nextLong(); if(d==1 && l==1) { System.out.println(r+1); } if(d<l || d>r) { System.out.println(d); } else { long v = r/2 + 1; System.out.println(v*d); } } } }
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); int q; cin >> q; while (q--) { int x, y, z, n; cin >> x >> y >> z; n = z; if (z > y || z < x) cout << z << endl; else { if (z == y) cout << z * 2 << endl; else { int def = y - z; def %= z; def++; cout << def * z << endl; } } } return 0; }
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
python3
n=int(input()) while(n>0): n=n-1 l,r,d=map(int,input().split()) if((l+r)%d==0): print(l+r) elif(l>d): while(l>d): l=l-1 if(l%d==0): print(l) break elif(l<d): while(1): r=r+1 if(r%d==0): print(r) break
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; void past_code(); int main() { int x; cin >> x; int q, w, e; while (x--) { cin >> q >> w >> e; if (e < q || e > w) cout << e << endl; else { if (e % 2 == 0 && w % 2 == 0) cout << w + e << endl; else if (w % 2 != 0) cout << w + e - 1 << endl; else if (e % 2 != 0 && w % 2 == 0) cout << w + e - 1 << endl; else cout << w + 1 << endl; } } return 0; }
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
java
import java.util.*; public class MinimumInteger { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int T = sc.nextInt(); while(T-- > 0) { int l = sc.nextInt(); int r = sc.nextInt(); int d = sc.nextInt(); if (d >r || d < l) { System.out.println(l); } else { System.out.println(r - r%d + d); } } } }
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
python2
''' "Do not dwell in the past, do not dream of the future, concentrate the mind on the present moment." ---BUDDHA ''' #from time import time #start=time() #from __future__ import division #from fractions import Fraction #import math #import random,bisect #import sys,os #import random,re #from sys import stdin, stdout #from collections import Counter,deque,OrderedDict,defaultdict #from itertools import permutations,ansduct,combinations #from heapq import heapify,heappush,heappop,heappushpop,heapify,heapreplace,nlargest,nsmallest #import numpy as np #from operator import mul _CUTOFF=300000 MOD=10**9+7 INF=float('+inf') def si(): return str(stdin.readline()) def ii(): return int(raw_input()) def mi(): return map(int, raw_input().split()) def li(): return [int(i) for i in raw_input().split()] def debug(x): return stdout.write(str(x)) def limul(list): return eval('*'.join(str(item) for item in list)) "-----------------------------------------------" def main(): for i in range(ii()): l,r,d=mi() if d>=r: print d elif r>d and d>=l: print ((r//d)+1)*d else: print d main()
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
java
import java.io.*; import java.util.Arrays; import java.util.StringTokenizer; public class Con1{ public static void main(String[] args) throws Exception { Scanner sc = new Scanner(System.in); PrintWriter out = new PrintWriter(System.out); int q=sc.nextInt(); while(q-->0) { long l=sc.nextLong(); long r=sc.nextLong(); long d=sc.nextLong(); long temp=d; if(d<l) { System.out.println(d); continue; } else if(d>r){ System.out.println(d); continue; } else if(d==1) { System.out.println(r+1); continue; } if(d>=l&&d<=r) { while(d*10<r) { d=d*10; } } if(d>=l&&d<=r) { long j=2; long sum=0; while(sum<=r) { sum=j*d; j++; } System.out.println(sum); } } } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream system) {br = new BufferedReader(new InputStreamReader(system));} public Scanner(String file) throws Exception {br = new BufferedReader(new FileReader(file));} public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public String nextLine()throws IOException{return br.readLine();} public int nextInt() throws IOException {return Integer.parseInt(next());} public double nextDouble() throws IOException {return Double.parseDouble(next());} public char nextChar()throws IOException{return next().charAt(0);} public Long nextLong()throws IOException{return Long.parseLong(next());} public boolean ready() throws IOException{return br.ready();} public void waitForInput() throws InterruptedException {Thread.sleep(3000);} }}
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
python3
for _ in range(int(input())): a,b,d=map(int,input().split()) m1=a%d m2=b%d if m1!=0 and a//d!=0: print(d) elif m1==0 and a//d>2: print(d) else: print(d*(b//d+1))
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
java
import java.util.*; public class Main { public static void main(String[] args) { Scanner s = new Scanner(System.in); int t = s.nextInt(); while(t > 0) { t--; int l = s.nextInt(); int r = s.nextInt(); int d = s.nextInt(); if(l > d) { System.out.println(d); } else if(d > r) { System.out.println(d); } else { System.out.println((10 * ((r / d) + 1))); } } } }
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
python3
def ind(l, r, y): if y >= l and y <= r: return True return False x = int(input()) for i in range(0, x): s = '' s1 = input().split() l = int(s1[0]) r = int(s1[1]) y = int(s1[2]) origy = y #go from y to l,then when u hit l skip to r while (ind(l, r, origy)): if origy > l: origy = r origy += r%y origy+= y print(str(origy))
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int q, i, l, r, d; cin >> q; for (i = 0; i < q; i++) { cin >> l >> r >> d; int x = r / d; if ((d * 1) < l) cout << d * 1 << endl; else if ((d * 1) == l && l == r) cout << d * 1 << endl; else if ((x * d) <= r) { if (((x + 1) * d) > r) cout << ((x + 1) * d) << endl; else cout << ((x + 2) * d) << endl; } } return 0; }
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
python3
test = int(input()) while(test): test -= 1 temp = list(map(int, input().split(" "))) l = temp[0] r = temp[1] d = temp[2] if d>r or d<l: print(d) else: while d<=r: d = d + r print(d)
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int x, a, b, c, i; int sum; cin >> x; for (i = 0; i < x; i++) { cin >> a >> b >> c; if (c == 1) cout << b + 1 << endl; else { } sum = c; while (sum >= 1) { if ((sum < a || sum > b) && sum % c == 0) { cout << sum << endl; break; } sum += c; } } return 0; }
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
java
import java.util.Scanner; /** * @author: miaolei * @date: 2019/1/18 * @description: */ public class SolutionCF1101A { public static void main(String[] args) { Scanner scan = new Scanner(System.in); int q = scan.nextInt(); for (int i = 0; i < q; i++) { int l = scan.nextInt(); int r = scan.nextInt(); int d = scan.nextInt(); if (d < l){ System.out.println(d); }else { if (d < l || d > r){ System.out.println(d); }else { int res = d; while (res >= l && res<=r && res<100000000){ for (int j = 2; j < 1000000000; j++) { res = d*j; if (res>=100000000 || res>r){ break; } } } System.out.println(res); } } } } }
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; inline long long modadd(long long n, long long m) { long long sum = ((n + m) % 1000000007 + 1000000007) % 1000000007; return sum; } inline long long modsub(long long n, long long m) { long long diff = ((n - m + 1000000007) % 1000000007 + 1000000007) % 1000000007; return diff; } inline long long modpro(long long n, long long m) { long long pro = ((n * m) % 1000000007 + 1000000007) % 1000000007; return pro; } inline long long pow(int x, int y) { long long res = 1; while (y > 0) { if (y & 1) res = res * x; y = y >> 1; x = x * x; } return res; } inline long long powmod(long long x, long long y) { long long res = 1; while (y > 0) { if (y & 1) res = modpro(res, x); y = y >> 1; x = modpro(x, x); } return res; } template <class T, class U> bool comparep(const pair<T, U>& i, const pair<T, U>& j) { return i.first > j.first; } template <class T, class U> bool comparep2(const pair<T, U>& i, const pair<T, U>& j) { return ((i.second < j.second) || ((i.second == j.second) && i.first < j.first)); } template <typename T> T gcd(T a, T b) { if (a == 0) return b; if (b == 0) return a; T t; while ((a > 0) && (b > 0)) { t = a; a = b % a; b = t; } return max(a, b); } template <typename T> T maxof(T n_args, ...) { va_list ap; va_start(ap, n_args); T big = va_arg(ap, T); for (int i = 2; i <= n_args; i++) { T a = va_arg(ap, T); if (a > big) big = a; } va_end(ap); return big; } template <typename T> T gcdarr(T a[], int n) { T gc = gcd<T>(a[0], a[1]); for (int i = 2; i < n; i++) { gc = gcd<T>(gc, a[i]); } return gc; } template <typename T> T maxarr(T a[], int n) { T big = a[0]; for (int i = 1; i < n; i++) { big = max(big, a[i]); } return big; } template <typename T> T minarr(T a[], int n) { T small = a[0]; for (int i = 1; i < n; i++) { small = min(small, a[i]); } return small; } long long choose(long long n, int k) { long long res = 1; if (k > n - k) k = n - k; for (int i = 0; i < k; ++i) { res *= (n - i); res /= (i + 1); } return res; } class Graph { public: int V; vector<int> v[25]; bool visited[25] = {0}; queue<int> q; Graph(int V) { this->V = V; } void addEdge(int a, int b) { v[a].push_back(b); v[b].push_back(a); } void dfs(int x) { if (visited[x] == 0) { visited[x] = 1; for (int u : v[x]) { dfs(u); } } } void bfs(int n, int x) { visited[x] = 1; q.push(x); while (!q.empty()) { int s = q.front(); q.pop(); for (int u : v[s]) { if (visited[u] == 1) continue; visited[u] = 1; q.push(u); } } } int connectedcomponents(int n) { int ans = 0; for (int i = 1; i < n + 1; i++) { if (!visited[i]) { ans++; dfs(i); } } return ans; } }; template <typename T> T findpower(T n, T p) { T x = 0; while (n) { n /= p; x += n; } return x; } void primeFactors(int n) { while (n % 2 == 0) { cout << 2 << " "; n = n / 2; } for (int i = 3; i <= sqrt(n); i = i + 2) { while (n % i == 0) { cout << i << " "; n = n / i; } } if (n > 2) cout << n << " "; } int main() { int erer; erer = 1; cin >> erer; while (erer--) { int l, r, d; cin >> l >> r >> d; int temp; if (l % d == 0) { temp = l - d; } else temp = l / d * d; if (temp == 0) { if (r % d == 0) { temp = r + d; } else temp = ((r / d) + 1) * d; } cout << temp << endl; } return 0; }
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; scanf("%d", &n); for (int i = 1; i <= n; i++) { int x, y, a; scanf("%d%d%d", &x, &y, &a); int l = x / a; int r = y / a; int res = 1e9; if (a < x) res = a; if (a > y) res = min(res, a); if (a * l < x && l != 0) res = min(res, a * l); printf("%d\n", min(res, (r + 1) * a)); } return 0; }
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
python3
T = int(input()) for t in range(T): l,r,d = [int(x) for x in input().split()] if d<l or d>r : print(d) else: remainder = (r+1)%d addend = d - remainder print(r+1+addend)
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
java
import java.util.Arrays; import java.util.LinkedList; import java.util.PriorityQueue; import java.util.Queue; import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int size = sc.nextInt(); int[][] arr = new int[size][3]; for (int i = 0; i < size; i++) { for (int j = 0; j < 3; j++) { arr[i][j] = sc.nextInt(); } } for (int i = 0; i < size; i++) { int a = arr[i][0]; int b = arr[i][1]; int c = arr[i][2]; for (int j = 1; j < 1000000000; j++) { if (j == a) { j = b; } else if (j % c == 0) { System.out.println(j); break; } } } } }
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; inline long long modadd(long long n, long long m) { long long sum = ((n + m) % 1000000007 + 1000000007) % 1000000007; return sum; } inline long long modsub(long long n, long long m) { long long diff = ((n - m + 1000000007) % 1000000007 + 1000000007) % 1000000007; return diff; } inline long long modpro(long long n, long long m) { long long pro = ((n * m) % 1000000007 + 1000000007) % 1000000007; return pro; } inline long long pow(int x, int y) { long long res = 1; while (y > 0) { if (y & 1) res = res * x; y = y >> 1; x = x * x; } return res; } inline long long powmod(long long x, long long y) { long long res = 1; while (y > 0) { if (y & 1) res = modpro(res, x); y = y >> 1; x = modpro(x, x); } return res; } template <class T, class U> bool comparep(const pair<T, U>& i, const pair<T, U>& j) { return i.first > j.first; } template <class T, class U> bool comparep2(const pair<T, U>& i, const pair<T, U>& j) { return ((i.second < j.second) || ((i.second == j.second) && i.first < j.first)); } template <typename T> T gcd(T a, T b) { if (a == 0) return b; if (b == 0) return a; T t; while ((a > 0) && (b > 0)) { t = a; a = b % a; b = t; } return max(a, b); } template <typename T> T maxof(T n_args, ...) { va_list ap; va_start(ap, n_args); T big = va_arg(ap, T); for (int i = 2; i <= n_args; i++) { T a = va_arg(ap, T); if (a > big) big = a; } va_end(ap); return big; } template <typename T> T gcdarr(T a[], int n) { T gc = gcd<T>(a[0], a[1]); for (int i = 2; i < n; i++) { gc = gcd<T>(gc, a[i]); } return gc; } template <typename T> T maxarr(T a[], int n) { T big = a[0]; for (int i = 1; i < n; i++) { big = max(big, a[i]); } return big; } template <typename T> T minarr(T a[], int n) { T small = a[0]; for (int i = 1; i < n; i++) { small = min(small, a[i]); } return small; } long long choose(long long n, int k) { long long res = 1; if (k > n - k) k = n - k; for (int i = 0; i < k; ++i) { res *= (n - i); res /= (i + 1); } return res; } class Graph { public: int V; vector<int> v[25]; bool visited[25] = {0}; queue<int> q; Graph(int V) { this->V = V; } void addEdge(int a, int b) { v[a].push_back(b); v[b].push_back(a); } void dfs(int x) { if (visited[x] == 0) { visited[x] = 1; for (int u : v[x]) { dfs(u); } } } void bfs(int n, int x) { visited[x] = 1; q.push(x); while (!q.empty()) { int s = q.front(); q.pop(); for (int u : v[s]) { if (visited[u] == 1) continue; visited[u] = 1; q.push(u); } } } int connectedcomponents(int n) { int ans = 0; for (int i = 1; i < n + 1; i++) { if (!visited[i]) { ans++; dfs(i); } } return ans; } }; template <typename T> T findpower(T n, T p) { T x = 0; while (n) { n /= p; x += n; } return x; } void primeFactors(int n) { while (n % 2 == 0) { cout << 2 << " "; n = n / 2; } for (int i = 3; i <= sqrt(n); i = i + 2) { while (n % i == 0) { cout << i << " "; n = n / i; } } if (n > 2) cout << n << " "; } int main() { int erer; erer = 1; cin >> erer; while (erer--) { int l, r, d; cin >> l >> r >> d; int temp; temp = d; if (temp == 0) { if (r % d == 0) { temp = r + d; } else temp = ((r / d) + 1) * d; } cout << temp << endl; } return 0; }
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { ios::sync_with_stdio(false); cin.tie(0); int n; cin >> n; while (n--) { long long d, l, r; cin >> l >> r >> d; long long num = l * d; cout << num << endl; } return 0; }
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
java
var q=parseInt(readline()); for(var i=0;i<q;i++){ var s=readline().split(" "); var l=parseInt(s[0]),r=parseInt(s[1]),d=parseInt(s[2]); var y=r+1; while(y%d!==0){y++;}print(y); }
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
java
import java.util.Arrays; import java.util.*; import java.io.*; import java.math.BigInteger; public class ContestG1 { static long mod = (int) (1e9+7); static InputReader sc; static PrintWriter w; static void solve() { sc = new InputReader(System.in); w = new PrintWriter(System.out); int ans=0; int n=sc.nextInt(); for (int i=0;i<n;i++) { int l=sc.nextInt(); int r=sc.nextInt(); int d=sc.nextInt(); for (int j=1;j<=5;j++ ) { ans=d*j; if (ans!=l && ans!=r && ans<l && ans>r) { w.println(ans); break; } } w.flush(); } w.close(); } public static void main(String[] args) { new Thread(null,new Runnable() { @Override public void run() { try{ solve(); } catch(Exception e){ e.printStackTrace(); } } },"1",1<<26).start(); } static class Pair implements Comparable<Pair> { int i; long x, y; Pair (long x,long y,int i) { this.x = x; this.y = y; this.i = i; } public int compareTo(Pair o) { return Long.compare(this.i,o.i); } public boolean equals(Object o) { if (o instanceof Pair) { Pair p = (Pair)o; return p.x == x && p.y==y; } return false; } @Override public String toString() { return x + " "+ y + " "+i; } public int hashCode() { return new Long(x).hashCode() * 31 + new Long(y).hashCode(); } } static class Merge { public static void sort(int inputArr[]) { int length = inputArr.length; doMergeSort(inputArr,0, length - 1); } private static void doMergeSort(int[] arr,int lowerIndex, int higherIndex) { if (lowerIndex < higherIndex) { int middle = lowerIndex + (higherIndex - lowerIndex) / 2; doMergeSort(arr,lowerIndex, middle); doMergeSort(arr,middle + 1, higherIndex); mergeParts(arr,lowerIndex, middle, higherIndex); } } private static void mergeParts(int[]array,int lowerIndex, int middle, int higherIndex) { int[] temp=new int[higherIndex-lowerIndex+1]; for (int i = lowerIndex; i <= higherIndex; i++) { temp[i-lowerIndex] = array[i]; } int i = lowerIndex; int j = middle + 1; int k = lowerIndex; while (i <= middle && j <= higherIndex) { if (temp[i-lowerIndex] < temp[j-lowerIndex]) { array[k] = temp[i-lowerIndex]; i++; } else { array[k] = temp[j-lowerIndex]; j++; } k++; } while (i <= middle) { array[k] = temp[i-lowerIndex]; k++; i++; } while(j<=higherIndex) { array[k]=temp[j-lowerIndex]; k++; j++; } } } static long add(long a,long b) { long x = a + b; if(x >= mod) x -= mod; return x; } static long sub(long a,long b) { long x= a - b ; if(x < 0) x += mod; return x; } static long mul(long a,long b) { a %= mod; b %= mod; long x = a*b; return x%mod; } static boolean isPal(String s) { for(int i=0, j=s.length()-1;i<=j;i++,j--) { if(s.charAt(i)!=s.charAt(j)) return false; } return true; } static String rev(String s) { StringBuilder sb=new StringBuilder(s); sb.reverse(); return sb.toString(); } static long gcd(long x,long y) { if(y==0) return x; else return gcd(y,x%y); } static int gcd(int x,int y) { if(y==0) return x; else return gcd(y,x%y); } static long gcdExtended(long a,long b,long[] x) { if(a==0) { x[0]=0; x[1]=1; return b; } long[] y=new long[2]; long gcd=gcdExtended(b%a, a, y); x[0]=y[1]-(b/a)*y[0]; x[1]=y[0]; return gcd; } static long mulmod(long a,long b,long m) { if (m <= 1000000009) return a * b % m; long res = 0; while (a > 0) { if ((a&1)!=0) { res += b; if (res >= m) res -= m; } a >>= 1; b <<= 1; if (b >= m) b -= m; } return res; } static int abs(int a,int b) { return (int)Math.abs(a-b); } public static long abs(long a,long b) { return (long)Math.abs(a-b); } static int max(int a,int b) { if(a>b) return a; else return b; } static int min(int a,int b) { if(a>b) return b; else return a; } static long max(long a,long b) { if(a>b) return a; else return b; } static long min(long a,long b) { if(a>b) return b; else return a; } static long pow(long n,long p,long m) { long result = 1; if(p==0) return 1; while(p!=0) { if(p%2==1) result *= n; if(result>=m) result%=m; p >>=1; n*=n; if(n>=m) n%=m; } return result; } static long pow(long n,long p) { long result = 1; if(p==0) return 1; while(p!=0) { if(p%2==1) result *= n; p >>=1; n*=n; } return result; } static void debug(Object... o) { System.out.println(Arrays.deepToString(o)); } static class InputReader { private final InputStream stream; private final byte[] buf = new byte[8192]; private int curChar, snumChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int snext() { if (snumChars == -1) throw new InputMismatchException(); if (curChar >= snumChars) { curChar = 0; try { snumChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (snumChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = snext(); while (isSpaceChar(c)) { c = snext(); } int sgn = 1; if (c == '-') { sgn = -1; c = snext(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = snext(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = snext(); while (isSpaceChar(c)) { c = snext(); } int sgn = 1; if (c == '-') { sgn = -1; c = snext(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = snext(); } while (!isSpaceChar(c)); return res * sgn; } public int[] nextIntArray(int n) { int a[] = new int[n]; for (int i = 0; i < n; i++) { a[i] = nextInt(); } return a; } public long[] nextLongArray(int n) { long a[] = new long[n]; for (int i = 0; i < n; i++) { a[i] = nextLong(); } return a; } public String readString() { int c = snext(); while (isSpaceChar(c)) { c = snext(); } StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = snext(); } while (!isSpaceChar(c)); return res.toString(); } public String nextLine() { int c = snext(); while (isSpaceChar(c)) c = snext(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = snext(); } while (!isEndOfLine(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } }
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
python3
n = int(input()) for _ in range(n): l,r,d = map(int,input().split()) i = r//d print(d*i+d)
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
java
import java.util.Scanner; public class Main { public static void main(String[] args) { final Scanner scanner = new Scanner(System.in); final int n = scanner.nextInt(); for (int i = 0; i < n; i++) { int l = scanner.nextInt(); int r = scanner.nextInt(); int d = scanner.nextInt(); if (d < l || r < d) { System.out.println(d); } else { if (r % d == 0) { System.out.println(d * ((r / d) + 1)); } else { System.out.println(d * Math.ceil(1.0 * r / d)); } } } } }
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
python3
t = int(input()) for i in range(t): l, r, d = map(int, input().split()) if d < l: for j in range(1, l): if j % d == 0: print(j) break else: for j in range(r+1, 10**9): if j % d == 0: print(j) break
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int t; long long int l, r, d; int main() { cin >> t; while (t--) { cin >> l >> r >> d; if (d < l || d > r) { cout << d << endl; continue; } if (r % d == 0) { cout << r + d << endl; continue; } cout << ceil(r / (d * 1.0)) * d << endl; } }
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
python3
import math q = int(input()) for i in range(q): l, r, d = map(int, input().split()) if d < l or d > r: print(d) elif r+1 % d == 0: print(r+1) else: print(r+1 - ((r+1) % d) + d)
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
python3
t=int(input()) sum=0 for i in range(1,t+1,1): a,b,c=map(int,input().split()) m=min(a,b,c) if(m%c==0& a<=b): if(a<=m & m<=b): sum=a+b else: sum=min(a,b,c) else: sum=min(a+b,b+c) print(sum)
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; bool Finish_read; template <class T> inline void read(T &x) { Finish_read = 0; x = 0; int f = 1; char ch = getchar(); while (!isdigit(ch)) { if (ch == '-') f = -1; if (ch == EOF) return; ch = getchar(); } while (isdigit(ch)) x = x * 10 + ch - '0', ch = getchar(); x *= f; Finish_read = 1; } template <class T> inline void print(T x) { if (x / 10 != 0) print(x / 10); putchar(x % 10 + '0'); } template <class T> inline void writeln(T x) { if (x < 0) putchar('-'); x = abs(x); print(x); putchar('\n'); } template <class T> inline void write(T x) { if (x < 0) putchar('-'); x = abs(x); print(x); } long long gcd(long long a, long long b) { return b == 0 ? a : gcd(b, a % b); } long long lcm(long long a, long long b) { long long gg = gcd(a, b); a /= gg; if (a <= LLONG_MAX / b) return a * b; return LLONG_MAX; } const int maxn = 1e5 + 7; int n, m; int main() { long long x; int n; cin >> n; while (n--) { long long l, r, d; cin >> l >> r >> d; cout << d * (r + 1) << endl; } return 0; }
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> int main() { int l, r, d, i, n, x, q, z = 0; scanf("%d", &q); for (i = 1; i <= q; i++) { scanf("%d %d %d", &l, &r, &d); if (d < l) { printf("%d\n", d); } else if (d > r) { printf("%d\n", d); } else { if ((2 * d) > r) { printf("%d\n", 2 * d); } else { i = 1; z = r; while (z % d != 0 || z <= r) { z = z * d; } printf("%d\n", z); } } } return 0; }
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int q; cin >> q; int l[500], r[500], d[500], ans[500]; for (int i = 0; i < q; i++) { cin >> l[i] >> r[i] >> d[i]; int quo; quo = int(r[i] / d[i]); ans[i] = d[i] * (quo + 1); } for (int i = 0; i < q; i++) { cout << ans[i] << endl; } }
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int t; cin >> t; while (t--) { int l, r, d; cin >> l >> r >> d; int q = r / d; int ans = d * (q + 1); for (int i = 1; i <= l; i++) { if (d * i < l) { ans = min(ans, d * i); break; } } cout << ans << endl; } return 0; }
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
java
import java.util.Scanner; public class A_Minimum_Integer { public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt(); int l,r,d; while(n>=1){ l = in.nextInt(); r = in.nextInt(); d = in.nextInt(); if(d<l) System.out.println(d); else{ if((r+1)%d!=0){ int x = ((r+1)/d)+1; System.out.println(x*d); } } n--; } } }
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
python3
q = int(input()) for _ in range(q): l,r,d = map(int,input().split(" ")) s = l+r if(d<l): print(d) elif(s%d==0 and d!=1): print(l+r) else: rem = r%d plus = (d-rem)+r minus = (d-rem)-r if(minus>r): print(minus) else: print(plus)
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long int l, r, d, i, k; int q; int main() { cin >> q; for (i = 0; i < q; i++) { cin >> l >> r >> d; if ((d < l) || (d > r)) { cout << d << endl; } if (((d > l) && (d < r)) || (d == l) || (d == r)) { while (k * d <= r) { k++; } cout << k * d << endl; } } return 0; }
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
java
import java.util.*; public class Class2 { public static void main(String[] args) { Scanner temp = new Scanner(System.in); int counter = 0; int queries = temp.nextInt(); int list[] = new int[queries]; //System.out.println(queries); while(counter<queries) { int l = temp.nextInt(); int r = temp.nextInt(); int d = temp.nextInt(); //int multiplier = 1; int req = d; if(d>l && d<r) { list[counter] = r - (r%d) + d; } else { list[counter] = req; } counter = counter + 1; } for(int x:list) { System.out.println(x); } } }
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
java
import java.util.Scanner; public class MinInteger { public static void main(String[] args) { // TODO Auto-generated method stub int n; int l[]=new int[50]; int r[]=new int[50]; int d[]=new int[50]; Scanner sc= new Scanner(System.in); n= sc.nextInt(); for(int i=0;i<n;i++) { l[i]=sc.nextInt(); r[i]=sc.nextInt(); d[i]=sc.nextInt(); } for(int i=0;i<n;i++) {//System.out.println(i); if(d[i]>r[i] || d[i]<l[i]) { System.out.println(d[i]); } else { //System.out.println("else"+d[i]); for(int j=2;j<=r[i];j++) { //System.out.println(d[i]); if(d[i]*j>r[i]) {System.out.println(d[i]*j); break; } } } } } }
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
java
import java.io.InputStreamReader; import java.util.HashMap; import java.util.Map; import java.util.Scanner; public class Solution { public static void main(String[] args) { Scanner sc = new Scanner(new InputStreamReader(System.in)); int t = sc.nextInt(); Map<String, Long> map = new HashMap<>(); while (t-- > 0) { long l = sc.nextLong(); long r = sc.nextLong(); long d = sc.nextLong(); long ans = 0; String key = String.format("%d,%d,%d", l, r, d); if (map.containsKey(key)) { ans = map.get(key); } else { if (d == 1) { if (l > 1) ans = 1; else if (r < Long.MAX_VALUE) ans = r + 1; } else { for (long i = 1; i < Integer.MAX_VALUE / d; i++) { if (i * d < l || i * d > r) { ans = i * d; break; } } } map.put(key, ans); } System.out.println(ans); } } }
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
java
import java.io.*; import java.util.Arrays; import java.util.StringTokenizer; public class Con1{ public static void main(String[] args) throws Exception { Scanner sc = new Scanner(System.in); PrintWriter out = new PrintWriter(System.out); int q=sc.nextInt(); while(q-->0) { int l=sc.nextInt(); int r=sc.nextInt(); int d=sc.nextInt(); int temp=d; if(d<l) { System.out.println(d); continue; } else if(d>r){ System.out.println(d); continue; } if(d>=l&&d<=r) { while(d*10<r) { d=d*10; } } if(d>=l&&d<=r) { int j=2; int sum=0; while(sum<=r) { sum=j*d; j++; } System.out.println(sum); } } } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream system) {br = new BufferedReader(new InputStreamReader(system));} public Scanner(String file) throws Exception {br = new BufferedReader(new FileReader(file));} public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public String nextLine()throws IOException{return br.readLine();} public int nextInt() throws IOException {return Integer.parseInt(next());} public double nextDouble() throws IOException {return Double.parseDouble(next());} public char nextChar()throws IOException{return next().charAt(0);} public Long nextLong()throws IOException{return Long.parseLong(next());} public boolean ready() throws IOException{return br.ready();} public void waitForInput() throws InterruptedException {Thread.sleep(3000);} }}
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
python3
#1101A q = int(input()) for u in range(q): [l,r,d] = list(map(int,input().split())) left = (l//d)*d if left > 0: print(left) else: print(((r//d)+1)*d)
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
java
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.HashMap; import java.util.LinkedList; import java.util.Scanner; import java.util.StringTokenizer; public class csdCDc { public static void main(String[] args) throws NumberFormatException, IOException { BufferedReader br= new BufferedReader(new InputStreamReader( System.in)); Scanner sc =new Scanner(System.in); int n =Integer.parseInt(br.readLine()); for(int i=0;i<n;i++) { StringTokenizer st =new StringTokenizer(br.readLine()); long x=Integer.parseInt(st.nextToken()); long y=Integer.parseInt(st.nextToken()); long d=Integer.parseInt(st.nextToken()); if(d<x || d>y) { System.out.println(d); } else { long g=((y-x)/d+1)*d; System.out.println(g+d); } } } }
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(void) { int q; cin >> q; while (q--) { int l, r, d; cin >> l >> r >> d; if (d == 1) { cout << 1 << endl; } else { int i = 1; while (true) { int a = d * i; if (a < l || a > r) { cout << a << endl; break; } i++; } } } return 0; }
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
python3
t=int(input()) for i in range(t): s=list(map(int,input().split(" "))) l=s[0] r=s[1] d=s[2] if(d<l): print(d) else: for j in range(r+1,1000000001): if(j%d==0): print(j) break
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
java
import java.util.*; public class Z1101A { public static void main(String[] args) { Scanner inputScanner = new Scanner(System.in); int q = inputScanner.nextInt(); for(int i=0;i<q;++i) { int l,r,d; l = inputScanner.nextInt(); r = inputScanner.nextInt(); d = inputScanner.nextInt(); int j = d; if(j < l || j > r) System.out.println(j); else { j += (r-l)*d; System.out.println(j); } } } }
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
python3
import math q = int(input()) for i in range(q): l, r, d = map(int, input().split()) if d < l or d > r: print(d) else: print(r+1 - ((r+1) % d) + d)
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
java
import java.util.*; public class A { public static void main(String[] args) { Scanner s=new Scanner(System.in); int q=s.nextInt(); int i,j,x=0; for(i=0;i<q;i++) { int l=s.nextInt(); int r=s.nextInt(); int d=s.nextInt(); for(j=1;j<=d;j++) { if(i%d==0) { if(i!=l || i!=r) { x=i; return; } } } } System.out.print(x); } }
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
java
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.util.StringTokenizer; public class codeforces { public static void main( String[] args ) throws IOException { Reader.init(System.in); int query = Reader.nextInt(); for( int q =0 ; q < query ; q++ ) { long l = Reader.nextLong(); long r = Reader.nextLong(); long d = Reader.nextLong(); long res = 0; if ( d == 1 ) { System.out.println(1); } else if ( d > r || d < l ) { System.out.println(d); } else { long r1 = (r-(r%d))+d; System.out.println(r1); } } } } class Reader { static BufferedReader reader; static StringTokenizer tokenizer; static void init(InputStream input) { reader = new BufferedReader(new InputStreamReader(input) ); tokenizer = new StringTokenizer(""); } static String next() throws IOException { while ( ! tokenizer.hasMoreTokens() ) { //TODO add check for eof if necessary tokenizer = new StringTokenizer(reader.readLine() ); } return tokenizer.nextToken(); } static int nextInt() throws IOException { return Integer.parseInt( next() ); } static double nextDouble() throws IOException { return Double.parseDouble( next() ); } static long nextLong() throws IOException { return Long.parseLong( next() ); } }
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> int main() { int q, i; long long int l, d, r, x; scanf("%d", &q); for (i = 1; i <= q; i++) { scanf("%lld%lld%lld", &l, &r, &d); if (l / d == 1 && l % d != 0) printf("%d", d); else if (l / d > 1) printf("%d", d); else { x = r / d; printf("%d\n", (x + 1) * d); } } return 0; }
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
python2
t=int(raw_input()) while(t): l,r,d=list(map(int,raw_input().split())) if(d==l and d<r): print d+r elif(d>r>l): print d elif(d<l): print d elif(l<d<r): print d*2 t-=1
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int q; cin >> q; while (q--) { int i = 0, j = 0, k = 0, l, temp; cin >> i >> j >> k; if (i > j) { temp = i; i = j; j = temp; } for (int a = 1; a < 10000; a++) { l = a * k; if (l < i || l > j) { cout << l << endl; break; } } } }
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int a; cin >> a; for (int i = 0; i < a; i++) { long long b, c, d; cin >> b >> c >> d; for (int i = 1; i < 1000000002; i++) { if (i == b) i = c; if (i < b || i > c) { if (i % d == 0) { cout << i << endl; break; } } } } }
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
python3
n = int(input()) for i in range(n): l,r,d = map(int,input().split()) k = r // d print((k+1)*d)
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; scanf("%d", &N); while (N--) { int l, r, d; scanf("%d %d %d", &l, &r, &d); if (d < l || d > r) { printf("%d\n", d); } else { printf("%d\n", 1); } } return 0; }
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
java
import java.util.Scanner; public class main { public static void main(String[] args) { int l,r,k,x,a,b,c,d,t; Scanner in=new Scanner(System.in); t=in.nextInt(); for(int i=1;i<=t;i++) { a=in.nextInt(); b=in.nextInt(); c=in.nextInt(); if(a==c) { System.out.println("6"); } if(c>b || c<a ) { System.out.println(c); } else if(c==5) { System.out.println("10"); } } } }
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MAXN = 100005; const int MAXM = 1000005; const double EPS = 1e-8; const int INT_INF = 0x3f3f3f3f; const long long LL_INF = 0x3f3f3f3f3f3f3f3f; int main() { int q; cin >> q; int l, r, num; while (q--) { cin >> l >> r >> num; if (num < l) { cout << num << endl; } if (num > r) { cout << num << endl; } else { cout << (r / num + 1) * num << endl; } } return 0; }
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
python2
q=int(input()) while 1: try: i=1 l,r,d=map(int,input().split()) for j in range(1,1000000000): if i%d==0 and (i<l or i>r): print(i) break i+=1 except: break
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int t; cin >> t; while (t--) { long long a, b, c; cin >> a >> b >> c; long long x = abs(c - b); long long y = abs(c - x); cout << 2 * c + x + y << endl; } return 0; }
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
python3
q = int(input()) for i in range(q): l, r, d = map(int, input().split()) sol = (l//d) * d if sol > 0: print(sol) else: print(((r+d-1)//d) * d)
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
java
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; public class Main { public static void main(String[] args) { FastReader in = new FastReader(); int t = in.nextInt(); StringBuilder sb = new StringBuilder(); for (int i = 0; i < t; i++) { long a = in.nextLong(), b = in.nextLong(), n = in.nextLong(); if (n < a || n > b) { sb.append(n).append("\n"); } else { sb.append(a + b).append("\n"); } } System.out.print(sb); } } class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } }
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
python3
import math from decimal import * import random mod = int(1e9)+7 for _ in range(int(input())): l,r, d =map(int, input().split()) if(d==1): print(1) elif((l-1)//d > 0): print(((l-1)//d)*d) else: print(((r+d)//d)*d)
1101_A. Minimum Integer
You are given q queries in the following form: Given three integers l_i, r_i and d_i, find minimum positive integer x_i such that it is divisible by d_i and it does not belong to the segment [l_i, r_i]. Can you answer all the queries? Recall that a number x belongs to segment [l, r] if l ≀ x ≀ r. Input The first line contains one integer q (1 ≀ q ≀ 500) β€” the number of queries. Then q lines follow, each containing a query given in the format l_i r_i d_i (1 ≀ l_i ≀ r_i ≀ 10^9, 1 ≀ d_i ≀ 10^9). l_i, r_i and d_i are integers. Output For each query print one integer: the answer to this query. Example Input 5 2 4 2 5 10 4 3 10 1 1 2 3 4 6 5 Output 6 4 1 3 10
{ "input": [ "5\n2 4 2\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n" ], "output": [ "6\n4\n1\n3\n10\n" ] }
{ "input": [ "20\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n1 1000000000 2\n", "1\n78 79 79\n", "1\n6 6 6\n", "20\n1 1 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n1 999999999 1\n", "1\n78 1000 1\n", "1\n77 10000 1\n", "20\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "10\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n78 80 1\n", "20\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n1 1000000000 3\n", "1\n1 1 123456789\n", "1\n80 100 1\n", "5\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n1000000000 1000000000 1\n", "1\n78 10000 1\n", "1\n79 80 100\n", "5\n1 1000000000 1\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n1 999999999 2\n", "1\n78 89 34\n", "1\n1 1 1\n", "1\n1 3 2\n", "10\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n1 999999998 1\n", "4\n1 999999999 1\n1 999999998 1\n1 999999997 1\n1 999999996 1\n", "5\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "2\n1 1 2\n1 1 2\n", "1\n80 100 80\n", "25\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n1 1000000000 1\n1 1000000000 1000000000\n2 1000000000 1\n1 999999999 1000000000\n5 6 5\n", "30\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "16\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n1 1000000000 1\n", "1\n1 1000000000 6\n", "1\n5 5 5\n", "1\n2 5 6\n", "8\n1 999999998 1\n1 999999997 1\n1 999999996 1\n1 999999995 1\n1 999999994 1\n1 999999993 1\n1 999999992 1\n1 999999991 1\n", "5\n80 100 10\n5 10 4\n3 10 1\n1 2 3\n4 6 5\n", "1\n1 1000000000 1017\n", "1\n1 1000000000 2\n" ], "output": [ "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "158\n", "12\n", "2\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "1\n", "1\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1\n", "1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n1000000002\n", "123456789\n", "1\n", "1\n1\n1\n1\n1\n", "1\n", "100\n", "1000000001\n1000000000\n999999999\n999999998\n999999997\n", "1000000001\n2000000000\n1\n1000000000\n10\n", "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n", "34\n", "2\n", "4\n", "999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n999999999\n", "1000000000\n999999999\n999999998\n999999997\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "2\n2\n", "160\n", "1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n1000000001\n2000000000\n1\n1000000000\n10\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n1000000001\n", "1000000002\n", "10\n", "6\n", "999999999\n999999998\n999999997\n999999996\n999999995\n999999994\n999999993\n999999992\n", "10\n4\n1\n3\n10\n", "1000000845\n", "1000000002\n" ] }
IN-CORRECT
java
import java.util.Scanner; public class test19{ public static int testCase19(int L,int r,int d) { System.out.println("hi"); return (r%d==0)?r+d:r+d-r%d; } public static void main(String[] args) { Scanner input = new Scanner(System.in); int t=input.nextInt(); for (int i = 0; i < t; i++) { int L= input.nextInt(); int r = input.nextInt(); int d = input.nextInt(); System.out.println((d<L||d>r)?d:testCase19(L,r,d)); } } }