prompt
stringlengths
70
19.8k
completion
stringlengths
8
303
api
stringlengths
23
93
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import os os.environ["OPENAI_API_KEY"] = "sk-..." import tiktoken from llama_index.core.callbacks import CallbackManager, TokenCountingHandler from llama_index.llms.openai import OpenAI from llama_index.core import Settings token_counter = TokenCountingHandler( tokenizer=tiktoken.encoding_for_model("gpt-3.5-turbo").encode ) Settings.llm = OpenAI(model="gpt-3.5-turbo", temperature=0.2) Settings.callback_manager =
CallbackManager([token_counter])
llama_index.core.callbacks.CallbackManager
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-llms-langchain') get_ipython().system('pip install llama-index') from langchain.chat_models import ChatAnyscale, ChatOpenAI from llama_index.llms.langchain import LangChainLLM from llama_index.core import PromptTemplate llm = LangChainLLM(ChatOpenAI()) stream = await llm.astream(PromptTemplate("Hi, write a short story")) async for token in stream: print(token, end="") llm = LangChainLLM(ChatAnyscale()) stream = llm.stream(
PromptTemplate("Hi, Which NFL team have most Super Bowl wins")
llama_index.core.PromptTemplate
import os import openai os.environ["OPENAI_API_KEY"] = "sk-..." openai.api_key = os.environ["OPENAI_API_KEY"] get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") from llama_index.core import SimpleDirectoryReader reader = SimpleDirectoryReader( input_files=["./data/paul_graham/paul_graham_essay.txt"] ) docs = reader.load_data() text = docs[0].text from llama_index.core.response_synthesizers import TreeSummarize from llama_index.core.types import BaseModel from typing import List class Biography(BaseModel): """Data model for a biography.""" name: str best_known_for: List[str] extra_info: str summarizer =
TreeSummarize(verbose=True, output_cls=Biography)
llama_index.core.response_synthesizers.TreeSummarize
get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().system('pip install llama-index') import pandas as pd pd.set_option("display.max_rows", None) pd.set_option("display.max_columns", None) pd.set_option("display.width", None) pd.set_option("display.max_colwidth", None) get_ipython().system('wget "https://www.dropbox.com/scl/fi/mlaymdy1ni1ovyeykhhuk/tesla_2021_10k.htm?rlkey=qf9k4zn0ejrbm716j0gg7r802&dl=1" -O tesla_2021_10k.htm') get_ipython().system('wget "https://www.dropbox.com/scl/fi/rkw0u959yb4w8vlzz76sa/tesla_2020_10k.htm?rlkey=tfkdshswpoupav5tqigwz1mp7&dl=1" -O tesla_2020_10k.htm') from llama_index.readers.file import FlatReader from pathlib import Path reader = FlatReader() docs = reader.load_data(Path("./tesla_2020_10k.htm")) from llama_index.core.evaluation import DatasetGenerator, QueryResponseDataset from llama_index.llms.openai import OpenAI from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.readers.file import FlatReader from llama_index.core.node_parser import HTMLNodeParser, SentenceSplitter from llama_index.core.ingestion import IngestionPipeline from pathlib import Path import nest_asyncio nest_asyncio.apply() reader = FlatReader() docs = reader.load_data(Path("./tesla_2020_10k.htm")) pipeline = IngestionPipeline( documents=docs, transformations=[
HTMLNodeParser.from_defaults()
llama_index.core.node_parser.HTMLNodeParser.from_defaults
import openai openai.api_key = "sk-your-key" from llama_index.agent import OpenAIAgent from llama_index.tools import QueryEngineTool, ToolMetadata from llama_index import SimpleDirectoryReader, VectorStoreIndex import requests response = requests.get( "https://www.dropbox.com/s/f6bmb19xdg0xedm/paul_graham_essay.txt?dl=1" ) essay_txt = response.text with open("pg_essay.txt", "w") as fp: fp.write(essay_txt) documents = SimpleDirectoryReader(input_files=["pg_essay.txt"]).load_data() index =
VectorStoreIndex.from_documents(documents)
llama_index.VectorStoreIndex.from_documents
get_ipython().system('pip install llama-index') from llama_index.core.chat_engine import SimpleChatEngine chat_engine = SimpleChatEngine.from_defaults() response = chat_engine.chat( "Say something profound and romantic about fourth of July" ) print(response) from llama_index.core.chat_engine import SimpleChatEngine from llama_index.core.prompts.system import SHAKESPEARE_WRITING_ASSISTANT chat_engine = SimpleChatEngine.from_defaults( system_prompt=SHAKESPEARE_WRITING_ASSISTANT ) response = chat_engine.chat( "Say something profound and romantic about fourth of July" ) print(response) from llama_index.core.chat_engine import SimpleChatEngine from llama_index.core.prompts.system import MARKETING_WRITING_ASSISTANT chat_engine = SimpleChatEngine.from_defaults( system_prompt=MARKETING_WRITING_ASSISTANT ) response = chat_engine.chat( "Say something profound and romantic about fourth of July" ) print(response) from llama_index.core.chat_engine import SimpleChatEngine from llama_index.core.prompts.system import IRS_TAX_CHATBOT chat_engine =
SimpleChatEngine.from_defaults(system_prompt=IRS_TAX_CHATBOT)
llama_index.core.chat_engine.SimpleChatEngine.from_defaults
import os os.environ["OPENAI_API_KEY"] = "sk-..." from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.core.postprocessor import ( FixedRecencyPostprocessor, EmbeddingRecencyPostprocessor, ) from llama_index.core.node_parser import SentenceSplitter from llama_index.core.storage.docstore import SimpleDocumentStore from llama_index.core.response.notebook_utils import display_response from llama_index.core import StorageContext def get_file_metadata(file_name: str): """Get file metadata.""" if "v1" in file_name: return {"date": "2020-01-01"} elif "v2" in file_name: return {"date": "2020-02-03"} elif "v3" in file_name: return {"date": "2022-04-12"} else: raise ValueError("invalid file") documents = SimpleDirectoryReader( input_files=[ "test_versioned_data/paul_graham_essay_v1.txt", "test_versioned_data/paul_graham_essay_v2.txt", "test_versioned_data/paul_graham_essay_v3.txt", ], file_metadata=get_file_metadata, ).load_data() from llama_index.core import Settings Settings.text_splitter = SentenceSplitter(chunk_size=512) nodes = Settings.text_splitter.get_nodes_from_documents(documents) docstore = SimpleDocumentStore() docstore.add_documents(nodes) storage_context = StorageContext.from_defaults(docstore=docstore) print(documents[2].get_text()) index = VectorStoreIndex(nodes, storage_context=storage_context) node_postprocessor = FixedRecencyPostprocessor() node_postprocessor_emb = EmbeddingRecencyPostprocessor() query_engine = index.as_query_engine( similarity_top_k=3, ) response = query_engine.query( "How much did the author raise in seed funding from Idelle's husband" " (Julian) for Viaweb?", ) query_engine = index.as_query_engine( similarity_top_k=3, node_postprocessors=[node_postprocessor] ) response = query_engine.query( "How much did the author raise in seed funding from Idelle's husband" " (Julian) for Viaweb?", ) query_engine = index.as_query_engine( similarity_top_k=3, node_postprocessors=[node_postprocessor_emb] ) response = query_engine.query( "How much did the author raise in seed funding from Idelle's husband" " (Julian) for Viaweb?", ) from llama_index.core import SummaryIndex query_str = ( "How much did the author raise in seed funding from Idelle's husband" " (Julian) for Viaweb?" ) query_engine = index.as_query_engine( similarity_top_k=3, response_mode="no_text" ) init_response = query_engine.query( query_str, ) resp_nodes = [n.node for n in init_response.source_nodes] summary_index =
SummaryIndex(resp_nodes)
llama_index.core.SummaryIndex
get_ipython().system('pip install llama-index') import logging import sys from IPython.display import Markdown, display import pandas as pd from llama_index.core.query_engine import PandasQueryEngine logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) df = pd.DataFrame( { "city": ["Toronto", "Tokyo", "Berlin"], "population": [2930000, 13960000, 3645000], } ) query_engine = PandasQueryEngine(df=df, verbose=True) response = query_engine.query( "What is the city with the highest population?", ) display(Markdown(f"<b>{response}</b>")) print(response.metadata["pandas_instruction_str"]) query_engine = PandasQueryEngine(df=df, verbose=True, synthesize_response=True) response = query_engine.query( "What is the city with the highest population? Give both the city and population", ) print(str(response)) get_ipython().system("wget 'https://raw.githubusercontent.com/jerryjliu/llama_index/main/docs/examples/data/csv/titanic_train.csv' -O 'titanic_train.csv'") df = pd.read_csv("./titanic_train.csv") query_engine = PandasQueryEngine(df=df, verbose=True) response = query_engine.query( "What is the correlation between survival and age?", ) display(Markdown(f"<b>{response}</b>")) print(response.metadata["pandas_instruction_str"]) from llama_index.core import PromptTemplate query_engine =
PandasQueryEngine(df=df, verbose=True)
llama_index.core.query_engine.PandasQueryEngine
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-hub-llama-packs-tables-chain-of-table-base') get_ipython().system('wget "https://github.com/ppasupat/WikiTableQuestions/releases/download/v1.0.2/WikiTableQuestions-1.0.2-compact.zip" -O data.zip') get_ipython().system('unzip data.zip') import pandas as pd df = pd.read_csv("./WikiTableQuestions/csv/200-csv/3.csv") df from llama_index.packs.tables.chain_of_table.base import ( ChainOfTableQueryEngine, serialize_table, ) from llama_index.core.llama_pack import download_llama_pack download_llama_pack( "ChainOfTablePack", "./chain_of_table_pack", skip_load=True, ) from llama_index.llms.openai import OpenAI llm = OpenAI(model="gpt-4-1106-preview") import phoenix as px import llama_index.core px.launch_app() llama_index.core.set_global_handler("arize_phoenix") import pandas as pd df = pd.read_csv("~/Downloads/WikiTableQuestions/csv/200-csv/11.csv") df query_engine = ChainOfTableQueryEngine(df, llm=llm, verbose=True) response = query_engine.query("Who won best Director in the 1972 Academy Awards?") str(response.response) import pandas as pd df = pd.read_csv("./WikiTableQuestions/csv/200-csv/42.csv") df query_engine = ChainOfTableQueryEngine(df, llm=llm, verbose=True) response = query_engine.query("What was the precipitation in inches during June?") str(response) from llama_index.core import PromptTemplate from llama_index.core.query_pipeline import QueryPipeline prompt_str = """\ Here's a serialized table. {serialized_table} Given this table please answer the question: {question} Answer: """ prompt = PromptTemplate(prompt_str) prompt_c = prompt.as_query_component(partial={"serialized_table": serialize_table(df)}) qp = QueryPipeline(chain=[prompt_c, llm]) response = qp.run("What was the precipitation in inches during June?") print(str(response)) import pandas as pd df = pd.read_csv("./WikiTableQuestions/csv/203-csv/114.csv") df query_engine =
ChainOfTableQueryEngine(df, llm=llm, verbose=True)
llama_index.packs.tables.chain_of_table.base.ChainOfTableQueryEngine
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') import camelot from llama_index.core import VectorStoreIndex from llama_index.core.query_engine import PandasQueryEngine from llama_index.core.schema import IndexNode from llama_index.llms.openai import OpenAI from llama_index.readers.file import PyMuPDFReader from typing import List import os os.environ["OPENAI_API_KEY"] = "YOUR_API_KEY" from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.llms.openai import OpenAI from llama_index.core import Settings Settings.llm = OpenAI(model="gpt-3.5-turbo") Settings.embed_model = OpenAIEmbedding(model="text-embedding-3-small") file_path = "billionaires_page.pdf" reader =
PyMuPDFReader()
llama_index.readers.file.PyMuPDFReader
get_ipython().run_line_magic('pip', 'install llama-index-agent-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-postprocessor-cohere-rerank') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().system('pip install llama-index llama-hub') get_ipython().run_line_magic('load_ext', 'autoreload') get_ipython().run_line_magic('autoreload', '2') domain = "docs.llamaindex.ai" docs_url = "https://docs.llamaindex.ai/en/latest/" get_ipython().system('wget -e robots=off --recursive --no-clobber --page-requisites --html-extension --convert-links --restrict-file-names=windows --domains {domain} --no-parent {docs_url}') from llama_index.readers.file import UnstructuredReader reader = UnstructuredReader() from pathlib import Path all_files_gen = Path("./docs.llamaindex.ai/").rglob("*") all_files = [f.resolve() for f in all_files_gen] all_html_files = [f for f in all_files if f.suffix.lower() == ".html"] len(all_html_files) from llama_index.core import Document doc_limit = 100 docs = [] for idx, f in enumerate(all_html_files): if idx > doc_limit: break print(f"Idx {idx}/{len(all_html_files)}") loaded_docs = reader.load_data(file=f, split_documents=True) start_idx = 72 loaded_doc = Document( text="\n\n".join([d.get_content() for d in loaded_docs[72:]]), metadata={"path": str(f)}, ) print(loaded_doc.metadata["path"]) docs.append(loaded_doc) import os os.environ["OPENAI_API_KEY"] = "sk-..." import nest_asyncio nest_asyncio.apply() from llama_index.llms.openai import OpenAI from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.core import Settings Settings.llm = OpenAI(model="gpt-3.5-turbo") Settings.embed_model = OpenAIEmbedding(model="text-embedding-3-small") from llama_index.agent.openai import OpenAIAgent from llama_index.core import ( load_index_from_storage, StorageContext, VectorStoreIndex, ) from llama_index.core import SummaryIndex from llama_index.core.tools import QueryEngineTool, ToolMetadata from llama_index.core.node_parser import SentenceSplitter import os from tqdm.notebook import tqdm import pickle async def build_agent_per_doc(nodes, file_base): print(file_base) vi_out_path = f"./data/llamaindex_docs/{file_base}" summary_out_path = f"./data/llamaindex_docs/{file_base}_summary.pkl" if not os.path.exists(vi_out_path): Path("./data/llamaindex_docs/").mkdir(parents=True, exist_ok=True) vector_index = VectorStoreIndex(nodes) vector_index.storage_context.persist(persist_dir=vi_out_path) else: vector_index = load_index_from_storage( StorageContext.from_defaults(persist_dir=vi_out_path), ) summary_index = SummaryIndex(nodes) vector_query_engine = vector_index.as_query_engine(llm=llm) summary_query_engine = summary_index.as_query_engine( response_mode="tree_summarize", llm=llm ) if not os.path.exists(summary_out_path): Path(summary_out_path).parent.mkdir(parents=True, exist_ok=True) summary = str( await summary_query_engine.aquery( "Extract a concise 1-2 line summary of this document" ) ) pickle.dump(summary, open(summary_out_path, "wb")) else: summary = pickle.load(open(summary_out_path, "rb")) query_engine_tools = [ QueryEngineTool( query_engine=vector_query_engine, metadata=ToolMetadata( name=f"vector_tool_{file_base}", description=f"Useful for questions related to specific facts", ), ), QueryEngineTool( query_engine=summary_query_engine, metadata=ToolMetadata( name=f"summary_tool_{file_base}", description=f"Useful for summarization questions", ), ), ] function_llm = OpenAI(model="gpt-4") agent = OpenAIAgent.from_tools( query_engine_tools, llm=function_llm, verbose=True, system_prompt=f"""\ You are a specialized agent designed to answer queries about the `{file_base}.html` part of the LlamaIndex docs. You must ALWAYS use at least one of the tools provided when answering a question; do NOT rely on prior knowledge.\ """, ) return agent, summary async def build_agents(docs): node_parser = SentenceSplitter() agents_dict = {} extra_info_dict = {} for idx, doc in enumerate(tqdm(docs)): nodes = node_parser.get_nodes_from_documents([doc]) file_path = Path(doc.metadata["path"]) file_base = str(file_path.parent.stem) + "_" + str(file_path.stem) agent, summary = await build_agent_per_doc(nodes, file_base) agents_dict[file_base] = agent extra_info_dict[file_base] = {"summary": summary, "nodes": nodes} return agents_dict, extra_info_dict agents_dict, extra_info_dict = await build_agents(docs) all_tools = [] for file_base, agent in agents_dict.items(): summary = extra_info_dict[file_base]["summary"] doc_tool = QueryEngineTool( query_engine=agent, metadata=ToolMetadata( name=f"tool_{file_base}", description=summary, ), ) all_tools.append(doc_tool) print(all_tools[0].metadata) from llama_index.core import VectorStoreIndex from llama_index.core.objects import ( ObjectIndex, SimpleToolNodeMapping, ObjectRetriever, ) from llama_index.core.retrievers import BaseRetriever from llama_index.postprocessor.cohere_rerank import CohereRerank from llama_index.core.query_engine import SubQuestionQueryEngine from llama_index.llms.openai import OpenAI llm = OpenAI(model_name="gpt-4-0613") tool_mapping = SimpleToolNodeMapping.from_objects(all_tools) obj_index = ObjectIndex.from_objects( all_tools, tool_mapping, VectorStoreIndex, ) vector_node_retriever = obj_index.as_node_retriever(similarity_top_k=10) class CustomRetriever(BaseRetriever): def __init__(self, vector_retriever, postprocessor=None): self._vector_retriever = vector_retriever self._postprocessor = postprocessor or
CohereRerank(top_n=5)
llama_index.postprocessor.cohere_rerank.CohereRerank
get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-redis') get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-mongodb') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-huggingface') get_ipython().system('mkdir -p data') get_ipython().system('echo "This is a test file: one!" > data/test1.txt') get_ipython().system('echo "This is a test file: two!" > data/test2.txt') from llama_index.core import SimpleDirectoryReader documents = SimpleDirectoryReader("./data", filename_as_id=True).load_data() from llama_index.embeddings.huggingface import HuggingFaceEmbedding from llama_index.core.ingestion import IngestionPipeline from llama_index.core.storage.docstore import SimpleDocumentStore from llama_index.storage.docstore.redis import RedisDocumentStore from llama_index.storage.docstore.mongodb import MongoDocumentStore from llama_index.core.node_parser import SentenceSplitter pipeline = IngestionPipeline( transformations=[ SentenceSplitter(), HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5"), ], docstore=
SimpleDocumentStore()
llama_index.core.storage.docstore.SimpleDocumentStore
get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().system('pip install llama-index') import pandas as pd pd.set_option("display.max_rows", None) pd.set_option("display.max_columns", None) pd.set_option("display.width", None) pd.set_option("display.max_colwidth", None) get_ipython().system('wget "https://www.dropbox.com/scl/fi/mlaymdy1ni1ovyeykhhuk/tesla_2021_10k.htm?rlkey=qf9k4zn0ejrbm716j0gg7r802&dl=1" -O tesla_2021_10k.htm') get_ipython().system('wget "https://www.dropbox.com/scl/fi/rkw0u959yb4w8vlzz76sa/tesla_2020_10k.htm?rlkey=tfkdshswpoupav5tqigwz1mp7&dl=1" -O tesla_2020_10k.htm') from llama_index.readers.file import FlatReader from pathlib import Path reader = FlatReader() docs = reader.load_data(Path("./tesla_2020_10k.htm")) from llama_index.core.evaluation import DatasetGenerator, QueryResponseDataset from llama_index.llms.openai import OpenAI from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.readers.file import FlatReader from llama_index.core.node_parser import HTMLNodeParser, SentenceSplitter from llama_index.core.ingestion import IngestionPipeline from pathlib import Path import nest_asyncio nest_asyncio.apply() reader = FlatReader() docs = reader.load_data(Path("./tesla_2020_10k.htm")) pipeline = IngestionPipeline( documents=docs, transformations=[ HTMLNodeParser.from_defaults(), SentenceSplitter(chunk_size=1024, chunk_overlap=200), OpenAIEmbedding(), ], ) eval_nodes = pipeline.run(documents=docs) eval_llm = OpenAI(model="gpt-3.5-turbo") dataset_generator = DatasetGenerator( eval_nodes[:100], llm=eval_llm, show_progress=True, num_questions_per_chunk=3, ) eval_dataset = await dataset_generator.agenerate_dataset_from_nodes(num=100) len(eval_dataset.qr_pairs) eval_dataset.save_json("data/tesla10k_eval_dataset.json") eval_dataset = QueryResponseDataset.from_json( "data/tesla10k_eval_dataset.json" ) eval_qs = eval_dataset.questions qr_pairs = eval_dataset.qr_pairs ref_response_strs = [r for (_, r) in qr_pairs] from llama_index.core.evaluation import ( CorrectnessEvaluator, SemanticSimilarityEvaluator, ) from llama_index.core.evaluation.eval_utils import ( get_responses, get_results_df, ) from llama_index.core.evaluation import BatchEvalRunner evaluator_c = CorrectnessEvaluator(llm=eval_llm) evaluator_s = SemanticSimilarityEvaluator(llm=eval_llm) evaluator_dict = { "correctness": evaluator_c, "semantic_similarity": evaluator_s, } batch_eval_runner = BatchEvalRunner( evaluator_dict, workers=2, show_progress=True ) from llama_index.core import VectorStoreIndex async def run_evals( pipeline, batch_eval_runner, docs, eval_qs, eval_responses_ref ): nodes = pipeline.run(documents=docs) vector_index = VectorStoreIndex(nodes) query_engine = vector_index.as_query_engine() pred_responses = get_responses(eval_qs, query_engine, show_progress=True) eval_results = await batch_eval_runner.aevaluate_responses( eval_qs, responses=pred_responses, reference=eval_responses_ref ) return eval_results from llama_index.core.node_parser import HTMLNodeParser, SentenceSplitter sent_parser_o0 = SentenceSplitter(chunk_size=1024, chunk_overlap=0) sent_parser_o200 = SentenceSplitter(chunk_size=1024, chunk_overlap=200) sent_parser_o500 = SentenceSplitter(chunk_size=1024, chunk_overlap=600) html_parser = HTMLNodeParser.from_defaults() parser_dict = { "sent_parser_o0": sent_parser_o0, "sent_parser_o200": sent_parser_o200, "sent_parser_o500": sent_parser_o500, } from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.core.ingestion import IngestionPipeline pipeline_dict = {} for k, parser in parser_dict.items(): pipeline = IngestionPipeline( documents=docs, transformations=[ html_parser, parser, OpenAIEmbedding(), ], ) pipeline_dict[k] = pipeline eval_results_dict = {} for k, pipeline in pipeline_dict.items(): eval_results = await run_evals( pipeline, batch_eval_runner, docs, eval_qs, ref_response_strs ) eval_results_dict[k] = eval_results import pickle pickle.dump(eval_results_dict, open("eval_results_1.pkl", "wb")) eval_results_list = list(eval_results_dict.items()) results_df = get_results_df( [v for _, v in eval_results_list], [k for k, _ in eval_results_list], ["correctness", "semantic_similarity"], ) display(results_df) for k, pipeline in pipeline_dict.items(): pipeline.cache.persist(f"./cache/{k}.json") from llama_index.core.extractors import ( TitleExtractor, QuestionsAnsweredExtractor, SummaryExtractor, ) from llama_index.core.node_parser import HTMLNodeParser, SentenceSplitter extractor_dict = { "summary": SummaryExtractor(in_place=False), "qa": QuestionsAnsweredExtractor(in_place=False), "default": None, } html_parser = HTMLNodeParser.from_defaults() sent_parser_o200 = SentenceSplitter(chunk_size=1024, chunk_overlap=200) pipeline_dict = {} html_parser =
HTMLNodeParser.from_defaults()
llama_index.core.node_parser.HTMLNodeParser.from_defaults
from llama_index.core import SQLDatabase from sqlalchemy import ( create_engine, MetaData, Table, Column, String, Integer, select, column, ) engine = create_engine("sqlite:///chinook.db") sql_database = SQLDatabase(engine) from llama_index.core.query_pipeline import QueryPipeline get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('curl "https://www.sqlitetutorial.net/wp-content/uploads/2018/03/chinook.zip" -O ./chinook.zip') get_ipython().system('unzip ./chinook.zip') from llama_index.core.settings import Settings from llama_index.core.callbacks import CallbackManager callback_manager =
CallbackManager()
llama_index.core.callbacks.CallbackManager
get_ipython().run_line_magic('pip', 'install llama-index-llms-litellm') get_ipython().system('pip install llama-index') import os from llama_index.llms.litellm import LiteLLM from llama_index.core.llms import ChatMessage os.environ["OPENAI_API_KEY"] = "your-api-key" os.environ["COHERE_API_KEY"] = "your-api-key" message = ChatMessage(role="user", content="Hey! how's it going?") llm = LiteLLM("gpt-3.5-turbo") chat_response = llm.chat([message]) llm = LiteLLM("command-nightly") chat_response = llm.chat([message]) from llama_index.core.llms import ChatMessage from llama_index.llms.litellm import LiteLLM messages = [ ChatMessage( role="system", content="You are a pirate with a colorful personality" ), ChatMessage(role="user", content="Tell me a story"), ] resp = LiteLLM("gpt-3.5-turbo").chat(messages) print(resp) from llama_index.llms.litellm import LiteLLM llm = LiteLLM("gpt-3.5-turbo") resp = llm.stream_complete("Paul Graham is ") for r in resp: print(r.delta, end="") from llama_index.llms.litellm import LiteLLM messages = [ ChatMessage( role="system", content="You are a pirate with a colorful personality" ), ChatMessage(role="user", content="Tell me a story"), ] llm =
LiteLLM("gpt-3.5-turbo")
llama_index.llms.litellm.LiteLLM
get_ipython().run_line_magic('pip', 'install llama-index-agent-openai') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') from llama_index.agent.openai import OpenAIAgent from llama_index.llms.openai import OpenAI from llama_index.core.tools import BaseTool, FunctionTool def multiply(a: int, b: int) -> int: """Multiple two integers and returns the result integer""" return a * b multiply_tool = FunctionTool.from_defaults(fn=multiply) def add(a: int, b: int) -> int: """Add two integers and returns the result integer""" return a + b add_tool = FunctionTool.from_defaults(fn=add) llm = OpenAI(model="gpt-3.5-turbo-1106") agent = OpenAIAgent.from_tools( [multiply_tool, add_tool], llm=llm, verbose=True ) response = agent.chat("What is (121 * 3) + 42?") print(str(response)) response = agent.stream_chat("What is (121 * 3) + 42?") import nest_asyncio nest_asyncio.apply() response = await agent.achat("What is (121 * 3) + 42?") print(str(response)) response = await agent.astream_chat("What is (121 * 3) + 42?") response_gen = response.response_gen async for token in response.async_response_gen(): print(token, end="") import json def get_current_weather(location, unit="fahrenheit"): """Get the current weather in a given location""" if "tokyo" in location.lower(): return json.dumps( {"location": location, "temperature": "10", "unit": "celsius"} ) elif "san francisco" in location.lower(): return json.dumps( {"location": location, "temperature": "72", "unit": "fahrenheit"} ) else: return json.dumps( {"location": location, "temperature": "22", "unit": "celsius"} ) weather_tool =
FunctionTool.from_defaults(fn=get_current_weather)
llama_index.core.tools.FunctionTool.from_defaults
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-huggingface') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('load_ext', 'autoreload') get_ipython().run_line_magic('autoreload', '2') get_ipython().system('pip install llama-index') import os import openai os.environ["OPENAI_API_KEY"] = "sk-..." from llama_index.llms.openai import OpenAI from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.embeddings.huggingface import HuggingFaceEmbedding from llama_index.core.node_parser import SentenceWindowNodeParser from llama_index.core.node_parser import SentenceSplitter node_parser = SentenceWindowNodeParser.from_defaults( window_size=3, window_metadata_key="window", original_text_metadata_key="original_text", ) text_splitter = SentenceSplitter() llm = OpenAI(model="gpt-3.5-turbo", temperature=0.1) embed_model = HuggingFaceEmbedding( model_name="sentence-transformers/all-mpnet-base-v2", max_length=512 ) from llama_index.core import Settings Settings.llm = llm Settings.embed_model = embed_model Settings.text_splitter = text_splitter get_ipython().system('curl https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_Chapter03.pdf --output IPCC_AR6_WGII_Chapter03.pdf') from llama_index.core import SimpleDirectoryReader documents = SimpleDirectoryReader( input_files=["./IPCC_AR6_WGII_Chapter03.pdf"] ).load_data() nodes = node_parser.get_nodes_from_documents(documents) base_nodes = text_splitter.get_nodes_from_documents(documents) from llama_index.core import VectorStoreIndex sentence_index = VectorStoreIndex(nodes) base_index = VectorStoreIndex(base_nodes) from llama_index.core.postprocessor import MetadataReplacementPostProcessor query_engine = sentence_index.as_query_engine( similarity_top_k=2, node_postprocessors=[ MetadataReplacementPostProcessor(target_metadata_key="window") ], ) window_response = query_engine.query( "What are the concerns surrounding the AMOC?" ) print(window_response) window = window_response.source_nodes[0].node.metadata["window"] sentence = window_response.source_nodes[0].node.metadata["original_text"] print(f"Window: {window}") print("------------------") print(f"Original Sentence: {sentence}") query_engine = base_index.as_query_engine(similarity_top_k=2) vector_response = query_engine.query( "What are the concerns surrounding the AMOC?" ) print(vector_response) query_engine = base_index.as_query_engine(similarity_top_k=5) vector_response = query_engine.query( "What are the concerns surrounding the AMOC?" ) print(vector_response) for source_node in window_response.source_nodes: print(source_node.node.metadata["original_text"]) print("--------") for node in vector_response.source_nodes: print("AMOC mentioned?", "AMOC" in node.node.text) print("--------") print(vector_response.source_nodes[2].node.text) from llama_index.core.evaluation import DatasetGenerator, QueryResponseDataset from llama_index.llms.openai import OpenAI import nest_asyncio import random nest_asyncio.apply() len(base_nodes) num_nodes_eval = 30 sample_eval_nodes = random.sample(base_nodes[:200], num_nodes_eval) dataset_generator = DatasetGenerator( sample_eval_nodes, llm=OpenAI(model="gpt-4"), show_progress=True, num_questions_per_chunk=2, ) eval_dataset = await dataset_generator.agenerate_dataset_from_nodes() eval_dataset.save_json("data/ipcc_eval_qr_dataset.json") eval_dataset = QueryResponseDataset.from_json("data/ipcc_eval_qr_dataset.json") import asyncio import nest_asyncio nest_asyncio.apply() from llama_index.core.evaluation import ( CorrectnessEvaluator, SemanticSimilarityEvaluator, RelevancyEvaluator, FaithfulnessEvaluator, PairwiseComparisonEvaluator, ) from collections import defaultdict import pandas as pd evaluator_c = CorrectnessEvaluator(llm=OpenAI(model="gpt-4")) evaluator_s = SemanticSimilarityEvaluator() evaluator_r = RelevancyEvaluator(llm=OpenAI(model="gpt-4")) evaluator_f = FaithfulnessEvaluator(llm=OpenAI(model="gpt-4")) from llama_index.core.evaluation.eval_utils import ( get_responses, get_results_df, ) from llama_index.core.evaluation import BatchEvalRunner max_samples = 30 eval_qs = eval_dataset.questions ref_response_strs = [r for (_, r) in eval_dataset.qr_pairs] base_query_engine = base_index.as_query_engine(similarity_top_k=2) query_engine = sentence_index.as_query_engine( similarity_top_k=2, node_postprocessors=[ MetadataReplacementPostProcessor(target_metadata_key="window") ], ) import numpy as np base_pred_responses = get_responses( eval_qs[:max_samples], base_query_engine, show_progress=True ) pred_responses = get_responses( eval_qs[:max_samples], query_engine, show_progress=True ) pred_response_strs = [str(p) for p in pred_responses] base_pred_response_strs = [str(p) for p in base_pred_responses] evaluator_dict = { "correctness": evaluator_c, "faithfulness": evaluator_f, "relevancy": evaluator_r, "semantic_similarity": evaluator_s, } batch_runner =
BatchEvalRunner(evaluator_dict, workers=2, show_progress=True)
llama_index.core.evaluation.BatchEvalRunner
get_ipython().run_line_magic('pip', 'install llama-index-llms-fireworks') get_ipython().run_line_magic('pip', 'install llama-index') from llama_index.llms.fireworks import Fireworks resp = Fireworks().complete("Paul Graham is ") print(resp) from llama_index.core.llms import ChatMessage from llama_index.llms.fireworks import Fireworks messages = [ ChatMessage( role="system", content="You are a pirate with a colorful personality" ), ChatMessage(role="user", content="What is your name"), ] resp = Fireworks().chat(messages) print(resp) from llama_index.llms.fireworks import Fireworks llm = Fireworks() resp = llm.stream_complete("Paul Graham is ") for r in resp: print(r.delta, end="") from llama_index.llms.fireworks import Fireworks from llama_index.core.llms import ChatMessage llm =
Fireworks()
llama_index.llms.fireworks.Fireworks
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-huggingface') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-postprocessor-flag-embedding-reranker') get_ipython().system('pip install llama-index') get_ipython().system('pip install git+https://github.com/FlagOpen/FlagEmbedding.git') from llama_index.core import VectorStoreIndex, SimpleDirectoryReader get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") import os OPENAI_API_TOKEN = "sk-" os.environ["OPENAI_API_KEY"] = OPENAI_API_TOKEN documents = SimpleDirectoryReader("./data/paul_graham").load_data() from llama_index.embeddings.huggingface import HuggingFaceEmbedding from llama_index.llms.openai import OpenAI from llama_index.core import Settings Settings.llm = OpenAI(model="gpt-3.5-turbo") Settings.embed_model = HuggingFaceEmbedding( model_name="BAAI/bge-small-en-v1.5" ) index = VectorStoreIndex.from_documents(documents=documents) from llama_index.postprocessor.flag_embedding_reranker import ( FlagEmbeddingReranker, ) rerank =
FlagEmbeddingReranker(model="BAAI/bge-reranker-large", top_n=5)
llama_index.postprocessor.flag_embedding_reranker.FlagEmbeddingReranker
get_ipython().system('pip install llama-index-llms-ollama') get_ipython().system('pip install llama-index') from llama_index.llms.ollama import Ollama gemma_2b = Ollama(model="gemma:2b", request_timeout=30.0) gemma_7b =
Ollama(model="gemma:7b", request_timeout=30.0)
llama_index.llms.ollama.Ollama
get_ipython().run_line_magic('pip', 'install llama-index-readers-dashvector') get_ipython().system('pip install llama-index') import logging import sys import os logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) api_key = os.environ["DASHVECTOR_API_KEY"] from llama_index.readers.dashvector import DashVectorReader reader = DashVectorReader(api_key=api_key) import numpy as np id_to_text_map = { "id1": "text blob 1", "id2": "text blob 2", } query_vector = [n1, n2, n3, ...] documents = reader.load_data( collection_name="quickstart", id_to_text_map=id_to_text_map, top_k=3, vector=query_vector, filter="key = 'value'", ) from llama_index.core import ListIndex from IPython.display import Markdown, display index =
ListIndex.from_documents(documents)
llama_index.core.ListIndex.from_documents
get_ipython().run_line_magic('pip', 'install llama-index-multi-modal-llms-replicate') get_ipython().run_line_magic('', 'pip install replicate') import os REPLICATE_API_TOKEN = "" # Your Relicate API token here os.environ["REPLICATE_API_TOKEN"] = REPLICATE_API_TOKEN from PIL import Image import requests from io import BytesIO from llama_index.core.multi_modal_llms.generic_utils import load_image_urls from llama_index.core.schema import ImageDocument if not os.path.exists("test_images"): os.makedirs("test_images") image_urls = [ "https://www.sportsnet.ca/wp-content/uploads/2023/11/CP1688996471-1040x572.jpg", "https://res.cloudinary.com/hello-tickets/image/upload/c_limit,f_auto,q_auto,w_1920/v1640835927/o3pfl41q7m5bj8jardk0.jpg", "https://www.cleverfiles.com/howto/wp-content/uploads/2018/03/minion.jpg", ] for idx, image_url in enumerate(image_urls): response = requests.get(image_url) img = Image.open(BytesIO(response.content)) img.save(f"test_images/{idx}.png") image_documents = [ ImageDocument(image_path=f"test_images/{idx}.png") for idx in range(len(image_urls)) ] import matplotlib.pyplot as plt from llama_index.core.response.notebook_utils import display_image_uris image_paths = [str(img_doc.image_path) for img_doc in image_documents]
display_image_uris(image_paths)
llama_index.core.response.notebook_utils.display_image_uris
get_ipython().run_line_magic('pip', 'install llama-index-readers-wikipedia') import os os.environ["OPENAI_API_KEY"] = "INSERT OPENAI KEY" get_ipython().system('pip install llama-index') from llama_index.core import download_loader from llama_index.readers.wikipedia import WikipediaReader loader = WikipediaReader() documents = loader.load_data(pages=["Berlin"]) from llama_index.core import VectorStoreIndex index = VectorStoreIndex.from_documents(documents) import time from llama_index.core import VectorStoreIndex from llama_index.core.postprocessor import SentenceEmbeddingOptimizer print("Without optimization") start_time = time.time() query_engine = index.as_query_engine() res = query_engine.query("What is the population of Berlin?") end_time = time.time() print("Total time elapsed: {}".format(end_time - start_time)) print("Answer: {}".format(res)) print("With optimization") start_time = time.time() query_engine = index.as_query_engine( node_postprocessors=[SentenceEmbeddingOptimizer(percentile_cutoff=0.5)] ) res = query_engine.query("What is the population of Berlin?") end_time = time.time() print("Total time elapsed: {}".format(end_time - start_time)) print("Answer: {}".format(res)) print("Alternate optimization cutoff") start_time = time.time() query_engine = index.as_query_engine( node_postprocessors=[
SentenceEmbeddingOptimizer(threshold_cutoff=0.7)
llama_index.core.postprocessor.SentenceEmbeddingOptimizer
get_ipython().system('pip install llama-index') import os import openai os.environ["OPENAI_API_KEY"] = "sk-..." openai.api_key = os.environ["OPENAI_API_KEY"] import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import ( VectorStoreIndex, SimpleDirectoryReader, load_index_from_storage, StorageContext, ) from IPython.display import Markdown, display get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() index = VectorStoreIndex.from_documents(documents) query_engine = index.as_query_engine(response_mode="tree_summarize") def display_prompt_dict(prompts_dict): for k, p in prompts_dict.items(): text_md = f"**Prompt Key**: {k}<br>" f"**Text:** <br>" display(Markdown(text_md)) print(p.get_template()) display(Markdown("<br><br>")) prompts_dict = query_engine.get_prompts() display_prompt_dict(prompts_dict) prompts_dict = query_engine.response_synthesizer.get_prompts() display_prompt_dict(prompts_dict) query_engine = index.as_query_engine(response_mode="compact") prompts_dict = query_engine.get_prompts() display_prompt_dict(prompts_dict) response = query_engine.query("What did the author do growing up?") print(str(response)) from llama_index.core import PromptTemplate query_engine = index.as_query_engine(response_mode="tree_summarize") new_summary_tmpl_str = ( "Context information is below.\n" "---------------------\n" "{context_str}\n" "---------------------\n" "Given the context information and not prior knowledge, " "answer the query in the style of a Shakespeare play.\n" "Query: {query_str}\n" "Answer: " ) new_summary_tmpl = PromptTemplate(new_summary_tmpl_str) query_engine.update_prompts( {"response_synthesizer:summary_template": new_summary_tmpl} ) prompts_dict = query_engine.get_prompts() display_prompt_dict(prompts_dict) response = query_engine.query("What did the author do growing up?") print(str(response)) from llama_index.core.query_engine import ( RouterQueryEngine, FLAREInstructQueryEngine, ) from llama_index.core.selectors import LLMMultiSelector from llama_index.core.evaluation import FaithfulnessEvaluator, DatasetGenerator from llama_index.core.postprocessor import LLMRerank from llama_index.core.tools import QueryEngineTool query_tool = QueryEngineTool.from_defaults( query_engine=query_engine, description="test description" ) router_query_engine =
RouterQueryEngine.from_defaults([query_tool])
llama_index.core.query_engine.RouterQueryEngine.from_defaults
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-retrievers-bm25') import os import openai os.environ["OPENAI_API_KEY"] = "sk-..." openai.api_key = os.environ["OPENAI_API_KEY"] get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") from llama_index.core import SimpleDirectoryReader documents = SimpleDirectoryReader("./data/paul_graham/").load_data() from llama_index.core import VectorStoreIndex from llama_index.core.node_parser import SentenceSplitter splitter =
SentenceSplitter(chunk_size=256)
llama_index.core.node_parser.SentenceSplitter
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') from llama_index.core.evaluation.benchmarks import HotpotQAEvaluator from llama_index.core import VectorStoreIndex from llama_index.core import Document from llama_index.llms.openai import OpenAI from llama_index.core.embeddings import resolve_embed_model llm = OpenAI(model="gpt-3.5-turbo") embed_model = resolve_embed_model( "local:sentence-transformers/all-MiniLM-L6-v2" ) index = VectorStoreIndex.from_documents( [Document.example()], embed_model=embed_model, show_progress=True ) engine = index.as_query_engine(llm=llm) HotpotQAEvaluator().run(engine, queries=5, show_result=True) from llama_index.core.postprocessor import SentenceTransformerRerank rerank = SentenceTransformerRerank(top_n=3) engine = index.as_query_engine( llm=llm, node_postprocessors=[rerank], )
HotpotQAEvaluator()
llama_index.core.evaluation.benchmarks.HotpotQAEvaluator
get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') get_ipython().run_line_magic('load_ext', 'autoreload') get_ipython().run_line_magic('autoreload', '2') from pydantic import BaseModel from unstructured.partition.html import partition_html import pandas as pd pd.set_option("display.max_rows", None) pd.set_option("display.max_columns", None) pd.set_option("display.width", None) pd.set_option("display.max_colwidth", None) get_ipython().system('wget "https://www.dropbox.com/scl/fi/mlaymdy1ni1ovyeykhhuk/tesla_2021_10k.htm?rlkey=qf9k4zn0ejrbm716j0gg7r802&dl=1" -O tesla_2021_10k.htm') get_ipython().system('wget "https://www.dropbox.com/scl/fi/rkw0u959yb4w8vlzz76sa/tesla_2020_10k.htm?rlkey=tfkdshswpoupav5tqigwz1mp7&dl=1" -O tesla_2020_10k.htm') from llama_index.readers.file import FlatReader from pathlib import Path reader = FlatReader() docs_2021 = reader.load_data(Path("tesla_2021_10k.htm")) docs_2020 = reader.load_data(Path("tesla_2020_10k.htm")) from llama_index.core.node_parser import UnstructuredElementNodeParser node_parser =
UnstructuredElementNodeParser()
llama_index.core.node_parser.UnstructuredElementNodeParser
get_ipython().run_line_magic('pip', 'install llama-index-readers-mongodb') import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) get_ipython().system('pip install llama-index pymongo') from llama_index.core import SummaryIndex from llama_index.readers.mongodb import SimpleMongoReader from IPython.display import Markdown, display import os host = "<host>" port = "<port>" db_name = "<db_name>" collection_name = "<collection_name>" query_dict = {} field_names = ["text"] reader = SimpleMongoReader(host, port) documents = reader.load_data( db_name, collection_name, field_names, query_dict=query_dict ) index =
SummaryIndex.from_documents(documents)
llama_index.core.SummaryIndex.from_documents
get_ipython().run_line_magic('pip', 'install llama-index-llms-anthropic') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.llms.openai import OpenAI from llama_index.llms.anthropic import Anthropic llm = OpenAI() data = SimpleDirectoryReader(input_dir="./data/paul_graham/").load_data() index = VectorStoreIndex.from_documents(data) chat_engine = index.as_chat_engine(chat_mode="react", llm=llm, verbose=True) response = chat_engine.chat( "Use the tool to answer what did Paul Graham do in the summer of 1995?" ) print(response) llm =
Anthropic()
llama_index.llms.anthropic.Anthropic
get_ipython().run_line_magic('pip', 'install llama-index-llms-friendli') get_ipython().system('pip install llama-index') get_ipython().run_line_magic('env', 'FRIENDLI_TOKEN=...') from llama_index.llms.friendli import Friendli llm = Friendli() from llama_index.core.llms import ChatMessage, MessageRole message = ChatMessage(role=MessageRole.USER, content="Tell me a joke.") resp = llm.chat([message]) print(resp) resp = llm.stream_chat([message]) for r in resp: print(r.delta, end="") resp = await llm.achat([message]) print(resp) resp = await llm.astream_chat([message]) async for r in resp: print(r.delta, end="") prompt = "Draft a cover letter for a role in software engineering." resp = llm.complete(prompt) print(resp) resp = llm.stream_complete(prompt) for r in resp: print(r.delta, end="") resp = await llm.acomplete(prompt) print(resp) resp = await llm.astream_complete(prompt) async for r in resp: print(r.delta, end="") from llama_index.llms.friendli import Friendli llm =
Friendli(model="llama-2-70b-chat")
llama_index.llms.friendli.Friendli
from llama_index.agent import OpenAIAgent import openai openai.api_key = "sk-api-key" from llama_index.tools.gmail.base import GmailToolSpec from llama_index.tools.google_calendar.base import GoogleCalendarToolSpec from llama_index.tools.google_search.base import GoogleSearchToolSpec gmail_tools = GmailToolSpec().to_tool_list() gcal_tools =
GoogleCalendarToolSpec()
llama_index.tools.google_calendar.base.GoogleCalendarToolSpec
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') qa_prompt_str = ( "Context information is below.\n" "---------------------\n" "{context_str}\n" "---------------------\n" "Given the context information and not prior knowledge, " "answer the question: {query_str}\n" ) refine_prompt_str = ( "We have the opportunity to refine the original answer " "(only if needed) with some more context below.\n" "------------\n" "{context_msg}\n" "------------\n" "Given the new context, refine the original answer to better " "answer the question: {query_str}. " "If the context isn't useful, output the original answer again.\n" "Original Answer: {existing_answer}" ) from llama_index.core.llms import ChatMessage, MessageRole from llama_index.core import ChatPromptTemplate chat_text_qa_msgs = [ ChatMessage( role=MessageRole.SYSTEM, content=( "Always answer the question, even if the context isn't helpful." ), ), ChatMessage(role=MessageRole.USER, content=qa_prompt_str), ] text_qa_template = ChatPromptTemplate(chat_text_qa_msgs) chat_refine_msgs = [ ChatMessage( role=MessageRole.SYSTEM, content=( "Always answer the question, even if the context isn't helpful." ), ), ChatMessage(role=MessageRole.USER, content=refine_prompt_str), ] refine_template = ChatPromptTemplate(chat_refine_msgs) from llama_index.core import ChatPromptTemplate chat_text_qa_msgs = [ ( "system", "Always answer the question, even if the context isn't helpful.", ), ("user", qa_prompt_str), ] text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs) chat_refine_msgs = [ ( "system", "Always answer the question, even if the context isn't helpful.", ), ("user", refine_prompt_str), ] refine_template =
ChatPromptTemplate.from_messages(chat_refine_msgs)
llama_index.core.ChatPromptTemplate.from_messages
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import nest_asyncio nest_asyncio.apply() import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().handlers = [] logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import ( VectorStoreIndex, SimpleDirectoryReader, StorageContext, SimpleKeywordTableIndex, ) from llama_index.core import SummaryIndex from llama_index.core.node_parser import SentenceSplitter from llama_index.llms.openai import OpenAI get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() llm = OpenAI(model="gpt-4") splitter = SentenceSplitter(chunk_size=1024) nodes = splitter.get_nodes_from_documents(documents) storage_context = StorageContext.from_defaults() storage_context.docstore.add_documents(nodes) summary_index = SummaryIndex(nodes, storage_context=storage_context) vector_index = VectorStoreIndex(nodes, storage_context=storage_context) keyword_index = SimpleKeywordTableIndex(nodes, storage_context=storage_context) list_retriever = summary_index.as_retriever() vector_retriever = vector_index.as_retriever() keyword_retriever = keyword_index.as_retriever() from llama_index.core.tools import RetrieverTool list_tool = RetrieverTool.from_defaults( retriever=list_retriever, description=( "Will retrieve all context from Paul Graham's essay on What I Worked" " On. Don't use if the question only requires more specific context." ), ) vector_tool = RetrieverTool.from_defaults( retriever=vector_retriever, description=( "Useful for retrieving specific context from Paul Graham essay on What" " I Worked On." ), ) keyword_tool = RetrieverTool.from_defaults( retriever=keyword_retriever, description=( "Useful for retrieving specific context from Paul Graham essay on What" " I Worked On (using entities mentioned in query)" ), ) from llama_index.core.selectors import LLMSingleSelector, LLMMultiSelector from llama_index.core.selectors import ( PydanticMultiSelector, PydanticSingleSelector, ) from llama_index.core.retrievers import RouterRetriever from llama_index.core.response.notebook_utils import display_source_node retriever = RouterRetriever( selector=PydanticSingleSelector.from_defaults(llm=llm), retriever_tools=[ list_tool, vector_tool, ], ) nodes = retriever.retrieve( "Can you give me all the context regarding the author's life?" ) for node in nodes:
display_source_node(node)
llama_index.core.response.notebook_utils.display_source_node
get_ipython().run_line_magic('pip', 'install llama-index-multi-modal-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-qdrant') get_ipython().run_line_magic('pip', 'install llama_index ftfy regex tqdm') get_ipython().run_line_magic('pip', 'install git+https://github.com/openai/CLIP.git') get_ipython().run_line_magic('pip', 'install torch torchvision') get_ipython().run_line_magic('pip', 'install matplotlib scikit-image') get_ipython().run_line_magic('pip', 'install -U qdrant_client') import os OPENAI_API_TOKEN = "" os.environ["OPENAI_API_KEY"] = OPENAI_API_TOKEN from pathlib import Path input_image_path = Path("input_images") if not input_image_path.exists(): Path.mkdir(input_image_path) get_ipython().system('wget "https://docs.google.com/uc?export=download&id=1nUhsBRiSWxcVQv8t8Cvvro8HJZ88LCzj" -O ./input_images/long_range_spec.png') get_ipython().system('wget "https://docs.google.com/uc?export=download&id=19pLwx0nVqsop7lo0ubUSYTzQfMtKJJtJ" -O ./input_images/model_y.png') get_ipython().system('wget "https://docs.google.com/uc?export=download&id=1utu3iD9XEgR5Sb7PrbtMf1qw8T1WdNmF" -O ./input_images/performance_spec.png') get_ipython().system('wget "https://docs.google.com/uc?export=download&id=1dpUakWMqaXR4Jjn1kHuZfB0pAXvjn2-i" -O ./input_images/price.png') get_ipython().system('wget "https://docs.google.com/uc?export=download&id=1qNeT201QAesnAP5va1ty0Ky5Q_jKkguV" -O ./input_images/real_wheel_spec.png') from PIL import Image import matplotlib.pyplot as plt import os image_paths = [] for img_path in os.listdir("./input_images"): image_paths.append(str(os.path.join("./input_images", img_path))) def plot_images(image_paths): images_shown = 0 plt.figure(figsize=(16, 9)) for img_path in image_paths: if os.path.isfile(img_path): image = Image.open(img_path) plt.subplot(2, 3, images_shown + 1) plt.imshow(image) plt.xticks([]) plt.yticks([]) images_shown += 1 if images_shown >= 9: break plot_images(image_paths) from llama_index.multi_modal_llms.openai import OpenAIMultiModal from llama_index.core import SimpleDirectoryReader image_documents =
SimpleDirectoryReader("./input_images")
llama_index.core.SimpleDirectoryReader
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import nest_asyncio nest_asyncio.apply() import os os.environ["OPENAI_API_KEY"] = "sk-..." from llama_index.llms.openai import OpenAI from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.core import Settings Settings.llm = OpenAI(model="gpt-3.5-turbo-1106", temperature=0.2) Settings.embed_model = OpenAIEmbedding(model="text-embedding-3-small") from llama_index.core import SimpleDirectoryReader documents = SimpleDirectoryReader("../data/paul_graham").load_data() from llama_index.core import Settings Settings.chunk_size = 1024 nodes =
Settings.node_parser.get_nodes_from_documents(documents)
llama_index.core.Settings.node_parser.get_nodes_from_documents
get_ipython().run_line_magic('pip', 'install llama-index-readers-elasticsearch') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-opensearch') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-ollama') get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") from os import getenv from llama_index.core import SimpleDirectoryReader from llama_index.vector_stores.opensearch import ( OpensearchVectorStore, OpensearchVectorClient, ) from llama_index.core import VectorStoreIndex, StorageContext endpoint = getenv("OPENSEARCH_ENDPOINT", "http://localhost:9200") idx = getenv("OPENSEARCH_INDEX", "gpt-index-demo") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() text_field = "content" embedding_field = "embedding" client = OpensearchVectorClient( endpoint, idx, 1536, embedding_field=embedding_field, text_field=text_field ) vector_store = OpensearchVectorStore(client) storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex.from_documents( documents=documents, storage_context=storage_context ) query_engine = index.as_query_engine() res = query_engine.query("What did the author do growing up?") res.response from llama_index.core import Document from llama_index.core.vector_stores import MetadataFilters, ExactMatchFilter import regex as re text_chunks = documents[0].text.split("\n\n") footnotes = [ Document( text=chunk, id=documents[0].doc_id, metadata={"is_footnote": bool(re.search(r"^\s*\[\d+\]\s*", chunk))}, ) for chunk in text_chunks if bool(re.search(r"^\s*\[\d+\]\s*", chunk)) ] for f in footnotes: index.insert(f) footnote_query_engine = index.as_query_engine( filters=MetadataFilters( filters=[ ExactMatchFilter( key="term", value='{"metadata.is_footnote": "true"}' ), ExactMatchFilter( key="query_string", value='{"query": "content: space AND content: lisp"}', ), ] ) ) res = footnote_query_engine.query( "What did the author about space aliens and lisp?" ) res.response from llama_index.readers.elasticsearch import ElasticsearchReader rdr =
ElasticsearchReader(endpoint, idx)
llama_index.readers.elasticsearch.ElasticsearchReader
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-huggingface') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') from llama_index.core import VectorStoreIndex, SimpleDirectoryReader get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("./data/paul_graham").load_data() from llama_index.core import Settings from llama_index.embeddings.huggingface import HuggingFaceEmbedding from llama_index.llms.openai import OpenAI Settings.llm = OpenAI(model="gpt-3.5-turbo") Settings.embed_model = HuggingFaceEmbedding( model_name="BAAI/bge-small-en-v1.5" ) index =
VectorStoreIndex.from_documents(documents=documents)
llama_index.core.VectorStoreIndex.from_documents
get_ipython().run_line_magic('pip', 'install llama-index-llms-litellm') get_ipython().system('pip install llama-index') import os from llama_index.llms.litellm import LiteLLM from llama_index.core.llms import ChatMessage os.environ["OPENAI_API_KEY"] = "your-api-key" os.environ["COHERE_API_KEY"] = "your-api-key" message = ChatMessage(role="user", content="Hey! how's it going?") llm =
LiteLLM("gpt-3.5-turbo")
llama_index.llms.litellm.LiteLLM
get_ipython().system('pip install llama-index') get_ipython().system('pip install duckdb') get_ipython().system('pip install llama-index-vector-stores-duckdb') from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.vector_stores.duckdb import DuckDBVectorStore from llama_index.core import StorageContext from IPython.display import Markdown, display import os import openai openai.api_key = os.environ["OPENAI_API_KEY"] get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("data/paul_graham/").load_data() vector_store = DuckDBVectorStore() storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex.from_documents( documents, storage_context=storage_context ) query_engine = index.as_query_engine() response = query_engine.query("What did the author do growing up?") display(Markdown(f"<b>{response}</b>")) documents = SimpleDirectoryReader("data/paul_graham/").load_data() vector_store =
DuckDBVectorStore("pg.duckdb", persist_dir="./persist/")
llama_index.vector_stores.duckdb.DuckDBVectorStore
get_ipython().run_line_magic('pip', 'install llama-index-readers-notion') import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) get_ipython().system('pip install llama-index') from llama_index.core import SummaryIndex from llama_index.readers.notion import NotionPageReader from IPython.display import Markdown, display import os integration_token = os.getenv("NOTION_INTEGRATION_TOKEN") page_ids = ["<page_id>"] documents = NotionPageReader(integration_token=integration_token).load_data( page_ids=page_ids ) index =
SummaryIndex.from_documents(documents)
llama_index.core.SummaryIndex.from_documents
get_ipython().system('pip install llama-index') get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.core.indices.query.query_transform import HyDEQueryTransform from llama_index.core.query_engine import TransformQueryEngine from IPython.display import Markdown, display documents = SimpleDirectoryReader("./data/paul_graham/").load_data() index = VectorStoreIndex.from_documents(documents) query_str = "what did paul graham do after going to RISD" query_engine = index.as_query_engine() response = query_engine.query(query_str) display(Markdown(f"<b>{response}</b>")) hyde = HyDEQueryTransform(include_original=True) hyde_query_engine =
TransformQueryEngine(query_engine, hyde)
llama_index.core.query_engine.TransformQueryEngine
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-huggingface') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') from llama_index.readers.file import PDFReader reader =
PDFReader()
llama_index.readers.file.PDFReader
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-pinecone') get_ipython().run_line_magic('pip', 'install llama-index-readers-wikipedia') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') import openai import os os.environ["OPENAI_API_KEY"] = "[You API key]" get_ipython().system('pip install llama-index') import nest_asyncio nest_asyncio.apply() import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) import pinecone import os api_key = os.environ["PINECONE_API_KEY"] pinecone.init(api_key=api_key, environment="us-west1-gcp-free") pinecone_index = pinecone.Index("quickstart") pinecone_index.delete(deleteAll=True) from llama_index.core import StorageContext from llama_index.vector_stores.pinecone import PineconeVectorStore from llama_index.core import VectorStoreIndex vector_store = PineconeVectorStore( pinecone_index=pinecone_index, namespace="wiki_cities" ) storage_context = StorageContext.from_defaults(vector_store=vector_store) vector_index = VectorStoreIndex([], storage_context=storage_context) from sqlalchemy import ( create_engine, MetaData, Table, Column, String, Integer, select, column, ) engine = create_engine("sqlite:///:memory:", future=True) metadata_obj = MetaData() table_name = "city_stats" city_stats_table = Table( table_name, metadata_obj, Column("city_name", String(16), primary_key=True), Column("population", Integer), Column("country", String(16), nullable=False), ) metadata_obj.create_all(engine) metadata_obj.tables.keys() from sqlalchemy import insert rows = [ {"city_name": "Toronto", "population": 2930000, "country": "Canada"}, {"city_name": "Tokyo", "population": 13960000, "country": "Japan"}, {"city_name": "Berlin", "population": 3645000, "country": "Germany"}, ] for row in rows: stmt = insert(city_stats_table).values(**row) with engine.begin() as connection: cursor = connection.execute(stmt) with engine.connect() as connection: cursor = connection.exec_driver_sql("SELECT * FROM city_stats") print(cursor.fetchall()) get_ipython().system('pip install wikipedia') from llama_index.readers.wikipedia import WikipediaReader cities = ["Toronto", "Berlin", "Tokyo"] wiki_docs =
WikipediaReader()
llama_index.readers.wikipedia.WikipediaReader
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') import nest_asyncio nest_asyncio.apply() import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.core.postprocessor import LLMRerank from llama_index.llms.openai import OpenAI from IPython.display import Markdown, display get_ipython().system("mkdir -p 'data/10k/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/10k/lyft_2021.pdf' -O 'data/10k/lyft_2021.pdf'") from llama_index.core import Settings Settings.llm = OpenAI(temperature=0, model="gpt-3.5-turbo") Settings.chunk_overlap = 0 Settings.chunk_size = 128 documents = SimpleDirectoryReader( input_files=["./data/10k/lyft_2021.pdf"] ).load_data() index = VectorStoreIndex.from_documents( documents, ) from llama_index.core.retrievers import VectorIndexRetriever from llama_index.core import QueryBundle import pandas as pd from IPython.display import display, HTML from copy import deepcopy pd.set_option("display.max_colwidth", -1) def get_retrieved_nodes( query_str, vector_top_k=10, reranker_top_n=3, with_reranker=False ): query_bundle =
QueryBundle(query_str)
llama_index.core.QueryBundle
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-hub-llama-packs-tables-chain-of-table-base') get_ipython().system('wget "https://github.com/ppasupat/WikiTableQuestions/releases/download/v1.0.2/WikiTableQuestions-1.0.2-compact.zip" -O data.zip') get_ipython().system('unzip data.zip') import pandas as pd df = pd.read_csv("./WikiTableQuestions/csv/200-csv/3.csv") df from llama_index.packs.tables.chain_of_table.base import ( ChainOfTableQueryEngine, serialize_table, ) from llama_index.core.llama_pack import download_llama_pack download_llama_pack( "ChainOfTablePack", "./chain_of_table_pack", skip_load=True, ) from llama_index.llms.openai import OpenAI llm = OpenAI(model="gpt-4-1106-preview") import phoenix as px import llama_index.core px.launch_app() llama_index.core.set_global_handler("arize_phoenix") import pandas as pd df = pd.read_csv("~/Downloads/WikiTableQuestions/csv/200-csv/11.csv") df query_engine = ChainOfTableQueryEngine(df, llm=llm, verbose=True) response = query_engine.query("Who won best Director in the 1972 Academy Awards?") str(response.response) import pandas as pd df = pd.read_csv("./WikiTableQuestions/csv/200-csv/42.csv") df query_engine = ChainOfTableQueryEngine(df, llm=llm, verbose=True) response = query_engine.query("What was the precipitation in inches during June?") str(response) from llama_index.core import PromptTemplate from llama_index.core.query_pipeline import QueryPipeline prompt_str = """\ Here's a serialized table. {serialized_table} Given this table please answer the question: {question} Answer: """ prompt = PromptTemplate(prompt_str) prompt_c = prompt.as_query_component(partial={"serialized_table": serialize_table(df)}) qp = QueryPipeline(chain=[prompt_c, llm]) response = qp.run("What was the precipitation in inches during June?") print(str(response)) import pandas as pd df = pd.read_csv("./WikiTableQuestions/csv/203-csv/114.csv") df query_engine = ChainOfTableQueryEngine(df, llm=llm, verbose=True) response = query_engine.query("Which televised ABC game had the greatest attendance?") print(str(response)) from llama_index.core import PromptTemplate from llama_index.core.query_pipeline import QueryPipeline prompt_str = """\ Here's a serialized table. {serialized_table} Given this table please answer the question: {question} Answer: """ prompt = PromptTemplate(prompt_str) prompt_c = prompt.as_query_component(partial={"serialized_table":
serialize_table(df)
llama_index.packs.tables.chain_of_table.base.serialize_table
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-pinecone') import phoenix as px import llama_index.core px.launch_app() llama_index.core.set_global_handler("arize_phoenix") import os os.environ[ "PINECONE_API_KEY" ] = "<Your Pinecone API key, from app.pinecone.io>" from pinecone import Pinecone from pinecone import ServerlessSpec api_key = os.environ["PINECONE_API_KEY"] pc = Pinecone(api_key=api_key) try: pc.create_index( "quickstart-index", dimension=1536, metric="euclidean", spec=ServerlessSpec(cloud="aws", region="us-west-2"), ) except Exception as e: print(e) pass pinecone_index = pc.Index("quickstart-index") from llama_index.core import VectorStoreIndex, StorageContext from llama_index.vector_stores.pinecone import PineconeVectorStore from llama_index.core.schema import TextNode nodes = [ TextNode( text="The Shawshank Redemption", metadata={ "author": "Stephen King", "theme": "Friendship", "year": 1994, }, ), TextNode( text="The Godfather", metadata={ "director": "Francis Ford Coppola", "theme": "Mafia", "year": 1972, }, ), TextNode( text="Inception", metadata={ "director": "Christopher Nolan", "theme": "Fiction", "year": 2010, }, ), TextNode( text="To Kill a Mockingbird", metadata={ "author": "Harper Lee", "theme": "Fiction", "year": 1960, }, ), TextNode( text="1984", metadata={ "author": "George Orwell", "theme": "Totalitarianism", "year": 1949, }, ), TextNode( text="The Great Gatsby", metadata={ "author": "F. Scott Fitzgerald", "theme": "The American Dream", "year": 1925, }, ), TextNode( text="Harry Potter and the Sorcerer's Stone", metadata={ "author": "J.K. Rowling", "theme": "Fiction", "year": 1997, }, ), ] vector_store = PineconeVectorStore( pinecone_index=pinecone_index, namespace="test", ) storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex(nodes, storage_context=storage_context) from llama_index.core.retrievers import VectorIndexAutoRetriever from llama_index.core.vector_stores import MetadataInfo, VectorStoreInfo vector_store_info = VectorStoreInfo( content_info="famous books and movies", metadata_info=[ MetadataInfo( name="director", type="str", description=("Name of the director"), ), MetadataInfo( name="theme", type="str", description=("Theme of the book/movie"), ), MetadataInfo( name="year", type="int", description=("Year of the book/movie"), ), ], ) retriever = VectorIndexAutoRetriever( index, vector_store_info=vector_store_info, empty_query_top_k=10, default_empty_query_vector=[0] * 1536, verbose=True, ) nodes = retriever.retrieve( "Tell me about some books/movies after the year 2000" ) for node in nodes: print(node.text) print(node.metadata) nodes = retriever.retrieve("Tell me about some books that are Fiction") for node in nodes: print(node.text) print(node.metadata) from llama_index.core.vector_stores import MetadataFilters filter_dicts = [{"key": "year", "operator": "==", "value": 1997}] filters =
MetadataFilters.from_dicts(filter_dicts)
llama_index.core.vector_stores.MetadataFilters.from_dicts
get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-firestore') get_ipython().run_line_magic('pip', 'install llama-index-storage-kvstore-firestore') get_ipython().run_line_magic('pip', 'install llama-index-storage-index-store-firestore') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import nest_asyncio nest_asyncio.apply() import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import SimpleDirectoryReader, StorageContext from llama_index.core import VectorStoreIndex, SimpleKeywordTableIndex from llama_index.core import SummaryIndex from llama_index.core import ComposableGraph from llama_index.llms.openai import OpenAI from llama_index.core.response.notebook_utils import display_response from llama_index.core import Settings get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") reader = SimpleDirectoryReader("./data/paul_graham/") documents = reader.load_data() from llama_index.core.node_parser import SentenceSplitter nodes = SentenceSplitter().get_nodes_from_documents(documents) from llama_index.storage.kvstore.firestore import FirestoreKVStore from llama_index.storage.docstore.firestore import FirestoreDocumentStore from llama_index.storage.index_store.firestore import FirestoreIndexStore kvstore = FirestoreKVStore() storage_context = StorageContext.from_defaults( docstore=FirestoreDocumentStore(kvstore), index_store=FirestoreIndexStore(kvstore), ) storage_context.docstore.add_documents(nodes) summary_index = SummaryIndex(nodes, storage_context=storage_context) vector_index = VectorStoreIndex(nodes, storage_context=storage_context) keyword_table_index = SimpleKeywordTableIndex( nodes, storage_context=storage_context ) len(storage_context.docstore.docs) storage_context.persist() list_id = summary_index.index_id vector_id = vector_index.index_id keyword_id = keyword_table_index.index_id from llama_index.core import load_index_from_storage kvstore = FirestoreKVStore() storage_context = StorageContext.from_defaults( docstore=FirestoreDocumentStore(kvstore), index_store=
FirestoreIndexStore(kvstore)
llama_index.storage.index_store.firestore.FirestoreIndexStore
get_ipython().run_line_magic('pip', 'install llama-index-postprocessor-rankgpt-rerank') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().run_line_magic('pip', 'install llama-index-packs-infer-retrieve-rerank') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') import datasets dataset = datasets.load_dataset("BioDEX/BioDEX-ICSR") dataset from llama_index.core import get_tokenizer import re from typing import Set, List tokenizer = get_tokenizer() sample_size = 5 def get_reactions_row(raw_target: str) -> List[str]: """Get reactions from a single row.""" reaction_pattern = re.compile(r"reactions:\s*(.*)") reaction_match = reaction_pattern.search(raw_target) if reaction_match: reactions = reaction_match.group(1).split(",") reactions = [r.strip().lower() for r in reactions] else: reactions = [] return reactions def get_reactions_set(dataset) -> Set[str]: """Get set of all reactions.""" reactions = set() for data in dataset["train"]: reactions.update(set(get_reactions_row(data["target"]))) return reactions def get_samples(dataset, sample_size: int = 5): """Get processed sample. Contains source text and also the reaction label. Parse reaction text to specifically extract reactions. """ samples = [] for idx, data in enumerate(dataset["train"]): if idx >= sample_size: break text = data["fulltext_processed"] raw_target = data["target"] reactions = get_reactions_row(raw_target) samples.append({"text": text, "reactions": reactions}) return samples from llama_index.packs.infer_retrieve_rerank import InferRetrieveRerankPack from llama_index.core.llama_pack import download_llama_pack InferRetrieveRerankPack = download_llama_pack( "InferRetrieveRerankPack", "./irr_pack", ) from llama_index.llms.openai import OpenAI llm = OpenAI(model="gpt-3.5-turbo-16k") pred_context = """\ The output predictins should be a list of comma-separated adverse \ drug reactions. \ """ reranker_top_n = 10 pack = InferRetrieveRerankPack( get_reactions_set(dataset), llm=llm, pred_context=pred_context, reranker_top_n=reranker_top_n, verbose=True, ) samples = get_samples(dataset, sample_size=5) pred_reactions = pack.run(inputs=[s["text"] for s in samples]) gt_reactions = [s["reactions"] for s in samples] pred_reactions[2] gt_reactions[2] from llama_index.core.retrievers import BaseRetriever from llama_index.core.llms import LLM from llama_index.llms.openai import OpenAI from llama_index.core import PromptTemplate from llama_index.core.query_pipeline import QueryPipeline from llama_index.core.postprocessor.types import BaseNodePostprocessor from llama_index.postprocessor.rankgpt_rerank import RankGPTRerank from llama_index.core.output_parsers import ChainableOutputParser from typing import List import random all_reactions = get_reactions_set(dataset) random.sample(all_reactions, 5) from llama_index.core.schema import TextNode from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.core.ingestion import IngestionPipeline from llama_index.core import VectorStoreIndex reaction_nodes = [TextNode(text=r) for r in all_reactions] pipeline = IngestionPipeline(transformations=[OpenAIEmbedding()]) reaction_nodes = await pipeline.arun(documents=reaction_nodes) index = VectorStoreIndex(reaction_nodes) reaction_nodes[0].embedding reaction_retriever = index.as_retriever(similarity_top_k=2) nodes = reaction_retriever.retrieve("abdominal") print([n.get_content() for n in nodes]) infer_prompt_str = """\ Your job is to output a list of predictions given context from a given piece of text. The text context, and information regarding the set of valid predictions is given below. Return the predictions as a comma-separated list of strings. Text Context: {doc_context} Prediction Info: {pred_context} Predictions: """ infer_prompt =
PromptTemplate(infer_prompt_str)
llama_index.core.PromptTemplate
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-wikipedia') from llama_index.core.llama_dataset import ( LabelledRagDataExample, CreatedByType, CreatedBy, ) query = "This is a test query, is it not?" query_by = CreatedBy(type=CreatedByType.AI, model_name="gpt-4") reference_answer = "Yes it is." reference_answer_by = CreatedBy(type=CreatedByType.HUMAN) reference_contexts = ["This is a sample context"] rag_example = LabelledRagDataExample( query=query, query_by=query_by, reference_contexts=reference_contexts, reference_answer=reference_answer, reference_answer_by=reference_answer_by, ) print(rag_example.json()) LabelledRagDataExample.parse_raw(rag_example.json()) rag_example.dict() LabelledRagDataExample.parse_obj(rag_example.dict()) query = "This is a test query, is it so?" reference_answer = "I think yes, it is." reference_contexts = ["This is a second sample context"] rag_example_2 = LabelledRagDataExample( query=query, query_by=query_by, reference_contexts=reference_contexts, reference_answer=reference_answer, reference_answer_by=reference_answer_by, ) from llama_index.core.llama_dataset import LabelledRagDataset rag_dataset = LabelledRagDataset(examples=[rag_example, rag_example_2]) rag_dataset.to_pandas() rag_dataset.save_json("rag_dataset.json") reload_rag_dataset =
LabelledRagDataset.from_json("rag_dataset.json")
llama_index.core.llama_dataset.LabelledRagDataset.from_json
import warnings warnings.filterwarnings("ignore") import os from llama_index.tools.cogniswitch import CogniswitchToolSpec from llama_index.agent import ReActAgent toolspec = CogniswitchToolSpec(cs_token=cs_token, apiKey=oauth_token) tool_lst = toolspec.to_tool_list() agent =
ReActAgent.from_tools(tool_lst)
llama_index.agent.ReActAgent.from_tools
get_ipython().run_line_magic('pip', 'install llama-index-agent-openai') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import json from typing import Sequence, List from llama_index.llms.openai import OpenAI from llama_index.core.llms import ChatMessage from llama_index.core.tools import BaseTool, FunctionTool from llama_index.agent.openai import OpenAIAgent def add(a: int, b: int) -> int: """Add two integers and returns the result integer""" return a + b add_tool = FunctionTool.from_defaults(fn=add) def useless_tool() -> int: """This is a uselss tool.""" return "This is a uselss output." useless_tool =
FunctionTool.from_defaults(fn=useless_tool)
llama_index.core.tools.FunctionTool.from_defaults
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import nest_asyncio nest_asyncio.apply() import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import SimpleDirectoryReader from llama_index.core import VectorStoreIndex, SimpleKeywordTableIndex from llama_index.core import SummaryIndex from llama_index.core import ComposableGraph from llama_index.llms.openai import OpenAI from llama_index.core import Settings get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") reader = SimpleDirectoryReader("./data/paul_graham/") documents = reader.load_data() from llama_index.core.node_parser import SentenceSplitter nodes = SentenceSplitter().get_nodes_from_documents(documents) from llama_index.core.storage.docstore import SimpleDocumentStore docstore = SimpleDocumentStore() docstore.add_documents(nodes) from llama_index.core import StorageContext storage_context = StorageContext.from_defaults(docstore=docstore) summary_index =
SummaryIndex(nodes, storage_context=storage_context)
llama_index.core.SummaryIndex
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-langchain') get_ipython().system('pip install llama-index') from langchain.embeddings import HuggingFaceEmbeddings from llama_index.embeddings.langchain import LangchainEmbedding lc_embed_model = HuggingFaceEmbeddings( model_name="sentence-transformers/all-mpnet-base-v2" ) embed_model =
LangchainEmbedding(lc_embed_model)
llama_index.embeddings.langchain.LangchainEmbedding
get_ipython().run_line_magic('pip', 'install llama-index-readers-pathway') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().system('pip install pathway') get_ipython().system('pip install llama-index') get_ipython().system("mkdir -p 'data/'") get_ipython().system("wget 'https://gist.githubusercontent.com/janchorowski/dd22a293f3d99d1b726eedc7d46d2fc0/raw/pathway_readme.md' -O 'data/pathway_readme.md'") import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.ERROR) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) import getpass import os if "OPENAI_API_KEY" not in os.environ: os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:") import pathway as pw data_sources = [] data_sources.append( pw.io.fs.read( "./data", format="binary", mode="streaming", with_metadata=True, ) # This creates a `pathway` connector that tracks ) from llama_index.core.retrievers import PathwayVectorServer from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.core.node_parser import TokenTextSplitter embed_model = OpenAIEmbedding(embed_batch_size=10) transformations_example = [ TokenTextSplitter( chunk_size=150, chunk_overlap=10, separator=" ", ), embed_model, ] processing_pipeline = PathwayVectorServer( *data_sources, transformations=transformations_example, ) PATHWAY_HOST = "127.0.0.1" PATHWAY_PORT = 8754 processing_pipeline.run_server( host=PATHWAY_HOST, port=PATHWAY_PORT, with_cache=False, threaded=True ) from llama_index.readers.pathway import PathwayReader reader =
PathwayReader(host=PATHWAY_HOST, port=PATHWAY_PORT)
llama_index.readers.pathway.PathwayReader
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-wikipedia') from llama_index.core.llama_dataset import ( LabelledRagDataExample, CreatedByType, CreatedBy, ) query = "This is a test query, is it not?" query_by =
CreatedBy(type=CreatedByType.AI, model_name="gpt-4")
llama_index.core.llama_dataset.CreatedBy
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-indices-managed-colbert') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-qdrant') get_ipython().run_line_magic('pip', 'install llama-index-llms-gemini') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-gemini') get_ipython().run_line_magic('pip', 'install llama-index-indices-managed-vectara') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-google') get_ipython().run_line_magic('pip', 'install llama-index-indices-managed-google') get_ipython().run_line_magic('pip', 'install llama-index-response-synthesizers-google') get_ipython().run_line_magic('pip', 'install llama-index') get_ipython().run_line_magic('pip', 'install "google-ai-generativelanguage>=0.4,<=1.0"') get_ipython().run_line_magic('pip', 'install torch sentence-transformers') get_ipython().run_line_magic('pip', 'install google-auth-oauthlib') from google.oauth2 import service_account from llama_index.indices.managed.google import GoogleIndex from llama_index.vector_stores.google import set_google_config credentials = service_account.Credentials.from_service_account_file( "service_account_key.json", scopes=[ "https://www.googleapis.com/auth/cloud-platform", "https://www.googleapis.com/auth/generative-language.retriever", ], ) set_google_config(auth_credentials=credentials) project_name = "TODO-your-project-name" # @param {type:"string"} email = "[email protected]" # @param {type:"string"} client_file_name = "client_secret.json" get_ipython().system('gcloud config set project $project_name') get_ipython().system('gcloud config set account $email') get_ipython().system('gcloud auth application-default login --no-browser --client-id-file=$client_file_name --scopes="https://www.googleapis.com/auth/generative-language.retriever,https://www.googleapis.com/auth/cloud-platform"') get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") import os GOOGLE_API_KEY = "" # add your GOOGLE API key here os.environ["GOOGLE_API_KEY"] = GOOGLE_API_KEY from llama_index.core import SimpleDirectoryReader from llama_index.indices.managed.google import GoogleIndex google_index = GoogleIndex.create_corpus(display_name="My first corpus!") print(f"Newly created corpus ID is {google_index.corpus_id}.") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() google_index.insert_documents(documents) google_index = GoogleIndex.from_corpus(corpus_id="") query_engine = google_index.as_query_engine() response = query_engine.query("which program did this author attend?") print(response) from llama_index.core.response.notebook_utils import display_source_node for r in response.source_nodes: display_source_node(r, source_length=1000) from google.ai.generativelanguage import ( GenerateAnswerRequest, ) query_engine = google_index.as_query_engine( temperature=0.3, answer_style=GenerateAnswerRequest.AnswerStyle.VERBOSE, ) response = query_engine.query("Which program did this author attend?") print(response) from llama_index.core.response.notebook_utils import display_source_node for r in response.source_nodes: display_source_node(r, source_length=1000) from google.ai.generativelanguage import ( GenerateAnswerRequest, ) query_engine = google_index.as_query_engine( temperature=0.3, answer_style=GenerateAnswerRequest.AnswerStyle.ABSTRACTIVE, ) response = query_engine.query("Which program did this author attend?") print(response) from llama_index.core.response.notebook_utils import display_source_node for r in response.source_nodes: display_source_node(r, source_length=1000) from google.ai.generativelanguage import ( GenerateAnswerRequest, ) query_engine = google_index.as_query_engine( temperature=0.3, answer_style=GenerateAnswerRequest.AnswerStyle.EXTRACTIVE, ) response = query_engine.query("Which program did this author attend?") print(response) from llama_index.core.response.notebook_utils import display_source_node for r in response.source_nodes: display_source_node(r, source_length=1000) from llama_index.response_synthesizers.google import GoogleTextSynthesizer from llama_index.vector_stores.google import GoogleVectorStore from llama_index.core import VectorStoreIndex from llama_index.llms.gemini import Gemini from llama_index.core.postprocessor import LLMRerank from llama_index.core.query_engine import RetrieverQueryEngine from llama_index.core.retrievers import VectorIndexRetriever from llama_index.embeddings.gemini import GeminiEmbedding response_synthesizer = GoogleTextSynthesizer.from_defaults( temperature=0.7, answer_style=GenerateAnswerRequest.AnswerStyle.ABSTRACTIVE ) reranker = LLMRerank( top_n=5, llm=Gemini(api_key=GOOGLE_API_KEY), ) retriever = google_index.as_retriever(similarity_top_k=5) query_engine = RetrieverQueryEngine.from_args( retriever=retriever, response_synthesizer=response_synthesizer, node_postprocessors=[reranker], ) response = query_engine.query("Which program did this author attend?") print(response.response) from llama_index.core.postprocessor import SentenceTransformerRerank sbert_rerank = SentenceTransformerRerank( model="cross-encoder/ms-marco-MiniLM-L-2-v2", top_n=5 ) from llama_index.response_synthesizers.google import GoogleTextSynthesizer from llama_index.vector_stores.google import GoogleVectorStore from llama_index.core import VectorStoreIndex from llama_index.llms.gemini import Gemini from llama_index.core.postprocessor import LLMRerank from llama_index.core.query_engine import RetrieverQueryEngine from llama_index.core.retrievers import VectorIndexRetriever from llama_index.embeddings.gemini import GeminiEmbedding response_synthesizer = GoogleTextSynthesizer.from_defaults( temperature=0.1, answer_style=GenerateAnswerRequest.AnswerStyle.ABSTRACTIVE ) retriever = google_index.as_retriever(similarity_top_k=5) query_engine = RetrieverQueryEngine.from_args( retriever=retriever, response_synthesizer=response_synthesizer, node_postprocessors=[sbert_rerank], ) response = query_engine.query("Which program did this author attend?") print(response.response) import os OPENAI_API_TOKEN = "sk-" os.environ["OPENAI_API_KEY"] = OPENAI_API_TOKEN from llama_index.core import VectorStoreIndex, StorageContext from llama_index.vector_stores.qdrant import QdrantVectorStore from llama_index.core import Settings import qdrant_client Settings.chunk_size = 256 client = qdrant_client.QdrantClient(path="qdrant_retrieval_2") vector_store = QdrantVectorStore(client=client, collection_name="collection") qdrant_index = VectorStoreIndex.from_documents(documents) storage_context = StorageContext.from_defaults(vector_store=vector_store) query_engine = qdrant_index.as_query_engine() response = query_engine.query("Which program did this author attend?") print(response) for r in response.source_nodes: display_source_node(r, source_length=1000) query_engine = qdrant_index.as_query_engine() response = query_engine.query( "Which universities or schools or programs did this author attend?" ) print(response) from llama_index.core import get_response_synthesizer reranker =
LLMRerank(top_n=3)
llama_index.core.postprocessor.LLMRerank
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-experimental-param-tuner') get_ipython().system('pip install llama-index llama-hub') get_ipython().system('mkdir data && wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"') import nest_asyncio nest_asyncio.apply() from pathlib import Path from llama_index.readers.file import PDFReader from llama_index.readers.file import UnstructuredReader from llama_index.readers.file import PyMuPDFReader loader = PDFReader() docs0 = loader.load_data(file=Path("./data/llama2.pdf")) from llama_index.core import Document doc_text = "\n\n".join([d.get_content() for d in docs0]) docs = [Document(text=doc_text)] from llama_index.core.node_parser import SimpleNodeParser from llama_index.core.schema import IndexNode get_ipython().system('wget "https://www.dropbox.com/scl/fi/fh9vsmmm8vu0j50l3ss38/llama2_eval_qr_dataset.json?rlkey=kkoaez7aqeb4z25gzc06ak6kb&dl=1" -O data/llama2_eval_qr_dataset.json') from llama_index.core.evaluation import QueryResponseDataset eval_dataset = QueryResponseDataset.from_json( "data/llama2_eval_qr_dataset.json" ) eval_qs = eval_dataset.questions ref_response_strs = [r for (_, r) in eval_dataset.qr_pairs] from llama_index.core import ( VectorStoreIndex, load_index_from_storage, StorageContext, ) from llama_index.experimental.param_tuner import ParamTuner from llama_index.core.param_tuner.base import TunedResult, RunResult from llama_index.core.evaluation.eval_utils import ( get_responses, aget_responses, ) from llama_index.core.evaluation import ( SemanticSimilarityEvaluator, BatchEvalRunner, ) from llama_index.llms.openai import OpenAI from llama_index.embeddings.openai import OpenAIEmbedding import os import numpy as np from pathlib import Path def _build_index(chunk_size, docs): index_out_path = f"./storage_{chunk_size}" if not os.path.exists(index_out_path): Path(index_out_path).mkdir(parents=True, exist_ok=True) node_parser = SimpleNodeParser.from_defaults(chunk_size=chunk_size) base_nodes = node_parser.get_nodes_from_documents(docs) index = VectorStoreIndex(base_nodes) index.storage_context.persist(index_out_path) else: storage_context = StorageContext.from_defaults( persist_dir=index_out_path ) index = load_index_from_storage( storage_context, ) return index def _get_eval_batch_runner(): evaluator_s = SemanticSimilarityEvaluator(embed_model=OpenAIEmbedding()) eval_batch_runner = BatchEvalRunner( {"semantic_similarity": evaluator_s}, workers=2, show_progress=True ) return eval_batch_runner def objective_function(params_dict): chunk_size = params_dict["chunk_size"] docs = params_dict["docs"] top_k = params_dict["top_k"] eval_qs = params_dict["eval_qs"] ref_response_strs = params_dict["ref_response_strs"] index = _build_index(chunk_size, docs) query_engine = index.as_query_engine(similarity_top_k=top_k) pred_response_objs = get_responses( eval_qs, query_engine, show_progress=True ) eval_batch_runner = _get_eval_batch_runner() eval_results = eval_batch_runner.evaluate_responses( eval_qs, responses=pred_response_objs, reference=ref_response_strs ) mean_score = np.array( [r.score for r in eval_results["semantic_similarity"]] ).mean() return RunResult(score=mean_score, params=params_dict) async def aobjective_function(params_dict): chunk_size = params_dict["chunk_size"] docs = params_dict["docs"] top_k = params_dict["top_k"] eval_qs = params_dict["eval_qs"] ref_response_strs = params_dict["ref_response_strs"] index = _build_index(chunk_size, docs) query_engine = index.as_query_engine(similarity_top_k=top_k) pred_response_objs = await aget_responses( eval_qs, query_engine, show_progress=True ) eval_batch_runner = _get_eval_batch_runner() eval_results = await eval_batch_runner.aevaluate_responses( eval_qs, responses=pred_response_objs, reference=ref_response_strs ) mean_score = np.array( [r.score for r in eval_results["semantic_similarity"]] ).mean() return
RunResult(score=mean_score, params=params_dict)
llama_index.core.param_tuner.base.RunResult
from llama_hub.semanticscholar.base import SemanticScholarReader import os import openai from llama_index.llms import OpenAI from llama_index.query_engine import CitationQueryEngine from llama_index import ( VectorStoreIndex, StorageContext, load_index_from_storage, ServiceContext, ) from llama_index.response.notebook_utils import display_response s2reader = SemanticScholarReader() openai.api_key = os.environ["OPENAI_API_KEY"] service_context = ServiceContext.from_defaults( llm=
OpenAI(model="gpt-3.5-turbo", temperature=0)
llama_index.llms.OpenAI
get_ipython().system('pip install llama-index') get_ipython().system('pip install duckdb') get_ipython().system('pip install llama-index-vector-stores-duckdb') from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.vector_stores.duckdb import DuckDBVectorStore from llama_index.core import StorageContext from IPython.display import Markdown, display import os import openai openai.api_key = os.environ["OPENAI_API_KEY"] get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("data/paul_graham/").load_data() vector_store =
DuckDBVectorStore()
llama_index.vector_stores.duckdb.DuckDBVectorStore
import os import sys import logging from dotenv import load_dotenv logging.basicConfig(stream=sys.stderr, level=logging.INFO) logger = logging.getLogger(__name__) load_dotenv() # take environment variables from .env. logger.debug(f"NewRelic application: {os.getenv('NEW_RELIC_APP_NAME')}") import os from time import time from nr_openai_observability import monitor from llama_index import VectorStoreIndex, download_loader if os.getenv("NEW_RELIC_APP_NAME") and os.getenv("NEW_RELIC_LICENSE_KEY"): monitor.initialization(application_name=os.getenv("NEW_RELIC_APP_NAME")) RayyanReader =
download_loader("RayyanReader")
llama_index.download_loader
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-qdrant') get_ipython().system('pip install llama-index qdrant_client') import qdrant_client from llama_index.core import VectorStoreIndex from llama_index.vector_stores.qdrant import QdrantVectorStore client = qdrant_client.QdrantClient( location=":memory:" ) from llama_index.core.schema import TextNode nodes = [ TextNode( text="The Shawshank Redemption", metadata={ "author": "Stephen King", "theme": "Friendship", "year": 1994, }, ), TextNode( text="The Godfather", metadata={ "director": "Francis Ford Coppola", "theme": "Mafia", "year": 1972, }, ), TextNode( text="Inception", metadata={ "director": "Christopher Nolan", "theme": "Fiction", "year": 2010, }, ), TextNode( text="To Kill a Mockingbird", metadata={ "author": "Harper Lee", "theme": "Mafia", "year": 1960, }, ), TextNode( text="1984", metadata={ "author": "George Orwell", "theme": "Totalitarianism", "year": 1949, }, ), TextNode( text="The Great Gatsby", metadata={ "author": "F. Scott Fitzgerald", "theme": "The American Dream", "year": 1925, }, ), TextNode( text="Harry Potter and the Sorcerer's Stone", metadata={ "author": "J.K. Rowling", "theme": "Fiction", "year": 1997, }, ), ] import os from llama_index.core import StorageContext os.environ["OPENAI_API_KEY"] = "sk-..." vector_store = QdrantVectorStore( client=client, collection_name="test_collection_1" ) storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex(nodes, storage_context=storage_context) from llama_index.core.vector_stores import ( MetadataFilter, MetadataFilters, FilterOperator, ) filters = MetadataFilters( filters=[ MetadataFilter(key="theme", operator=FilterOperator.EQ, value="Mafia"), ] ) retriever = index.as_retriever(filters=filters) retriever.retrieve("What is inception about?") from llama_index.core.vector_stores import FilterOperator, FilterCondition filters = MetadataFilters( filters=[ MetadataFilter(key="theme", value="Fiction"),
MetadataFilter(key="year", value=1997, operator=FilterOperator.GT)
llama_index.core.vector_stores.MetadataFilter
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-hub-llama-packs-tables-chain-of-table-base') get_ipython().system('wget "https://github.com/ppasupat/WikiTableQuestions/releases/download/v1.0.2/WikiTableQuestions-1.0.2-compact.zip" -O data.zip') get_ipython().system('unzip data.zip') import pandas as pd df = pd.read_csv("./WikiTableQuestions/csv/200-csv/3.csv") df from llama_index.packs.tables.chain_of_table.base import ( ChainOfTableQueryEngine, serialize_table, ) from llama_index.core.llama_pack import download_llama_pack download_llama_pack( "ChainOfTablePack", "./chain_of_table_pack", skip_load=True, ) from llama_index.llms.openai import OpenAI llm = OpenAI(model="gpt-4-1106-preview") import phoenix as px import llama_index.core px.launch_app() llama_index.core.set_global_handler("arize_phoenix") import pandas as pd df = pd.read_csv("~/Downloads/WikiTableQuestions/csv/200-csv/11.csv") df query_engine = ChainOfTableQueryEngine(df, llm=llm, verbose=True) response = query_engine.query("Who won best Director in the 1972 Academy Awards?") str(response.response) import pandas as pd df = pd.read_csv("./WikiTableQuestions/csv/200-csv/42.csv") df query_engine =
ChainOfTableQueryEngine(df, llm=llm, verbose=True)
llama_index.packs.tables.chain_of_table.base.ChainOfTableQueryEngine
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt' -O pg_essay.txt") from llama_index.core import SimpleDirectoryReader reader = SimpleDirectoryReader(input_files=["pg_essay.txt"]) documents = reader.load_data() from llama_index.core.query_pipeline import ( QueryPipeline, InputComponent, ArgPackComponent, ) from typing import Dict, Any, List, Optional from llama_index.core.llama_pack import BaseLlamaPack from llama_index.core.llms import LLM from llama_index.llms.openai import OpenAI from llama_index.core import Document, VectorStoreIndex from llama_index.core.response_synthesizers import TreeSummarize from llama_index.core.schema import NodeWithScore, TextNode from llama_index.core.node_parser import SentenceSplitter llm = OpenAI(model="gpt-3.5-turbo") chunk_sizes = [128, 256, 512, 1024] query_engines = {} for chunk_size in chunk_sizes: splitter = SentenceSplitter(chunk_size=chunk_size, chunk_overlap=0) nodes = splitter.get_nodes_from_documents(documents) vector_index = VectorStoreIndex(nodes) query_engines[str(chunk_size)] = vector_index.as_query_engine(llm=llm) p = QueryPipeline(verbose=True) module_dict = { **query_engines, "input": InputComponent(), "summarizer":
TreeSummarize()
llama_index.core.response_synthesizers.TreeSummarize
import openai openai.api_key = "sk-your-key" import json from graphql import parse with open("data/shopify_graphql.txt", "r") as f: txt = f.read() ast = parse(txt) query_root_node = next( ( defn for defn in ast.definitions if defn.kind == "object_type_definition" and defn.name.value == "QueryRoot" ) ) query_roots = [field.name.value for field in query_root_node.fields] print(query_roots) from llama_index.file.sdl.base import SDLReader from llama_index.tools.ondemand_loader_tool import OnDemandLoaderTool documentation_tool = OnDemandLoaderTool.from_defaults(
SDLReader()
llama_index.file.sdl.base.SDLReader
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-epsilla') get_ipython().system('pip/pip3 install pyepsilla') get_ipython().system('pip install llama-index') import logging import sys from llama_index.core import SimpleDirectoryReader, Document, StorageContext from llama_index.core import VectorStoreIndex from llama_index.vector_stores.epsilla import EpsillaVectorStore import textwrap import openai import getpass OPENAI_API_KEY = getpass.getpass("OpenAI API Key:") openai.api_key = OPENAI_API_KEY get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() print(f"Total documents: {len(documents)}") print(f"First document, id: {documents[0].doc_id}") print(f"First document, hash: {documents[0].hash}") from pyepsilla import vectordb client = vectordb.Client() vector_store =
EpsillaVectorStore(client=client, db_path="/tmp/llamastore")
llama_index.vector_stores.epsilla.EpsillaVectorStore
import openai openai.api_key = "sk-key" from llama_index.agent import OpenAIAgent from llama_index.tools.code_interpreter.base import CodeInterpreterToolSpec code_spec =
CodeInterpreterToolSpec()
llama_index.tools.code_interpreter.base.CodeInterpreterToolSpec
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-milvus') get_ipython().system(' pip install llama-index') import logging import sys from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Document from llama_index.vector_stores.milvus import MilvusVectorStore from IPython.display import Markdown, display import textwrap import openai openai.api_key = "sk-" get_ipython().system(" mkdir -p 'data/paul_graham/'") get_ipython().system(" wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() print("Document ID:", documents[0].doc_id) from llama_index.core import StorageContext vector_store = MilvusVectorStore(dim=1536, overwrite=True) storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex.from_documents( documents, storage_context=storage_context ) query_engine = index.as_query_engine() response = query_engine.query("What did the author learn?") print(textwrap.fill(str(response), 100)) response = query_engine.query("What was a hard moment for the author?") print(textwrap.fill(str(response), 100)) vector_store = MilvusVectorStore(dim=1536, overwrite=True) storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex.from_documents( [Document(text="The number that is being searched for is ten.")], storage_context, ) query_engine = index.as_query_engine() res = query_engine.query("Who is the author?") print("Res:", res) del index, vector_store, storage_context, query_engine vector_store =
MilvusVectorStore(overwrite=False)
llama_index.vector_stores.milvus.MilvusVectorStore
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-llms-cohere') get_ipython().system('pip install llama-index') from llama_index.llms.cohere import Cohere api_key = "Your api key" resp = Cohere(api_key=api_key).complete("Paul Graham is ") print(resp) from llama_index.core.llms import ChatMessage from llama_index.llms.cohere import Cohere messages = [ ChatMessage(role="user", content="hello there"), ChatMessage( role="assistant", content="Arrrr, matey! How can I help ye today?" ), ChatMessage(role="user", content="What is your name"), ] resp = Cohere(api_key=api_key).chat( messages, preamble_override="You are a pirate with a colorful personality" ) print(resp) from llama_index.llms.openai import OpenAI llm = Cohere(api_key=api_key) resp = llm.stream_complete("Paul Graham is ") for r in resp: print(r.delta, end="") from llama_index.llms.openai import OpenAI llm = Cohere(api_key=api_key) messages = [ ChatMessage(role="user", content="hello there"), ChatMessage( role="assistant", content="Arrrr, matey! How can I help ye today?" ), ChatMessage(role="user", content="What is your name"), ] resp = llm.stream_chat( messages, preamble_override="You are a pirate with a colorful personality" ) for r in resp: print(r.delta, end="") from llama_index.llms.cohere import Cohere llm =
Cohere(model="command", api_key=api_key)
llama_index.llms.cohere.Cohere
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') import nest_asyncio nest_asyncio.apply() get_ipython().system('mkdir data && wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"') get_ipython().system('pip install llama_hub') from pathlib import Path from llama_index.readers.file import PyMuPDFReader from llama_index.core import Document from llama_index.core.node_parser import SentenceSplitter from llama_index.core.schema import IndexNode docs0 =
PyMuPDFReader()
llama_index.readers.file.PyMuPDFReader
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-graph-stores-kuzu') import os os.environ["OPENAI_API_KEY"] = "API_KEY_HERE" import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) import shutil shutil.rmtree("./test1", ignore_errors=True) shutil.rmtree("./test2", ignore_errors=True) shutil.rmtree("./test3", ignore_errors=True) get_ipython().run_line_magic('pip', 'install kuzu') import kuzu db = kuzu.Database("test1") from llama_index.graph_stores.kuzu import KuzuGraphStore graph_store = KuzuGraphStore(db) from llama_index.core import SimpleDirectoryReader, KnowledgeGraphIndex from llama_index.llms.openai import OpenAI from llama_index.core import Settings from IPython.display import Markdown, display import kuzu documents = SimpleDirectoryReader( "../../../../examples/paul_graham_essay/data" ).load_data() llm = OpenAI(temperature=0, model="gpt-3.5-turbo") Settings.llm = llm Settings.chunk_size = 512 from llama_index.core import StorageContext storage_context = StorageContext.from_defaults(graph_store=graph_store) index = KnowledgeGraphIndex.from_documents( documents, max_triplets_per_chunk=2, storage_context=storage_context, ) query_engine = index.as_query_engine( include_text=False, response_mode="tree_summarize" ) response = query_engine.query( "Tell me more about Interleaf", ) display(Markdown(f"<b>{response}</b>")) query_engine = index.as_query_engine( include_text=True, response_mode="tree_summarize" ) response = query_engine.query( "Tell me more about Interleaf", ) display(Markdown(f"<b>{response}</b>")) db = kuzu.Database("test2") graph_store = KuzuGraphStore(db) storage_context = StorageContext.from_defaults(graph_store=graph_store) new_index = KnowledgeGraphIndex.from_documents( documents, max_triplets_per_chunk=2, storage_context=storage_context, include_embeddings=True, ) rel_map = graph_store.get_rel_map() query_engine = index.as_query_engine( include_text=True, response_mode="tree_summarize", embedding_mode="hybrid", similarity_top_k=5, ) response = query_engine.query( "Tell me more about what the author worked on at Interleaf", ) display(Markdown(f"<b>{response}</b>")) get_ipython().run_line_magic('pip', 'install pyvis') from pyvis.network import Network g = index.get_networkx_graph() net = Network(notebook=True, cdn_resources="in_line", directed=True) net.from_nx(g) net.show("kuzugraph_draw.html") from llama_index.core.node_parser import SentenceSplitter node_parser = SentenceSplitter() nodes = node_parser.get_nodes_from_documents(documents) db = kuzu.Database("test3") graph_store =
KuzuGraphStore(db)
llama_index.graph_stores.kuzu.KuzuGraphStore
from llama_index.core import SQLDatabase from sqlalchemy import ( create_engine, MetaData, Table, Column, String, Integer, select, column, ) engine = create_engine("sqlite:///chinook.db") sql_database = SQLDatabase(engine) from llama_index.core.query_pipeline import QueryPipeline get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('curl "https://www.sqlitetutorial.net/wp-content/uploads/2018/03/chinook.zip" -O ./chinook.zip') get_ipython().system('unzip ./chinook.zip') from llama_index.core.settings import Settings from llama_index.core.callbacks import CallbackManager callback_manager = CallbackManager() Settings.callback_manager = callback_manager import phoenix as px import llama_index.core px.launch_app() llama_index.core.set_global_handler("arize_phoenix") from llama_index.core.query_engine import NLSQLTableQueryEngine from llama_index.core.tools import QueryEngineTool sql_query_engine = NLSQLTableQueryEngine( sql_database=sql_database, tables=["albums", "tracks", "artists"], verbose=True, ) sql_tool = QueryEngineTool.from_defaults( query_engine=sql_query_engine, name="sql_tool", description=( "Useful for translating a natural language query into a SQL query" ), ) from llama_index.core.query_pipeline import QueryPipeline as QP qp = QP(verbose=True) from llama_index.core.agent.react.types import ( ActionReasoningStep, ObservationReasoningStep, ResponseReasoningStep, ) from llama_index.core.agent import Task, AgentChatResponse from llama_index.core.query_pipeline import ( AgentInputComponent, AgentFnComponent, CustomAgentComponent, QueryComponent, ToolRunnerComponent, ) from llama_index.core.llms import MessageRole from typing import Dict, Any, Optional, Tuple, List, cast def agent_input_fn(task: Task, state: Dict[str, Any]) -> Dict[str, Any]: """Agent input function. Returns: A Dictionary of output keys and values. If you are specifying src_key when defining links between this component and other components, make sure the src_key matches the specified output_key. """ if "current_reasoning" not in state: state["current_reasoning"] = [] reasoning_step = ObservationReasoningStep(observation=task.input) state["current_reasoning"].append(reasoning_step) return {"input": task.input} agent_input_component = AgentInputComponent(fn=agent_input_fn) from llama_index.core.agent import ReActChatFormatter from llama_index.core.query_pipeline import InputComponent, Link from llama_index.core.llms import ChatMessage from llama_index.core.tools import BaseTool def react_prompt_fn( task: Task, state: Dict[str, Any], input: str, tools: List[BaseTool] ) -> List[ChatMessage]: chat_formatter = ReActChatFormatter() return chat_formatter.format( tools, chat_history=task.memory.get() + state["memory"].get_all(), current_reasoning=state["current_reasoning"], ) react_prompt_component = AgentFnComponent( fn=react_prompt_fn, partial_dict={"tools": [sql_tool]} ) from typing import Set, Optional from llama_index.core.agent.react.output_parser import ReActOutputParser from llama_index.core.llms import ChatResponse from llama_index.core.agent.types import Task def parse_react_output_fn( task: Task, state: Dict[str, Any], chat_response: ChatResponse ): """Parse ReAct output into a reasoning step.""" output_parser = ReActOutputParser() reasoning_step = output_parser.parse(chat_response.message.content) return {"done": reasoning_step.is_done, "reasoning_step": reasoning_step} parse_react_output = AgentFnComponent(fn=parse_react_output_fn) def run_tool_fn( task: Task, state: Dict[str, Any], reasoning_step: ActionReasoningStep ): """Run tool and process tool output.""" tool_runner_component = ToolRunnerComponent( [sql_tool], callback_manager=task.callback_manager ) tool_output = tool_runner_component.run_component( tool_name=reasoning_step.action, tool_input=reasoning_step.action_input, ) observation_step = ObservationReasoningStep(observation=str(tool_output)) state["current_reasoning"].append(observation_step) return {"response_str": observation_step.get_content(), "is_done": False} run_tool = AgentFnComponent(fn=run_tool_fn) def process_response_fn( task: Task, state: Dict[str, Any], response_step: ResponseReasoningStep ): """Process response.""" state["current_reasoning"].append(response_step) response_str = response_step.response state["memory"].put(ChatMessage(content=task.input, role=MessageRole.USER)) state["memory"].put( ChatMessage(content=response_str, role=MessageRole.ASSISTANT) ) return {"response_str": response_str, "is_done": True} process_response = AgentFnComponent(fn=process_response_fn) def process_agent_response_fn( task: Task, state: Dict[str, Any], response_dict: dict ): """Process agent response.""" return ( AgentChatResponse(response_dict["response_str"]), response_dict["is_done"], ) process_agent_response = AgentFnComponent(fn=process_agent_response_fn) from llama_index.core.query_pipeline import QueryPipeline as QP from llama_index.llms.openai import OpenAI qp.add_modules( { "agent_input": agent_input_component, "react_prompt": react_prompt_component, "llm": OpenAI(model="gpt-4-1106-preview"), "react_output_parser": parse_react_output, "run_tool": run_tool, "process_response": process_response, "process_agent_response": process_agent_response, } ) qp.add_chain(["agent_input", "react_prompt", "llm", "react_output_parser"]) qp.add_link( "react_output_parser", "run_tool", condition_fn=lambda x: not x["done"], input_fn=lambda x: x["reasoning_step"], ) qp.add_link( "react_output_parser", "process_response", condition_fn=lambda x: x["done"], input_fn=lambda x: x["reasoning_step"], ) qp.add_link("process_response", "process_agent_response") qp.add_link("run_tool", "process_agent_response") from pyvis.network import Network net = Network(notebook=True, cdn_resources="in_line", directed=True) net.from_nx(qp.clean_dag) net.show("agent_dag.html") from llama_index.core.agent import QueryPipelineAgentWorker, AgentRunner from llama_index.core.callbacks import CallbackManager agent_worker = QueryPipelineAgentWorker(qp) agent = AgentRunner( agent_worker, callback_manager=
CallbackManager([])
llama_index.core.callbacks.CallbackManager
get_ipython().system('pip install llama-index') import nest_asyncio nest_asyncio.apply() import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import ( VectorStoreIndex, SimpleDirectoryReader, StorageContext, ) from llama_index.core import SummaryIndex get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("./data/paul_graham").load_data() from llama_index.core import Settings Settings.chunk_size = 1024 nodes =
Settings.node_parser.get_nodes_from_documents(documents)
llama_index.core.Settings.node_parser.get_nodes_from_documents
get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-mongodb') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-qdrant') get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-firestore') get_ipython().run_line_magic('pip', 'install llama-index-retrievers-bm25') get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-redis') get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-dynamodb') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "./llama2.pdf"') get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/1706.03762.pdf" -O "./attention.pdf"') from llama_index.core import download_loader from llama_index.readers.file import PyMuPDFReader llama2_docs = PyMuPDFReader().load_data( file_path="./llama2.pdf", metadata=True ) attention_docs = PyMuPDFReader().load_data( file_path="./attention.pdf", metadata=True ) import os os.environ["OPENAI_API_KEY"] = "sk-..." from llama_index.core.node_parser import TokenTextSplitter nodes = TokenTextSplitter( chunk_size=1024, chunk_overlap=128 ).get_nodes_from_documents(llama2_docs + attention_docs) from llama_index.core.storage.docstore import SimpleDocumentStore from llama_index.storage.docstore.redis import RedisDocumentStore from llama_index.storage.docstore.mongodb import MongoDocumentStore from llama_index.storage.docstore.firestore import FirestoreDocumentStore from llama_index.storage.docstore.dynamodb import DynamoDBDocumentStore docstore = SimpleDocumentStore() docstore.add_documents(nodes) from llama_index.core import VectorStoreIndex, StorageContext from llama_index.retrievers.bm25 import BM25Retriever from llama_index.vector_stores.qdrant import QdrantVectorStore from qdrant_client import QdrantClient client = QdrantClient(path="./qdrant_data") vector_store = QdrantVectorStore("composable", client=client) storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex(nodes=nodes) vector_retriever = index.as_retriever(similarity_top_k=2) bm25_retriever = BM25Retriever.from_defaults( docstore=docstore, similarity_top_k=2 ) from llama_index.core.schema import IndexNode vector_obj = IndexNode( index_id="vector", obj=vector_retriever, text="Vector Retriever" ) bm25_obj = IndexNode( index_id="bm25", obj=bm25_retriever, text="BM25 Retriever" ) from llama_index.core import SummaryIndex summary_index = SummaryIndex(objects=[vector_obj, bm25_obj]) query_engine = summary_index.as_query_engine( response_mode="tree_summarize", verbose=True ) response = await query_engine.aquery( "How does attention work in transformers?" ) print(str(response)) response = await query_engine.aquery( "What is the architecture of Llama2 based on?" ) print(str(response)) response = await query_engine.aquery( "What was used before attention in transformers?" ) print(str(response)) docstore.persist("./docstore.json") from llama_index.core.storage.docstore import SimpleDocumentStore from llama_index.vector_stores.qdrant import QdrantVectorStore from qdrant_client import QdrantClient docstore = SimpleDocumentStore.from_persist_path("./docstore.json") client = QdrantClient(path="./qdrant_data") vector_store =
QdrantVectorStore("composable", client=client)
llama_index.vector_stores.qdrant.QdrantVectorStore
get_ipython().system('pip install llama-index-llms-dashscope') get_ipython().run_line_magic('env', 'DASHSCOPE_API_KEY=YOUR_DASHSCOPE_API_KEY') import os os.environ["DASHSCOPE_API_KEY"] = "YOUR_DASHSCOPE_API_KEY" from llama_index.llms.dashscope import DashScope, DashScopeGenerationModels dashscope_llm = DashScope(model_name=DashScopeGenerationModels.QWEN_MAX) resp = dashscope_llm.complete("How to make cake?") print(resp) responses = dashscope_llm.stream_complete("How to make cake?") for response in responses: print(response.delta, end="") from llama_index.core.base.llms.types import MessageRole, ChatMessage messages = [ ChatMessage( role=MessageRole.SYSTEM, content="You are a helpful assistant." ), ChatMessage(role=MessageRole.USER, content="How to make cake?"), ] resp = dashscope_llm.chat(messages) print(resp) responses = dashscope_llm.stream_chat(messages) for response in responses: print(response.delta, end="") messages = [ ChatMessage( role=MessageRole.SYSTEM, content="You are a helpful assistant." ), ChatMessage(role=MessageRole.USER, content="How to make cake?"), ] resp = dashscope_llm.chat(messages) print(resp) messages.append( ChatMessage(role=MessageRole.ASSISTANT, content=resp.message.content) ) messages.append(
ChatMessage(role=MessageRole.USER, content="How to make it without sugar")
llama_index.core.base.llms.types.ChatMessage
get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().system('pip install llama-index') from llama_index.core.node_parser import SimpleFileNodeParser from llama_index.readers.file import FlatReader from pathlib import Path reader =
FlatReader()
llama_index.readers.file.FlatReader
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().system('pip install llama-index') import os import openai os.environ["OPENAI_API_KEY"] = "sk-..." openai.api_key = os.environ["OPENAI_API_KEY"] import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import VectorStoreIndex from llama_index.core import PromptTemplate from IPython.display import Markdown, display get_ipython().system('mkdir data') get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"') from pathlib import Path from llama_index.readers.file import PyMuPDFReader loader = PyMuPDFReader() documents = loader.load(file_path="./data/llama2.pdf") from llama_index.core import VectorStoreIndex from llama_index.llms.openai import OpenAI gpt35_llm = OpenAI(model="gpt-3.5-turbo") gpt4_llm = OpenAI(model="gpt-4") index = VectorStoreIndex.from_documents(documents) query_str = "What are the potential risks associated with the use of Llama 2 as mentioned in the context?" query_engine = index.as_query_engine(similarity_top_k=2, llm=gpt35_llm) vector_retriever = index.as_retriever(similarity_top_k=2) response = query_engine.query(query_str) print(str(response)) def display_prompt_dict(prompts_dict): for k, p in prompts_dict.items(): text_md = f"**Prompt Key**: {k}<br>" f"**Text:** <br>" display(Markdown(text_md)) print(p.get_template()) display(Markdown("<br><br>")) prompts_dict = query_engine.get_prompts() display_prompt_dict(prompts_dict) from langchain import hub langchain_prompt = hub.pull("rlm/rag-prompt") from llama_index.core.prompts import LangchainPromptTemplate lc_prompt_tmpl = LangchainPromptTemplate( template=langchain_prompt, template_var_mappings={"query_str": "question", "context_str": "context"}, ) query_engine.update_prompts( {"response_synthesizer:text_qa_template": lc_prompt_tmpl} ) prompts_dict = query_engine.get_prompts() display_prompt_dict(prompts_dict) response = query_engine.query(query_str) print(str(response)) from llama_index.core.schema import TextNode few_shot_nodes = [] for line in open("../llama2_qa_citation_events.jsonl", "r"): few_shot_nodes.append(TextNode(text=line)) few_shot_index = VectorStoreIndex(few_shot_nodes) few_shot_retriever = few_shot_index.as_retriever(similarity_top_k=2) import json def few_shot_examples_fn(**kwargs): query_str = kwargs["query_str"] retrieved_nodes = few_shot_retriever.retrieve(query_str) result_strs = [] for n in retrieved_nodes: raw_dict = json.loads(n.get_content()) query = raw_dict["query"] response_dict = json.loads(raw_dict["response"]) result_str = f"""\ Query: {query} Response: {response_dict}""" result_strs.append(result_str) return "\n\n".join(result_strs) qa_prompt_tmpl_str = """\ Context information is below. --------------------- {context_str} --------------------- Given the context information and not prior knowledge, \ answer the query asking about citations over different topics. Please provide your answer in the form of a structured JSON format containing \ a list of authors as the citations. Some examples are given below. {few_shot_examples} Query: {query_str} Answer: \ """ qa_prompt_tmpl = PromptTemplate( qa_prompt_tmpl_str, function_mappings={"few_shot_examples": few_shot_examples_fn}, ) citation_query_str = ( "Which citations are mentioned in the section on Safety RLHF?" ) print( qa_prompt_tmpl.format( query_str=citation_query_str, context_str="test_context" ) ) query_engine.update_prompts( {"response_synthesizer:text_qa_template": qa_prompt_tmpl} ) display_prompt_dict(query_engine.get_prompts()) response = query_engine.query(citation_query_str) print(str(response)) print(response.source_nodes[1].get_content()) from llama_index.core.postprocessor import ( NERPIINodePostprocessor, SentenceEmbeddingOptimizer, ) from llama_index.core import QueryBundle from llama_index.core.schema import NodeWithScore, TextNode pii_processor =
NERPIINodePostprocessor(llm=gpt4_llm)
llama_index.core.postprocessor.NERPIINodePostprocessor
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-llms-anthropic') import nest_asyncio nest_asyncio.apply() from llama_index.core import SimpleDirectoryReader, Document from llama_index.core import SummaryIndex from llama_index.llms.openai import OpenAI from llama_index.llms.anthropic import Anthropic from llama_index.core.evaluation import CorrectnessEvaluator get_ipython().system("mkdir -p 'data/10k/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/10k/uber_2021.pdf' -O 'data/10k/uber_2021.pdf'") uber_docs0 = SimpleDirectoryReader( input_files=["./data/10k/uber_2021.pdf"] ).load_data() uber_doc = Document(text="\n\n".join([d.get_content() for d in uber_docs0])) from llama_index.core.utils import globals_helper num_tokens = len(globals_helper.tokenizer(uber_doc.get_content())) print(f"NUM TOKENS: {num_tokens}") context_str = "Jerry's favorite snack is Hot Cheetos." query_str = "What is Jerry's favorite snack?" def augment_doc(doc_str, context, position): """Augment doc with additional context at a given position.""" doc_str1 = doc_str[:position] doc_str2 = doc_str[position:] return f"{doc_str1}...\n\n{context}\n\n...{doc_str2}" test_str = augment_doc( uber_doc.get_content(), context_str, int(0.5 * len(uber_doc.get_content())) ) async def run_experiments( doc, position_percentiles, context_str, query, llm, response_mode="compact" ): eval_llm = OpenAI(model="gpt-4-1106-preview") correctness_evaluator = CorrectnessEvaluator(llm=eval_llm) eval_scores = {} for idx, position_percentile in enumerate(position_percentiles): print(f"Position percentile: {position_percentile}") position_idx = int(position_percentile * len(uber_doc.get_content())) new_doc_str = augment_doc( uber_doc.get_content(), context_str, position_idx ) new_doc = Document(text=new_doc_str) index = SummaryIndex.from_documents( [new_doc], ) query_engine = index.as_query_engine( response_mode=response_mode, llm=llm ) print(f"Query: {query}") response = query_engine.query(query) print(f"Response: {str(response)}") eval_result = correctness_evaluator.evaluate( query=query, response=str(response), reference=context_str ) eval_score = eval_result.score print(f"Eval score: {eval_score}") eval_scores[position_percentile] = eval_score return eval_scores position_percentiles = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0] llm = OpenAI(model="gpt-4-1106-preview") eval_scores_gpt4 = await run_experiments( [uber_doc], position_percentiles, context_str, query_str, llm, response_mode="compact", ) llm = OpenAI(model="gpt-4-1106-preview") eval_scores_gpt4_ts = await run_experiments( [uber_doc], position_percentiles, context_str, query_str, llm, response_mode="tree_summarize", ) llm =
Anthropic(model="claude-2")
llama_index.llms.anthropic.Anthropic
get_ipython().run_line_magic('pip', 'install llama-index-agent-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-web') get_ipython().run_line_magic('pip', 'install llama-index-tools-google') from llama_index.readers.web import SimpleWebPageReader reader =
SimpleWebPageReader(html_to_text=True)
llama_index.readers.web.SimpleWebPageReader
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-txtai') get_ipython().system('pip install llama-index') import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) import txtai txtai_index = txtai.ann.ANNFactory.create({"backend": "numpy"}) from llama_index.core import ( SimpleDirectoryReader, load_index_from_storage, VectorStoreIndex, StorageContext, ) from llama_index.vector_stores.txtai import TxtaiVectorStore from IPython.display import Markdown, display get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() vector_store = TxtaiVectorStore(txtai_index=txtai_index) storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex.from_documents( documents, storage_context=storage_context ) index.storage_context.persist() vector_store =
TxtaiVectorStore.from_persist_dir("./storage")
llama_index.vector_stores.txtai.TxtaiVectorStore.from_persist_dir
get_ipython().run_line_magic('pip', 'install llama-index-llms-predibase') get_ipython().system('pip install llama-index --quiet') get_ipython().system('pip install predibase --quiet') get_ipython().system('pip install sentence-transformers --quiet') import os os.environ["PREDIBASE_API_TOKEN"] = "{PREDIBASE_API_TOKEN}" from llama_index.llms.predibase import PredibaseLLM llm = PredibaseLLM( model_name="llama-2-13b", temperature=0.3, max_new_tokens=512 ) result = llm.complete("Can you recommend me a nice dry white wine?") print(result) from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.core.embeddings import resolve_embed_model from llama_index.core.node_parser import SentenceSplitter get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() llm = PredibaseLLM( model_name="llama-2-13b", temperature=0.3, max_new_tokens=400, context_window=1024, ) embed_model =
resolve_embed_model("local:BAAI/bge-small-en-v1.5")
llama_index.core.embeddings.resolve_embed_model
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-tencentvectordb') get_ipython().system('pip install llama-index') get_ipython().system('pip install tcvectordb') from llama_index.core import ( VectorStoreIndex, SimpleDirectoryReader, StorageContext, ) from llama_index.vector_stores.tencentvectordb import TencentVectorDB from llama_index.core.vector_stores.tencentvectordb import ( CollectionParams, FilterField, ) import tcvectordb tcvectordb.debug.DebugEnable = False import openai OPENAI_API_KEY = getpass.getpass("OpenAI API Key:") openai.api_key = OPENAI_API_KEY get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("./data/paul_graham").load_data() print(f"Total documents: {len(documents)}") print(f"First document, id: {documents[0].doc_id}") print(f"First document, hash: {documents[0].hash}") print( f"First document, text ({len(documents[0].text)} characters):\n{'='*20}\n{documents[0].text[:360]} ..." ) vector_store = TencentVectorDB( url="http://10.0.X.X", key="eC4bLRy2va******************************", collection_params=CollectionParams(dimension=1536, drop_exists=True), ) storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex.from_documents( documents, storage_context=storage_context ) query_engine = index.as_query_engine() response = query_engine.query("Why did the author choose to work on AI?") print(response) query_engine = index.as_query_engine(vector_store_query_mode="mmr") response = query_engine.query("Why did the author choose to work on AI?") print(response) new_vector_store = TencentVectorDB( url="http://10.0.X.X", key="eC4bLRy2va******************************", collection_params=CollectionParams(dimension=1536, drop_exists=False), ) new_index_instance = VectorStoreIndex.from_vector_store( vector_store=new_vector_store ) query_engine = index.as_query_engine(similarity_top_k=5) response = query_engine.query( "What did the author study prior to working on AI?" ) print(response) retriever = new_index_instance.as_retriever( vector_store_query_mode="mmr", similarity_top_k=3, vector_store_kwargs={"mmr_prefetch_factor": 4}, ) nodes_with_scores = retriever.retrieve( "What did the author study prior to working on AI?" ) print(f"Found {len(nodes_with_scores)} nodes.") for idx, node_with_score in enumerate(nodes_with_scores): print(f" [{idx}] score = {node_with_score.score}") print(f" id = {node_with_score.node.node_id}") print(f" text = {node_with_score.node.text[:90]} ...") print("Nodes' ref_doc_id:") print("\n".join([nws.node.ref_doc_id for nws in nodes_with_scores])) new_vector_store.delete(nodes_with_scores[0].node.ref_doc_id) nodes_with_scores = retriever.retrieve( "What did the author study prior to working on AI?" ) print(f"Found {len(nodes_with_scores)} nodes.") filter_fields = [ FilterField(name="source_type"), ] md_storage_context = StorageContext.from_defaults( vector_store=TencentVectorDB( url="http://10.0.X.X", key="eC4bLRy2va******************************", collection_params=CollectionParams( dimension=1536, drop_exists=True, filter_fields=filter_fields ), ) ) def my_file_metadata(file_name: str): """Depending on the input file name, associate a different metadata.""" if "essay" in file_name: source_type = "essay" elif "dinosaur" in file_name: source_type = "dinos" else: source_type = "other" return {"source_type": source_type} md_documents = SimpleDirectoryReader( "../data/paul_graham", file_metadata=my_file_metadata ).load_data() md_index = VectorStoreIndex.from_documents( md_documents, storage_context=md_storage_context ) from llama_index.core.vector_stores import ExactMatchFilter, MetadataFilters md_query_engine = md_index.as_query_engine( filters=MetadataFilters( filters=[
ExactMatchFilter(key="source_type", value="essay")
llama_index.core.vector_stores.ExactMatchFilter
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-lancedb') get_ipython().run_line_magic('pip', 'install llama-index-multi-modal-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-multi-modal-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-lancedb') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-clip') get_ipython().run_line_magic('pip', 'install llama_index ftfy regex tqdm') get_ipython().run_line_magic('pip', 'install -U openai-whisper') get_ipython().run_line_magic('pip', 'install git+https://github.com/openai/CLIP.git') get_ipython().run_line_magic('pip', 'install torch torchvision') get_ipython().run_line_magic('pip', 'install matplotlib scikit-image') get_ipython().run_line_magic('pip', 'install lancedb') get_ipython().run_line_magic('pip', 'install moviepy') get_ipython().run_line_magic('pip', 'install pytube') get_ipython().run_line_magic('pip', 'install pydub') get_ipython().run_line_magic('pip', 'install SpeechRecognition') get_ipython().run_line_magic('pip', 'install ffmpeg-python') get_ipython().run_line_magic('pip', 'install soundfile') from moviepy.editor import VideoFileClip from pathlib import Path import speech_recognition as sr from pytube import YouTube from pprint import pprint import os OPENAI_API_TOKEN = "" os.environ["OPENAI_API_KEY"] = OPENAI_API_TOKEN video_url = "https://www.youtube.com/watch?v=d_qvLDhkg00" output_video_path = "./video_data/" output_folder = "./mixed_data/" output_audio_path = "./mixed_data/output_audio.wav" filepath = output_video_path + "input_vid.mp4" Path(output_folder).mkdir(parents=True, exist_ok=True) from PIL import Image import matplotlib.pyplot as plt import os def plot_images(image_paths): images_shown = 0 plt.figure(figsize=(16, 9)) for img_path in image_paths: if os.path.isfile(img_path): image = Image.open(img_path) plt.subplot(2, 3, images_shown + 1) plt.imshow(image) plt.xticks([]) plt.yticks([]) images_shown += 1 if images_shown >= 7: break def download_video(url, output_path): """ Download a video from a given url and save it to the output path. Parameters: url (str): The url of the video to download. output_path (str): The path to save the video to. Returns: dict: A dictionary containing the metadata of the video. """ yt = YouTube(url) metadata = {"Author": yt.author, "Title": yt.title, "Views": yt.views} yt.streams.get_highest_resolution().download( output_path=output_path, filename="input_vid.mp4" ) return metadata def video_to_images(video_path, output_folder): """ Convert a video to a sequence of images and save them to the output folder. Parameters: video_path (str): The path to the video file. output_folder (str): The path to the folder to save the images to. """ clip = VideoFileClip(video_path) clip.write_images_sequence( os.path.join(output_folder, "frame%04d.png"), fps=0.2 ) def video_to_audio(video_path, output_audio_path): """ Convert a video to audio and save it to the output path. Parameters: video_path (str): The path to the video file. output_audio_path (str): The path to save the audio to. """ clip = VideoFileClip(video_path) audio = clip.audio audio.write_audiofile(output_audio_path) def audio_to_text(audio_path): """ Convert audio to text using the SpeechRecognition library. Parameters: audio_path (str): The path to the audio file. Returns: test (str): The text recognized from the audio. """ recognizer = sr.Recognizer() audio = sr.AudioFile(audio_path) with audio as source: audio_data = recognizer.record(source) try: text = recognizer.recognize_whisper(audio_data) except sr.UnknownValueError: print("Speech recognition could not understand the audio.") except sr.RequestError as e: print(f"Could not request results from service; {e}") return text try: metadata_vid = download_video(video_url, output_video_path) video_to_images(filepath, output_folder) video_to_audio(filepath, output_audio_path) text_data = audio_to_text(output_audio_path) with open(output_folder + "output_text.txt", "w") as file: file.write(text_data) print("Text data saved to file") file.close() os.remove(output_audio_path) print("Audio file removed") except Exception as e: raise e from llama_index.core.indices import MultiModalVectorStoreIndex from llama_index.core import SimpleDirectoryReader, StorageContext from llama_index.core import SimpleDirectoryReader, StorageContext from llama_index.vector_stores.lancedb import LanceDBVectorStore from llama_index.core import SimpleDirectoryReader text_store =
LanceDBVectorStore(uri="lancedb", table_name="text_collection")
llama_index.vector_stores.lancedb.LanceDBVectorStore
get_ipython().run_line_magic('pip', 'install llama-index-readers-github') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-weaviate') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') import nest_asyncio nest_asyncio.apply() import os os.environ["GITHUB_TOKEN"] = "" import os from llama_index.readers.github import GitHubRepositoryIssuesReader, GitHubIssuesClient github_client = GitHubIssuesClient() loader = GitHubRepositoryIssuesReader( github_client, owner="run-llama", repo="llama_index", verbose=True, ) orig_docs = loader.load_data() limit = 100 docs = [] for idx, doc in enumerate(orig_docs): doc.metadata["index_id"] = doc.id_ if idx >= limit: break docs.append(doc) from copy import deepcopy import asyncio from tqdm.asyncio import tqdm_asyncio from llama_index.core.indices import SummaryIndex from llama_index.core import Document, ServiceContext from llama_index.llms.openai import OpenAI from llama_index.core.async_utils import run_jobs async def aprocess_doc(doc, include_summary: bool = True): """Process doc.""" print(f"Processing {doc.id_}") metadata = doc.metadata date_tokens = metadata["created_at"].split("T")[0].split("-") year = int(date_tokens[0]) month = int(date_tokens[1]) day = int(date_tokens[2]) assignee = "" if "assignee" not in doc.metadata else doc.metadata["assignee"] size = "" if len(doc.metadata["labels"]) > 0: size_arr = [l for l in doc.metadata["labels"] if "size:" in l] size = size_arr[0].split(":")[1] if len(size_arr) > 0 else "" new_metadata = { "state": metadata["state"], "year": year, "month": month, "day": day, "assignee": assignee, "size": size, "index_id": doc.id_, } summary_index =
SummaryIndex.from_documents([doc])
llama_index.core.indices.SummaryIndex.from_documents
get_ipython().run_line_magic('pip', 'install llama-index-llms-portkey') get_ipython().system('pip install llama-index') get_ipython().system('pip install -U llama_index') get_ipython().system('pip install -U portkey-ai') from llama_index.llms.portkey import Portkey from llama_index.core.llms import ChatMessage import portkey as pk import os os.environ["PORTKEY_API_KEY"] = "PORTKEY_API_KEY" openai_virtual_key_a = "" openai_virtual_key_b = "" anthropic_virtual_key_a = "" anthropic_virtual_key_b = "" cohere_virtual_key_a = "" cohere_virtual_key_b = "" os.environ["OPENAI_API_KEY"] = "" os.environ["ANTHROPIC_API_KEY"] = "" portkey_client = Portkey( mode="single", ) openai_llm = pk.LLMOptions( provider="openai", model="gpt-4", virtual_key=openai_virtual_key_a, ) portkey_client.add_llms(openai_llm) messages = [ ChatMessage(role="system", content="You are a helpful assistant"), ChatMessage(role="user", content="What can you do?"), ] print("Testing Portkey Llamaindex integration:") response = portkey_client.chat(messages) print(response) prompt = "Why is the sky blue?" print("\nTesting Stream Complete:\n") response = portkey_client.stream_complete(prompt) for i in response: print(i.delta, end="", flush=True) messages = [ ChatMessage(role="system", content="You are a helpful assistant"), ChatMessage(role="user", content="What can you do?"), ] print("\nTesting Stream Chat:\n") response = portkey_client.stream_chat(messages) for i in response: print(i.delta, end="", flush=True) portkey_client = Portkey(mode="fallback") messages = [ ChatMessage(role="system", content="You are a helpful assistant"), ChatMessage(role="user", content="What can you do?"), ] llm1 = pk.LLMOptions( provider="openai", model="gpt-4", retry_settings={"on_status_codes": [429, 500], "attempts": 2}, virtual_key=openai_virtual_key_a, ) llm2 = pk.LLMOptions( provider="openai", model="gpt-3.5-turbo", virtual_key=openai_virtual_key_b, ) portkey_client.add_llms(llm_params=[llm1, llm2]) print("Testing Fallback & Retry functionality:") response = portkey_client.chat(messages) print(response) portkey_client =
Portkey(mode="ab_test")
llama_index.llms.portkey.Portkey
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import os import openai os.environ["OPENAI_API_KEY"] = "sk-.." openai.api_key = os.environ["OPENAI_API_KEY"] from IPython.display import Markdown, display from sqlalchemy import ( create_engine, MetaData, Table, Column, String, Integer, select, ) engine = create_engine("sqlite:///:memory:") metadata_obj = MetaData() table_name = "city_stats" city_stats_table = Table( table_name, metadata_obj, Column("city_name", String(16), primary_key=True), Column("population", Integer), Column("country", String(16), nullable=False), ) metadata_obj.create_all(engine) from llama_index.core import SQLDatabase from llama_index.llms.openai import OpenAI llm = OpenAI(temperature=0.1, model="gpt-3.5-turbo") sql_database = SQLDatabase(engine, include_tables=["city_stats"]) sql_database =
SQLDatabase(engine, include_tables=["city_stats"])
llama_index.core.SQLDatabase
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('wget "https://github.com/ppasupat/WikiTableQuestions/releases/download/v1.0.2/WikiTableQuestions-1.0.2-compact.zip" -O data.zip') get_ipython().system('unzip data.zip') import pandas as pd from pathlib import Path data_dir = Path("./WikiTableQuestions/csv/200-csv") csv_files = sorted([f for f in data_dir.glob("*.csv")]) dfs = [] for csv_file in csv_files: print(f"processing file: {csv_file}") try: df = pd.read_csv(csv_file) dfs.append(df) except Exception as e: print(f"Error parsing {csv_file}: {str(e)}") tableinfo_dir = "WikiTableQuestions_TableInfo" get_ipython().system('mkdir {tableinfo_dir}') from llama_index.core.program import LLMTextCompletionProgram from llama_index.core.bridge.pydantic import BaseModel, Field from llama_index.llms.openai import OpenAI class TableInfo(BaseModel): """Information regarding a structured table.""" table_name: str = Field( ..., description="table name (must be underscores and NO spaces)" ) table_summary: str = Field( ..., description="short, concise summary/caption of the table" ) prompt_str = """\ Give me a summary of the table with the following JSON format. - The table name must be unique to the table and describe it while being concise. - Do NOT output a generic table name (e.g. table, my_table). Do NOT make the table name one of the following: {exclude_table_name_list} Table: {table_str} Summary: """ program = LLMTextCompletionProgram.from_defaults( output_cls=TableInfo, llm=OpenAI(model="gpt-3.5-turbo"), prompt_template_str=prompt_str, ) import json def _get_tableinfo_with_index(idx: int) -> str: results_gen = Path(tableinfo_dir).glob(f"{idx}_*") results_list = list(results_gen) if len(results_list) == 0: return None elif len(results_list) == 1: path = results_list[0] return TableInfo.parse_file(path) else: raise ValueError( f"More than one file matching index: {list(results_gen)}" ) table_names = set() table_infos = [] for idx, df in enumerate(dfs): table_info = _get_tableinfo_with_index(idx) if table_info: table_infos.append(table_info) else: while True: df_str = df.head(10).to_csv() table_info = program( table_str=df_str, exclude_table_name_list=str(list(table_names)), ) table_name = table_info.table_name print(f"Processed table: {table_name}") if table_name not in table_names: table_names.add(table_name) break else: print(f"Table name {table_name} already exists, trying again.") pass out_file = f"{tableinfo_dir}/{idx}_{table_name}.json" json.dump(table_info.dict(), open(out_file, "w")) table_infos.append(table_info) from sqlalchemy import ( create_engine, MetaData, Table, Column, String, Integer, ) import re def sanitize_column_name(col_name): return re.sub(r"\W+", "_", col_name) def create_table_from_dataframe( df: pd.DataFrame, table_name: str, engine, metadata_obj ): sanitized_columns = {col: sanitize_column_name(col) for col in df.columns} df = df.rename(columns=sanitized_columns) columns = [ Column(col, String if dtype == "object" else Integer) for col, dtype in zip(df.columns, df.dtypes) ] table = Table(table_name, metadata_obj, *columns) metadata_obj.create_all(engine) with engine.connect() as conn: for _, row in df.iterrows(): insert_stmt = table.insert().values(**row.to_dict()) conn.execute(insert_stmt) conn.commit() engine = create_engine("sqlite:///:memory:") metadata_obj = MetaData() for idx, df in enumerate(dfs): tableinfo = _get_tableinfo_with_index(idx) print(f"Creating table: {tableinfo.table_name}") create_table_from_dataframe(df, tableinfo.table_name, engine, metadata_obj) import phoenix as px import llama_index.core px.launch_app() llama_index.core.set_global_handler("arize_phoenix") from llama_index.core.objects import ( SQLTableNodeMapping, ObjectIndex, SQLTableSchema, ) from llama_index.core import SQLDatabase, VectorStoreIndex sql_database = SQLDatabase(engine) table_node_mapping = SQLTableNodeMapping(sql_database) table_schema_objs = [ SQLTableSchema(table_name=t.table_name, context_str=t.table_summary) for t in table_infos ] # add a SQLTableSchema for each table obj_index = ObjectIndex.from_objects( table_schema_objs, table_node_mapping, VectorStoreIndex, ) obj_retriever = obj_index.as_retriever(similarity_top_k=3) from llama_index.core.retrievers import SQLRetriever from typing import List from llama_index.core.query_pipeline import FnComponent sql_retriever = SQLRetriever(sql_database) def get_table_context_str(table_schema_objs: List[SQLTableSchema]): """Get table context string.""" context_strs = [] for table_schema_obj in table_schema_objs: table_info = sql_database.get_single_table_info( table_schema_obj.table_name ) if table_schema_obj.context_str: table_opt_context = " The table description is: " table_opt_context += table_schema_obj.context_str table_info += table_opt_context context_strs.append(table_info) return "\n\n".join(context_strs) table_parser_component = FnComponent(fn=get_table_context_str) from llama_index.core.prompts.default_prompts import DEFAULT_TEXT_TO_SQL_PROMPT from llama_index.core import PromptTemplate from llama_index.core.query_pipeline import FnComponent from llama_index.core.llms import ChatResponse def parse_response_to_sql(response: ChatResponse) -> str: """Parse response to SQL.""" response = response.message.content sql_query_start = response.find("SQLQuery:") if sql_query_start != -1: response = response[sql_query_start:] if response.startswith("SQLQuery:"): response = response[len("SQLQuery:") :] sql_result_start = response.find("SQLResult:") if sql_result_start != -1: response = response[:sql_result_start] return response.strip().strip("```").strip() sql_parser_component = FnComponent(fn=parse_response_to_sql) text2sql_prompt = DEFAULT_TEXT_TO_SQL_PROMPT.partial_format( dialect=engine.dialect.name ) print(text2sql_prompt.template) response_synthesis_prompt_str = ( "Given an input question, synthesize a response from the query results.\n" "Query: {query_str}\n" "SQL: {sql_query}\n" "SQL Response: {context_str}\n" "Response: " ) response_synthesis_prompt = PromptTemplate( response_synthesis_prompt_str, ) llm = OpenAI(model="gpt-3.5-turbo") from llama_index.core.query_pipeline import ( QueryPipeline as QP, Link, InputComponent, CustomQueryComponent, ) qp = QP( modules={ "input": InputComponent(), "table_retriever": obj_retriever, "table_output_parser": table_parser_component, "text2sql_prompt": text2sql_prompt, "text2sql_llm": llm, "sql_output_parser": sql_parser_component, "sql_retriever": sql_retriever, "response_synthesis_prompt": response_synthesis_prompt, "response_synthesis_llm": llm, }, verbose=True, ) qp.add_chain(["input", "table_retriever", "table_output_parser"]) qp.add_link("input", "text2sql_prompt", dest_key="query_str") qp.add_link("table_output_parser", "text2sql_prompt", dest_key="schema") qp.add_chain( ["text2sql_prompt", "text2sql_llm", "sql_output_parser", "sql_retriever"] ) qp.add_link( "sql_output_parser", "response_synthesis_prompt", dest_key="sql_query" ) qp.add_link( "sql_retriever", "response_synthesis_prompt", dest_key="context_str" ) qp.add_link("input", "response_synthesis_prompt", dest_key="query_str") qp.add_link("response_synthesis_prompt", "response_synthesis_llm") from pyvis.network import Network net = Network(notebook=True, cdn_resources="in_line", directed=True) net.from_nx(qp.dag) net.show("text2sql_dag.html") response = qp.run( query="What was the year that The Notorious B.I.G was signed to Bad Boy?" ) print(str(response)) response = qp.run(query="Who won best director in the 1972 academy awards") print(str(response)) response = qp.run(query="What was the term of Pasquale Preziosa?") print(str(response)) from llama_index.core import VectorStoreIndex, load_index_from_storage from sqlalchemy import text from llama_index.core.schema import TextNode from llama_index.core import StorageContext import os from pathlib import Path from typing import Dict def index_all_tables( sql_database: SQLDatabase, table_index_dir: str = "table_index_dir" ) -> Dict[str, VectorStoreIndex]: """Index all tables.""" if not Path(table_index_dir).exists(): os.makedirs(table_index_dir) vector_index_dict = {} engine = sql_database.engine for table_name in sql_database.get_usable_table_names(): print(f"Indexing rows in table: {table_name}") if not os.path.exists(f"{table_index_dir}/{table_name}"): with engine.connect() as conn: cursor = conn.execute(text(f'SELECT * FROM "{table_name}"')) result = cursor.fetchall() row_tups = [] for row in result: row_tups.append(tuple(row)) nodes = [TextNode(text=str(t)) for t in row_tups] index = VectorStoreIndex(nodes) index.set_index_id("vector_index") index.storage_context.persist(f"{table_index_dir}/{table_name}") else: storage_context = StorageContext.from_defaults( persist_dir=f"{table_index_dir}/{table_name}" ) index = load_index_from_storage( storage_context, index_id="vector_index" ) vector_index_dict[table_name] = index return vector_index_dict vector_index_dict = index_all_tables(sql_database) test_retriever = vector_index_dict["Bad_Boy_Artists"].as_retriever( similarity_top_k=1 ) nodes = test_retriever.retrieve("P. Diddy") print(nodes[0].get_content()) from llama_index.core.retrievers import SQLRetriever from typing import List from llama_index.core.query_pipeline import FnComponent sql_retriever = SQLRetriever(sql_database) def get_table_context_and_rows_str( query_str: str, table_schema_objs: List[SQLTableSchema] ): """Get table context string.""" context_strs = [] for table_schema_obj in table_schema_objs: table_info = sql_database.get_single_table_info( table_schema_obj.table_name ) if table_schema_obj.context_str: table_opt_context = " The table description is: " table_opt_context += table_schema_obj.context_str table_info += table_opt_context vector_retriever = vector_index_dict[ table_schema_obj.table_name ].as_retriever(similarity_top_k=2) relevant_nodes = vector_retriever.retrieve(query_str) if len(relevant_nodes) > 0: table_row_context = "\nHere are some relevant example rows (values in the same order as columns above)\n" for node in relevant_nodes: table_row_context += str(node.get_content()) + "\n" table_info += table_row_context context_strs.append(table_info) return "\n\n".join(context_strs) table_parser_component = FnComponent(fn=get_table_context_and_rows_str) from llama_index.core.query_pipeline import ( QueryPipeline as QP, Link, InputComponent, CustomQueryComponent, ) qp = QP( modules={ "input":
InputComponent()
llama_index.core.query_pipeline.InputComponent
get_ipython().run_line_magic('pip', 'install llama-index-llms-openllm') get_ipython().system('pip install "openllm" # use \'openllm[vllm]\' if you have access to GPU') get_ipython().system('pip install llama-index') import os from typing import List, Optional from llama_index.llms.openllm import OpenLLM, OpenLLMAPI from llama_index.core.llms import ChatMessage os.environ[ "OPENLLM_ENDPOINT" ] = "na" # Change this to a remote server that you might run OpenLLM at. local_llm =
OpenLLM("HuggingFaceH4/zephyr-7b-alpha")
llama_index.llms.openllm.OpenLLM
get_ipython().run_line_magic('pip', 'install llama-index-llms-anthropic') get_ipython().system('pip install llama-index') from llama_index.llms.anthropic import Anthropic from llama_index.core import Settings tokenizer = Anthropic().tokenizer Settings.tokenizer = tokenizer import os os.environ["ANTHROPIC_API_KEY"] = "YOUR ANTHROPIC API KEY" from llama_index.llms.anthropic import Anthropic llm = Anthropic(model="claude-3-opus-20240229") resp = llm.complete("Paul Graham is ") print(resp) from llama_index.core.llms import ChatMessage from llama_index.llms.anthropic import Anthropic messages = [ ChatMessage( role="system", content="You are a pirate with a colorful personality" ), ChatMessage(role="user", content="Tell me a story"), ] resp = Anthropic(model="claude-3-opus-20240229").chat(messages) print(resp) from llama_index.llms.anthropic import Anthropic llm =
Anthropic(model="claude-3-opus-20240229", max_tokens=100)
llama_index.llms.anthropic.Anthropic
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-llms-cohere') get_ipython().system('pip install llama-index') from llama_index.llms.cohere import Cohere api_key = "Your api key" resp = Cohere(api_key=api_key).complete("Paul Graham is ") print(resp) from llama_index.core.llms import ChatMessage from llama_index.llms.cohere import Cohere messages = [ ChatMessage(role="user", content="hello there"), ChatMessage( role="assistant", content="Arrrr, matey! How can I help ye today?" ), ChatMessage(role="user", content="What is your name"), ] resp = Cohere(api_key=api_key).chat( messages, preamble_override="You are a pirate with a colorful personality" ) print(resp) from llama_index.llms.openai import OpenAI llm = Cohere(api_key=api_key) resp = llm.stream_complete("Paul Graham is ") for r in resp: print(r.delta, end="") from llama_index.llms.openai import OpenAI llm = Cohere(api_key=api_key) messages = [ ChatMessage(role="user", content="hello there"), ChatMessage( role="assistant", content="Arrrr, matey! How can I help ye today?" ), ChatMessage(role="user", content="What is your name"), ] resp = llm.stream_chat( messages, preamble_override="You are a pirate with a colorful personality" ) for r in resp: print(r.delta, end="") from llama_index.llms.cohere import Cohere llm = Cohere(model="command", api_key=api_key) resp = llm.complete("Paul Graham is ") print(resp) from llama_index.llms.cohere import Cohere llm =
Cohere(model="command", api_key=api_key)
llama_index.llms.cohere.Cohere
get_ipython().run_line_magic('pip', 'install -q llama-index-vector-stores-chroma llama-index-llms-fireworks llama-index-embeddings-fireworks==0.1.2') get_ipython().run_line_magic('pip', 'install -q llama-index') get_ipython().system('pip install llama-index chromadb --quiet') get_ipython().system('pip install -q chromadb') get_ipython().system('pip install -q pydantic==1.10.11') from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.vector_stores.chroma import ChromaVectorStore from llama_index.core import StorageContext from llama_index.embeddings.fireworks import FireworksEmbedding from llama_index.llms.fireworks import Fireworks from IPython.display import Markdown, display import chromadb import getpass fw_api_key = getpass.getpass("Fireworks API Key:") get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") from llama_index.llms.fireworks import Fireworks from llama_index.embeddings.fireworks import FireworksEmbedding llm = Fireworks( temperature=0, model="accounts/fireworks/models/mixtral-8x7b-instruct" ) chroma_client = chromadb.EphemeralClient() chroma_collection = chroma_client.create_collection("quickstart") embed_model = FireworksEmbedding( model_name="nomic-ai/nomic-embed-text-v1.5", ) documents = SimpleDirectoryReader("./data/paul_graham/").load_data() vector_store = ChromaVectorStore(chroma_collection=chroma_collection) storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex.from_documents( documents, storage_context=storage_context, embed_model=embed_model ) query_engine = index.as_query_engine(llm=llm) response = query_engine.query("What did the author do growing up?") display(Markdown(f"<b>{response}</b>")) db = chromadb.PersistentClient(path="./chroma_db") chroma_collection = db.get_or_create_collection("quickstart") vector_store = ChromaVectorStore(chroma_collection=chroma_collection) storage_context = StorageContext.from_defaults(vector_store=vector_store) embed_model = FireworksEmbedding( model_name="nomic-ai/nomic-embed-text-v1.5", api_base="https://api.fireworks.ai/inference/v1", dimensions=128, ) index = VectorStoreIndex.from_documents( documents, storage_context=storage_context, embed_model=embed_model ) db2 = chromadb.PersistentClient(path="./chroma_db") chroma_collection = db2.get_or_create_collection("quickstart") vector_store =
ChromaVectorStore(chroma_collection=chroma_collection)
llama_index.vector_stores.chroma.ChromaVectorStore
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-graph-stores-kuzu') import os os.environ["OPENAI_API_KEY"] = "API_KEY_HERE" import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) import shutil shutil.rmtree("./test1", ignore_errors=True) shutil.rmtree("./test2", ignore_errors=True) shutil.rmtree("./test3", ignore_errors=True) get_ipython().run_line_magic('pip', 'install kuzu') import kuzu db = kuzu.Database("test1") from llama_index.graph_stores.kuzu import KuzuGraphStore graph_store =
KuzuGraphStore(db)
llama_index.graph_stores.kuzu.KuzuGraphStore
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-epsilla') get_ipython().system('pip/pip3 install pyepsilla') get_ipython().system('pip install llama-index') import logging import sys from llama_index.core import SimpleDirectoryReader, Document, StorageContext from llama_index.core import VectorStoreIndex from llama_index.vector_stores.epsilla import EpsillaVectorStore import textwrap import openai import getpass OPENAI_API_KEY = getpass.getpass("OpenAI API Key:") openai.api_key = OPENAI_API_KEY get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() print(f"Total documents: {len(documents)}") print(f"First document, id: {documents[0].doc_id}") print(f"First document, hash: {documents[0].hash}") from pyepsilla import vectordb client = vectordb.Client() vector_store = EpsillaVectorStore(client=client, db_path="/tmp/llamastore") storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex.from_documents( documents, storage_context=storage_context ) query_engine = index.as_query_engine() response = query_engine.query("Who is the author?") print(textwrap.fill(str(response), 100)) response = query_engine.query("How did the author learn about AI?") print(textwrap.fill(str(response), 100)) vector_store = EpsillaVectorStore(client=client, overwrite=True) storage_context = StorageContext.from_defaults(vector_store=vector_store) single_doc =
Document(text="Epsilla is the vector database we are using.")
llama_index.core.Document
get_ipython().run_line_magic('pip', 'install llama-index-multi-modal-llms-replicate') get_ipython().run_line_magic('', 'pip install replicate') import os REPLICATE_API_TOKEN = "" # Your Relicate API token here os.environ["REPLICATE_API_TOKEN"] = REPLICATE_API_TOKEN from PIL import Image import requests from io import BytesIO from llama_index.core.multi_modal_llms.generic_utils import load_image_urls from llama_index.core.schema import ImageDocument if not os.path.exists("test_images"): os.makedirs("test_images") image_urls = [ "https://www.sportsnet.ca/wp-content/uploads/2023/11/CP1688996471-1040x572.jpg", "https://res.cloudinary.com/hello-tickets/image/upload/c_limit,f_auto,q_auto,w_1920/v1640835927/o3pfl41q7m5bj8jardk0.jpg", "https://www.cleverfiles.com/howto/wp-content/uploads/2018/03/minion.jpg", ] for idx, image_url in enumerate(image_urls): response = requests.get(image_url) img = Image.open(BytesIO(response.content)) img.save(f"test_images/{idx}.png") image_documents = [
ImageDocument(image_path=f"test_images/{idx}.png")
llama_index.core.schema.ImageDocument
get_ipython().system('pip install llama-index') get_ipython().system('pip install wget') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-azureaisearch') get_ipython().run_line_magic('pip', 'install azure-search-documents==11.4.0') get_ipython().run_line_magic('llama-index-embeddings-azure-openai', '') get_ipython().run_line_magic('llama-index-llms-azure-openai', '') import logging import sys from azure.core.credentials import AzureKeyCredential from azure.search.documents import SearchClient from azure.search.documents.indexes import SearchIndexClient from IPython.display import Markdown, display from llama_index.core import ( SimpleDirectoryReader, StorageContext, VectorStoreIndex, ) from llama_index.core.settings import Settings from llama_index.llms.azure_openai import AzureOpenAI from llama_index.embeddings.azure_openai import AzureOpenAIEmbedding from llama_index.vector_stores.azureaisearch import AzureAISearchVectorStore from llama_index.vector_stores.azureaisearch import ( IndexManagement, MetadataIndexFieldType, ) aoai_api_key = "YOUR_AZURE_OPENAI_API_KEY" aoai_endpoint = "YOUR_AZURE_OPENAI_ENDPOINT" aoai_api_version = "2023-05-15" llm = AzureOpenAI( model="YOUR_AZURE_OPENAI_COMPLETION_MODEL_NAME", deployment_name="YOUR_AZURE_OPENAI_COMPLETION_DEPLOYMENT_NAME", api_key=aoai_api_key, azure_endpoint=aoai_endpoint, api_version=aoai_api_version, ) embed_model = AzureOpenAIEmbedding( model="YOUR_AZURE_OPENAI_EMBEDDING_MODEL_NAME", deployment_name="YOUR_AZURE_OPENAI_EMBEDDING_DEPLOYMENT_NAME", api_key=aoai_api_key, azure_endpoint=aoai_endpoint, api_version=aoai_api_version, ) search_service_api_key = "YOUR-AZURE-SEARCH-SERVICE-ADMIN-KEY" search_service_endpoint = "YOUR-AZURE-SEARCH-SERVICE-ENDPOINT" search_service_api_version = "2023-11-01" credential = AzureKeyCredential(search_service_api_key) index_name = "llamaindex-vector-demo" index_client = SearchIndexClient( endpoint=search_service_endpoint, credential=credential, ) search_client = SearchClient( endpoint=search_service_endpoint, index_name=index_name, credential=credential, ) metadata_fields = { "author": "author", "theme": ("topic", MetadataIndexFieldType.STRING), "director": "director", } vector_store = AzureAISearchVectorStore( search_or_index_client=index_client, filterable_metadata_field_keys=metadata_fields, index_name=index_name, index_management=IndexManagement.CREATE_IF_NOT_EXISTS, id_field_key="id", chunk_field_key="chunk", embedding_field_key="embedding", embedding_dimensionality=1536, metadata_string_field_key="metadata", doc_id_field_key="doc_id", language_analyzer="en.lucene", vector_algorithm_type="exhaustiveKnn", ) get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("../data/paul_graham/").load_data() storage_context = StorageContext.from_defaults(vector_store=vector_store) Settings.llm = llm Settings.embed_model = embed_model index = VectorStoreIndex.from_documents( documents, storage_context=storage_context ) query_engine = index.as_query_engine(similarity_top_k=3) response = query_engine.query("What did the author do growing up?") display(Markdown(f"<b>{response}</b>")) response = query_engine.query( "What did the author learn?", ) display(Markdown(f"<b>{response}</b>")) index_name = "llamaindex-vector-demo" metadata_fields = { "author": "author", "theme": ("topic", MetadataIndexFieldType.STRING), "director": "director", } vector_store = AzureAISearchVectorStore( search_or_index_client=search_client, filterable_metadata_field_keys=metadata_fields, index_management=IndexManagement.VALIDATE_INDEX, id_field_key="id", chunk_field_key="chunk", embedding_field_key="embedding", embedding_dimensionality=1536, metadata_string_field_key="metadata", doc_id_field_key="doc_id", ) storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex.from_documents( [], storage_context=storage_context, ) query_engine = index.as_query_engine() response = query_engine.query("What was a hard moment for the author?") display(Markdown(f"<b>{response}</b>")) response = query_engine.query("Who is the author?") display(Markdown(f"<b>{response}</b>")) import time query_engine = index.as_query_engine(streaming=True) response = query_engine.query("What happened at interleaf?") start_time = time.time() token_count = 0 for token in response.response_gen: print(token, end="") token_count += 1 time_elapsed = time.time() - start_time tokens_per_second = token_count / time_elapsed print(f"\n\nStreamed output at {tokens_per_second} tokens/s") response = query_engine.query("What colour is the sky?") display(Markdown(f"<b>{response}</b>")) from llama_index.core import Document index.insert_nodes([
Document(text="The sky is indigo today")
llama_index.core.Document
get_ipython().run_line_magic('pip', 'install llama-index-readers-elasticsearch') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-opensearch') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-ollama') get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") from os import getenv from llama_index.core import SimpleDirectoryReader from llama_index.vector_stores.opensearch import ( OpensearchVectorStore, OpensearchVectorClient, ) from llama_index.core import VectorStoreIndex, StorageContext endpoint = getenv("OPENSEARCH_ENDPOINT", "http://localhost:9200") idx = getenv("OPENSEARCH_INDEX", "gpt-index-demo") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() text_field = "content" embedding_field = "embedding" client = OpensearchVectorClient( endpoint, idx, 1536, embedding_field=embedding_field, text_field=text_field ) vector_store =
OpensearchVectorStore(client)
llama_index.vector_stores.opensearch.OpensearchVectorStore
from utils import get_train_str, get_train_and_eval_data, get_eval_preds, train_prompt import warnings warnings.filterwarnings("ignore") warnings.simplefilter("ignore") train_df, train_labels, eval_df, eval_labels = get_train_and_eval_data("data/train.csv") print(train_prompt.template) train_n = 10 eval_n = 40 train_str = get_train_str(train_df, train_labels, train_n=train_n) print(f"Example datapoints in `train_str`: \n{train_str}") from sklearn.metrics import accuracy_score import numpy as np eval_preds = get_eval_preds(train_prompt, train_str, eval_df, n=eval_n) eval_label_chunk = eval_labels[:eval_n] acc = accuracy_score(eval_label_chunk, np.array(eval_preds).round()) print(f"ACCURACY: {acc}") from sklearn.metrics import accuracy_score import numpy as np eval_preds_null = get_eval_preds(train_prompt, "", eval_df, n=eval_n) eval_label_chunk = eval_labels[:eval_n] acc_null = accuracy_score(eval_label_chunk, np.array(eval_preds_null).round()) print(f"ACCURACY: {acc_null}") from llama_index import SummaryIndex from llama_index.schema import Document index =
SummaryIndex([])
llama_index.SummaryIndex
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-program-evaporate') get_ipython().system('pip install llama-index') get_ipython().run_line_magic('load_ext', 'autoreload') get_ipython().run_line_magic('autoreload', '2') wiki_titles = ["Toronto", "Seattle", "Chicago", "Boston", "Houston"] from pathlib import Path import requests for title in wiki_titles: response = requests.get( "https://en.wikipedia.org/w/api.php", params={ "action": "query", "format": "json", "titles": title, "prop": "extracts", "explaintext": True, }, ).json() page = next(iter(response["query"]["pages"].values())) wiki_text = page["extract"] data_path = Path("data") if not data_path.exists(): Path.mkdir(data_path) with open(data_path / f"{title}.txt", "w") as fp: fp.write(wiki_text) from llama_index.core import SimpleDirectoryReader city_docs = {} for wiki_title in wiki_titles: city_docs[wiki_title] = SimpleDirectoryReader( input_files=[f"data/{wiki_title}.txt"] ).load_data() from llama_index.llms.openai import OpenAI from llama_index.core import Settings Settings.llm = OpenAI(temperature=0, model="gpt-3.5-turbo") Settings.chunk_size = 512 city_nodes = {} for wiki_title in wiki_titles: docs = city_docs[wiki_title] nodes = Settings.node_parser.get_nodes_from_documents(docs) city_nodes[wiki_title] = nodes from llama_index.program.evaporate import DFEvaporateProgram program = DFEvaporateProgram.from_defaults( fields_to_extract=["population"], ) program.fit_fields(city_nodes["Toronto"][:1]) print(program.get_function_str("population")) seattle_df = program(nodes=city_nodes["Seattle"][:1]) seattle_df Settings.llm = OpenAI(temperature=0, model="gpt-4") Settings.chunk_size = 1024 Settings.chunk_overlap = 0 from llama_index.core.data_structs import Node train_text = """ <table class="wikitable sortable" style="margin-top:0; text-align:center; font-size:90%;"> <tbody><tr> <th>Team (IOC code) </th> <th>No. Summer </th> <th>No. Winter </th> <th>No. Games </th></tr> <tr> <td align="left"><span id="ALB"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/36/Flag_of_Albania.svg/22px-Flag_of_Albania.svg.png" decoding="async" width="22" height="16" class="thumbborder" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/36/Flag_of_Albania.svg/33px-Flag_of_Albania.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/36/Flag_of_Albania.svg/44px-Flag_of_Albania.svg.png 2x" data-file-width="980" data-file-height="700" />&#160;<a href="/wiki/Albania_at_the_Olympics" title="Albania at the Olympics">Albania</a>&#160;<span style="font-size:90%;">(ALB)</span></span> </td> <td style="background:#f2f2ce;">9</td> <td style="background:#cedff2;">5</td> <td>14 </td></tr> <tr> <td align="left"><span id="ASA"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/87/Flag_of_American_Samoa.svg/22px-Flag_of_American_Samoa.svg.png" decoding="async" width="22" height="11" class="thumbborder" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/87/Flag_of_American_Samoa.svg/33px-Flag_of_American_Samoa.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/87/Flag_of_American_Samoa.svg/44px-Flag_of_American_Samoa.svg.png 2x" data-file-width="1000" data-file-height="500" />&#160;<a href="/wiki/American_Samoa_at_the_Olympics" title="American Samoa at the Olympics">American Samoa</a>&#160;<span style="font-size:90%;">(ASA)</span></span> </td> <td style="background:#f2f2ce;">9</td> <td style="background:#cedff2;">2</td> <td>11 </td></tr> <tr> <td align="left"><span id="AND"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/1/19/Flag_of_Andorra.svg/22px-Flag_of_Andorra.svg.png" decoding="async" width="22" height="15" class="thumbborder" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/19/Flag_of_Andorra.svg/33px-Flag_of_Andorra.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/19/Flag_of_Andorra.svg/44px-Flag_of_Andorra.svg.png 2x" data-file-width="1000" data-file-height="700" />&#160;<a href="/wiki/Andorra_at_the_Olympics" title="Andorra at the Olympics">Andorra</a>&#160;<span style="font-size:90%;">(AND)</span></span> </td> <td style="background:#f2f2ce;">12</td> <td style="background:#cedff2;">13</td> <td>25 </td></tr> <tr> <td align="left"><span id="ANG"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/9/9d/Flag_of_Angola.svg/22px-Flag_of_Angola.svg.png" decoding="async" width="22" height="15" class="thumbborder" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/9d/Flag_of_Angola.svg/33px-Flag_of_Angola.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/9d/Flag_of_Angola.svg/44px-Flag_of_Angola.svg.png 2x" data-file-width="900" data-file-height="600" />&#160;<a href="/wiki/Angola_at_the_Olympics" title="Angola at the Olympics">Angola</a>&#160;<span style="font-size:90%;">(ANG)</span></span> </td> <td style="background:#f2f2ce;">10</td> <td style="background:#cedff2;">0</td> <td>10 </td></tr> <tr> <td align="left"><span id="ANT"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/89/Flag_of_Antigua_and_Barbuda.svg/22px-Flag_of_Antigua_and_Barbuda.svg.png" decoding="async" width="22" height="15" class="thumbborder" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/89/Flag_of_Antigua_and_Barbuda.svg/33px-Flag_of_Antigua_and_Barbuda.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/89/Flag_of_Antigua_and_Barbuda.svg/44px-Flag_of_Antigua_and_Barbuda.svg.png 2x" data-file-width="900" data-file-height="600" />&#160;<a href="/wiki/Antigua_and_Barbuda_at_the_Olympics" title="Antigua and Barbuda at the Olympics">Antigua and Barbuda</a>&#160;<span style="font-size:90%;">(ANT)</span></span> </td> <td style="background:#f2f2ce;">11</td> <td style="background:#cedff2;">0</td> <td>11 </td></tr> <tr> <td align="left"><span id="ARU"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f6/Flag_of_Aruba.svg/22px-Flag_of_Aruba.svg.png" decoding="async" width="22" height="15" class="thumbborder" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f6/Flag_of_Aruba.svg/33px-Flag_of_Aruba.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f6/Flag_of_Aruba.svg/44px-Flag_of_Aruba.svg.png 2x" data-file-width="900" data-file-height="600" />&#160;<a href="/wiki/Aruba_at_the_Olympics" title="Aruba at the Olympics">Aruba</a>&#160;<span style="font-size:90%;">(ARU)</span></span> </td> <td style="background:#f2f2ce;">9</td> <td style="background:#cedff2;">0</td> <td>9 </td></tr> """ train_nodes = [Node(text=train_text)] infer_text = """ <td align="left"><span id="BAN"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f9/Flag_of_Bangladesh.svg/22px-Flag_of_Bangladesh.svg.png" decoding="async" width="22" height="13" class="thumbborder" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f9/Flag_of_Bangladesh.svg/33px-Flag_of_Bangladesh.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f9/Flag_of_Bangladesh.svg/44px-Flag_of_Bangladesh.svg.png 2x" data-file-width="1000" data-file-height="600" />&#160;<a href="/wiki/Bangladesh_at_the_Olympics" title="Bangladesh at the Olympics">Bangladesh</a>&#160;<span style="font-size:90%;">(BAN)</span></span> </td> <td style="background:#f2f2ce;">10</td> <td style="background:#cedff2;">0</td> <td>10 </td></tr> <tr> <td align="left"><span id="BIZ"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e7/Flag_of_Belize.svg/22px-Flag_of_Belize.svg.png" decoding="async" width="22" height="13" class="thumbborder" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e7/Flag_of_Belize.svg/33px-Flag_of_Belize.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e7/Flag_of_Belize.svg/44px-Flag_of_Belize.svg.png 2x" data-file-width="1000" data-file-height="600" />&#160;<a href="/wiki/Belize_at_the_Olympics" title="Belize at the Olympics">Belize</a>&#160;<span style="font-size:90%;">(BIZ)</span></span> <sup class="reference" id="ref_BIZBIZ"><a href="#endnote_BIZBIZ">[BIZ]</a></sup> </td> <td style="background:#f2f2ce;">13</td> <td style="background:#cedff2;">0</td> <td>13 </td></tr> <tr> <td align="left"><span id="BEN"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0a/Flag_of_Benin.svg/22px-Flag_of_Benin.svg.png" decoding="async" width="22" height="15" class="thumbborder" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0a/Flag_of_Benin.svg/33px-Flag_of_Benin.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0a/Flag_of_Benin.svg/44px-Flag_of_Benin.svg.png 2x" data-file-width="900" data-file-height="600" />&#160;<a href="/wiki/Benin_at_the_Olympics" title="Benin at the Olympics">Benin</a>&#160;<span style="font-size:90%;">(BEN)</span></span> <sup class="reference" id="ref_BENBEN"><a href="#endnote_BENBEN">[BEN]</a></sup> </td> <td style="background:#f2f2ce;">12</td> <td style="background:#cedff2;">0</td> <td>12 </td></tr> <tr> <td align="left"><span id="BHU"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/9/91/Flag_of_Bhutan.svg/22px-Flag_of_Bhutan.svg.png" decoding="async" width="22" height="15" class="thumbborder" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/91/Flag_of_Bhutan.svg/33px-Flag_of_Bhutan.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/91/Flag_of_Bhutan.svg/44px-Flag_of_Bhutan.svg.png 2x" data-file-width="900" data-file-height="600" />&#160;<a href="/wiki/Bhutan_at_the_Olympics" title="Bhutan at the Olympics">Bhutan</a>&#160;<span style="font-size:90%;">(BHU)</span></span> </td> <td style="background:#f2f2ce;">10</td> <td style="background:#cedff2;">0</td> <td>10 </td></tr> <tr> <td align="left"><span id="BOL"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Flag_of_Bolivia.svg/22px-Flag_of_Bolivia.svg.png" decoding="async" width="22" height="15" class="thumbborder" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Flag_of_Bolivia.svg/33px-Flag_of_Bolivia.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/48/Flag_of_Bolivia.svg/44px-Flag_of_Bolivia.svg.png 2x" data-file-width="1100" data-file-height="750" />&#160;<a href="/wiki/Bolivia_at_the_Olympics" title="Bolivia at the Olympics">Bolivia</a>&#160;<span style="font-size:90%;">(BOL)</span></span> </td> <td style="background:#f2f2ce;">15</td> <td style="background:#cedff2;">7</td> <td>22 </td></tr> <tr> <td align="left"><span id="BIH"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/b/bf/Flag_of_Bosnia_and_Herzegovina.svg/22px-Flag_of_Bosnia_and_Herzegovina.svg.png" decoding="async" width="22" height="11" class="thumbborder" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/bf/Flag_of_Bosnia_and_Herzegovina.svg/33px-Flag_of_Bosnia_and_Herzegovina.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/bf/Flag_of_Bosnia_and_Herzegovina.svg/44px-Flag_of_Bosnia_and_Herzegovina.svg.png 2x" data-file-width="800" data-file-height="400" />&#160;<a href="/wiki/Bosnia_and_Herzegovina_at_the_Olympics" title="Bosnia and Herzegovina at the Olympics">Bosnia and Herzegovina</a>&#160;<span style="font-size:90%;">(BIH)</span></span> </td> <td style="background:#f2f2ce;">8</td> <td style="background:#cedff2;">8</td> <td>16 </td></tr> <tr> <td align="left"><span id="IVB"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/42/Flag_of_the_British_Virgin_Islands.svg/22px-Flag_of_the_British_Virgin_Islands.svg.png" decoding="async" width="22" height="11" class="thumbborder" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/42/Flag_of_the_British_Virgin_Islands.svg/33px-Flag_of_the_British_Virgin_Islands.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/42/Flag_of_the_British_Virgin_Islands.svg/44px-Flag_of_the_British_Virgin_Islands.svg.png 2x" data-file-width="1200" data-file-height="600" />&#160;<a href="/wiki/British_Virgin_Islands_at_the_Olympics" title="British Virgin Islands at the Olympics">British Virgin Islands</a>&#160;<span style="font-size:90%;">(IVB)</span></span> </td> <td style="background:#f2f2ce;">10</td> <td style="background:#cedff2;">2</td> <td>12 </td></tr> <tr> <td align="left"><span id="BRU"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/9/9c/Flag_of_Brunei.svg/22px-Flag_of_Brunei.svg.png" decoding="async" width="22" height="11" class="thumbborder" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/9c/Flag_of_Brunei.svg/33px-Flag_of_Brunei.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/9c/Flag_of_Brunei.svg/44px-Flag_of_Brunei.svg.png 2x" data-file-width="1440" data-file-height="720" />&#160;<a href="/wiki/Brunei_at_the_Olympics" title="Brunei at the Olympics">Brunei</a>&#160;<span style="font-size:90%;">(BRU)</span></span> <sup class="reference" id="ref_AA"><a href="#endnote_AA">[A]</a></sup> </td> <td style="background:#f2f2ce;">6</td> <td style="background:#cedff2;">0</td> <td>6 </td></tr> <tr> <td align="left"><span id="CAM"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Flag_of_Cambodia.svg/22px-Flag_of_Cambodia.svg.png" decoding="async" width="22" height="14" class="thumbborder" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Flag_of_Cambodia.svg/33px-Flag_of_Cambodia.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/83/Flag_of_Cambodia.svg/44px-Flag_of_Cambodia.svg.png 2x" data-file-width="1000" data-file-height="640" />&#160;<a href="/wiki/Cambodia_at_the_Olympics" title="Cambodia at the Olympics">Cambodia</a>&#160;<span style="font-size:90%;">(CAM)</span></span> </td> <td style="background:#f2f2ce;">10</td> <td style="background:#cedff2;">0</td> <td>10 </td></tr> <tr> <td align="left"><span id="CPV"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/38/Flag_of_Cape_Verde.svg/22px-Flag_of_Cape_Verde.svg.png" decoding="async" width="22" height="13" class="thumbborder" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/38/Flag_of_Cape_Verde.svg/33px-Flag_of_Cape_Verde.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/38/Flag_of_Cape_Verde.svg/44px-Flag_of_Cape_Verde.svg.png 2x" data-file-width="1020" data-file-height="600" />&#160;<a href="/wiki/Cape_Verde_at_the_Olympics" title="Cape Verde at the Olympics">Cape Verde</a>&#160;<span style="font-size:90%;">(CPV)</span></span> </td> <td style="background:#f2f2ce;">7</td> <td style="background:#cedff2;">0</td> <td>7 </td></tr> <tr> <td align="left"><span id="CAY"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0f/Flag_of_the_Cayman_Islands.svg/22px-Flag_of_the_Cayman_Islands.svg.png" decoding="async" width="22" height="11" class="thumbborder" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0f/Flag_of_the_Cayman_Islands.svg/33px-Flag_of_the_Cayman_Islands.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0f/Flag_of_the_Cayman_Islands.svg/44px-Flag_of_the_Cayman_Islands.svg.png 2x" data-file-width="1200" data-file-height="600" />&#160;<a href="/wiki/Cayman_Islands_at_the_Olympics" title="Cayman Islands at the Olympics">Cayman Islands</a>&#160;<span style="font-size:90%;">(CAY)</span></span> </td> <td style="background:#f2f2ce;">11</td> <td style="background:#cedff2;">2</td> <td>13 </td></tr> <tr> <td align="left"><span id="CAF"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Flag_of_the_Central_African_Republic.svg/22px-Flag_of_the_Central_African_Republic.svg.png" decoding="async" width="22" height="15" class="thumbborder" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Flag_of_the_Central_African_Republic.svg/33px-Flag_of_the_Central_African_Republic.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Flag_of_the_Central_African_Republic.svg/44px-Flag_of_the_Central_African_Republic.svg.png 2x" data-file-width="900" data-file-height="600" />&#160;<a href="/wiki/Central_African_Republic_at_the_Olympics" title="Central African Republic at the Olympics">Central African Republic</a>&#160;<span style="font-size:90%;">(CAF)</span></span> </td> <td style="background:#f2f2ce;">11</td> <td style="background:#cedff2;">0</td> <td>11 </td></tr> <tr> <td align="left"><span id="CHA"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4b/Flag_of_Chad.svg/22px-Flag_of_Chad.svg.png" decoding="async" width="22" height="15" class="thumbborder" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4b/Flag_of_Chad.svg/33px-Flag_of_Chad.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4b/Flag_of_Chad.svg/44px-Flag_of_Chad.svg.png 2x" data-file-width="900" data-file-height="600" />&#160;<a href="/wiki/Chad_at_the_Olympics" title="Chad at the Olympics">Chad</a>&#160;<span style="font-size:90%;">(CHA)</span></span> </td> <td style="background:#f2f2ce;">13</td> <td style="background:#cedff2;">0</td> <td>13 </td></tr> <tr> <td align="left"><span id="COM"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/9/94/Flag_of_the_Comoros.svg/22px-Flag_of_the_Comoros.svg.png" decoding="async" width="22" height="13" class="thumbborder" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/94/Flag_of_the_Comoros.svg/33px-Flag_of_the_Comoros.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/94/Flag_of_the_Comoros.svg/44px-Flag_of_the_Comoros.svg.png 2x" data-file-width="1000" data-file-height="600" />&#160;<a href="/wiki/Comoros_at_the_Olympics" title="Comoros at the Olympics">Comoros</a>&#160;<span style="font-size:90%;">(COM)</span></span> </td> <td style="background:#f2f2ce;">7</td> <td style="background:#cedff2;">0</td> <td>7 </td></tr> <tr> <td align="left"><span id="CGO"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/9/92/Flag_of_the_Republic_of_the_Congo.svg/22px-Flag_of_the_Republic_of_the_Congo.svg.png" decoding="async" width="22" height="15" class="thumbborder" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/92/Flag_of_the_Republic_of_the_Congo.svg/33px-Flag_of_the_Republic_of_the_Congo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/92/Flag_of_the_Republic_of_the_Congo.svg/44px-Flag_of_the_Republic_of_the_Congo.svg.png 2x" data-file-width="900" data-file-height="600" />&#160;<a href="/wiki/Republic_of_the_Congo_at_the_Olympics" title="Republic of the Congo at the Olympics">Republic of the Congo</a>&#160;<span style="font-size:90%;">(CGO)</span></span> </td> <td style="background:#f2f2ce;">13</td> <td style="background:#cedff2;">0</td> <td>13 </td></tr> <tr> <td align="left"><span id="COD"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Flag_of_the_Democratic_Republic_of_the_Congo.svg/22px-Flag_of_the_Democratic_Republic_of_the_Congo.svg.png" decoding="async" width="22" height="17" class="thumbborder" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Flag_of_the_Democratic_Republic_of_the_Congo.svg/33px-Flag_of_the_Democratic_Republic_of_the_Congo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Flag_of_the_Democratic_Republic_of_the_Congo.svg/44px-Flag_of_the_Democratic_Republic_of_the_Congo.svg.png 2x" data-file-width="800" data-file-height="600" />&#160;<a href="/wiki/Democratic_Republic_of_the_Congo_at_the_Olympics" title="Democratic Republic of the Congo at the Olympics">Democratic Republic of the Congo</a>&#160;<span style="font-size:90%;">(COD)</span></span> <sup class="reference" id="ref_CODCOD"><a href="#endnote_CODCOD">[COD]</a></sup> </td> <td style="background:#f2f2ce;">11</td> <td style="background:#cedff2;">0</td> <td>11 </td></tr> """ infer_nodes = [
Node(text=infer_text)
llama_index.core.data_structs.Node
from llama_index.core import SQLDatabase from sqlalchemy import ( create_engine, MetaData, Table, Column, String, Integer, select, column, ) engine = create_engine("sqlite:///chinook.db") sql_database = SQLDatabase(engine) from llama_index.core.query_pipeline import QueryPipeline get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('curl "https://www.sqlitetutorial.net/wp-content/uploads/2018/03/chinook.zip" -O ./chinook.zip') get_ipython().system('unzip ./chinook.zip') from llama_index.core.settings import Settings from llama_index.core.callbacks import CallbackManager callback_manager = CallbackManager() Settings.callback_manager = callback_manager import phoenix as px import llama_index.core px.launch_app() llama_index.core.set_global_handler("arize_phoenix") from llama_index.core.query_engine import NLSQLTableQueryEngine from llama_index.core.tools import QueryEngineTool sql_query_engine = NLSQLTableQueryEngine( sql_database=sql_database, tables=["albums", "tracks", "artists"], verbose=True, ) sql_tool = QueryEngineTool.from_defaults( query_engine=sql_query_engine, name="sql_tool", description=( "Useful for translating a natural language query into a SQL query" ), ) from llama_index.core.query_pipeline import QueryPipeline as QP qp = QP(verbose=True) from llama_index.core.agent.react.types import ( ActionReasoningStep, ObservationReasoningStep, ResponseReasoningStep, ) from llama_index.core.agent import Task, AgentChatResponse from llama_index.core.query_pipeline import ( AgentInputComponent, AgentFnComponent, CustomAgentComponent, QueryComponent, ToolRunnerComponent, ) from llama_index.core.llms import MessageRole from typing import Dict, Any, Optional, Tuple, List, cast def agent_input_fn(task: Task, state: Dict[str, Any]) -> Dict[str, Any]: """Agent input function. Returns: A Dictionary of output keys and values. If you are specifying src_key when defining links between this component and other components, make sure the src_key matches the specified output_key. """ if "current_reasoning" not in state: state["current_reasoning"] = [] reasoning_step = ObservationReasoningStep(observation=task.input) state["current_reasoning"].append(reasoning_step) return {"input": task.input} agent_input_component = AgentInputComponent(fn=agent_input_fn) from llama_index.core.agent import ReActChatFormatter from llama_index.core.query_pipeline import InputComponent, Link from llama_index.core.llms import ChatMessage from llama_index.core.tools import BaseTool def react_prompt_fn( task: Task, state: Dict[str, Any], input: str, tools: List[BaseTool] ) -> List[ChatMessage]: chat_formatter = ReActChatFormatter() return chat_formatter.format( tools, chat_history=task.memory.get() + state["memory"].get_all(), current_reasoning=state["current_reasoning"], ) react_prompt_component = AgentFnComponent( fn=react_prompt_fn, partial_dict={"tools": [sql_tool]} ) from typing import Set, Optional from llama_index.core.agent.react.output_parser import ReActOutputParser from llama_index.core.llms import ChatResponse from llama_index.core.agent.types import Task def parse_react_output_fn( task: Task, state: Dict[str, Any], chat_response: ChatResponse ): """Parse ReAct output into a reasoning step.""" output_parser = ReActOutputParser() reasoning_step = output_parser.parse(chat_response.message.content) return {"done": reasoning_step.is_done, "reasoning_step": reasoning_step} parse_react_output = AgentFnComponent(fn=parse_react_output_fn) def run_tool_fn( task: Task, state: Dict[str, Any], reasoning_step: ActionReasoningStep ): """Run tool and process tool output.""" tool_runner_component = ToolRunnerComponent( [sql_tool], callback_manager=task.callback_manager ) tool_output = tool_runner_component.run_component( tool_name=reasoning_step.action, tool_input=reasoning_step.action_input, ) observation_step = ObservationReasoningStep(observation=str(tool_output)) state["current_reasoning"].append(observation_step) return {"response_str": observation_step.get_content(), "is_done": False} run_tool =
AgentFnComponent(fn=run_tool_fn)
llama_index.core.query_pipeline.AgentFnComponent
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-hub-llama-packs-tables-chain-of-table-base') get_ipython().system('wget "https://github.com/ppasupat/WikiTableQuestions/releases/download/v1.0.2/WikiTableQuestions-1.0.2-compact.zip" -O data.zip') get_ipython().system('unzip data.zip') import pandas as pd df = pd.read_csv("./WikiTableQuestions/csv/200-csv/3.csv") df from llama_index.packs.tables.chain_of_table.base import ( ChainOfTableQueryEngine, serialize_table, ) from llama_index.core.llama_pack import download_llama_pack download_llama_pack( "ChainOfTablePack", "./chain_of_table_pack", skip_load=True, ) from llama_index.llms.openai import OpenAI llm = OpenAI(model="gpt-4-1106-preview") import phoenix as px import llama_index.core px.launch_app() llama_index.core.set_global_handler("arize_phoenix") import pandas as pd df = pd.read_csv("~/Downloads/WikiTableQuestions/csv/200-csv/11.csv") df query_engine = ChainOfTableQueryEngine(df, llm=llm, verbose=True) response = query_engine.query("Who won best Director in the 1972 Academy Awards?") str(response.response) import pandas as pd df = pd.read_csv("./WikiTableQuestions/csv/200-csv/42.csv") df query_engine = ChainOfTableQueryEngine(df, llm=llm, verbose=True) response = query_engine.query("What was the precipitation in inches during June?") str(response) from llama_index.core import PromptTemplate from llama_index.core.query_pipeline import QueryPipeline prompt_str = """\ Here's a serialized table. {serialized_table} Given this table please answer the question: {question} Answer: """ prompt = PromptTemplate(prompt_str) prompt_c = prompt.as_query_component(partial={"serialized_table":
serialize_table(df)
llama_index.packs.tables.chain_of_table.base.serialize_table
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') import camelot from llama_index.core import VectorStoreIndex from llama_index.core.query_engine import PandasQueryEngine from llama_index.core.schema import IndexNode from llama_index.llms.openai import OpenAI from llama_index.readers.file import PyMuPDFReader from typing import List import os os.environ["OPENAI_API_KEY"] = "YOUR_API_KEY" from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.llms.openai import OpenAI from llama_index.core import Settings Settings.llm = OpenAI(model="gpt-3.5-turbo") Settings.embed_model = OpenAIEmbedding(model="text-embedding-3-small") file_path = "billionaires_page.pdf" reader = PyMuPDFReader() docs = reader.load(file_path) def get_tables(path: str, pages: List[int]): table_dfs = [] for page in pages: table_list = camelot.read_pdf(path, pages=str(page)) table_df = table_list[0].df table_df = ( table_df.rename(columns=table_df.iloc[0]) .drop(table_df.index[0]) .reset_index(drop=True) ) table_dfs.append(table_df) return table_dfs table_dfs = get_tables(file_path, pages=[3, 25]) table_dfs[0] table_dfs[1] llm = OpenAI(model="gpt-4") df_query_engines = [ PandasQueryEngine(table_df, llm=llm) for table_df in table_dfs ] response = df_query_engines[0].query( "What's the net worth of the second richest billionaire in 2023?" ) print(str(response)) response = df_query_engines[1].query( "How many billionaires were there in 2009?" ) print(str(response)) from llama_index.core import Settings doc_nodes = Settings.node_parser.get_nodes_from_documents(docs) summaries = [ ( "This node provides information about the world's richest billionaires" " in 2023" ), ( "This node provides information on the number of billionaires and" " their combined net worth from 2000 to 2023." ), ] df_nodes = [
IndexNode(text=summary, index_id=f"pandas{idx}")
llama_index.core.schema.IndexNode