prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
########################################################################## ########################################################################## ## ## What are you doing looking at this file? ## ########################################################################## ########################################################################## # # Just kidding. There is some useful stuff in here that will help you complete # some of the labs and your project. Feel free to adapt it. # # (Sorry about the awful commenting though. Do as I say, not as I do, etc...) import numpy as np from matplotlib import pyplot as plt from matplotlib import cm from ipywidgets import interact, fixed, interactive_output, HBox, Button, VBox, Output, IntSlider, Checkbox, FloatSlider, FloatLogSlider, Dropdown TEXTSIZE = 16 from IPython.display import clear_output import time from scipy.optimize import curve_fit from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm as colmap from copy import copy from scipy.stats import multivariate_normal # commenting in here is pretty shocking tbh # wairakei model def wairakei_data(): # load some data tq, q =
np.genfromtxt('wk_production_history.csv', delimiter=',', unpack=True)
numpy.genfromtxt
from __future__ import division, absolute_import, print_function from past.builtins import xrange import numpy as np import esutil import time import matplotlib.pyplot as plt from .fgcmUtilities import objFlagDict from .fgcmUtilities import obsFlagDict from .sharedNumpyMemManager import SharedNumpyMemManager as snmm class FgcmStars(object): """ Class to describe the stars and observations of the stars. Note that after initialization you must call loadStarsFromFits() or loadStars() to load the star information. This allows an external caller to clear out memory after it has been copied to the shared memory buffers. parameters ---------- fgcmConfig: FgcmConfig Config variables ---------------- minObsPerBand: int Minumum number of observations per band to be "good" sedFitBandFudgeFactors: float array Fudge factors for computing fnuprime for the fit bands sedExtraBandFudgeFactors: float array Fudge factors for computing fnuprime for the extra bands starColorCuts: list List that contains lists of [bandIndex0, bandIndex1, minColor, maxColor] sigma0Phot: float Floor on photometric error to add to every observation reserveFraction: float Fraction of stars to hold in reserve mapLongitudeRef: float Reference longitude for plotting maps of stars mapNSide: int Healpix nside of map plotting. superStarSubCCD: bool Use sub-ccd info to make superstar flats? obsFile: string, only if using fits mode Star observation file indexFile: string, only if using fits mode Star index file """ def __init__(self,fgcmConfig): self.fgcmLog = fgcmConfig.fgcmLog self.fgcmLog.info('Initializing stars.') self.obsFile = fgcmConfig.obsFile self.indexFile = fgcmConfig.indexFile self.bands = fgcmConfig.bands self.nBands = len(fgcmConfig.bands) self.nCCD = fgcmConfig.nCCD self.minObsPerBand = fgcmConfig.minObsPerBand self.fitBands = fgcmConfig.fitBands self.nFitBands = len(fgcmConfig.fitBands) self.extraBands = fgcmConfig.extraBands self.sedFitBandFudgeFactors = fgcmConfig.sedFitBandFudgeFactors self.sedExtraBandFudgeFactors = fgcmConfig.sedExtraBandFudgeFactors self.starColorCuts = fgcmConfig.starColorCuts self.sigma0Phot = fgcmConfig.sigma0Phot self.ccdStartIndex = fgcmConfig.ccdStartIndex self.plotPath = fgcmConfig.plotPath self.outfileBaseWithCycle = fgcmConfig.outfileBaseWithCycle self.expField = fgcmConfig.expField self.ccdField = fgcmConfig.ccdField self.reserveFraction = fgcmConfig.reserveFraction self.modelMagErrors = fgcmConfig.modelMagErrors self.inFlagStarFile = fgcmConfig.inFlagStarFile self.mapLongitudeRef = fgcmConfig.mapLongitudeRef self.mapNSide = fgcmConfig.mapNSide self.lambdaStdBand = fgcmConfig.lambdaStdBand self.bandRequiredFlag = fgcmConfig.bandRequiredFlag self.bandRequiredIndex = np.where(self.bandRequiredFlag)[0] self.bandExtraFlag = fgcmConfig.bandExtraFlag self.bandExtraIndex = np.where(self.bandExtraFlag)[0] self.lutFilterNames = fgcmConfig.lutFilterNames self.filterToBand = fgcmConfig.filterToBand self.superStarSubCCD = fgcmConfig.superStarSubCCD #self.expArray = fgcmPars.expArray #self._loadStars(fgcmPars) self.magStdComputed = False self.allMagStdComputed = False self.sedSlopeComputed = False #if (computeNobs): # allExps = np.arange(fgcmConfig.expRange[0],fgcmConfig.expRange[1],dtype='i4') # self.fgcmLog.info('Checking stars with full possible range of exp numbers') #self.selectStarsMinObs(goodExps=allExps,doPlots=False) # allExpsIndex = np.arange(fgcmPars.expArray.size) # self.selectStarsMinObsExpIndex(allExpsIndex) self.magConstant = 2.5/np.log(10) self.hasXY = False def loadStarsFromFits(self,fgcmPars,computeNobs=True): """ Load stars from fits files. parameters ---------- fgcmPars: FgcmParameters computeNobs: bool, default=True Compute number of observations of each star/band Config variables ---------------- indexFile: string Star index file obsFile: string Star observation file inFlagStarFile: string, optional Flagged star file """ import fitsio # read in the observation indices... startTime = time.time() self.fgcmLog.info('Reading in observation indices...') index = fitsio.read(self.indexFile, ext='INDEX') self.fgcmLog.info('Done reading in %d observation indices in %.1f seconds.' % (index.size, time.time() - startTime)) # read in obsfile and cut startTime = time.time() self.fgcmLog.info('Reading in star observations...') obs = fitsio.read(self.obsFile, ext=1) # cut down to those that are indexed obs = obs[index['OBSINDEX']] self.fgcmLog.info('Done reading in %d observations in %.1f seconds.' % (obs.size, time.time() - startTime)) # and positions... startTime = time.time() self.fgcmLog.info('Reading in star positions...') pos = fitsio.read(self.indexFile, ext='POS') self.fgcmLog.info('Done reading in %d unique star positions in %.1f secondds.' % (pos.size, time.time() - startTime)) #obsBand = np.core.defchararray.strip(obs['BAND'][:]) obsFilterName = np.core.defchararray.strip(obs['FILTERNAME'][:]) if (self.inFlagStarFile is not None): self.fgcmLog.info('Reading in list of previous flagged stars from %s' % (self.inFlagStarFile)) inFlagStars = fitsio.read(self.inFlagStarFile, ext=1) flagID = inFlagStars['OBJID'] flagFlag = inFlagStars['OBJFLAG'] else: flagID = None flagFlag = None # FIXME: add support to x/y from fits files if ('X' in obs.dtype.names and 'Y' in obs.dtype.names): self.fgcmLog.info('Found X/Y in input observations') obsX = obs['X'] obsY = obs['Y'] else: obsX = None obsY = None # process self.loadStars(fgcmPars, obs[self.expField], obs[self.ccdField], obs['RA'], obs['DEC'], obs['MAG'], obs['MAGERR'], obsFilterName, pos['FGCM_ID'], pos['RA'], pos['DEC'], pos['OBSARRINDEX'], pos['NOBS'], obsX=obsX, obsY=obsY, flagID=flagID, flagFlag=flagFlag, computeNobs=computeNobs) # and clear memory index = None obs = None pos = None def loadStars(self, fgcmPars, obsExp, obsCCD, obsRA, obsDec, obsMag, obsMagErr, obsFilterName, objID, objRA, objDec, objObsIndex, objNobs, obsX=None, obsY=None, flagID=None, flagFlag=None, computeNobs=True): """ Load stars from arrays parameters ---------- fgcmPars: fgcmParameters obsExp: int array Exposure number (or equivalent) for each observation obsCCD: int array CCD number (or equivalent) for each observation obsRA: double array RA for each observation (degrees) obsDec: double array Dec for each observation (degrees) obsMag: float array Raw ADU magnitude for each observation obsMagErr: float array Raw ADU magnitude error for each observation obsFilterName: string array Filter name for each observation objID: int array Unique ID number for each object objRA: double array RA for each object (degrees) objDec: double array Dec for each object (degrees) objObsIndex: int array For each object, where in the obs table to look objNobs: int array number of observations of this object (all bands) obsX: float array, optional x position for each observation obsY: float array, optional y position for each observation flagID: int array, optional ID of each object that is flagged from previous cycle flagFlag: int array, optional Flag value from previous cycle computeNobs: bool, default=True Compute number of good observations of each object? """ # FIXME: check that these are all the same length! self.obsIndexHandle = snmm.createArray(obsRA.size, dtype='i4') snmm.getArray(self.obsIndexHandle)[:] = np.arange(obsRA.size) # need to stuff into shared memory objects. # nStarObs: total number of observations of all starus self.nStarObs = obsRA.size # obsExp: exposure number of individual observation (pointed by obsIndex) self.obsExpHandle = snmm.createArray(self.nStarObs,dtype='i4') # obsExpIndex: exposure index self.obsExpIndexHandle = snmm.createArray(self.nStarObs,dtype='i4') # obsCCD: ccd number of individual observation self.obsCCDHandle = snmm.createArray(self.nStarObs,dtype='i2') # obsBandIndex: band index of individual observation self.obsBandIndexHandle = snmm.createArray(self.nStarObs,dtype='i2') # obsLUTFilterIndex: filter index in LUT of individual observation self.obsLUTFilterIndexHandle = snmm.createArray(self.nStarObs,dtype='i2') # obsFlag: individual bad observation self.obsFlagHandle = snmm.createArray(self.nStarObs,dtype='i2') # obsRA: RA of individual observation self.obsRAHandle = snmm.createArray(self.nStarObs,dtype='f8') # obsDec: Declination of individual observation self.obsDecHandle = snmm.createArray(self.nStarObs,dtype='f8') # obsSecZenith: secant(zenith) of individual observation self.obsSecZenithHandle = snmm.createArray(self.nStarObs,dtype='f8') # obsMagADU: log raw ADU counts of individual observation ## FIXME: need to know default zeropoint? self.obsMagADUHandle = snmm.createArray(self.nStarObs,dtype='f4') # obsMagADUErr: raw ADU counts error of individual observation self.obsMagADUErrHandle = snmm.createArray(self.nStarObs,dtype='f4') # obsMagADUModelErr: modeled ADU counts error of individual observation self.obsMagADUModelErrHandle = snmm.createArray(self.nStarObs,dtype='f4') # obsSuperStarApplied: SuperStar correction that was applied self.obsSuperStarAppliedHandle = snmm.createArray(self.nStarObs,dtype='f4') # obsMagStd: corrected (to standard passband) mag of individual observation self.obsMagStdHandle = snmm.createArray(self.nStarObs,dtype='f4',syncAccess=True) if (obsX is not None and obsY is not None): self.hasXY = True # obsX: x position on the CCD of the given observation self.obsXHandle = snmm.createArray(self.nStarObs,dtype='f4') # obsY: y position on the CCD of the given observation self.obsYHandle = snmm.createArray(self.nStarObs,dtype='f4') else: # hasXY = False if self.superStarSubCCD: raise ValueError("Input stars do not have x/y but superStarSubCCD is set.") snmm.getArray(self.obsExpHandle)[:] = obsExp snmm.getArray(self.obsCCDHandle)[:] = obsCCD snmm.getArray(self.obsRAHandle)[:] = obsRA snmm.getArray(self.obsDecHandle)[:] = obsDec snmm.getArray(self.obsMagADUHandle)[:] = obsMag snmm.getArray(self.obsMagADUErrHandle)[:] = obsMagErr snmm.getArray(self.obsMagStdHandle)[:] = obsMag # same as raw at first snmm.getArray(self.obsSuperStarAppliedHandle)[:] = 0.0 if self.hasXY: snmm.getArray(self.obsXHandle)[:] = obsX snmm.getArray(self.obsYHandle)[:] = obsY self.fgcmLog.info('Applying sigma0Phot = %.4f to mag errs' % (self.sigma0Phot)) obsMagADUErr = snmm.getArray(self.obsMagADUErrHandle) obsFlag = snmm.getArray(self.obsFlagHandle) bad, = np.where(obsMagADUErr <= 0.0) obsFlag[bad] |= obsFlagDict['BAD_ERROR'] if (bad.size > 0): self.fgcmLog.info('Flagging %d observations with bad errors.' % (bad.size)) obsMagADUErr[:] = np.sqrt(obsMagADUErr[:]**2. + self.sigma0Phot**2.) # Initially, we set the model error to the observed error obsMagADUModelErr = snmm.getArray(self.obsMagADUModelErrHandle) obsMagADUModelErr[:] = obsMagADUErr[:] startTime = time.time() self.fgcmLog.info('Matching observations to exposure table.') obsExpIndex = snmm.getArray(self.obsExpIndexHandle) obsExpIndex[:] = -1 a,b=esutil.numpy_util.match(fgcmPars.expArray, snmm.getArray(self.obsExpHandle)[:]) obsExpIndex[b] = a self.fgcmLog.info('Observations matched in %.1f seconds.' % (time.time() - startTime)) bad, = np.where(obsExpIndex < 0) obsFlag[bad] |= obsFlagDict['NO_EXPOSURE'] if (bad.size > 0): self.fgcmLog.info('Flagging %d observations with no associated exposure.' % (bad.size)) # match bands and filters to indices startTime = time.time() self.fgcmLog.info('Matching observations to bands.') #for i in xrange(self.nBands): # use, = np.where(obsBand == self.bands[i]) # if (use.size == 0): # raise ValueError("No observations in band %s!" % (self.bands[i])) # snmm.getArray(self.obsBandIndexHandle)[use] = i # new version for multifilter support # First, we have the filterNames for filterIndex,filterName in enumerate(self.lutFilterNames): #try: # bandIndex, = np.where(self.filterToBand[filterName] == self.bands) #except: # self.fgcmLog.info('WARNING: observations with filter %s not in config' % (filterName)) # bandIndex = -1 try: bandIndex = self.bands.index(self.filterToBand[filterName]) except: self.fgcmLog.info('WARNING: observations with filter %s not in config' % (filterName)) bandIndex = -1 # obsFilterName is an array from fits/numpy. filterName needs to be encoded to match use, = np.where(obsFilterName == filterName.encode('utf-8')) if use.size == 0: self.fgcmLog.info('WARNING: no observations in filter %s' % (filterName)) else: snmm.getArray(self.obsLUTFilterIndexHandle)[use] = filterIndex snmm.getArray(self.obsBandIndexHandle)[use] = bandIndex self.fgcmLog.info('Observations matched in %.1f seconds.' % (time.time() - startTime)) #obs=None #startTime=time.time() #self.fgcmLog.info('Reading in star positions...') #pos=fitsio.read(self.indexFile,ext='POS') #self.fgcmLog.info('Done reading in %d unique star positions in %.1f secondds.' % # (pos.size,time.time()-startTime)) # nStars: total number of unique stars #self.nStars = pos.size self.nStars = objID.size # objID: unique object ID self.objIDHandle = snmm.createArray(self.nStars,dtype='i4') # objRA: mean RA for object self.objRAHandle = snmm.createArray(self.nStars,dtype='f8') # objDec: mean Declination for object self.objDecHandle = snmm.createArray(self.nStars,dtype='f8') # objObsIndex: for each object, the first self.objObsIndexHandle = snmm.createArray(self.nStars,dtype='i4') # objNobs: number of observations of this object (all bands) self.objNobsHandle = snmm.createArray(self.nStars,dtype='i4') # objNGoodObsHandle: number of good observations, per band self.objNGoodObsHandle = snmm.createArray((self.nStars,self.nBands),dtype='i4') #snmm.getArray(self.objIDHandle)[:] = pos['FGCM_ID'][:] #snmm.getArray(self.objRAHandle)[:] = pos['RA'][:] #snmm.getArray(self.objDecHandle)[:] = pos['DEC'][:] snmm.getArray(self.objIDHandle)[:] = objID snmm.getArray(self.objRAHandle)[:] = objRA snmm.getArray(self.objDecHandle)[:] = objDec #try: # new field name # snmm.getArray(self.objObsIndexHandle)[:] = pos['OBSARRINDEX'][:] #except: # old field name # snmm.getArray(self.objObsIndexHandle)[:] = pos['OBSINDEX'][:] #snmm.getArray(self.objNobsHandle)[:] = pos['NOBS'][:] snmm.getArray(self.objObsIndexHandle)[:] = objObsIndex snmm.getArray(self.objNobsHandle)[:] = objNobs # minObjID: minimum object ID self.minObjID = np.min(snmm.getArray(self.objIDHandle)) # maxObjID: maximum object ID self.maxObjID = np.max(snmm.getArray(self.objIDHandle)) # obsObjIDIndex: object ID Index of each observation # (to get objID, then objID[obsObjIDIndex] startTime = time.time() self.fgcmLog.info('Indexing star observations...') self.obsObjIDIndexHandle = snmm.createArray(self.nStarObs,dtype='i4') obsObjIDIndex = snmm.getArray(self.obsObjIDIndexHandle) objID = snmm.getArray(self.objIDHandle) obsIndex = snmm.getArray(self.obsIndexHandle) objObsIndex = snmm.getArray(self.objObsIndexHandle) objNobs = snmm.getArray(self.objNobsHandle) ## FIXME: check if this extra obsIndex reference is necessary or not. ## probably extraneous. for i in xrange(self.nStars): obsObjIDIndex[obsIndex[objObsIndex[i]:objObsIndex[i]+objNobs[i]]] = i self.fgcmLog.info('Done indexing in %.1f seconds.' % (time.time() - startTime)) #pos=None obsObjIDIndex = None objID = None obsIndex = None objObsIndex = None objNobs = None # and create a objFlag which flags bad stars as they fall out... self.objFlagHandle = snmm.createArray(self.nStars,dtype='i2') # and read in the previous bad stars if available #if (self.inBadStarFile is not None): # self.fgcmLog.info('Reading in list of previous bad stars from %s' % # (self.inBadStarFile)) # objID = snmm.getArray(self.objIDHandle) # objFlag = snmm.getArray(self.objFlagHandle) # inBadStars = fitsio.read(self.inBadStarFile,ext=1) # a,b=esutil.numpy_util.match(inBadStars['OBJID'], # objID) # self.fgcmLog.info('Flagging %d stars as bad.' % # (a.size)) # objFlag[b] = inBadStars['OBJFLAG'][a] if (flagID is not None): # the objFlag contains information on RESERVED stars objID = snmm.getArray(self.objIDHandle) objFlag = snmm.getArray(self.objFlagHandle) a,b=esutil.numpy_util.match(flagID, objID) test,=np.where((flagFlag[a] & objFlagDict['VARIABLE']) > 0) self.fgcmLog.info('Flagging %d stars as variable from previous cycles.' % (test.size)) test,=np.where((flagFlag[a] & objFlagDict['RESERVED']) > 0) self.fgcmLog.info('Flagging %d stars as reserved from previous cycles.' % (test.size)) objFlag[b] = flagFlag[a] else: # we want to reserve stars, if necessary if self.reserveFraction > 0.0: objFlag = snmm.getArray(self.objFlagHandle) nReserve = int(self.reserveFraction * objFlag.size) reserve = np.random.choice(objFlag.size, size=nReserve, replace=False) self.fgcmLog.info('Reserving %d stars from the fit.' % (nReserve)) objFlag[reserve] |= objFlagDict['RESERVED'] # And we need to record the mean mag, error, SED slopes... # objMagStdMean: mean standard magnitude of each object, per band self.objMagStdMeanHandle = snmm.createArray((self.nStars,self.nBands),dtype='f4', syncAccess=True) # objMagStdMeanErr: error on the mean standard mag of each object, per band self.objMagStdMeanErrHandle = snmm.createArray((self.nStars,self.nBands),dtype='f4') # objSEDSlope: linearized approx. of SED slope of each object, per band self.objSEDSlopeHandle = snmm.createArray((self.nStars,self.nBands),dtype='f4', syncAccess=True) # objMagStdMeanNoChrom: mean std mag of each object, no chromatic correction, per band self.objMagStdMeanNoChromHandle = snmm.createArray((self.nStars,self.nBands),dtype='f4') # note: if this takes too long it can be moved to the star computation, # but it seems pretty damn fast (which may raise the question of # why it needs to be precomputed...) # compute secZenith for every observation startTime=time.time() self.fgcmLog.info('Computing secZenith for each star observation...') objRARad = np.radians(snmm.getArray(self.objRAHandle)) objDecRad = np.radians(snmm.getArray(self.objDecHandle)) ## FIXME: deal with this at some point... hi,=np.where(objRARad > np.pi) objRARad[hi] -= 2*np.pi obsExpIndex = snmm.getArray(self.obsExpIndexHandle) obsObjIDIndex = snmm.getArray(self.obsObjIDIndexHandle) obsIndex = snmm.getArray(self.obsIndexHandle) obsHARad = (fgcmPars.expTelHA[obsExpIndex] + fgcmPars.expTelRA[obsExpIndex] - objRARad[obsObjIDIndex]) tempSecZenith = 1./(np.sin(objDecRad[obsObjIDIndex]) * fgcmPars.sinLatitude +
np.cos(objDecRad[obsObjIDIndex])
numpy.cos
#!/usr/bin/env python3 import ipdb #ipdb.set_trace() import configparser import os, sys from matplotlib import pyplot as plt import xarray as xr thisDir = os.path.dirname(os.path.abspath(__file__)) parentDir = os.path.dirname(thisDir) sys.path.insert(0,parentDir) from metpy.calc import * from metpy.units import units import metpy from skyfield import api from skyfield.api import EarthSatellite, Topos, load import numpy as np from datetime import datetime, timedelta fobs="obs_grid.nc" f1="tar/gfs.t18z.pgrb2.0p25.f003" f1="tar/gfs.t12z.pgrb2.0p25.f006" f1="/work/noaa/dtc-hwrf/sbao/EMC_post/DOMAINPATH/postprd/GFSPRS.006.iveg2.grb2" n_clouds=5 n_aerosol=1 def find_var(f,string): for i in f: if (string in i and i.startswith(string[0:3])): found=i return found def effr_cld(cld): min_qc=1.e-7 gfdl_rhor=1000. gfdl_ccn=1.0e8 gfdl_rewmin=5.0 gfdl_rewmax=10.0 cld_positive=xr.where(cld>min_qc, cld, min_qc) result=np.exp(1.0/3.0*np.log((3.*cld_positive)/(4.*np.pi*gfdl_rhor*gfdl_ccn)))*1.0e6 result=xr.where(result<gfdl_rewmin, gfdl_rewmin, result) result=xr.where(result>gfdl_rewmax, gfdl_rewmax, result) result=xr.where(cld>min_qc, result, 0) return result*2 def effr_ice(ice,temp): min_qi=1.e-8 gfdl_tice = 273.16 gfdl_beta = 1.22 gfdl_reimin = 10.0 gfdl_reimax = 150.0 result=xr.full_like(ice,0.0) ice_positive=xr.where(ice>min_qi, ice, min_qi) result=xr.where(temp[1:]-gfdl_tice>=-30.0, gfdl_beta / 9.387 * np.exp ((1 - 0.969) * np.log (1.0e3 * ice_positive)) * 1.0e3, result) result=xr.where(temp[1:]-gfdl_tice<-30.0, gfdl_beta / 9.208 * np.exp ((1 - 0.945) * np.log (1.0e3 * ice_positive)) * 1.0e3, result) result=xr.where(temp[1:]-gfdl_tice<-40.0, gfdl_beta / 9.337 * np.exp ((1 - 0.920) *
np.log (1.0e3 * ice_positive)
numpy.log
""" Code for processing operations for numpy arrays of tif stacks """ #Import packages #Dependences import numpy as np from numpy.fft import fft2, ifft2, fftshift from scipy.ndimage import median_filter, gaussian_filter, shift import itertools import gc def doMedianFilter(imgstack, med_fsize=3): ''' Median Filter (Takes 303.37 sec, 5 min 3 sec) imgstack is (nframes, height, width) numpy array of images med_fsize is the median filter size Returns medstack, a (nframes, height, width) numpy array of median filtered images ''' medstack = np.empty(imgstack.shape, dtype=np.uint16) for idx, frame in enumerate(imgstack): medstack[idx,...] = median_filter(frame, size=med_fsize) return medstack def doHomomorphicFilter(imgstack, sigmaVal=7): ''' Homomorphic Filter (Takes 323.1 sec, 5 min 23 sec) imgstack is (nframes, height, width) numpy array of images sigmaVal is the gaussian_filter size for subtracing the low frequency component Returns homomorphimgs, a (nframes, height, width) numpy array of homomorphic filtered images ''' #Constants to scale from between 0 and 1 eps = 7./3 - 4./3 -1 maxval = imgstack.max() ScaleFactor = 1./maxval Baseline = imgstack.min() # Subtract minimum baseline, and multiply by scale factor. Force minimum of eps before taking log. logimgs = np.log1p(np.maximum((imgstack-Baseline)*ScaleFactor, eps)) # Get Low Frequency Component from Gaussian Filter lpComponent = np.empty(logimgs.shape) for idx, frame in enumerate(logimgs): lpComponent[idx,...] = gaussian_filter(frame, sigma=sigmaVal) # Remove Low Frequency Component and Shift Values adjimgs = logimgs - lpComponent del logimgs, lpComponent gc.collect() logmin = adjimgs.min() adjimgs = adjimgs - logmin #Shift by minimum logged difference value, so lowest value is 0 #Undo the log and shift back to standard image space homomorphimgs = (np.expm1(adjimgs)/ScaleFactor) + Baseline return homomorphimgs def registerImages(imgstack, Ref=None, method='CrossCorrelation'): ''' Perform frame-by-frame Image Registration to a reference image using a default of Cross Correlation (465.43 sec. 7 min 45 sec) imgstack is (nframes, height, width) numpy array of images Ref is a (height, width) numpy array as a reference image to use for motion correction If no Ref is given, then the mean across all frames is used method is the method to use to register the images, with the default being cross-correlation between the Reference frame and each individual frame Returns stackshift, a (nframes, height, width) numpy array of motion corrected and shifted images Returns yshift is the number of pixels to shift each frame in the y-direction (height) Returns xshift is the number of pixels to shift each frame in the x-direction (width) ''' #Insert functions for different registration methods def CrossCorrelation(imgstack, Ref): #Precalculate Static Values if Ref is None: Ref = imgstack.mean(axis=0) imshape = Ref.shape nframes = imgstack.shape[0] imcenter = np.array(imshape)/2 yshift =
np.empty((nframes,1))
numpy.empty
""" Creates dataset of SEoEi Author(s): <NAME> (<EMAIL>) """ import os import numpy as np from matplotlib import pyplot as plt #plt.switch_backend('Qt5Agg') import math from scipy.interpolate import splev, splprep, interp1d from scipy.integrate import cumtrapz import sys sys.path.append("../") from utils import visualize def get_sf_params(variables, alpha, beta): ''' alpha : control nonlinearity beta : control number of categories ''' params = [] for v in variables: # v = [s, t] # Set [m, n1, n2, n3] params.append([4+math.floor(v[0]+v[1])%beta, alpha*v[0], alpha*(v[0]+v[1]), alpha*(v[0]+v[1])]) return np.array(params) def r(phi, m, n1, n2, n3): # a = b = 1, m1 = m2 = m return ( abs(math.cos(m * phi / 4)) ** n2 + abs(math.sin(m * phi / 4)) ** n3 ) ** (-1/n1) def interpolate(Q, N, k, D=20, resolution=1000): ''' Interpolate N points whose concentration is based on curvature. ''' res, fp, ier, msg = splprep(Q.T, u=None, k=k, s=1e-6, per=0, full_output=1) tck, u = res uu = np.linspace(u.min(), u.max(), resolution) x, y = splev(uu, tck, der=0) dx, dy = splev(uu, tck, der=1) ddx, ddy = splev(uu, tck, der=2) cv = np.abs(ddx*dy - dx*ddy)/(dx*dx + dy*dy)**1.5 + D cv_int = cumtrapz(cv, uu, initial=0) fcv = interp1d(cv_int, uu) cv_int_samples = np.linspace(0, cv_int.max(), N) u_new = fcv(cv_int_samples) x_new, y_new = splev(u_new, tck, der=0) return x_new, y_new, fp, ier def gen_superformula(m, n1, n2, n3, num_points=64): phis = np.linspace(0, 2*np.pi, num_points*4)#, endpoint=False) S = [(r(phi, m, n1, n2, n3) * math.cos(phi), r(phi, m, n1, n2, n3) * math.sin(phi)) for phi in phis] S = np.array(S) # Scale the heights to 1.0 mn = np.min(S[:,1]) mx = np.max(S[:,1]) h = mx-mn S /= h x_new, y_new, fp, ier = interpolate(S, N=num_points, k=3) S = np.vstack((x_new, y_new)).T return S def gen_ellipse(a, b, num_points=16): phis = np.linspace(0, 2*np.pi, num_points) E = [(a * math.cos(phi), b * math.sin(phi)) for phi in phis] return np.array(E) def filt_se(superformula, ellipses): N = ellipses.shape[0] R_sf = np.linalg.norm(superformula, axis=-1) Rs_sf = np.tile(
np.expand_dims(R_sf, axis=0)
numpy.expand_dims
from __future__ import print_function, division import os import numpy as np from ..discretization import StructuredGrid from ..datbase import DataType, DataInterface import flopy.utils.binaryfile as bf from flopy.utils import HeadFile import numpy.ma as ma import struct import sys # Module for exporting vtk from flopy np_to_vtk_type = {'int8': 'Int8', 'uint8': 'UInt8', 'int16': 'Int16', 'uint16': 'UInt16', 'int32': 'Int32', 'uint32': 'UInt32', 'int64': 'Int64', 'uint64': 'UInt64', 'float32': 'Float32', 'float64': 'Float64'} np_to_struct = {'int8': 'b', 'uint8': 'B', 'int16': 'h', 'uint16': 'H', 'int32': 'i', 'uint32': 'I', 'int64': 'q', 'uint64': 'Q', 'float32': 'f', 'float64': 'd'} class XmlWriterInterface: """ Helps writing vtk files. Parameters ---------- file_path : str output file path """ def __init__(self, file_path): # class attributes self.open_tag = False self.current = [] self.indent_level = 0 self.indent_char = ' ' # open file and initialize self.f = self._open_file(file_path) self.write_string('<?xml version="1.0"?>') # open VTKFile element self.open_element('VTKFile').add_attributes(version='0.1') def _open_file(self, file_path): """ Open the file for writing. Return ------ File object. """ raise NotImplementedError('must define _open_file in child class') def write_string(self, string): """ Write a string to the file. """ raise NotImplementedError('must define write_string in child class') def open_element(self, tag): if self.open_tag: self.write_string(">") indent = self.indent_level * self.indent_char self.indent_level += 1 tag_string = "\n" + indent + "<%s" % tag self.write_string(tag_string) self.open_tag = True self.current.append(tag) return self def close_element(self, tag=None): self.indent_level -= 1 if tag: assert (self.current.pop() == tag) if self.open_tag: self.write_string(">") self.open_tag = False indent = self.indent_level * self.indent_char tag_string = "\n" + indent + "</%s>" % tag self.write_string(tag_string) else: self.write_string("/>") self.open_tag = False self.current.pop() return self def add_attributes(self, **kwargs): assert self.open_tag for key in kwargs: st = ' %s="%s"' % (key, kwargs[key]) self.write_string(st) return self def write_line(self, text): if self.open_tag: self.write_string('>') self.open_tag = False self.write_string('\n') indent = self.indent_level * self.indent_char self.write_string(indent) self.write_string(text) return self def write_array(self, array, actwcells=None, **kwargs): """ Write an array to the file. Parameters ---------- array : ndarray the data array being output actwcells : array array of the active cells kwargs : dictionary Attributes to be added to the DataArray element """ raise NotImplementedError('must define write_array in child class') def final(self): """ Finalize the file. Must be called. """ self.close_element('VTKFile') assert (not self.open_tag) self.f.close() class XmlWriterAscii(XmlWriterInterface): """ Helps writing ascii vtk files. Parameters ---------- file_path : str output file path """ def __init__(self, file_path): super(XmlWriterAscii, self).__init__(file_path) def _open_file(self, file_path): """ Open the file for writing. Return ------ File object. """ return open(file_path, "w") def write_string(self, string): """ Write a string to the file. """ self.f.write(string) def write_array(self, array, actwcells=None, **kwargs): """ Write an array to the file. Parameters ---------- array : ndarray the data array being output actwcells : array array of the active cells kwargs : dictionary Attributes to be added to the DataArray element """ # open DataArray element with relevant attributes self.open_element('DataArray') vtk_type = np_to_vtk_type[array.dtype.name] self.add_attributes(type=vtk_type) self.add_attributes(**kwargs) self.add_attributes(format='ascii') # write the data nlay = array.shape[0] for lay in range(nlay): if actwcells is not None: idx = (actwcells[lay] != 0) array_lay_flat = array[lay][idx].flatten() else: array_lay_flat = array[lay].flatten() # replace NaN values by -1e9 as there is a bug is Paraview when # reading NaN in ASCII mode # https://gitlab.kitware.com/paraview/paraview/issues/19042 # this may be removed in the future if they fix the bug array_lay_flat[np.isnan(array_lay_flat)] = -1e9 s = ' '.join(['{}'.format(val) for val in array_lay_flat]) self.write_line(s) # close DataArray element self.close_element('DataArray') return class XmlWriterBinary(XmlWriterInterface): """ Helps writing binary vtk files. Parameters ---------- file_path : str output file path """ def __init__(self, file_path): super(XmlWriterBinary, self).__init__(file_path) if sys.byteorder == "little": self.byte_order = '<' self.add_attributes(byte_order='LittleEndian') else: self.byte_order = '>' self.add_attributes(byte_order='BigEndian') self.add_attributes(header_type="UInt64") # class attributes self.offset = 0 self.byte_count_size = 8 self.processed_arrays = [] def _open_file(self, file_path): """ Open the file for writing. Return ------ File object. """ return open(file_path, "wb") def write_string(self, string): """ Write a string to the file. """ self.f.write(str.encode(string)) def write_array(self, array, actwcells=None, **kwargs): """ Write an array to file. Parameters ---------- array : ndarray the data array being output actwcells : array array of the active cells kwargs : dictionary Attributes to be added to the DataArray element """ # open DataArray element with relevant attributes self.open_element('DataArray') vtk_type = np_to_vtk_type[array.dtype.name] self.add_attributes(type=vtk_type) self.add_attributes(**kwargs) self.add_attributes(format='appended', offset=self.offset) # store array for later writing (appended data section) if actwcells is not None: array = array[actwcells != 0] a = np.ascontiguousarray(array.ravel()) array_size = array.size * array[0].dtype.itemsize self.processed_arrays.append([a, array_size]) # calculate the offset of the start of the next piece of data # offset is calculated from beginning of data section self.offset += array_size + self.byte_count_size # close DataArray element self.close_element('DataArray') return def _write_size(self, block_size): # size is a 64 bit unsigned integer byte_order = self.byte_order + 'Q' block_size = struct.pack(byte_order, block_size) self.f.write(block_size) def _append_array_binary(self, data): # see vtk documentation and more details here: # https://vtk.org/Wiki/VTK_XML_Formats#Appended_Data_Section assert (data.flags['C_CONTIGUOUS'] or data.flags['F_CONTIGUOUS']) assert data.ndim==1 data_format = self.byte_order + str(data.size) + \ np_to_struct[data.dtype.name] binary_data = struct.pack(data_format, *data) self.f.write(binary_data) def final(self): """ Finalize the file. Must be called. """ # build data section self.open_element('AppendedData') self.add_attributes(encoding='raw') self.write_line('_') for a, block_size in self.processed_arrays: self._write_size(block_size) self._append_array_binary(a) self.close_element('AppendedData') # call super final super(XmlWriterBinary, self).final() class _Array(object): # class to store array and tell if array is 2d def __init__(self, array, array2d): self.array = array self.array2d = array2d def _get_basic_modeltime(perlen_list): modeltim = 0 totim = [] for tim in perlen_list: totim.append(modeltim) modeltim += tim return totim class Vtk(object): """ Class to build VTK object for exporting flopy vtk Parameters ---------- model : MFModel flopy model instance verbose : bool If True, stdout is verbose nanval : float no data value, default is -1e20 smooth : bool if True, will create smooth layer elevations, default is False point_scalars : bool if True, will also output array values at cell vertices, default is False; note this automatically sets smooth to True vtk_grid_type : str Specific vtk_grid_type or 'auto' (default). Possible specific values are 'ImageData', 'RectilinearGrid', and 'UnstructuredGrid'. If 'auto', the grid type is automatically determined. Namely: * A regular grid (in all three directions) will be saved as an 'ImageData'. * A rectilinear (in all three directions), non-regular grid will be saved as a 'RectilinearGrid'. * Other grids will be saved as 'UnstructuredGrid'. true2d : bool If True, the model is expected to be 2d (1 layer, 1 row or 1 column) and the data will be exported as true 2d data, default is False. binary : bool if True the output file will be binary, default is False Attributes ---------- arrays : dict Stores data arrays added to VTK object """ def __init__(self, model, verbose=None, nanval=-1e+20, smooth=False, point_scalars=False, vtk_grid_type='auto', true2d=False, binary=False): if point_scalars: smooth = True if verbose is None: verbose = model.verbose self.verbose = verbose # set up variables self.model = model self.modelgrid = model.modelgrid self.nlay = self.modelgrid.nlay if hasattr(self.model, 'dis') and hasattr(self.model.dis, 'laycbd'): self.nlay = self.nlay + np.sum(self.model.dis.laycbd.array > 0) self.nrow = self.modelgrid.nrow self.ncol = self.modelgrid.ncol self.shape = (self.nlay, self.nrow, self.ncol) self.shape2d = (self.shape[1], self.shape[2]) self.shape_verts = (self.shape[0]+1, self.shape[1]+1, self.shape[2]+1) self.shape_verts2d = (self.shape_verts[1], self.shape_verts[2]) self.nanval = nanval self.arrays = {} self.vectors = {} self.smooth = smooth self.point_scalars = point_scalars self.has_cell_data = False self.has_point_data = False # check if structured grid, vtk only supports structured grid assert (isinstance(self.modelgrid, StructuredGrid)) # cbd self.cbd_on = False # get ibound if self.modelgrid.idomain is None: # ibound = None ibound = np.ones(self.shape) else: ibound = self.modelgrid.idomain # build cbd ibound if ibound is not None and hasattr(self.model, 'dis') and \ hasattr(self.model.dis, 'laycbd'): self.cbd =
np.where(self.model.dis.laycbd.array > 0)
numpy.where
import os, re import matplotlib.cm as cm import matplotlib.pyplot as plt import math import numpy as np from threading import Thread import time import json FILE_NAME = os.path.basename(__file__) CURR_DIR = os.path.dirname(__file__) BASE_DIR = os.path.dirname(CURR_DIR) import sys sys.path.insert(-1, CURR_DIR) sys.path.insert(-1, BASE_DIR) import GeneticAlgorithm.test_functions as tf import GeneticAlgorithm.genetic_data as gd def generte_contours(eval=None): delta = 0.025 # 0.025 x = np.arange(-5.11, 4.11, delta) y = np.arange(-4.11, 5.11, delta) X, Y = np.meshgrid(x, y) Z = eval(X, Y) print(Z) plt.contour(X, Y, Z, [x * x / 8 for x in range(1, 50)], linewidths=0.5) # plt.scatter(np.random.random(),np.linspace(-2,2,20)) plt.title('Minima ' + str(eval(0, 0))) plt.show() return points = np.zeros(shape=(len(x) * len(y), 2)) vals = np.zeros(shape=(len(x) * len(y))) print(points) i = 0 for xx in x: for yy in y: print(xx, yy) points[i] = [xx, yy] vals[i] = eval(xx, yy) i += 1 print(points, np.min(vals), np.max(vals)) def get_eval(e): if e == 'rastringin_gen': return tf.rastringin_gen elif e == 'camel_hump_six': return tf.camel_hump_six def flat_array_to_nd_array(gdata, rows, cols, population, order='F'): n_p = int(gdata[rows]) nv = gdata[cols] np_vals = np.array(gdata[population]) return np_vals.reshape(n_p, nv, order=order) def evaluate_parents(i_genr, gdata, population_fitness, np_vals_r, pop_size, n_vars): eval = get_eval(gdata['eval_func_name']) all_vals = [0. for i in range(pop_size)] for i, parent in enumerate(np_vals_r): all_vals[i] = eval(parent) return all_vals eval_function = evaluate_parents read_data_function = gd.read_genetic_data write_data_function = gd.write_genetic_data def initialize_genetic_data(m, c, p, of, v, ps, ng, ran, ev, labels=None, ev_func=None): """ m: mutation rate c: crossover point p: initial population of: ratio of offspring to population ps: probability of parent selection ng: number of genes ran: Variable value ranges ev: evaluation function """ if ev_func: eval_function = ev_func if not labels: labels = [f'var{x+1}'for x in range(v)] n_pool = int(p * (1 + of)) print('n_pool', n_pool) gdata = { 'mutrate': m, 'crossover_point': c, 'n_pars': p, 'n_offsp': of * p, 'n_vars': v, 'n_pool': int(p * (1 + of)), 'parent_selection_prob': ps, 'n_gens': ng, 'parents': [0. for x in range(int(v * p))], 'offspring': [0. for x in range(int(v * of * p))], 'pool': [0. for x in range(int(v * n_pool))], 'fitness_off': [0. for x in range(int(of * p))], 'fitness_pool': [0. for x in range(n_pool)], 'fitness_pars': [0. for x in range(int(p))], 'id_offspring': [0. for x in range(int(of * p))], 'id_pool': [0. for x in range(n_pool)], 'id_parents': [0. for x in range(int(p))], 'ranges': [x for x in ran], 'labels': labels, 'eval_func_name': ev } write_data_function(gdata) def generate_parents_old(): gdata = read_data_function() xr = gdata['ranges'] p = gdata['n_pars'] nv = gdata['n_vars'] for i in range(nv): rng = gdata['ranges'][i] x = np.arange(rng[0], rng[1], (rng[1] - rng[0]) / p) gdata['parents'][i] = list(x) print(len(gdata['pool'])) write_data_function(gdata) # y = np.arange(xr[2],xr[3],(xr[3]-xr[2])/p) return def sort_by_fitness(population, population_fitness, population_size): gdata = read_data_function() p = gdata[population_size] nv = gdata['n_vars'] np_vals = np.array(gdata[population]) np_vals_r = np_vals.reshape(p, nv, order='F') np_fits = np.array(gdata[population_fitness]) np_locs = np.array(gdata[f'id_{population}']) # np_full = np.concatenate((np_vals_r,np.array([np_fits]).T),axis=1) # print(np_full[np_full[:,-1].argsort()]) arr_inds = np_fits.argsort() np_vals_sorted = np_vals_r[arr_inds] # [::-1] np_fits_sorted = np_fits[arr_inds] np_locs_sorted = np_locs[arr_inds] gdata[population] = list(np_vals_sorted.T.flatten()) gdata[population_fitness] = list(np_fits_sorted) gdata[f'id_{population}'] = list(np_locs_sorted) # print(np_vals_sorted) # print(np_vals_sorted.T.flatten()) write_data_function(gdata) def evaluate_population_fitness(i_genr, population, population_fitness, pop_size, vals=None): gdata = read_data_function() p = int(gdata[pop_size]) nv = gdata['n_vars'] np_vals = np.array(gdata[population]) np_vals_r = np_vals.reshape(p, nv, order='F') fitness_values = eval_function(i_genr, gdata, population_fitness, np_vals_r, p, nv) for i, fv in enumerate(fitness_values): gdata[population_fitness][i] = fv write_data_function(gdata) def generate_parents_np(i=0): gdata = read_data_function() # xr = gdata['ranges'] p = gdata['n_pars'] nv = gdata['n_vars'] print(gdata['ranges']) npranges = np.array(gdata['ranges']) ranges = npranges.reshape(int(nv), int(len(gdata['ranges']) / nv)) # ranges = npranges.reshape(int(len(gdata['ranges']) / nv), int(nv)) # px1 = np.arange(ranges[0][0], ranges[0][1], (ranges[0][1] - ranges[0][0]) / p) px1 = np.random.uniform(ranges[0][0], ranges[0][1], p) fin = list(px1) # print('fin',fin) for r in ranges[1:]: px = np.arange(r[0], r[1], (r[1] - r[0]) / p) px = np.random.uniform(r[0], r[1], p) x = np.array(px) # print('x',x) fin.extend(list(x)) gdata['parents'] = fin[:] write_data_function(gdata) def crossover_parents(): gdata = read_data_function() cp = gdata['crossover_point'] n_pars = gdata['n_pars'] nv = gdata['n_vars'] n_off = int(gdata['n_offsp']) np_pars = np.array(gdata['parents']) np_pars_r = np_pars.reshape(n_pars, nv, order='F') par_indices = np.random.choice([a for a in range(n_pars)], int(gdata['n_offsp']), replace=False) coff = 0 chosen = [] offspr = np.zeros(shape=(n_off, nv)) for i in range(n_pars): i_par1 = np.random.randint(0, n_pars) i_par2 = np.random.randint(0, n_pars) while i_par1 in chosen or i_par2 in chosen or i_par2 == i_par1: i_par1 = np.random.randint(0, n_pars) i_par2 = np.random.randint(0, n_pars) chosen.append(i_par1) chosen.append(i_par2) par1 = np_pars_r[i_par1] par2 = np_pars_r[i_par2] ch1 = np.zeros(nv) ch2 = np.zeros(nv) ch1[:cp] = par2[:cp] ch2[:cp] = par1[:cp] ch1[cp:] = par1[cp:] ch2[cp:] = par2[cp:] offspr[coff] = ch1 offspr[coff + 1] = ch2 coff += 2 if coff == n_off: break gdata['offspring'] = list(offspr.T.flatten()) write_data_function(gdata) def mutate_population_readable(i_gen=0): gdata = read_data_function() gd.write_json(gdata, './before.json') p = gdata['n_pars'] nv = gdata['n_vars'] n_mutate = int(gdata['mutrate'] * p) np_pars = np.array(gdata['parents']) np_pars_r = np_pars.reshape(p, nv, order='F') np_ranges = np.array(gdata['ranges']) np_ranges_r = np_ranges.reshape(int(nv), int(len(gdata['ranges']) / nv)) chosen = [] for i in range(n_mutate): rai = np.random.randint(0, p * 0.8) while rai in chosen: rai = np.random.randint(0, p * 0.8) chosen.append(rai) # print(rai, rai%nv) r_i = np.random.randint(0, nv) # int(rai / p) mut = np.random.uniform(np_ranges_r[r_i][0], np_ranges_r[r_i][1], 1) # print(rai, rai%nv, mut) before = np_pars_r[rai] # print(f'before {i_gen}: {before}') np_pars_r[rai][r_i] = mut[0] # print(f'after {i_gen}: {np_pars_r[rai]}') # print(f'{i_gen} aft:{np_pars_r[rai]} mut:{mut[0]}, rai:{rai}, r_i:{r_i} [{np_ranges_r[r_i][0]}, {np_ranges_r[r_i][1]}]') gdata['parents'] = list(np_pars_r.T.flatten()) write_data_function(gdata) def combine(i=0): gdata = read_data_function() p = gdata['n_pars'] n_off = int(gdata['n_offsp']) nv = gdata['n_vars'] np_pars_r = np.array(gdata['parents']).reshape(p, nv, order='F') np_off_r = np.array(gdata['offspring']).reshape(n_off, nv, order='F') np_pool = np.concatenate((np_pars_r, np_off_r), axis=0) gdata['pool'] = list(np_pool.T.flatten()) gdata['fitness_pool'][:p] = gdata['fitness_pars'][:] gdata['fitness_pool'][p:] = gdata['fitness_off'][:] gdata['id_pool'][:p] = gdata['id_parents'][:] gdata['id_pool'][p:] = gdata['id_offspring'][:] write_data_function(gdata) def select_new_population(): """ Selects new parents from combined parents and offspring :return: """ gdata = read_data_function() p = gdata['n_pars'] npool = gdata['n_pool'] nv = gdata['n_vars'] n_off = int(gdata['n_offsp']) np_pars_r = np.array(gdata['parents']).reshape(p, nv, order='F') np_pool_r = np.array(gdata['pool']).reshape(npool, nv, order='F') np_pool_fitness =
np.array(gdata['fitness_pool'])
numpy.array
""" Building ======== The building module contains functions related to building acoustics. """ from __future__ import division import numpy as np #from acoustics.utils import w def rw_curve(tl): """ Calculate the curve of :math:`Rw` from a NumPy array `tl` with third octave data between 100 Hz and 3.15 kHz. :param tl: Transmission Loss """ ref_curve = np.array([0, 3, 6, 9, 12, 15, 18, 19, 20, 21, 22, 23, 23, 23, 23, 23]) residuals = 0 while residuals > -32: ref_curve += 1 diff = tl - ref_curve residuals = np.sum(np.clip(diff,
np.min(diff)
numpy.min
# -*- coding: utf-8 -*- """ Created on Wed Jan 01 20:00:29 2020 @author: Ing. <NAME> """ import pandas as pd # Conectar con hojas de excel import numpy as np # Creación de matrices #from loggerPrint import Logger def selectionBeamCol(D_nodos_totales, D_nodos_restringidos, D_criterio, ExcelPrincipal, DatosPrincipales, Perfil_Data): # my_console = Logger('files/preselect.txt') #ExcelPrincipal = pd.ExcelFile('DatosExcel.xlsx') #DatosPrincipales = ExcelPrincipal.parse('Datos') #--> DatosPrincipalesPrincipales print('Message: Variable cleanup has been completed successfully ✔✔✔✔✔✔✔✔✔✔') print('') print('Disclaimer') print('This is a window executed by QThread event. This process could be fail when the program is overloaded, for bad use, when is not possible to find solutions (when there are few options in search, or simply due by error to input data), in wich case the program would be to close.') print('We recomended to check tutorials GRISS UTPL, go to *Guide and Blog* buttom.') # height = max(DatosPrincipales['y(j)']) # lenght = max(DatosPrincipales['x(j)']) print('') print(170*'=') print(170*'=') # print('\n','Preselección de elementos estructurales en vigas y columnas:') # print(' ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯') ingreso_predatos = [] for i in range(len(DatosPrincipales)): ingreso_predatos.append([DatosPrincipales.values[i][0], DatosPrincipales.values[i][1], DatosPrincipales.values[i][2], DatosPrincipales.values[i][3], DatosPrincipales.values[i][4], DatosPrincipales.values[i][5], DatosPrincipales.values[i][6], DatosPrincipales.values[i][7], DatosPrincipales.values[i][8], DatosPrincipales.values[i][9], DatosPrincipales.values[i][10], DatosPrincipales.values[i][11], DatosPrincipales.values[i][12], DatosPrincipales.values[i][15], DatosPrincipales.values[i][16], DatosPrincipales.values[i][17], DatosPrincipales.values[i][18], DatosPrincipales.values[i][19], DatosPrincipales.values[i][20], DatosPrincipales.values[i][21], DatosPrincipales.values[i][22]]) # predatos = pd.DataFrame(ingreso_predatos) nl = D_nodos_totales - D_nodos_restringidos ngdlt_t = D_nodos_totales * 3 ngdlt_l = nl * 3 ngdlt_r = D_nodos_restringidos * 3 kGE = np.zeros((ngdlt_t,ngdlt_t)) QcE = np.zeros((ngdlt_t,1)) mt_lista = [] rse_lista = [] sel_lista = [] kle_lista = [] Sg_lista = [] ind_lista = [] for i in range(len(ingreso_predatos)): kgi = np.zeros((ngdlt_t,ngdlt_t)) Qci = np.zeros((ngdlt_t,1)) indx = np.array([ingreso_predatos[i][3], ingreso_predatos[i][4], ingreso_predatos[i][5], ingreso_predatos[i][6], ingreso_predatos[i][7], ingreso_predatos[i][8]]) ind_lista.append(indx-1) #--> Extraigo los índices para cada elemento, dentro del bucle i Lpre = round(np.sqrt((ingreso_predatos[i][11]-ingreso_predatos[i][9])**2+(ingreso_predatos[i][12]-ingreso_predatos[i][10])**2),3) lx_pre = (ingreso_predatos[i][11]-ingreso_predatos[i][9])/Lpre ly_pre = (ingreso_predatos[i][12]-ingreso_predatos[i][10])/Lpre w_pre = ingreso_predatos[i][13] p_pre = 1.2*ingreso_predatos[i][14] m1_pre = ingreso_predatos[i][15] m2_pre = ingreso_predatos[i][16] v1_pre = ingreso_predatos[i][17] v2_pre = ingreso_predatos[i][18] ax1_pre = ingreso_predatos[i][19] ax2_pre = ingreso_predatos[i][20] mt_pre = np.array([[lx_pre, ly_pre, 0, 0, 0, 0], [-ly_pre, lx_pre, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0], [0, 0, 0, lx_pre, ly_pre, 0], [0, 0, 0, -ly_pre, lx_pre, 0], [0, 0, 0, 0, 0, 1]]) mt_lista.append(mt_pre) mt_pre_traspuesta = mt_pre.transpose() rse = np.array([0, w_pre*Lpre/2+p_pre/2, (w_pre*Lpre**2)/12+p_pre*Lpre/8, 0, w_pre*Lpre/2+p_pre/2, (-w_pre*Lpre**2)/12-p_pre*Lpre/8]) rse_lista.append(rse) se = np.array([ax1_pre, w_pre*Lpre/2+p_pre/2+v1_pre, (w_pre*Lpre**2)/12+p_pre*Lpre/8+m1_pre, ax2_pre, w_pre*Lpre/2+p_pre/2+v2_pre, (-w_pre*Lpre**2)/12-p_pre*Lpre/8+m2_pre]) sel_lista.append(se) Sg = np.dot(mt_pre_traspuesta,se) Sg_lista.append(Sg) Qci[ind_lista[i], 0] = Sg # Me ubica los valores del vector de cargas local a global para el ensamblaje for row in range(ngdlt_t): QcE[row]+=Qci[row] # Me suma los valores de cada vector ensamblado de cada elemento para cada fila kle = np.array([[ 1, 0, 0,-1, 0, 0], [ 0, 1, 1, 0,-1, 1], [ 0, 1, 1, 0,-1, 1], [-1, 0, 0, 1, 0, 0], [ 0,-1,-1, 0, 1,-1], [ 0, 1, 1, 0,-1, 1]]) kle_lista.append(kle) kge = np.dot(
np.dot(mt_pre_traspuesta,kle)
numpy.dot
# -*- coding: utf-8 -*- """ Created on Fri Mar 4 15:51:00 2022 @author: alexany """ import time import sys sys.path.insert(0,"d:\\Users\\alexany\\CNN_AF\\23_02_2022") import numpy as np import bioformats as bf #import javabridge import os import cv2 from scipy.signal import savgol_filter import tifffile import datetime import matplotlib.pyplot as plt from matplotlib.lines import Line2D import json #import random import master_subFunctions as mas from tensorflow.keras.layers import Conv2D, MaxPooling2D, ZeroPadding2D, GlobalAveragePooling2D, Flatten, BatchNormalization,Activation,Dense from tensorflow.keras import regularizers from tensorflow.keras.callbacks import ModelCheckpoint import tensorflow as tf from mobilenetv3_small import MobileNetV3 #--------------------------------------------------------------------------- class CNN_AF(object): settings_filename = 'CNN_AF_settings.json' image_filename = 'MMStack_Pos1.ome.tif' stack_dir_prefix = 'stack' data_folder = None zStep = 0.5 # in um n_frames = None image_size = 96 proj_shape = None n_stacks = None inp_shape = None pList = [] # list of stack file names #--------------------------------------------------------------------------- def set_data_info(self,inp_dir_list): self.pList = [] for f in inp_dir_list: if os.path.isdir(f): files = os.listdir(f) for i in range(len(files)): if os.path.isdir(f+files[i]): if self.stack_dir_prefix in files[i]: fullfilename = f + files[i] + os.path.sep + self.image_filename if os.path.isfile(fullfilename): self.pList.append(fullfilename) try: self.n_stacks = len(self.pList) imgs = tifffile.imread(self.pList[0]) self.inp_shape = (imgs.shape[1],imgs.shape[2]) self.n_frames = imgs.shape[0] # # pT, pX, pY = getImageInfo(self.pList[0]) # self.inp_shape = (pX,pY) # self.n_frames = pT # self.proj_shape = (max(self.inp_shape[0],self.inp_shape[1]),2) # # for var in vars(self): # print(getattr(self,var)) except: functionNameAsString = sys._getframe().f_code.co_name print(functionNameAsString + ' error!') return False return True #--------------------------------------------------------------------------- def save_settings(self,where_to_save_folder): with open( where_to_save_folder + self.settings_filename, "w" ) as f: json.dump( self.__dict__, f ) #--------------------------------------------------------------------------- def load_settings(self,fullfilename): with open(fullfilename) as f: self.__dict__ = json.load(f) #--------------------------------------------------------------------------- def get_stack_range_indices(self,k): beg_k = k*self.n_frames end_k = (k+1)*self.n_frames return beg_k, end_k #--------------------------------------------------------------------------- class stack_data_generator(CNN_AF): #--------------------------------------------------------------------------- def set_output_folder_in(self,dst_dir): self.data_folder = createFolder(dst_dir,timestamp()) return self.data_folder #--------------------------------------------------------------------------- def gen_XY(self,index): X_image, X_proj, Y = 0,0,0 # print(self.pList[index]) # stack = self.load_stack(index) X_image = self.gen_X_image(stack) X_proj = self.gen_X_proj(stack) Y = self.gen_Y(X_image,index) return X_image, X_proj, Y #--------------------------------------------------------------------------- def gen_XY_in_range(self,n1,n2): # self.save_settings(self.data_folder) # for i in range(n1,n2): X_image, X_proj, Y = self.gen_XY(i) np.save(self.data_folder + os.path.sep + 'X_image' + '_' + str(i), X_image) np.save(self.data_folder + os.path.sep + 'X_proj' + '_' + str(i), X_proj) np.save(self.data_folder + os.path.sep + 'Y' + '_' + str(i), Y) #--------------------------------------------------------------------------- def load_stack(self,index): return tifffile.imread(self.pList[index]) #--------------------------------------------------------------------------- def gen_X_image(self,stack): X_image = np.zeros((int(self.n_frames),int(self.image_size), int(self.image_size))) for i in range(0, self.n_frames): u = stack[i,:,:] # # modified normalization - YA 25.11.2021 # u = normalize_by_percentile(u,.1,99.9) # u = np.clip(u,0,1) # # original normalization u = u/np.linalg.norm(u) # u = cv2.resize(u, dsize=(int(self.image_size), int(self.image_size)), interpolation=cv2.INTER_CUBIC) X_image[i,:,:] = u print(i,' @ ',self.n_frames) return X_image #--------------------------------------------------------------------------- def gen_X_proj(self,stack): proj_len = max(self.inp_shape[0],self.inp_shape[1]) # X_proj = np.zeros((int(self.n_frames),int(proj_len),int(2))) # for i in range(0, self.n_frames): u = stack[i,:,:] # # modified normalization - YA 25.11.2021 u = normalize_by_percentile(u,.1,99.9) u = np.clip(u,0,1) # # original normalization # u = u/np.linalg.norm(u) # up1 = cv2.resize(u, dsize=(int(proj_len), int(proj_len)), interpolation=cv2.INTER_CUBIC) X_proj[i,:,0] = np.mean(up1,axis = 0) X_proj[i,:,1] = np.mean(up1,axis = 1) # print(i,' @ ',self.n_frames) return X_proj #--------------------------------------------------------------------------- def gen_Y(self,stack,index): # xSum1 = [] x = stack numSlice = self.n_frames # cgx, xSum1 = center(x, xSum1, numSlice) yS = 0-int(cgx) yE = numSlice-int(cgx) Y = np.arange(yS, yE, 1) #print('cgx', cgx, 'ys', yS,'yE', yE,'y1',y1) #print('y0',type(y),y) #print('new_y', (list((np.asarray(y)-10)/25))) #y = ((np.asarray(y)-10.0)/25.0).tolist() #print('y1',type(y), y) #plt.pause(0.05) #plt.plot(Y,xSum1) #plt.title(index) half_range = (numSlice-1)/2.0 Y = ((np.asarray(Y)-0.0)/half_range).tolist() return Y #--------------------------------------------------------------------------- class stack_data_trainer(CNN_AF): mode = None MobileNet = None # batch_size = 128 epos = 500 # results_folder = None train_X, valid_X, train_Y, valid_Y = None, None, None, None MobileNetV3_num_classes = int(1280) MobileNetV3_width_multiplier = 1.0 MobileNetV3_l2_reg = 1e-5 #--------------------------------------------------------------------------- def __init__(self,mode=None,MobileNet=None): assert(mode in ['proj','image']) assert(MobileNet in ['V2','V3']) stack_data_trainer.mode = mode stack_data_trainer.MobileNet = MobileNet #--------------------------------------------------------------------------- def set_data_folder(self,data_folder): self.data_folder = data_folder try: self.load_settings(self.data_folder + super().settings_filename) except: print('error!') #--------------------------------------------------------------------------- def getXY(self,validation_fraction,validation_only=False): n_val = int(np.fix(validation_fraction*self.n_stacks)) self.valid_X, self.valid_Y = self.get_xy(0,n_val) if validation_only: return self.train_X, self.train_Y = self.get_xy(n_val,self.n_stacks) #--------------------------------------------------------------------------- def get_xy(self,n1,n2): n = n2 - n1 sT = int(self.n_frames*n) prefix = None if self.mode=='proj': sX,sY = int(self.proj_shape[0]), int(self.proj_shape[1]) prefix = 'X_proj_' if self.mode=='image': sX,sY = int(self.image_size), int(self.image_size) prefix = 'X_image_' out_X = np.zeros((sT,sX,sY)) out_Y = np.zeros((sT)) for k in range(n1,n2): fname = self.data_folder + prefix + str(k) + '.npy' stack_k = np.load(fname) beg_k,end_k = self.get_stack_range_indices(k-n1) out_X[beg_k:end_k,:,:] = stack_k # fname = self.data_folder + 'Y_' + str(k) + '.npy' out_Y[beg_k:end_k] = np.load(fname) # print(k-n1,' @ ',n) return out_X, out_Y #--------------------------------------------------------------------------- def train(self,validation_fraction): self.results_folder = createFolder(self.data_folder,'results_' + self.mode + '_' + self.MobileNet + '_' + timestamp()) self.save_settings(self.results_folder) self.getXY(validation_fraction) # if self.mode=='proj': if self.MobileNet=='V2': self.train_proj_V2() if self.MobileNet=='V3': self.train_proj_V3() if self.mode=='image': if self.MobileNet=='V2': self.train_image_V2() if self.MobileNet=='V3': self.train_image_V3() #--------------------------------------------------------------------------- def train_proj_V2(self): train_X = transform_stack_to_stack_of_square_images(self.train_X) valid_X = transform_stack_to_stack_of_square_images(self.valid_X) s = train_X.shape sV = valid_X.shape x_train = np.zeros([s[0], s[1], s[2], 1]) x_val = np.zeros([sV[0], sV[1], sV[2], 1]) x_train[:,:,:,0] = train_X x_val[:,:,:,0] = valid_X x_train_tensor = tf.convert_to_tensor(x_train) x_val_tensor = tf.convert_to_tensor(x_val) #imports the MobileNetV2 model and discards the last 1000 neuron layer. base_model=tf.keras.applications.MobileNetV2(weights=None, include_top=False, input_shape=(s[1],s[2],1)) x = base_model.output x = GlobalAveragePooling2D()(x) preds = Dense(1)(x) model = tf.keras.Model(inputs=base_model.input,outputs=preds) model.compile(optimizer = 'adam', #loss = 'sparse_categorical_crossentropy', loss = 'mse', metrics = ['mse']) #saveWeights(model, res_path) save_model_summary(self.results_folder, model) #best epoch callback filepath = self.results_folder+"weights_best.hdf5" checkpoint = ModelCheckpoint(filepath, monitor='val_mse', verbose=1, save_best_only=True, mode='min') callbacks_list = [checkpoint] stepsPerEpoch = int(s[0]/self.batch_size) history = model.fit(x_train_tensor, # Features self.train_Y, # Target vector epochs=self.epos,#, # Number of epochs validation_data=(x_val_tensor, self.valid_Y), steps_per_epoch = stepsPerEpoch, verbose=1, # Print description after each epoch #batch_size=batchSize, # Number of observations per batch callbacks=callbacks_list # callbacks best model #callbacks = [callback] ) #loss = history.history['loss'] acc = history.history['mse'] acc_val = history.history['val_mse'] # save model pp = self.results_folder + "model" model.save(pp) pp = self.results_folder + "acc.npy"
np.save(pp, acc)
numpy.save
""" Helper functions for PyTorch. Functions: get_trainable_parameters save_model_weights Class: Measurement PSNR SSIM """ import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable import numpy as np from datetime import datetime from math import exp from tqdm import tqdm import os def get_gpu_status(): """ ref: https://developer.download.nvidia.com/compute/DCGM/docs/nvidia-smi-367.38.pdf https://discuss.pytorch.org/t/it-there-anyway-to-let-program-select-free-gpu-automatically/17560/7 :return: """ # os.system('nvidia-smi -q -d power >tmp') # data = open('tmp', 'r').read() # print(data) os.system('nvidia-smi -q -d power |grep -A14 GPU|grep Max\ Power\ Limit >tmp') power_max = [float(x.split()[4]) for x in open('tmp', 'r').readlines()] os.system('nvidia-smi -q -d power |grep -A14 GPU|grep Avg >tmp') power_avg = [float(x.split()[2]) for x in open('tmp', 'r').readlines()] os.system('nvidia-smi -q -d memory |grep -A4 GPU|grep Total >tmp') mem_tot = [float(x.split()[2]) for x in open('tmp', 'r').readlines()] os.system('nvidia-smi -q -d memory |grep -A4 GPU|grep Free >tmp') mem_free = [float(x.split()[2]) for x in open('tmp', 'r').readlines()] return (mem_tot, mem_free), (power_max, power_avg) def auto_select_GPU(mode='memory_priority', threshold=0., unit='pct', dwell=5): mode_options = ['memory_priority', 'power_priority', 'memory_threshold', 'power_threshold'] assert mode in mode_options, print(f'{datetime.now()} E auto_select_GPU(): Unknown model_options. Select from: ' f'{mode_options}. Get {mode} instead.') tq = tqdm(total=dwell, desc=f'GPU Selecting... {mode}:{threshold}:{unit}', unit='dwell', dynamic_ncols=True) for i_dwell in range(dwell): (mem_tot_new, mem_free_new), (power_max_new, power_avg_new) = get_gpu_status() if i_dwell == 0: mem_tot, mem_free, power_max, power_avg = mem_tot_new, mem_free_new, power_max_new, power_avg_new else: mem_free = [min([mem_free[i], mem_free_new[i]]) for i in range(len(mem_tot_new))] power_avg = [max([power_avg[i], power_avg_new[i]]) for i in range(len(mem_tot_new))] # sleep(1) tq.update() tq.close() power_free = [i-j for (i, j) in zip(power_max, power_avg)] if unit.lower() == 'pct': pass mem_free_pct = [i/j for (i, j) in zip(mem_free, mem_tot)] power_free_pct = [i/j for (i, j) in zip(power_free, power_max)] # print(mem_free_pct) # print(power_free_pct) if mode.lower() == 'memory_priority': i_GPU =
np.argmax(mem_free_pct)
numpy.argmax
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Jul 28 15:11:40 2021 @author: fede """ from copy import deepcopy import matplotlib.pyplot as plt import numpy as np import networkx as nx import random from matplotlib.ticker import MultipleLocator, FormatStrFormatter from networkx.drawing.nx_agraph import graphviz_layout import time import multiprocessing from joblib import Parallel, delayed from tqdm import tqdm import csv #generates the covariance matrix (divided by h/2pi) def _generateCovM(Zz): U=np.imag(Zz) V=np.real(Zz) invU = np.linalg.inv(U) CM=0.5*np.block([[invU, invU @ V],[V @ invU, U+V @ invU@V]]) return CM def _generateZ(CM): dim=int(len(CM)/2) Ui=np.empty([dim,dim]) UiV=np.empty([dim,dim]) for i in range(dim): for j in range(dim): Ui[i,j]=CM[i,j] UiV[i,j]=CM[i+dim,j] U=np.linalg.inv(Ui)/2 V=U@UiV*2 return V+1j*U #builds the symplectic form matrix def _buildSymM(dim): return np.block([[np.zeros((dim,dim)),np.identity(dim)], [-np.identity(dim),np.zeros((dim,dim))]]) #Returns the purity of the state from its covariance matrix def _Purity(CM): det=np.linalg.det(CM) Purity=1/((2**(len(CM)/2))*np.sqrt(det)) return Purity #Checks if a matrix is positive defined def _MisPositive(MM): lambdas=np.linalg.eig(MM)[0] #thr=1e14 thr=np.abs(sum(lambdas))/len(lambdas)*1e-5 realCheck=np.amax(np.abs(np.imag(lambdas)))>thr if realCheck == True: print("The matrix has complex eigenvalues: \n", lambdas) PosCheck=np.amin(np.real(lambdas))<-thr if PosCheck == True : print("The matrix has negative eigenvalues!\n", lambdas) return not (PosCheck or realCheck) #Checks the gaussianity of a covariance matrix def _checkGaussianity(CM): return _MisPositive(CM+0.5j*_buildSymM(int(len(CM)/2))) #Sum of the variance of the nullifiers def _nullifiers(Zz): return 0.5*np.trace(np.imag(Zz)) #Logarithmic negativity of entanglement, for two modes only def negativity(Zz): if len(Zz)==2: CM=_generateCovM(Zz) sym=_buildSymM(len(Zz)) elif len(Zz)==4: CM=Zz sym=_buildSymM(int(len(Zz)/2)) gamma=np.diag([1,1,-1,1]) CMpt=gamma@CM@gamma lamb=np.min(np.abs(np.linalg.eig(1j*sym@(CMpt))[0])) return np.max([0,-np.log(2*lamb)]) # return np.min(eig) def niggativity(Zz): if len(Zz)==2: CM=_generateCovM(Zz) elif len(Zz)==4: CM=Zz I1=CM[0,0]*CM[2,2]-CM[0,2]**2 I2=CM[1,1]*CM[3,3]-CM[1,3]**2 I3=CM[0,1]*CM[2,3]-CM[1,2]*CM[0,3] I4=np.linalg.det(CM) DELTA=I1+I2-2*I3 lamb=np.sqrt(0.5*(DELTA-np.sqrt(DELTA**2-4*I4))) return np.max([0,-np.log(2*lamb)]) # return lamb def Fcoh(Zz): if len(Zz)==2: CM=_generateCovM(Zz) sym=_buildSymM(len(Zz)) elif len(Zz)==4: CM=Zz sym=_buildSymM(int(len(Zz)/2)) gamma=np.diag([1,1,-1,1]) CMpt=gamma@CM@gamma eig=np.min(np.abs(np.linalg.eig(2j*sym@(CMpt))[0])) return 1/(1+eig) def Fcoh3(Zz): if len(Zz)==2: CM=_generateCovM(Zz) elif len(Zz)==4: CM=Zz dx2=(CM[0,0]+CM[1,1]-2*CM[0,1]) dp2=(CM[2,2]+CM[3,3]+2*CM[2,3]) return 1/np.sqrt((1+dx2)*(1+dp2)) def DeltaE(Zz): CM=_generateCovM(Zz) return 0.5*(np.trace(CM)-len(Zz)) def _Wigner(sigma): Vrange=2 steps=100 qq=np.linspace(-Vrange,Vrange,steps) pp=np.copy(qq) det=np.linalg.det(sigma) WW=np.zeros([steps,steps]) for i in range(steps): for j in range(steps): xx=np.array([qq[i],pp[j]]) esp=xx@(np.linalg.inv(sigma))@(np.transpose(xx)) WW[i,j]=(2*np.pi)**(-int(len(sigma)/2))*det**(-0.5)*np.exp(-0.5*esp) return WW def _partial(Zz,node): CM=_generateCovM(Zz) size=int(len(CM)/2) redCM=
np.zeros([2,2])
numpy.zeros
import unittest import numpy as np import pandas as pd from biofes import biplot from biofes import feature import itertools class test_feature(unittest.TestCase): def test_selection(self): n, p = np.random.randint(70,500), np.random.randint(30,50) A = np.random.uniform(-300,300,size=(n,p)) target = list(np.random.randint(np.random.randint(2, 10), size = A.shape[0])) d =
np.random.randint(p)
numpy.random.randint
""" File: bsd_patches.py Author: Nrupatunga Email: <EMAIL> Github: https://github.com/nrupatunga Description: BSDS500 patches """ import time from pathlib import Path import h5py import numpy as np from tqdm import tqdm mode = 'train' mat_root_dir = f'/media/nthere/datasets/DIV_superres/patches/train/' out_root_dir = f'/home/nthere/2020/pytorch-deaf/data/train/' read = True if read: root_dir = '/home/nthere/2020/pytorch-deaf/data/DIV_superres/hdf5/train/' hdf5_files = Path(root_dir).rglob('*.hdf5') images = [] means = [] stds = [] for i, f in tqdm(enumerate(hdf5_files)): with h5py.File(f) as fout: for j in range(10000): image = fout['images_{}'.format(j)][()] images.append(image) if ((i + 1) % 10) == 0: images =
np.asarray(images)
numpy.asarray
import numpy as np from multiprocessing.dummy import Pool as ThreadPool import time import numba as nb @nb.jit(nopython=True) def allocate(idx, idx_end_id, start_id, cnts, seq): for i in range(len(start_id)): idx[idx_end_id[i] - cnts[i]:idx_end_id[i]] = seq[start_id[i]: start_id[i] + cnts[i]] def multi_slice_indexing2(seq, start_id, cnts, *args): if start_id.shape[0] == 0: return _empty() idx = np.ones(np.sum(cnts), dtype=np.int) idx_end_id = np.cumsum(cnts) allocate(idx, idx_end_id, start_id, cnts, seq) return idx DTYPE = np.uint32 class SparseVoxel(object): """ SparseVoxel object create from point set. Parameters: points: N x D size np.ndarray, voxel_size D x 1 size np.ndarray, min_bounds (optional): minimum bounds of points Returns: SparseVoxel object Object Properties: dim: points dimension voxel_size: voxel size in point space min_bounds: minimum bounds of points indices: sparse voxel indices with size V x D values: sparse voxel start index and point counts with size 2 x V Functions: SparseVoxel obj.toindex(indices(optional)): get original index of points inside the sparse voxel SparseVoxel obj.voxelize(points): get voxel index of point with same parameters of SparseVoxel object SparseVoxel obj.size(): get the size of SparseVoxel object SparseVoxel obj.save(save_file): save the SparseVoxel in .npz file SparseVoxel.load(save_file): return the loaded SparseVoxel obj """ def __init__(self, points, voxel_size, min_bounds=None): if points is None and voxel_size is None: self._sparse_voxel = _SparseVoxel() else: self._sparse_voxel = sparse_voxelize(points, voxel_size, min_bounds) def __getattr__(self, item): if item in self.__dict__.keys(): return object.__getattribute__(self, item) else: return getattr(self._sparse_voxel, item) def __getitem__(self, item): inds = self._sparse_voxel[item] sv = SparseVoxel(None, None) if len(inds) != 0: sv._sparse_voxel = sliced_voxelize(self._sparse_voxel, inds) return sv def __len__(self): return len(self._sparse_voxel) @staticmethod def load(load_file): npz_file = np.load(load_file) sv = SparseVoxel(None, None) if len(npz_file['indices']) != 0: sv._sparse_voxel = load_voxelize(**npz_file) return sv def save(self, save_file): save_dict = {p:getattr(self._sparse_voxel, p) for p in ['indices', 'values', '_sorted_pts_index', 'min_bounds', 'voxel_size']} np.savez(save_file, **save_dict) def sparse_voxelize(points, voxel_size, min_bounds=None): V = _SparseVoxel() V.create_from_points(points, voxel_size, min_bounds) return V def sliced_voxelize(sparse_voxel, index): V = _SparseVoxel() V.create_from_indexed_voxel(index, sparse_voxel) return V def load_voxelize(**kwargs): V = _SparseVoxel() V.create_from_arrays(**kwargs) return V def _empty(shape=(1,)): return np.tile(np.array([], dtype=np.int), shape) def multi_slice_indexing3(seq, start_id, cnts, pre_arrange=None): # pre_arrange make it a bit more faster (10%) process_num = start_id.shape[0] if process_num == 0: return _empty() #indexed_seq = np.ones((np.sum(cnts),), dtype=np.int) idx = np.ones(np.sum(cnts), dtype=np.int) idx[np.cumsum(cnts)[:-1]] -= cnts[:-1] idx = np.cumsum(idx) - 1 + np.repeat(start_id, cnts) return seq[idx] if len(idx) != 0 else _empty() def multi_slice_indexing(seq, start_id, cnts, pre_arrange=None): # pre_arrange make it a bit more faster (10%) if start_id.shape[0] == 0: return _empty() slices = np.asarray([start_id, start_id + cnts]).transpose().tolist() if pre_arrange is not None: s = list(map(lambda x: pre_arrange[slice(*x)], slices)) else: s = list(map(lambda x: np.arange(*x), slices)) ind = np.concatenate(s) return seq[ind] if len(ind) != 0 else _empty() def voxel_map_point_loc(points, min_bounds, voxel_size): # input: orgin points: N x d # points min bound: d x 1 # voxel size: d x 1 size of one voxel in the points space # output: voxel unique index M x d # sorted index of orginal points M x 1 # start index of the sorted index for each voxel M x 1 # points num counts of eah voxel # EXAMPLE: # index 0 -| # index 1 | # index 2 |= > (voxel index 0, start index 0, counts 5) # index 3 | # index 4 -| # # index 5 -| # index 6 |= > (voxel index 1, start index 1, counts 3) # index 7 -| dim = points.shape[1] if len(points.shape) != 1 else 0 voxel_index = ((points - min_bounds) / voxel_size).astype(np.int) if dim == 0: sort_index = np.argsort(points) else: sort_index = np.lexsort(np.rot90(voxel_index)) vind_un, start_inds, cnts = np.unique(voxel_index[sort_index], axis=0, return_index=True, return_counts=True) indices = np.arange(points.shape[0])[sort_index] return vind_un, indices, start_inds, cnts class _SparseSlicer1D(object): def __init__(self, point_1d, length=None): self.point_un, self.ordered_ids, start_idx, cnts \ = voxel_map_point_loc(point_1d, 0, 1) self.start_idx_ = np.append(start_idx, 0) self.cnts_ = np.append(cnts, 0) # self.point_min = self.point_un[0] self.length = length if length is not None else int(self.point_un[-1]) + 1 self.dense_to_un_idx = self.dense_to_sparse_map() def __len__(self): return self.length def __getitem__(self, item): un_idx = np.unique(self.dense_to_un_idx[item]) if un_idx.shape[0] == 0 or \ (un_idx.shape[0] == 1 and un_idx[0] == len(self.point_un)): return _empty() # empty or no valid index if isinstance(item, np.ndarray): return self.un_idx_array_to_ids(un_idx) elif isinstance(item, (int, np.integer)): return self.un_idx_to_ids(un_idx) elif isinstance(item, slice): if un_idx[-1] == len(self.point_un): un_idx[-1] = un_idx[-2] return self.un_idx_slice_to_ids(un_idx[0], un_idx[-1]) else: raise TypeError('Index with type {} is invalid.'.format(type(item))) def un_idx_to_ids(self, un_idx): start = self.start_idx_[un_idx] end = start + self.cnts_[un_idx] return self.ordered_ids[int(start):int(end)] def un_idx_slice_to_ids(self, idx_min, idx_max): start = self.start_idx_[idx_min] end = start + np.sum(self.cnts_[idx_min:idx_max + 1]) return self.ordered_ids[int(start):int(end)] def un_idx_array_to_ids(self, un_idx_arr): start_ind = self.start_idx_[un_idx_arr] cnts = self.cnts_[un_idx_arr] return multi_slice_indexing(self.ordered_ids, start_ind, cnts) def dense_to_sparse_map(self): start_mask = np.isin(np.arange(0, len(self)), self.point_un) look_up = np.full((len(self),), len(self.point_un), dtype=np.int) look_up[start_mask] = np.arange(len(self.point_un)) return look_up class _SparseSlicerkD(object): #add check valid in each slicer1d def __init__(self, points_kd, point_size=None): self.dim = points_kd.shape[1] self._size = point_size if point_size is not None \ else self.get_point_up_bounds(points_kd) self.points = points_kd # * self._mul_shape#same dtype self.slicers = self.get_slicers(points_kd) def size(self): return self._size def __len__(self): return np.prod(self._size) def get_slicers(self, points): return [_SparseSlicer1D(points[:, i], self._size[i]) for i in range(self.dim)] def get_point_up_bounds(self, points): return tuple((np.max(points, axis=0) + 1).tolist()) def __getitem__(self, items): if not isinstance(items, tuple): items = tuple([items]) if len(items) > self.dim: raise IndexError('Index with dim {} out of dim {}'.format(len(items), self.dim)) m = map(self.get_voxel_index_one_dim, items, range(len(items)), ) return self.voxel_index_intersection(*list(m)) def get_voxel_index_one_dim(self, item, dim): return None if isinstance(item, slice) \ and item.start is None \ and item.stop is None else \ self.slicers[dim][item] def voxel_index_intersection(self, *indices): not_none_indices = [ind for ind in indices if ind is not None] if len(not_none_indices) == 0: return np.arange(len(self)) ind = not_none_indices[0] for ind_ in not_none_indices[1:]: ind = np.intersect1d(ind, ind_, assume_unique=True) return ind class _DenseSlicerkD(object): # start from 0, largest voxel point just 10**4 -10**6 def __init__(self, points_kd, point_size=None, pre_seq=None): self.dim = points_kd.shape[1] self._size = point_size if point_size is not None \ else self.get_point_up_bounds(points_kd) self._mul_shape = self.get_shape_multiple() self.points = points_kd # * self._mul_shape#same dtype self.map_array = self.gen_map_array(pre_seq) def gen_map_array(self, pre_seq=None): if pre_seq is None: return [np.arange(s) for s in self._size] else: return [pre_seq[:s] for s in self._size] def size(self): return self._size def parse_items(self, items): parse = {int: [], slice: [], np.ndarray: [], None: []} for i, it in enumerate(items): parse[self._type(it)].append(i) parse_without_none = [np.asarray(parse[k], dtype=np.int) for k in parse.keys() if k is not None] return parse,
np.concatenate(parse_without_none)
numpy.concatenate
#!/usr/bin/env python # download # Downloads the example datasets for running the examples. # # Author: <NAME> <<EMAIL>> # Author: <NAME> <<EMAIL>> # Author: <NAME> <<EMAIL>> # Created: Wed May 18 11:54:45 2016 -0400 # # Copyright (C) 2016 District Data Labs # For license information, see LICENSE.txt # # ID: download.py [1f73d2b] <EMAIL> $ """ Downloads the example datasets for running the examples. """ ########################################################################## ## Imports ########################################################################## import os import numpy as np from .utils import load_numpy, load_corpus, download_data, DATASETS from .utils import _lookup_path ########################################################################## ## Functions ########################################################################## FIXTURES = os.path.join(os.path.dirname(__file__), "fixtures") def download_all(data_path=FIXTURES, verify=True): """ Downloads all the example datasets. If verify is True then compare the download signature with the hardcoded signature. If extract is True then extract the contents of the zipfile to the given path. """ for name, meta in DATASETS.items(): download_data(name, data_dir=data_path) def load_concrete(data_path=FIXTURES): """ Downloads the 'concrete' dataset, saving it to the output path specified and returns the data. """ # name of the dataset name = 'concrete' data = load_numpy(name, data_path=data_path) return data def load_energy(data_path=FIXTURES): """ Downloads the 'energy' dataset, saving it to the output path specified and returns the data. """ # name of the dataset name = 'energy' data = load_numpy(name, data_path=data_path) return data def load_credit(data_path=FIXTURES): """ Downloads the 'credit' dataset, saving it to the output path specified and returns the data. """ # name of the dataset name = 'credit' data = load_numpy(name, data_path=data_path) return data def load_occupancy(data_path=FIXTURES): """ Downloads the 'occupancy' dataset, saving it to the output path specified and returns the data. """ # name of the dataset name = 'occupancy' data = load_numpy(name, data_path=data_path) return data def load_mushroom(data_path=FIXTURES): """ Downloads the 'mushroom' dataset, saving it to the output path specified and returns the data. """ # name of the dataset name = 'mushroom' data = load_numpy(name, data_path=data_path) return data def load_hobbies(data_path=FIXTURES): """ Downloads the 'hobbies' dataset, saving it to the output path specified and returns the data. """ # name of the dataset name = 'hobbies' data = load_corpus(name, data_path=data_path) return data def load_game(data_path=FIXTURES): """ Downloads the 'game' dataset, saving it to the output path specified and returns the data. """ # name of the dataset name = 'game' path = _lookup_path(name, data_path=data_path) dtype = np.array(['S1']*42+['|S4']) return
np.genfromtxt(path, dtype=dtype, delimiter=',', names=True)
numpy.genfromtxt
''' Basic unittest that will instantiate a fixed DocTopicCount (assumed the same for all documents, for simplicity), and then examine how inference of rho/omega procedes given this fixed set of counts. Conclusions ----------- rho/omega objective seems to be convex in rho/omega, and very flat with respect to omega (so up to 6 significant figs, same objective obtained by omega that differ by say 100 or 200) ''' import argparse import sys import os import numpy as np from scipy.optimize import approx_fprime import warnings import unittest import joblib from matplotlib import pylab from bnpy.util import digamma, as1D, argsort_bigtosmall_stable, is_sorted_bigtosmall from bnpy.allocmodel.topics import OptimizerRhoOmegaBetter from bnpy.util.StickBreakUtil import rho2beta from bnpy.viz.PrintTopics import vec2str from bnpy.allocmodel.topics.HDPTopicUtil import \ calcELBO_IgnoreTermsConstWRTrhoomegatheta np.set_printoptions(precision=4, suppress=1, linewidth=140) def reorder_rho(rho, bigtosmallIDs): betaK = rho2beta(rho, returnSize='K') newbetaK = betaK[bigtosmallIDs] return OptimizerRhoOmegaBetter.beta2rho(newbetaK, rho.size), newbetaK def calcAvgPiFromDocTopicCount(DocTopicCount): estPi = DocTopicCount / DocTopicCount.sum(axis=1)[:,np.newaxis] avgPi = np.sum(estPi, axis=0) / DocTopicCount.shape[0] return avgPi def mapToNewPos(curposIDs, bigtosmall): ''' Convert list of old ids to new positions after bigtosmall reordering. Example ------- >>> curposIDs = [0, 2, 4] >>> N = [11, 9, 3, 1, 5] >>> bigtosmall = argsort_bigtosmall_stable(N) >>> print bigtosmall [0 1 4 2 3] >>> newposIDs = mapToNewPos(curposIDs, bigtosmall) >>> print newposIDs [0, 3, 2] ''' newposIDs = np.zeros_like(curposIDs) for posID in range(len(curposIDs)): newposIDs[posID] = np.flatnonzero(bigtosmall == curposIDs[posID])[0] return newposIDs.tolist() def learn_rhoomega_fromFixedCounts(DocTopicCount=None, nDoc=0, canShuffleInit='byUsage', canShuffle=None, maxiter=5, warmStart_rho=1, alpha=None, gamma=None, initrho=None, initomega=None, **kwargs): assert nDoc == DocTopicCount.shape[0] K = DocTopicCount.shape[1] didShuffle = 0 if canShuffleInit: if canShuffleInit.lower().count('byusage'): print('INITIAL SORTING BY USAGE') avgPi = calcAvgPiFromDocTopicCount(DocTopicCount) bigtosmall = argsort_bigtosmall_stable(avgPi) elif canShuffleInit.lower().count('bycount'): print('INITIAL SORTING BY COUNT') bigtosmall = argsort_bigtosmall_stable(DocTopicCount.sum(axis=0)) elif canShuffleInit.lower().count('random'): print('INITIAL SORTING RANDOMLY') PRNG = np.random.RandomState(0) bigtosmall = np.arange(K) PRNG.shuffle(bigtosmall) else: bigtosmall = np.arange(K) # Now, sort. if not np.allclose(bigtosmall, np.arange(K)): DocTopicCount = DocTopicCount[:, bigtosmall] didShuffle = 1 avgPi = calcAvgPiFromDocTopicCount(DocTopicCount) sortedids = argsort_bigtosmall_stable(avgPi) if canShuffleInit.lower().count('byusage'): assert np.allclose(sortedids, np.arange(K)) # Find UIDs of comps to track emptyUIDs = np.flatnonzero(DocTopicCount.sum(axis=0) < 0.0001) if emptyUIDs.size >= 3: firstEmptyUID = emptyUIDs.min() lastEmptyUID = emptyUIDs.max() middleEmptyUID = emptyUIDs[len(emptyUIDs)/2] trackEmptyUIDs = [firstEmptyUID, middleEmptyUID, lastEmptyUID] emptyLabels = ['first', 'middle', 'last'] elif emptyUIDs.size == 2: trackEmptyUIDs = [emptyUIDs.min(), emptyUIDs.max()] emptyLabels = ['first', 'last'] elif emptyUIDs.size == 1: firstEmptyUID = emptyUIDs.min() trackEmptyUIDs = [firstEmptyUID] emptyLabels = ['first'] else: trackEmptyUIDs = [] emptyLabels = [] trackActiveUIDs = list() activeLabels = list() # Track the top 5 active columns of DocTopicCount for pos in range(0, np.minimum(5, K)): if sortedids[pos] not in emptyUIDs: trackActiveUIDs.append(sortedids[pos]) activeLabels.append('max+%d' % (pos)) # Find the minnonemptyID for pos in range(K-1, 0, -1): curid = sortedids[pos] if curid not in emptyUIDs: break minnonemptyPos = pos # Track the 5 smallest active columns of DocTopicCount nBeyond5 = np.minimum(5, K - len(emptyUIDs) - 5) for i in range(-1 * (nBeyond5-1), 1): trackActiveUIDs.append(sortedids[minnonemptyPos + i]) activeLabels.append('min+%d' % (-1 * i)) assert np.all(avgPi[trackActiveUIDs] > 0) assert np.allclose(avgPi[trackEmptyUIDs], 0.0) assert is_sorted_bigtosmall(avgPi[trackActiveUIDs]) nDocToDisplay = np.minimum(nDoc, 10) # Initialize rho if initrho is None: rho = OptimizerRhoOmegaBetter.make_initrho(K, nDoc, gamma) else: if didShuffle: rho, _ = reorder_rho(initrho, bigtosmall) else: rho = initrho # Initialize omega if initomega is None: omega = OptimizerRhoOmegaBetter.make_initomega(K, nDoc, gamma) else: omega = initomega # ELBO value of initial state Ltro = evalELBOandPrint( rho=rho, omega=omega, nDoc=nDoc, DocTopicCount=DocTopicCount, alpha=alpha, gamma=gamma, msg='init', ) Snapshots = dict() Snapshots['DTCSum'] = list() Snapshots['DTCUsage'] = list() Snapshots['beta'] = list() Snapshots['Lscore'] = list() Snapshots['activeLabels'] = activeLabels Snapshots['emptyLabels'] = emptyLabels Snapshots['pos_trackActive'] = list() Snapshots['pos_trackEmpty'] = list() Snapshots['beta_trackActive'] = list() Snapshots['beta_trackEmpty'] = list() Snapshots['count_trackActive'] = list() Snapshots['count_trackEmpty'] = list() Snapshots['beta_trackRem'] = list() LtroList = list() LtroList.append(Ltro) betaK = rho2beta(rho, returnSize="K") iterid = 0 prevbetaK = np.zeros_like(betaK) prevrho = rho.copy() while np.sum(np.abs(betaK - prevbetaK)) > 0.0000001: iterid += 1 if iterid > maxiter: break # Take Snapshots of Learned Params Snapshots['Lscore'].append(Ltro) Snapshots['DTCSum'].append(DocTopicCount.sum(axis=0)) Snapshots['DTCUsage'].append((DocTopicCount > 0.001).sum(axis=0)) Snapshots['beta'].append(betaK) Snapshots['pos_trackActive'].append(trackActiveUIDs) Snapshots['pos_trackEmpty'].append(trackEmptyUIDs) Snapshots['beta_trackActive'].append(betaK[trackActiveUIDs]) Snapshots['beta_trackEmpty'].append(betaK[trackEmptyUIDs]) Snapshots['beta_trackRem'].append(1.0 - betaK.sum()) Snapshots['count_trackActive'].append( DocTopicCount.sum(axis=0)[trackActiveUIDs]) Snapshots['count_trackEmpty'].append( DocTopicCount.sum(axis=0)[trackEmptyUIDs]) # Sort by beta didShuffle = 0 tlabel = '_t' if iterid > 1 and canShuffle and canShuffle.lower().count('bybeta'): bigtosmall = argsort_bigtosmall_stable(betaK) if not np.allclose(bigtosmall, np.arange(K)): trackActiveUIDs = mapToNewPos(trackActiveUIDs, bigtosmall) trackEmptyUIDs = mapToNewPos(trackEmptyUIDs, bigtosmall) rho, betaK = reorder_rho(rho, bigtosmall) DocTopicCount = DocTopicCount[:, bigtosmall] didShuffle = 1 tlabel = '_ts' # Update theta sumLogPiActiveVec, sumLogPiRemVec, LP = DocTopicCount_to_sumLogPi( rho=rho, omega=omega, DocTopicCount=DocTopicCount, alpha=alpha, gamma=gamma, **kwargs) # Show ELBO with freshly-optimized theta value. Ltro = evalELBOandPrint( rho=rho, omega=omega, DocTopicCount=DocTopicCount, theta=LP['theta'], thetaRem=LP['thetaRem'], nDoc=nDoc, sumLogPiActiveVec=sumLogPiActiveVec, sumLogPiRemVec=sumLogPiRemVec, alpha=alpha, gamma=gamma, f=None, msg=str(iterid) + tlabel, ) LtroList.append(Ltro) if not LtroList[-1] >= LtroList[-2]: if didShuffle: print('NOT MONOTONIC! just after theta update with SHUFFLE!') else: print('NOT MONOTONIC! just after theta standard update') didELBODrop = 0 if canShuffle: if canShuffle.lower().count('bysumlogpi'): bigtosmall = argsort_bigtosmall_stable( sumLogPiActiveVec) elif canShuffle.lower().count('bycounts'): bigtosmall = argsort_bigtosmall_stable( DocTopicCount.sum(axis=0)) elif canShuffle.lower().count('byusage'): estPi = DocTopicCount / DocTopicCount.sum(axis=1)[:,np.newaxis] avgPi = np.sum(estPi, axis=0) bigtosmall = argsort_bigtosmall_stable(avgPi) else: bigtosmall = np.arange(K) if not np.allclose(bigtosmall, np.arange(K)): trackActiveUIDs = mapToNewPos(trackActiveUIDs, bigtosmall) trackEmptyUIDs = mapToNewPos(trackEmptyUIDs, bigtosmall) rho, betaK = reorder_rho(rho, bigtosmall) sumLogPiActiveVec = sumLogPiActiveVec[bigtosmall] DocTopicCount = DocTopicCount[:,bigtosmall] LP['theta'] = LP['theta'][:, bigtosmall] didShuffle = 1 # Show ELBO with freshly-optimized rho value. Ltro = evalELBOandPrint( rho=rho, omega=omega, DocTopicCount=DocTopicCount, theta=LP['theta'], thetaRem=LP['thetaRem'], nDoc=nDoc, sumLogPiActiveVec=sumLogPiActiveVec, sumLogPiRemVec=sumLogPiRemVec, alpha=alpha, gamma=gamma, f=None, msg=str(iterid) + "_ss", ) LtroList.append(Ltro) if not LtroList[-1] >= LtroList[-2]: print('NOT MONOTONIC! just after %s shuffle update!' % ( canShuffle)) didELBODrop = 1 prevrho[:] = rho # Update rhoomega if warmStart_rho: initrho = rho else: initrho = None rho, omega, f, Info = OptimizerRhoOmegaBetter.\ find_optimum_multiple_tries( alpha=alpha, gamma=gamma, sumLogPiActiveVec=sumLogPiActiveVec, sumLogPiRemVec=sumLogPiRemVec, nDoc=nDoc, initrho=initrho, initomega=omega, approx_grad=1, do_grad_omega=0, ) prevbetaK[:] = betaK betaK = rho2beta(rho, returnSize="K") # Show ELBO with freshly-optimized rho value. Ltro = evalELBOandPrint( rho=rho, omega=omega, DocTopicCount=DocTopicCount, theta=LP['theta'], thetaRem=LP['thetaRem'], nDoc=nDoc, sumLogPiActiveVec=sumLogPiActiveVec, sumLogPiRemVec=sumLogPiRemVec, alpha=alpha, gamma=gamma, f=f, msg=str(iterid) + "_r", ) LtroList.append(Ltro) if not LtroList[-1] >= LtroList[-2]: print('NOT MONOTONIC! just after rho update!') if didELBODrop: if LtroList[-1] >= LtroList[-3]: print('Phew. Combined update of sorting then optimizing rho OK') else: print('WHOA! Combined update of sorting then' + \ ' optimizing rho beta NOT MONOTONIC') Snapshots['Lscore'].append(Ltro) Snapshots['DTCSum'].append(DocTopicCount.sum(axis=0)) Snapshots['DTCUsage'].append((DocTopicCount > 0.001).sum(axis=0)) Snapshots['beta'].append(betaK) Snapshots['pos_trackActive'].append(trackActiveUIDs) Snapshots['pos_trackEmpty'].append(trackEmptyUIDs) Snapshots['beta_trackActive'].append(betaK[trackActiveUIDs]) Snapshots['beta_trackEmpty'].append(betaK[trackEmptyUIDs]) Snapshots['beta_trackRem'].append(1.0 - betaK.sum()) Snapshots['count_trackActive'].append( DocTopicCount.sum(axis=0)[trackActiveUIDs]) Snapshots['count_trackEmpty'].append( DocTopicCount.sum(axis=0)[trackEmptyUIDs]) print('\nEmpty cluster ids (%d of %d)' % ( len(trackEmptyUIDs), len(emptyUIDs))) print('-----------------') print(' '.join(['% 10d' % (x) for x in trackEmptyUIDs])) print('\nSelected active clusters to track') print('---------------------------------') print(' '.join(['% 10d' % (x) for x in trackActiveUIDs])) print(' '.join(['% .3e' % (x) for x in avgPi[trackActiveUIDs]])) print('\nDocTopicCount for %d of %d docs' % (nDocToDisplay, nDoc)) print('---------------------------------') for n in range(nDocToDisplay): print(' '.join([ '% 9.2f' % (x) for x in DocTopicCount[n, trackActiveUIDs]])) print('\nFinal sumLogPiActiveVec') print('---------------------------------') print(' '.join(['% .3e' % (x) for x in sumLogPiActiveVec[trackActiveUIDs]])) print('is sumLogPiActiveVec sorted?', \ is_sorted_bigtosmall(sumLogPiActiveVec)) return rho, omega, Snapshots def evalELBOandPrint(nDoc=None, theta=None, thetaRem=None, DocTopicCount=None, sumLogPiActiveVec=None, sumLogPiRemVec=None, alpha=None, gamma=None, rho=None, omega=None, msg='', f=None, **kwargs): ''' Check on the objective. ''' L = calcELBO_IgnoreTermsConstWRTrhoomegatheta( nDoc=nDoc, alpha=alpha, gamma=gamma, DocTopicCount=DocTopicCount, theta=theta, thetaRem=thetaRem, sumLogPi=sumLogPiActiveVec, sumLogPiRemVec=sumLogPiRemVec, rho=rho, omega=omega) if sumLogPiActiveVec is None: sumLogPiActiveVec, sumLogPiRemVec, LP = DocTopicCount_to_sumLogPi( rho=rho, omega=omega, DocTopicCount=DocTopicCount, alpha=alpha, gamma=gamma) Lrhoomega = OptimizerRhoOmegaBetter.negL_rhoomega_viaHDPTopicUtil( nDoc=nDoc, alpha=alpha, gamma=gamma, sumLogPiActiveVec=sumLogPiActiveVec, sumLogPiRemVec=sumLogPiRemVec, rho=rho, omega=omega) if f is None: f = Lrhoomega assert np.allclose(f, Lrhoomega) print("%10s Ltro= % .8e Lro= % .5e fro= % .5e" % ( msg, L, Lrhoomega, f)) return L def DocTopicCount_to_sumLogPi( rho=None, omega=None, betaK=None, DocTopicCount=None, alpha=None, gamma=None, **kwargs): ''' Returns ------- f : scalar ''' K = rho.size if betaK is None: betaK = rho2beta(rho, returnSize="K") theta = DocTopicCount + alpha * betaK[np.newaxis,:] thetaRem = alpha * (1 - np.sum(betaK)) assert np.allclose(theta.sum(axis=1) + thetaRem, alpha + DocTopicCount.sum(axis=1)) digammaSum = digamma(theta.sum(axis=1) + thetaRem) ElogPi = digamma(theta) - digammaSum[:,np.newaxis] ElogPiRem = digamma(thetaRem) - digammaSum sumLogPiActiveVec = np.sum(ElogPi, axis=0) sumLogPiRemVec = np.zeros(K) sumLogPiRemVec[-1] = np.sum(ElogPiRem) LP = dict( ElogPi=ElogPi, ElogPiRem=ElogPiRem, digammaSumTheta=digammaSum, theta=theta, thetaRem=thetaRem) return sumLogPiActiveVec, sumLogPiRemVec, LP def f_DocTopicCount( rho=None, omega=None, betaK=None, DocTopicCount=None, alpha=None, gamma=None, **kwargs): ''' Evaluate the objective f for rho/omega optimization. Returns ------- f : scalar ''' K = rho.size sumLogPiActiveVec, sumLogPiRemVec, LP = DocTopicCount_to_sumLogPi( rho=rho, omega=omega, DocTopicCount=DocTopicCount, alpha=alpha, gamma=gamma, **kwargs) f = OptimizerRhoOmegaBetter.negL_rhoomega( rho=rho, omega=omega, sumLogPiActiveVec=sumLogPiActiveVec, sumLogPiRemVec=sumLogPiRemVec, alpha=alpha, gamma=gamma, nDoc=DocTopicCount.shape[0], approx_grad=1) return f def makeDocTopicCount( nDoc=10, K=5, Kempty=0, seed=0, minK_d=1, maxK_d=5, **kwargs): ''' Returns ------- DocTopicCount : 2D array, nDoc x K ''' PRNG =
np.random.RandomState(seed)
numpy.random.RandomState
from scipy.optimize import curve_fit from hydroDL.master import basins from hydroDL.app import waterQuality, relaCQ from hydroDL import kPath from hydroDL.model import trainTS from hydroDL.data import gageII, usgs from hydroDL.post import axplot, figplot from hydroDL import utils import torch import os import json import numpy as np import pandas as pd import matplotlib.pyplot as plt fileSiteNoLst = os.path.join(kPath.dirData, 'USGS', 'inventory', 'siteNoLst') siteNoLst = pd.read_csv(fileSiteNoLst, header=None, dtype=str)[0].tolist() dfHBN = pd.read_csv(os.path.join(kPath.dirData, 'USGS', 'inventory', 'HBN.csv'), dtype={ 'siteNo': str}).set_index('siteNo') siteNoHBN = [siteNo for siteNo in dfHBN.index.tolist() if siteNo in siteNoLst] pdfArea = gageII.readData(varLst=['DRAIN_SQKM'], siteNoLst=siteNoHBN) unitConv = 0.3048**3*365*24*60*60/1000**2 dfCrd = gageII.readData( varLst=['LAT_GAGE', 'LNG_GAGE'], siteNoLst=siteNoHBN) lat = dfCrd['LAT_GAGE'].values lon = dfCrd['LNG_GAGE'].values def func(x, a, b): return a*1/(x/b+1) # cal dw code = '00955' pMat2 = np.ndarray([len(siteNoHBN), 2]) for k, siteNo in enumerate(siteNoHBN): area = pdfArea.loc[siteNo]['DRAIN_SQKM'] dfC = usgs.readSample(siteNo, codeLst=usgs.codeLst) dfQ = usgs.readStreamflow(siteNo) df = dfC.join(dfQ) t = df.index.values q = df['00060_00003'].values/area*unitConv c = df[code].values ceq, dw, y = relaCQ.kateModel2(q, c) pMat2[k, 0] = ceq pMat2[k, 1] = dw def funcMap(): figM, axM = plt.subplots(1, 1, figsize=(8, 6)) axplot.mapPoint(axM, lat, lon, pMat2[:, 1], s=12) figP, axP = plt.subplots(2, 1, figsize=(8, 6)) axP2 = np.array([axP[0], axP[0].twinx(), axP[1]]) return figM, axM, figP, axP2, lon, lat def funcPoint(iP, axP): siteNo = siteNoHBN[iP] dfC = usgs.readSample(siteNo, codeLst=usgs.codeLst) dfQ = usgs.readStreamflow(siteNo) df = dfC.join(dfQ) t = df.index.values q = df['00060_00003'].values/area*unitConv c = df[code].values [q, c], ind = utils.rmNan([q, c]) t = t[ind] qAll = dfQ['00060_00003'].values qT = dfQ.index.values axplot.plotTS(axP[0], qT, qAll, cLst='b', styLst='--') axplot.plotTS(axP[1], t, c) axP[2].plot(np.log(q), c, 'k*') x = 10**np.linspace(np.log10(np.min(q[q > 0])), np.log10(np.max(q[~
np.isnan(q)
numpy.isnan
import datetime import numpy as np from xarray import DataArray def make_simple_sample_data_2D(data_type='iris'): """ function creating a simple dataset to use in tests for tobac. The grid has a grid spacing of 1km in both horizontal directions and 100 grid cells in x direction and 500 in y direction. Time resolution is 1 minute and the total length of the dataset is 100 minutes around a abritraty date (2000-01-01 12:00). The longitude and latitude coordinates are added as 2D aux coordinates and arbitrary, but in realisitic range. The data contains a single blob travelling on a linear trajectory through the dataset for part of the time. :param data_type: 'iris' or 'xarray' to chose the type of dataset to produce :return: sample dataset as an Iris.Cube.cube or xarray.DataArray """ from iris.cube import Cube from iris.coords import DimCoord,AuxCoord t_0=datetime.datetime(2000,1,1,12,0,0) x=np.arange(0,100e3,1000) y=np.arange(0,50e3,1000) t=t_0+np.arange(0,100,1)*datetime.timedelta(minutes=1) xx,yy=np.meshgrid(x,y) t_temp=np.arange(0,60,1) track1_t=t_0+t_temp*datetime.timedelta(minutes=1) x_0_1=10e3 y_0_1=10e3 track1_x=x_0_1+30*t_temp*60 track1_y=y_0_1+14*t_temp*60 track1_magnitude=10*np.ones(track1_x.shape) data=np.zeros((t.shape[0],y.shape[0],x.shape[0])) for i_t,t_i in enumerate(t): if np.any(t_i in track1_t): x_i=track1_x[track1_t==t_i] y_i=track1_y[track1_t==t_i] mag_i=track1_magnitude[track1_t==t_i] data[i_t]=data[i_t]+mag_i*np.exp(-np.power(xx - x_i,2.) / (2 * np.power(10e3, 2.)))*np.exp(-np.power(yy - y_i, 2.) / (2 * np.power(10e3, 2.))) t_start=datetime.datetime(1970,1,1,0,0) t_points=(t-t_start).astype("timedelta64[ms]").astype(int) / 1000 t_coord=DimCoord(t_points,standard_name='time',var_name='time',units='seconds since 1970-01-01 00:00') x_coord=DimCoord(x,standard_name='projection_x_coordinate',var_name='x',units='m') y_coord=DimCoord(y,standard_name='projection_y_coordinate',var_name='y',units='m') lat_coord=AuxCoord(24+1e-5*xx,standard_name='latitude',var_name='latitude',units='degree') lon_coord=AuxCoord(150+1e-5*yy,standard_name='longitude',var_name='longitude',units='degree') sample_data=Cube(data,dim_coords_and_dims=[(t_coord, 0),(y_coord, 1),(x_coord, 2)],aux_coords_and_dims=[(lat_coord, (1,2)),(lon_coord, (1,2))],var_name='w',units='m s-1') if data_type=='xarray': sample_data=DataArray.from_iris(sample_data) return sample_data def make_sample_data_2D_3blobs(data_type='iris'): from iris.cube import Cube from iris.coords import DimCoord,AuxCoord """ function creating a simple dataset to use in tests for tobac. The grid has a grid spacing of 1km in both horizontal directions and 100 grid cells in x direction and 200 in y direction. Time resolution is 1 minute and the total length of the dataset is 100 minutes around a abritraty date (2000-01-01 12:00). The longitude and latitude coordinates are added as 2D aux coordinates and arbitrary, but in realisitic range. The data contains a three individual blobs travelling on a linear trajectory through the dataset for part of the time. :param data_type: 'iris' or 'xarray' to chose the type of dataset to produce :return: sample dataset as an Iris.Cube.cube or xarray.DataArray """ t_0=datetime.datetime(2000,1,1,12,0,0) x=np.arange(0,100e3,1000) y=np.arange(0,200e3,1000) t=t_0+np.arange(0,100,1)*datetime.timedelta(minutes=1) xx,yy=np.meshgrid(x,y) t_temp=np.arange(0,60,1) track1_t=t_0+t_temp*datetime.timedelta(minutes=1) x_0_1=10e3 y_0_1=10e3 track1_x=x_0_1+30*t_temp*60 track1_y=y_0_1+14*t_temp*60 track1_magnitude=10*np.ones(track1_x.shape) t_temp=np.arange(0,30,1) track2_t=t_0+(t_temp+40)*datetime.timedelta(minutes=1) x_0_2=20e3 y_0_2=10e3 track2_x=x_0_2+24*(t_temp*60)**2/1000 track2_y=y_0_2+12*t_temp*60 track2_magnitude=20*np.ones(track2_x.shape) t_temp=np.arange(0,20,1) track3_t=t_0+(t_temp+50)*datetime.timedelta(minutes=1) x_0_3=70e3 y_0_3=110e3 track3_x=x_0_3+20*(t_temp*60)**2/1000 track3_y=y_0_3+20*t_temp*60 track3_magnitude=15*np.ones(track3_x.shape) data=np.zeros((t.shape[0],y.shape[0],x.shape[0])) for i_t,t_i in enumerate(t): if np.any(t_i in track1_t): x_i=track1_x[track1_t==t_i] y_i=track1_y[track1_t==t_i] mag_i=track1_magnitude[track1_t==t_i] data[i_t]=data[i_t]+mag_i*np.exp(-np.power(xx - x_i,2.) / (2 * np.power(10e3, 2.)))*np.exp(-np.power(yy - y_i, 2.) / (2 * np.power(10e3, 2.))) if np.any(t_i in track2_t): x_i=track2_x[track2_t==t_i] y_i=track2_y[track2_t==t_i] mag_i=track2_magnitude[track2_t==t_i] data[i_t]=data[i_t]+mag_i*np.exp(-np.power(xx - x_i,2.) / (2 * np.power(10e3, 2.)))*np.exp(-np.power(yy - y_i, 2.) / (2 * np.power(10e3, 2.))) if np.any(t_i in track3_t): x_i=track3_x[track3_t==t_i] y_i=track3_y[track3_t==t_i] mag_i=track3_magnitude[track3_t==t_i] data[i_t]=data[i_t]+mag_i*np.exp(-np.power(xx - x_i,2.) / (2 * np.power(10e3, 2.)))*np.exp(-np.power(yy - y_i, 2.) / (2 * np.power(10e3, 2.)))\ t_start=datetime.datetime(1970,1,1,0,0) t_points=(t-t_start).astype("timedelta64[ms]").astype(int) / 1000 t_coord=DimCoord(t_points,standard_name='time',var_name='time',units='seconds since 1970-01-01 00:00') x_coord=DimCoord(x,standard_name='projection_x_coordinate',var_name='x',units='m') y_coord=DimCoord(y,standard_name='projection_y_coordinate',var_name='y',units='m') lat_coord=AuxCoord(24+1e-5*xx,standard_name='latitude',var_name='latitude',units='degree') lon_coord=AuxCoord(150+1e-5*yy,standard_name='longitude',var_name='longitude',units='degree') sample_data=Cube(data,dim_coords_and_dims=[(t_coord, 0),(y_coord, 1),(x_coord, 2)],aux_coords_and_dims=[(lat_coord, (1,2)),(lon_coord, (1,2))],var_name='w',units='m s-1') if data_type=='xarray': sample_data=DataArray.from_iris(sample_data) return sample_data def make_sample_data_2D_3blobs_inv(data_type='iris'): """ function creating a version of the dataset created in the function make_sample_cube_2D, but with switched coordinate order for the horizontal coordinates for tests to ensure that this does not affect the results :param data_type: 'iris' or 'xarray' to chose the type of dataset to produce :return: sample dataset as an Iris.Cube.cube or xarray.DataArray """ from iris.cube import Cube from iris.coords import DimCoord,AuxCoord t_0=datetime.datetime(2000,1,1,12,0,0) x=np.arange(0,100e3,1000) y=np.arange(0,200e3,1000) t=t_0+np.arange(0,100,1)*datetime.timedelta(minutes=1) yy,xx=np.meshgrid(y,x) t_temp=np.arange(0,60,1) track1_t=t_0+t_temp*datetime.timedelta(minutes=1) x_0_1=10e3 y_0_1=10e3 track1_x=x_0_1+30*t_temp*60 track1_y=y_0_1+14*t_temp*60 track1_magnitude=10*np.ones(track1_x.shape) t_temp=np.arange(0,30,1) track2_t=t_0+(t_temp+40)*datetime.timedelta(minutes=1) x_0_2=20e3 y_0_2=10e3 track2_x=x_0_2+24*(t_temp*60)**2/1000 track2_y=y_0_2+12*t_temp*60 track2_magnitude=20*np.ones(track2_x.shape) t_temp=np.arange(0,20,1) track3_t=t_0+(t_temp+50)*datetime.timedelta(minutes=1) x_0_3=70e3 y_0_3=110e3 track3_x=x_0_3+20*(t_temp*60)**2/1000 track3_y=y_0_3+20*t_temp*60 track3_magnitude=15*np.ones(track3_x.shape) data=np.zeros((t.shape[0],x.shape[0],y.shape[0])) for i_t,t_i in enumerate(t): if np.any(t_i in track1_t): x_i=track1_x[track1_t==t_i] y_i=track1_y[track1_t==t_i] mag_i=track1_magnitude[track1_t==t_i] data[i_t]=data[i_t]+mag_i*np.exp(-np.power(xx - x_i,2.) / (2 * np.power(10e3, 2.)))*np.exp(-np.power(yy - y_i, 2.) / (2 * np.power(10e3, 2.))) if np.any(t_i in track2_t): x_i=track2_x[track2_t==t_i] y_i=track2_y[track2_t==t_i] mag_i=track2_magnitude[track2_t==t_i] data[i_t]=data[i_t]+mag_i*np.exp(-np.power(xx - x_i,2.) / (2 * np.power(10e3, 2.)))*np.exp(-np.power(yy - y_i, 2.) / (2 * np.power(10e3, 2.))) if
np.any(t_i in track3_t)
numpy.any
import numpy as np from rail.evaluation.metrics.pit import PIT, PITOutRate, PITKS, PITCvM, PITAD from rail.evaluation.metrics.cdeloss import CDELoss import qp # values for metrics OUTRATE = 0.0 KSVAL = 0.367384 CVMVAL = 20.63155 ADVAL_ALL = 82.51480 ADVAL_CUT = 1.10750 CDEVAL = -4.31200 def construct_test_ensemble(): np.random.seed(87) nmax = 2.5 NPDF = 399 true_zs = np.random.uniform(high=nmax, size=NPDF) locs = np.expand_dims(true_zs + np.random.normal(0.0, 0.01, NPDF), -1) scales = np.ones((NPDF, 1)) * 0.1 + np.random.uniform(size=(NPDF, 1)) * .05 n_ens = qp.Ensemble(qp.stats.norm, data=dict(loc=locs, scale=scales)) zgrid = np.linspace(0, nmax, 301) grid_ens = n_ens.convert_to(qp.interp_gen, xvals=zgrid) return zgrid, true_zs, grid_ens def test_pit_metrics(): zgrid, zspec, pdf_ens = construct_test_ensemble() pit_obj = PIT(pdf_ens, zspec) pit_vals = pit_obj._pit_samps quant_grid = np.linspace(0, 1, 101) quant_ens, metametrics = pit_obj.evaluate(quant_grid) out_rate = PITOutRate(pit_vals, quant_ens).evaluate() assert np.isclose(out_rate, OUTRATE) ks_obj = PITKS(pit_vals, quant_ens) ks_stat = ks_obj.evaluate().statistic assert np.isclose(ks_stat, KSVAL) cvm_obj = PITCvM(pit_vals, quant_ens) cvm_stat = cvm_obj.evaluate().statistic assert np.isclose(cvm_stat, CVMVAL) ad_obj = PITAD(pit_vals, quant_ens) all_ad_stat = ad_obj.evaluate().statistic cut_ad_stat = ad_obj.evaluate(pit_min=0.6, pit_max=0.9).statistic assert
np.isclose(all_ad_stat, ADVAL_ALL)
numpy.isclose
#!/usr/bin/env python """ @package ion_functions.test.opt_functions @file ion_functions/test/opt_functions.py @author <NAME>, <NAME>, <NAME> @brief Unit tests for opt_functions module """ from nose.plugins.attrib import attr from ion_functions.test.base_test import BaseUnitTestCase import numpy as np from ion_functions.data import opt_functions as optfunc @attr('UNIT', group='func') class TestOptFunctionsUnit(BaseUnitTestCase): def test_opt_functions_OPTAA_sub_functions(self): """ Test the OPTAA function subroutines in the opt_functions.py module. Values based on test data in DPSs and available on Alfresco. OOI (2013). Data Product Specification for Optical Beam Attenuation Coefficient. Document Control Number 1341-00690. https://alfresco.oceanobservatories.org/ (See: Company Home >> OOI >> Controlled >> 1000 System Level >> 1341-00690_Data_Product_SPEC_OPTATTN_OOI.pdf) OOI (2013). Data Product Specification for Optical Absorption Coefficient. Document Control Number 1341-00700. https://alfresco.oceanobservatories.org/ (See: Company Home >> OOI >> Controlled >> 1000 System Level >> 1341-00700_Data_Product_SPEC_OPTABSN_OOI.pdf) OOI (2014). OPTAA Unit Test. 1341-00700_OPTABSN Artifact. https://alfresco.oceanobservatories.org/ (See: Company Home >> OOI >> >> REFERENCE >> Data Product Specification Artifacts >> 1341-00700_OPTABSN >> OPTAA_unit_test.xlsx) Implemented by <NAME>, April 2013 Modified by <NAME>, 20-Feb-2014 The opt_scatter_corr function was modified to trap out commonly occurring instances for when the scattering correction to absorption should not be applied (in these cases the additive correction term is set to 0). This requires that the unit test values for the abs and c data be physically reasonable (c >= abs). Therefore the unit test c data were changed by adding 1.0 to the c clear water offset. """ # test inputs tbins = np.array([14.5036, 15.5200, 16.4706, 17.4833, 18.4831, 19.5196, 20.5565]) tarr = np.array([ [-0.004929, -0.004611, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.004611, -0.004418, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, -0.004418, -0.004355, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, -0.004355, -0.004131, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, -0.004131, -0.003422, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, -0.003422, -0.002442] ]) sig = np.array([50, 150, 250, 350, 450, 495]) ref = np.array([500, 500, 500, 500, 500, 500]) traw = np.array([48750, 48355, 47950, 47535, 47115, 46684]) wlngth = np.array([500., 550., 600., 650., 700., 715.]) Tcal = 20. T = np.array([4., 8., 12., 16., 20., 24.]) PS = np.array([10., 15., 20., 25., 30., 35]) # clear water offsets c_off = 1.01 # previous tests used 0.01 a_off = 0.1 # also test case of user selected reference wavelength for abs scatter correction ref_wave = 695 # nearest wavelength (700nm) should become reference wavelength # expected outputs tint = np.array([15., 16., 17., 18., 19., 20.]) deltaT = np.array([-0.0048, -0.0045, -0.0044, -0.0042, -0.0038, -0.0030]) cpd = np.array([10.2251, 5.8304, 3.7870, 2.4409, 1.4352, 1.0532]) apd = np.array([9.3151, 4.9204, 2.8770, 1.5309, 0.5252, 0.1432]) cpd_ts = np.array([10.226025, 5.831245, 3.795494, 2.441203, 1.440651, 1.044652]) apd_ts = np.array([9.3155, 4.9206, 2.8848, 1.5303, 0.5297, 0.1338]) apd_ts_s_ref715 = np.array([9.181831, 4.786862, 2.751082, 1.396591, 0.396010, 0.000000]) apd_ts_s_ref700 = np.array([8.785990, 4.390950, 2.355159, 1.000592, 0.000000, -0.396015]) # compute beam attenuation and optical absorption values dgC = np.zeros(6) dT = np.zeros(6) c = np.zeros(6) c_ts = np.zeros(6) a = np.zeros(6) a_ts = np.zeros(6) a_ts_sdef = np.zeros(6) a_ts_s700 = np.zeros(6) for i in range(6): dgC[i] = optfunc.opt_internal_temp(traw[i]) c[i], dT[i] = optfunc.opt_pd_calc(ref[i], sig[i], c_off, dgC[i], tbins, tarr[i]) c_ts[i] = optfunc.opt_tempsal_corr('c', c[i], wlngth[i], Tcal, T[i], PS[i]) a[i], foo = optfunc.opt_pd_calc(ref[i], sig[i], a_off, dgC[i], tbins, tarr[i]) a_ts[i] = optfunc.opt_tempsal_corr('a', a[i], wlngth[i], Tcal, T[i], PS[i]) # the scatter-correction-to-absorption check must be done outside the loop: # for each iteration within the loop, abs and c for one wavelength are # processed. because there is only one wavelength of data, that wavelength # also becomes the reference wavelength, in which case the scatter-corrected # abs value is calculated to be a - (a/(c-a)) * (c-a) = identically 0 for # each iteration wavelength. # case: default reference wavelength (715nm) used for scatter correction to abs. a_ts_sdef = optfunc.opt_scatter_corr(a_ts, wlngth, c_ts, wlngth) # case: user-selected reference wavelength (695nm --> 700nm is closest) a_ts_s700 = optfunc.opt_scatter_corr(a_ts, wlngth, c_ts, wlngth, ref_wave) # compare calculated results to expected np.testing.assert_allclose(dgC, tint, rtol=0.1, atol=0.1) np.testing.assert_allclose(dT, deltaT, rtol=1e-4, atol=1e-4) np.testing.assert_allclose(c, cpd, rtol=1e-4, atol=1e-4) np.testing.assert_allclose(a, apd, rtol=1e-4, atol=1e-4) np.testing.assert_allclose(c_ts, cpd_ts, rtol=1e-4, atol=1e-4) np.testing.assert_allclose(a_ts, apd_ts, rtol=1e-4, atol=1e-4) np.testing.assert_allclose(a_ts_sdef, apd_ts_s_ref715, rtol=1e-4, atol=1e-4) np.testing.assert_allclose(a_ts_s700, apd_ts_s_ref700, rtol=1e-4, atol=1e-4) # now test the traps set for the cases in which unphysical scatter correction # calculations would be applied to the absorption data if not for the traps. a_ts_save = np.copy(a_ts) c_ts_save = np.copy(c_ts) # case: if a_ref < 0, do not apply the scatter correction to abs. # subcase: default reference wavelength a_ts[-1] = -0.01 a_ts_out = np.zeros(6) a_ts_out = optfunc.opt_scatter_corr(a_ts, wlngth, c_ts, wlngth) np.testing.assert_allclose(a_ts_out, a_ts, rtol=1e-8, atol=1e-8) # subcase: user selected reference wavelength a_ts = np.copy(a_ts_save) a_ts[-2] = -0.01 a_ts_out = np.zeros(6) a_ts_out = optfunc.opt_scatter_corr(a_ts, wlngth, c_ts, wlngth, ref_wave) np.testing.assert_allclose(a_ts_out, a_ts, rtol=1e-8, atol=1e-8) # case: if a_ref > 0 but c_ref - a_ref < 0, do not apply the scatter correction to abs. # subcase: default reference wavelength a_ts = np.copy(a_ts_save) a_ts[-1] = 0.01 c_ts[-1] = 0.005 a_ts_out = np.zeros(6) a_ts_out = optfunc.opt_scatter_corr(a_ts, wlngth, c_ts, wlngth) np.testing.assert_allclose(a_ts_out, a_ts, rtol=1e-8, atol=1e-8) # subcase: user selected reference wavelength a_ts = np.copy(a_ts_save) c_ts = np.copy(c_ts_save) a_ts[-2] = 0.01 c_ts[-2] = 0.005 a_ts_out = np.zeros(6) a_ts_out = optfunc.opt_scatter_corr(a_ts, wlngth, c_ts, wlngth, ref_wave) np.testing.assert_allclose(a_ts_out, a_ts, rtol=1e-8, atol=1e-8) # case: when both a_ref < 0 and c_ref - a_ref < 0, the scatter ratio does have # the correct sign; however, the scatter correction to absorption should not be # applied. this test is included because it is possible to code for the two # traps above without catching this case. # subcase: default reference wavelength a_ts = np.copy(a_ts_save) c_ts = np.copy(c_ts_save) a_ts[-1] = -0.01 c_ts[-1] = -0.02 a_ts_out = np.zeros(6) a_ts_out = optfunc.opt_scatter_corr(a_ts, wlngth, c_ts, wlngth) np.testing.assert_allclose(a_ts_out, a_ts, rtol=1e-8, atol=1e-8) # subcase: user selected reference wavelength a_ts = np.copy(a_ts_save) c_ts = np.copy(c_ts_save) a_ts[-2] = -0.01 c_ts[-2] = -0.02 a_ts_out = np.zeros(6) a_ts_out = optfunc.opt_scatter_corr(a_ts, wlngth, c_ts, wlngth, ref_wave) np.testing.assert_allclose(a_ts_out, a_ts, rtol=1e-8, atol=1e-8) # case: when c_ref - a_ref = 0, do not apply the scatter correction to abs. # subcase: default reference wavelength a_ts = np.copy(a_ts_save) c_ts = np.copy(c_ts_save) a_ts[-1] = 0.01 c_ts[-1] = 0.01 a_ts_out = np.zeros(6) a_ts_out = optfunc.opt_scatter_corr(a_ts, wlngth, c_ts, wlngth) np.testing.assert_allclose(a_ts_out, a_ts, rtol=1e-8, atol=1e-8) # subcase: user selected reference wavelength a_ts = np.copy(a_ts_save) c_ts = np.copy(c_ts_save) a_ts[-2] = 0.01 c_ts[-2] = 0.01 a_ts_out = np.zeros(6) a_ts_out = optfunc.opt_scatter_corr(a_ts, wlngth, c_ts, wlngth, ref_wave) np.testing.assert_allclose(a_ts_out, a_ts, rtol=1e-8, atol=1e-8) def test_opt_functions_OPTAA_wrapper_functions(self): """ Test the OPTAA wrapper functions in the opt_functions.py module. Use realistically shaped ac-s data arrays in the calling arguments: offsets are dimensioned at the number of wavelengths; for internal temperature, L1 temperature, and salinity, one value per a-c dataset. Values based on test data in DPSs and available on Alfresco. OOI (2013). Data Product Specification for Optical Beam Attenuation Coefficient. Document Control Number 1341-00690. https://alfresco.oceanobservatories.org/ (See: Company Home >> OOI >> Controlled >> 1000 System Level >> 1341-00690_Data_Product_SPEC_OPTATTN_OOI.pdf) OOI (2013). Data Product Specification for Optical Absorption Coefficient. Document Control Number 1341-00700. https://alfresco.oceanobservatories.org/ (See: Company Home >> OOI >> Controlled >> 1000 System Level >> 1341-00700_Data_Product_SPEC_OPTABSN_OOI.pdf) OOI (2014). OPTAA Unit Test. 1341-00700_OPTABSN Artifact. https://alfresco.oceanobservatories.org/ (See: Company Home >> OOI >> >> REFERENCE >> Data Product Specification Artifacts >> 1341-00700_OPTABSN >> OPTAA_unit_test.xlsx) Implemented by <NAME>, 21-Feb-2014. Additional unit test data constructed as documented in the OPTAA Unit Test document artifact reference above. 2015-04-17: <NAME>. Changed signal and reference count input from float to fix. """ # test inputs: tbins = np.array([14.5036, 15.5200, 16.4706, 17.4833, 18.4831, 19.5196, 20.5565]) # nrows of tarr = length(wlngth); ncols of tarr = length(tbins) tarr = np.array([ [0.0, -0.004929, -0.004611, 0.0, 0.0, 0.0, 0.0], [0.0, -0.004611, -0.004418, 0.0, 0.0, 0.0, 0.0], [0.0, -0.004418, -0.004355, 0.0, 0.0, 0.0, 0.0], [0.0, -0.004355, -0.004131, 0.0, 0.0, 0.0, 0.0], [0.0, -0.004131, -0.003422, 0.0, 0.0, 0.0, 0.0], [0.0, -0.003422, -0.002442, 0.0, 0.0, 0.0, 0.0] ]) # a_off and c_off must have same dimensions as wlngth. wlngth = np.array([500., 550., 600., 650., 700., 715.]) c_sig = np.array([150, 225, 200, 350, 450, 495]) c_ref = np.array([550, 540, 530, 520, 510, 500]) c_off = np.array([1.35, 1.30, 1.25, 1.20, 1.15, 1.10]) a_sig = np.array([250, 300, 210, 430, 470, 495]) a_ref = np.array([450, 460, 470, 480, 490, 500]) a_off = np.array([0.35, 0.30, 0.25, 0.20, 0.15, 0.10]) # traw, T, and PS must be scalar (before vectorization). traw = 48355 Tcal = 20.0 T = 12.0 PS = 35.0 # also test case of user selected reference wavelength for abs scatter correction ref_wave = 695 # nearest wavelength (700nm) should become reference wavelength # expected outputs cpd_ts = np.array([6.553646, 4.807949, 5.161655, 2.788220, 1.666362, 1.184530], ndmin=2) apd_ts_s_ref715 = np.array([1.999989, 1.501766, 3.177048, 0.249944, 0.086438, 0.000000], ndmin=2) apd_ts_s_ref700 = np.array([1.750859, 1.320885, 3.068470, 0.111075, 0.000000, -0.064806], ndmin=2) # beam attenuation (beam c) wrapper test c_ts = np.zeros(6) c_ts = optfunc.opt_beam_attenuation(c_ref, c_sig, traw, wlngth, c_off, Tcal, tbins, tarr, T, PS) np.testing.assert_allclose(c_ts, cpd_ts, rtol=1e-6, atol=1e-6) # absorption wrapper test # case: default reference wavelength for scatter correction a_ts_sdef = np.zeros(6) a_ts_sdef = optfunc.opt_optical_absorption(a_ref, a_sig, traw, wlngth, a_off, Tcal, tbins, tarr, cpd_ts, wlngth, T, PS) np.testing.assert_allclose(a_ts_sdef, apd_ts_s_ref715, rtol=1e-6, atol=1e-6) # case: user selected reference wavelength for scatter correction a_ts_s700 = np.zeros(6) a_ts_s700 = optfunc.opt_optical_absorption(a_ref, a_sig, traw, wlngth, a_off, Tcal, tbins, tarr, cpd_ts, wlngth, T, PS, ref_wave) np.testing.assert_allclose(a_ts_s700, apd_ts_s_ref700, rtol=1e-6, atol=1e-6) def test_opt_functions_OPTAA_a_and_c_wavelength_sets(self): """ Test the OPTAA wrapper functions in the opt_functions.py module. Test a-c dataset with different wavelength values for the absorption versus beam c optical channels. Included to test that the c optical values are correctly interpolated onto the abs wavelengths in the scatter correction algorithm. OOI (2013). Data Product Specification for Optical Beam Attenuation Coefficient. Document Control Number 1341-00690. https://alfresco.oceanobservatories.org/ (See: Company Home >> OOI >> Controlled >> 1000 System Level >> 1341-00690_Data_Product_SPEC_OPTATTN_OOI.pdf) OOI (2013). Data Product Specification for Optical Absorption Coefficient. Document Control Number 1341-00700. https://alfresco.oceanobservatories.org/ (See: Company Home >> OOI >> Controlled >> 1000 System Level >> 1341-00700_Data_Product_SPEC_OPTABSN_OOI.pdf) OOI (2014). OPTAA Unit Test. 1341-00700_OPTABSN Artifact. https://alfresco.oceanobservatories.org/ (See: Company Home >> OOI >> >> REFERENCE >> Data Product Specification Artifacts >> 1341-00700_OPTABSN >> OPTAA_unit_test.xlsx) Implemented by <NAME>, 26-Feb-2014. Additional unit test data constructed as documented in the OPTAA Unit Test document artifact reference above. 2015-04-17: <NAME>. Changed signal and reference count input from float to fix. """ # test inputs: tbins = np.array([14.5036, 15.5200, 16.4706, 17.4833, 18.4831, 19.5196, 20.5565]) # nrows of tarr = length(wlngth); ncols of tarr = length(tbins) tarr = np.array([ [0.0, -0.004929, -0.004611, 0.0, 0.0, 0.0, 0.0], [0.0, -0.004611, -0.004418, 0.0, 0.0, 0.0, 0.0], [0.0, -0.004418, -0.004355, 0.0, 0.0, 0.0, 0.0], [0.0, -0.004355, -0.004131, 0.0, 0.0, 0.0, 0.0], [0.0, -0.004131, -0.003422, 0.0, 0.0, 0.0, 0.0], [0.0, -0.003422, -0.002442, 0.0, 0.0, 0.0, 0.0] ]) # a_off and c_off must have same dimensions as wlngth. cwlngth = np.array([510., 540., 580., 630., 670., 710.]) awlngth = np.array([500., 550., 600., 650., 700., 715.]) c_sig = np.array([150, 225, 200, 350, 450, 495]) c_ref = np.array([550, 540, 530, 520, 510, 500]) c_off = np.array([1.35, 1.30, 1.25, 1.20, 1.15, 1.10]) a_sig = np.array([250, 300, 210, 430, 470, 495]) a_ref = np.array([450, 460, 470, 480, 490, 500]) a_off = np.array([0.35, 0.30, 0.25, 0.20, 0.15, 0.10]) # traw, T, and PS must be scalar (before vectorization). traw = 48355 Tcal = 20.0 T = 12.0 PS = 35.0 # also test case of user selected reference wavelength for abs scatter correction ref_wave = 695 # nearest abs wavelength (700nm) should become reference wavelength # expected outputs cpd_ts = np.array([6.553771, 4.807914, 5.156010, 2.788715, 1.655607, 1.171965], ndmin=2) apd_ts_s_ref715 = np.array([1.990992, 1.479089, 3.350109, 0.350108, 0.152712, 0.000000], ndmin=2) apd_ts_s_ref700 = np.array([1.379858, 1.021574, 3.235057, 0.099367, 0.000000, -0.156972], ndmin=2) # beam attenuation (beam c) wrapper test c_ts = np.zeros(6) c_ts = optfunc.opt_beam_attenuation(c_ref, c_sig, traw, cwlngth, c_off, Tcal, tbins, tarr, T, PS) np.testing.assert_allclose(c_ts, cpd_ts, rtol=1e-6, atol=1e-6) # absorption wrapper test # case: default reference wavelength for scatter correction a_ts_sdef = np.zeros(6) a_ts_sdef = optfunc.opt_optical_absorption(a_ref, a_sig, traw, awlngth, a_off, Tcal, tbins, tarr, cpd_ts, cwlngth, T, PS) np.testing.assert_allclose(a_ts_sdef, apd_ts_s_ref715, rtol=1e-6, atol=1e-6) # case: user selected reference wavelength for scatter correction a_ts_s700 = np.zeros(6) a_ts_s700 = optfunc.opt_optical_absorption(a_ref, a_sig, traw, awlngth, a_off, Tcal, tbins, tarr, cpd_ts, cwlngth, T, PS, ref_wave) np.testing.assert_allclose(a_ts_s700, apd_ts_s_ref700, rtol=1e-6, atol=1e-6) def test_opt_functions_OPTAA_vectorization(self): """ Test the vectorization of the OPTAA wrapper functions in the opt_functions.py module. OOI (2013). Data Product Specification for Optical Beam Attenuation Coefficient. Document Control Number 1341-00690. https://alfresco.oceanobservatories.org/ (See: Company Home >> OOI >> Controlled >> 1000 System Level >> 1341-00690_Data_Product_SPEC_OPTATTN_OOI.pdf) OOI (2013). Data Product Specification for Optical Absorption Coefficient. Document Control Number 1341-00700. https://alfresco.oceanobservatories.org/ (See: Company Home >> OOI >> Controlled >> 1000 System Level >> 1341-00700_Data_Product_SPEC_OPTABSN_OOI.pdf) OOI (2014). OPTAA Unit Test. 1341-00700_OPTABSN Artifact. https://alfresco.oceanobservatories.org/ (See: Company Home >> OOI >> >> REFERENCE >> Data Product Specification Artifacts >> 1341-00700_OPTABSN >> OPTAA_unit_test.xlsx) Implemented by <NAME>, 05-Mar-2014. Additional unit test data constructed as documented in the OPTAA Unit Test document artifact reference above. 2015-04-17: <NAME>. Changed signal and reference count input from float to fix. Replaced 'exec' statements. 2015-04-21: <NAME>. Corrected input data shapes to current CI implementation. Added scalar time record case. """ ### set test inputs: scalar (that is, 1) time record case # native scalars will come into the DPA with shape (1,) traw = np.array([48355]) Tcal = np.array([20.0]) T = np.array([12.0]) PS = np.array([35.0]) # native 1D arrays will come in as 2D row vectors cwlngth = np.array([[510., 540., 580., 630., 670., 710.]]) awlngth = np.array([[500., 550., 600., 650., 700., 715.]]) c_sig = np.array([[150, 225, 200, 350, 450, 495]]) c_ref = np.array([[550, 540, 530, 520, 510, 500]]) c_off = np.array([[1.35, 1.30, 1.25, 1.20, 1.15, 1.10]]) a_sig = np.array([[250, 300, 210, 430, 470, 495]]) a_ref = np.array([[450, 460, 470, 480, 490, 500]]) a_off = np.array([[0.35, 0.30, 0.25, 0.20, 0.15, 0.10]]) tbins = np.array([[14.5036, 15.5200, 16.4706, 17.4833, 18.4831, 19.5196, 20.5565]]) # native 2D arrays will come in as 3D arrays, for this single time record case; # a singleton dimension will be prepended to the native 2D array. # native dimensions of tarr are (nwavelengths, ntempbins), # so that tarr.shape = (1,6,7) tarr = np.array([[ [0.0, -0.004929, -0.004611, 0.0, 0.0, 0.0, 0.0], [0.0, -0.004611, -0.004418, 0.0, 0.0, 0.0, 0.0], [0.0, -0.004418, -0.004355, 0.0, 0.0, 0.0, 0.0], [0.0, -0.004355, -0.004131, 0.0, 0.0, 0.0, 0.0], [0.0, -0.004131, -0.003422, 0.0, 0.0, 0.0, 0.0], [0.0, -0.003422, -0.002442, 0.0, 0.0, 0.0, 0.0] ]]) ## expected outputs to scalar time record test: 2D row vectors # beam attenuation (beam c) test # expected: cpd_ts = np.array([[6.553771, 4.807914, 5.156010, 2.788715, 1.655607, 1.171965]]) # calculated: c_ts = optfunc.opt_beam_attenuation(c_ref, c_sig, traw, cwlngth, c_off, Tcal, tbins, tarr, T, PS) np.testing.assert_allclose(c_ts, cpd_ts, rtol=1e-6, atol=1e-6) # absorption test # case: default reference wavelength for scatter correction apd_ts_s_ref715 = np.array([[1.990992, 1.479089, 3.350109, 0.350108, 0.152712, 0.000000]]) a_ts_sdef = optfunc.opt_optical_absorption(a_ref, a_sig, traw, awlngth, a_off, Tcal, tbins, tarr, cpd_ts, cwlngth, T, PS) np.testing.assert_allclose(a_ts_sdef, apd_ts_s_ref715, rtol=1e-6, atol=1e-6) # absorption test # case: user selected reference wavelength for scatter correction to abs values ref_wave = 695 # nearest abs wavelength (700nm) should become reference wavelength apd_ts_s_ref700 = np.array([[1.379858, 1.021574, 3.235057, 0.099367, 0.000000, -0.156972]]) a_ts_s700 = optfunc.opt_optical_absorption(a_ref, a_sig, traw, awlngth, a_off, Tcal, tbins, tarr, cpd_ts, cwlngth, T, PS, ref_wave) np.testing.assert_allclose(a_ts_s700, apd_ts_s_ref700, rtol=1e-6, atol=1e-6) ### multiple time records case # replicate the inputs to represent 3 data packets npackets = 3 [traw, Tcal, T, PS] = [np.tile(xarray, npackets) for xarray in [traw, Tcal, T, PS]] [cwlngth, awlngth, c_sig, c_ref, c_off, a_sig, a_ref, a_off, tbins] = [ np.tile(xarray, (npackets, 1)) for xarray in [ cwlngth, awlngth, c_sig, c_ref, c_off, a_sig, a_ref, a_off, tbins]] tarr = np.tile(tarr, (npackets, 1, 1)) # replicate the expected output data products cpd_ts = np.tile(cpd_ts, (npackets, 1)) apd_ts_s_ref715 = np.tile(apd_ts_s_ref715, (npackets, 1)) apd_ts_s_ref700 = np.tile(apd_ts_s_ref700, (npackets, 1)) # beam attenuation (beam c) test c_ts = optfunc.opt_beam_attenuation(c_ref, c_sig, traw, cwlngth, c_off, Tcal, tbins, tarr, T, PS) np.testing.assert_allclose(c_ts, cpd_ts, rtol=1e-6, atol=1e-6) # absorption test # case: default reference wavelength for scatter correction a_ts_sdef = optfunc.opt_optical_absorption(a_ref, a_sig, traw, awlngth, a_off, Tcal, tbins, tarr, cpd_ts, cwlngth, T, PS) np.testing.assert_allclose(a_ts_sdef, apd_ts_s_ref715, rtol=1e-6, atol=1e-6) # case: user selected reference wavelength for scatter correction a_ts_s700 = optfunc.opt_optical_absorption(a_ref, a_sig, traw, awlngth, a_off, Tcal, tbins, tarr, cpd_ts, cwlngth, T, PS, ref_wave) np.testing.assert_allclose(a_ts_s700, apd_ts_s_ref700, rtol=1e-6, atol=1e-6) def test_opt_functions_OPTAA_vectorization_with_tscor_nans(self): """ Test the vectorized OPTAA wrapper functions in the opt_functions.py module; include "a" and "c" test wavelengths outside of the (original) range of the wavelength keys in the tscor.py file, which contains the dictionary of the temperature and salinity correction coefficients. The dictionary keys have been extended from [400.0 755.0] to [380.0 775.0] with entries of np.nan. OOI (2013). Data Product Specification for Optical Beam Attenuation Coefficient. Document Control Number 1341-00690. https://alfresco.oceanobservatories.org/ (See: Company Home >> OOI >> Controlled >> 1000 System Level >> 1341-00690_Data_Product_SPEC_OPTATTN_OOI.pdf) OOI (2013). Data Product Specification for Optical Absorption Coefficient. Document Control Number 1341-00700. https://alfresco.oceanobservatories.org/ (See: Company Home >> OOI >> Controlled >> 1000 System Level >> 1341-00700_Data_Product_SPEC_OPTABSN_OOI.pdf) OOI (2014). OPTAA Unit Test. 1341-00700_OPTABSN Artifact. https://alfresco.oceanobservatories.org/ (See: Company Home >> OOI >> >> REFERENCE >> Data Product Specification Artifacts >> 1341-00700_OPTABSN >> OPTAA_unit_test.xlsx) Initial code by <NAME>, 29-Apr-2014. Added tests for when OPTAA wavelengths are outside the range of the empirically derived temperature and salinity correction wavelength keys in the original tscor.py dictionary by modifying def test_opt_functions_OPTAA_vectorization test data. 2015-04-17: <NAME>. Use np.nan instead of fill_value. Changed signal and reference count input from float to fix. Replaced 'exec' statements. 2015-04-21: <NAME>io. Cosmetic statement re-ordering and shaping of input arrays. """ # test inputs: # replicate the inputs to represent 3 data packets npackets = 3 ## natively scalar inputs traw = np.array([48355]) Tcal = np.array([20.0]) T = np.array([12.0]) PS = np.array([35.0]) # time-vectorize [traw, Tcal, T, PS] = [np.tile(xarray, npackets) for xarray in [traw, Tcal, T, PS]] ## natively 1D inputs # valid tscor dictionary entries (those without nan values) are # keyed at [400.0 755.0] nm. The dictionary has been extended to # to [380.0 775.0] using np.nan as fill values. test: cwlngth = np.array([[398.5, 540., 580., 630., 670., 710.]]) awlngth = np.array([[500., 550., 600., 650., 700., 761.2]]) c_sig =
np.array([[150, 225, 200, 350, 450, 495]])
numpy.array
"""Preprocessing data methods.""" import random import numpy as np import pandas as pd from autots.tools.impute import FillNA, df_interpolate from autots.tools.seasonal import date_part, seasonal_int class EmptyTransformer(object): """Base transformer returning raw data.""" def __init__(self, name: str = 'EmptyTransformer', **kwargs): self.name = name def _fit(self, df): """Learn behavior of data to change. Args: df (pandas.DataFrame): input dataframe """ return df def fit(self, df): """Learn behavior of data to change. Args: df (pandas.DataFrame): input dataframe """ self._fit(df) return self def transform(self, df): """Return changed data. Args: df (pandas.DataFrame): input dataframe """ return df def inverse_transform(self, df, trans_method: str = "forecast"): """Return data to original *or* forecast form. Args: df (pandas.DataFrame): input dataframe """ return df def fit_transform(self, df): """Fits and Returns *Magical* DataFrame. Args: df (pandas.DataFrame): input dataframe """ return self._fit(df) def __repr__(self): """Print.""" return 'Transformer ' + str(self.name) + ', uses standard .fit/.transform' @staticmethod def get_new_params(method: str = 'random'): """Generate new random parameters""" if method == 'test': return {'test': random.choice([1, 2])} else: return {} def remove_outliers(df, std_threshold: float = 3): """Replace outliers with np.nan. https://stackoverflow.com/questions/23199796/detect-and-exclude-outliers-in-pandas-data-frame Args: df (pandas.DataFrame): DataFrame containing numeric data, DatetimeIndex std_threshold (float): The number of standard deviations away from mean to count as outlier. """ df = df[np.abs(df - df.mean()) <= (std_threshold * df.std())] return df def clip_outliers(df, std_threshold: float = 3): """Replace outliers above threshold with that threshold. Axis = 0. Args: df (pandas.DataFrame): DataFrame containing numeric data std_threshold (float): The number of standard deviations away from mean to count as outlier. """ df_std = df.std(axis=0, skipna=True) df_mean = df.mean(axis=0, skipna=True) lower = df_mean - (df_std * std_threshold) upper = df_mean + (df_std * std_threshold) df2 = df.clip(lower=lower, upper=upper, axis=1) return df2 def simple_context_slicer(df, method: str = 'None', forecast_length: int = 30): """Condensed version of context_slicer with more limited options. Args: df (pandas.DataFrame): training data frame to slice method (str): Option to slice dataframe 'None' - return unaltered dataframe 'HalfMax' - return half of dataframe 'ForecastLength' - return dataframe equal to length of forecast '2ForecastLength' - return dataframe equal to twice length of forecast (also takes 4, 6, 8, 10 in addition to 2) 'n' - any integer length to slice by '-n' - full length less this amount "0.n" - this percent of the full data """ if method in [None, "None"]: return df df = df.sort_index(ascending=True) if 'forecastlength' in str(method).lower(): len_int = int([x for x in str(method) if x.isdigit()][0]) return df.tail(len_int * forecast_length) elif method == 'HalfMax': return df.tail(int(len(df.index) / 2)) elif str(method).replace("-", "").replace(".", "").isdigit(): method = float(method) if method >= 1: return df.tail(int(method)) elif method > -1: return df.tail(int(df.shape[0] * abs(method))) else: return df.tail(int(df.shape[0] + method)) else: print("Context Slicer Method not recognized") return df class Detrend(EmptyTransformer): """Remove a linear trend from the data.""" def __init__(self, model: str = 'GLS', **kwargs): super().__init__(name='Detrend') self.model = model self.need_positive = ['Poisson', 'Gamma', 'Tweedie'] @staticmethod def get_new_params(method: str = 'random'): if method == "fast": choice = random.choices( [ "GLS", "Linear", ], [ 0.5, 0.5, ], k=1, )[0] else: choice = random.choices( [ "GLS", "Linear", "Poisson", "Tweedie", "Gamma", "TheilSen", "RANSAC", "ARD", ], [0.24, 0.2, 0.1, 0.1, 0.1, 0.02, 0.02, 0.02], k=1, )[0] return { "model": choice, } def _retrieve_detrend(self, detrend: str = "Linear"): if detrend == 'Linear': from sklearn.linear_model import LinearRegression return LinearRegression(fit_intercept=True) elif detrend == "Poisson": from sklearn.linear_model import PoissonRegressor from sklearn.multioutput import MultiOutputRegressor return MultiOutputRegressor( PoissonRegressor(fit_intercept=True, max_iter=200) ) elif detrend == 'Tweedie': from sklearn.linear_model import TweedieRegressor from sklearn.multioutput import MultiOutputRegressor return MultiOutputRegressor(TweedieRegressor(power=1.5, max_iter=200)) elif detrend == 'Gamma': from sklearn.linear_model import GammaRegressor from sklearn.multioutput import MultiOutputRegressor return MultiOutputRegressor( GammaRegressor(fit_intercept=True, max_iter=200) ) elif detrend == 'TheilSen': from sklearn.linear_model import TheilSenRegressor from sklearn.multioutput import MultiOutputRegressor return MultiOutputRegressor(TheilSenRegressor()) elif detrend == 'RANSAC': from sklearn.linear_model import RANSACRegressor return RANSACRegressor() elif detrend == 'ARD': from sklearn.linear_model import ARDRegression from sklearn.multioutput import MultiOutputRegressor return MultiOutputRegressor(ARDRegression()) else: from sklearn.linear_model import LinearRegression return LinearRegression() def fit(self, df): """Fits trend for later detrending. Args: df (pandas.DataFrame): input dataframe """ try: df = df.astype(float) except Exception: raise ValueError("Data Cannot Be Converted to Numeric Float") Y = df.values X = pd.to_numeric(df.index, errors='coerce', downcast='integer').values if self.model == 'GLS': from statsmodels.regression.linear_model import GLS self.trained_model = GLS(Y, X, missing='drop').fit() else: self.trained_model = self._retrieve_detrend(detrend=self.model) if self.model in self.need_positive: self.trnd_trans = PositiveShift( log=False, center_one=True, squared=False ) Y = pd.DataFrame(self.trnd_trans.fit_transform(df)).values X = X.reshape((-1, 1)) self.trained_model.fit(X, Y) self.shape = df.shape return self def fit_transform(self, df): """Fit and Return Detrended DataFrame. Args: df (pandas.DataFrame): input dataframe """ self.fit(df) return self.transform(df) def transform(self, df): """Return detrended data. Args: df (pandas.DataFrame): input dataframe """ try: df = df.astype(float) except Exception: raise ValueError("Data Cannot Be Converted to Numeric Float") X = pd.to_numeric(df.index, errors='coerce', downcast='integer').values if self.model != "GLS": X = X.reshape((-1, 1)) # df = df.astype(float) - self.model.predict(X) if self.model in self.need_positive: temp = pd.DataFrame( self.trained_model.predict(X), index=df.index, columns=df.columns ) temp = self.trnd_trans.inverse_transform(temp) df = df - temp else: df = df - self.trained_model.predict(X) return df def inverse_transform(self, df): """Return data to original form. Args: df (pandas.DataFrame): input dataframe """ try: df = df.astype(float) except Exception: raise ValueError("Data Cannot Be Converted to Numeric Float") X = pd.to_numeric(df.index, errors='coerce', downcast='integer').values if self.model != "GLS": X = X.reshape((-1, 1)) if self.model in self.need_positive: temp = pd.DataFrame( self.trained_model.predict(X), index=df.index, columns=df.columns ) df = df + self.trnd_trans.inverse_transform(temp) else: df = df + self.trained_model.predict(X) # df = df.astype(float) + self.trained_model.predict(X) return df class StatsmodelsFilter(EmptyTransformer): """Irreversible filters. Args: method (str): bkfilter or cffilter """ def __init__(self, method: str = 'bkfilter', **kwargs): super().__init__(name="StatsmodelsFilter") self.method = method def fit(self, df): """Fits filter. Args: df (pandas.DataFrame): input dataframe """ return self def fit_transform(self, df): """Fit and Return Detrended DataFrame. Args: df (pandas.DataFrame): input dataframe """ self.fit(df) return self.transform(df) def transform(self, df): """Return detrended data. Args: df (pandas.DataFrame): input dataframe """ try: df = df.astype(float) except Exception: raise ValueError("Data Cannot Be Converted to Numeric Float") if self.method == 'bkfilter': from statsmodels.tsa.filters import bk_filter cycles = bk_filter.bkfilter(df, K=1) cycles.columns = df.columns df = (df - cycles).fillna(method='ffill').fillna(method='bfill') elif self.method == 'cffilter': from statsmodels.tsa.filters import cf_filter cycle, trend = cf_filter.cffilter(df) cycle.columns = df.columns df = df - cycle return df def inverse_transform(self, df): """Return data to original form. Args: df (pandas.DataFrame): input dataframe """ return df class SinTrend(EmptyTransformer): """Modelling sin.""" def __init__(self, **kwargs): super().__init__(name="SinTrend") def fit_sin(self, tt, yy): """Fit sin to the input time sequence, and return fitting parameters "amp", "omega", "phase", "offset", "freq", "period" and "fitfunc" from user unsym @ https://stackoverflow.com/questions/16716302/how-do-i-fit-a-sine-curve-to-my-data-with-pylab-and-numpy """ import scipy.optimize tt = np.array(tt) yy = np.array(yy) ff = np.fft.fftfreq(len(tt), (tt[1] - tt[0])) # assume uniform spacing Fyy = abs(
np.fft.fft(yy)
numpy.fft.fft
import argparse import time import numpy as np import theano as th import theano.tensor as T from theano.sandbox.rng_mrg import MRG_RandomStreams import lasagne import lasagne.layers as ll from lasagne.init import Normal from lasagne.layers import dnn import nn import sys import cifar10_data from checkpoints import save_weights,load_weights # settings parser = argparse.ArgumentParser() parser.add_argument('--seed', type=int, default=1) #random seed for theano operation parser.add_argument('--seed_data', type=int, default=1) #random seed for picking labeled data parser.add_argument('--count', type=int, default=400) #how much data one class parser.add_argument('--batch_size', type=int, default=100) parser.add_argument('--base_RF_loss_weight', type=float, default=0.01) #weight for base random field loss, i.e. f-E[f] parser.add_argument('--lrd', type=float, default=1e-3) parser.add_argument('--lrg', type=float, default=1e-3) parser.add_argument('--potential_control_weight', default=1e-3 ,type=float) #weight for confidence loss parser.add_argument('--beta', default=0.5 ,type=float) #beta for SGHMC parser.add_argument('--gradient_coefficient', default=0.003,type=float) #coefficient for gradient term of SGLD/SGHMC parser.add_argument('--noise_coefficient', default=0,type=float) #coefficient for noise term of SGLD/SGHMC parser.add_argument('--L', default=10 ,type=int) #revision steps parser.add_argument('--max_e', default=600 ,type=int) #max number of epochs parser.add_argument('--revison_method', default='revision_x_sghmc' ,type=str) #revision method parser.add_argument('--load', default='' ,type=str) #file name to load trained model parser.add_argument('--data_dir', type=str, default='data/cifar-10-python/') #data folder to load args = parser.parse_args() print(args) # fixed random seeds rng = np.random.RandomState(args.seed) theano_rng = MRG_RandomStreams(rng.randint(2 ** 15)) lasagne.random.set_rng(np.random.RandomState(rng.randint(2 ** 15))) # load CIFAR data def rescale(mat): return np.transpose(np.cast[th.config.floatX]((-127.5 + mat)/127.5),(3,2,0,1)) trainx, trainy = cifar10_data.load(args.data_dir, subset='train') testx, testy = cifar10_data.load(args.data_dir, subset='test') trainx_unl = np.array(trainx).copy() nr_batches_train = int(trainx.shape[0]/args.batch_size) nr_batches_test = int(np.ceil(float(testx.shape[0])/args.batch_size)) # specify random field layers = [ll.InputLayer(shape=(None, 3, 32, 32))] layers.append(nn.weight_norm(ll.Conv2DLayer(layers[-1], 128, (3,3), pad=1, W=Normal(0.05), nonlinearity=nn.lrelu,name='d_1'),name='d_w1')) layers.append(nn.weight_norm(ll.Conv2DLayer(layers[-1], 128, (3,3), pad=1, W=Normal(0.05), nonlinearity=nn.lrelu,name='d_2'),name='d_w2')) layers.append(nn.weight_norm(ll.Conv2DLayer(layers[-1], 128, (3,3), pad=1, W=Normal(0.05), nonlinearity=nn.lrelu,name='d_3'),name='d_w3')) layers.append(ll.MaxPool2DLayer(layers[-1],(2,2))) layers.append(ll.DropoutLayer(layers[-1], p=0.5)) layers.append(nn.weight_norm(ll.Conv2DLayer(layers[-1], 256, (3,3), pad=1, W=Normal(0.05), nonlinearity=nn.lrelu,name='d_4'),name='d_w4')) layers.append(nn.weight_norm(ll.Conv2DLayer(layers[-1], 256, (3,3), pad=1, W=Normal(0.05), nonlinearity=nn.lrelu,name='d_5'),name='d_w5')) layers.append(nn.weight_norm(ll.Conv2DLayer(layers[-1], 256, (3,3), pad=1, W=Normal(0.05), nonlinearity=nn.lrelu,name='d_6'),name='d_w6')) layers.append(ll.MaxPool2DLayer(layers[-1],(2,2))) layers.append(ll.DropoutLayer(layers[-1], p=0.5)) layers.append(nn.weight_norm(ll.Conv2DLayer(layers[-1],512, (3,3), pad=0, W=Normal(0.05), nonlinearity=nn.lrelu,name='d_7'),name='d_w7')) layers.append(nn.weight_norm(ll.NINLayer(layers[-1], num_units=256, W=Normal(0.05), nonlinearity=nn.lrelu,name='d_8'),name='d_w8')) layers.append(nn.weight_norm(ll.NINLayer(layers[-1], num_units=128, W=Normal(0.05), nonlinearity=nn.lrelu,name='d_9'),name='d_w9')) layers.append(ll.GlobalPoolLayer(layers[-1])) layers.append(nn.weight_norm(ll.DenseLayer(layers[-1], num_units=10, W=Normal(0.05), nonlinearity=None,name='d_10'), train_g=True, init_stdv=0.1,name='d_w10')) labels = T.ivector() x_lab = T.tensor4() temp = ll.get_output(layers[-1], x_lab, deterministic=False, init=True) init_updates = [u for l in layers for u in getattr(l,'init_updates',[])] output_before_softmax_lab = ll.get_output(layers[-1], x_lab, deterministic=False) logit_lab = output_before_softmax_lab[T.arange(T.shape(x_lab)[0]),labels] u_lab = T.mean(nn.log_sum_exp(output_before_softmax_lab)) #cross entropy loss of labeled data loss_lab = -T.mean(logit_lab) + u_lab train_err = T.mean(T.neq(T.argmax(output_before_softmax_lab,axis=1),labels)) # test error output_before_softmax = ll.get_output(layers[-1], x_lab, deterministic=True) test_err = T.mean(T.neq(T.argmax(output_before_softmax,axis=1),labels)) # Theano functions for training the random field lr = T.scalar() RF_params = ll.get_all_params(layers, trainable=True) RF_param_updates = lasagne.updates.rmsprop(loss_lab, RF_params, learning_rate=lr) train_RF = th.function(inputs=[x_lab,labels,lr], outputs=[loss_lab, train_err], updates=RF_param_updates) #weight norm initalization init_param = th.function(inputs=[x_lab], outputs=None, updates=init_updates) #predition on test data output_before_softmax = ll.get_output(layers[-1], x_lab, deterministic=True) test_batch = th.function(inputs=[x_lab], outputs=output_before_softmax) # select labeled data rng_data = np.random.RandomState(args.seed_data) inds = rng_data.permutation(trainx.shape[0]) trainx = trainx[inds] trainy = trainy[inds] txs = [] tys = [] for j in range(10): txs.append(trainx[trainy==j][:args.count]) tys.append(trainy[trainy==j][:args.count]) txs =
np.concatenate(txs, axis=0)
numpy.concatenate
# Copyright 2017 the GPflow authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import namedtuple import tensorflow as tf import numpy as np from numpy.testing import assert_almost_equal import pytest import gpflow from gpflow import settings from gpflow.conditionals import uncertain_conditional from gpflow.conditionals import feature_conditional from gpflow.quadrature import mvnquad from gpflow.test_util import session_context class MomentMatchingSVGP(gpflow.models.SVGP): @gpflow.params_as_tensors def uncertain_predict_f_moment_matching(self, Xmu, Xcov): return uncertain_conditional( Xmu, Xcov, self.feature, self.kern, self.q_mu, self.q_sqrt, mean_function=self.mean_function, white=self.whiten, full_cov_output=self.full_cov_output) def uncertain_predict_f_monte_carlo(self, Xmu, Xchol, mc_iter=int(1e6)): rng = np.random.RandomState(0) D_in = Xchol.shape[0] X_samples = Xmu + np.reshape( Xchol[None, :, :] @ rng.randn(mc_iter, D_in)[:, :, None], [mc_iter, D_in]) F_mu, F_var = self.predict_f(X_samples) F_samples = F_mu + rng.randn(*F_var.shape) * (F_var ** 0.5) mean = np.mean(F_samples, axis=0) covar = np.cov(F_samples.T) return mean, covar def gen_L(rng, n, *shape): return np.array([np.tril(rng.randn(*shape)) for _ in range(n)]) def gen_q_sqrt(rng, D_out, *shape): return np.array([np.tril(rng.randn(*shape)) for _ in range(D_out)]) def mean_function_factory(rng, mean_function_name, D_in, D_out): if mean_function_name == "Zero": return gpflow.mean_functions.Zero(output_dim=D_out) elif mean_function_name == "Constant": return gpflow.mean_functions.Constant(c=rng.rand(D_out)) elif mean_function_name == "Linear": return gpflow.mean_functions.Linear( A=rng.rand(D_in, D_out), b=rng.rand(D_out)) else: return None class Data: N = 7 N_new = 2 D_out = 3 D_in = 1 rng = np.random.RandomState(1) X = np.linspace(-5, 5, N)[:, None] + rng.randn(N, 1) Y = np.hstack([np.sin(X), np.cos(X), X**2]) Xnew_mu = rng.randn(N_new, 1) Xnew_covar = np.zeros((N_new, 1, 1)) class DataMC1(Data): Y = np.hstack([np.sin(Data.X), np.sin(Data.X) * 2, Data.X ** 2]) class DataMC2(Data): N = 7 N_new = 5 D_out = 4 D_in = 2 X = Data.rng.randn(N, D_in) Y = np.hstack([
np.sin(X)
numpy.sin
""" A method that computes the constraint violations, where its considered a violation if P(General|x) < P(Specific|x) """ from typing import Dict, List from box_mlc.dataset_readers.hierarchy_readers.hierarchy_reader import ( HierarchyReader, ) from torch.nn.parameter import Parameter from allennlp.common import Registrable import logging import torch import numpy as np logger = logging.getLogger(__name__) # TODO: Remove the parent class Module # TODO: remove the extra useless parameter adjacency_matrix_param class ConstraintViolation(torch.nn.Module,Registrable): """ Given a hierarchy in the form of an adjacency matrix or cooccurence statistic in the adjacency matrix format, compute the average constraint violation. """ def __init__( self, hierarchy_reader: HierarchyReader, cooccurence_threshold: float = 1, ) -> None: """ Args: hierarchy_reader: Creates the adjacency_matrix and the mask. cooccurence_threshold: If adjecency matrix captures the cooc stats, threshold determines if an edge exixst b/w labels. Row->general.Column->Specific. """ super().__init__() # type:ignore #self.adjacency_matrix_param = torch.nn.Parameter(hierarchy_reader.adjacency_matrix, requires_grad=False) # This is useless but present only so that we can load old models. self.adjacency_matrix = ( hierarchy_reader.adjacency_matrix.detach().cpu().numpy() ) self.threshold = cooccurence_threshold def get_true_mask(self, true_labels: np.ndarray) -> np.ndarray: true_mask = true_labels.copy() true_mask[true_mask == 1] = -100000 true_mask[true_mask == 0] = 1 return true_mask def __call__( self, positive_probabilities: torch.Tensor, true_labels: torch.Tensor ) -> Dict: """ true_labels: (examples, labels). True labels for the given example. Should follow same label indexing as the adj. matrix. positive_probabilities: (examples, labels). Predicted probabilities by the model. """ positive_probabilities = positive_probabilities.detach().cpu().numpy() true_labels = true_labels.detach().cpu().numpy() edges_idx = np.argwhere(self.adjacency_matrix >= self.threshold) true_mask = self.get_true_mask(true_labels) # logger.info(f"Processing {len(edges_idx)} edges") avg_number_of_violations: List = [] number_of_violations: List = [] extent_of_violations: List = [] frequency: List = [] distances: List = [] no_examples_edges_count: int = 0 for edge in edges_idx: ind = np.logical_and( true_labels[:, edge[0]], true_labels[:, edge[1]] ) # examples where the edge is present true_subset = true_labels.copy()[ind] if true_subset.shape[0] > 0: frequency.append(true_subset.shape[0]) true_mask_subset = true_mask.copy()[ind] true_mask_subset[:, edge[0]] = 1 true_mask_subset[:, edge[1]] = 1 positive_subset = positive_probabilities.copy()[ ind ] # (#subset_ex, num_labels) extent_of_violations.append( np.mean( positive_subset[:, edge[0]] - positive_subset[:, edge[1]] ) ) sorted_ind = np.argsort( -1 * positive_subset * true_mask_subset, axis=1 ) distance_g_s = ( np.argwhere(sorted_ind == edge[0])[:, -1] - np.argwhere(sorted_ind == edge[1])[:, -1] ) avg_number_of_violations.append( np.sum(np.where(distance_g_s > 0, 1.0, 0.0)) / true_subset.shape[0] ) number_of_violations.append( np.sum(np.where(distance_g_s > 0, 1, 0)) ) extent_of_violations.append( np.mean(
np.maximum(distance_g_s, 0)
numpy.maximum
#!/usr/bin/env python3 # # PURPOSE: Read and reproject an ICESat-2 tiled mask HDF5 file # for one northern or southern hemisphere area with all # longitudes (0 - 359.95). Returns logical of land surf_type. # # FILES ACCESSED: H5 surf_type file (input) # # COMMENTS: # # Usage: surftype surf_type_filename hemisphere_flag # # # HISTORY: # # YYYY-MM-DD AUID SCM Comment # ---------- --------- ----- ------------------------------------------------ # 2019-11-19 bjelley M0265 Initial version for masking ATL11 tiles by surf_type # import warnings warnings.simplefilter(action='ignore', category=FutureWarning) import sh import sys import os import time import datetime import h5py import numpy as np import h5py from osgeo import osr import matplotlib import matplotlib.pyplot as plt PGE_NAME='create_surfmask' PGE_VERS='Version 1.0' PGE_INFO='Reads a composite HDF5 file, extracts "land" surf_type.' # # Error/Status constants # GE_NOERROR=0 GE_NOTICE=1 GE_WARNING=2 GE_FATAL=3 # # Execution time # proc_start=time.time() proc_end=time.time() # #============================================================================== # # NAME: msg # # PURPOSE: Prints a message in ASAS format # # FILES ACCESSED: stdout # # COMMENTS: # #------------------------------------------------------------------------------ # def msg(i_res, mod, routine, msg): # # Create a timestamp (pulled from asas_common.py) # tstamp=datetime.datetime.now().strftime("%Y-%m-%dT%H:%M:%S") s_res='{:0>6}'.format(i_res) if (i_res==GE_NOERROR): mstatus="Status " if (i_res==GE_NOTICE): mstatus="Notice " if (i_res==GE_WARNING): mstatus="Warning" if (i_res==GE_FATAL): mstatus="ERROR " print(tstamp+' | '+mstatus+' | '+s_res+' | '+routine+' | '+msg) return #enddef # #============================================================================== # # NAME: end_banner # # PURPOSE: Prints an ending banner # # FILES ACCESSED: stdout # # COMMENTS: # #------------------------------------------------------------------------------ # def end_banner(i_res): # # Write ending banner # proc_end=time.time() msg(GE_NOERROR, PGE_NAME, 'main', '---') if (i_res == GE_NOERROR) : msg(GE_NOERROR, PGE_NAME, 'main', "Successful execution") else: msg(GE_NOERROR, PGE_NAME, 'main', "Execution failed") msg(GE_NOERROR, PGE_NAME, 'main', "Execution time: "+str(proc_end-proc_start)) msg(GE_NOERROR, PGE_NAME, 'main', "Result Code : "+str(i_res)) msg(GE_NOERROR, PGE_NAME, 'main', '---') if (i_res == GE_FATAL): sys.exit(GE_FATAL) return #enddef # #============================================================================== # # NAME: ibits # # PURPOSE: Return integer value of bits # # COMMENTS: # #------------------------------------------------------------------------------ def ibits(ival, ipos, ilen): """Same usage as Fortran ibits function.""" ones = ((1 << ilen)-1) return (ival & (ones << ipos)) >> ipos # #============================================================================== # # NAME: read_hdf5 # # PURPOSE: Read and reproject a HDF5 of surf_type tiles. # # FILES ACCESSED: Input- Composite HDF5; Return - Hemisphere specific surf_type # # COMMENTS: # #------------------------------------------------------------------------------ # class landmask(object): def __init__(self): self.x=None self.y=None self.z=None def read_surftype_h5(self,in_file,hemisphere=-1): # # Open file and read tile attributes # f_in = h5py.File(in_file, 'r') g_in = f_in['TILE_INDEX'] lon0 = g_in.attrs['LON0'] lon1 = g_in.attrs['LON1'] lat0 = g_in.attrs['LAT0'] lat1 = g_in.attrs['LAT1'] lon_scale = g_in.attrs['LON_SCALE'] lat_scale = g_in.attrs['LAT_SCALE'] tile_name = g_in.attrs['NAME'] nlon = g_in.attrs['N_LON'] nlat = g_in.attrs['N_LAT'] # # Read 1 tile, need dtype for initialization # tile = np.array(f_in[tile_name[0]]) # # Initialize arrays # xsz = int(np.ceil((np.max(lon1) - np.min(lon0)) / lon_scale[0])) ysz = int(np.ceil((np.max(lat1) - np.min(lat0)) / lat_scale[0])) surf_type = np.empty([ysz,xsz],dtype=tile.dtype) lons = np.full([ysz,xsz],np.inf) lats = np.full([ysz,xsz],np.inf) sum_tile = 0 # # Loop through all tiles, capturing geolocation and tile data # for lat_tile in range(0,9): for lon_tile in range(0,18): tile_num = lon_tile * (lat_tile + 1) if sum_tile >= np.size(nlon): print("breaking loop for beyond array size, size(nlon):",np.size(nlon)) break x = np.linspace(lon0[sum_tile], lon1[sum_tile] - lon_scale[sum_tile], nlon[sum_tile]) x = np.repeat(x[np.newaxis,:],nlon[sum_tile],0) lons[lat_tile*nlat[0]:lat_tile*nlat[0]+nlat[0],lon_tile*nlon[0]:lon_tile*nlon[0]+nlon[0]] = x y = np.linspace(lat0[sum_tile], lat1[sum_tile] - lat_scale[sum_tile], nlat[sum_tile]) y = np.repeat(y[:,np.newaxis],nlat[sum_tile],1) lats[lat_tile*nlat[0]:lat_tile*nlat[0]+nlat[0],lon_tile*nlon[0]:lon_tile*nlon[0]+nlon[0]] = y tile = np.array(f_in[tile_name[sum_tile]]) surf_type[lat_tile*nlat[0]:lat_tile*nlat[0]+nlat[0],lon_tile*nlon[0]:lon_tile*nlon[0]+nlon[0]] = tile sum_tile+=1 # # Resample to every 5th in surf_type (no need for 5m resolution) # subset_size = 3 lons = lons[0:np.shape(lons)[0]:subset_size,0:np.shape(lons)[1]:subset_size] lats = lats[0:np.shape(lats)[0]:subset_size,0:np.shape(lats)[1]:subset_size] surf_type = surf_type[0:np.shape(surf_type)[0]:subset_size,0:np.shape(surf_type)[1]:subset_size] xsz = int(xsz/subset_size) ysz = int(ysz/subset_size) surfmask = np.full([ysz,xsz], False) # # Set mask True if land bit is set # for j in range(np.shape(surf_type)[1]): for i in range(np.shape(surf_type)[0]): if int(ibits(surf_type[i,j],0,1)) == 1: surfmask[i,j] = True # # Subset down to where lats match hemisphere # Assumes all longitudes included # np.reshape(arr, (-1,int(360/dx))) provides for unknown number of lats # dx=lon_scale[0] latlimit=-60.0 if hemisphere==-1: lons =
np.reshape(lons[lats <= latlimit], (-1,xsz))
numpy.reshape
#The DF of a tidal stream import copy import multiprocessing import warnings from pkg_resources import parse_version import numpy import scipy from scipy import special, interpolate, integrate, optimize _SCIPY_VERSION= parse_version(scipy.__version__) if _SCIPY_VERSION < parse_version('0.10'): #pragma: no cover from scipy.maxentropy import logsumexp elif _SCIPY_VERSION < parse_version('0.19'): #pragma: no cover from scipy.misc import logsumexp else: from scipy.special import logsumexp from ..orbit import Orbit from .df import df from ..util import coords, fast_cholesky_invert, \ conversion, multi, plot, stable_cho_factor, ars from ..util.conversion import physical_conversion, _APY_UNITS, _APY_LOADED from ..actionAngle.actionAngleIsochroneApprox import dePeriod from ..potential import flatten as flatten_potential from ..util import galpyWarning if _APY_LOADED: from astropy import units _INTERPDURINGSETUP= True _USEINTERP= True _USESIMPLE= True # cast a wide net _TWOPIWRAPS= numpy.arange(-4,5)*2.*numpy.pi _labelDict= {'x': r'$X$', 'y': r'$Y$', 'z': r'$Z$', 'r': r'$R$', 'phi': r'$\phi$', 'vx':r'$V_X$', 'vy':r'$V_Y$', 'vz':r'$V_Z$', 'vr':r'$V_R$', 'vt':r'$V_T$', 'll':r'$\mathrm{Galactic\ longitude\, (deg)}$', 'bb':r'$\mathrm{Galactic\ latitude\, (deg)}$', 'dist':r'$\mathrm{distance\, (kpc)}$', 'pmll':r'$\mu_l\,(\mathrm{mas\,yr}^{-1})$', 'pmbb':r'$\mu_b\,(\mathrm{mas\,yr}^{-1})$', 'vlos':r'$V_{\mathrm{los}}\,(\mathrm{km\,s}^{-1})$'} class streamdf(df): """The DF of a tidal stream""" def __init__(self,sigv,progenitor=None,pot=None,aA=None,useTM=False, tdisrupt=None,sigMeanOffset=6.,leading=True, sigangle=None, deltaAngleTrack=None,nTrackChunks=None,nTrackIterations=None, progIsTrack=False, ro=None,vo=None, Vnorm=None,Rnorm=None, R0=8.,Zsun=0.0208,vsun=[-11.1,8.*30.24,7.25], multi=None,interpTrack=_INTERPDURINGSETUP, useInterp=_USEINTERP,nosetup=False,nospreadsetup=False, approxConstTrackFreq=False,useTMHessian=False, custom_transform=None): """ NAME: __init__ PURPOSE: Initialize a quasi-isothermal DF INPUT: sigv - radial velocity dispersion of the progenitor (can be Quantity) tdisrupt= (5 Gyr) time since start of disruption (can be Quantity) leading= (True) if True, model the leading part of the stream if False, model the trailing part progenitor= progenitor orbit as Orbit instance (will be re-integrated, so don't bother integrating the orbit before) progIsTrack= (False) if True, then the progenitor (x,v) is actually the (x,v) of the stream track at zero angle separation; useful when initializing with an orbit fit; the progenitor's position will be calculated pot= Potential instance or list thereof aA= actionAngle instance used to convert (x,v) to actions useTM= (False) if set to an actionAngleTorus instance, use this to speed up calculations sigMeanOffset= (6.) offset between the mean of the frequencies and the progenitor, in units of the largest eigenvalue of the frequency covariance matrix (along the largest eigenvector), should be positive; to model the trailing part, set leading=False sigangle= (sigv/122/[1km/s]=1.8sigv in natural coordinates) estimate of the angle spread of the debris initially (can be Quantity) deltaAngleTrack= (None) angle to estimate the stream track over (rad; or can be Quantity) nTrackChunks= (floor(deltaAngleTrack/0.15)+1) number of chunks to divide the progenitor track in nTrackIterations= Number of iterations to perform when establishing the track; each iteration starts from a previous approximation to the track in (x,v) and calculates a new track based on the deviation between the previous track and the desired track in action-angle coordinates; if not set, an appropriate value is determined based on the magnitude of the misalignment between stream and orbit, with larger numbers of iterations for larger misalignments interpTrack= (might change), interpolate the stream track while setting up the instance (can be done by hand by calling self._interpolate_stream_track() and self._interpolate_stream_track_aA()) useInterp= (might change), use interpolation by default when calculating approximated frequencies and angles nosetup= (False) if True, don't setup the stream track and anything else that is expensive nospreadsetup= (False) if True, don't setup the spread around the stream track (only for nosetup is False) multi= (None) if set, use multi-processing Coordinate transformation inputs: vo= (220) circular velocity to normalize velocities with [used to be Vnorm; can be Quantity] ro= (8) Galactocentric radius to normalize positions with [used to be Rnorm; can be Quantity] R0= (8) Galactocentric radius of the Sun (kpc) [can be different from ro; can be Quantity] Zsun= (0.0208) Sun's height above the plane (kpc; can be Quantity) vsun= ([-11.1,241.92,7.25]) Sun's motion in cylindrical coordinates (vR positive away from center) (can be Quantity) custom_transform= (None) matrix implementing the rotation from (ra,dec) to a custom set of sky coordinates approxConstTrackFreq= (False) if True, approximate the stream assuming that the frequency is constant along the stream (only works with useTM, for which this leads to a significant speed-up) useTMHessian= (False) if True, compute the basic Hessian dO/dJ_prog using TM; otherwise use aA OUTPUT: object HISTORY: 2013-09-16 - Started - Bovy (IAS) 2013-11-25 - Started over - Bovy (IAS) """ if ro is None and not Rnorm is None: warnings.warn("WARNING: Rnorm keyword input to streamdf is deprecated in favor of the standard ro keyword", galpyWarning) ro= Rnorm if vo is None and not Vnorm is None: warnings.warn("WARNING: Vnorm keyword input to streamdf is deprecated in favor of the standard vo keyword", galpyWarning) vo= Vnorm df.__init__(self,ro=ro,vo=vo) sigv= conversion.parse_velocity(sigv,vo=self._vo) self._sigv= sigv if tdisrupt is None: self._tdisrupt= 5./conversion.time_in_Gyr(self._vo,self._ro) else: self._tdisrupt= conversion.parse_time(tdisrupt,ro=self._ro,vo=self._vo) self._sigMeanOffset= sigMeanOffset if pot is None: #pragma: no cover raise IOError("pot= must be set") self._pot= flatten_potential(pot) self._aA= aA if not self._aA._pot == self._pot: raise IOError("Potential in aA does not appear to be the same as given potential pot") self._check_consistent_units() if useTM: self._useTM= True self._aAT= useTM # confusing, no? self._approxConstTrackFreq= approxConstTrackFreq if not self._aAT._pot == self._pot: raise IOError("Potential in useTM=actionAngleTorus instance does not appear to be the same as given potential pot") else: self._useTM= False if (multi is True): #if set to boolean, enable cpu_count processes self._multi= multiprocessing.cpu_count() else: self._multi= multi self._progenitor_setup(progenitor,leading,useTMHessian) sigangle= conversion.parse_angle(sigangle) deltaAngleTrack= conversion.parse_angle(deltaAngleTrack) self._offset_setup(sigangle,leading,deltaAngleTrack) # if progIsTrack, calculate the progenitor that gives a track that is approximately the given orbit if progIsTrack: self._setup_progIsTrack() R0= conversion.parse_length_kpc(R0) Zsun= conversion.parse_length_kpc(Zsun) vsun= conversion.parse_velocity_kms(vsun) vsun[0]= conversion.parse_velocity_kms(vsun[0]) vsun[1]= conversion.parse_velocity_kms(vsun[1]) vsun[2]= conversion.parse_velocity_kms(vsun[2]) self._setup_coord_transform(R0,Zsun,vsun,progenitor,custom_transform) #Determine the stream track if not nosetup: self._determine_nTrackIterations(nTrackIterations) self._determine_stream_track(nTrackChunks) self._useInterp= useInterp if interpTrack or self._useInterp: self._interpolate_stream_track() self._interpolate_stream_track_aA() self.calc_stream_lb() if not nospreadsetup: self._determine_stream_spread() return None def _progenitor_setup(self,progenitor,leading,useTMHessian): """The part of the setup relating to the progenitor's orbit""" #Progenitor orbit: Calculate actions, frequencies, and angles for the progenitor self._progenitor= progenitor() #call to get new Orbit # Make sure we do not use physical coordinates self._progenitor.turn_physical_off() acfs= self._aA.actionsFreqsAngles(self._progenitor, _firstFlip=(not leading), use_physical=False) self._progenitor_jr= acfs[0][0] self._progenitor_lz= acfs[1][0] self._progenitor_jz= acfs[2][0] self._progenitor_Omegar= acfs[3] self._progenitor_Omegaphi= acfs[4] self._progenitor_Omegaz= acfs[5] self._progenitor_Omega= numpy.array([acfs[3],acfs[4],acfs[5]]).reshape(3) self._progenitor_angler= acfs[6] self._progenitor_anglephi= acfs[7] self._progenitor_anglez= acfs[8] self._progenitor_angle= numpy.array([acfs[6],acfs[7],acfs[8]]).reshape(3) #Calculate dO/dJ Jacobian at the progenitor if useTMHessian: h, fr,fp,fz,e= self._aAT.hessianFreqs(self._progenitor_jr, self._progenitor_lz, self._progenitor_jz) self._dOdJp= h # Replace frequencies with TM frequencies self._progenitor_Omegar= fr self._progenitor_Omegaphi= fp self._progenitor_Omegaz= fz self._progenitor_Omega= numpy.array([self._progenitor_Omegar, self._progenitor_Omegaphi, self._progenitor_Omegaz]).reshape(3) else: self._dOdJp= calcaAJac(self._progenitor.vxvv[0], self._aA,dxv=None,dOdJ=True, _initacfs=acfs) self._dOdJpInv= numpy.linalg.inv(self._dOdJp) self._dOdJpEig= numpy.linalg.eig(self._dOdJp) return None def _offset_setup(self,sigangle,leading,deltaAngleTrack): """The part of the setup related to calculating the stream/progenitor offset""" #From the progenitor orbit, determine the sigmas in J and angle self._sigjr= (self._progenitor.rap()-self._progenitor.rperi())/numpy.pi*self._sigv self._siglz= self._progenitor.rperi()*self._sigv self._sigjz= 2.*self._progenitor.zmax()/numpy.pi*self._sigv #Estimate the frequency covariance matrix from a diagonal J matrix x dOdJ self._sigjmatrix= numpy.diag([self._sigjr**2., self._siglz**2., self._sigjz**2.]) self._sigomatrix= numpy.dot(self._dOdJp, numpy.dot(self._sigjmatrix,self._dOdJp.T)) #Estimate angle spread as the ratio of the largest to the middle eigenvalue self._sigomatrixEig= numpy.linalg.eig(self._sigomatrix) self._sigomatrixEigsortIndx= numpy.argsort(self._sigomatrixEig[0]) self._sortedSigOEig= sorted(self._sigomatrixEig[0]) if sigangle is None: self._sigangle= self._sigv*1.8 else: self._sigangle= sigangle self._sigangle2= self._sigangle**2. self._lnsigangle= numpy.log(self._sigangle) #Estimate the frequency mean as lying along the direction of the largest eigenvalue self._dsigomeanProgDirection= self._sigomatrixEig[1][:,numpy.argmax(self._sigomatrixEig[0])] self._progenitor_Omega_along_dOmega= \ numpy.dot(self._progenitor_Omega,self._dsigomeanProgDirection) #Make sure we are modeling the correct part of the stream self._leading= leading self._sigMeanSign= 1. if self._leading and self._progenitor_Omega_along_dOmega < 0.: self._sigMeanSign= -1. elif not self._leading and self._progenitor_Omega_along_dOmega > 0.: self._sigMeanSign= -1. self._progenitor_Omega_along_dOmega*= self._sigMeanSign self._sigomean= self._progenitor_Omega\ +self._sigMeanOffset*self._sigMeanSign\ *numpy.sqrt(numpy.amax(self._sigomatrixEig[0]))\ *self._dsigomeanProgDirection #numpy.dot(self._dOdJp, # numpy.array([self._sigjr,self._siglz,self._sigjz])) self._dsigomeanProg= self._sigomean-self._progenitor_Omega self._meandO= self._sigMeanOffset\ *numpy.sqrt(numpy.amax(self._sigomatrixEig[0])) #Store cholesky of sigomatrix for fast evaluation self._sigomatrixNorm=\ numpy.sqrt(numpy.sum(self._sigomatrix**2.)) self._sigomatrixinv, self._sigomatrixLogdet= \ fast_cholesky_invert(self._sigomatrix/self._sigomatrixNorm, tiny=10.**-15.,logdet=True) self._sigomatrixinv/= self._sigomatrixNorm deltaAngleTrackLim = (self._sigMeanOffset+4.) * numpy.sqrt( self._sortedSigOEig[2]) * self._tdisrupt if (deltaAngleTrack is None): deltaAngleTrack = deltaAngleTrackLim else: if (deltaAngleTrack > deltaAngleTrackLim): warnings.warn("WARNING: angle range large compared to plausible value.", galpyWarning) self._deltaAngleTrack= deltaAngleTrack return None def _setup_coord_transform(self,R0,Zsun,vsun,progenitor,custom_transform): #Set the coordinate-transformation parameters; check that these do not conflict with those in the progenitor orbit object; need to use the original, since this objects _progenitor has physical turned off if progenitor._roSet \ and (numpy.fabs(self._ro-progenitor._ro) > 10.**-.8 \ or numpy.fabs(R0-progenitor._ro) > 10.**-8.): warnings.warn("Warning: progenitor's ro does not agree with streamdf's ro and R0; this may have unexpected consequences when projecting into observables", galpyWarning) if progenitor._voSet \ and numpy.fabs(self._vo-progenitor._vo) > 10.**-8.: warnings.warn("Warning: progenitor's vo does not agree with streamdf's vo; this may have unexpected consequences when projecting into observables", galpyWarning) if (progenitor._roSet or progenitor._voSet) \ and numpy.fabs(Zsun-progenitor._zo) > 10.**-8.: warnings.warn("Warning: progenitor's zo does not agree with streamdf's Zsun; this may have unexpected consequences when projecting into observables", galpyWarning) if (progenitor._roSet or progenitor._voSet) \ and numpy.any(numpy.fabs(vsun-numpy.array([0.,self._vo,0.])\ -progenitor._solarmotion) > 10.**-8.): warnings.warn("Warning: progenitor's solarmotion does not agree with streamdf's vsun (after accounting for vo); this may have unexpected consequences when projecting into observables", galpyWarning) self._R0= R0 self._Zsun= Zsun self._vsun= vsun self._custom_transform= custom_transform return None def _setup_progIsTrack(self): """If progIsTrack, the progenitor orbit that was passed to the streamdf initialization is the track at zero angle separation; this routine computes an actual progenitor position that gives the desired track given the parameters of the streamdf""" # We need to flip the sign of the offset, to go to the progenitor self._sigMeanSign*= -1. # Use _determine_stream_track_single to calculate the track-progenitor # offset at zero angle separation prog_stream_offset=\ _determine_stream_track_single(self._aA, self._progenitor, 0., #time = 0 self._progenitor_angle, self._sigMeanSign, self._dsigomeanProgDirection, lambda x: self.meanOmega(x,use_physical=False), 0.) #angle = 0 # Setup the new progenitor orbit progenitor= Orbit(prog_stream_offset[3]) # Flip the offset sign again self._sigMeanSign*= -1. # Now re-do the previous setup self._progenitor_setup(progenitor,self._leading,False) self._offset_setup(self._sigangle,self._leading, self._deltaAngleTrack) return None @physical_conversion('angle',pop=True) def misalignment(self,isotropic=False,**kwargs): """ NAME: misalignment PURPOSE: calculate the misalignment between the progenitor's frequency and the direction along which the stream disrupts INPUT: isotropic= (False), if True, return the misalignment assuming an isotropic action distribution OUTPUT: misalignment in rad HISTORY: 2013-12-05 - Written - Bovy (IAS) 2017-10-28 - Changed output unit to rad - Bovy (UofT) """ warnings.warn("In versions >1.3, the output unit of streamdf.misalignment has been changed to radian (from degree before)",galpyWarning) if isotropic: dODir= self._dOdJpEig[1][:,numpy.argmax(numpy.fabs(self._dOdJpEig[0]))] else: dODir= self._dsigomeanProgDirection out= numpy.arccos(numpy.sum(self._progenitor_Omega*dODir)/numpy.sqrt(numpy.sum(self._progenitor_Omega**2.))) if out > numpy.pi/2.: return out-numpy.pi else: return out def freqEigvalRatio(self,isotropic=False): """ NAME: freqEigvalRatio PURPOSE: calculate the ratio between the largest and 2nd-to-largest (in abs) eigenvalue of sqrt(dO/dJ^T V_J dO/dJ) (if this is big, a 1D stream will form) INPUT: isotropic= (False), if True, return the ratio assuming an isotropic action distribution (i.e., just of dO/dJ) OUTPUT: ratio between eigenvalues of fabs(dO / dJ) HISTORY: 2013-12-05 - Written - Bovy (IAS) """ if isotropic: sortedEig= sorted(numpy.fabs(self._dOdJpEig[0])) return sortedEig[2]/sortedEig[1] else: return numpy.sqrt(self._sortedSigOEig)[2]\ /numpy.sqrt(self._sortedSigOEig)[1] @physical_conversion('time',pop=True) def estimateTdisrupt(self,deltaAngle): """ NAME: estimateTdisrupt PURPOSE: estimate the time of disruption INPUT: deltaAngle- spread in angle since disruption OUTPUT: time in natural units HISTORY: 2013-11-27 - Written - Bovy (IAS) """ return deltaAngle\ /numpy.sqrt(numpy.sum(self._dsigomeanProg**2.)) def subhalo_encounters(self,venc=numpy.inf,sigma=150./220., nsubhalo=0.3,bmax=0.025,yoon=False): """ NAME: subhalo_encounters PURPOSE: estimate the number of encounters with subhalos over the lifetime of this stream, using a formalism similar to that of Yoon et al. (2011) INPUT: venc= (numpy.inf) count encounters with (relative) speeds less than this (relative radial velocity in cylindrical stream frame, unless yoon is True) (can be Quantity) sigma= (150/220) velocity dispersion of the DM subhalo population (can be Quantity) nsubhalo= (0.3) spatial number density of subhalos (can be Quantity) bmax= (0.025) maximum impact parameter (if larger than width of stream) (can be Quantity) yoon= (False) if True, use erroneous Yoon et al. formula OUTPUT: number of encounters HISTORY: 2016-01-19 - Written - Bovy (UofT) """ venc= conversion.parse_velocity(venc,vo=self._vo) sigma= conversion.parse_velocity(sigma,vo=self._vo) nsubhalo= conversion.parse_numdens(nsubhalo,ro=self._ro) bmax= conversion.parse_length(bmax,ro=self._ro) Ravg= numpy.mean(numpy.sqrt(self._progenitor.orbit[0,:,0]**2. +self._progenitor.orbit[0,:,3]**2.)) if numpy.isinf(venc): vencFac= 1. elif yoon: vencFac= (1.-(1.+venc**2./4./sigma**2.)\ *numpy.exp(-venc**2./4./sigma**2.)) else: vencFac= (1.-numpy.exp(-venc**2./2./sigma**2.)) if yoon: yoonFac= 2*numpy.sqrt(2.) else: yoonFac= 1. # Figure out width of stream w= self.sigangledAngle(self._meandO*self._tdisrupt,simple=True, use_physical=False) if bmax < w*Ravg/2.: bmax= w*Ravg/2. return yoonFac/numpy.sqrt(2.)*numpy.sqrt(numpy.pi)*Ravg*sigma\ *self._tdisrupt**2.*self._meandO\ *bmax*nsubhalo*vencFac ############################STREAM TRACK FUNCTIONS############################# def plotTrack(self,d1='x',d2='z',interp=True,spread=0,simple=_USESIMPLE, *args,**kwargs): """ NAME: plotTrack PURPOSE: plot the stream track INPUT: d1= plot this on the X axis ('x','y','z','R','phi','vx','vy','vz','vR','vt','ll','bb','dist','pmll','pmbb','vlos') d2= plot this on the Y axis (same list as for d1) interp= (True) if True, use the interpolated stream track spread= (0) if int > 0, also plot the spread around the track as spread x sigma scaleToPhysical= (False), if True, plot positions in kpc and velocities in km/s simple= (False), if True, use a simple estimate for the spread in perpendicular angle galpy.util.plot.plotplot args and kwargs OUTPUT: plot to output device HISTORY: 2013-12-09 - Written - Bovy (IAS) """ if not hasattr(self,'_ObsTrackLB') and \ (d1.lower() == 'll' or d1.lower() == 'bb' or d1.lower() == 'dist' or d1.lower() == 'pmll' or d1.lower() == 'pmbb' or d1.lower() == 'vlos' or d2.lower() == 'll' or d2.lower() == 'bb' or d2.lower() == 'dist' or d2.lower() == 'pmll' or d2.lower() == 'pmbb' or d2.lower() == 'vlos'): self.calc_stream_lb() phys= kwargs.pop('scaleToPhysical',False) tx= self._parse_track_dim(d1,interp=interp,phys=phys) ty= self._parse_track_dim(d2,interp=interp,phys=phys) plot.plot(tx,ty,*args, xlabel=_labelDict[d1.lower()], ylabel=_labelDict[d2.lower()], **kwargs) if spread: addx, addy= self._parse_track_spread(d1,d2,interp=interp,phys=phys, simple=simple) if ('ls' in kwargs and kwargs['ls'] == 'none') \ or ('linestyle' in kwargs \ and kwargs['linestyle'] == 'none'): kwargs.pop('ls',None) kwargs.pop('linestyle',None) spreadls= 'none' else: spreadls= '-.' spreadmarker= kwargs.pop('marker',None) spreadcolor= kwargs.pop('color',None) spreadlw= kwargs.pop('lw',1.) plot.plot(tx+spread*addx,ty+spread*addy,ls=spreadls, marker=spreadmarker,color=spreadcolor, lw=spreadlw, overplot=True) plot.plot(tx-spread*addx,ty-spread*addy,ls=spreadls, marker=spreadmarker,color=spreadcolor, lw=spreadlw, overplot=True) return None def plotProgenitor(self,d1='x',d2='z',*args,**kwargs): """ NAME: plotProgenitor PURPOSE: plot the progenitor orbit INPUT: d1= plot this on the X axis ('x','y','z','R','phi','vx','vy','vz','vR','vt','ll','bb','dist','pmll','pmbb','vlos') d2= plot this on the Y axis (same list as for d1) scaleToPhysical= (False), if True, plot positions in kpc and velocities in km/s galpy.util.plot.plot args and kwargs OUTPUT: plot to output device HISTORY: 2013-12-09 - Written - Bovy (IAS) """ tts= self._progenitor.t[self._progenitor.t \ < self._trackts[self._nTrackChunks-1]] obs= [self._R0,0.,self._Zsun] obs.extend(self._vsun) phys= kwargs.pop('scaleToPhysical',False) tx= self._parse_progenitor_dim(d1,tts,ro=self._ro,vo=self._vo, obs=obs,phys=phys) ty= self._parse_progenitor_dim(d2,tts,ro=self._ro,vo=self._vo, obs=obs,phys=phys) plot.plot(tx,ty,*args, xlabel=_labelDict[d1.lower()], ylabel=_labelDict[d2.lower()], **kwargs) return None def _parse_track_dim(self,d1,interp=True,phys=False): """Parse the dimension to plot the stream track for""" if interp: interpStr= 'interpolated' else: interpStr= '' if d1.lower() == 'x': tx= self.__dict__['_%sObsTrackXY' % interpStr][:,0] elif d1.lower() == 'y': tx= self.__dict__['_%sObsTrackXY' % interpStr][:,1] elif d1.lower() == 'z': tx= self.__dict__['_%sObsTrackXY' % interpStr][:,2] elif d1.lower() == 'r': tx= self.__dict__['_%sObsTrack' % interpStr][:,0] elif d1.lower() == 'phi': tx= self.__dict__['_%sObsTrack' % interpStr][:,5] elif d1.lower() == 'vx': tx= self.__dict__['_%sObsTrackXY' % interpStr][:,3] elif d1.lower() == 'vy': tx= self.__dict__['_%sObsTrackXY' % interpStr][:,4] elif d1.lower() == 'vz': tx= self.__dict__['_%sObsTrackXY' % interpStr][:,5] elif d1.lower() == 'vr': tx= self.__dict__['_%sObsTrack' % interpStr][:,1] elif d1.lower() == 'vt': tx= self.__dict__['_%sObsTrack' % interpStr][:,2] elif d1.lower() == 'll': tx= self.__dict__['_%sObsTrackLB' % interpStr][:,0] elif d1.lower() == 'bb': tx= self.__dict__['_%sObsTrackLB' % interpStr][:,1] elif d1.lower() == 'dist': tx= self.__dict__['_%sObsTrackLB' % interpStr][:,2] elif d1.lower() == 'pmll': tx= self.__dict__['_%sObsTrackLB' % interpStr][:,4] elif d1.lower() == 'pmbb': tx= self.__dict__['_%sObsTrackLB' % interpStr][:,5] elif d1.lower() == 'vlos': tx= self.__dict__['_%sObsTrackLB' % interpStr][:,3] if phys and (d1.lower() == 'x' or d1.lower() == 'y' \ or d1.lower() == 'z' or d1.lower() == 'r'): tx= copy.copy(tx) tx*= self._ro if phys and (d1.lower() == 'vx' or d1.lower() == 'vy' \ or d1.lower() == 'vz' or d1.lower() == 'vr' \ or d1.lower() == 'vt'): tx= copy.copy(tx) tx*= self._vo return tx def _parse_progenitor_dim(self,d1,ts,ro=None,vo=None,obs=None, phys=False): """Parse the dimension to plot the progenitor orbit for""" if d1.lower() == 'x': tx= self._progenitor.x(ts,ro=ro,vo=vo,obs=obs,use_physical=False) elif d1.lower() == 'y': tx= self._progenitor.y(ts,ro=ro,vo=vo,obs=obs,use_physical=False) elif d1.lower() == 'z': tx= self._progenitor.z(ts,ro=ro,vo=vo,obs=obs,use_physical=False) elif d1.lower() == 'r': tx= self._progenitor.R(ts,ro=ro,vo=vo,obs=obs,use_physical=False) elif d1.lower() == 'phi': tx= self._progenitor.phi(ts,ro=ro,vo=vo,obs=obs) elif d1.lower() == 'vx': tx= self._progenitor.vx(ts,ro=ro,vo=vo,obs=obs,use_physical=False) elif d1.lower() == 'vy': tx= self._progenitor.vy(ts,ro=ro,vo=vo,obs=obs,use_physical=False) elif d1.lower() == 'vz': tx= self._progenitor.vz(ts,ro=ro,vo=vo,obs=obs,use_physical=False) elif d1.lower() == 'vr': tx= self._progenitor.vR(ts,ro=ro,vo=vo,obs=obs,use_physical=False) elif d1.lower() == 'vt': tx= self._progenitor.vT(ts,ro=ro,vo=vo,obs=obs,use_physical=False) elif d1.lower() == 'll': tx= self._progenitor.ll(ts,ro=ro,vo=vo,obs=obs) elif d1.lower() == 'bb': tx= self._progenitor.bb(ts,ro=ro,vo=vo,obs=obs) elif d1.lower() == 'dist': tx= self._progenitor.dist(ts,ro=ro,vo=vo,obs=obs) elif d1.lower() == 'pmll': tx= self._progenitor.pmll(ts,ro=ro,vo=vo,obs=obs) elif d1.lower() == 'pmbb': tx= self._progenitor.pmbb(ts,ro=ro,vo=vo,obs=obs) elif d1.lower() == 'vlos': tx= self._progenitor.vlos(ts,ro=ro,vo=vo,obs=obs) if phys and (d1.lower() == 'x' or d1.lower() == 'y' \ or d1.lower() == 'z' or d1.lower() == 'r'): tx= copy.copy(tx) tx*= self._ro if phys and (d1.lower() == 'vx' or d1.lower() == 'vy' \ or d1.lower() == 'vz' or d1.lower() == 'vr' \ or d1.lower() == 'vt'): tx= copy.copy(tx) tx*= self._vo return tx def _parse_track_spread(self,d1,d2,interp=True,phys=False, simple=_USESIMPLE): """Determine the spread around the track""" if not hasattr(self,'_allErrCovs'): self._determine_stream_spread(simple=simple) okaySpreadR= ['r','vr','vt','z','vz','phi'] okaySpreadXY= ['x','y','z','vx','vy','vz'] okaySpreadLB= ['ll','bb','dist','vlos','pmll','pmbb'] #Determine which coordinate system we're in coord= [False,False,False] #R, XY, LB if d1.lower() in okaySpreadR and d2.lower() in okaySpreadR: coord[0]= True elif d1.lower() in okaySpreadXY and d2.lower() in okaySpreadXY: coord[1]= True elif d1.lower() in okaySpreadLB and d2.lower() in okaySpreadLB: coord[2]= True else: raise NotImplementedError("plotting the spread for coordinates from different systems not implemented yet ...") #Get the right 2D Jacobian indxDict= {} indxDict['r']= 0 indxDict['vr']= 1 indxDict['vt']= 2 indxDict['z']= 3 indxDict['vz']= 4 indxDict['phi']= 5 indxDictXY= {} indxDictXY['x']= 0 indxDictXY['y']= 1 indxDictXY['z']= 2 indxDictXY['vx']= 3 indxDictXY['vy']= 4 indxDictXY['vz']= 5 indxDictLB= {} indxDictLB['ll']= 0 indxDictLB['bb']= 1 indxDictLB['dist']= 2 indxDictLB['vlos']= 3 indxDictLB['pmll']= 4 indxDictLB['pmbb']= 5 if coord[0]: relevantCov= self._allErrCovs relevantDict= indxDict if phys:#apply scale factors tcov= copy.copy(relevantCov) scaleFac= numpy.array([self._ro,self._vo,self._vo, self._ro,self._vo,1.]) tcov*= numpy.tile(scaleFac,(6,1)) tcov*= numpy.tile(scaleFac,(6,1)).T relevantCov= tcov elif coord[1]: relevantCov= self._allErrCovsXY relevantDict= indxDictXY if phys:#apply scale factors tcov= copy.copy(relevantCov) scaleFac= numpy.array([self._ro,self._ro,self._ro, self._vo,self._vo,self._vo]) tcov*= numpy.tile(scaleFac,(6,1)) tcov*= numpy.tile(scaleFac,(6,1)).T relevantCov= tcov elif coord[2]: relevantCov= self._allErrCovsLBUnscaled relevantDict= indxDictLB indx0= numpy.array([[relevantDict[d1.lower()],relevantDict[d1.lower()]], [relevantDict[d2.lower()],relevantDict[d2.lower()]]]) indx1= numpy.array([[relevantDict[d1.lower()],relevantDict[d2.lower()]], [relevantDict[d1.lower()],relevantDict[d2.lower()]]]) cov= relevantCov[:,indx0,indx1] #cov contains all nTrackChunks covs if not interp: out= numpy.empty((self._nTrackChunks,2)) eigDir= numpy.array([1.,0.]) for ii in range(self._nTrackChunks): covEig= numpy.linalg.eig(cov[ii]) minIndx= numpy.argmin(covEig[0]) minEigvec= covEig[1][:,minIndx] #this is the direction of the transverse spread if numpy.sum(minEigvec*eigDir) < 0.: minEigvec*= -1. #Keep them pointing in the same direction out[ii]= minEigvec*numpy.sqrt(covEig[0][minIndx]) eigDir= minEigvec else: #We slerp the minor eigenvector and interpolate the eigenvalue #First store all of the eigenvectors on the track allEigval= numpy.empty(self._nTrackChunks) allEigvec= numpy.empty((self._nTrackChunks,2)) eigDir= numpy.array([1.,0.]) for ii in range(self._nTrackChunks): covEig= numpy.linalg.eig(cov[ii]) minIndx= numpy.argmin(covEig[0]) minEigvec= covEig[1][:,minIndx] #this is the direction of the transverse spread if numpy.sum(minEigvec*eigDir) < 0.: minEigvec*= -1. #Keep them pointing in the same direction allEigval[ii]= numpy.sqrt(covEig[0][minIndx]) allEigvec[ii]= minEigvec eigDir= minEigvec #Now interpolate where needed interpEigval=\ interpolate.InterpolatedUnivariateSpline(self._thetasTrack, allEigval,k=3) interpolatedEigval= interpEigval(self._interpolatedThetasTrack) #Interpolate in chunks interpolatedEigvec= numpy.empty((len(self._interpolatedThetasTrack), 2)) for ii in range(self._nTrackChunks-1): slerpOmega= numpy.arccos(numpy.sum(allEigvec[ii]*allEigvec[ii+1])) slerpts= (self._interpolatedThetasTrack-self._thetasTrack[ii])/\ (self._thetasTrack[ii+1]-self._thetasTrack[ii]) slerpIndx= (slerpts >= 0.)*(slerpts <= 1.) for jj in range(2): interpolatedEigvec[slerpIndx,jj]=\ (numpy.sin((1-slerpts[slerpIndx])*slerpOmega)*allEigvec[ii,jj] +numpy.sin(slerpts[slerpIndx]*slerpOmega)*allEigvec[ii+1,jj])/numpy.sin(slerpOmega) out= numpy.tile(interpolatedEigval.T,(2,1)).T*interpolatedEigvec if coord[2]: #if LB, undo rescalings that were applied before out[:,0]*= self._ErrCovsLBScale[relevantDict[d1.lower()]] out[:,1]*= self._ErrCovsLBScale[relevantDict[d2.lower()]] return (out[:,0],out[:,1]) def plotCompareTrackAAModel(self,**kwargs): """ NAME: plotCompareTrackAAModel PURPOSE: plot the comparison between the underlying model's dOmega_perp vs. dangle_r (line) and the track in (x,v)'s dOmega_perp vs. dangle_r (dots; explicitly calculating the track's action-angle coordinates) INPUT: galpy.util.plot.plot kwargs OUTPUT: plot HISTORY: 2014-08-27 - Written - Bovy (IAS) """ #First calculate the model model_adiff= (self._ObsTrackAA[:,3:]-self._progenitor_angle)[:,0]\ *self._sigMeanSign model_operp= numpy.dot(self._ObsTrackAA[:,:3]-self._progenitor_Omega, self._dsigomeanProgDirection)\ *self._sigMeanSign #Then calculate the track's frequency-angle coordinates if self._multi is None: aatrack= numpy.empty((self._nTrackChunks,6)) for ii in range(self._nTrackChunks): aatrack[ii]= self._aA.actionsFreqsAngles(Orbit(self._ObsTrack[ii,:]), use_physical=False)[3:] else: aatrack= numpy.reshape(\ multi.parallel_map( (lambda x: self._aA.actionsFreqsAngles(Orbit(self._ObsTrack[x,:]),use_physical=False)[3:]), range(self._nTrackChunks), numcores=numpy.amin([self._nTrackChunks, multiprocessing.cpu_count(), self._multi])),(self._nTrackChunks,6)) track_adiff= (aatrack[:,3:]-self._progenitor_angle)[:,0]\ *self._sigMeanSign track_operp= numpy.dot(aatrack[:,:3]-self._progenitor_Omega, self._dsigomeanProgDirection)\ *self._sigMeanSign overplot= kwargs.pop('overplot',False) yrange= kwargs.pop('yrange', [0.,numpy.amax(numpy.hstack((model_operp,track_operp)))*1.1]) xlabel= kwargs.pop('xlabel',r'$\Delta \theta_R$') ylabel= kwargs.pop('ylabel',r'$\Delta \Omega_\parallel$') plot.plot(model_adiff,model_operp,'k-',overplot=overplot, xlabel=xlabel,ylabel=ylabel,yrange=yrange,**kwargs) plot.plot(track_adiff,track_operp,'ko',overplot=True, **kwargs) return None def _determine_nTrackIterations(self,nTrackIterations): """Determine a good value for nTrackIterations based on the misalignment between stream and orbit; just based on some rough experience for now""" if not nTrackIterations is None: self.nTrackIterations= nTrackIterations return None if numpy.fabs(self.misalignment(quantity=False)) < 1./180.*numpy.pi: self.nTrackIterations= 0 elif numpy.fabs(self.misalignment(quantity=False)) >= 1./180.*numpy.pi \ and numpy.fabs(self.misalignment(quantity=False)) < 3./180.*numpy.pi: self.nTrackIterations= 1 elif numpy.fabs(self.misalignment(quantity=False)) >= 3./180.*numpy.pi: self.nTrackIterations= 2 return None def _determine_stream_track(self,nTrackChunks): """Determine the track of the stream in real space""" #Determine how much orbital time is necessary for the progenitor's orbit to cover the stream if nTrackChunks is None: #default is floor(self._deltaAngleTrack/0.15)+1 self._nTrackChunks= int(numpy.floor(self._deltaAngleTrack/0.15))+1 else: self._nTrackChunks= nTrackChunks if self._nTrackChunks < 4: self._nTrackChunks= 4 if not hasattr(self,'nInterpolatedTrackChunks'): self.nInterpolatedTrackChunks= 1001 dt= self._deltaAngleTrack\ /self._progenitor_Omega_along_dOmega self._trackts= numpy.linspace(0.,2*dt,2*self._nTrackChunks-1) #to be sure that we cover it if self._useTM: return self._determine_stream_track_TM() #Instantiate an auxiliaryTrack, which is an Orbit instance at the mean frequency of the stream, and zero angle separation wrt the progenitor; prog_stream_offset is the offset between this track and the progenitor at zero angle prog_stream_offset=\ _determine_stream_track_single(self._aA, self._progenitor, 0., #time = 0 self._progenitor_angle, self._sigMeanSign, self._dsigomeanProgDirection, lambda x: self.meanOmega(x,use_physical=False), 0.) #angle = 0 auxiliaryTrack= Orbit(prog_stream_offset[3]) if dt < 0.: self._trackts= numpy.linspace(0.,-2.*dt,2*self._nTrackChunks-1) #Flip velocities before integrating auxiliaryTrack= auxiliaryTrack.flip() auxiliaryTrack.integrate(self._trackts,self._pot) if dt < 0.: #Flip velocities again auxiliaryTrack.orbit[...,1]= -auxiliaryTrack.orbit[...,1] auxiliaryTrack.orbit[...,2]= -auxiliaryTrack.orbit[...,2] auxiliaryTrack.orbit[...,4]= -auxiliaryTrack.orbit[...,4] #Calculate the actions, frequencies, and angle for this auxiliary orbit acfs= self._aA.actionsFreqs(auxiliaryTrack(0.), use_physical=False) auxiliary_Omega= numpy.array([acfs[3],acfs[4],acfs[5]]).reshape(3\ ) auxiliary_Omega_along_dOmega= \ numpy.dot(auxiliary_Omega,self._dsigomeanProgDirection) #Now calculate the actions, frequencies, and angles + Jacobian for each chunk allAcfsTrack= numpy.empty((self._nTrackChunks,9)) alljacsTrack= numpy.empty((self._nTrackChunks,6,6)) allinvjacsTrack= numpy.empty((self._nTrackChunks,6,6)) thetasTrack= numpy.linspace(0.,self._deltaAngleTrack, self._nTrackChunks) ObsTrack= numpy.empty((self._nTrackChunks,6)) ObsTrackAA= numpy.empty((self._nTrackChunks,6)) detdOdJps= numpy.empty((self._nTrackChunks)) if self._multi is None: for ii in range(self._nTrackChunks): multiOut= _determine_stream_track_single(self._aA, auxiliaryTrack, self._trackts[ii]*numpy.fabs(self._progenitor_Omega_along_dOmega/auxiliary_Omega_along_dOmega), #this factor accounts for the difference in frequency between the progenitor and the auxiliary track self._progenitor_angle, self._sigMeanSign, self._dsigomeanProgDirection, lambda x: self.meanOmega(x,use_physical=False), thetasTrack[ii]) allAcfsTrack[ii,:]= multiOut[0] alljacsTrack[ii,:,:]= multiOut[1] allinvjacsTrack[ii,:,:]= multiOut[2] ObsTrack[ii,:]= multiOut[3] ObsTrackAA[ii,:]= multiOut[4] detdOdJps[ii]= multiOut[5] else: multiOut= multi.parallel_map(\ (lambda x: _determine_stream_track_single(self._aA,auxiliaryTrack, self._trackts[x]*numpy.fabs(self._progenitor_Omega_along_dOmega/auxiliary_Omega_along_dOmega), self._progenitor_angle, self._sigMeanSign, self._dsigomeanProgDirection, lambda x: self.meanOmega(x,use_physical=False), thetasTrack[x])), range(self._nTrackChunks), numcores=numpy.amin([self._nTrackChunks, multiprocessing.cpu_count(), self._multi])) for ii in range(self._nTrackChunks): allAcfsTrack[ii,:]= multiOut[ii][0] alljacsTrack[ii,:,:]= multiOut[ii][1] allinvjacsTrack[ii,:,:]= multiOut[ii][2] ObsTrack[ii,:]= multiOut[ii][3] ObsTrackAA[ii,:]= multiOut[ii][4] detdOdJps[ii]= multiOut[ii][5] #Repeat the track calculation using the previous track, to get closer to it for nn in range(self.nTrackIterations): if self._multi is None: for ii in range(self._nTrackChunks): multiOut= _determine_stream_track_single(self._aA, Orbit(ObsTrack[ii,:]), 0., self._progenitor_angle, self._sigMeanSign, self._dsigomeanProgDirection, lambda x:self.meanOmega(x,use_physical=False), thetasTrack[ii]) allAcfsTrack[ii,:]= multiOut[0] alljacsTrack[ii,:,:]= multiOut[1] allinvjacsTrack[ii,:,:]= multiOut[2] ObsTrack[ii,:]= multiOut[3] ObsTrackAA[ii,:]= multiOut[4] detdOdJps[ii]= multiOut[5] else: multiOut= multi.parallel_map(\ (lambda x: _determine_stream_track_single(self._aA,Orbit(ObsTrack[x,:]),0., self._progenitor_angle, self._sigMeanSign, self._dsigomeanProgDirection, lambda x: self.meanOmega(x,use_physical=False), thetasTrack[x])), range(self._nTrackChunks), numcores=numpy.amin([self._nTrackChunks, multiprocessing.cpu_count(), self._multi])) for ii in range(self._nTrackChunks): allAcfsTrack[ii,:]= multiOut[ii][0] alljacsTrack[ii,:,:]= multiOut[ii][1] allinvjacsTrack[ii,:,:]= multiOut[ii][2] ObsTrack[ii,:]= multiOut[ii][3] ObsTrackAA[ii,:]= multiOut[ii][4] detdOdJps[ii]= multiOut[ii][5] #Store the track self._thetasTrack= thetasTrack self._ObsTrack= ObsTrack self._ObsTrackAA= ObsTrackAA self._allAcfsTrack= allAcfsTrack self._alljacsTrack= alljacsTrack self._allinvjacsTrack= allinvjacsTrack self._detdOdJps= detdOdJps self._meandetdOdJp= numpy.mean(self._detdOdJps) self._logmeandetdOdJp= numpy.log(self._meandetdOdJp) self._calc_ObsTrackXY() return None def _calc_ObsTrackXY(self): #Also calculate _ObsTrackXY in XYZ,vXYZ coordinates self._ObsTrackXY= numpy.empty_like(self._ObsTrack) TrackX= self._ObsTrack[:,0]*numpy.cos(self._ObsTrack[:,5]) TrackY= self._ObsTrack[:,0]*numpy.sin(self._ObsTrack[:,5]) TrackZ= self._ObsTrack[:,3] TrackvX, TrackvY, TrackvZ=\ coords.cyl_to_rect_vec(self._ObsTrack[:,1], self._ObsTrack[:,2], self._ObsTrack[:,4], self._ObsTrack[:,5]) self._ObsTrackXY[:,0]= TrackX self._ObsTrackXY[:,1]= TrackY self._ObsTrackXY[:,2]= TrackZ self._ObsTrackXY[:,3]= TrackvX self._ObsTrackXY[:,4]= TrackvY self._ObsTrackXY[:,5]= TrackvZ return None def _determine_stream_track_TM(self): # With TM, can get the track in a single shot #Now calculate the actions, frequencies, and angles + Jacobian for each chunk thetasTrack= numpy.linspace(0.,self._deltaAngleTrack, self._nTrackChunks) if self._approxConstTrackFreq: alljacsTrack, allinvjacsTrack, ObsTrack, ObsTrackAA, detdOdJps= \ _determine_stream_track_TM_approxConstantTrackFreq(\ self._aAT, numpy.array([self._progenitor_jr,self._progenitor_lz, self._progenitor_jz]), self._progenitor_Omega, self._progenitor_angle, self._dOdJp, self._dOdJpInv, self._sigMeanSign, self._dsigomeanProgDirection, lambda x: self.meanOmega(x,use_physical=False), thetasTrack) #Store the track, didn't compute _allAcfsTrack self._thetasTrack= thetasTrack self._ObsTrack= ObsTrack self._ObsTrackAA= ObsTrackAA self._alljacsTrack= alljacsTrack self._allinvjacsTrack= allinvjacsTrack self._detdOdJps= detdOdJps self._meandetdOdJp= numpy.mean(self._detdOdJps) self._logmeandetdOdJp= numpy.log(self._meandetdOdJp) self._calc_ObsTrackXY() return None alljacsTrack= numpy.empty((self._nTrackChunks,6,6)) allinvjacsTrack= numpy.empty((self._nTrackChunks,6,6)) ObsTrack= numpy.empty((self._nTrackChunks,6)) ObsTrackAA= numpy.empty((self._nTrackChunks,6)) detdOdJps= numpy.empty((self._nTrackChunks)) if self._multi is None: for ii in range(self._nTrackChunks): multiOut= _determine_stream_track_TM_single(\ self._aAT, numpy.array([self._progenitor_jr,self._progenitor_lz, self._progenitor_jz]), self._progenitor_Omega, self._progenitor_angle, self._dOdJp, self._dOdJpInv, self._sigMeanSign, self._dsigomeanProgDirection, lambda x: self.meanOmega(x,use_physical=False), thetasTrack[ii]) alljacsTrack[ii,:,:]= multiOut[0] allinvjacsTrack[ii,:,:]= multiOut[1] ObsTrack[ii,:]= multiOut[2] ObsTrackAA[ii,:]= multiOut[3] detdOdJps[ii]= multiOut[4] else: multiOut= multi.parallel_map(\ (lambda x: _determine_stream_track_TM_single(\ self._aAT, numpy.array([self._progenitor_jr,self._progenitor_lz, self._progenitor_jz]), self._progenitor_Omega, self._progenitor_angle, self._dOdJp, self._dOdJpInv, self._sigMeanSign, self._dsigomeanProgDirection, lambda x: self.meanOmega(x,use_physical=False), thetasTrack[x])), range(self._nTrackChunks), numcores=numpy.amin([self._nTrackChunks, multiprocessing.cpu_count(), self._multi])) for ii in range(self._nTrackChunks): alljacsTrack[ii,:,:]= multiOut[ii][0] allinvjacsTrack[ii,:,:]= multiOut[ii][1] ObsTrack[ii,:]= multiOut[ii][2] ObsTrackAA[ii,:]= multiOut[ii][3] detdOdJps[ii]= multiOut[ii][4] #Store the track, didn't compute _allAcfsTrack self._thetasTrack= thetasTrack self._ObsTrack= ObsTrack self._ObsTrackAA= ObsTrackAA self._alljacsTrack= alljacsTrack self._allinvjacsTrack= allinvjacsTrack self._detdOdJps= detdOdJps self._meandetdOdJp= numpy.mean(self._detdOdJps) self._logmeandetdOdJp= numpy.log(self._meandetdOdJp) #Also calculate _ObsTrackXY in XYZ,vXYZ coordinates self._calc_ObsTrackXY() return None def _determine_stream_spread(self,simple=_USESIMPLE): """Determine the spread around the stream track, just sets matrices that describe the covariances""" allErrCovs= numpy.empty((self._nTrackChunks,6,6)) if self._multi is None: for ii in range(self._nTrackChunks): allErrCovs[ii]= _determine_stream_spread_single(self._sigomatrixEig, self._thetasTrack[ii], lambda x: self.sigOmega(x,use_physical=False), lambda y: self.sigangledAngle(y,simple=simple,use_physical=False), self._allinvjacsTrack[ii]) else: multiOut= multi.parallel_map(\ (lambda x: _determine_stream_spread_single(self._sigomatrixEig, self._thetasTrack[x], lambda x: self.sigOmega(x,use_physical=False), lambda y: self.sigangledAngle(y,simple=simple,use_physical=False), self._allinvjacsTrack[x])), range(self._nTrackChunks), numcores=numpy.amin([self._nTrackChunks, multiprocessing.cpu_count(), self._multi])) for ii in range(self._nTrackChunks): allErrCovs[ii]= multiOut[ii] self._allErrCovs= allErrCovs #Also propagate to XYZ coordinates allErrCovsXY= numpy.empty_like(self._allErrCovs) allErrCovsEigvalXY= numpy.empty((len(self._thetasTrack),6)) allErrCovsEigvecXY= numpy.empty_like(self._allErrCovs) eigDir= numpy.array([numpy.array([1.,0.,0.,0.,0.,0.]) for ii in range(6)]) for ii in range(self._nTrackChunks): tjac= coords.cyl_to_rect_jac(*self._ObsTrack[ii]) allErrCovsXY[ii]=\ numpy.dot(tjac,numpy.dot(self._allErrCovs[ii],tjac.T)) #Eigen decomposition for interpolation teig= numpy.linalg.eig(allErrCovsXY[ii]) #Sort them to match them up later sortIndx= numpy.argsort(teig[0]) allErrCovsEigvalXY[ii]= teig[0][sortIndx] #Make sure the eigenvectors point in the same direction for jj in range(6): if numpy.sum(eigDir[jj]*teig[1][:,sortIndx[jj]]) < 0.: teig[1][:,sortIndx[jj]]*= -1. eigDir[jj]= teig[1][:,sortIndx[jj]] allErrCovsEigvecXY[ii]= teig[1][:,sortIndx] self._allErrCovsXY= allErrCovsXY #Interpolate the allErrCovsXY covariance matrices along the interpolated track #Interpolate the eigenvalues interpAllErrCovsEigvalXY=\ [interpolate.InterpolatedUnivariateSpline(self._thetasTrack, allErrCovsEigvalXY[:,ii], k=3) for ii in range(6)] #Now build the interpolated allErrCovsXY using slerp interpolatedAllErrCovsXY= numpy.empty((len(self._interpolatedThetasTrack), 6,6)) interpolatedEigval=\ numpy.array([interpAllErrCovsEigvalXY[ii](self._interpolatedThetasTrack) for ii in range(6)]) #6,ninterp #Interpolate in chunks interpolatedEigvec= numpy.empty((len(self._interpolatedThetasTrack), 6,6)) for ii in range(self._nTrackChunks-1): slerpOmegas=\ [numpy.arccos(numpy.sum(allErrCovsEigvecXY[ii,:,jj]*allErrCovsEigvecXY[ii+1,:,jj])) for jj in range(6)] slerpts= (self._interpolatedThetasTrack-self._thetasTrack[ii])/\ (self._thetasTrack[ii+1]-self._thetasTrack[ii]) slerpIndx= (slerpts >= 0.)*(slerpts <= 1.) for jj in range(6): for kk in range(6): interpolatedEigvec[slerpIndx,kk,jj]=\ (numpy.sin((1-slerpts[slerpIndx])*slerpOmegas[jj])*allErrCovsEigvecXY[ii,kk,jj] +numpy.sin(slerpts[slerpIndx]*slerpOmegas[jj])*allErrCovsEigvecXY[ii+1,kk,jj])/numpy.sin(slerpOmegas[jj]) for ii in range(len(self._interpolatedThetasTrack)): interpolatedAllErrCovsXY[ii]=\ numpy.dot(interpolatedEigvec[ii], numpy.dot(numpy.diag(interpolatedEigval[:,ii]), interpolatedEigvec[ii].T)) self._interpolatedAllErrCovsXY= interpolatedAllErrCovsXY #Also interpolate in l and b coordinates self._determine_stream_spreadLB(simple=simple) return None def _determine_stream_spreadLB(self,simple=_USESIMPLE, ro=None,vo=None, R0=None,Zsun=None,vsun=None): """Determine the spread in the stream in observable coordinates""" if not hasattr(self,'_allErrCovs'): self._determine_stream_spread(simple=simple) if ro is None: ro= self._ro if vo is None: vo= self._vo if R0 is None: R0= self._R0 if Zsun is None: Zsun= self._Zsun if vsun is None: vsun= self._vsun allErrCovsLB= numpy.empty_like(self._allErrCovs) obs= [R0,0.,Zsun] obs.extend(vsun) obskwargs= {} obskwargs['ro']= ro obskwargs['vo']= vo obskwargs['obs']= obs obskwargs['quantity']= False self._ErrCovsLBScale= [180.,90., self._progenitor.dist(**obskwargs), numpy.fabs(self._progenitor.vlos(**obskwargs)), numpy.sqrt(self._progenitor.pmll(**obskwargs)**2. +self._progenitor.pmbb(**obskwargs)**2.), numpy.sqrt(self._progenitor.pmll(**obskwargs)**2. +self._progenitor.pmbb(**obskwargs)**2.)] allErrCovsEigvalLB= numpy.empty((len(self._thetasTrack),6)) allErrCovsEigvecLB= numpy.empty_like(self._allErrCovs) eigDir= numpy.array([numpy.array([1.,0.,0.,0.,0.,0.]) for ii in range(6)]) for ii in range(self._nTrackChunks): tjacXY= coords.galcenrect_to_XYZ_jac(*self._ObsTrackXY[ii]) tjacLB= coords.lbd_to_XYZ_jac(*self._ObsTrackLB[ii], degree=True) tjacLB[:3,:]/= ro tjacLB[3:,:]/= vo for jj in range(6): tjacLB[:,jj]*= self._ErrCovsLBScale[jj] tjac= numpy.dot(numpy.linalg.inv(tjacLB),tjacXY) allErrCovsLB[ii]=\ numpy.dot(tjac,numpy.dot(self._allErrCovsXY[ii],tjac.T)) #Eigen decomposition for interpolation teig= numpy.linalg.eig(allErrCovsLB[ii]) #Sort them to match them up later sortIndx= numpy.argsort(teig[0]) allErrCovsEigvalLB[ii]= teig[0][sortIndx] #Make sure the eigenvectors point in the same direction for jj in range(6): if numpy.sum(eigDir[jj]*teig[1][:,sortIndx[jj]]) < 0.: teig[1][:,sortIndx[jj]]*= -1. eigDir[jj]= teig[1][:,sortIndx[jj]] allErrCovsEigvecLB[ii]= teig[1][:,sortIndx] self._allErrCovsLBUnscaled= allErrCovsLB #Interpolate the allErrCovsLB covariance matrices along the interpolated track #Interpolate the eigenvalues interpAllErrCovsEigvalLB=\ [interpolate.InterpolatedUnivariateSpline(self._thetasTrack, allErrCovsEigvalLB[:,ii], k=3) for ii in range(6)] #Now build the interpolated allErrCovsXY using slerp interpolatedAllErrCovsLB= numpy.empty((len(self._interpolatedThetasTrack), 6,6)) interpolatedEigval=\ numpy.array([interpAllErrCovsEigvalLB[ii](self._interpolatedThetasTrack) for ii in range(6)]) #6,ninterp #Interpolate in chunks interpolatedEigvec= numpy.empty((len(self._interpolatedThetasTrack), 6,6)) for ii in range(self._nTrackChunks-1): slerpOmegas=\ [numpy.arccos(numpy.sum(allErrCovsEigvecLB[ii,:,jj]*allErrCovsEigvecLB[ii+1,:,jj])) for jj in range(6)] slerpts= (self._interpolatedThetasTrack-self._thetasTrack[ii])/\ (self._thetasTrack[ii+1]-self._thetasTrack[ii]) slerpIndx= (slerpts >= 0.)*(slerpts <= 1.) for jj in range(6): for kk in range(6): interpolatedEigvec[slerpIndx,kk,jj]=\ (numpy.sin((1-slerpts[slerpIndx])*slerpOmegas[jj])*allErrCovsEigvecLB[ii,kk,jj] +numpy.sin(slerpts[slerpIndx]*slerpOmegas[jj])*allErrCovsEigvecLB[ii+1,kk,jj])/numpy.sin(slerpOmegas[jj]) for ii in range(len(self._interpolatedThetasTrack)): interpolatedAllErrCovsLB[ii]=\ numpy.dot(interpolatedEigvec[ii], numpy.dot(numpy.diag(interpolatedEigval[:,ii]), interpolatedEigvec[ii].T)) self._interpolatedAllErrCovsLBUnscaled= interpolatedAllErrCovsLB #Also calculate the (l,b,..) -> (X,Y,..) Jacobian at all of the interpolated and not interpolated points trackLogDetJacLB= numpy.empty_like(self._thetasTrack) interpolatedTrackLogDetJacLB=\ numpy.empty_like(self._interpolatedThetasTrack) for ii in range(self._nTrackChunks): tjacLB= coords.lbd_to_XYZ_jac(*self._ObsTrackLB[ii], degree=True) trackLogDetJacLB[ii]= numpy.log(numpy.linalg.det(tjacLB)) self._trackLogDetJacLB= trackLogDetJacLB for ii in range(len(self._interpolatedThetasTrack)): tjacLB=\ coords.lbd_to_XYZ_jac(*self._interpolatedObsTrackLB[ii], degree=True) interpolatedTrackLogDetJacLB[ii]=\ numpy.log(numpy.linalg.det(tjacLB)) self._interpolatedTrackLogDetJacLB= interpolatedTrackLogDetJacLB return None def _interpolate_stream_track(self): """Build interpolations of the stream track""" if hasattr(self,'_interpolatedThetasTrack'): return None #Already did this TrackX= self._ObsTrack[:,0]*numpy.cos(self._ObsTrack[:,5]) TrackY= self._ObsTrack[:,0]*numpy.sin(self._ObsTrack[:,5]) TrackZ= self._ObsTrack[:,3] TrackvX, TrackvY, TrackvZ=\ coords.cyl_to_rect_vec(self._ObsTrack[:,1], self._ObsTrack[:,2], self._ObsTrack[:,4], self._ObsTrack[:,5]) #Interpolate self._interpTrackX=\ interpolate.InterpolatedUnivariateSpline(self._thetasTrack, TrackX,k=3) self._interpTrackY=\ interpolate.InterpolatedUnivariateSpline(self._thetasTrack, TrackY,k=3) self._interpTrackZ=\ interpolate.InterpolatedUnivariateSpline(self._thetasTrack, TrackZ,k=3) self._interpTrackvX=\ interpolate.InterpolatedUnivariateSpline(self._thetasTrack, TrackvX,k=3) self._interpTrackvY=\ interpolate.InterpolatedUnivariateSpline(self._thetasTrack, TrackvY,k=3) self._interpTrackvZ=\ interpolate.InterpolatedUnivariateSpline(self._thetasTrack, TrackvZ,k=3) #Now store an interpolated version of the stream track self._interpolatedThetasTrack=\ numpy.linspace(0.,self._deltaAngleTrack, self.nInterpolatedTrackChunks) self._interpolatedObsTrackXY= numpy.empty((len(self._interpolatedThetasTrack),6)) self._interpolatedObsTrackXY[:,0]=\ self._interpTrackX(self._interpolatedThetasTrack) self._interpolatedObsTrackXY[:,1]=\ self._interpTrackY(self._interpolatedThetasTrack) self._interpolatedObsTrackXY[:,2]=\ self._interpTrackZ(self._interpolatedThetasTrack) self._interpolatedObsTrackXY[:,3]=\ self._interpTrackvX(self._interpolatedThetasTrack) self._interpolatedObsTrackXY[:,4]=\ self._interpTrackvY(self._interpolatedThetasTrack) self._interpolatedObsTrackXY[:,5]=\ self._interpTrackvZ(self._interpolatedThetasTrack) #Also in cylindrical coordinates self._interpolatedObsTrack= \ numpy.empty((len(self._interpolatedThetasTrack),6)) tR,tphi,tZ= coords.rect_to_cyl(self._interpolatedObsTrackXY[:,0], self._interpolatedObsTrackXY[:,1], self._interpolatedObsTrackXY[:,2]) tvR,tvT,tvZ=\ coords.rect_to_cyl_vec(self._interpolatedObsTrackXY[:,3], self._interpolatedObsTrackXY[:,4], self._interpolatedObsTrackXY[:,5], tR,tphi,tZ,cyl=True) self._interpolatedObsTrack[:,0]= tR self._interpolatedObsTrack[:,1]= tvR self._interpolatedObsTrack[:,2]= tvT self._interpolatedObsTrack[:,3]= tZ self._interpolatedObsTrack[:,4]= tvZ self._interpolatedObsTrack[:,5]= tphi return None def _interpolate_stream_track_aA(self): """Build interpolations of the stream track in action-angle coordinates""" if hasattr(self,'_interpolatedObsTrackAA'): return None #Already did this #Calculate 1D meanOmega on a fine grid in angle and interpolate if not hasattr(self,'_interpolatedThetasTrack'): self._interpolate_stream_track() dmOs= numpy.array([self.meanOmega(da,oned=True,use_physical=False) for da in self._interpolatedThetasTrack]) self._interpTrackAAdmeanOmegaOneD=\ interpolate.InterpolatedUnivariateSpline(\ self._interpolatedThetasTrack,dmOs,k=3) #Build the interpolated AA self._interpolatedObsTrackAA=\ numpy.empty((len(self._interpolatedThetasTrack),6)) for ii in range(len(self._interpolatedThetasTrack)): self._interpolatedObsTrackAA[ii,:3]=\ self._progenitor_Omega+dmOs[ii]*self._dsigomeanProgDirection\ *self._sigMeanSign self._interpolatedObsTrackAA[ii,3:]=\ self._progenitor_angle+self._interpolatedThetasTrack[ii]\ *self._dsigomeanProgDirection*self._sigMeanSign self._interpolatedObsTrackAA[ii,3:]=\ numpy.mod(self._interpolatedObsTrackAA[ii,3:],2.*numpy.pi) return None def calc_stream_lb(self, vo=None,ro=None, R0=None,Zsun=None,vsun=None): """ NAME: calc_stream_lb PURPOSE: convert the stream track to observational coordinates and store INPUT: Coordinate transformation inputs (all default to the instance-wide values): vo= circular velocity to normalize velocities with ro= Galactocentric radius to normalize positions with R0= Galactocentric radius of the Sun (kpc) Zsun= Sun's height above the plane (kpc) vsun= Sun's motion in cylindrical coordinates (vR positive away from center) OUTPUT: (none) HISTORY: 2013-12-02 - Written - Bovy (IAS) """ if vo is None: vo= self._vo if ro is None: ro= self._ro if R0 is None: R0= self._R0 if Zsun is None: Zsun= self._Zsun if vsun is None: vsun= self._vsun self._ObsTrackLB= numpy.empty_like(self._ObsTrack) XYZ= coords.galcencyl_to_XYZ(self._ObsTrack[:,0]*ro, self._ObsTrack[:,5], self._ObsTrack[:,3]*ro, Xsun=R0,Zsun=Zsun).T vXYZ= coords.galcencyl_to_vxvyvz(self._ObsTrack[:,1]*vo, self._ObsTrack[:,2]*vo, self._ObsTrack[:,4]*vo, self._ObsTrack[:,5], vsun=vsun,Xsun=R0,Zsun=Zsun).T slbd=coords.XYZ_to_lbd(XYZ[0],XYZ[1],XYZ[2], degree=True) svlbd= coords.vxvyvz_to_vrpmllpmbb(vXYZ[0],vXYZ[1],vXYZ[2], slbd[:,0],slbd[:,1],slbd[:,2], degree=True) self._ObsTrackLB[:,0]= slbd[:,0] self._ObsTrackLB[:,1]= slbd[:,1] self._ObsTrackLB[:,2]= slbd[:,2] self._ObsTrackLB[:,3]= svlbd[:,0] self._ObsTrackLB[:,4]= svlbd[:,1] self._ObsTrackLB[:,5]= svlbd[:,2] if hasattr(self,'_interpolatedObsTrackXY'): #Do the same for the interpolated track self._interpolatedObsTrackLB=\ numpy.empty_like(self._interpolatedObsTrackXY) XYZ=\ coords.galcenrect_to_XYZ(\ self._interpolatedObsTrackXY[:,0]*ro, self._interpolatedObsTrackXY[:,1]*ro, self._interpolatedObsTrackXY[:,2]*ro, Xsun=R0,Zsun=Zsun).T vXYZ=\ coords.galcenrect_to_vxvyvz(\ self._interpolatedObsTrackXY[:,3]*vo, self._interpolatedObsTrackXY[:,4]*vo, self._interpolatedObsTrackXY[:,5]*vo, vsun=vsun,Xsun=R0,Zsun=Zsun).T slbd=coords.XYZ_to_lbd(XYZ[0],XYZ[1],XYZ[2], degree=True) svlbd= coords.vxvyvz_to_vrpmllpmbb(vXYZ[0],vXYZ[1],vXYZ[2], slbd[:,0],slbd[:,1], slbd[:,2], degree=True) self._interpolatedObsTrackLB[:,0]= slbd[:,0] self._interpolatedObsTrackLB[:,1]= slbd[:,1] self._interpolatedObsTrackLB[:,2]= slbd[:,2] self._interpolatedObsTrackLB[:,3]= svlbd[:,0] self._interpolatedObsTrackLB[:,4]= svlbd[:,1] self._interpolatedObsTrackLB[:,5]= svlbd[:,2] if hasattr(self,'_allErrCovsLBUnscaled'): #Re-calculate this self._determine_stream_spreadLB(simple=_USESIMPLE, vo=vo,ro=ro, R0=R0,Zsun=Zsun,vsun=vsun) return None def _find_closest_trackpoint(self,R,vR,vT,z,vz,phi,interp=True,xy=False, usev=False): """For backward compatibility""" return self.find_closest_trackpoint(R,vR,vT,z,vz,phi, interp=interp,xy=xy, usev=usev) def find_closest_trackpoint(self,R,vR,vT,z,vz,phi,interp=True,xy=False, usev=False): """ NAME: find_closest_trackpoint PURPOSE: find the closest point on the stream track to a given point INPUT: R,vR,vT,z,vz,phi - phase-space coordinates of the given point interp= (True), if True, return the index of the interpolated track xy= (False) if True, input is X,Y,Z,vX,vY,vZ in Galactocentric rectangular coordinates; if xy, some coordinates may be missing (given as None) and they will not be used usev= (False) if True, also use velocities to find the closest point OUTPUT: index into the track of the closest track point HISTORY: 2013-12-04 - Written - Bovy (IAS) """ if xy: X= R Y= vR Z= vT else: X= R*numpy.cos(phi) Y= R*numpy.sin(phi) Z= z if xy and usev: vX= z vY= vz vZ= phi elif usev: vX= vR*numpy.cos(phi)-vT*numpy.sin(phi) vY= vR*numpy.sin(phi)+vT*numpy.cos(phi) vZ= vz present= [not X is None,not Y is None,not Z is None] if usev: present.extend([not vX is None,not vY is None,not vZ is None]) present= numpy.array(present,dtype='float') if X is None: X= 0. if Y is None: Y= 0. if Z is None: Z= 0. if usev and vX is None: vX= 0. if usev and vY is None: vY= 0. if usev and vZ is None: vZ= 0. if interp: dist2= present[0]*(X-self._interpolatedObsTrackXY[:,0])**2.\ +present[1]*(Y-self._interpolatedObsTrackXY[:,1])**2.\ +present[2]*(Z-self._interpolatedObsTrackXY[:,2])**2. if usev: dist2+= present[3]*(vX-self._interpolatedObsTrackXY[:,3])**2.\ +present[4]*(vY-self._interpolatedObsTrackXY[:,4])**2.\ +present[5]*(vZ-self._interpolatedObsTrackXY[:,5])**2. else: dist2= present[0]*(X-self._ObsTrackXY[:,0])**2.\ +present[1]*(Y-self._ObsTrackXY[:,1])**2.\ +present[2]*(Z-self._ObsTrackXY[:,2])**2. if usev: dist2+= present[3]*(vX-self._ObsTrackXY[:,3])**2.\ +present[4]*(vY-self._ObsTrackXY[:,4])**2.\ +present[5]*(vZ-self._ObsTrackXY[:,5])**2. return numpy.argmin(dist2) def _find_closest_trackpointLB(self,l,b,D,vlos,pmll,pmbb,interp=True, usev=False): return self.find_closest_trackpointLB(l,b,D,vlos,pmll,pmbb, interp=interp, usev=usev) def find_closest_trackpointLB(self,l,b,D,vlos,pmll,pmbb,interp=True, usev=False): """ NAME: find_closest_trackpointLB PURPOSE: find the closest point on the stream track to a given point in (l,b,...) coordinates INPUT: l,b,D,vlos,pmll,pmbb- coordinates in (deg,deg,kpc,km/s,mas/yr,mas/yr) interp= (True) if True, return the closest index on the interpolated track usev= (False) if True, also use the velocity components (default is to only use the positions) OUTPUT: index of closest track point on the interpolated or not-interpolated track HISTORY: 2013-12-17- Written - Bovy (IAS) """ if interp: nTrackPoints= len(self._interpolatedThetasTrack) else: nTrackPoints= len(self._thetasTrack) if l is None: l= 0. trackL= numpy.zeros(nTrackPoints) elif interp: trackL= self._interpolatedObsTrackLB[:,0] else: trackL= self._ObsTrackLB[:,0] if b is None: b= 0. trackB= numpy.zeros(nTrackPoints) elif interp: trackB= self._interpolatedObsTrackLB[:,1] else: trackB= self._ObsTrackLB[:,1] if D is None: D= 1. trackD= numpy.ones(nTrackPoints) elif interp: trackD= self._interpolatedObsTrackLB[:,2] else: trackD= self._ObsTrackLB[:,2] if usev: if vlos is None: vlos= 0. trackVlos= numpy.zeros(nTrackPoints) elif interp: trackVlos= self._interpolatedObsTrackLB[:,3] else: trackVlos= self._ObsTrackLB[:,3] if pmll is None: pmll= 0. trackPmll= numpy.zeros(nTrackPoints) elif interp: trackPmll= self._interpolatedObsTrackLB[:,4] else: trackPmll= self._ObsTrackLB[:,4] if pmbb is None: pmbb= 0. trackPmbb= numpy.zeros(nTrackPoints) elif interp: trackPmbb= self._interpolatedObsTrackLB[:,5] else: trackPmbb= self._ObsTrackLB[:,5] #Calculate rectangular coordinates XYZ= coords.lbd_to_XYZ(l,b,D,degree=True) trackXYZ= coords.lbd_to_XYZ(trackL,trackB,trackD,degree=True) if usev: vxvyvz= coords.vrpmllpmbb_to_vxvyvz(vlos,pmll,pmbb, XYZ[0],XYZ[1],XYZ[2], XYZ=True) trackvxvyvz= coords.vrpmllpmbb_to_vxvyvz(trackVlos,trackPmll, trackPmbb, trackXYZ[:,0], trackXYZ[:,1], trackXYZ[:,2], XYZ=True) #Calculate distance dist2= (XYZ[0]-trackXYZ[:,0])**2.\ +(XYZ[1]-trackXYZ[:,1])**2.\ +(XYZ[2]-trackXYZ[:,2])**2. if usev: dist2+= (vxvyvz[0]-trackvxvyvz[:,0])**2.\ +(vxvyvz[1]-trackvxvyvz[:,1])**2.\ +(vxvyvz[2]-trackvxvyvz[:,2])**2. return numpy.argmin(dist2) def _find_closest_trackpointaA(self,Or,Op,Oz,ar,ap,az,interp=True): """ NAME: _find_closest_trackpointaA PURPOSE: find the closest point on the stream track to a given point in frequency-angle coordinates INPUT: Or,Op,Oz,ar,ap,az - phase-space coordinates of the given point interp= (True), if True, return the index of the interpolated track OUTPUT: index into the track of the closest track point HISTORY: 2013-12-22 - Written - Bovy (IAS) """ #Calculate angle offset along the stream parallel to the stream track, # finding first the angle among a few wraps where the point is # closest to the parallel track and then the closest trackpoint to that # point da= numpy.stack(\ numpy.meshgrid(_TWOPIWRAPS+ar-self._progenitor_angle[0], _TWOPIWRAPS+ap-self._progenitor_angle[1], _TWOPIWRAPS+az-self._progenitor_angle[2], indexing='xy')).T.reshape((len(_TWOPIWRAPS)**3,3)) dapar= self._sigMeanSign*numpy.dot(da[numpy.argmin(numpy.linalg.norm(\ numpy.cross(da,self._dsigomeanProgDirection),axis=1))], self._dsigomeanProgDirection) if interp: dist= numpy.fabs(dapar-self._interpolatedThetasTrack) else: dist= numpy.fabs(dapar-self._thetasTrack) return numpy.argmin(dist) #########DISTRIBUTION AS A FUNCTION OF ANGLE ALONG THE STREAM################## def pOparapar(self,Opar,apar,tdisrupt=None): """ NAME: pOparapar PURPOSE: return the probability of a given parallel (frequency,angle) offset pair INPUT: Opar - parallel frequency offset (array) (can be Quantity) apar - parallel angle offset along the stream (scalar) (can be Quantity) OUTPUT: p(Opar,apar) HISTORY: 2015-12-07 - Written - Bovy (UofT) """ Opar= conversion.parse_frequency(Opar,ro=self._ro,vo=self._vo) apar= conversion.parse_angle(apar) if tdisrupt is None: tdisrupt= self._tdisrupt if isinstance(Opar,(int,float,numpy.float32,numpy.float64)): Opar= numpy.array([Opar]) out= numpy.zeros(len(Opar)) # Compute ts ts= apar/Opar # Evaluate out[(ts < tdisrupt)*(ts >= 0.)]=\ numpy.exp(-0.5*(Opar[(ts < tdisrupt)*(ts >= 0.)]-self._meandO)**2.\ /self._sortedSigOEig[2])/\ numpy.sqrt(self._sortedSigOEig[2]) return out def density_par(self,dangle,coord='apar',tdisrupt=None, **kwargs): """ NAME: density_par PURPOSE: calculate the density as a function of a parallel coordinate INPUT: dangle - parallel angle offset for this coordinate value coord - coordinate to return the density in ('apar' [default], 'll','ra','customra','phi') OUTPUT: density(angle) HISTORY: 2015-11-17 - Written - Bovy (UofT) """ if coord.lower() != 'apar': # Need to compute the Jacobian for this coordinate value ddangle= dangle+10.**-7. ddangle-= dangle if coord.lower() == 'phi': phi_h= coords.rect_to_cyl(\ self._interpTrackX(dangle+ddangle), self._interpTrackY(dangle+ddangle), self._interpTrackZ(dangle+ddangle)) phi= coords.rect_to_cyl(\ self._interpTrackX(dangle), self._interpTrackY(dangle), self._interpTrackZ(dangle)) jac= numpy.fabs(phi_h[1]-phi[1])/ddangle elif coord.lower() == 'll' or coord.lower() == 'ra' \ or coord.lower() == 'customra': XYZ_h= coords.galcenrect_to_XYZ(\ self._interpTrackX(dangle+ddangle)*self._ro, self._interpTrackY(dangle+ddangle)*self._ro, self._interpTrackZ(dangle+ddangle)*self._ro, Xsun=self._R0,Zsun=self._Zsun) lbd_h= coords.XYZ_to_lbd(XYZ_h[0],XYZ_h[1],XYZ_h[2], degree=True) XYZ= coords.galcenrect_to_XYZ(\ self._interpTrackX(dangle)*self._ro, self._interpTrackY(dangle)*self._ro, self._interpTrackZ(dangle)*self._ro, Xsun=self._R0,Zsun=self._Zsun) lbd= coords.XYZ_to_lbd(XYZ[0],XYZ[1],XYZ[2], degree=True) if coord.lower() == 'll': jac= numpy.fabs(lbd_h[0]-lbd[0])/ddangle else: radec_h= coords.lb_to_radec(lbd_h[0], lbd_h[1], degree=True) radec= coords.lb_to_radec(lbd[0], lbd[1], degree=True) if coord.lower() == 'ra': jac= numpy.fabs(radec_h[0]-radec[0])/ddangle else: xieta_h= coords.radec_to_custom(\ radec_h[0],radec_h[1],T=self._custom_transform, degree=True) xieta= coords.radec_to_custom(\ radec[0],radec[1],T=self._custom_transform, degree=True) jac= numpy.fabs(xieta_h[0]-xieta[0])/ddangle else: raise ValueError('Coordinate input %s not supported by density_par' % coord) else: jac= 1. return self._density_par(dangle,tdisrupt=tdisrupt,**kwargs)/jac def _density_par(self,dangle,tdisrupt=None): """The raw density as a function of parallel angle""" if tdisrupt is None: tdisrupt= self._tdisrupt dOmin= dangle/tdisrupt # Normalize to 1 close to progenitor return 0.5\ *(1.+special.erf((self._meandO-dOmin)\ /numpy.sqrt(2.*self._sortedSigOEig[2]))) def length(self,threshold=0.2,phys=False,ang=False,tdisrupt=None, **kwargs): """ NAME: length PURPOSE: calculate the length of the stream INPUT: threshold - threshold down from the density near the progenitor at which to define the 'end' of the stream phys= (False) if True, return the length in physical kpc ang= (False) if True, return the length in sky angular arc length in degree coord - coordinate to return the density in ('apar' [default], 'll','ra','customra','phi') OUTPUT: length (rad for parallel angle; kpc for physical length; deg for sky arc length) HISTORY: 2015-12-22 - Written - Bovy (UofT) """ peak_dens= self.density_par(0.1,tdisrupt=tdisrupt,**kwargs) # assume that this is the peak try: result=\ optimize.brentq(lambda x: self.density_par(x, tdisrupt=tdisrupt, **kwargs)\ -peak_dens*threshold, 0.1,self._deltaAngleTrack) except RuntimeError: #pragma: no cover raise RuntimeError('Length could not be returned, because length method failed to find the threshold value') except ValueError: raise ValueError('Length could not be returned, because length method failed to initialize') if phys: # Need to now integrate length dXda= self._interpTrackX.derivative() dYda= self._interpTrackY.derivative() dZda= self._interpTrackZ.derivative() result= integrate.quad(lambda da: numpy.sqrt(dXda(da)**2.\ +dYda(da)**2.\ +dZda(da)**2.), 0.,result)[0]*self._ro elif ang: # Need to now integrate length if numpy.median(numpy.roll(self._interpolatedObsTrackLB[:,0],-1) -self._interpolatedObsTrackLB[:,0]) > 0.: ll= dePeriod(self._interpolatedObsTrackLB[:,0][:,numpy.newaxis].T*numpy.pi/180.).T*180./numpy.pi else: ll= dePeriod(self._interpolatedObsTrackLB[::-1,0][:,numpy.newaxis].T*numpy.pi/180.).T[::-1]*180./numpy.pi if numpy.median(numpy.roll(self._interpolatedObsTrackLB[:,1],-1) -self._interpolatedObsTrackLB[:,1]) > 0.: bb= dePeriod(self._interpolatedObsTrackLB[:,1][:,numpy.newaxis].T*numpy.pi/180.).T*180./numpy.pi else: bb= dePeriod(self._interpolatedObsTrackLB[::-1,1][:,numpy.newaxis].T*numpy.pi/180.).T[::-1]*180./numpy.pi dlda= interpolate.InterpolatedUnivariateSpline(\ self._interpolatedThetasTrack,ll,k=3).derivative() dbda= interpolate.InterpolatedUnivariateSpline(\ self._interpolatedThetasTrack,bb,k=3).derivative() result= integrate.quad(lambda da: numpy.sqrt(dlda(da)**2.\ +dbda(da)**2.), 0.,result)[0] return result @physical_conversion('frequency',pop=True) def meanOmega(self,dangle,oned=False,offset_sign=None, tdisrupt=None): """ NAME: meanOmega PURPOSE: calculate the mean frequency as a function of angle, assuming a uniform time distribution up to a maximum time INPUT: dangle - angle offset oned= (False) if True, return the 1D offset from the progenitor (along the direction of disruption) offset_sign= sign of the frequency offset (shouldn't be set) OUTPUT: mean Omega HISTORY: 2013-12-01 - Written - Bovy (IAS) """ if offset_sign is None: offset_sign= self._sigMeanSign if tdisrupt is None: tdisrupt= self._tdisrupt dOmin= dangle/tdisrupt meandO= self._meandO dO1D= ((numpy.sqrt(2./numpy.pi)*numpy.sqrt(self._sortedSigOEig[2])\ *numpy.exp(-0.5*(meandO-dOmin)**2.\ /self._sortedSigOEig[2])/ (1.+special.erf((meandO-dOmin)\ /numpy.sqrt(2.*self._sortedSigOEig[2]))))\ +meandO) if oned: return dO1D else: return self._progenitor_Omega+dO1D*self._dsigomeanProgDirection\ *offset_sign @physical_conversion('frequency',pop=True) def sigOmega(self,dangle): """ NAME: sigmaOmega PURPOSE: calculate the 1D sigma in frequency as a function of angle, assuming a uniform time distribution up to a maximum time INPUT: dangle - angle offset OUTPUT: sigma Omega HISTORY: 2013-12-05 - Written - Bovy (IAS) """ dOmin= dangle/self._tdisrupt meandO= self._meandO sO1D2= ((numpy.sqrt(2./numpy.pi)*numpy.sqrt(self._sortedSigOEig[2])\ *(meandO+dOmin)\ *numpy.exp(-0.5*(meandO-dOmin)**2.\ /self._sortedSigOEig[2])/ (1.+special.erf((meandO-dOmin)\ /numpy.sqrt(2.*self._sortedSigOEig[2]))))\ +meandO**2.+self._sortedSigOEig[2]) mO= self.meanOmega(dangle,oned=True,use_physical=False) return numpy.sqrt(sO1D2-mO**2.) def ptdAngle(self,t,dangle): """ NAME: ptdangle PURPOSE: return the probability of a given stripping time at a given angle along the stream INPUT: t - stripping time dangle - angle offset along the stream OUTPUT: p(td|dangle) HISTORY: 2013-12-05 - Written - Bovy (IAS) """ if isinstance(t,(int,float,numpy.float32,numpy.float64)): t= numpy.array([t]) out= numpy.zeros(len(t)) if t > 0.: dO= dangle/t[t < self._tdisrupt] else: return 0. #p(t|a) = \int dO p(O,t|a) = \int dO p(t|O,a) p(O|a) = \int dO delta (t-a/O)p(O|a) = O*2/a p(O|a); p(O|a) = \int dt p(a|O,t) p(O)p(t) = 1/O p(O) out[t < self._tdisrupt]=\ dO**2./dangle*numpy.exp(-0.5*(dO-self._meandO)**2.\ /self._sortedSigOEig[2])/\ numpy.sqrt(self._sortedSigOEig[2]) return out @physical_conversion('time',pop=True) def meantdAngle(self,dangle): """ NAME: meantdAngle PURPOSE: calculate the mean stripping time at a given angle INPUT: dangle - angle offset along the stream OUTPUT: mean stripping time at this dangle HISTORY: 2013-12-05 - Written - Bovy (IAS) """ Tlow= dangle/(self._meandO+3.*numpy.sqrt(self._sortedSigOEig[2])) Thigh= dangle/(self._meandO-3.*numpy.sqrt(self._sortedSigOEig[2])) num= integrate.quad(lambda x: x*self.ptdAngle(x,dangle), Tlow,Thigh)[0] denom= integrate.quad(self.ptdAngle,Tlow,Thigh,(dangle,))[0] if denom == 0.: return self._tdisrupt elif numpy.isnan(denom): return 0. else: return num/denom @physical_conversion('time',pop=True) def sigtdAngle(self,dangle): """ NAME: sigtdAngle PURPOSE: calculate the dispersion in the stripping times at a given angle INPUT: dangle - angle offset along the stream OUTPUT: dispersion in the stripping times at this angle HISTORY: 2013-12-05 - Written - Bovy (IAS) """ Tlow= dangle/(self._meandO+3.*numpy.sqrt(self._sortedSigOEig[2])) Thigh= dangle/(self._meandO-3.*numpy.sqrt(self._sortedSigOEig[2])) numsig2= integrate.quad(lambda x: x**2.*self.ptdAngle(x,dangle), Tlow,Thigh)[0] nummean= integrate.quad(lambda x: x*self.ptdAngle(x,dangle), Tlow,Thigh)[0] denom= integrate.quad(self.ptdAngle,Tlow,Thigh,(dangle,))[0] if denom == 0.: return numpy.nan else: return numpy.sqrt(numsig2/denom-(nummean/denom)**2.) def pangledAngle(self,angleperp,dangle,smallest=False): """ NAME: pangledAngle PURPOSE: return the probability of a given perpendicular angle at a given angle along the stream INPUT: angleperp - perpendicular angle dangle - angle offset along the stream smallest= (False) calculate for smallest eigenvalue direction rather than for middle OUTPUT: p(angle_perp|dangle) HISTORY: 2013-12-06 - Written - Bovy (IAS) """ if isinstance(angleperp,(int,float,numpy.float32,numpy.float64)): angleperp= numpy.array([angleperp]) out= numpy.zeros(len(angleperp)) out= numpy.array([\ integrate.quad(self._pangledAnglet,0.,self._tdisrupt, (ap,dangle,smallest))[0] for ap in angleperp]) return out @physical_conversion('angle',pop=True) def meanangledAngle(self,dangle,smallest=False): """ NAME: meanangledAngle PURPOSE: calculate the mean perpendicular angle at a given angle INPUT: dangle - angle offset along the stream smallest= (False) calculate for smallest eigenvalue direction rather than for middle OUTPUT: mean perpendicular angle HISTORY: 2013-12-06 - Written - Bovy (IAS) """ if smallest: eigIndx= 0 else: eigIndx= 1 aplow= numpy.amax([numpy.sqrt(self._sortedSigOEig[eigIndx])\ *self._tdisrupt*5., self._sigangle]) num= integrate.quad(lambda x: x*self.pangledAngle(x,dangle,smallest), aplow,-aplow)[0] denom= integrate.quad(self.pangledAngle,aplow,-aplow, (dangle,smallest))[0] if denom == 0.: return numpy.nan else: return num/denom @physical_conversion('angle',pop=True) def sigangledAngle(self,dangle,assumeZeroMean=True,smallest=False, simple=False): """ NAME: sigangledAngle PURPOSE: calculate the dispersion in the perpendicular angle at a given angle INPUT: dangle - angle offset along the stream assumeZeroMean= (True) if True, assume that the mean is zero (should be) smallest= (False) calculate for smallest eigenvalue direction rather than for middle simple= (False), if True, return an even simpler estimate OUTPUT: dispersion in the perpendicular angle at this angle HISTORY: 2013-12-06 - Written - Bovy (IAS) """ if smallest: eigIndx= 0 else: eigIndx= 1 if simple: dt= self.meantdAngle(dangle,use_physical=False) return numpy.sqrt(self._sigangle2 +self._sortedSigOEig[eigIndx]*dt**2.) aplow= numpy.amax([numpy.sqrt(self._sortedSigOEig[eigIndx])*self._tdisrupt*5., self._sigangle]) numsig2= integrate.quad(lambda x: x**2.*self.pangledAngle(x,dangle), aplow,-aplow)[0] if not assumeZeroMean: nummean= integrate.quad(lambda x: x*self.pangledAngle(x,dangle), aplow,-aplow)[0] else: nummean= 0. denom= integrate.quad(self.pangledAngle,aplow,-aplow,(dangle,))[0] if denom == 0.: return numpy.nan else: return numpy.sqrt(numsig2/denom-(nummean/denom)**2.) def _pangledAnglet(self,t,angleperp,dangle,smallest): """p(angle_perp|angle_par,time)""" if smallest: eigIndx= 0 else: eigIndx= 1 if isinstance(angleperp,(int,float,numpy.float32,numpy.float64)): angleperp= numpy.array([angleperp]) t= numpy.array([t]) out= numpy.zeros_like(angleperp) tindx= t < self._tdisrupt out[tindx]=\ numpy.exp(-0.5*angleperp[tindx]**2.\ /(t[tindx]**2.*self._sortedSigOEig[eigIndx]+self._sigangle2))/\ numpy.sqrt(t[tindx]**2.*self._sortedSigOEig[eigIndx]+self._sigangle2)\ *self.ptdAngle(t[t < self._tdisrupt],dangle) return out ################APPROXIMATE FREQUENCY-ANGLE TRANSFORMATION##################### def _approxaA(self,R,vR,vT,z,vz,phi,interp=True,cindx=None): """ NAME: _approxaA PURPOSE: return action-angle coordinates for a point based on the linear approximation around the stream track INPUT: R,vR,vT,z,vz,phi - phase-space coordinates of the given point interp= (True), if True, use the interpolated track cindx= index of the closest point on the (interpolated) stream track if not given, determined from the dimensions given OUTPUT: (Or,Op,Oz,ar,ap,az) HISTORY: 2013-12-03 - Written - Bovy (IAS) 2015-11-12 - Added weighted sum of two nearest Jacobians to help with smoothness - Bovy (UofT) """ if isinstance(R,(int,float,numpy.float32,numpy.float64)): #Scalar input R= numpy.array([R]) vR= numpy.array([vR]) vT= numpy.array([vT]) z= numpy.array([z]) vz= numpy.array([vz]) phi= numpy.array([phi]) X= R*numpy.cos(phi) Y= R*numpy.sin(phi) Z= z if cindx is None: closestIndx= [self._find_closest_trackpoint(X[ii],Y[ii],Z[ii], z[ii],vz[ii],phi[ii], interp=interp, xy=True,usev=False) for ii in range(len(R))] else: closestIndx= cindx out= numpy.empty((6,len(R))) for ii in range(len(R)): dxv= numpy.empty(6) if interp: dxv[0]= R[ii]-self._interpolatedObsTrack[closestIndx[ii],0] dxv[1]= vR[ii]-self._interpolatedObsTrack[closestIndx[ii],1] dxv[2]= vT[ii]-self._interpolatedObsTrack[closestIndx[ii],2] dxv[3]= z[ii]-self._interpolatedObsTrack[closestIndx[ii],3] dxv[4]= vz[ii]-self._interpolatedObsTrack[closestIndx[ii],4] dxv[5]= phi[ii]-self._interpolatedObsTrack[closestIndx[ii],5] jacIndx= self._find_closest_trackpoint(R[ii],vR[ii],vT[ii], z[ii],vz[ii],phi[ii], interp=False, xy=False) else: dxv[0]= R[ii]-self._ObsTrack[closestIndx[ii],0] dxv[1]= vR[ii]-self._ObsTrack[closestIndx[ii],1] dxv[2]= vT[ii]-self._ObsTrack[closestIndx[ii],2] dxv[3]= z[ii]-self._ObsTrack[closestIndx[ii],3] dxv[4]= vz[ii]-self._ObsTrack[closestIndx[ii],4] dxv[5]= phi[ii]-self._ObsTrack[closestIndx[ii],5] jacIndx= closestIndx[ii] # Find 2nd closest Jacobian point for smoothing dmJacIndx= (X[ii]-self._ObsTrackXY[jacIndx,0])**2.\ +(Y[ii]-self._ObsTrackXY[jacIndx,1])**2.\ +(Z[ii]-self._ObsTrackXY[jacIndx,2])**2. if jacIndx == 0: jacIndx2= jacIndx+1 dmJacIndx2= (X[ii]-self._ObsTrackXY[jacIndx+1,0])**2.\ +(Y[ii]-self._ObsTrackXY[jacIndx+1,1])**2.\ +(Z[ii]-self._ObsTrackXY[jacIndx+1,2])**2. elif jacIndx == self._nTrackChunks-1: jacIndx2= jacIndx-1 dmJacIndx2= (X[ii]-self._ObsTrackXY[jacIndx-1,0])**2.\ +(Y[ii]-self._ObsTrackXY[jacIndx-1,1])**2.\ +(Z[ii]-self._ObsTrackXY[jacIndx-1,2])**2. else: dm1= (X[ii]-self._ObsTrackXY[jacIndx-1,0])**2.\ +(Y[ii]-self._ObsTrackXY[jacIndx-1,1])**2.\ +(Z[ii]-self._ObsTrackXY[jacIndx-1,2])**2. dm2= (X[ii]-self._ObsTrackXY[jacIndx+1,0])**2.\ +(Y[ii]-self._ObsTrackXY[jacIndx+1,1])**2.\ +(Z[ii]-self._ObsTrackXY[jacIndx+1,2])**2. if dm1 < dm2: jacIndx2= jacIndx-1 dmJacIndx2= dm1 else: jacIndx2= jacIndx+1 dmJacIndx2= dm2 ampJacIndx= numpy.sqrt(dmJacIndx)/(numpy.sqrt(dmJacIndx)\ +numpy.sqrt(dmJacIndx2)) #Make sure phi hasn't wrapped around if dxv[5] > numpy.pi: dxv[5]-= 2.*numpy.pi elif dxv[5] < -numpy.pi: dxv[5]+= 2.*numpy.pi #Apply closest jacobians out[:,ii]= numpy.dot((1.-ampJacIndx)*self._alljacsTrack[jacIndx,:,:] +ampJacIndx*self._alljacsTrack[jacIndx2,:,:], dxv) if interp: out[:,ii]+= self._interpolatedObsTrackAA[closestIndx[ii]] else: out[:,ii]+= self._ObsTrackAA[closestIndx[ii]] return out def _approxaAInv(self,Or,Op,Oz,ar,ap,az,interp=True): """ NAME: _approxaAInv PURPOSE: return R,vR,... coordinates for a point based on the linear approximation around the stream track INPUT: Or,Op,Oz,ar,ap,az - phase space coordinates in frequency-angle space interp= (True), if True, use the interpolated track OUTPUT: (R,vR,vT,z,vz,phi) HISTORY: 2013-12-22 - Written - Bovy (IAS) """ if isinstance(Or,(int,float,numpy.float32,numpy.float64)): #Scalar input Or= numpy.array([Or]) Op= numpy.array([Op]) Oz= numpy.array([Oz]) ar= numpy.array([ar]) ap= numpy.array([ap]) az= numpy.array([az]) #Calculate apar, angle offset along the stream closestIndx= [self._find_closest_trackpointaA(Or[ii],Op[ii],Oz[ii], ar[ii],ap[ii],az[ii], interp=interp)\ for ii in range(len(Or))] out= numpy.empty((6,len(Or))) for ii in range(len(Or)): dOa= numpy.empty(6) if interp: dOa[0]= Or[ii]-self._interpolatedObsTrackAA[closestIndx[ii],0] dOa[1]= Op[ii]-self._interpolatedObsTrackAA[closestIndx[ii],1] dOa[2]= Oz[ii]-self._interpolatedObsTrackAA[closestIndx[ii],2] dOa[3]= ar[ii]-self._interpolatedObsTrackAA[closestIndx[ii],3] dOa[4]= ap[ii]-self._interpolatedObsTrackAA[closestIndx[ii],4] dOa[5]= az[ii]-self._interpolatedObsTrackAA[closestIndx[ii],5] jacIndx= self._find_closest_trackpointaA(Or[ii],Op[ii],Oz[ii], ar[ii],ap[ii],az[ii], interp=False) else: dOa[0]= Or[ii]-self._ObsTrackAA[closestIndx[ii],0] dOa[1]= Op[ii]-self._ObsTrackAA[closestIndx[ii],1] dOa[2]= Oz[ii]-self._ObsTrackAA[closestIndx[ii],2] dOa[3]= ar[ii]-self._ObsTrackAA[closestIndx[ii],3] dOa[4]= ap[ii]-self._ObsTrackAA[closestIndx[ii],4] dOa[5]= az[ii]-self._ObsTrackAA[closestIndx[ii],5] jacIndx= closestIndx[ii] # Find 2nd closest Jacobian point for smoothing da= numpy.stack(\ numpy.meshgrid(_TWOPIWRAPS+ar[ii]-self._progenitor_angle[0], _TWOPIWRAPS+ap[ii]-self._progenitor_angle[1], _TWOPIWRAPS+az[ii]-self._progenitor_angle[2], indexing='xy')).T\ .reshape((len(_TWOPIWRAPS)**3,3)) dapar= self._sigMeanSign\ *numpy.dot(da[numpy.argmin(numpy.linalg.norm(\ numpy.cross(da,self._dsigomeanProgDirection), axis=1))], self._dsigomeanProgDirection) dmJacIndx= numpy.fabs(dapar-self._thetasTrack[jacIndx]) if jacIndx == 0: jacIndx2= jacIndx+1 dmJacIndx2= numpy.fabs(dapar-self._thetasTrack[jacIndx+1]) elif jacIndx == self._nTrackChunks-1: jacIndx2= jacIndx-1 dmJacIndx2= numpy.fabs(dapar-self._thetasTrack[jacIndx-1]) else: dm1= numpy.fabs(dapar-self._thetasTrack[jacIndx-1]) dm2= numpy.fabs(dapar-self._thetasTrack[jacIndx+1]) if dm1 < dm2: jacIndx2= jacIndx-1 dmJacIndx2= dm1 else: jacIndx2= jacIndx+1 dmJacIndx2= dm2 ampJacIndx= dmJacIndx/(dmJacIndx+dmJacIndx2) #Make sure the angles haven't wrapped around if dOa[3] > numpy.pi: dOa[3]-= 2.*numpy.pi elif dOa[3] < -numpy.pi: dOa[3]+= 2.*numpy.pi if dOa[4] > numpy.pi: dOa[4]-= 2.*numpy.pi elif dOa[4] < -numpy.pi: dOa[4]+= 2.*numpy.pi if dOa[5] > numpy.pi: dOa[5]-= 2.*numpy.pi elif dOa[5] < -numpy.pi: dOa[5]+= 2.*numpy.pi #Apply closest jacobian out[:,ii]= numpy.dot((1.-ampJacIndx)*self._allinvjacsTrack[jacIndx,:,:] +ampJacIndx*self._allinvjacsTrack[jacIndx2,:,:], dOa) if interp: out[:,ii]+= self._interpolatedObsTrack[closestIndx[ii]] else: out[:,ii]+= self._ObsTrack[closestIndx[ii]] return out ################################EVALUATE THE DF################################ def __call__(self,*args,**kwargs): """ NAME: __call__ PURPOSE: evaluate the DF INPUT: Either: a) R,vR,vT,z,vz,phi ndarray [nobjects] b) (Omegar,Omegaphi,Omegaz,angler,anglephi,anglez) tuple if aAInput where: Omegar - radial frequency Omegaphi - azimuthal frequency Omegaz - vertical frequency angler - radial angle anglephi - azimuthal angle anglez - vertical angle c) Orbit instance or list thereof log= if True, return the natural log aaInput= (False) if True, option b above OUTPUT: value of DF HISTORY: 2013-12-03 - Written - Bovy (IAS) """ #First parse log log= kwargs.pop('log',True) dOmega, dangle= self.prepData4Call(*args,**kwargs) #Omega part dOmega4dfOmega= dOmega\ -numpy.tile(self._dsigomeanProg.T,(dOmega.shape[1],1)).T logdfOmega= -0.5*numpy.sum(dOmega4dfOmega* numpy.dot(self._sigomatrixinv, dOmega4dfOmega), axis=0)-0.5*self._sigomatrixLogdet\ +numpy.log(numpy.fabs(numpy.dot(self._dsigomeanProgDirection,dOmega))) #Angle part dangle2= numpy.sum(dangle**2.,axis=0) dOmega2= numpy.sum(dOmega**2.,axis=0) dOmegaAngle= numpy.sum(dOmega*dangle,axis=0) logdfA= -0.5/self._sigangle2*(dangle2-dOmegaAngle**2./dOmega2)\ -2.*self._lnsigangle-0.5*numpy.log(dOmega2) #Finite stripping part a0= dOmegaAngle/numpy.sqrt(2.)/self._sigangle/numpy.sqrt(dOmega2) ad= numpy.sqrt(dOmega2)/numpy.sqrt(2.)/self._sigangle\ *(self._tdisrupt-dOmegaAngle/dOmega2) loga= numpy.log((special.erf(a0)+special.erf(ad))/2.) #divided by 2 st 0 for well-within the stream out= logdfA+logdfOmega+loga+self._logmeandetdOdJp if log: return out else: return numpy.exp(out) def prepData4Call(self,*args,**kwargs): """ NAME: prepData4Call PURPOSE: prepare stream data for the __call__ method INPUT: __call__ inputs OUTPUT: (dOmega,dangle); wrt the progenitor; each [3,nobj] HISTORY: 2013-12-04 - Written - Bovy (IAS) """ #First calculate the actionAngle coordinates if they're not given #as such freqsAngles= self._parse_call_args(*args,**kwargs) dOmega= freqsAngles[:3,:]\ -numpy.tile(self._progenitor_Omega.T,(freqsAngles.shape[1],1)).T dangle= freqsAngles[3:,:]\ -numpy.tile(self._progenitor_angle.T,(freqsAngles.shape[1],1)).T #Assuming single wrap, resolve large angle differences (wraps should be marginalized over) dangle[(dangle < -4.)]+= 2.*numpy.pi dangle[(dangle > 4.)]-= 2.*numpy.pi return (dOmega,dangle) def _parse_call_args(self,*args,**kwargs): """Helper function to parse the arguments to the __call__ and related functions, return [6,nobj] array of frequencies (:3) and angles (3:)""" interp= kwargs.get('interp',self._useInterp) if len(args) == 5: raise IOError("Must specify phi for streamdf") elif len(args) == 6: if kwargs.get('aAInput',False): if isinstance(args[0],(int,float,numpy.float32,numpy.float64)): out= numpy.empty((6,1)) else: out= numpy.empty((6,len(args[0]))) for ii in range(6): out[ii,:]= args[ii] return out else: return self._approxaA(*args,interp=interp) elif isinstance(args[0],Orbit): if len(args[0].shape) > 1: raise RuntimeError("Evaluating streamdf with Orbit instances with multi-dimensional shapes is not supported") #pragma: no cover o= args[0] return self._approxaA(o.R(),o.vR(),o.vT(),o.z(),o.vz(),o.phi(), interp=interp) elif isinstance(args[0],list) and isinstance(args[0][0],Orbit): if numpy.any([len(no) > 1 for no in args[0]]): raise RuntimeError('Only single-object Orbit instances can be passed to DF instances at this point') #pragma: no cover R, vR, vT, z, vz, phi= [], [], [], [], [], [] for o in args[0]: R.append(o.R()) vR.append(o.vR()) vT.append(o.vT()) z.append(o.z()) vz.append(o.vz()) phi.append(o.phi()) return self._approxaA(numpy.array(R),numpy.array(vR), numpy.array(vT),numpy.array(z), numpy.array(vz),numpy.array(phi), interp=interp) def callMarg(self,xy,**kwargs): """ NAME: callMarg PURPOSE: evaluate the DF, marginalizing over some directions, in Galactocentric rectangular coordinates (or in observed l,b,D,vlos,pmll,pmbb) coordinates) INPUT: xy - phase-space point [X,Y,Z,vX,vY,vZ]; the distribution of the dimensions set to None is returned interp= (object-wide interp default) if True, use the interpolated stream track cindx= index of the closest point on the (interpolated) stream track if not given, determined from the dimensions given nsigma= (3) number of sigma to marginalize the DF over (approximate sigma) ngl= (5) order of Gauss-Legendre integration lb= (False) if True, xy contains [l,b,D,vlos,pmll,pmbb] in [deg,deg,kpc,km/s,mas/yr,mas/yr] and the marginalized PDF in these coordinates is returned vo= (220) circular velocity to normalize with when lb=True ro= (8) Galactocentric radius to normalize with when lb=True R0= (8) Galactocentric radius of the Sun (kpc) Zsun= (0.0208) Sun's height above the plane (kpc) vsun= ([-11.1,241.92,7.25]) Sun's motion in cylindrical coordinates (vR positive away from center) OUTPUT: p(xy) marginalized over missing directions in xy HISTORY: 2013-12-16 - Written - Bovy (IAS) """ coordGiven= numpy.array([not x is None for x in xy],dtype='bool') if numpy.sum(coordGiven) == 6: raise NotImplementedError("When specifying all coordinates, please use __call__ instead of callMarg") #First construct the Gaussian approximation at this xy gaussmean, gaussvar= self.gaussApprox(xy,**kwargs) cholvar, chollower= stable_cho_factor(gaussvar) #Now Gauss-legendre integrate over missing directions ngl= kwargs.get('ngl',5) nsigma= kwargs.get('nsigma',3) glx, glw= numpy.polynomial.legendre.leggauss(ngl) coordEval= [] weightEval= [] jj= 0 baseX= (glx+1)/2. baseX= list(baseX) baseX.extend(-(glx+1)/2.) baseX= numpy.array(baseX) baseW= glw baseW= list(baseW) baseW.extend(glw) baseW= numpy.array(baseW) for ii in range(6): if not coordGiven[ii]: coordEval.append(nsigma*baseX) weightEval.append(baseW) jj+= 1 else: coordEval.append(xy[ii]*numpy.ones(1)) weightEval.append(numpy.ones(1)) mgrid= numpy.meshgrid(*coordEval,indexing='ij') mgridNotGiven= numpy.array([mgrid[ii].flatten() for ii in range(6) if not coordGiven[ii]]) mgridNotGiven= numpy.dot(cholvar,mgridNotGiven) jj= 0 if coordGiven[0]: iX= mgrid[0] else: iX= mgridNotGiven[jj]+gaussmean[jj] jj+= 1 if coordGiven[1]: iY= mgrid[1] else: iY= mgridNotGiven[jj]+gaussmean[jj] jj+= 1 if coordGiven[2]: iZ= mgrid[2] else: iZ= mgridNotGiven[jj]+gaussmean[jj] jj+= 1 if coordGiven[3]: ivX= mgrid[3] else: ivX= mgridNotGiven[jj]+gaussmean[jj] jj+= 1 if coordGiven[4]: ivY= mgrid[4] else: ivY= mgridNotGiven[jj]+gaussmean[jj] jj+= 1 if coordGiven[5]: ivZ= mgrid[5] else: ivZ= mgridNotGiven[jj]+gaussmean[jj] jj+= 1 iXw, iYw, iZw, ivXw, ivYw, ivZw=\ numpy.meshgrid(*weightEval,indexing='ij') if kwargs.get('lb',False): #Convert to Galactocentric cylindrical coordinates #Setup coordinate transformation kwargs vo= kwargs.get('vo',self._vo) ro= kwargs.get('ro',self._ro) R0= kwargs.get('R0',self._R0) Zsun= kwargs.get('Zsun',self._Zsun) vsun= kwargs.get('vsun',self._vsun) tXYZ= coords.lbd_to_XYZ(iX.flatten(),iY.flatten(), iZ.flatten(), degree=True) iR,iphi,iZ= coords.XYZ_to_galcencyl(tXYZ[:,0],tXYZ[:,1], tXYZ[:,2], Xsun=R0,Zsun=Zsun).T tvxvyvz= coords.vrpmllpmbb_to_vxvyvz(ivX.flatten(), ivY.flatten(), ivZ.flatten(), tXYZ[:,0],tXYZ[:,1], tXYZ[:,2],XYZ=True) ivR,ivT,ivZ= coords.vxvyvz_to_galcencyl(tvxvyvz[:,0], tvxvyvz[:,1], tvxvyvz[:,2], iR,iphi,iZ, galcen=True, vsun=vsun, Xsun=R0,Zsun=Zsun).T iR/= ro iZ/= ro ivR/= vo ivT/= vo ivZ/= vo else: #Convert to cylindrical coordinates iR,iphi,iZ=\ coords.rect_to_cyl(iX.flatten(),iY.flatten(),iZ.flatten()) ivR,ivT,ivZ=\ coords.rect_to_cyl_vec(ivX.flatten(),ivY.flatten(), ivZ.flatten(), iR,iphi,iZ,cyl=True) #Add the additional Jacobian dXdY/dldb... if necessary if kwargs.get('lb',False): #Find the nearest track point interp= kwargs.get('interp',self._useInterp) if not 'cindx' in kwargs: cindx= self._find_closest_trackpointLB(*xy,interp=interp, usev=True) else: cindx= kwargs['cindx'] #Only l,b,d,... to Galactic X,Y,Z,... is necessary because going #from Galactic to Galactocentric has Jacobian determinant 1 if interp: addLogDet= self._interpolatedTrackLogDetJacLB[cindx] else: addLogDet= self._trackLogDetJacLB[cindx] else: addLogDet= 0. logdf= self(iR,ivR,ivT,iZ,ivZ,iphi,log=True) return logsumexp(logdf +numpy.log(iXw.flatten()) +numpy.log(iYw.flatten()) +numpy.log(iZw.flatten()) +numpy.log(ivXw.flatten()) +numpy.log(ivYw.flatten()) +numpy.log(ivZw.flatten()))\ +0.5*numpy.log(numpy.linalg.det(gaussvar))\ +addLogDet def gaussApprox(self,xy,**kwargs): """ NAME: gaussApprox PURPOSE: return the mean and variance of a Gaussian approximation to the stream DF at a given phase-space point in Galactocentric rectangular coordinates (distribution is over missing directions) INPUT: xy - phase-space point [X,Y,Z,vX,vY,vZ]; the distribution of the dimensions set to None is returned interp= (object-wide interp default) if True, use the interpolated stream track cindx= index of the closest point on the (interpolated) stream track if not given, determined from the dimensions given lb= (False) if True, xy contains [l,b,D,vlos,pmll,pmbb] in [deg,deg,kpc,km/s,mas/yr,mas/yr] and the Gaussian approximation in these coordinates is returned OUTPUT: (mean,variance) of the approximate Gaussian DF for the missing directions in xy HISTORY: 2013-12-12 - Written - Bovy (IAS) """ interp= kwargs.get('interp',self._useInterp) lb= kwargs.get('lb',False) #What are we looking for coordGiven= numpy.array([not x is None for x in xy],dtype='bool') nGiven= numpy.sum(coordGiven) #First find the nearest track point if not 'cindx' in kwargs and lb: cindx= self._find_closest_trackpointLB(*xy,interp=interp, usev=True) elif not 'cindx' in kwargs and not lb: cindx= self._find_closest_trackpoint(*xy,xy=True,interp=interp, usev=True) else: cindx= kwargs['cindx'] #Get the covariance matrix if interp and lb: tcov= self._interpolatedAllErrCovsLBUnscaled[cindx] tmean= self._interpolatedObsTrackLB[cindx] elif interp and not lb: tcov= self._interpolatedAllErrCovsXY[cindx] tmean= self._interpolatedObsTrackXY[cindx] elif not interp and lb: tcov= self._allErrCovsLBUnscaled[cindx] tmean= self._ObsTrackLB[cindx] elif not interp and not lb: tcov= self._allErrCovsXY[cindx] tmean= self._ObsTrackXY[cindx] if lb:#Apply scale factors tcov= copy.copy(tcov) tcov*= numpy.tile(self._ErrCovsLBScale,(6,1)) tcov*= numpy.tile(self._ErrCovsLBScale,(6,1)).T #Fancy indexing to recover V22, V11, and V12; V22, V11, V12 as in Appendix B of 0905.2979v1 V11indx0= numpy.array([[ii for jj in range(6-nGiven)] for ii in range(6) if not coordGiven[ii]]) V11indx1= numpy.array([[ii for ii in range(6) if not coordGiven[ii]] for jj in range(6-nGiven)]) V11= tcov[V11indx0,V11indx1] V22indx0= numpy.array([[ii for jj in range(nGiven)] for ii in range(6) if coordGiven[ii]]) V22indx1= numpy.array([[ii for ii in range(6) if coordGiven[ii]] for jj in range(nGiven)]) V22= tcov[V22indx0,V22indx1] V12indx0= numpy.array([[ii for jj in range(nGiven)] for ii in range(6) if not coordGiven[ii]]) V12indx1= numpy.array([[ii for ii in range(6) if coordGiven[ii]] for jj in range(6-nGiven)]) V12= tcov[V12indx0,V12indx1] #Also get m1 and m2, again following Appendix B of 0905.2979v1 m1= tmean[True^coordGiven] m2= tmean[coordGiven] #conditional mean and variance V22inv= numpy.linalg.inv(V22) v2= numpy.array([xy[ii] for ii in range(6) if coordGiven[ii]]) condMean= m1+numpy.dot(V12,numpy.dot(V22inv,v2-m2)) condVar= V11-numpy.dot(V12,numpy.dot(V22inv,V12.T)) return (condMean,condVar) ################################SAMPLE THE DF################################## def sample(self,n,returnaAdt=False,returndt=False,interp=None, xy=False,lb=False): """ NAME: sample PURPOSE: sample from the DF INPUT: n - number of points to return returnaAdt= (False) if True, return (Omega,angle,dt) returndT= (False) if True, also return the time since the star was stripped interp= (object-wide default) use interpolation of the stream track xy= (False) if True, return Galactocentric rectangular coordinates lb= (False) if True, return Galactic l,b,d,vlos,pmll,pmbb coordinates OUTPUT: (R,vR,vT,z,vz,phi) of points on the stream in 6,N array HISTORY: 2013-12-22 - Written - Bovy (IAS) """ #First sample frequencies Om,angle,dt= self._sample_aAt(n) if returnaAdt: if _APY_UNITS and self._voSet and self._roSet: Om=\ units.Quantity(\ Om*conversion.freq_in_Gyr(self._vo,self._ro), unit=1/units.Gyr) angle= units.Quantity(angle,unit=units.rad) dt= units.Quantity(\ dt*conversion.time_in_Gyr(self._vo,self._ro), unit=units.Gyr) return (Om,angle,dt) if interp is None: interp= self._useInterp #Propagate to R,vR,etc. RvR= self._approxaAInv(Om[0,:],Om[1,:],Om[2,:], angle[0,:],angle[1,:],angle[2,:], interp=interp) if returndt and not xy and not lb: if _APY_UNITS and self._voSet and self._roSet: return (units.Quantity(RvR[0]*self._ro,unit=units.kpc), units.Quantity(RvR[1]*self._vo,unit=units.km/units.s), units.Quantity(RvR[2]*self._vo,unit=units.km/units.s), units.Quantity(RvR[3]*self._ro,unit=units.kpc), units.Quantity(RvR[4]*self._vo,unit=units.km/units.s), units.Quantity(RvR[5],unit=units.rad), units.Quantity(\ dt*conversion.time_in_Gyr(self._vo,self._ro), unit=units.Gyr)) return (RvR[0],RvR[1],RvR[2],RvR[3],RvR[4],RvR[5],dt) elif not xy and not lb: if _APY_UNITS and self._voSet and self._roSet: return (units.Quantity(RvR[0]*self._ro,unit=units.kpc), units.Quantity(RvR[1]*self._vo,unit=units.km/units.s), units.Quantity(RvR[2]*self._vo,unit=units.km/units.s), units.Quantity(RvR[3]*self._ro,unit=units.kpc), units.Quantity(RvR[4]*self._vo,unit=units.km/units.s), units.Quantity(RvR[5],unit=units.rad)) return RvR if xy: sX= RvR[0]*numpy.cos(RvR[5]) sY= RvR[0]*numpy.sin(RvR[5]) sZ= RvR[3] svX, svY, svZ=\ coords.cyl_to_rect_vec(RvR[1],RvR[2],RvR[4],RvR[5]) out= numpy.empty((6,n)) out[0]= sX out[1]= sY out[2]= sZ out[3]= svX out[4]= svY out[5]= svZ if returndt: if _APY_UNITS and self._voSet and self._roSet: return (units.Quantity(out[0]*self._ro,unit=units.kpc), units.Quantity(out[1]*self._ro,unit=units.kpc), units.Quantity(out[2]*self._ro,unit=units.kpc), units.Quantity(out[3]*self._vo,unit=units.km/units.s), units.Quantity(out[4]*self._vo,unit=units.km/units.s), units.Quantity(out[5]*self._vo,unit=units.km/units.s), units.Quantity(\ dt*conversion.time_in_Gyr(self._vo,self._ro), unit=units.Gyr)) return (out[0],out[1],out[2],out[3],out[4],out[5],dt) else: if _APY_UNITS and self._voSet and self._roSet: return (units.Quantity(out[0]*self._ro,unit=units.kpc), units.Quantity(out[1]*self._ro,unit=units.kpc), units.Quantity(out[2]*self._ro,unit=units.kpc), units.Quantity(out[3]*self._vo,unit=units.km/units.s), units.Quantity(out[4]*self._vo,unit=units.km/units.s), units.Quantity(out[5]*self._vo,unit=units.km/units.s)) return out if lb: vo= self._vo ro= self._ro R0= self._R0 Zsun= self._Zsun vsun= self._vsun XYZ= coords.galcencyl_to_XYZ(RvR[0]*ro,RvR[5],RvR[3]*ro, Xsun=R0,Zsun=Zsun).T vXYZ= coords.galcencyl_to_vxvyvz(RvR[1]*vo,RvR[2]*vo,RvR[4]*vo, RvR[5], vsun=vsun,Xsun=R0,Zsun=Zsun).T slbd=coords.XYZ_to_lbd(XYZ[0],XYZ[1],XYZ[2], degree=True) svlbd= coords.vxvyvz_to_vrpmllpmbb(vXYZ[0],vXYZ[1],vXYZ[2], slbd[:,0],slbd[:,1], slbd[:,2], degree=True) out= numpy.empty((6,n)) out[0]= slbd[:,0] out[1]= slbd[:,1] out[2]= slbd[:,2] out[3]= svlbd[:,0] out[4]= svlbd[:,1] out[5]= svlbd[:,2] if returndt: if _APY_UNITS and self._voSet and self._roSet: return (units.Quantity(out[0],unit=units.deg), units.Quantity(out[1],unit=units.deg), units.Quantity(out[2],unit=units.kpc), units.Quantity(out[3],unit=units.km/units.s), units.Quantity(out[4],unit=units.mas/units.yr), units.Quantity(out[5],unit=units.mas/units.yr), units.Quantity(\ dt*conversion.time_in_Gyr(self._vo,self._ro), unit=units.Gyr)) return (out[0],out[1],out[2],out[3],out[4],out[5],dt) else: if _APY_UNITS and self._voSet and self._roSet: return (units.Quantity(out[0],unit=units.deg), units.Quantity(out[1],unit=units.deg), units.Quantity(out[2],unit=units.kpc), units.Quantity(out[3],unit=units.km/units.s), units.Quantity(out[4],unit=units.mas/units.yr), units.Quantity(out[5],unit=units.mas/units.yr)) return out def _sample_aAt(self,n): """Sampling frequencies, angles, and times part of sampling""" #Sample frequency along largest eigenvalue using ARS dO1s=\ ars.ars([0.,0.],[True,False], [self._meandO-numpy.sqrt(self._sortedSigOEig[2]), self._meandO+
numpy.sqrt(self._sortedSigOEig[2])
numpy.sqrt
## Automatically adapted for numpy.oldnumeric Jul 23, 2007 by # # # # $Id: test_interpolate.py,v 1.4 2007/07/24 17:30:40 vareille Exp $ from mglutil.math.rotax import interpolate3DTransform, rotax from math import pi, sin, cos, sqrt import numpy.oldnumeric as N import unittest degtorad = pi / 180.0 class Interpolate3DBaseTest(unittest.TestCase): def diff(self, res, expect): return res - expect < 1.0e-6 # close enough -> true def test_interpolate3D(self): mat1 = rotax([0, 0, 0], [0, 0, 1], 30.0 * degtorad) mat2 = rotax([0, 0, 0], [0, 0, 1], 60.0 * degtorad) mat3 = rotax([0, 0, 0], [0, 0, 1], 90.0 * degtorad) # add translation (0,1,0) to mat2 mat2 = N.array( [ [0.5, 0.86602539, 0.0, 0.0], [-0.86602539, 0.5, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], [0.0, 1.0, 0.0, 1.0], ], "f", ) matList = [mat1, mat2, mat3] indexList = [0.33333333, 0.66666666667, 1.0] data = [[0.0, 0.0, 0.0, 1.0], [1.0, 0.0, 0.0, 1.0], [2.0, 0.0, 0.0, 1.0]] p = 0.5 M = interpolate3DTransform(matList, indexList, p) res =
N.dot(data, M)
numpy.oldnumeric.dot
from __future__ import absolute_import from __future__ import division from __future__ import print_function import networkx as networkx import numpy as numpy import scipy as scipy import scipy.integrate class SEIRSModel(): """ A class to simulate the Deterministic SEIRS Model =================================================== Params: beta Rate of transmission (exposure) sigma Rate of infection (upon exposure) gamma Rate of recovery (upon infection) xi Rate of re-susceptibility (upon recovery) mu_I Rate of infection-related death mu_0 Rate of baseline death nu Rate of baseline birth beta_D Rate of transmission (exposure) for individuals with detected infections sigma_D Rate of infection (upon exposure) for individuals with detected infections gamma_D Rate of recovery (upon infection) for individuals with detected infections mu_D Rate of infection-related death for individuals with detected infections theta_E Rate of baseline testing for exposed individuals theta_I Rate of baseline testing for infectious individuals psi_E Probability of positive test results for exposed individuals psi_I Probability of positive test results for exposed individuals q Probability of quarantined individuals interacting with others initE Init number of exposed individuals initI Init number of infectious individuals initD_E Init number of detected infectious individuals initD_I Init number of detected infectious individuals initR Init number of recovered individuals initF Init number of infection-related fatalities (all remaining nodes initialized susceptible) """ def __init__(self, initN, beta, sigma, gamma, xi=0, mu_I=0, mu_0=0, nu=0, p=0, beta_D=None, sigma_D=None, gamma_D=None, mu_D=None, theta_E=0, theta_I=0, psi_E=0, psi_I=0, q=0, initE=0, initI=10, initD_E=0, initD_I=0, initR=0, initF=0): #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Model Parameters: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.beta = beta self.sigma = sigma self.gamma = gamma self.xi = xi self.mu_I = mu_I self.mu_0 = mu_0 self.nu = nu self.p = p # Testing-related parameters: self.beta_D = beta_D if beta_D is not None else self.beta self.sigma_D = sigma_D if sigma_D is not None else self.sigma self.gamma_D = gamma_D if gamma_D is not None else self.gamma self.mu_D = mu_D if mu_D is not None else self.mu_I self.theta_E = theta_E if theta_E is not None else self.theta_E self.theta_I = theta_I if theta_I is not None else self.theta_I self.psi_E = psi_E if psi_E is not None else self.psi_E self.psi_I = psi_I if psi_I is not None else self.psi_I self.q = q if q is not None else self.q #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Initialize Timekeeping: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.t = 0 self.tmax = 0 # will be set when run() is called self.tseries = numpy.array([0]) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Initialize Counts of inidividuals with each state: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.N = numpy.array([int(initN)]) self.numE = numpy.array([int(initE)]) self.numI = numpy.array([int(initI)]) self.numD_E = numpy.array([int(initD_E)]) self.numD_I = numpy.array([int(initD_I)]) self.numR = numpy.array([int(initR)]) self.numF = numpy.array([int(initF)]) self.numS = numpy.array([self.N[-1] - self.numE[-1] - self.numI[-1] - self.numD_E[-1] - self.numD_I[-1] - self.numR[-1] - self.numF[-1]]) assert(self.numS[0] >= 0), "The specified initial population size N must be greater than or equal to the initial compartment counts." #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ @staticmethod def system_dfes(t, variables, beta, sigma, gamma, xi, mu_I, mu_0, nu, beta_D, sigma_D, gamma_D, mu_D, theta_E, theta_I, psi_E, psi_I, q): S, E, I, D_E, D_I, R, F = variables # varibles is a list with compartment counts as elements N = S + E + I + D_E + D_I + R dS = - (beta*S*I)/N - q*(beta_D*S*D_I)/N + xi*R + nu*N - mu_0*S dE = (beta*S*I)/N + q*(beta_D*S*D_I)/N - sigma*E - theta_E*psi_E*E - mu_0*E dI = sigma*E - gamma*I - mu_I*I - theta_I*psi_I*I - mu_0*I dDE = theta_E*psi_E*E - sigma_D*D_E - mu_0*D_E dDI = theta_I*psi_I*I + sigma_D*D_E - gamma_D*D_I - mu_D*D_I - mu_0*D_I dR = gamma*I + gamma_D*D_I - xi*R - mu_0*R dF = mu_I*I + mu_D*D_I return [dS, dE, dI, dDE, dDI, dR, dF] #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def run_epoch(self, runtime, dt=0.1): #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Create a list of times at which the ODE solver should output system values. # Append this list of times as the model's timeseries t_eval = numpy.arange(start=self.t, stop=self.t+runtime, step=dt) # Define the range of time values for the integration: t_span = (self.t, self.t+runtime) # Define the initial conditions as the system's current state: # (which will be the t=0 condition if this is the first run of this model, # else where the last sim left off) init_cond = [self.numS[-1], self.numE[-1], self.numI[-1], self.numD_E[-1], self.numD_I[-1], self.numR[-1], self.numF[-1]] #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Solve the system of differential eqns: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ solution = scipy.integrate.solve_ivp(lambda t, X: SEIRSModel.system_dfes(t, X, self.beta, self.sigma, self.gamma, self.xi, self.mu_I, self.mu_0, self.nu, self.beta_D, self.sigma_D, self.gamma_D, self.mu_D, self.theta_E, self.theta_I, self.psi_E, self.psi_I, self.q ), t_span=[self.t, self.tmax], y0=init_cond, t_eval=t_eval ) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Store the solution output as the model's time series and data series: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.tseries = numpy.append(self.tseries, solution['t']) self.numS = numpy.append(self.numS, solution['y'][0]) self.numE = numpy.append(self.numE, solution['y'][1]) self.numI = numpy.append(self.numI, solution['y'][2]) self.numD_E = numpy.append(self.numD_E, solution['y'][3]) self.numD_I = numpy.append(self.numD_I, solution['y'][4]) self.numR = numpy.append(self.numR, solution['y'][5]) self.numF = numpy.append(self.numF, solution['y'][6]) self.t = self.tseries[-1] #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def run(self, T, dt=0.1, checkpoints=None, verbose=False): if(T>0): self.tmax += T else: return False #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Pre-process checkpoint values: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if(checkpoints): numCheckpoints = len(checkpoints['t']) paramNames = ['beta', 'sigma', 'gamma', 'xi', 'mu_I', 'mu_0', 'nu', 'beta_D', 'sigma_D', 'gamma_D', 'mu_D', 'theta_E', 'theta_I', 'psi_E', 'psi_I', 'q'] for param in paramNames: # For params that don't have given checkpoint values (or bad value given), # set their checkpoint values to the value they have now for all checkpoints. if(param not in list(checkpoints.keys()) or not isinstance(checkpoints[param], (list, numpy.ndarray)) or len(checkpoints[param])!=numCheckpoints): checkpoints[param] = [getattr(self, param)]*numCheckpoints #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # Run the simulation loop: #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if(not checkpoints): self.run_epoch(runtime=self.tmax, dt=dt) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ print("t = %.2f" % self.t) if(verbose): print("\t S = " + str(self.numS[-1])) print("\t E = " + str(self.numE[-1])) print("\t I = " + str(self.numI[-1])) print("\t D_E = " + str(self.numD_E[-1])) print("\t D_I = " + str(self.numD_I[-1])) print("\t R = " + str(self.numR[-1])) print("\t F = " + str(self.numF[-1])) else: # checkpoints provided for checkpointIdx, checkpointTime in enumerate(checkpoints['t']): # Run the sim until the next checkpoint time: self.run_epoch(runtime=checkpointTime-self.t, dt=dt) # Having reached the checkpoint, update applicable parameters: print("[Checkpoint: Updating parameters]") for param in paramNames: setattr(self, param, checkpoints[param][checkpointIdx]) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ print("t = %.2f" % self.t) if(verbose): print("\t S = " + str(self.numS[-1])) print("\t E = " + str(self.numE[-1])) print("\t I = " + str(self.numI[-1])) print("\t D_E = " + str(self.numD_E[-1])) print("\t D_I = " + str(self.numD_I[-1])) print("\t R = " + str(self.numR[-1])) print("\t F = " + str(self.numF[-1])) if(self.t < self.tmax): self.run_epoch(runtime=self.tmax-self.t, dt=dt) return True #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def total_num_infections(self, t_idx=None): if(t_idx is None): return (self.numE[:] + self.numI[:] + self.numD_E[:] + self.numD_I[:]) else: return (self.numE[t_idx] + self.numI[t_idx] + self.numD_E[t_idx] + self.numD_I[t_idx]) #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def plot(self, ax=None, plot_S='line', plot_E='line', plot_I='line',plot_R='line', plot_F='line', plot_D_E='line', plot_D_I='line', combine_D=True, color_S='tab:green', color_E='orange', color_I='crimson', color_R='tab:blue', color_F='black', color_D_E='mediumorchid', color_D_I='mediumorchid', color_reference='#E0E0E0', dashed_reference_results=None, dashed_reference_label='reference', shaded_reference_results=None, shaded_reference_label='reference', vlines=[], vline_colors=[], vline_styles=[], vline_labels=[], ylim=None, xlim=None, legend=True, title=None, side_title=None, plot_percentages=True): import matplotlib.pyplot as pyplot #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Create an Axes object if None provided: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if(not ax): fig, ax = pyplot.subplots() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Prepare data series to be plotted: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Fseries = self.numF/self.N if plot_percentages else self.numF Eseries = self.numE/self.N if plot_percentages else self.numE Dseries = (self.numD_E+self.numD_I)/self.N if plot_percentages else (self.numD_E+self.numD_I) D_Eseries = self.numD_E/self.N if plot_percentages else self.numD_E D_Iseries = self.numD_I/self.N if plot_percentages else self.numD_I Iseries = self.numI/self.N if plot_percentages else self.numI Rseries = self.numR/self.N if plot_percentages else self.numR Sseries = self.numS/self.N if plot_percentages else self.numS #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Draw the reference data: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if(dashed_reference_results): dashedReference_tseries = dashed_reference_results.tseries[::int(self.N/100)] dashedReference_IDEstack = (dashed_reference_results.numI + dashed_reference_results.numD_I + dashed_reference_results.numD_E + dashed_reference_results.numE)[::int(self.N/100)] / (self.N if plot_percentages else 1) ax.plot(dashedReference_tseries, dashedReference_IDEstack, color='#E0E0E0', linestyle='--', label='$I+D+E$ ('+dashed_reference_label+')', zorder=0) if(shaded_reference_results): shadedReference_tseries = shaded_reference_results.tseries shadedReference_IDEstack = (shaded_reference_results.numI + shaded_reference_results.numD_I + shaded_reference_results.numD_E + shaded_reference_results.numE) / (self.N if plot_percentages else 1) ax.fill_between(shaded_reference_results.tseries, shadedReference_IDEstack, 0, color='#EFEFEF', label='$I+D+E$ ('+shaded_reference_label+')', zorder=0) ax.plot(shaded_reference_results.tseries, shadedReference_IDEstack, color='#E0E0E0', zorder=1) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Draw the stacked variables: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ topstack = numpy.zeros_like(self.tseries) if(any(Fseries) and plot_F=='stacked'): ax.fill_between(numpy.ma.masked_where(Fseries<=0, self.tseries), numpy.ma.masked_where(Fseries<=0, topstack+Fseries), topstack, color=color_F, alpha=0.5, label='$F$', zorder=2) ax.plot( numpy.ma.masked_where(Fseries<=0, self.tseries), numpy.ma.masked_where(Fseries<=0, topstack+Fseries), color=color_F, zorder=3) topstack = topstack+Fseries if(any(Eseries) and plot_E=='stacked'): ax.fill_between(numpy.ma.masked_where(Eseries<=0, self.tseries), numpy.ma.masked_where(Eseries<=0, topstack+Eseries), topstack, color=color_E, alpha=0.5, label='$E$', zorder=2) ax.plot( numpy.ma.masked_where(Eseries<=0, self.tseries), numpy.ma.masked_where(Eseries<=0, topstack+Eseries), color=color_E, zorder=3) topstack = topstack+Eseries if(combine_D and plot_D_E=='stacked' and plot_D_I=='stacked'): ax.fill_between(numpy.ma.masked_where(Dseries<=0, self.tseries), numpy.ma.masked_where(Dseries<=0, topstack+Dseries), topstack, color=color_D_E, alpha=0.5, label='$D_{all}$', zorder=2) ax.plot( numpy.ma.masked_where(Dseries<=0, self.tseries), numpy.ma.masked_where(Dseries<=0, topstack+Dseries), color=color_D_E, zorder=3) topstack = topstack+Dseries else: if(any(D_Eseries) and plot_D_E=='stacked'): ax.fill_between(numpy.ma.masked_where(D_Eseries<=0, self.tseries), numpy.ma.masked_where(D_Eseries<=0, topstack+D_Eseries), topstack, color=color_D_E, alpha=0.5, label='$D_E$', zorder=2) ax.plot( numpy.ma.masked_where(D_Eseries<=0, self.tseries), numpy.ma.masked_where(D_Eseries<=0, topstack+D_Eseries), color=color_D_E, zorder=3) topstack = topstack+D_Eseries if(any(D_Iseries) and plot_D_I=='stacked'): ax.fill_between(numpy.ma.masked_where(D_Iseries<=0, self.tseries), numpy.ma.masked_where(D_Iseries<=0, topstack+D_Iseries), topstack, color=color_D_I, alpha=0.5, label='$D_I$', zorder=2) ax.plot( numpy.ma.masked_where(D_Iseries<=0, self.tseries), numpy.ma.masked_where(D_Iseries<=0, topstack+D_Iseries), color=color_D_I, zorder=3) topstack = topstack+D_Iseries if(any(Iseries) and plot_I=='stacked'): ax.fill_between(numpy.ma.masked_where(Iseries<=0, self.tseries), numpy.ma.masked_where(Iseries<=0, topstack+Iseries), topstack, color=color_I, alpha=0.5, label='$I$', zorder=2) ax.plot( numpy.ma.masked_where(Iseries<=0, self.tseries), numpy.ma.masked_where(Iseries<=0, topstack+Iseries), color=color_I, zorder=3) topstack = topstack+Iseries if(any(Rseries) and plot_R=='stacked'): ax.fill_between(numpy.ma.masked_where(Rseries<=0, self.tseries), numpy.ma.masked_where(Rseries<=0, topstack+Rseries), topstack, color=color_R, alpha=0.5, label='$R$', zorder=2) ax.plot( numpy.ma.masked_where(Rseries<=0, self.tseries), numpy.ma.masked_where(Rseries<=0, topstack+Rseries), color=color_R, zorder=3) topstack = topstack+Rseries if(any(Sseries) and plot_S=='stacked'): ax.fill_between(numpy.ma.masked_where(Sseries<=0, self.tseries), numpy.ma.masked_where(Sseries<=0, topstack+Sseries), topstack, color=color_S, alpha=0.5, label='$S$', zorder=2) ax.plot( numpy.ma.masked_where(Sseries<=0, self.tseries), numpy.ma.masked_where(Sseries<=0, topstack+Sseries), color=color_S, zorder=3) topstack = topstack+Sseries #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Draw the shaded variables: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if(any(Fseries) and plot_F=='shaded'): ax.fill_between(numpy.ma.masked_where(Fseries<=0, self.tseries), numpy.ma.masked_where(Fseries<=0, Fseries), 0, color=color_F, alpha=0.5, label='$F$', zorder=4) ax.plot( numpy.ma.masked_where(Fseries<=0, self.tseries), numpy.ma.masked_where(Fseries<=0, Fseries), color=color_F, zorder=5) if(any(Eseries) and plot_E=='shaded'): ax.fill_between(numpy.ma.masked_where(Eseries<=0, self.tseries), numpy.ma.masked_where(Eseries<=0, Eseries), 0, color=color_E, alpha=0.5, label='$E$', zorder=4) ax.plot( numpy.ma.masked_where(Eseries<=0, self.tseries), numpy.ma.masked_where(Eseries<=0, Eseries), color=color_E, zorder=5) if(combine_D and (any(Dseries) and plot_D_E=='shaded' and plot_D_E=='shaded')): ax.fill_between(numpy.ma.masked_where(Dseries<=0, self.tseries), numpy.ma.masked_where(Dseries<=0, Dseries), 0, color=color_D_E, alpha=0.5, label='$D_{all}$', zorder=4) ax.plot( numpy.ma.masked_where(Dseries<=0, self.tseries), numpy.ma.masked_where(Dseries<=0, Dseries), color=color_D_E, zorder=5) else: if(any(D_Eseries) and plot_D_E=='shaded'): ax.fill_between(numpy.ma.masked_where(D_Eseries<=0, self.tseries), numpy.ma.masked_where(D_Eseries<=0, D_Eseries), 0, color=color_D_E, alpha=0.5, label='$D_E$', zorder=4) ax.plot( numpy.ma.masked_where(D_Eseries<=0, self.tseries), numpy.ma.masked_where(D_Eseries<=0, D_Eseries), color=color_D_E, zorder=5) if(any(D_Iseries) and plot_D_I=='shaded'): ax.fill_between(numpy.ma.masked_where(D_Iseries<=0, self.tseries), numpy.ma.masked_where(D_Iseries<=0, D_Iseries), 0, color=color_D_I, alpha=0.5, label='$D_I$', zorder=4) ax.plot( numpy.ma.masked_where(D_Iseries<=0, self.tseries), numpy.ma.masked_where(D_Iseries<=0, D_Iseries), color=color_D_I, zorder=5) if(any(Iseries) and plot_I=='shaded'): ax.fill_between(numpy.ma.masked_where(Iseries<=0, self.tseries), numpy.ma.masked_where(Iseries<=0, Iseries), 0, color=color_I, alpha=0.5, label='$I$', zorder=4) ax.plot( numpy.ma.masked_where(Iseries<=0, self.tseries), numpy.ma.masked_where(Iseries<=0, Iseries), color=color_I, zorder=5) if(any(Sseries) and plot_S=='shaded'): ax.fill_between(numpy.ma.masked_where(Sseries<=0, self.tseries), numpy.ma.masked_where(Sseries<=0, Sseries), 0, color=color_S, alpha=0.5, label='$S$', zorder=4) ax.plot( numpy.ma.masked_where(Sseries<=0, self.tseries), numpy.ma.masked_where(Sseries<=0, Sseries), color=color_S, zorder=5) if(any(Rseries) and plot_R=='shaded'): ax.fill_between(numpy.ma.masked_where(Rseries<=0, self.tseries), numpy.ma.masked_where(Rseries<=0, Rseries), 0, color=color_R, alpha=0.5, label='$R$', zorder=4) ax.plot( numpy.ma.masked_where(Rseries<=0, self.tseries), numpy.ma.masked_where(Rseries<=0, Rseries), color=color_R, zorder=5) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Draw the line variables: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if(any(Fseries) and plot_F=='line'): ax.plot(numpy.ma.masked_where(Fseries<=0, self.tseries), numpy.ma.masked_where(Fseries<=0, Fseries), color=color_F, label='$F$', zorder=6) if(any(Eseries) and plot_E=='line'): ax.plot(numpy.ma.masked_where(Eseries<=0, self.tseries), numpy.ma.masked_where(Eseries<=0, Eseries), color=color_E, label='$E$', zorder=6) if(combine_D and (any(Dseries) and plot_D_E=='line' and plot_D_E=='line')): ax.plot(numpy.ma.masked_where(Dseries<=0, self.tseries), numpy.ma.masked_where(Dseries<=0, Dseries), color=color_D_E, label='$D_{all}$', zorder=6) else: if(any(D_Eseries) and plot_D_E=='line'): ax.plot(numpy.ma.masked_where(D_Eseries<=0, self.tseries), numpy.ma.masked_where(D_Eseries<=0, D_Eseries), color=color_D_E, label='$D_E$', zorder=6) if(any(D_Iseries) and plot_D_I=='line'): ax.plot(numpy.ma.masked_where(D_Iseries<=0, self.tseries), numpy.ma.masked_where(D_Iseries<=0, D_Iseries), color=color_D_I, label='$D_I$', zorder=6) if(any(Iseries) and plot_I=='line'): ax.plot(numpy.ma.masked_where(Iseries<=0, self.tseries), numpy.ma.masked_where(Iseries<=0, Iseries), color=color_I, label='$I$', zorder=6) if(any(Sseries) and plot_S=='line'): ax.plot(numpy.ma.masked_where(Sseries<=0, self.tseries), numpy.ma.masked_where(Sseries<=0, Sseries), color=color_S, label='$S$', zorder=6) if(any(Rseries) and plot_R=='line'): ax.plot(numpy.ma.masked_where(Rseries<=0, self.tseries), numpy.ma.masked_where(Rseries<=0, Rseries), color=color_R, label='$R$', zorder=6) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Draw the vertical line annotations: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if(len(vlines)>0 and len(vline_colors)==0): vline_colors = ['gray']*len(vlines) if(len(vlines)>0 and len(vline_labels)==0): vline_labels = [None]*len(vlines) if(len(vlines)>0 and len(vline_styles)==0): vline_styles = [':']*len(vlines) for vline_x, vline_color, vline_style, vline_label in zip(vlines, vline_colors, vline_styles, vline_labels): if(vline_x is not None): ax.axvline(x=vline_x, color=vline_color, linestyle=vline_style, alpha=1, label=vline_label) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Draw the plot labels: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ax.set_xlabel('days') ax.set_ylabel('percent of population' if plot_percentages else 'number of individuals') ax.set_xlim(0, (max(self.tseries) if not xlim else xlim)) ax.set_ylim(0, ylim) if(plot_percentages): ax.set_yticklabels(['{:,.0%}'.format(y) for y in ax.get_yticks()]) if(legend): legend_handles, legend_labels = ax.get_legend_handles_labels() ax.legend(legend_handles[::-1], legend_labels[::-1], loc='upper right', facecolor='white', edgecolor='none', framealpha=0.9, prop={'size': 8}) if(title): ax.set_title(title, size=12) if(side_title): ax.annotate(side_title, (0, 0.5), xytext=(-45, 0), ha='right', va='center', size=12, rotation=90, xycoords='axes fraction', textcoords='offset points') return ax #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def figure_basic(self, plot_S='line', plot_E='line', plot_I='line',plot_R='line', plot_F='line', plot_D_E='line', plot_D_I='line', combine_D=True, color_S='tab:green', color_E='orange', color_I='crimson', color_R='tab:blue', color_F='black', color_D_E='mediumorchid', color_D_I='mediumorchid', color_reference='#E0E0E0', dashed_reference_results=None, dashed_reference_label='reference', shaded_reference_results=None, shaded_reference_label='reference', vlines=[], vline_colors=[], vline_styles=[], vline_labels=[], ylim=None, xlim=None, legend=True, title=None, side_title=None, plot_percentages=True, figsize=(12,8), use_seaborn=True, show=True): import matplotlib.pyplot as pyplot fig, ax = pyplot.subplots(figsize=figsize) if(use_seaborn): import seaborn seaborn.set_style('ticks') seaborn.despine() self.plot(ax=ax, plot_S=plot_S, plot_E=plot_E, plot_I=plot_I,plot_R=plot_R, plot_F=plot_F, plot_D_E=plot_D_E, plot_D_I=plot_D_I, combine_D=combine_D, color_S=color_S, color_E=color_E, color_I=color_I, color_R=color_R, color_F=color_F, color_D_E=color_D_E, color_D_I=color_D_I, color_reference=color_reference, dashed_reference_results=dashed_reference_results, dashed_reference_label=dashed_reference_label, shaded_reference_results=shaded_reference_results, shaded_reference_label=shaded_reference_label, vlines=vlines, vline_colors=vline_colors, vline_styles=vline_styles, vline_labels=vline_labels, ylim=ylim, xlim=xlim, legend=legend, title=title, side_title=side_title, plot_percentages=plot_percentages) if(show): pyplot.show() return fig, ax #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def figure_infections(self, plot_S=False, plot_E='stacked', plot_I='stacked',plot_R=False, plot_F=False, plot_D_E='stacked', plot_D_I='stacked', combine_D=True, color_S='tab:green', color_E='orange', color_I='crimson', color_R='tab:blue', color_F='black', color_D_E='mediumorchid', color_D_I='mediumorchid', color_reference='#E0E0E0', dashed_reference_results=None, dashed_reference_label='reference', shaded_reference_results=None, shaded_reference_label='reference', vlines=[], vline_colors=[], vline_styles=[], vline_labels=[], ylim=None, xlim=None, legend=True, title=None, side_title=None, plot_percentages=True, figsize=(12,8), use_seaborn=True, show=True): import matplotlib.pyplot as pyplot fig, ax = pyplot.subplots(figsize=figsize) if(use_seaborn): import seaborn seaborn.set_style('ticks') seaborn.despine() self.plot(ax=ax, plot_S=plot_S, plot_E=plot_E, plot_I=plot_I,plot_R=plot_R, plot_F=plot_F, plot_D_E=plot_D_E, plot_D_I=plot_D_I, combine_D=combine_D, color_S=color_S, color_E=color_E, color_I=color_I, color_R=color_R, color_F=color_F, color_D_E=color_D_E, color_D_I=color_D_I, color_reference=color_reference, dashed_reference_results=dashed_reference_results, dashed_reference_label=dashed_reference_label, shaded_reference_results=shaded_reference_results, shaded_reference_label=shaded_reference_label, vlines=vlines, vline_colors=vline_colors, vline_styles=vline_styles, vline_labels=vline_labels, ylim=ylim, xlim=xlim, legend=legend, title=title, side_title=side_title, plot_percentages=plot_percentages) if(show): pyplot.show() return fig, ax #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% class SEIRSNetworkModel(): """ A class to simulate the SEIRS Stochastic Network Model =================================================== Params: G Network adjacency matrix (numpy array) or Networkx graph object. beta Rate of transmission (exposure) (global) beta_local Rate(s) of transmission (exposure) for adjacent individuals (optional) sigma Rate of infection (upon exposure) gamma Rate of recovery (upon infection) xi Rate of re-susceptibility (upon recovery) mu_I Rate of infection-related death mu_0 Rate of baseline death nu Rate of baseline birth p Probability of interaction outside adjacent nodes Q Quarantine adjacency matrix (numpy array) or Networkx graph object. beta_D Rate of transmission (exposure) for individuals with detected infections (global) beta_local Rate(s) of transmission (exposure) for adjacent individuals with detected infections (optional) sigma_D Rate of infection (upon exposure) for individuals with detected infections gamma_D Rate of recovery (upon infection) for individuals with detected infections mu_D Rate of infection-related death for individuals with detected infections theta_E Rate of baseline testing for exposed individuals theta_I Rate of baseline testing for infectious individuals phi_E Rate of contact tracing testing for exposed individuals phi_I Rate of contact tracing testing for infectious individuals psi_E Probability of positive test results for exposed individuals psi_I Probability of positive test results for exposed individuals q Probability of quarantined individuals interaction outside adjacent nodes initE Init number of exposed individuals initI Init number of infectious individuals initD_E Init number of detected infectious individuals initD_I Init number of detected infectious individuals initR Init number of recovered individuals initF Init number of infection-related fatalities (all remaining nodes initialized susceptible) """ def __init__(self, G, beta, sigma, gamma, xi=0, mu_I=0, mu_0=0, nu=0, beta_local=None, p=0, Q=None, beta_D=None, sigma_D=None, gamma_D=None, mu_D=None, beta_D_local=None, theta_E=0, theta_I=0, phi_E=0, phi_I=0, psi_E=1, psi_I=1, q=0, initE=0, initI=10, initD_E=0, initD_I=0, initR=0, initF=0, node_groups=None, store_Xseries=False): #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Setup Adjacency matrix: self.update_G(G) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Setup Quarantine Adjacency matrix: if(Q is None): Q = G # If no Q graph is provided, use G in its place self.update_Q(Q) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Model Parameters: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.parameters = { 'beta':beta, 'sigma':sigma, 'gamma':gamma, 'xi':xi, 'mu_I':mu_I, 'mu_0':mu_0, 'nu':nu, 'beta_D':beta_D, 'sigma_D':sigma_D, 'gamma_D':gamma_D, 'mu_D':mu_D, 'beta_local':beta_local, 'beta_D_local':beta_D_local, 'p':p,'q':q, 'theta_E':theta_E, 'theta_I':theta_I, 'phi_E':phi_E, 'phi_I':phi_I, 'psi_E':phi_E, 'psi_I':psi_I } self.update_parameters() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Each node can undergo up to 4 transitions (sans vitality/re-susceptibility returns to S state), # so there are ~numNodes*4 events/timesteps expected; initialize numNodes*5 timestep slots to start # (will be expanded during run if needed) self.tseries = numpy.zeros(5*self.numNodes) self.numE = numpy.zeros(5*self.numNodes) self.numI = numpy.zeros(5*self.numNodes) self.numD_E = numpy.zeros(5*self.numNodes) self.numD_I = numpy.zeros(5*self.numNodes) self.numR = numpy.zeros(5*self.numNodes) self.numF = numpy.zeros(5*self.numNodes) self.numS = numpy.zeros(5*self.numNodes) self.N = numpy.zeros(5*self.numNodes) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Initialize Timekeeping: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.t = 0 self.tmax = 0 # will be set when run() is called self.tidx = 0 self.tseries[0] = 0 #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Initialize Counts of inidividuals with each state: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.numE[0] = int(initE) self.numI[0] = int(initI) self.numD_E[0] = int(initD_E) self.numD_I[0] = int(initD_I) self.numR[0] = int(initR) self.numF[0] = int(initF) self.numS[0] = self.numNodes - self.numE[0] - self.numI[0] - self.numD_E[0] - self.numD_I[0] - self.numR[0] - self.numF[0] self.N[0] = self.numS[0] + self.numE[0] + self.numI[0] + self.numD_E[0] + self.numD_I[0] + self.numR[0] #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Node states: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.S = 1 self.E = 2 self.I = 3 self.D_E = 4 self.D_I = 5 self.R = 6 self.F = 7 self.X = numpy.array([self.S]*int(self.numS[0]) + [self.E]*int(self.numE[0]) + [self.I]*int(self.numI[0]) + [self.D_E]*int(self.numD_E[0]) + [self.D_I]*int(self.numD_I[0]) + [self.R]*int(self.numR[0]) + [self.F]*int(self.numF[0])).reshape((self.numNodes,1)) numpy.random.shuffle(self.X) self.store_Xseries = store_Xseries if(store_Xseries): self.Xseries = numpy.zeros(shape=(5*self.numNodes, self.numNodes), dtype='uint8') self.Xseries[0,:] = self.X.T self.transitions = { 'StoE': {'currentState':self.S, 'newState':self.E}, 'EtoI': {'currentState':self.E, 'newState':self.I}, 'ItoR': {'currentState':self.I, 'newState':self.R}, 'ItoF': {'currentState':self.I, 'newState':self.F}, 'RtoS': {'currentState':self.R, 'newState':self.S}, 'EtoDE': {'currentState':self.E, 'newState':self.D_E}, 'ItoDI': {'currentState':self.I, 'newState':self.D_I}, 'DEtoDI': {'currentState':self.D_E, 'newState':self.D_I}, 'DItoR': {'currentState':self.D_I, 'newState':self.R}, 'DItoF': {'currentState':self.D_I, 'newState':self.F}, '_toS': {'currentState':True, 'newState':self.S}, } #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Initialize node subgroup data series: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.nodeGroupData = None if(node_groups): self.nodeGroupData = {} for groupName, nodeList in node_groups.items(): self.nodeGroupData[groupName] = {'nodes': numpy.array(nodeList), 'mask': numpy.isin(range(self.numNodes), nodeList).reshape((self.numNodes,1))} self.nodeGroupData[groupName]['numS'] = numpy.zeros(5*self.numNodes) self.nodeGroupData[groupName]['numE'] = numpy.zeros(5*self.numNodes) self.nodeGroupData[groupName]['numI'] = numpy.zeros(5*self.numNodes) self.nodeGroupData[groupName]['numD_E'] = numpy.zeros(5*self.numNodes) self.nodeGroupData[groupName]['numD_I'] = numpy.zeros(5*self.numNodes) self.nodeGroupData[groupName]['numR'] = numpy.zeros(5*self.numNodes) self.nodeGroupData[groupName]['numF'] = numpy.zeros(5*self.numNodes) self.nodeGroupData[groupName]['N'] = numpy.zeros(5*self.numNodes) self.nodeGroupData[groupName]['numS'][0] = numpy.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.S) self.nodeGroupData[groupName]['numE'][0] = numpy.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.E) self.nodeGroupData[groupName]['numI'][0] = numpy.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.I) self.nodeGroupData[groupName]['numD_E'][0] = numpy.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.D_E) self.nodeGroupData[groupName]['numD_I'][0] = numpy.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.D_I) self.nodeGroupData[groupName]['numR'][0] = numpy.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.R) self.nodeGroupData[groupName]['numF'][0] = numpy.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.F) self.nodeGroupData[groupName]['N'][0] = self.nodeGroupData[groupName]['numS'][0] + self.nodeGroupData[groupName]['numE'][0] + self.nodeGroupData[groupName]['numI'][0] + self.nodeGroupData[groupName]['numD_E'][0] + self.nodeGroupData[groupName]['numD_I'][0] + self.nodeGroupData[groupName]['numR'][0] #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def update_parameters(self): import time updatestart = time.time() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Model parameters: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.beta = numpy.array(self.parameters['beta']).reshape((self.numNodes, 1)) if isinstance(self.parameters['beta'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['beta'], shape=(self.numNodes,1)) self.sigma = numpy.array(self.parameters['sigma']).reshape((self.numNodes, 1)) if isinstance(self.parameters['sigma'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['sigma'], shape=(self.numNodes,1)) self.gamma = numpy.array(self.parameters['gamma']).reshape((self.numNodes, 1)) if isinstance(self.parameters['gamma'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['gamma'], shape=(self.numNodes,1)) self.xi = numpy.array(self.parameters['xi']).reshape((self.numNodes, 1)) if isinstance(self.parameters['xi'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['xi'], shape=(self.numNodes,1)) self.mu_I = numpy.array(self.parameters['mu_I']).reshape((self.numNodes, 1)) if isinstance(self.parameters['mu_I'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['mu_I'], shape=(self.numNodes,1)) self.mu_0 = numpy.array(self.parameters['mu_0']).reshape((self.numNodes, 1)) if isinstance(self.parameters['mu_0'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['mu_0'], shape=(self.numNodes,1)) self.nu = numpy.array(self.parameters['nu']).reshape((self.numNodes, 1)) if isinstance(self.parameters['nu'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['nu'], shape=(self.numNodes,1)) self.p = numpy.array(self.parameters['p']).reshape((self.numNodes, 1)) if isinstance(self.parameters['p'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['p'], shape=(self.numNodes,1)) # Testing-related parameters: self.beta_D = (numpy.array(self.parameters['beta_D']).reshape((self.numNodes, 1)) if isinstance(self.parameters['beta_D'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['beta_D'], shape=(self.numNodes,1))) if self.parameters['beta_D'] is not None else self.beta self.sigma_D = (numpy.array(self.parameters['sigma_D']).reshape((self.numNodes, 1)) if isinstance(self.parameters['sigma_D'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['sigma_D'], shape=(self.numNodes,1))) if self.parameters['sigma_D'] is not None else self.sigma self.gamma_D = (numpy.array(self.parameters['gamma_D']).reshape((self.numNodes, 1)) if isinstance(self.parameters['gamma_D'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['gamma_D'], shape=(self.numNodes,1))) if self.parameters['gamma_D'] is not None else self.gamma self.mu_D = (numpy.array(self.parameters['mu_D']).reshape((self.numNodes, 1)) if isinstance(self.parameters['mu_D'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['mu_D'], shape=(self.numNodes,1))) if self.parameters['mu_D'] is not None else self.mu_I self.theta_E = numpy.array(self.parameters['theta_E']).reshape((self.numNodes, 1)) if isinstance(self.parameters['theta_E'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['theta_E'], shape=(self.numNodes,1)) self.theta_I = numpy.array(self.parameters['theta_I']).reshape((self.numNodes, 1)) if isinstance(self.parameters['theta_I'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['theta_I'], shape=(self.numNodes,1)) self.phi_E = numpy.array(self.parameters['phi_E']).reshape((self.numNodes, 1)) if isinstance(self.parameters['phi_E'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['phi_E'], shape=(self.numNodes,1)) self.phi_I = numpy.array(self.parameters['phi_I']).reshape((self.numNodes, 1)) if isinstance(self.parameters['phi_I'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['phi_I'], shape=(self.numNodes,1)) self.psi_E = numpy.array(self.parameters['psi_E']).reshape((self.numNodes, 1)) if isinstance(self.parameters['psi_E'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['psi_E'], shape=(self.numNodes,1)) self.psi_I = numpy.array(self.parameters['psi_I']).reshape((self.numNodes, 1)) if isinstance(self.parameters['psi_I'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['psi_I'], shape=(self.numNodes,1)) self.q = numpy.array(self.parameters['q']).reshape((self.numNodes, 1)) if isinstance(self.parameters['q'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['q'], shape=(self.numNodes,1)) #Local transmission parameters: if(self.parameters['beta_local'] is not None): if(isinstance(self.parameters['beta_local'], (list, numpy.ndarray))): if(isinstance(self.parameters['beta_local'], list)): self.beta_local = numpy.array(self.parameters['beta_local']) else: # is numpy.ndarray self.beta_local = self.parameters['beta_local'] if(self.beta_local.ndim == 1): self.beta_local.reshape((self.numNodes, 1)) elif(self.beta_local.ndim == 2): self.beta_local.reshape((self.numNodes, self.numNodes)) else: self.beta_local = numpy.full_like(self.beta, fill_value=self.parameters['beta_local']) else: self.beta_local = self.beta #---------------------------------------- if(self.parameters['beta_D_local'] is not None): if(isinstance(self.parameters['beta_D_local'], (list, numpy.ndarray))): if(isinstance(self.parameters['beta_D_local'], list)): self.beta_D_local = numpy.array(self.parameters['beta_D_local']) else: # is numpy.ndarray self.beta_D_local = self.parameters['beta_D_local'] if(self.beta_D_local.ndim == 1): self.beta_D_local.reshape((self.numNodes, 1)) elif(self.beta_D_local.ndim == 2): self.beta_D_local.reshape((self.numNodes, self.numNodes)) else: self.beta_D_local = numpy.full_like(self.beta_D, fill_value=self.parameters['beta_D_local']) else: self.beta_D_local = self.beta_D # Pre-multiply beta values by the adjacency matrix ("transmission weight connections") if(self.beta_local.ndim == 1): self.A_beta = scipy.sparse.csr_matrix.multiply(self.A, numpy.tile(self.beta_local, (1,self.numNodes))).tocsr() elif(self.beta_local.ndim == 2): self.A_beta = scipy.sparse.csr_matrix.multiply(self.A, self.beta_local).tocsr() # Pre-multiply beta_D values by the quarantine adjacency matrix ("transmission weight connections") if(self.beta_D_local.ndim == 1): self.A_Q_beta_D = scipy.sparse.csr_matrix.multiply(self.A_Q, numpy.tile(self.beta_D_local, (1,self.numNodes))).tocsr() elif(self.beta_D_local.ndim == 2): self.A_Q_beta_D = scipy.sparse.csr_matrix.multiply(self.A_Q, self.beta_D_local).tocsr() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Update scenario flags: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.update_scenario_flags() #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def node_degrees(self, Amat): return Amat.sum(axis=0).reshape(self.numNodes,1) # sums of adj matrix cols #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def update_G(self, new_G): self.G = new_G # Adjacency matrix: if type(new_G)==numpy.ndarray: self.A = scipy.sparse.csr_matrix(new_G) elif type(new_G)==networkx.classes.graph.Graph: self.A = networkx.adj_matrix(new_G) # adj_matrix gives scipy.sparse csr_matrix else: raise BaseException("Input an adjacency matrix or networkx object only.") self.numNodes = int(self.A.shape[1]) self.degree = numpy.asarray(self.node_degrees(self.A)).astype(float) return #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def update_Q(self, new_Q): self.Q = new_Q # Quarantine Adjacency matrix: if type(new_Q)==numpy.ndarray: self.A_Q = scipy.sparse.csr_matrix(new_Q) elif type(new_Q)==networkx.classes.graph.Graph: self.A_Q = networkx.adj_matrix(new_Q) # adj_matrix gives scipy.sparse csr_matrix else: raise BaseException("Input an adjacency matrix or networkx object only.") self.numNodes_Q = int(self.A_Q.shape[1]) self.degree_Q = numpy.asarray(self.node_degrees(self.A_Q)).astype(float) assert(self.numNodes == self.numNodes_Q), "The normal and quarantine adjacency graphs must be of the same size." return #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def update_scenario_flags(self): self.testing_scenario = ( (numpy.any(self.psi_I) and (numpy.any(self.theta_I) or numpy.any(self.phi_I))) or (numpy.any(self.psi_E) and (numpy.any(self.theta_E) or numpy.any(self.phi_E))) ) self.tracing_scenario = ( (numpy.any(self.psi_E) and numpy.any(self.phi_E)) or (numpy.any(self.psi_I) and numpy.any(self.phi_I)) ) self.vitality_scenario = (numpy.any(self.mu_0) and numpy.any(self.nu)) self.resusceptibility_scenario = (numpy.any(self.xi)) #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def total_num_infections(self, t_idx=None): if(t_idx is None): return (self.numE[:] + self.numI[:] + self.numD_E[:] + self.numD_I[:]) else: return (self.numE[t_idx] + self.numI[t_idx] + self.numD_E[t_idx] + self.numD_I[t_idx]) #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def calc_propensities(self): #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Pre-calculate matrix multiplication terms that may be used in multiple propensity calculations, # and check to see if their computation is necessary before doing the multiplication transmissionTerms_I = numpy.zeros(shape=(self.numNodes,1)) if(numpy.any(self.numI[self.tidx]) and numpy.any(self.beta!=0)): transmissionTerms_I = numpy.asarray( scipy.sparse.csr_matrix.dot(self.A_beta, self.X==self.I) ) transmissionTerms_DI = numpy.zeros(shape=(self.numNodes,1)) if(self.testing_scenario and numpy.any(self.numD_I[self.tidx]) and numpy.any(self.beta_D)): transmissionTerms_DI = numpy.asarray( scipy.sparse.csr_matrix.dot(self.A_Q_beta_D, self.X==self.D_I) ) numContacts_D = numpy.zeros(shape=(self.numNodes,1)) if(self.tracing_scenario and (numpy.any(self.numD_E[self.tidx]) or numpy.any(self.numD_I[self.tidx]))): numContacts_D = numpy.asarray( scipy.sparse.csr_matrix.dot( self.A, ((self.X==self.D_E)|(self.X==self.D_I)) ) ) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ propensities_StoE = ( self.p*((self.beta*self.numI[self.tidx] + self.q*self.beta_D*self.numD_I[self.tidx])/self.N[self.tidx]) + (1-self.p)*numpy.divide((transmissionTerms_I + transmissionTerms_DI), self.degree, out=numpy.zeros_like(self.degree), where=self.degree!=0) )*(self.X==self.S) propensities_EtoI = self.sigma*(self.X==self.E) propensities_ItoR = self.gamma*(self.X==self.I) propensities_ItoF = self.mu_I*(self.X==self.I) # propensities_EtoDE = ( self.theta_E + numpy.divide((self.phi_E*numContacts_D), self.degree, out=numpy.zeros_like(self.degree), where=self.degree!=0) )*self.psi_E*(self.X==self.E) propensities_EtoDE = (self.theta_E + self.phi_E*numContacts_D)*self.psi_E*(self.X==self.E) # propensities_ItoDI = ( self.theta_I + numpy.divide((self.phi_I*numContacts_D), self.degree, out=numpy.zeros_like(self.degree), where=self.degree!=0) )*self.psi_I*(self.X==self.I) propensities_ItoDI = (self.theta_I + self.phi_I*numContacts_D)*self.psi_I*(self.X==self.I) propensities_DEtoDI = self.sigma_D*(self.X==self.D_E) propensities_DItoR = self.gamma_D*(self.X==self.D_I) propensities_DItoF = self.mu_D*(self.X==self.D_I) propensities_RtoS = self.xi*(self.X==self.R) propensities__toS = self.nu*(self.X!=self.F) propensities = numpy.hstack([propensities_StoE, propensities_EtoI, propensities_ItoR, propensities_ItoF, propensities_EtoDE, propensities_ItoDI, propensities_DEtoDI, propensities_DItoR, propensities_DItoF, propensities_RtoS, propensities__toS]) columns = ['StoE', 'EtoI', 'ItoR', 'ItoF', 'EtoDE', 'ItoDI', 'DEtoDI', 'DItoR', 'DItoF', 'RtoS', '_toS'] return propensities, columns #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def increase_data_series_length(self): self.tseries= numpy.pad(self.tseries, [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.numS = numpy.pad(self.numS, [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.numE = numpy.pad(self.numE, [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.numI = numpy.pad(self.numI, [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.numD_E = numpy.pad(self.numD_E, [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.numD_I = numpy.pad(self.numD_I, [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.numR = numpy.pad(self.numR, [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.numF = numpy.pad(self.numF, [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.N = numpy.pad(self.N, [(0, 5*self.numNodes)], mode='constant', constant_values=0) if(self.store_Xseries): self.Xseries = numpy.pad(self.Xseries, [(0, 5*self.numNodes), (0,0)], mode=constant, constant_values=0) if(self.nodeGroupData): for groupName in self.nodeGroupData: self.nodeGroupData[groupName]['numS'] = numpy.pad(self.nodeGroupData[groupName]['numS'], [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.nodeGroupData[groupName]['numE'] = numpy.pad(self.nodeGroupData[groupName]['numE'], [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.nodeGroupData[groupName]['numI'] = numpy.pad(self.nodeGroupData[groupName]['numI'], [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.nodeGroupData[groupName]['numD_E'] = numpy.pad(self.nodeGroupData[groupName]['numD_E'], [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.nodeGroupData[groupName]['numD_I'] = numpy.pad(self.nodeGroupData[groupName]['numD_I'], [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.nodeGroupData[groupName]['numR'] = numpy.pad(self.nodeGroupData[groupName]['numR'], [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.nodeGroupData[groupName]['numF'] = numpy.pad(self.nodeGroupData[groupName]['numF'], [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.nodeGroupData[groupName]['N'] = numpy.pad(self.nodeGroupData[groupName]['N'], [(0, 5*self.numNodes)], mode='constant', constant_values=0) return None #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def finalize_data_series(self): self.tseries= numpy.array(self.tseries, dtype=float)[:self.tidx+1] self.numS = numpy.array(self.numS, dtype=float)[:self.tidx+1] self.numE = numpy.array(self.numE, dtype=float)[:self.tidx+1] self.numI = numpy.array(self.numI, dtype=float)[:self.tidx+1] self.numD_E = numpy.array(self.numD_E, dtype=float)[:self.tidx+1] self.numD_I = numpy.array(self.numD_I, dtype=float)[:self.tidx+1] self.numR = numpy.array(self.numR, dtype=float)[:self.tidx+1] self.numF = numpy.array(self.numF, dtype=float)[:self.tidx+1] self.N = numpy.array(self.N, dtype=float)[:self.tidx+1] if(self.store_Xseries): self.Xseries = self.Xseries[:self.tidx+1, :] if(self.nodeGroupData): for groupName in self.nodeGroupData: self.nodeGroupData[groupName]['numS'] = numpy.array(self.nodeGroupData[groupName]['numS'], dtype=float)[:self.tidx+1] self.nodeGroupData[groupName]['numE'] = numpy.array(self.nodeGroupData[groupName]['numE'], dtype=float)[:self.tidx+1] self.nodeGroupData[groupName]['numI'] = numpy.array(self.nodeGroupData[groupName]['numI'], dtype=float)[:self.tidx+1] self.nodeGroupData[groupName]['numD_E'] = numpy.array(self.nodeGroupData[groupName]['numD_E'], dtype=float)[:self.tidx+1] self.nodeGroupData[groupName]['numD_I'] = numpy.array(self.nodeGroupData[groupName]['numD_I'], dtype=float)[:self.tidx+1] self.nodeGroupData[groupName]['numR'] = numpy.array(self.nodeGroupData[groupName]['numR'], dtype=float)[:self.tidx+1] self.nodeGroupData[groupName]['numF'] = numpy.array(self.nodeGroupData[groupName]['numF'], dtype=float)[:self.tidx+1] self.nodeGroupData[groupName]['N'] = numpy.array(self.nodeGroupData[groupName]['N'], dtype=float)[:self.tidx+1] return None #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def run_iteration(self): if(self.tidx >= len(self.tseries)-1): # Room has run out in the timeseries storage arrays; double the size of these arrays: self.increase_data_series_length() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 1. Generate 2 random numbers uniformly distributed in (0,1) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ r1 = numpy.random.rand() r2 = numpy.random.rand() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 2. Calculate propensities #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ propensities, transitionTypes = self.calc_propensities() # Terminate when probability of all events is 0: if(propensities.sum() <= 0.0): self.finalize_data_series() return False #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 3. Calculate alpha #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ propensities_flat = propensities.ravel(order='F') cumsum = propensities_flat.cumsum() alpha = propensities_flat.sum() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 4. Compute the time until the next event takes place #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ tau = (1/alpha)*numpy.log(float(1/r1)) self.t += tau #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 5. Compute which event takes place #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ transitionIdx = numpy.searchsorted(cumsum,r2*alpha) transitionNode = transitionIdx % self.numNodes transitionType = transitionTypes[ int(transitionIdx/self.numNodes) ] #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 6. Update node states and data series #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ assert(self.X[transitionNode] == self.transitions[transitionType]['currentState'] and self.X[transitionNode]!=self.F), "Assertion error: Node "+str(transitionNode)+" has unexpected current state "+str(self.X[transitionNode])+" given the intended transition of "+str(transitionType)+"." self.X[transitionNode] = self.transitions[transitionType]['newState'] self.tidx += 1 self.tseries[self.tidx] = self.t self.numS[self.tidx] = numpy.clip(numpy.count_nonzero(self.X==self.S), a_min=0, a_max=self.numNodes) self.numE[self.tidx] = numpy.clip(numpy.count_nonzero(self.X==self.E), a_min=0, a_max=self.numNodes) self.numI[self.tidx] = numpy.clip(numpy.count_nonzero(self.X==self.I), a_min=0, a_max=self.numNodes) self.numD_E[self.tidx] = numpy.clip(numpy.count_nonzero(self.X==self.D_E), a_min=0, a_max=self.numNodes) self.numD_I[self.tidx] = numpy.clip(numpy.count_nonzero(self.X==self.D_I), a_min=0, a_max=self.numNodes) self.numR[self.tidx] = numpy.clip(numpy.count_nonzero(self.X==self.R), a_min=0, a_max=self.numNodes) self.numF[self.tidx] = numpy.clip(numpy.count_nonzero(self.X==self.F), a_min=0, a_max=self.numNodes) self.N[self.tidx] = numpy.clip((self.numS[self.tidx] + self.numE[self.tidx] + self.numI[self.tidx] + self.numD_E[self.tidx] + self.numD_I[self.tidx] + self.numR[self.tidx]), a_min=0, a_max=self.numNodes) if(self.store_Xseries): self.Xseries[self.tidx,:] = self.X.T if(self.nodeGroupData): for groupName in self.nodeGroupData: self.nodeGroupData[groupName]['numS'][self.tidx] = numpy.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.S) self.nodeGroupData[groupName]['numE'][self.tidx] = numpy.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.E) self.nodeGroupData[groupName]['numI'][self.tidx] = numpy.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.I) self.nodeGroupData[groupName]['numD_E'][self.tidx] = numpy.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.D_E) self.nodeGroupData[groupName]['numD_I'][self.tidx] = numpy.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.D_I) self.nodeGroupData[groupName]['numR'][self.tidx] = numpy.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.R) self.nodeGroupData[groupName]['numF'][self.tidx] = numpy.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.F) self.nodeGroupData[groupName]['N'][self.tidx] = numpy.clip((self.nodeGroupData[groupName]['numS'][0] + self.nodeGroupData[groupName]['numE'][0] + self.nodeGroupData[groupName]['numI'][0] + self.nodeGroupData[groupName]['numD_E'][0] + self.nodeGroupData[groupName]['numD_I'][0] + self.nodeGroupData[groupName]['numR'][0]), a_min=0, a_max=self.numNodes) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Terminate if tmax reached or num infectious and num exposed is 0: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if(self.t >= self.tmax or (self.numI[self.tidx]<1 and self.numE[self.tidx]<1 and self.numD_E[self.tidx]<1 and self.numD_I[self.tidx]<1)): self.finalize_data_series() return False #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ return True #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def run(self, T, checkpoints=None, print_interval=10, verbose='t'): if(T>0): self.tmax += T else: return False #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Pre-process checkpoint values: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if(checkpoints): numCheckpoints = len(checkpoints['t']) for chkpt_param, chkpt_values in checkpoints.items(): assert(isinstance(chkpt_values, (list, numpy.ndarray)) and len(chkpt_values)==numCheckpoints), "Expecting a list of values with length equal to number of checkpoint times ("+str(numCheckpoints)+") for each checkpoint parameter." checkpointIdx = numpy.searchsorted(checkpoints['t'], self.t) # Finds 1st index in list greater than given val if(checkpointIdx >= numCheckpoints): # We are out of checkpoints, stop checking them: checkpoints = None else: checkpointTime = checkpoints['t'][checkpointIdx] #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # Run the simulation loop: #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% print_reset = True running = True while running: running = self.run_iteration() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Handle checkpoints if applicable: if(checkpoints): if(self.t >= checkpointTime): if(verbose is not False): print("[Checkpoint: Updating parameters]") # A checkpoint has been reached, update param values: if('G' in list(checkpoints.keys())): self.update_G(checkpoints['G'][checkpointIdx]) if('Q' in list(checkpoints.keys())): self.update_Q(checkpoints['Q'][checkpointIdx]) for param in list(self.parameters.keys()): if(param in list(checkpoints.keys())): self.parameters.update({param: checkpoints[param][checkpointIdx]}) # Update parameter data structures and scenario flags: self.update_parameters() # Update the next checkpoint time: checkpointIdx = numpy.searchsorted(checkpoints['t'], self.t) # Finds 1st index in list greater than given val if(checkpointIdx >= numCheckpoints): # We are out of checkpoints, stop checking them: checkpoints = None else: checkpointTime = checkpoints['t'][checkpointIdx] #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if(print_interval): if(print_reset and (int(self.t) % print_interval == 0)): if(verbose=="t"): print("t = %.2f" % self.t) if(verbose==True): print("t = %.2f" % self.t) print("\t S = " + str(self.numS[self.tidx])) print("\t E = " + str(self.numE[self.tidx])) print("\t I = " + str(self.numI[self.tidx])) print("\t D_E = " + str(self.numD_E[self.tidx])) print("\t D_I = " + str(self.numD_I[self.tidx])) print("\t R = " + str(self.numR[self.tidx])) print("\t F = " + str(self.numF[self.tidx])) print_reset = False elif(not print_reset and (int(self.t) % 10 != 0)): print_reset = True return True #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def plot(self, ax=None, plot_S='line', plot_E='line', plot_I='line',plot_R='line', plot_F='line', plot_D_E='line', plot_D_I='line', combine_D=True, color_S='tab:green', color_E='orange', color_I='crimson', color_R='tab:blue', color_F='black', color_D_E='mediumorchid', color_D_I='mediumorchid', color_reference='#E0E0E0', dashed_reference_results=None, dashed_reference_label='reference', shaded_reference_results=None, shaded_reference_label='reference', vlines=[], vline_colors=[], vline_styles=[], vline_labels=[], ylim=None, xlim=None, legend=True, title=None, side_title=None, plot_percentages=True): import matplotlib.pyplot as pyplot #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Create an Axes object if None provided: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if(not ax): fig, ax = pyplot.subplots() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Prepare data series to be plotted: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Fseries = self.numF/self.numNodes if plot_percentages else self.numF Eseries = self.numE/self.numNodes if plot_percentages else self.numE Dseries = (self.numD_E+self.numD_I)/self.numNodes if plot_percentages else (self.numD_E+self.numD_I) D_Eseries = self.numD_E/self.numNodes if plot_percentages else self.numD_E D_Iseries = self.numD_I/self.numNodes if plot_percentages else self.numD_I Iseries = self.numI/self.numNodes if plot_percentages else self.numI Rseries = self.numR/self.numNodes if plot_percentages else self.numR Sseries = self.numS/self.numNodes if plot_percentages else self.numS #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Draw the reference data: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if(dashed_reference_results): dashedReference_tseries = dashed_reference_results.tseries[::int(self.numNodes/100)] dashedReference_IDEstack = (dashed_reference_results.numI + dashed_reference_results.numD_I + dashed_reference_results.numD_E + dashed_reference_results.numE)[::int(self.numNodes/100)] / (self.numNodes if plot_percentages else 1) ax.plot(dashedReference_tseries, dashedReference_IDEstack, color='#E0E0E0', linestyle='--', label='$I+D+E$ ('+dashed_reference_label+')', zorder=0) if(shaded_reference_results): shadedReference_tseries = shaded_reference_results.tseries shadedReference_IDEstack = (shaded_reference_results.numI + shaded_reference_results.numD_I + shaded_reference_results.numD_E + shaded_reference_results.numE) / (self.numNodes if plot_percentages else 1) ax.fill_between(shaded_reference_results.tseries, shadedReference_IDEstack, 0, color='#EFEFEF', label='$I+D+E$ ('+shaded_reference_label+')', zorder=0) ax.plot(shaded_reference_results.tseries, shadedReference_IDEstack, color='#E0E0E0', zorder=1) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Draw the stacked variables: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ topstack = numpy.zeros_like(self.tseries) if(any(Fseries) and plot_F=='stacked'): ax.fill_between(numpy.ma.masked_where(Fseries<=0, self.tseries), numpy.ma.masked_where(Fseries<=0, topstack+Fseries), topstack, color=color_F, alpha=0.5, label='$F$', zorder=2) ax.plot( numpy.ma.masked_where(Fseries<=0, self.tseries), numpy.ma.masked_where(Fseries<=0, topstack+Fseries), color=color_F, zorder=3) topstack = topstack+Fseries if(any(Eseries) and plot_E=='stacked'): ax.fill_between(numpy.ma.masked_where(Eseries<=0, self.tseries), numpy.ma.masked_where(Eseries<=0, topstack+Eseries), topstack, color=color_E, alpha=0.5, label='$E$', zorder=2) ax.plot( numpy.ma.masked_where(Eseries<=0, self.tseries), numpy.ma.masked_where(Eseries<=0, topstack+Eseries), color=color_E, zorder=3) topstack = topstack+Eseries if(combine_D and plot_D_E=='stacked' and plot_D_I=='stacked'): ax.fill_between(numpy.ma.masked_where(Dseries<=0, self.tseries), numpy.ma.masked_where(Dseries<=0, topstack+Dseries), topstack, color=color_D_E, alpha=0.5, label='$D_{all}$', zorder=2) ax.plot( numpy.ma.masked_where(Dseries<=0, self.tseries), numpy.ma.masked_where(Dseries<=0, topstack+Dseries), color=color_D_E, zorder=3) topstack = topstack+Dseries else: if(any(D_Eseries) and plot_D_E=='stacked'): ax.fill_between(numpy.ma.masked_where(D_Eseries<=0, self.tseries), numpy.ma.masked_where(D_Eseries<=0, topstack+D_Eseries), topstack, color=color_D_E, alpha=0.5, label='$D_E$', zorder=2) ax.plot( numpy.ma.masked_where(D_Eseries<=0, self.tseries), numpy.ma.masked_where(D_Eseries<=0, topstack+D_Eseries), color=color_D_E, zorder=3) topstack = topstack+D_Eseries if(any(D_Iseries) and plot_D_I=='stacked'): ax.fill_between(numpy.ma.masked_where(D_Iseries<=0, self.tseries), numpy.ma.masked_where(D_Iseries<=0, topstack+D_Iseries), topstack, color=color_D_I, alpha=0.5, label='$D_I$', zorder=2) ax.plot( numpy.ma.masked_where(D_Iseries<=0, self.tseries), numpy.ma.masked_where(D_Iseries<=0, topstack+D_Iseries), color=color_D_I, zorder=3) topstack = topstack+D_Iseries if(any(Iseries) and plot_I=='stacked'): ax.fill_between(numpy.ma.masked_where(Iseries<=0, self.tseries), numpy.ma.masked_where(Iseries<=0, topstack+Iseries), topstack, color=color_I, alpha=0.5, label='$I$', zorder=2) ax.plot( numpy.ma.masked_where(Iseries<=0, self.tseries), numpy.ma.masked_where(Iseries<=0, topstack+Iseries), color=color_I, zorder=3) topstack = topstack+Iseries if(any(Rseries) and plot_R=='stacked'): ax.fill_between(numpy.ma.masked_where(Rseries<=0, self.tseries), numpy.ma.masked_where(Rseries<=0, topstack+Rseries), topstack, color=color_R, alpha=0.5, label='$R$', zorder=2) ax.plot( numpy.ma.masked_where(Rseries<=0, self.tseries), numpy.ma.masked_where(Rseries<=0, topstack+Rseries), color=color_R, zorder=3) topstack = topstack+Rseries if(any(Sseries) and plot_S=='stacked'): ax.fill_between(numpy.ma.masked_where(Sseries<=0, self.tseries), numpy.ma.masked_where(Sseries<=0, topstack+Sseries), topstack, color=color_S, alpha=0.5, label='$S$', zorder=2) ax.plot( numpy.ma.masked_where(Sseries<=0, self.tseries), numpy.ma.masked_where(Sseries<=0, topstack+Sseries), color=color_S, zorder=3) topstack = topstack+Sseries #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Draw the shaded variables: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if(any(Fseries) and plot_F=='shaded'): ax.fill_between(numpy.ma.masked_where(Fseries<=0, self.tseries), numpy.ma.masked_where(Fseries<=0, Fseries), 0, color=color_F, alpha=0.5, label='$F$', zorder=4) ax.plot( numpy.ma.masked_where(Fseries<=0, self.tseries), numpy.ma.masked_where(Fseries<=0, Fseries), color=color_F, zorder=5) if(any(Eseries) and plot_E=='shaded'): ax.fill_between(numpy.ma.masked_where(Eseries<=0, self.tseries), numpy.ma.masked_where(Eseries<=0, Eseries), 0, color=color_E, alpha=0.5, label='$E$', zorder=4) ax.plot( numpy.ma.masked_where(Eseries<=0, self.tseries), numpy.ma.masked_where(Eseries<=0, Eseries), color=color_E, zorder=5) if(combine_D and (any(Dseries) and plot_D_E=='shaded' and plot_D_I=='shaded')): ax.fill_between(numpy.ma.masked_where(Dseries<=0, self.tseries), numpy.ma.masked_where(Dseries<=0, Dseries), 0, color=color_D_E, alpha=0.5, label='$D_{all}$', zorder=4) ax.plot( numpy.ma.masked_where(Dseries<=0, self.tseries), numpy.ma.masked_where(Dseries<=0, Dseries), color=color_D_E, zorder=5) else: if(any(D_Eseries) and plot_D_E=='shaded'): ax.fill_between(numpy.ma.masked_where(D_Eseries<=0, self.tseries), numpy.ma.masked_where(D_Eseries<=0, D_Eseries), 0, color=color_D_E, alpha=0.5, label='$D_E$', zorder=4) ax.plot( numpy.ma.masked_where(D_Eseries<=0, self.tseries), numpy.ma.masked_where(D_Eseries<=0, D_Eseries), color=color_D_E, zorder=5) if(any(D_Iseries) and plot_D_I=='shaded'): ax.fill_between(numpy.ma.masked_where(D_Iseries<=0, self.tseries), numpy.ma.masked_where(D_Iseries<=0, D_Iseries), 0, color=color_D_I, alpha=0.5, label='$D_I$', zorder=4) ax.plot( numpy.ma.masked_where(D_Iseries<=0, self.tseries), numpy.ma.masked_where(D_Iseries<=0, D_Iseries), color=color_D_I, zorder=5) if(any(Iseries) and plot_I=='shaded'): ax.fill_between(numpy.ma.masked_where(Iseries<=0, self.tseries), numpy.ma.masked_where(Iseries<=0, Iseries), 0, color=color_I, alpha=0.5, label='$I$', zorder=4) ax.plot( numpy.ma.masked_where(Iseries<=0, self.tseries), numpy.ma.masked_where(Iseries<=0, Iseries), color=color_I, zorder=5) if(any(Sseries) and plot_S=='shaded'): ax.fill_between(numpy.ma.masked_where(Sseries<=0, self.tseries), numpy.ma.masked_where(Sseries<=0, Sseries), 0, color=color_S, alpha=0.5, label='$S$', zorder=4) ax.plot( numpy.ma.masked_where(Sseries<=0, self.tseries), numpy.ma.masked_where(Sseries<=0, Sseries), color=color_S, zorder=5) if(any(Rseries) and plot_R=='shaded'): ax.fill_between(numpy.ma.masked_where(Rseries<=0, self.tseries), numpy.ma.masked_where(Rseries<=0, Rseries), 0, color=color_R, alpha=0.5, label='$R$', zorder=4) ax.plot( numpy.ma.masked_where(Rseries<=0, self.tseries), numpy.ma.masked_where(Rseries<=0, Rseries), color=color_R, zorder=5) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Draw the line variables: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if(any(Fseries) and plot_F=='line'): ax.plot(numpy.ma.masked_where(Fseries<=0, self.tseries), numpy.ma.masked_where(Fseries<=0, Fseries), color=color_F, label='$F$', zorder=6) if(any(Eseries) and plot_E=='line'): ax.plot(numpy.ma.masked_where(Eseries<=0, self.tseries),
numpy.ma.masked_where(Eseries<=0, Eseries)
numpy.ma.masked_where
import numpy as np import scipy.signal as sps from sklearn.preprocessing import MinMaxScaler, StandardScaler def resample_data(gsrdata, prevSR, newSR): '''Calculates rolling mean Function to calculate moving average over the passed data Parameters ---------- gsrdata : 1-d array array containing the gsr data prevSR : int or float the previous sample rate of the data newSR : int or float the new sample rate of the data Returns ------- data : 1-d array array containing the resampled data ''' number_of_samples = int(round(len(gsrdata) * float(newSR) / prevSR)) data = sps.resample(gsrdata, number_of_samples) return data def normalization(gsrdata): '''Min Max normalization Function to calculate normalized gsr data Parameters ---------- gsrdata : 1-d array array containing the gsr data Returns ------- n_gsrdata : 1-d array normalized gsr data ''' gsrdata = gsrdata - (np.min(gsrdata)) gsrdata /= (np.max(gsrdata) - np.min(gsrdata)) n_gsrdata = gsrdata return n_gsrdata def rolling_mean(data, windowsize, sample_rate): '''calculates rolling mean Function to calculate moving average over the passed data Parameters ---------- data : 1-d array array containing the gsr data windowsize : int or float the moving average window size in seconds sample_rate : int or float the sample rate of the data set Returns ------- rol_mean : 1-d array array containing computed rolling mean ''' avg_hr = (np.mean(data)) data_arr = np.array(data) t_windowsize = int(windowsize*sample_rate) t_shape = data_arr.shape[:-1] + (data_arr.shape[-1] - t_windowsize + 1, t_windowsize) t_strides = data_arr.strides + (data_arr.strides[-1],) sep_win = np.lib.stride_tricks.as_strided(data_arr, shape=t_shape, strides=t_strides) rol_mean = np.mean(sep_win, axis=1) missing_vals = np.array([avg_hr for i in range(0, int(abs(len(data_arr) - len(rol_mean))/2))]) rol_mean = np.insert(rol_mean, 0, missing_vals) rol_mean =
np.append(rol_mean, missing_vals)
numpy.append
import pyglet from pyglet.gl import * from .globs import * from .constants import * from . import config import ctypes import math from .colors import _getColor, color, blue try: import numpy npy = True numpy.seterr(divide='ignore') except: npy = False # exports __all__ = ['PImage', 'loadImage', 'image', 'get', 'setScreen', 'save', 'createImage', 'loadPixels', 'updatePixels', 'screenFilter', 'blend'] # the PImage class class PImage(object): """This basically wraps pyglet's AbstractImage with a Processing-like syntax.""" img = None # this is the actual AbstractImage def __init__(self, *args): """Either creates a new image from scratch or wraps an AbstractImage. Arguments are of the form PImage() PImage(width,height) PImage(width,height,format) PImage(img) """ if len(args) == 1 and isinstance(args[0], pyglet.image.AbstractImage): # Wraps an AbstractImage self.img = args[0] elif len(args) in (2, 3): # Creates an ImageData from width, height and type if len(args) == 2: # default w, h = args format = ARGB else: w, h, format = args data = create_string_buffer(w * h * len(format)) self.img = pyglet.image.ImageData(w, h, format, data.raw) else: assert (len(args) == 0) # Do an initial loading of the pixels[] array self.loadPixels() self.updatePixels() def loadPixels(self): """Gets the pixel data as an array of integers.""" n = self.width * self.height self.buf = self.img.get_image_data().get_data('BGRA', -self.width * 4) if npy: self.pixels = numpy.fromstring(self.buf, dtype=ctypes.c_uint) else: self.pixels = ctypes.cast(self.buf, ctypes.POINTER(ctypes.c_uint)) def filter(self, mode, *args): """Applies a filter to the image. The existant filters are: GRAY, INVERT, OPAQUE, THRESHOLD, POSTERIZE, ERODE, DILATE and BLUR. This method requires numpy.""" if not npy: raise ImportError("Numpy is required") if mode == GRAY: # Gray value = (77*(n>>16&0xff) + 151*(n>>8&0xff) + 28*(n&0xff)) >> 8 # Where n is the ARGB color of the pixel lum1 = numpy.multiply( numpy.bitwise_and(numpy.right_shift(self.pixels, 16), 0xff), 77) lum2 = numpy.multiply( numpy.bitwise_and(numpy.right_shift(self.pixels, 8), 0xff), 151) lum3 = numpy.multiply(numpy.bitwise_and(self.pixels, 0xff), 28) lum = numpy.right_shift(numpy.add(numpy.add(lum1, lum2), lum3), 8) self.pixels = numpy.bitwise_and(self.pixels, 0xff000000) self.pixels = numpy.bitwise_or(self.pixels, numpy.left_shift(lum, 16)) self.pixels = numpy.bitwise_or(self.pixels, numpy.left_shift(lum, 8)) self.pixels = numpy.bitwise_or(self.pixels, lum) elif mode == INVERT: # This is the same as applying an exclusive or with the maximum value self.pixels = numpy.bitwise_xor(self.pixels, 0xffffff) elif mode == BLUR: if not args: args = [3] # Makes the image square by adding zeros. # This avoids the convolution (via fourier transform multiplication) # from jumping to another extreme of the image when a border is reached if self.width > self.height: dif = self.width - self.height updif = numpy.zeros(self.width * dif / 2, dtype=numpy.uint32) downdif = numpy.zeros(self.width * (dif - dif / 2), dtype=numpy.uint32) self.pixels = numpy.concatenate((updif, self.pixels, downdif)) size = self.width elif self.width < self.height: dif = self.height - self.width leftdif = numpy.zeros(self.height * dif / 2, dtype=numpy.uint32) rightdif = numpy.zeros(self.height * (dif - dif / 2), dtype=numpy.uint32) self.pixels = self.pixels.reshape(self.height, self.width) self.pixels = numpy.transpose(self.pixels) self.pixels = self.pixels.reshape(self.width * self.height) self.pixels = numpy.concatenate( (leftdif, self.pixels, rightdif)) self.pixels = self.pixels.reshape(self.height, self.height) self.pixels = numpy.transpose(self.pixels) self.pixels = self.pixels.reshape(self.height * self.height) size = self.height else: size = self.height # Creates a gaussian kernel of the image's size _createKernel2d(args[0], size) # Divides the image's R, G and B channels, reshapes them # to square matrixes and applies two dimensional fourier transforms red = numpy.bitwise_and(numpy.right_shift(self.pixels, 16), 0xff) red = numpy.reshape(red, (size, size)) red = numpy.fft.fft2(red) green = numpy.bitwise_and(numpy.right_shift(self.pixels, 8), 0xff) green = numpy.reshape(green, (size, size)) green = numpy.fft.fft2(green) blue = numpy.bitwise_and(self.pixels, 0xff) blue = numpy.reshape(blue, (size, size)) blue = numpy.fft.fft2(blue) # Does a element-wise multiplication of each channel matrix # and the fourier transform of the kernel matrix kernel = numpy.fft.fft2(weights) red = numpy.multiply(red, kernel) green = numpy.multiply(green, kernel) blue = numpy.multiply(blue, kernel) # Reshapes them back to arrays and converts to unsigned integers red = numpy.reshape(numpy.fft.ifft2(red).real, size * size) green = numpy.reshape(numpy.fft.ifft2(green).real, size * size) blue = numpy.reshape(numpy.fft.ifft2(blue).real, size * size) red = red.astype(numpy.uint32) green = green.astype(numpy.uint32) blue = blue.astype(numpy.uint32) self.pixels = numpy.bitwise_or(numpy.left_shift(green, 8), blue) self.pixels = numpy.bitwise_or(numpy.left_shift(red, 16), self.pixels) # Crops out the zeros added if self.width > self.height: self.pixels = self.pixels[ self.width * dif / 2:size * size - self.width * ( dif - dif / 2)] elif self.width < self.height: self.pixels = numpy.reshape(self.pixels, (size, size)) self.pixels = numpy.transpose(self.pixels) self.pixels = numpy.reshape(self.pixels, size * size) self.pixels = self.pixels[ self.height * dif / 2:size * size - self.height * ( dif - dif / 2)] self.pixels = numpy.reshape(self.pixels, (self.width, self.height)) self.pixels = numpy.transpose(self.pixels) self.pixels = numpy.reshape(self.pixels, self.height * self.width) elif mode == OPAQUE: # This is the same as applying an bitwise or with the maximum value self.pixels = numpy.bitwise_or(self.pixels, 0xff000000) elif mode == THRESHOLD: # Maximum = max((n & 0xff0000) >> 16, max((n & 0xff00)>>8, (n & 0xff))) # Broken down to Maximum = max(aux,aux2) # The pixel will be white if its maximum is greater than the threshold # value, and black if not. This was implemented via a boolean matrix # multiplication. if not args: args = [0.5] thresh = args[0] * 255 aux = numpy.right_shift(numpy.bitwise_and(self.pixels, 0xff00), 8) aux = numpy.maximum(aux, numpy.bitwise_and(self.pixels, 0xff)) aux2 = numpy.right_shift(numpy.bitwise_and(self.pixels, 0xff0000), 16) boolmatrix = numpy.greater_equal(numpy.maximum(aux, aux2), thresh) self.pixels.fill(0xffffff) self.pixels =
numpy.multiply(self.pixels, boolmatrix)
numpy.multiply
import os #운영체제와 상호 작용하기 위한 라이브 러리 import sys import xml.etree.ElementTree as ET #xml을 tree 형태로 읽어오는 라이브러리, as ET는 라이브러리를 단축시키기 위한 명령어 import shutil # 파일 및 디렉터리 작업을 수행하는 데 사용할 모듈 (파일 복사 이동 ) import random # 난수 형성 함수 from xml.dom import minidom #xml 에 접근하기 위한 함수 import operator # list의 차를 구하기 위한 라이브 러리 import math # 표준편차를 구하기위한 수학계산 라이브러리 import numpy as np # 표준편차를 구하기위한 수학계산 라이브러리 from matplotlib import pyplot as plt import pandas as pd from collections import Counter import csv import pickle from collections import Counter #list 중복값 카운팅 하기 import time start = time.time() # sys.stdout = open('output.txt','a') #print 로 출력된 내용을 텍스트로 저장함 answer = ['car','person'] attr = ['width', 'height', 'box'] car_array = [] person_array = [] # zz=[] # zz1=[] car_count = 0 person_count = 0 total_box = 0 total_xml = 0 total_box_count = 0 total_car = 0 total_person = 0 person_w = [] person_h = [] car_w = [] car_h = [] other =0 c_w = [] c_h = [] p_w = [] p_h = [] p_b = [] c_b = [] c_height_list = [] c_width_list = [] c_box_len_list = [] p_height_list = [] p_width_list = [] p_box_len_list = [] path_list = [] file_list = [] name_list = [] dir_len = len(path_list) root_path = "D:/backup/DataSet" target_path = "D:/backup/DataSet" parser = ET.XMLParser(encoding="utf-8") # XMLParser는 xml에서 원하는 구문을 출력할수있게 해준다 rootpath = r"D:\backup\DataSet" xmlRootpath = r'D:\backup\DataSet' xmlList = [] coun=0 for (path, dir, files) in os.walk(xmlRootpath): for file in files: if file.endswith(".xml"): # for x in os.listdir(root_path): # if x.endswith('xml'): empty = os.path.join(root_path,path) path_list.append(empty) total_xml += 1 tree = ET.parse(os.path.join(empty, file)) # x에 대한정보를 가져온다 root = tree.getroot() # 문서의 최상단을 가리킴 여기서는 annotations #print(os.path.join(empty, file)) for child in root.findall("object"): #root(annotations) 아래 자식image 의 객수만큼 반복한다) bndbox=child.find('bndbox') name = child.find('name').text total_box_count += 1 xmin = int(float(bndbox.find("xmin").text)) ymin = int(float(bndbox.find("ymin").text)) xmax = int(float(bndbox.find("xmax").text)) ymax = int(float(bndbox.find("ymax").text)) # print(name+' %s %s %s %s' %(xmin, ymin, xmax, ymax)) #5 if name == "person": person_count += 1 total_person += 1 p_w = abs(float(xmin)-float(xmax)) p_h = abs(float(ymin)-float(ymax)) p_b = abs(float(p_w*p_h)) # print("person width=" + str(p_w), "person height" + str(p_h)) # print("label:person"+" xmin:"+str(xmin)+" ymin:"+str(ymin)+" xmax:"+str(xmax)+" ymax:"+str(ymax)+" width=" + str(p_w), " height" + str(p_h)) person_w.append(p_w) person_h.append(p_h) p_box_len_list.append(p_b) elif name == "car": car_count += 1 total_car += 1 c_w = abs(float(xmin)-float(xmax)) c_h = abs(float(ymin)-float(ymax)) c_b = abs(float(c_w * c_h)) # print("car width=" + str(c_w), "car height=" + str(c_h)) #print("label:car" + " xmin:" + str(xmin) + " ymin:" + str(ymin) + " xmax:" + str(xmax) + " ymax:" + str(ymax) + " width=" + str(c_w), " height" + str(c_h)) car_w.append(c_w) car_h.append(c_h) c_box_len_list.append(c_b) else: other += 1 # print("car num:"+str(car_count)+" person num:"+str(person_count)) person_array.append(person_count) car_array.append(car_count) car_count=0 person_count=0 person_np = np.array(person_array) car_np = np.array(car_array) # np.max(arr) max 값 구하기 x = np.array(person_w)#person_width y = np.array(person_h)#person_height z = x*y #person _w*h zz = list(z) # print(z) x1 = np.array(car_w) #car width y1 = np.array(car_h) #car height z1 = x1*y1 #car_w*h zz1 = list(z1) a = round(
np.average(x)
numpy.average
""" NCL_conOncon_2.py ================= This script illustrates the following concepts: - Overlaying two sets of contours on a map - Drawing the zero contour line thicker - Changing the center longitude for a cylindrical equidistant projection - Using a blue-white-red color map See following URLs to see the reproduced NCL plot & script: - Original NCL script: https://www.ncl.ucar.edu/Applications/Scripts/conOncon_2.ncl - Original NCL plot: https://www.ncl.ucar.edu/Applications/Images/conOncon_2_lg.png """ import cartopy.crs as ccrs import cartopy.feature as cfeature import geocat.datafiles as gdf import matplotlib.pyplot as plt ################################################################################ # Import packages: import numpy as np import xarray as xr from cartopy.mpl.gridliner import LatitudeFormatter, LongitudeFormatter from geocat.viz import cmaps as gvcmaps from geocat.viz import util as gvutil ############################################################################### # Read in data: # Open a netCDF data file using xarray default engine and load the data into xarrays sst = xr.open_dataset(gdf.get("netcdf_files/sst8292a.nc")) olr = xr.open_dataset(gdf.get("netcdf_files/olr7991a.nc")) # Extract data for December 1982 sst = sst.isel(time=11, drop=True).SSTA olr = olr.isel(time=47, drop=True).OLRA # Fix the artifact of not-shown-data around 0 and 360-degree longitudes sst = gvutil.xr_add_cyclic_longitudes(sst, 'lon') olr = gvutil.xr_add_cyclic_longitudes(olr, 'lon') ############################################################################### # Plot: # Generate figure and axes plt.figure(figsize=(8, 8)) # Set axes projection ax = plt.axes(projection=ccrs.PlateCarree(central_longitude=-160)) ax.set_extent([100, 300, -60, 60], crs=ccrs.PlateCarree()) # Load in color map and specify contour levels cmap = gvcmaps.BlWhRe sst_levels =
np.arange(-5.5, 6, 0.5)
numpy.arange
import pytest import numpy as np import sys import os import math sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), os.pardir)) from dtaidistance import dtw, dtw_c def test_numpymatrix(): """Passing a matrix instead of a list failed because the array is now a view instead of the original data structure.""" s = np.array([ [0., 0, 1, 2, 1, 0, 1, 0, 0], [0., 1, 2, 0, 0, 0, 0, 0, 0], [1., 2, 0, 0, 0, 0, 0, 1, 0]]) m = dtw_c.distance_matrix_nogil(s) m2 = dtw.distance_matrix(s) correct = np.array([ [np.inf, 1.41421356, 1.73205081], [np.inf, np.inf, 1.41421356], [np.inf, np.inf, np.inf]]) assert m[0, 1] == pytest.approx(math.sqrt(2)) assert m2[0, 1] == pytest.approx(math.sqrt(2)) np.testing.assert_almost_equal(correct, m, decimal=4) np.testing.assert_almost_equal(correct, m2, decimal=4) def test_numpymatrix_transpose(): """Passing a matrix instead of a list failed because the array is now a view instead of the original data structure.""" s = np.array([ [0., 0., 1.,], [0, 1, 2], [1, 2, 0], [2, 0, 0], [1, 0, 0], [0, 0, 0], [1, 0, 0], [0, 0, 1], [0, 0, 0] ]).T m = dtw_c.distance_matrix_nogil(s) m2 = dtw.distance_matrix(s) correct = np.array([ [np.inf, 1.41421356, 1.73205081], [np.inf, np.inf, 1.41421356], [np.inf, np.inf, np.inf]]) assert m[0, 1] == pytest.approx(math.sqrt(2)) assert m2[0, 1] == pytest.approx(math.sqrt(2))
np.testing.assert_almost_equal(correct, m, decimal=4)
numpy.testing.assert_almost_equal
import os import operator import unittest import numpy as np from pandas.core.api import DataFrame, Index, notnull from pandas.core.datetools import bday from pandas.core.panel import (WidePanel, LongPanelIndex, LongPanel, group_agg, pivot) from pandas.util.testing import (assert_panel_equal, assert_frame_equal, assert_series_equal, assert_almost_equal) import pandas.core.panel as panelm import pandas.util.testing as common class PanelTests(object): def test_iter(self): common.equalContents(list(self.panel), self.panel.items) def test_pickle(self): import cPickle pickled = cPickle.dumps(self.panel) unpickled = cPickle.loads(pickled) assert_frame_equal(unpickled['ItemA'], self.panel['ItemA']) def test_repr(self): foo = repr(self.panel) def test_set_values(self): self.panel.values = np.array(self.panel.values, order='F') assert(self.panel.values.flags.contiguous) def _check_statistic(self, frame, name, alternative): f = getattr(frame, name) for i, ax in enumerate(['items', 'major', 'minor']): result = f(axis=i) assert_frame_equal(result, frame.apply(alternative, axis=ax)) def test_count(self): f = lambda s: notnull(s).sum() self._check_statistic(self.panel, 'count', f) def test_sum(self): def f(x): x = np.asarray(x) nona = x[notnull(x)] if len(nona) == 0: return np.NaN else: return nona.sum() self._check_statistic(self.panel, 'sum', f) def test_prod(self): def f(x): x = np.asarray(x) nona = x[notnull(x)] if len(nona) == 0: return np.NaN else: return np.prod(nona) self._check_statistic(self.panel, 'prod', f) def test_mean(self): def f(x): x = np.asarray(x) return x[notnull(x)].mean() self._check_statistic(self.panel, 'mean', f) def test_median(self): def f(x): x = np.asarray(x) return np.median(x[notnull(x)]) self._check_statistic(self.panel, 'median', f) def test_min(self): def f(x): x = np.asarray(x) nona = x[notnull(x)] if len(nona) == 0: return np.NaN else: return nona.min() self._check_statistic(self.panel, 'min', f) def test_max(self): def f(x): x = np.asarray(x) nona = x[notnull(x)] if len(nona) == 0: return np.NaN else: return nona.max() self._check_statistic(self.panel, 'max', f) def test_var(self): def f(x): x = np.asarray(x) nona = x[notnull(x)] if len(nona) < 2: return np.NaN else: return nona.var(ddof=1) self._check_statistic(self.panel, 'var', f) def test_std(self): def f(x): x = np.asarray(x) nona = x[notnull(x)] if len(nona) < 2: return np.NaN else: return nona.std(ddof=1) self._check_statistic(self.panel, 'std', f) def test_skew(self): return try: from scipy.stats import skew except ImportError: return def f(x): x = np.asarray(x) return skew(x[notnull(x)], bias=False) self._check_statistic(self.panel, 'skew', f) def test_cumsum(self): cumsum = self.panel.cumsum() assert_frame_equal(cumsum['ItemA'], self.panel['ItemA'].cumsum()) class TestWidePanel(unittest.TestCase, PanelTests): def setUp(self): self.panel = common.makeWidePanel() common.add_nans(self.panel) def test_get_axis(self): assert(self.panel._get_axis(0) is self.panel.items) assert(self.panel._get_axis(1) is self.panel.major_axis) assert(self.panel._get_axis(2) is self.panel.minor_axis) def test_get_axis_number(self): self.assertEqual(self.panel._get_axis_number('items'), 0) self.assertEqual(self.panel._get_axis_number('major'), 1) self.assertEqual(self.panel._get_axis_number('minor'), 2) def test_get_axis_name(self): self.assertEqual(self.panel._get_axis_name(0), 'items') self.assertEqual(self.panel._get_axis_name(1), 'major') self.assertEqual(self.panel._get_axis_name(2), 'minor') def test_get_plane_axes(self): # what to do here? index, columns = self.panel._get_plane_axes('items') index, columns = self.panel._get_plane_axes('major') index, columns = self.panel._get_plane_axes('minor') index, columns = self.panel._get_plane_axes(0) def test_arith(self): def test_op(panel, op): result = op(panel, 1) assert_frame_equal(result['ItemA'], op(panel['ItemA'], 1)) test_op(self.panel, operator.add) test_op(self.panel, operator.sub) test_op(self.panel, operator.mul) test_op(self.panel, operator.div) test_op(self.panel, operator.pow) test_op(self.panel, lambda x, y: y + x) test_op(self.panel, lambda x, y: y - x) test_op(self.panel, lambda x, y: y * x) test_op(self.panel, lambda x, y: y / x) test_op(self.panel, lambda x, y: y ** x) self.assertRaises(Exception, self.panel.__add__, self.panel['ItemA']) def test_fromDict(self): itema = self.panel['ItemA'] itemb = self.panel['ItemB'] d = {'A' : itema, 'B' : itemb[5:]} wp = WidePanel.fromDict(d) self.assert_(wp.major_axis.equals(self.panel.major_axis)) # intersect wp = WidePanel.fromDict(d, intersect=True) self.assert_(wp.major_axis.equals(itemb.index[5:])) def test_keys(self): common.equalContents(self.panel.keys(), self.panel.items) def test_iteritems(self): # just test that it works for k, v in self.panel.iteritems(): pass self.assertEqual(len(list(self.panel.iteritems())), len(self.panel.items)) def test_values(self): self.assertRaises(Exception, WidePanel, np.random.randn(5, 5, 5), range(5), range(5), range(4)) def test_getitem(self): self.assertRaises(Exception, self.panel.__getitem__, 'ItemQ') def test_delitem_and_pop(self): expected = self.panel['ItemA'] result = self.panel.pop('ItemA') assert_frame_equal(expected, result) self.assert_('ItemA' not in self.panel.items) del self.panel['ItemB'] self.assert_('ItemB' not in self.panel.items) self.assertRaises(Exception, self.panel.__delitem__, 'ItemB') values = np.empty((3, 3, 3)) values[0] = 0 values[1] = 1 values[2] = 2 panel = WidePanel(values, range(3), range(3), range(3)) # did we delete the right row? panelc = panel.copy() del panelc[0] assert_frame_equal(panelc[1], panel[1]) assert_frame_equal(panelc[2], panel[2]) panelc = panel.copy() del panelc[1] assert_frame_equal(panelc[0], panel[0]) assert_frame_equal(panelc[2], panel[2]) panelc = panel.copy() del panelc[2] assert_frame_equal(panelc[1], panel[1]) assert_frame_equal(panelc[0], panel[0]) def test_setitem(self): # LongPanel with one item lp = self.panel.filter(['ItemA']).toLong() self.panel['ItemE'] = lp lp = self.panel.filter(['ItemA', 'ItemB']).toLong() self.assertRaises(Exception, self.panel.__setitem__, 'ItemE', lp) # DataFrame df = self.panel['ItemA'][2:].filter(items=['A', 'B']) self.panel['ItemF'] = df self.panel['ItemE'] = df df2 = self.panel['ItemF'] assert_frame_equal(df, df2.reindex(index=df.index, columns=df.columns)) # scalar self.panel['ItemG'] = 1 self.panel['ItemE'] = 1 def test_conform(self): df = self.panel['ItemA'][:-5].filter(items=['A', 'B']) conformed = self.panel.conform(df) assert(conformed.index.equals(self.panel.major_axis)) assert(conformed.columns.equals(self.panel.minor_axis)) def test_reindex(self): ref = self.panel['ItemB'] # items result = self.panel.reindex(items=['ItemA', 'ItemB']) assert_frame_equal(result['ItemB'], ref) # major new_major = list(self.panel.major_axis[:10]) result = self.panel.reindex(major=new_major) assert_frame_equal(result['ItemB'], ref.reindex(index=new_major)) # minor new_minor = list(self.panel.minor_axis[:2]) result = self.panel.reindex(minor=new_minor) assert_frame_equal(result['ItemB'], ref.reindex(columns=new_minor)) result = self.panel.reindex(items=self.panel.items, major=self.panel.major_axis, minor=self.panel.minor_axis) assert(result.items is self.panel.items) assert(result.major_axis is self.panel.major_axis) assert(result.minor_axis is self.panel.minor_axis) self.assertRaises(Exception, self.panel.reindex) # with filling smaller_major = self.panel.major_axis[::5] smaller = self.panel.reindex(major=smaller_major) larger = smaller.reindex(major=self.panel.major_axis, fill_method='pad') assert_frame_equal(larger.getMajorXS(self.panel.major_axis[1]), smaller.getMajorXS(smaller_major[0])) def test_fill(self): filled = self.panel.fill(0) self.assert_(np.isfinite(filled.values).all()) filled = self.panel.fill(method='backfill') assert_frame_equal(filled['ItemA'], self.panel['ItemA'].fill(method='backfill')) def test_combineFrame(self): def check_op(op, name): # items df = self.panel['ItemA'] func = getattr(self.panel, name) result = func(df, axis='items') assert_frame_equal(result['ItemB'], op(self.panel['ItemB'], df)) # major xs = self.panel.getMajorXS(self.panel.major_axis[0]) result = func(xs, axis='major') idx = self.panel.major_axis[1] assert_frame_equal(result.getMajorXS(idx), op(self.panel.getMajorXS(idx), xs)) # minor xs = self.panel.getMinorXS(self.panel.minor_axis[0]) result = func(xs, axis='minor') idx = self.panel.minor_axis[1] assert_frame_equal(result.getMinorXS(idx), op(self.panel.getMinorXS(idx), xs)) check_op(operator.add, 'add') check_op(operator.sub, 'subtract') check_op(operator.mul, 'multiply') check_op(operator.div, 'divide') def test_combinePanel(self): result = self.panel.add(self.panel) assert_panel_equal(result, self.panel * 2) long = self.panel.toLong(filter_observations=False) result = self.panel.add(long) assert_panel_equal(result, self.panel * 2) def test_operators(self): pass def test_neg(self): assert_panel_equal(-self.panel, self.panel * -1) def test_getMajorXS(self): ref = self.panel['ItemA'] idx = self.panel.major_axis[5] xs = self.panel.getMajorXS(idx) assert_series_equal(xs['ItemA'], ref.getXS(idx)) # not contained idx = self.panel.major_axis[0] - bday self.assertRaises(Exception, self.panel.getMajorXS, idx) def test_getMinorXS(self): ref = self.panel['ItemA'] idx = self.panel.minor_axis[1] xs = self.panel.getMinorXS(idx) assert_series_equal(xs['ItemA'], ref[idx]) # not contained self.assertRaises(Exception, self.panel.getMinorXS, 'E') def test_groupby(self): grouped = self.panel.groupby({'ItemA' : 0, 'ItemB' : 0, 'ItemC' : 1}, axis='items') agged = grouped.agg(np.mean) self.assert_(np.array_equal(agged.items, [0, 1])) grouped = self.panel.groupby(lambda x: x.month, axis='major') agged = grouped.agg(np.mean) self.assert_(np.array_equal(agged.major_axis, [1, 2])) grouped = self.panel.groupby({'A' : 0, 'B' : 0, 'C' : 1, 'D' : 1}, axis='minor') agged = grouped.agg(np.mean) self.assert_(np.array_equal(agged.minor_axis, [0, 1])) def test_swapaxes(self): result = self.panel.swapaxes('items', 'minor') self.assert_(result.items is self.panel.minor_axis) result = self.panel.swapaxes('items', 'major') self.assert_(result.items is self.panel.major_axis) result = self.panel.swapaxes('major', 'minor') self.assert_(result.major_axis is self.panel.minor_axis) # this should also work result = self.panel.swapaxes(0, 1) self.assert_(result.items is self.panel.major_axis) # this should also work self.assertRaises(Exception, self.panel.swapaxes, 'items', 'items') def test_toLong(self): # filtered filtered = self.panel.toLong() # unfiltered unfiltered = self.panel.toLong(filter_observations=False) assert_panel_equal(unfiltered.toWide(), self.panel) def test_filter(self): pass def test_apply(self): pass def test_compound(self): compounded = self.panel.compound() assert_series_equal(compounded['ItemA'], (1 + self.panel['ItemA']).product(0) - 1) def test_shift(self): # major idx = self.panel.major_axis[0] idx_lag = self.panel.major_axis[1] shifted = self.panel.shift(1) assert_frame_equal(self.panel.getMajorXS(idx), shifted.getMajorXS(idx_lag)) # minor idx = self.panel.minor_axis[0] idx_lag = self.panel.minor_axis[1] shifted = self.panel.shift(1, axis='minor') assert_frame_equal(self.panel.getMinorXS(idx), shifted.getMinorXS(idx_lag)) self.assertRaises(Exception, self.panel.shift, 1, axis='items') def test_truncate(self): dates = self.panel.major_axis start, end = dates[1], dates[5] trunced = self.panel.truncate(start, end, axis='major') expected = self.panel['ItemA'].truncate(start, end) assert_frame_equal(trunced['ItemA'], expected) trunced = self.panel.truncate(before=start, axis='major') expected = self.panel['ItemA'].truncate(before=start) assert_frame_equal(trunced['ItemA'], expected) trunced = self.panel.truncate(after=end, axis='major') expected = self.panel['ItemA'].truncate(after=end) assert_frame_equal(trunced['ItemA'], expected) # XXX test other axes class TestLongPanelIndex(unittest.TestCase): def setUp(self): major_axis = Index([1, 2, 3, 4]) minor_axis = Index([1, 2]) major_labels = np.array([0, 0, 1, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 0, 1]) self.index = LongPanelIndex(major_axis, minor_axis, major_labels, minor_labels) major_labels = np.array([0, 0, 1, 1, 1, 2, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 1, 0, 1, 0, 1]) self.incon = LongPanelIndex(major_axis, minor_axis, major_labels, minor_labels) def test_consistency(self): self.assert_(self.index.consistent) self.assert_(not self.incon.consistent) # need to construct an overflow major_axis = range(70000) minor_axis = range(10) major_labels = np.arange(70000) minor_labels = np.repeat(range(10), 7000) index = LongPanelIndex(major_axis, minor_axis, major_labels, minor_labels) self.assert_(index.consistent) def test_truncate(self): result = self.index.truncate(before=1) self.assert_(0 not in result.major_axis) self.assert_(1 in result.major_axis) result = self.index.truncate(after=1) self.assert_(2 not in result.major_axis) self.assert_(1 in result.major_axis) result = self.index.truncate(before=1, after=2) self.assertEqual(len(result.major_axis), 2) def test_getMajorBounds(self): pass def test_getAxisBounds(self): pass def test_getLabelBounds(self): pass def test_bounds(self): pass def test_makeMask(self): mask = self.index.mask expected = np.array([True, True, True, False, False, True, True, True], dtype=bool) self.assert_(np.array_equal(mask, expected)) def test_dims(self): pass class TestLongPanel(unittest.TestCase): def setUp(self): panel = common.makeWidePanel() common.add_nans(panel) self.panel = panel.toLong() self.unfiltered_panel = panel.toLong(filter_observations=False) def test_pickle(self): import cPickle pickled = cPickle.dumps(self.panel) unpickled = cPickle.loads(pickled) assert_almost_equal(unpickled['ItemA'].values, self.panel['ItemA'].values) def test_len(self): len(self.unfiltered_panel) def test_constructor(self): pass def test_fromRecords_toRecords(self): # structured array K = 10 recs = np.zeros(K, dtype='O,O,f8,f8') recs['f0'] = range(K / 2) * 2 recs['f1'] = np.arange(K) / (K / 2) recs['f2'] = np.arange(K) * 2 recs['f3'] = np.arange(K) lp = LongPanel.fromRecords(recs, 'f0', 'f1') self.assertEqual(len(lp.items), 2) lp = LongPanel.fromRecords(recs, 'f0', 'f1', exclude=['f2']) self.assertEqual(len(lp.items), 1) torecs = lp.toRecords() self.assertEqual(len(torecs.dtype.names), len(lp.items) + 2) # DataFrame df = DataFrame.fromRecords(recs) lp = LongPanel.fromRecords(df, 'f0', 'f1', exclude=['f2']) self.assertEqual(len(lp.items), 1) # dict of arrays series = DataFrame.fromRecords(recs)._series lp = LongPanel.fromRecords(series, 'f0', 'f1', exclude=['f2']) self.assertEqual(len(lp.items), 1) self.assert_('f2' in series) self.assertRaises(Exception, LongPanel.fromRecords, np.zeros((3, 3)), 0, 1) def test_factors(self): # structured array K = 10 recs = np.zeros(K, dtype='O,O,f8,f8,O,O') recs['f0'] = ['one'] * 5 + ['two'] * 5 recs['f1'] = ['A', 'B', 'C', 'D', 'E'] * 2 recs['f2'] = np.arange(K) * 2 recs['f3'] = np.arange(K) recs['f4'] = ['A', 'B', 'C', 'D', 'E'] * 2 recs['f5'] = ['foo', 'bar'] * 5 lp = LongPanel.fromRecords(recs, 'f0', 'f1') def test_columns(self): self.assert_(np.array_equal(self.panel.items, self.panel.columns)) self.assert_(np.array_equal(self.panel.items, self.panel.cols())) def test_copy(self): thecopy = self.panel.copy() self.assert_(np.array_equal(thecopy.values, self.panel.values)) self.assert_(thecopy.values is not self.panel.values) def test_values(self): valslice = self.panel.values[:-1] self.assertRaises(Exception, self.panel._set_values, valslice) def test_getitem(self): col = self.panel['ItemA'] def test_setitem(self): self.panel['ItemE'] = self.panel['ItemA'] self.panel['ItemF'] = 1 wp = self.panel.toWide() assert_frame_equal(wp['ItemA'], wp['ItemE']) itemf = wp['ItemF'].values.ravel() self.assert_((itemf[np.isfinite(itemf)] == 1).all()) # check exceptions raised lp = self.panel.filter(['ItemA', 'ItemB']) lp2 = self.panel.filter(['ItemC', 'ItemE']) self.assertRaises(Exception, lp.__setitem__, 'foo', lp2) def test_combineFrame(self): wp = self.panel.toWide() result = self.panel.add(wp['ItemA']) assert_frame_equal(result.toWide()['ItemA'], wp['ItemA'] * 2) def test_combinePanel(self): wp = self.panel.toWide() result = self.panel.add(self.panel) wide_result = result.toWide() assert_frame_equal(wp['ItemA'] * 2, wide_result['ItemA']) def test_operators(self): wp = self.panel.toWide() result = (self.panel + 1).toWide() assert_frame_equal(wp['ItemA'] + 1, result['ItemA']) def test_sort(self): def is_sorted(arr): return (arr[1:] > arr[:-1]).any() sorted_minor = self.panel.sort(axis='minor') self.assert_(is_sorted(sorted_minor.index.minor_labels)) sorted_major = sorted_minor.sort(axis='major') self.assert_(is_sorted(sorted_major.index.major_labels)) def test_toWide(self): pass def test_toCSV(self): self.panel.toCSV('__tmp__') os.remove('__tmp__') def test_toString(self): from cStringIO import StringIO buf = StringIO() self.panel.toString(buf) self.panel.toString(buf, col_space=12) def test_swapaxes(self): swapped = self.panel.swapaxes() self.assert_(swapped.major_axis is self.panel.minor_axis) # what else to test here? def test_truncate(self): dates = self.panel.major_axis start, end = dates[1], dates[5] trunced = self.panel.truncate(start, end).toWide() expected = self.panel.toWide()['ItemA'].truncate(start, end) assert_frame_equal(trunced['ItemA'], expected) trunced = self.panel.truncate(before=start).toWide() expected = self.panel.toWide()['ItemA'].truncate(before=start) assert_frame_equal(trunced['ItemA'], expected) trunced = self.panel.truncate(after=end).toWide() expected = self.panel.toWide()['ItemA'].truncate(after=end) assert_frame_equal(trunced['ItemA'], expected) def test_filter(self): pass def test_axis_dummies(self): minor_dummies = self.panel.get_axis_dummies('minor') self.assertEqual(len(minor_dummies.items), len(self.panel.minor_axis)) major_dummies = self.panel.get_axis_dummies('major') self.assertEqual(len(major_dummies.items), len(self.panel.major_axis)) mapping = {'A' : 'one', 'B' : 'one', 'C' : 'two', 'D' : 'two'} transformed = self.panel.get_axis_dummies('minor', transform=mapping.get) self.assertEqual(len(transformed.items), 2) self.assert_(np.array_equal(transformed.items, ['one', 'two'])) # TODO: test correctness def test_get_dummies(self): self.panel['Label'] = self.panel.index.minor_labels minor_dummies = self.panel.get_axis_dummies('minor') dummies = self.panel.get_dummies('Label') self.assert_(np.array_equal(dummies.values, minor_dummies.values)) def test_apply(self): # ufunc applied = self.panel.apply(np.sqrt) self.assert_(assert_almost_equal( applied.values, np.sqrt(self.panel.values))) def test_mean(self): means = self.panel.mean('major') # test versus WidePanel version wide_means = self.panel.toWide().mean('major') assert_frame_equal(means, wide_means) means_broadcast = self.panel.mean('major', broadcast=True) self.assert_(isinstance(means_broadcast, LongPanel)) # how to check correctness? def test_sum(self): sums = self.panel.sum('major') # test versus WidePanel version wide_sums = self.panel.toWide().sum('major') assert_frame_equal(sums, wide_sums) def test_count(self): pass def test_leftJoin(self): pass def test_merge(self): pass def test_addPrefix(self): lp = self.panel.addPrefix('foo#') self.assertEqual(lp.items[0], 'foo#ItemA') def test_pivot(self): df = pivot(np.array([1, 2, 3, 4, 5]), np.array(['a', 'b', 'c', 'd', 'e']), np.array([1, 2, 3, 5, 4.])) self.assertEqual(df['a'][1], 1) self.assertEqual(df['b'][2], 2) self.assertEqual(df['c'][3], 3) self.assertEqual(df['d'][4], 5) self.assertEqual(df['e'][5], 4) # weird overlap df = pivot(
np.array([1, 2, 3, 4, 4])
numpy.array
# -*- coding: utf-8 -*- """Supports the Ion Velocity Meter (IVM) onboard the Communication and Navigation Outage Forecasting System (C/NOFS) satellite, part of the Coupled Ion Netural Dynamics Investigation (CINDI). Downloads data from the NASA Coordinated Data Analysis Web (CDAWeb) in CDF format. The IVM is composed of the Retarding Potential Analyzer (RPA) and Drift Meter (DM). The RPA measures the energy of plasma along the direction of satellite motion. By fitting these measurements to a theoretical description of plasma the number density, plasma composition, plasma temperature, and plasma motion may be determined. The DM directly measures the arrival angle of plasma. Using the reported motion of the satellite the angle is converted into ion motion along two orthogonal directions, perpendicular to the satellite track. References ---------- A brief discussion of the C/NOFS mission and instruments can be found at de La Beaujardière, O., et al. (2004), C/NOFS: A mission to forecast scintillations, J. Atmos. Sol. Terr. Phys., 66, 1573–1591, doi:10.1016/j.jastp.2004.07.030. Discussion of cleaning parameters for ion drifts can be found in: Burrell, <NAME>., Equatorial topside magnetic field-aligned ion drifts at solar minimum, The University of Texas at Dallas, ProQuest Dissertations Publishing, 2012. 3507604. Discussion of cleaning parameters for ion temperature can be found in: Hairston, <NAME>., <NAME>, and <NAME> (2010), Mapping the duskside topside ionosphere with CINDI and DMSP, J. Geophys. Res.,115, A08324, doi:10.1029/2009JA015051. Properties ---------- platform 'cnofs' name 'ivm' tag None supported inst_id None supported Warnings -------- - The sampling rate of the instrument changes on July 29th, 2010. The rate is attached to the instrument object as .sample_rate. - The cleaning parameters for the instrument are still under development. """ import datetime as dt import functools import numpy as np from pysat import logger from pysat.instruments.methods import general as mm_gen from pysatNASA.instruments.methods import cnofs as mm_cnofs from pysatNASA.instruments.methods import cdaweb as cdw # ---------------------------------------------------------------------------- # Instrument attributes platform = 'cnofs' name = 'ivm' tags = {'': ''} inst_ids = {'': ['']} # ---------------------------------------------------------------------------- # Instrument test attributes _test_dates = {'': {'': dt.datetime(2009, 1, 1)}} # ---------------------------------------------------------------------------- # Instrument methods def init(self): """Initializes the Instrument object with instrument specific values. Runs once upon instantiation. """ logger.info(mm_cnofs.ackn_str) self.acknowledgements = mm_cnofs.ackn_str self.references = '\n'.join((mm_cnofs.refs['mission'], mm_cnofs.refs['ivm'])) return def preprocess(self): """Apply C/NOFS IVM default attributes Note ---- The sample rate for loaded data is attached at inst.sample_rate before any attached custom methods are executed. """ self.sample_rate = 1.0 if self.date >= dt.datetime(2010, 7, 29) else 2.0 return def clean(self): """Routine to return C/NOFS IVM data cleaned to the specified level Note ---- Supports 'clean', 'dusty', 'dirty' """ # Make sure all -999999 values are NaN self.data = self.data.replace(-999999., np.nan) # Set maximum flags if self.clean_level == 'clean': max_rpa_flag = 1 max_idm_flag = 0 elif self.clean_level == 'dusty': max_rpa_flag = 3 max_idm_flag = 3 else: max_rpa_flag = 4 max_idm_flag = 6 # Find bad drifts according to quality flags idm_mask = self.data['driftMeterflag'] > max_idm_flag rpa_mask = self.data['RPAflag'] > max_rpa_flag # Also exclude RPA drifts where the velocity is set to zero if (self.clean_level == 'clean') or (self.clean_level == 'dusty'): if 'ionVelocityX' in self.data.columns: # Possible unrealistic velocities - value may be set to zero # in fit routine instead of using a flag vel_mask = self.data['ionVelocityX'] == 0.0 rpa_mask = rpa_mask | vel_mask # Replace bad drift meter values with NaNs if idm_mask.any(): data_labels = ['ionVelocityY', 'ionVelocityZ'] for label in data_labels: self.data[label] = np.where(idm_mask, np.nan, self.data[label]) # Only remove field-aligned drifts if IDM component is large enough unit_vecs = {'ionVelmeridional': 'meridionalunitvector', 'ionVelparallel': 'parallelunitvector', 'ionVelzonal': 'zonalunitvector'} for label in unit_vecs.keys(): for coord in ['Y', 'Z']: coord_label = ''.join([unit_vecs[label], coord]) vec_mask = idm_mask & (np.abs(self.data[coord_label]) >= 0.01) self.data[label] = np.where(vec_mask, np.nan, self.data[label]) # Replace bad rpa values with NaNs if rpa_mask.any(): data_labels = ['ionVelocityX', 'sensPlanePot', 'sensPlanePotvar'] for label in data_labels: self.data[label] = np.where(rpa_mask, np.nan, self.data[label]) # Only remove field-aligned drifts if RPA component is large enough unit_vecs = {'ionVelmeridional': 'meridionalunitvectorX', 'ionVelparallel': 'parallelunitvectorX', 'ionVelzonal': 'zonalunitvectorX'} for label in unit_vecs: vec_mask = rpa_mask & (np.abs(self.data[unit_vecs[label]]) >= 0.01) self.data[label] = np.where(vec_mask, np.nan, self.data[label]) # Replace non-velocity data values where fits are bad. This test is # separate from the drifts, as confidence in the fitted values decreases # as the complexity increases. Densities are the most robust, followed by # composition and temperatures. rpa_mask = self.data['RPAflag'] > 4 if rpa_mask.any(): data_labels = ['Ni', 'ionDensity', 'ionDensityvariance', 'ionTemperature', 'ionTemperaturevariance', 'ion1fraction', 'ion1variance', 'ion2fraction', 'ion2variance', 'ion3fraction', 'ion3variance', 'ion4fraction', 'ion4variance', 'ion5fraction', 'ion5variance'] for label in data_labels: self.data[label] = np.where(rpa_mask, np.nan, self.data[label]) # Additional checks for clean and dusty data if self.clean_level == 'dusty' or self.clean_level == 'clean': # Low O+ concentrations for RPA Flag of 3 are suspect. Apply the O+ # concentration criteria from Burrell, 2012. Using the ion density # from the RPA fit ('ionDensity') instead of the measurement from the # zero volt current ('Ni'). n_oplus = self.data['ion1fraction'] * self.data['ionDensity'] low_odens_mask = (self.data['RPAflag'] == 3) & (n_oplus <= 3.0e4) # 100% O+ creates a shallow fit region for the ram velocity shallow_fit_mask = self.data['ion1fraction'] >= 1.0 # Exclude areas where either of these are true oplus_mask = low_odens_mask | shallow_fit_mask # Only remove data if RPA component of drift is greater than 1% unit_vecs = {'ionVelmeridional': 'meridionalunitvectorX', 'ionVelparallel': 'parallelunitvectorX', 'ionVelzonal': 'zonalunitvectorX'} for label in unit_vecs: omask = oplus_mask & (
np.abs(self.data[unit_vecs[label]])
numpy.abs
#!/usr/bin/env python """ Make images of the identified clusters in a cell. Hazen 09/16 """ import numpy from PIL import Image from PIL import ImageFont from PIL import ImageDraw import randomcolor import sys import tifffile import storm_analysis.sa_library.i3dtype as i3dtype import storm_analysis.sa_library.readinsight3 as readinsight3 import storm_analysis.simulator.draw_gaussians_c as dg def clusterImages(mlist_name, title, min_size, image_max, output, image_size): i3_data = readinsight3.loadI3GoodOnly(mlist_name) print("Only coloring clusters with at least", min_size, "localizations.") rand_color = randomcolor.RandomColor() scale = 4 image_size[0] = scale * image_size[0] image_size[1] = scale * image_size[1] red_image = numpy.zeros(image_size) grn_image = numpy.zeros(image_size) blu_image = numpy.zeros(image_size) sum_image = numpy.zeros(image_size) labels = i3_data['lk'] start = int(
numpy.min(labels)
numpy.min
import numpy as np import pytest from dnnv.nn.converters.tensorflow import * from dnnv.nn.operations import * def test_MaxPool_1d_default(): x = np.random.randn(1, 3, 32).astype(np.float32) y = np.empty((1, 3, 31), dtype=np.float32) for idx in np.ndindex(y.shape): y[idx] = max(x[idx], x[idx[:-1] + (idx[-1] + 1,)]) op = MaxPool(x, np.array([2])) tf_op = TensorflowConverter().visit(op) result = tf_op().numpy() assert np.allclose(result, y) op = MaxPool(Input((1, 3, 32), np.dtype(np.float32)), np.array([2])) tf_op = TensorflowConverter().visit(op) result = tf_op(x).numpy() assert
np.allclose(result, y)
numpy.allclose
from __future__ import print_function, division, absolute_import import warnings import sys import itertools # unittest only added in 3.4 self.subTest() if sys.version_info[0] < 3 or sys.version_info[1] < 4: import unittest2 as unittest else: import unittest # unittest.mock is not available in 2.7 (though unittest2 might contain it?) try: import unittest.mock as mock except ImportError: import mock import matplotlib matplotlib.use('Agg') # fix execution of tests involving matplotlib on travis import numpy as np import six.moves as sm import cv2 import imgaug as ia from imgaug import augmenters as iaa from imgaug import parameters as iap from imgaug import dtypes as iadt from imgaug import random as iarandom from imgaug.testutils import keypoints_equal, reseed class Test_blur_gaussian_(unittest.TestCase): def setUp(self): reseed() def test_integration(self): backends = ["auto", "scipy", "cv2"] nb_channels_lst = [None, 1, 3, 4, 5, 10] gen = itertools.product(backends, nb_channels_lst) for backend, nb_channels in gen: with self.subTest(backend=backend, nb_channels=nb_channels): image = np.zeros((5, 5), dtype=np.uint8) if nb_channels is not None: image = np.tile(image[..., np.newaxis], (1, 1, nb_channels)) image[2, 2] = 255 mask = image < 255 observed = iaa.blur_gaussian_( np.copy(image), sigma=5.0, backend=backend) assert observed.shape == image.shape assert observed.dtype.name == "uint8" assert np.all(observed[2, 2] < 255) assert np.sum(observed[mask]) > (5*5-1) if nb_channels is not None and nb_channels > 1: for c in sm.xrange(1, observed.shape[2]): assert np.array_equal(observed[..., c], observed[..., 0]) def test_sigma_zero(self): image = np.arange(4*4).astype(np.uint8).reshape((4, 4)) observed = iaa.blur_gaussian_(np.copy(image), 0) assert np.array_equal(observed, image) image = np.arange(4*4).astype(np.uint8).reshape((4, 4, 1)) observed = iaa.blur_gaussian_(np.copy(image), 0) assert np.array_equal(observed, image) image = np.arange(4*4*3).astype(np.uint8).reshape((4, 4, 3)) observed = iaa.blur_gaussian_(np.copy(image), 0) assert np.array_equal(observed, image) def test_eps(self): image = np.arange(4*4).astype(np.uint8).reshape((4, 4)) observed_no_eps = iaa.blur_gaussian_(np.copy(image), 1.0, eps=0) observed_with_eps = iaa.blur_gaussian_(np.copy(image), 1.0, eps=1e10) assert not np.array_equal(observed_no_eps, observed_with_eps) assert np.array_equal(observed_with_eps, image) def test_ksize(self): def side_effect(image, ksize, sigmaX, sigmaY, borderType): return image + 1 sigmas = [5.0, 5.0] ksizes = [None, 3] ksizes_expected = [2.6*5.0, 3] gen = zip(sigmas, ksizes, ksizes_expected) for (sigma, ksize, ksize_expected) in gen: with self.subTest(sigma=sigma, ksize=ksize): mock_GaussianBlur = mock.Mock(side_effect=side_effect) image = np.arange(4*4).astype(np.uint8).reshape((4, 4)) with mock.patch('cv2.GaussianBlur', mock_GaussianBlur): observed = iaa.blur_gaussian_( np.copy(image), sigma=sigma, ksize=ksize, backend="cv2") assert np.array_equal(observed, image+1) cargs = mock_GaussianBlur.call_args assert mock_GaussianBlur.call_count == 1 assert np.array_equal(cargs[0][0], image) assert isinstance(cargs[0][1], tuple) assert np.allclose( np.float32(cargs[0][1]), np.float32([ksize_expected, ksize_expected])) assert np.isclose(cargs[1]["sigmaX"], sigma) assert np.isclose(cargs[1]["sigmaY"], sigma) assert cargs[1]["borderType"] == cv2.BORDER_REFLECT_101 def test_more_than_four_channels(self): shapes = [ (1, 1, 4), (1, 1, 5), (1, 1, 512), (1, 1, 513) ] for shape in shapes: with self.subTest(shape=shape): image = np.zeros(shape, dtype=np.uint8) image_aug = iaa.blur_gaussian_(np.copy(image), 1.0) assert image_aug.shape == image.shape def test_zero_sized_axes(self): shapes = [ (0, 0), (0, 1), (1, 0), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1) ] for shape in shapes: with self.subTest(shape=shape): image = np.zeros(shape, dtype=np.uint8) image_aug = iaa.blur_gaussian_(np.copy(image), 1.0) assert image_aug.shape == image.shape def test_backends_called(self): def side_effect_cv2(image, ksize, sigmaX, sigmaY, borderType): return image + 1 def side_effect_scipy(image, sigma, mode): return image + 1 mock_GaussianBlur = mock.Mock(side_effect=side_effect_cv2) mock_gaussian_filter = mock.Mock(side_effect=side_effect_scipy) image = np.arange(4*4).astype(np.uint8).reshape((4, 4)) with mock.patch('cv2.GaussianBlur', mock_GaussianBlur): _observed = iaa.blur_gaussian_( np.copy(image), sigma=1.0, eps=0, backend="cv2") assert mock_GaussianBlur.call_count == 1 with mock.patch('scipy.ndimage.gaussian_filter', mock_gaussian_filter): _observed = iaa.blur_gaussian_( np.copy(image), sigma=1.0, eps=0, backend="scipy") assert mock_gaussian_filter.call_count == 1 def test_backends_similar(self): with self.subTest(nb_channels=None): size = 10 image = np.arange( 0, size*size).astype(np.uint8).reshape((size, size)) image_cv2 = iaa.blur_gaussian_( np.copy(image), sigma=3.0, ksize=20, backend="cv2") image_scipy = iaa.blur_gaussian_( np.copy(image), sigma=3.0, backend="scipy") diff = np.abs(image_cv2.astype(np.int32) - image_scipy.astype(np.int32)) assert np.average(diff) < 0.05 * (size * size) with self.subTest(nb_channels=3): size = 10 image = np.arange( 0, size*size).astype(np.uint8).reshape((size, size)) image = np.tile(image[..., np.newaxis], (1, 1, 3)) image[1] += 1 image[2] += 2 image_cv2 = iaa.blur_gaussian_( np.copy(image), sigma=3.0, ksize=20, backend="cv2") image_scipy = iaa.blur_gaussian_( np.copy(image), sigma=3.0, backend="scipy") diff = np.abs(image_cv2.astype(np.int32) - image_scipy.astype(np.int32)) assert np.average(diff) < 0.05 * (size * size) for c in sm.xrange(3): diff = np.abs(image_cv2[..., c].astype(np.int32) - image_scipy[..., c].astype(np.int32)) assert np.average(diff) < 0.05 * (size * size) def test_warnings(self): # note that self.assertWarningRegex does not exist in python 2.7 with warnings.catch_warnings(record=True) as caught_warnings: warnings.simplefilter("always") _ = iaa.blur_gaussian_( np.zeros((1, 1), dtype=np.uint32), sigma=3.0, ksize=11, backend="scipy") assert len(caught_warnings) == 1 assert ( "but also provided 'ksize' argument" in str(caught_warnings[-1].message)) def test_other_dtypes_sigma_0(self): dtypes_to_test_list = [ ["bool", "uint8", "uint16", "uint32", "uint64", "int8", "int16", "int32", "int64", "float16", "float32", "float64", "float128"], ["bool", "uint8", "uint16", "uint32", "uint64", "int8", "int16", "int32", "int64", "float16", "float32", "float64", "float128"] ] gen = zip(["scipy", "cv2"], dtypes_to_test_list) for backend, dtypes_to_test in gen: # bool if "bool" in dtypes_to_test: with self.subTest(backend=backend, dtype="bool"): image = np.zeros((3, 3), dtype=bool) image[1, 1] = True image_aug = iaa.blur_gaussian_( np.copy(image), sigma=0, backend=backend) assert image_aug.dtype.name == "bool" assert np.all(image_aug == image) # uint, int uint_dts = [np.uint8, np.uint16, np.uint32, np.uint64] int_dts = [np.int8, np.int16, np.int32, np.int64] for dtype in uint_dts + int_dts: dtype = np.dtype(dtype) if dtype.name in dtypes_to_test: with self.subTest(backend=backend, dtype=dtype.name): _min_value, center_value, _max_value = \ iadt.get_value_range_of_dtype(dtype) image = np.zeros((3, 3), dtype=dtype) image[1, 1] = int(center_value) image_aug = iaa.blur_gaussian_( np.copy(image), sigma=0, backend=backend) assert image_aug.dtype.name == dtype.name assert np.all(image_aug == image) # float float_dts = [np.float16, np.float32, np.float64, np.float128] for dtype in float_dts: dtype = np.dtype(dtype) if dtype.name in dtypes_to_test: with self.subTest(backend=backend, dtype=dtype.name): _min_value, center_value, _max_value = \ iadt.get_value_range_of_dtype(dtype) image = np.zeros((3, 3), dtype=dtype) image[1, 1] = center_value image_aug = iaa.blur_gaussian_( np.copy(image), sigma=0, backend=backend) assert image_aug.dtype.name == dtype.name assert np.allclose(image_aug, image) def test_other_dtypes_sigma_075(self): # prototype kernel, generated via: # mask = np.zeros((5, 5), dtype=np.int32) # mask[2, 2] = 1000 * 1000 # kernel = ndimage.gaussian_filter(mask, 0.75) mask = np.float64([ [ 923, 6650, 16163, 6650, 923], [ 6650, 47896, 116408, 47896, 6650], [ 16163, 116408, 282925, 116408, 16163], [ 6650, 47896, 116408, 47896, 6650], [ 923, 6650, 16163, 6650, 923] ]) / (1000.0 * 1000.0) dtypes_to_test_list = [ # scipy ["bool", "uint8", "uint16", "uint32", "uint64", "int8", "int16", "int32", "int64", "float16", "float32", "float64"], # cv2 ["bool", "uint8", "uint16", "int8", "int16", "int32", "float16", "float32", "float64"] ] gen = zip(["scipy", "cv2"], dtypes_to_test_list) for backend, dtypes_to_test in gen: # bool if "bool" in dtypes_to_test: with self.subTest(backend=backend, dtype="bool"): image = np.zeros((5, 5), dtype=bool) image[2, 2] = True image_aug = iaa.blur_gaussian_( np.copy(image), sigma=0.75, backend=backend) assert image_aug.dtype.name == "bool" assert np.all(image_aug == (mask > 0.5)) # uint, int uint_dts = [np.uint8, np.uint16, np.uint32, np.uint64] int_dts = [np.int8, np.int16, np.int32, np.int64] for dtype in uint_dts + int_dts: dtype = np.dtype(dtype) if dtype.name in dtypes_to_test: with self.subTest(backend=backend, dtype=dtype.name): min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dtype) dynamic_range = max_value - min_value value = int(center_value + 0.4 * max_value) image = np.zeros((5, 5), dtype=dtype) image[2, 2] = value image_aug = iaa.blur_gaussian_( image, sigma=0.75, backend=backend) expected = (mask * value).astype(dtype) diff = np.abs(image_aug.astype(np.int64) - expected.astype(np.int64)) assert image_aug.shape == mask.shape assert image_aug.dtype.type == dtype if dtype.itemsize <= 1: assert np.max(diff) <= 4 else: assert np.max(diff) <= 0.01 * dynamic_range # float float_dts = [np.float16, np.float32, np.float64, np.float128] values = [5000, 1000**1, 1000**2, 1000**3] for dtype, value in zip(float_dts, values): dtype = np.dtype(dtype) if dtype.name in dtypes_to_test: with self.subTest(backend=backend, dtype=dtype.name): image = np.zeros((5, 5), dtype=dtype) image[2, 2] = value image_aug = iaa.blur_gaussian_( image, sigma=0.75, backend=backend) expected = (mask * value).astype(dtype) diff = np.abs(image_aug.astype(np.float128) - expected.astype(np.float128)) assert image_aug.shape == mask.shape assert image_aug.dtype.type == dtype # accepts difference of 2.0, 4.0, 8.0, 16.0 (at 1, # 2, 4, 8 bytes, i.e. 8, 16, 32, 64 bit) max_diff = ( np.dtype(dtype).itemsize * 0.01 * np.float128(value)) assert np.max(diff) < max_diff def test_other_dtypes_bool_at_sigma_06(self): # -- # blur of bool input at sigma=0.6 # -- # here we use a special mask and sigma as otherwise the only values # ending up with >0.5 would be the ones that # were before the blur already at >0.5 # prototype kernel, generated via: # mask = np.zeros((5, 5), dtype=np.float64) # mask[1, 0] = 255 # mask[2, 0] = 255 # mask[2, 2] = 255 # mask[2, 4] = 255 # mask[3, 0] = 255 # mask = ndimage.gaussian_filter(mask, 1.0, mode="mirror") mask_bool = np.float64([ [ 57, 14, 2, 1, 1], [142, 42, 29, 14, 28], [169, 69, 114, 56, 114], [142, 42, 29, 14, 28], [ 57, 14, 2, 1, 1] ]) / 255.0 image = np.zeros((5, 5), dtype=bool) image[1, 0] = True image[2, 0] = True image[2, 2] = True image[2, 4] = True image[3, 0] = True for backend in ["scipy", "cv2"]: image_aug = iaa.blur_gaussian_( np.copy(image), sigma=0.6, backend=backend) expected = mask_bool > 0.5 assert image_aug.shape == mask_bool.shape assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == expected) class Test_blur_mean_shift_(unittest.TestCase): @property def image(self): image = [ [1, 2, 3, 4, 200, 201, 202, 203], [1, 2, 3, 4, 200, 201, 202, 203], [1, 2, 3, 4, 200, 201, 202, 203], [1, 2, 3, 4, 200, 201, 202, 203] ] image = np.array(image, dtype=np.uint8).reshape((4, 2*4, 1)) image = np.tile(image, (1, 1, 3)) return image def test_simple_image(self): image = self.image image_blurred = iaa.blur_mean_shift_(np.copy(image), 0.5, 0.5) assert image_blurred.shape == image.shape assert image_blurred.dtype.name == "uint8" assert not np.array_equal(image_blurred, image) assert 0 <= np.average(image[:, 0:4, :]) <= 5 assert 199 <= np.average(image[:, 4:, :]) <= 203 def test_hw_image(self): image = self.image[:, :, 0] image_blurred = iaa.blur_mean_shift_(np.copy(image), 0.5, 0.5) assert image_blurred.shape == image.shape assert image_blurred.dtype.name == "uint8" assert not np.array_equal(image_blurred, image) def test_hw1_image(self): image = self.image[:, :, 0:1] image_blurred = iaa.blur_mean_shift_(np.copy(image), 0.5, 0.5) assert image_blurred.ndim == 3 assert image_blurred.shape == image.shape assert image_blurred.dtype.name == "uint8" assert not np.array_equal(image_blurred, image) def test_non_contiguous_image(self): image = self.image image_cp = np.copy(np.fliplr(image)) image = np.fliplr(image) assert image.flags["C_CONTIGUOUS"] is False image_blurred = iaa.blur_mean_shift_(image, 0.5, 0.5) assert image_blurred.shape == image_cp.shape assert image_blurred.dtype.name == "uint8" assert not np.array_equal(image_blurred, image_cp) def test_both_parameters_are_zero(self): image = self.image[:, :, 0] image_blurred = iaa.blur_mean_shift_(np.copy(image), 0, 0) assert image_blurred.shape == image.shape assert image_blurred.dtype.name == "uint8" assert not np.array_equal(image_blurred, image) def test_zero_sized_axes(self): shapes = [ (0, 0), (0, 1), (1, 0), (0, 1, 1), (1, 0, 1) ] for shape in shapes: with self.subTest(shape=shape): image = np.zeros(shape, dtype=np.uint8) image_aug = iaa.blur_mean_shift_(np.copy(image), 1.0, 1.0) assert image_aug.shape == image.shape class TestGaussianBlur(unittest.TestCase): def setUp(self): reseed() def test_sigma_is_zero(self): # no blur, shouldnt change anything base_img = np.array([[0, 0, 0], [0, 255, 0], [0, 0, 0]], dtype=np.uint8) base_img = base_img[:, :, np.newaxis] images = np.array([base_img]) aug = iaa.GaussianBlur(sigma=0) observed = aug.augment_images(images) expected = images assert np.array_equal(observed, expected) def test_low_sigma(self): base_img = np.array([[0, 0, 0], [0, 255, 0], [0, 0, 0]], dtype=np.uint8) base_img = base_img[:, :, np.newaxis] images = np.array([base_img]) images_list = [base_img] outer_pixels = ([], []) for i in sm.xrange(base_img.shape[0]): for j in sm.xrange(base_img.shape[1]): if i != j: outer_pixels[0].append(i) outer_pixels[1].append(j) # weak blur of center pixel aug = iaa.GaussianBlur(sigma=0.5) aug_det = aug.to_deterministic() # images as numpy array observed = aug.augment_images(images) assert 100 < observed[0][1, 1] < 255 assert (observed[0][outer_pixels[0], outer_pixels[1]] > 0).all() assert (observed[0][outer_pixels[0], outer_pixels[1]] < 50).all() observed = aug_det.augment_images(images) assert 100 < observed[0][1, 1] < 255 assert (observed[0][outer_pixels[0], outer_pixels[1]] > 0).all() assert (observed[0][outer_pixels[0], outer_pixels[1]] < 50).all() # images as list observed = aug.augment_images(images_list) assert 100 < observed[0][1, 1] < 255 assert (observed[0][outer_pixels[0], outer_pixels[1]] > 0).all() assert (observed[0][outer_pixels[0], outer_pixels[1]] < 50).all() observed = aug_det.augment_images(images_list) assert 100 < observed[0][1, 1] < 255 assert (observed[0][outer_pixels[0], outer_pixels[1]] > 0).all() assert (observed[0][outer_pixels[0], outer_pixels[1]] < 50).all() def test_keypoints_dont_change(self): kps = [ia.Keypoint(x=0, y=0), ia.Keypoint(x=1, y=1), ia.Keypoint(x=2, y=2)] kpsoi = [ia.KeypointsOnImage(kps, shape=(3, 3, 1))] aug = iaa.GaussianBlur(sigma=0.5) aug_det = aug.to_deterministic() observed = aug.augment_keypoints(kpsoi) expected = kpsoi assert keypoints_equal(observed, expected) observed = aug_det.augment_keypoints(kpsoi) expected = kpsoi assert keypoints_equal(observed, expected) def test_sigma_is_tuple(self): # varying blur sigmas base_img = np.array([[0, 0, 0], [0, 255, 0], [0, 0, 0]], dtype=np.uint8) base_img = base_img[:, :, np.newaxis] images = np.array([base_img]) aug = iaa.GaussianBlur(sigma=(0, 1)) aug_det = aug.to_deterministic() last_aug = None last_aug_det = None nb_changed_aug = 0 nb_changed_aug_det = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_det = aug_det.augment_images(images) if i == 0: last_aug = observed_aug last_aug_det = observed_aug_det else: if not np.array_equal(observed_aug, last_aug): nb_changed_aug += 1 if not np.array_equal(observed_aug_det, last_aug_det): nb_changed_aug_det += 1 last_aug = observed_aug last_aug_det = observed_aug_det assert nb_changed_aug >= int(nb_iterations * 0.8) assert nb_changed_aug_det == 0 def test_other_dtypes_bool_at_sigma_0(self): # bool aug = iaa.GaussianBlur(sigma=0) image = np.zeros((3, 3), dtype=bool) image[1, 1] = True image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == image) def test_other_dtypes_uint_int_at_sigma_0(self): aug = iaa.GaussianBlur(sigma=0) dts = [np.uint8, np.uint16, np.uint32, np.int8, np.int16, np.int32] for dtype in dts: _min_value, center_value, _max_value = \ iadt.get_value_range_of_dtype(dtype) image = np.zeros((3, 3), dtype=dtype) image[1, 1] = int(center_value) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == image) def test_other_dtypes_float_at_sigma_0(self): aug = iaa.GaussianBlur(sigma=0) dts = [np.float16, np.float32, np.float64] for dtype in dts: _min_value, center_value, _max_value = \ iadt.get_value_range_of_dtype(dtype) image = np.zeros((3, 3), dtype=dtype) image[1, 1] = center_value image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.allclose(image_aug, image) def test_other_dtypes_bool_at_sigma_060(self): # -- # blur of bool input at sigma=0.6 # -- # here we use a special mask and sigma as otherwise the only values # ending up with >0.5 would be the ones that # were before the blur already at >0.5 # prototype kernel, generated via: # mask = np.zeros((5, 5), dtype=np.float64) # mask[1, 0] = 255 # mask[2, 0] = 255 # mask[2, 2] = 255 # mask[2, 4] = 255 # mask[3, 0] = 255 # mask = ndimage.gaussian_filter(mask, 1.0, mode="mirror") aug = iaa.GaussianBlur(sigma=0.6) mask_bool = np.float64([ [ 57, 14, 2, 1, 1], [142, 42, 29, 14, 28], [169, 69, 114, 56, 114], [142, 42, 29, 14, 28], [ 57, 14, 2, 1, 1] ]) / 255.0 image = np.zeros((5, 5), dtype=bool) image[1, 0] = True image[2, 0] = True image[2, 2] = True image[2, 4] = True image[3, 0] = True image_aug = aug.augment_image(image) expected = mask_bool > 0.5 assert image_aug.shape == mask_bool.shape assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == expected) def test_other_dtypes_at_sigma_1(self): # -- # blur of various dtypes at sigma=1.0 # and using an example value of 100 for int/uint/float and True for # bool # -- # prototype kernel, generated via: # mask = np.zeros((5, 5), dtype=np.float64) # mask[2, 2] = 100 # mask = ndimage.gaussian_filter(mask, 1.0, mode="mirror") aug = iaa.GaussianBlur(sigma=1.0) mask = np.float64([ [1, 2, 3, 2, 1], [2, 5, 9, 5, 2], [4, 9, 15, 9, 4], [2, 5, 9, 5, 2], [1, 2, 3, 2, 1] ]) # uint, int uint_dts = [np.uint8, np.uint16, np.uint32] int_dts = [np.int8, np.int16, np.int32] for dtype in uint_dts + int_dts: image = np.zeros((5, 5), dtype=dtype) image[2, 2] = 100 image_aug = aug.augment_image(image) expected = mask.astype(dtype) diff = np.abs(image_aug.astype(np.int64) - expected.astype(np.int64)) assert image_aug.shape == mask.shape assert image_aug.dtype.type == dtype assert np.max(diff) <= 4 assert np.average(diff) <= 2 # float float_dts = [np.float16, np.float32, np.float64] for dtype in float_dts: image = np.zeros((5, 5), dtype=dtype) image[2, 2] = 100.0 image_aug = aug.augment_image(image) expected = mask.astype(dtype) diff = np.abs(image_aug.astype(np.float128) - expected.astype(np.float128)) assert image_aug.shape == mask.shape assert image_aug.dtype.type == dtype assert np.max(diff) < 4 assert np.average(diff) < 2.0 def test_other_dtypes_at_sigma_040(self): # -- # blur of various dtypes at sigma=0.4 # and using an example value of 100 for int/uint/float and True for # bool # -- aug = iaa.GaussianBlur(sigma=0.4) # prototype kernel, generated via: # mask = np.zeros((5, 5), dtype=np.uint8) # mask[2, 2] = 100 # kernel = ndimage.gaussian_filter(mask, 0.4, mode="mirror") mask = np.float64([ [0, 0, 0, 0, 0], [0, 0, 3, 0, 0], [0, 3, 83, 3, 0], [0, 0, 3, 0, 0], [0, 0, 0, 0, 0] ]) # uint, int uint_dts = [np.uint8, np.uint16, np.uint32] int_dts = [np.int8, np.int16, np.int32] for dtype in uint_dts + int_dts: image = np.zeros((5, 5), dtype=dtype) image[2, 2] = 100 image_aug = aug.augment_image(image) expected = mask.astype(dtype) diff = np.abs(image_aug.astype(np.int64) - expected.astype(np.int64)) assert image_aug.shape == mask.shape assert image_aug.dtype.type == dtype assert np.max(diff) <= 4 # float float_dts = [np.float16, np.float32, np.float64] for dtype in float_dts: image = np.zeros((5, 5), dtype=dtype) image[2, 2] = 100.0 image_aug = aug.augment_image(image) expected = mask.astype(dtype) diff = np.abs(image_aug.astype(np.float128) - expected.astype(np.float128)) assert image_aug.shape == mask.shape assert image_aug.dtype.type == dtype assert np.max(diff) < 4.0 def test_other_dtypes_at_sigma_075(self): # -- # blur of various dtypes at sigma=0.75 # and values being half-way between center and maximum for each dtype # The goal of this test is to verify that no major loss of resolution # happens for large dtypes. # Such inaccuracies appear for float64 if used. # -- aug = iaa.GaussianBlur(sigma=0.75) # prototype kernel, generated via: # mask = np.zeros((5, 5), dtype=np.int32) # mask[2, 2] = 1000 * 1000 # kernel = ndimage.gaussian_filter(mask, 0.75) mask = np.float64([ [ 923, 6650, 16163, 6650, 923], [ 6650, 47896, 116408, 47896, 6650], [ 16163, 116408, 282925, 116408, 16163], [ 6650, 47896, 116408, 47896, 6650], [ 923, 6650, 16163, 6650, 923] ]) / (1000.0 * 1000.0) # uint, int uint_dts = [np.uint8, np.uint16, np.uint32] int_dts = [np.int8, np.int16, np.int32] for dtype in uint_dts + int_dts: min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dtype) dynamic_range = max_value - min_value value = int(center_value + 0.4 * max_value) image = np.zeros((5, 5), dtype=dtype) image[2, 2] = value image_aug = aug.augment_image(image) expected = (mask * value).astype(dtype) diff = np.abs(image_aug.astype(np.int64) - expected.astype(np.int64)) assert image_aug.shape == mask.shape assert image_aug.dtype.type == dtype if np.dtype(dtype).itemsize <= 1: assert np.max(diff) <= 4 else: assert np.max(diff) <= 0.01 * dynamic_range # float float_dts = [np.float16, np.float32, np.float64] values = [5000, 1000*1000, 1000*1000*1000] for dtype, value in zip(float_dts, values): image = np.zeros((5, 5), dtype=dtype) image[2, 2] = value image_aug = aug.augment_image(image) expected = (mask * value).astype(dtype) diff = np.abs(image_aug.astype(np.float128) - expected.astype(np.float128)) assert image_aug.shape == mask.shape assert image_aug.dtype.type == dtype # accepts difference of 2.0, 4.0, 8.0, 16.0 (at 1, 2, 4, 8 bytes, # i.e. 8, 16, 32, 64 bit) max_diff = np.dtype(dtype).itemsize * 0.01 * np.float128(value) assert np.max(diff) < max_diff def test_failure_on_invalid_dtypes(self): # assert failure on invalid dtypes aug = iaa.GaussianBlur(sigma=1.0) for dt in [np.float128]: got_exception = False try: _ = aug.augment_image(np.zeros((1, 1), dtype=dt)) except Exception as exc: assert "forbidden dtype" in str(exc) got_exception = True assert got_exception class TestAverageBlur(unittest.TestCase): def __init__(self, *args, **kwargs): super(TestAverageBlur, self).__init__(*args, **kwargs) base_img = np.zeros((11, 11, 1), dtype=np.uint8) base_img[5, 5, 0] = 200 base_img[4, 5, 0] = 100 base_img[6, 5, 0] = 100 base_img[5, 4, 0] = 100 base_img[5, 6, 0] = 100 blur3x3 = [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 11, 11, 11, 0, 0, 0, 0], [0, 0, 0, 11, 44, 56, 44, 11, 0, 0, 0], [0, 0, 0, 11, 56, 67, 56, 11, 0, 0, 0], [0, 0, 0, 11, 44, 56, 44, 11, 0, 0, 0], [0, 0, 0, 0, 11, 11, 11, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] blur3x3 = np.array(blur3x3, dtype=np.uint8)[..., np.newaxis] blur4x4 = [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 6, 6, 6, 6, 0, 0, 0], [0, 0, 0, 6, 25, 31, 31, 25, 6, 0, 0], [0, 0, 0, 6, 31, 38, 38, 31, 6, 0, 0], [0, 0, 0, 6, 31, 38, 38, 31, 6, 0, 0], [0, 0, 0, 6, 25, 31, 31, 25, 6, 0, 0], [0, 0, 0, 0, 6, 6, 6, 6, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] blur4x4 = np.array(blur4x4, dtype=np.uint8)[..., np.newaxis] blur5x5 = [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 4, 4, 4, 4, 4, 0, 0, 0], [0, 0, 4, 16, 20, 20, 20, 16, 4, 0, 0], [0, 0, 4, 20, 24, 24, 24, 20, 4, 0, 0], [0, 0, 4, 20, 24, 24, 24, 20, 4, 0, 0], [0, 0, 4, 20, 24, 24, 24, 20, 4, 0, 0], [0, 0, 4, 16, 20, 20, 20, 16, 4, 0, 0], [0, 0, 0, 4, 4, 4, 4, 4, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] blur5x5 = np.array(blur5x5, dtype=np.uint8)[..., np.newaxis] self.base_img = base_img self.blur3x3 = blur3x3 self.blur4x4 = blur4x4 self.blur5x5 = blur5x5 def setUp(self): reseed() def test_kernel_size_0(self): # no blur, shouldnt change anything aug = iaa.AverageBlur(k=0) observed = aug.augment_image(self.base_img) assert np.array_equal(observed, self.base_img) def test_kernel_size_3(self): # k=3 aug = iaa.AverageBlur(k=3) observed = aug.augment_image(self.base_img) assert np.array_equal(observed, self.blur3x3) def test_kernel_size_5(self): # k=5 aug = iaa.AverageBlur(k=5) observed = aug.augment_image(self.base_img) assert np.array_equal(observed, self.blur5x5) def test_kernel_size_is_tuple(self): # k as (3, 4) aug = iaa.AverageBlur(k=(3, 4)) nb_iterations = 100 nb_seen = [0, 0] for i in sm.xrange(nb_iterations): observed = aug.augment_image(self.base_img) if np.array_equal(observed, self.blur3x3): nb_seen[0] += 1 elif np.array_equal(observed, self.blur4x4): nb_seen[1] += 1 else: raise Exception("Unexpected result in AverageBlur@1") p_seen = [v/nb_iterations for v in nb_seen] assert 0.4 <= p_seen[0] <= 0.6 assert 0.4 <= p_seen[1] <= 0.6 def test_kernel_size_is_tuple_with_wider_range(self): # k as (3, 5) aug = iaa.AverageBlur(k=(3, 5)) nb_iterations = 200 nb_seen = [0, 0, 0] for i in sm.xrange(nb_iterations): observed = aug.augment_image(self.base_img) if np.array_equal(observed, self.blur3x3): nb_seen[0] += 1 elif np.array_equal(observed, self.blur4x4): nb_seen[1] += 1 elif np.array_equal(observed, self.blur5x5): nb_seen[2] += 1 else: raise Exception("Unexpected result in AverageBlur@2") p_seen = [v/nb_iterations for v in nb_seen] assert 0.23 <= p_seen[0] <= 0.43 assert 0.23 <= p_seen[1] <= 0.43 assert 0.23 <= p_seen[2] <= 0.43 def test_kernel_size_is_stochastic_parameter(self): # k as stochastic parameter aug = iaa.AverageBlur(k=iap.Choice([3, 5])) nb_iterations = 100 nb_seen = [0, 0] for i in sm.xrange(nb_iterations): observed = aug.augment_image(self.base_img) if np.array_equal(observed, self.blur3x3): nb_seen[0] += 1 elif np.array_equal(observed, self.blur5x5): nb_seen[1] += 1 else: raise Exception("Unexpected result in AverageBlur@3") p_seen = [v/nb_iterations for v in nb_seen] assert 0.4 <= p_seen[0] <= 0.6 assert 0.4 <= p_seen[1] <= 0.6 def test_kernel_size_is_tuple_of_tuples(self): # k as ((3, 5), (3, 5)) aug = iaa.AverageBlur(k=((3, 5), (3, 5))) possible = dict() for kh in [3, 4, 5]: for kw in [3, 4, 5]: key = (kh, kw) if kh == 0 or kw == 0: possible[key] = np.copy(self.base_img) else: possible[key] = cv2.blur( self.base_img, (kh, kw))[..., np.newaxis] nb_iterations = 250 nb_seen = dict([(key, 0) for key, val in possible.items()]) for i in sm.xrange(nb_iterations): observed = aug.augment_image(self.base_img) for key, img_aug in possible.items(): if np.array_equal(observed, img_aug): nb_seen[key] += 1 # dont check sum here, because 0xX and Xx0 are all the same, i.e. much # higher sum than nb_iterations assert np.all([v > 0 for v in nb_seen.values()]) def test_more_than_four_channels(self): shapes = [ (1, 1, 4), (1, 1, 5), (1, 1, 512), (1, 1, 513) ] for shape in shapes: with self.subTest(shape=shape): image = np.zeros(shape, dtype=np.uint8) image_aug = iaa.AverageBlur(k=3)(image=image) assert image_aug.shape == image.shape def test_zero_sized_axes(self): shapes = [ (0, 0), (0, 1), (1, 0), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1) ] for shape in shapes: with self.subTest(shape=shape): image = np.zeros(shape, dtype=np.uint8) image_aug = iaa.AverageBlur(k=3)(image=image) assert image_aug.shape == image.shape def test_keypoints_dont_change(self): kps = [ia.Keypoint(x=0, y=0), ia.Keypoint(x=1, y=1), ia.Keypoint(x=2, y=2)] kpsoi = [ia.KeypointsOnImage(kps, shape=(11, 11, 1))] aug = iaa.AverageBlur(k=3) aug_det = aug.to_deterministic() observed = aug.augment_keypoints(kpsoi) expected = kpsoi assert keypoints_equal(observed, expected) observed = aug_det.augment_keypoints(kpsoi) expected = kpsoi assert keypoints_equal(observed, expected) def test_other_dtypes_k0(self): aug = iaa.AverageBlur(k=0) # bool image = np.zeros((3, 3), dtype=bool) image[1, 1] = True image[2, 2] = True image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == image) # uint, int uint_dts = [np.uint8, np.uint16] int_dts = [np.int8, np.int16] for dtype in uint_dts + int_dts: _min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dtype) image = np.zeros((3, 3), dtype=dtype) image[1, 1] = int(center_value + 0.4 * max_value) image[2, 2] = int(center_value + 0.4 * max_value) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == image) # float float_dts = [np.float16, np.float32, np.float64] values = [5000, 1000*1000, 1000*1000*1000] for dtype, value in zip(float_dts, values): image = np.zeros((3, 3), dtype=dtype) image[1, 1] = value image[2, 2] = value image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.allclose(image_aug, image) def test_other_dtypes_k3_value_100(self): # -- # blur of various dtypes at k=3 # and using an example value of 100 for int/uint/float and True for # bool # -- aug = iaa.AverageBlur(k=3) # prototype mask # we place values in a 3x3 grid at positions (row=1, col=1) and # (row=2, col=2) (beginning with 0) # AverageBlur uses cv2.blur(), which uses BORDER_REFLECT_101 as its # default padding mode, # see https://docs.opencv.org/3.1.0/d2/de8/group__core__array.html # the matrix below shows the 3x3 grid and the padded row/col values # around it # [1, 0, 1, 0, 1] # [0, 0, 0, 0, 0] # [1, 0, 1, 0, 1] # [0, 0, 0, 1, 0] # [1, 0, 1, 0, 1] mask = np.float64([ [4/9, 2/9, 4/9], [2/9, 2/9, 3/9], [4/9, 3/9, 5/9] ]) # bool image = np.zeros((3, 3), dtype=bool) image[1, 1] = True image[2, 2] = True image_aug = aug.augment_image(image) expected = mask > 0.5 assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == expected) # uint, int uint_dts = [np.uint8, np.uint16] int_dts = [np.int8, np.int16] for dtype in uint_dts + int_dts: image = np.zeros((3, 3), dtype=dtype) image[1, 1] = 100 image[2, 2] = 100 image_aug = aug.augment_image(image) # cv2.blur() applies rounding for int/uint dtypes expected = np.round(mask * 100).astype(dtype) diff = np.abs(image_aug.astype(np.int64) - expected.astype(np.int64)) assert image_aug.dtype.type == dtype assert np.max(diff) <= 2 # float float_dts = [np.float16, np.float32, np.float64] for dtype in float_dts: image = np.zeros((3, 3), dtype=dtype) image[1, 1] = 100.0 image[2, 2] = 100.0 image_aug = aug.augment_image(image) expected = (mask * 100.0).astype(dtype) diff = np.abs(image_aug.astype(np.float128) - expected.astype(np.float128)) assert image_aug.dtype.type == dtype assert np.max(diff) < 1.0 def test_other_dtypes_k3_dynamic_value(self): # -- # blur of various dtypes at k=3 # and values being half-way between center and maximum for each # dtype (bool is skipped as it doesnt make any sense here) # The goal of this test is to verify that no major loss of resolution # happens for large dtypes. # -- aug = iaa.AverageBlur(k=3) # prototype mask (see above) mask = np.float64([ [4/9, 2/9, 4/9], [2/9, 2/9, 3/9], [4/9, 3/9, 5/9] ]) # uint, int uint_dts = [np.uint8, np.uint16] int_dts = [np.int8, np.int16] for dtype in uint_dts + int_dts: _min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dtype) value = int(center_value + 0.4 * max_value) image = np.zeros((3, 3), dtype=dtype) image[1, 1] = value image[2, 2] = value image_aug = aug.augment_image(image) expected = (mask * value).astype(dtype) diff = np.abs(image_aug.astype(np.int64) - expected.astype(np.int64)) assert image_aug.dtype.type == dtype # accepts difference of 4, 8, 16 (at 1, 2, 4 bytes, i.e. 8, 16, # 32 bit) assert np.max(diff) <= 2**(1 + np.dtype(dtype).itemsize) # float float_dts = [np.float16, np.float32, np.float64] values = [5000, 1000*1000, 1000*1000*1000] for dtype, value in zip(float_dts, values): image = np.zeros((3, 3), dtype=dtype) image[1, 1] = value image[2, 2] = value image_aug = aug.augment_image(image) expected = (mask * value).astype(dtype) diff = np.abs(image_aug.astype(np.float128) - expected.astype(np.float128)) assert image_aug.dtype.type == dtype # accepts difference of 2.0, 4.0, 8.0, 16.0 (at 1, 2, 4, 8 bytes, # i.e. 8, 16, 32, 64 bit) assert
np.max(diff)
numpy.max
""" Programmer: <NAME> Purpose: A variety of tools for computing self-similarity matrices (SSMs) and cross-similarity matrices (CSMs), with a particular emphasis on speeding up Euclidean SSMs/CSMs. """ import numpy as np import scipy.misc import scipy.interpolate import matplotlib.pyplot as plt import SequenceAlignment.SequenceAlignment as SA import SequenceAlignment._SequenceAlignment as SAC from SimilarityFusion import * import time from multiprocessing import Pool as PPool def imresize(D, dims, kind='cubic', use_scipy=False): """ Resize a floating point image Parameters ---------- D : ndarray(M1, N1) Original image dims : tuple(M2, N2) The dimensions to which to resize kind : string The kind of interpolation to use use_scipy : boolean Fall back to scipy.misc.imresize. This is a bad idea because it casts everything to uint8, but it's what I was doing accidentally for a while Returns ------- D2 : ndarray(M2, N2) A resized array """ if use_scipy: return scipy.misc.imresize(D, dims) else: M, N = dims x1 = np.array(0.5 + np.arange(D.shape[1]), dtype=np.float32)/D.shape[1] y1 = np.array(0.5 + np.arange(D.shape[0]), dtype=np.float32)/D.shape[0] x2 = np.array(0.5 + np.arange(N), dtype=np.float32)/N y2 = np.array(0.5 +
np.arange(M)
numpy.arange
""" This file contains the files for computing the argmax oracle. argmax_oracle is the general oracle to be called. We also implement individual argmax_oracle_<model> methods that are specific to each type of model class. """ from sklearn import svm from sklearn.linear_model import LogisticRegression, RidgeClassifier from src.dataset import * import numpy as np import torch def argmax_oracle_single_helper(name, w, seed=12345, visualize=False, return_test_accuracy=True): """ w: a numpy array of weights that we take inner product with. """ torch.random.manual_seed(seed) # Normalize and transform to weighted classification where each weight is in [0, 1]. w = torch.from_numpy(w).float() w = w / torch.max(torch.abs(w)) label = (w > 0).float() dataset = get_dataset() # Depending on the function class, we call different argmax oracles. w.abs_() if name == "sklogistic": return argmax_oracle_sklogistic(dataset, w, label, return_test_accuracy) elif name == "svm": return argmax_oracle_svm(dataset, w, label, return_test_accuracy) elif name == "sklinear": return argmax_oracle_sklinear(dataset, w, label, return_test_accuracy) elif name == "2d_thresh": return argmax_oracle_2d_thresh(dataset, w, label, return_test_accuracy) def argmax_oracle_single(w, seed=12345, visualize=False, return_test_accuracy=True): return argmax_oracle_single_helper(model_name, w, seed=seed, visualize=visualize, return_test_accuracy=return_test_accuracy) def argmax_oracle_2d_thresh(dataset, w, label, return_test_accuracy): # assuming only 0/1 in w rnd = np.random.RandomState(12345) hs = rnd.rand(10000, 2) X = dataset["X"].numpy() y = label.numpy() X_test = dataset["X_test"].numpy() y_test = dataset["Y_test"].numpy() X_train = X[w != 0] y_train = y[w != 0] thresh = (hs[:, 0].reshape((-1, 1)) > X_train[:, 0]).astype(int) + ( hs[:, 1].reshape((-1, 1)) > X_train[:, 1]).astype(int) thresh = (thresh == 2).astype(int) best_thresh = np.argmax(np.sum((thresh == y_train.astype(int)).astype(int), axis=1)) # print(hs[best_thresh]) # import matplotlib.pyplot as plt # plt.scatter(X_train[:, 0], X_train[:, 1], c=['red' if l == 1 else 'blue' for l in thresh[best_thresh]]) # plt.show() pred = (hs[:, 0][best_thresh] > X[:, 0]).astype(int) + (hs[:, 1][best_thresh] > X[:, 1]).astype(int) pred_test = (hs[:, 0][best_thresh] > X_test[:, 0]).astype(int) + ( hs[:, 1][best_thresh] > X_test[:, 1]).astype(int) if return_test_accuracy: return (pred == 2).astype(int), np.mean(((pred_test == 2).astype(int) == y_test).astype(float)) else: return (pred == 2).astype(int) def argmax_oracle_sklearn(model, dataset, w, label, return_test_accuracy): X = dataset["X"].numpy() y = label.numpy() X_test = dataset["X_test"].numpy() y_test = dataset["Y_test"].numpy() if np.sum(y[w != 0]) == 0: # All labels are 0. if return_test_accuracy: return np.zeros(y.shape), np.mean((y_test == 0).astype(float)) else: return np.zeros(y.shape) elif
np.sum(y[w != 0])
numpy.sum
#!/usr/bin/env python3 """Machine Learning module for ADNI capstone project. This module contains functions for use with the ADNI dataset. """ if 'pd' not in globals(): import pandas as pd if 'np' not in globals(): import numpy as np if 'plt' not in globals(): import matplotlib.pyplot as plt if 'sns' not in globals(): import seaborn as sns if 'scipy.stats' not in globals(): import scipy.stats if 'StandardScaler' not in globals(): from sklearn.preprocessing import StandardScaler, MinMaxScaler if 'KNeighborsClassifier' not in globals(): from sklearn.neighbors import KNeighborsClassifier if 'SVC' not in globals(): from sklearn.svm import SVC if 'train_test_split' not in globals(): from sklearn.model_selection import train_test_split, GridSearchCV if 'MultinomialNB' not in globals(): from sklearn.naive_bayes import MultinomialNB if 'confusion_matrix' not in globals(): from sklearn.metrics import roc_auc_score, confusion_matrix, classification_report if 'RandomForestClassifier' not in globals(): from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier if 'linear_model' not in globals(): from sklearn import linear_model if 'PCA' not in globals(): from sklearn.decomposition import PCA sns.set() def get_delta_scaled(final_exam, neg_one=False): """Take the final_exam dataframe and return datasets. This function returns five numpy arrays: feature_names, X_delta_male, X_delta_female, y_delta_male, and y_delta_female. The two X arrays hold the feature data. The two y arrays hold the diagnosis group labels. The feature_names array hold a list of the features. The neg_one parameter allows you to specify -1 for the negative class (for SVM).""" # map the diagnosis group and assign to dx_group nc_idx = final_exam[final_exam.DX == final_exam.DX_bl2].index cn_mci_idx = final_exam[(final_exam.DX == 'MCI') & (final_exam.DX_bl2 == 'CN')].index mci_ad_idx = final_exam[(final_exam.DX == 'AD') & (final_exam.DX_bl2 == 'MCI')].index cn_ad_idx = final_exam[(final_exam.DX == 'AD') & (final_exam.DX_bl2 == 'CN')].index if neg_one: labels = pd.concat([pd.DataFrame({'dx_group': -1}, index=nc_idx), pd.DataFrame({'dx_group': -1}, index=cn_mci_idx), pd.DataFrame({'dx_group': 1}, index=mci_ad_idx), pd.DataFrame({'dx_group': 1}, index=cn_ad_idx) ]).sort_index() else: labels = pd.concat([pd.DataFrame({'dx_group': 0}, index=nc_idx), pd.DataFrame({'dx_group': 0}, index=cn_mci_idx), pd.DataFrame({'dx_group': 1}, index=mci_ad_idx), pd.DataFrame({'dx_group': 1}, index=cn_ad_idx) ]).sort_index() # add to the dataframe and ensure every row has a label deltas_df = final_exam.loc[labels.index] deltas_df.loc[:,'dx_group'] = labels.dx_group # convert gender to numeric column deltas_df = pd.get_dummies(deltas_df, drop_first=True, columns=['PTGENDER']) # extract the features for change in diagnosis X_delta = deltas_df.reindex(columns=['CDRSB_delta', 'ADAS11_delta', 'ADAS13_delta', 'MMSE_delta', 'RAVLT_delta', 'Hippocampus_delta', 'Ventricles_delta', 'WholeBrain_delta', 'Entorhinal_delta', 'MidTemp_delta', 'PTGENDER_Male', 'AGE']) # store the feature names feature_names = np.array(['CDRSB_delta', 'ADAS11_delta', 'ADAS13_delta', 'MMSE_delta', 'RAVLT_delta', 'Hippocampus_delta', 'Ventricles_delta', 'WholeBrain_delta', 'Entorhinal_delta', 'MidTemp_delta', 'PTGENDER_Male', 'AGE']) # standardize the data scaler = StandardScaler() Xd = scaler.fit_transform(X_delta) # extract the labels yd = np.array(deltas_df.dx_group) # return the data return feature_names, Xd, yd def plot_best_k(X_train, X_test, y_train, y_test, kmax=9): """This function will create a plot to help choose the best k for k-NN. Supply the training and test data to compare accuracy at different k values. Specifying a max k value is optional.""" # Setup arrays to store train and test accuracies # view the plot to help pick the best k to use neighbors = np.arange(1, kmax) train_accuracy = np.empty(len(neighbors)) test_accuracy = np.empty(len(neighbors)) # Loop over different values of k for i, k in enumerate(neighbors): # Setup a k-NN Classifier with k neighbors: knn knn = KNeighborsClassifier(n_neighbors=k) # Fit the classifier to the training data knn.fit(X_train, y_train) #Compute accuracy on the training set train_accuracy[i] = knn.score(X_train, y_train) #Compute accuracy on the testing set test_accuracy[i] = knn.score(X_test, y_test) if kmax < 11: s = 2 elif kmax < 21: s = 4 elif kmax < 41: s = 5 elif kmax < 101: s = 10 else: s = 20 # Generate plot _ = plt.title('k-NN: Varying Number of Neighbors') _ = plt.plot(neighbors, test_accuracy, label = 'Testing Accuracy') _ = plt.plot(neighbors, train_accuracy, label = 'Training Accuracy') _ = plt.legend() _ = plt.xlabel('Number of Neighbors') _ = plt.ylabel('Accuracy') _ = plt.xticks(np.arange(0,kmax,s)) plt.show() def plot_f1_scores(k, s, r, b, l, n): """This function accepts six dictionaries containing classification reports. This function is designed to work specifically with the six dictionaries created in the 5-Machine_Learning notebook, as the second dictionary is SVM, which uses classes of -1 and 1, whereas the other classes are 0 and 1.""" # extract the data and store in a dataframe df = pd.DataFrame({'score': [k['0']['f1-score'], k['1']['f1-score'], s['-1']['f1-score'], s['1']['f1-score'], r['0']['f1-score'], r['1']['f1-score'], b['0']['f1-score'], b['1']['f1-score'], l['0']['f1-score'], l['1']['f1-score'], n['0']['f1-score'], n['1']['f1-score']], 'model': ['KNN', 'KNN', 'SVM', 'SVM', 'Random Forest', 'Random Forest', 'AdaBoost', 'AdaBoost', 'Log Reg', 'Log Reg', 'Naive Bayes', 'Naive Bayes'], 'group': ['Non AD', 'AD', 'Non AD', 'AD', 'Non AD', 'AD', 'Non AD', 'AD', 'Non AD', 'AD', 'Non AD', 'AD']}) # create the plot ax = sns.barplot('model', 'score', hue='group', data=df) _ = plt.setp(ax.get_xticklabels(), rotation=25) _ = plt.title('F1 Scores for Each Model') _ = plt.ylabel('F1 Score') _ = plt.xlabel('Model') _ = ax.legend(loc='center left', bbox_to_anchor=(1, 0.5)) plt.show() def get_bl_data(final_exam, neg_one=False): """This function extracts the baseline data features for machine learning. Pass the final_exam dataframe, specify optional neg_one=True for SVM (sets) the non-Ad class as -1 vs 0. Returns features (X), labels (y), and feature_names. """ # map the diagnosis group and assign to dx_group non_ad_idx = final_exam[final_exam.DX != 'AD'].index ad_idx = final_exam[final_exam.DX == 'AD'].index if neg_one: labels = pd.concat([pd.DataFrame({'dx_group': -1}, index=non_ad_idx), pd.DataFrame({'dx_group': 1}, index=ad_idx) ]).sort_index() else: labels = pd.concat([pd.DataFrame({'dx_group': 0}, index=non_ad_idx), pd.DataFrame({'dx_group': 1}, index=ad_idx) ]).sort_index() # add to the dataframe and ensure every row has a label bl_df = final_exam.loc[labels.index] bl_df.loc[:,'dx_group'] = labels.dx_group # convert gender to numeric column bl_df = pd.get_dummies(bl_df, drop_first=True, columns=['PTGENDER']) # extract the baseline features X_bl = bl_df.reindex(columns=['CDRSB_bl', 'ADAS11_bl', 'ADAS13_bl', 'MMSE_bl', 'RAVLT_immediate_bl', 'Hippocampus_bl', 'Ventricles_bl', 'WholeBrain_bl', 'Entorhinal_bl', 'MidTemp_bl', 'PTGENDER_Male', 'AGE']) # store the feature names feature_names = np.array(['CDRSB_bl', 'ADAS11_bl', 'ADAS13_bl', 'MMSE_bl', 'RAVLT_immediate_bl', 'Hippocampus_bl', 'Ventricles_bl', 'WholeBrain_bl', 'Entorhinal_bl', 'MidTemp_bl', 'PTGENDER_Male', 'AGE']) # standardize the data scaler = StandardScaler() Xd = scaler.fit_transform(X_bl) # extract the labels yd = np.array(bl_df.dx_group) # return the data return feature_names, Xd, yd def run_clinical_models(final_exam, biomarkers): """This dataframe runs six machine learning models on only the clinical biomarkes. A dataframe containing summary information will be returned.""" # map the diagnosis group and assign to dx_group nc_idx = final_exam[final_exam.DX == final_exam.DX_bl2].index cn_mci_idx = final_exam[(final_exam.DX == 'MCI') & (final_exam.DX_bl2 == 'CN')].index mci_ad_idx = final_exam[(final_exam.DX == 'AD') & (final_exam.DX_bl2 == 'MCI')].index cn_ad_idx = final_exam[(final_exam.DX == 'AD') & (final_exam.DX_bl2 == 'CN')].index labels = pd.concat([pd.DataFrame({'dx_group': 0}, index=nc_idx), pd.DataFrame({'dx_group': 0}, index=cn_mci_idx), pd.DataFrame({'dx_group': 1}, index=mci_ad_idx), pd.DataFrame({'dx_group': 1}, index=cn_ad_idx) ]).sort_index() # add to the dataframe and ensure every row has a label labeled_df = final_exam.loc[labels.index] labeled_df.loc[:,'dx_group'] = labels.dx_group # convert gender to numeric column labeled_df = pd.get_dummies(labeled_df, drop_first=True, columns=['PTGENDER']) if biomarkers == 'deltas': # extract the features for change in diagnosis X = labeled_df.reindex(columns=['CDRSB_delta', 'ADAS11_delta', 'ADAS13_delta', 'MMSE_delta', 'RAVLT_delta', 'PTGENDER_Male', 'AGE']) # store the feature names feature_names = np.array(['CDRSB_delta', 'ADAS11_delta', 'ADAS13_delta', 'MMSE_delta', 'RAVLT_delta', 'PTGENDER_Male', 'AGE']) elif biomarkers == 'baseline': # extract the features for change in diagnosis X = labeled_df.reindex(columns=['CDRSB_bl', 'ADAS11_bl', 'ADAS13_bl', 'MMSE_bl', 'RAVLT_immediate_bl', 'PTGENDER_Male', 'AGE']) # store the feature names feature_names = np.array(['CDRSB_bl', 'ADAS11_bl', 'ADAS13_bl', 'MMSE_bl', 'RAVLT_immediate_bl', 'PTGENDER_Male', 'AGE']) # standardize the data scaler = StandardScaler() Xd = scaler.fit_transform(X) # extract the labels yd = np.array(labeled_df.dx_group) # split into training and test data Xd_train, Xd_test, yd_train, yd_test = train_test_split(Xd, yd, test_size=0.3, random_state=21, stratify=yd) # initialize dataframe to hold summary info for the models columns = ['model', 'hyper_params', 'train_acc', 'test_acc', 'auc', 'tp', 'fn', 'tn', 'fp', 'precision', 'recall', 'fpr', 'neg_f1', 'AD_f1'] df = pd.DataFrame(columns=columns) # knn model param_grid = {'n_neighbors': np.arange(1, 50)} knn = KNeighborsClassifier() knn_cv = GridSearchCV(knn, param_grid, cv=5) knn_cv.fit(Xd_train, yd_train) k = knn_cv.best_params_['n_neighbors'] hp = 'k: {}'.format(k) knn = KNeighborsClassifier(n_neighbors=k) knn.fit(Xd_train, yd_train) y_pred = knn.predict(Xd_test) train_acc = knn.score(Xd_train, yd_train) test_acc = knn.score(Xd_test, yd_test) y_pred_prob = knn.predict_proba(Xd_test)[:,1] auc = roc_auc_score(yd_test, y_pred_prob) tn, fp, fn, tp = confusion_matrix(yd_test, y_pred).ravel() prec = tp / (tp + fp) recall = tp / (tp + fn) fpr = fp / (tn + fp) rep = classification_report(yd_test, y_pred, output_dict=True) knn_df = pd.DataFrame({'model': 'knn', 'hyper_params': hp, 'train_acc': train_acc, 'test_acc': test_acc, 'auc': auc, 'tp': tp, 'fn': fn, 'tn': tn, 'fp': fp, 'precision': prec, 'recall': recall, 'fpr': fpr, 'neg_f1': rep['0']['f1-score'], 'AD_f1': rep['1']['f1-score']}, index=[0]) df = df.append(knn_df, ignore_index=True, sort=False) # SVM model # map the svm labels yd_train_svm = np.where(yd_train == 0, yd_train - 1, yd_train) yd_test_svm = np.where(yd_test == 0, yd_test - 1, yd_test) num_features = Xd_train.shape[1] param_grid = {'C': [0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.25, 1.5, 1.75], 'gamma': [(1/(num_features*Xd_train.var())), (1/num_features)]} svm = SVC(class_weight='balanced', probability=True) svm_cv = GridSearchCV(svm, param_grid, cv=5) svm_cv.fit(Xd_train, yd_train_svm) C = svm_cv.best_params_['C'] gamma = svm_cv.best_params_['gamma'] hp = 'C: {}'.format(C) + ', gamma: {:.4f}'.format(gamma) svm = SVC(C=C, gamma=gamma, class_weight='balanced', probability=True) svm.fit(Xd_train, yd_train_svm) y_pred = svm.predict(Xd_test) train_acc = svm.score(Xd_train, yd_train_svm) test_acc = svm.score(Xd_test, yd_test_svm) y_pred_prob = svm.predict_proba(Xd_test)[:,1] auc = roc_auc_score(yd_test_svm, y_pred_prob) tn, fp, fn, tp = confusion_matrix(yd_test_svm, y_pred).ravel() prec = tp / (tp + fp) recall = tp / (tp + fn) fpr = fp / (tn + fp) rep = classification_report(yd_test_svm, y_pred, output_dict=True) roc_auc_score(yd_test_svm, y_pred_prob) svm_df = pd.DataFrame({'model': 'svm', 'hyper_params': hp, 'train_acc': train_acc, 'test_acc': test_acc, 'auc': auc, 'tp': tp, 'fn': fn, 'tn': tn, 'fp': fp, 'precision': prec, 'recall': recall, 'fpr': fpr, 'neg_f1': rep['-1']['f1-score'], 'AD_f1': rep['1']['f1-score']}, index=[1]) df = df.append(svm_df, ignore_index=True, sort=False) # Random Forests Model trees = [101, 111, 121, 131, 141, 151, 161, 171, 181, 191, 201, 211, 221] max_f = [1, num_features, 'log2', 'sqrt'] param_grid = {'n_estimators': trees, 'max_features': max_f} r_forest = RandomForestClassifier(class_weight='balanced', random_state=42) r_forest_cv = GridSearchCV(r_forest, param_grid, cv=5) r_forest_cv.fit(Xd_train, yd_train) n_est = r_forest_cv.best_params_['n_estimators'] n_feat = r_forest_cv.best_params_['max_features'] hp = 'trees: {}'.format(n_est) + ', max_feats: {}'.format(n_feat) rfc = RandomForestClassifier(n_estimators=n_est, max_features=n_feat, class_weight='balanced', random_state=42) rfc.fit(Xd_train, yd_train) y_pred = rfc.predict(Xd_test) train_acc = rfc.score(Xd_train, yd_train) test_acc = rfc.score(Xd_test, yd_test) y_pred_prob = rfc.predict_proba(Xd_test)[:,1] auc = roc_auc_score(yd_test, y_pred_prob) tn, fp, fn, tp = confusion_matrix(yd_test, y_pred).ravel() prec = tp / (tp + fp) recall = tp / (tp + fn) fpr = fp / (tn + fp) rep = classification_report(yd_test, y_pred, output_dict=True) rfc_df = pd.DataFrame({'model': 'RF', 'hyper_params': hp, 'train_acc': train_acc, 'test_acc': test_acc, 'auc': auc, 'tp': tp, 'fn': fn, 'tn': tn, 'fp': fp, 'precision': prec, 'recall': recall, 'fpr': fpr, 'neg_f1': rep['0']['f1-score'], 'AD_f1': rep['1']['f1-score']}, index=[2]) df = df.append(rfc_df, ignore_index=True, sort=False) # AdaBoost Classifier est = [31, 41, 51, 61, 71, 81, 91, 101] param_grid = {'n_estimators': est} boost = AdaBoostClassifier(random_state=42) boost_cv = GridSearchCV(boost, param_grid, cv=5) boost_cv.fit(Xd_train, yd_train) n_est = boost_cv.best_params_['n_estimators'] hp = 'num_estimators: {}'.format(n_est) model = AdaBoostClassifier(n_estimators=n_est, random_state=0) model.fit(Xd_train, yd_train) y_pred = model.predict(Xd_test) train_acc = model.score(Xd_train, yd_train) test_acc = model.score(Xd_test, yd_test) y_pred_prob = model.predict_proba(Xd_test)[:,1] auc = roc_auc_score(yd_test, y_pred_prob) tn, fp, fn, tp = confusion_matrix(yd_test, y_pred).ravel() prec = tp / (tp + fp) recall = tp / (tp + fn) fpr = fp / (tn + fp) rep = classification_report(yd_test, y_pred, output_dict=True) boost_df = pd.DataFrame({'model': 'AdaBoost', 'hyper_params': hp, 'train_acc': train_acc, 'test_acc': test_acc, 'auc': auc, 'tp': tp, 'fn': fn, 'tn': tn, 'fp': fp, 'precision': prec, 'recall': recall, 'fpr': fpr, 'neg_f1': rep['0']['f1-score'], 'AD_f1': rep['1']['f1-score']}, index=[3]) df = df.append(boost_df, ignore_index=True, sort=False) # logistic regression logreg = linear_model.LogisticRegression(solver='lbfgs', class_weight='balanced', random_state=42) logreg.fit(Xd_train, yd_train) y_pred = logreg.predict(Xd_test) train_acc = logreg.score(Xd_train, yd_train) test_acc = logreg.score(Xd_test, yd_test) y_pred_prob = logreg.predict_proba(Xd_test)[:,1] auc = roc_auc_score(yd_test, y_pred_prob) tn, fp, fn, tp = confusion_matrix(yd_test, y_pred).ravel() prec = tp / (tp + fp) recall = tp / (tp + fn) fpr = fp / (tn + fp) rep = classification_report(yd_test, y_pred, output_dict=True) logreg_df = pd.DataFrame({'model': 'logreg', 'hyper_params': None, 'train_acc': train_acc, 'test_acc': test_acc, 'auc': auc, 'tp': tp, 'fn': fn, 'tn': tn, 'fp': fp, 'precision': prec, 'recall': recall, 'fpr': fpr, 'neg_f1': rep['0']['f1-score'], 'AD_f1': rep['1']['f1-score']}, index=[4]) df = df.append(logreg_df, ignore_index=True, sort=False) # Naive Bayes scaler = MinMaxScaler() X_scaled = scaler.fit_transform(Xd_train) model = MultinomialNB() model.fit(X_scaled, yd_train) y_pred = model.predict(Xd_test) train_acc = model.score(X_scaled, yd_train) test_acc = model.score(Xd_test, yd_test) y_pred_prob = model.predict_proba(Xd_test)[:,1] auc = roc_auc_score(yd_test, y_pred_prob) tn, fp, fn, tp = confusion_matrix(yd_test, y_pred).ravel() prec = tp / (tp + fp) recall = tp / (tp + fn) fpr = fp / (tn + fp) rep = classification_report(yd_test, y_pred, output_dict=True) nb_df = pd.DataFrame({'model': 'bayes', 'hyper_params': None, 'train_acc': train_acc, 'test_acc': test_acc, 'auc': auc, 'tp': tp, 'fn': fn, 'tn': tn, 'fp': fp, 'precision': prec, 'recall': recall, 'fpr': fpr, 'neg_f1': rep['0']['f1-score'], 'AD_f1': rep['1']['f1-score']}, index=[5]) df = df.append(nb_df, ignore_index=True, sort=False) # return the dataframe return df def run_models(Xd_train, Xd_test, yd_train, yd_test): """This function runs all of the classification data supplied through the models. Supply the training and test data. """ # initialize dataframe to hold summary info for the models columns = ['model', 'hyper_params', 'train_acc', 'test_acc', 'auc', 'tp', 'fn', 'tn', 'fp', 'precision', 'recall', 'fpr', 'neg_f1', 'AD_f1'] df = pd.DataFrame(columns=columns) # knn model param_grid = {'n_neighbors': np.arange(1, 50)} knn = KNeighborsClassifier() knn_cv = GridSearchCV(knn, param_grid, cv=5) knn_cv.fit(Xd_train, yd_train) k = knn_cv.best_params_['n_neighbors'] hp = 'k: {}'.format(k) knn = KNeighborsClassifier(n_neighbors=k) knn.fit(Xd_train, yd_train) y_pred = knn.predict(Xd_test) train_acc = knn.score(Xd_train, yd_train) test_acc = knn.score(Xd_test, yd_test) y_pred_prob = knn.predict_proba(Xd_test)[:,1] auc = roc_auc_score(yd_test, y_pred_prob) tn, fp, fn, tp = confusion_matrix(yd_test, y_pred).ravel() prec = tp / (tp + fp) recall = tp / (tp + fn) fpr = fp / (tn + fp) rep = classification_report(yd_test, y_pred, output_dict=True) knn_df = pd.DataFrame({'model': 'knn', 'hyper_params': hp, 'train_acc': train_acc, 'test_acc': test_acc, 'auc': auc, 'tp': tp, 'fn': fn, 'tn': tn, 'fp': fp, 'precision': prec, 'recall': recall, 'fpr': fpr, 'neg_f1': rep['0']['f1-score'], 'AD_f1': rep['1']['f1-score']}, index=[0]) df = df.append(knn_df, ignore_index=True, sort=False) # SVM model # map the svm labels yd_train_svm =
np.where(yd_train == 0, yd_train - 1, yd_train)
numpy.where
#!/usr/bin/env python3 """Compute a background mask for X-ray microscopy data. Functions --------- parse_args Parse command line arguments. initialize_cloudvolume Create a new CloudVolume archive. load_image Load an image from CloudVolume. create_bg_mask Create a mask of background regions in x-ray microscopy. write_image Write an image to CloudVolume. Dependencies ------------ cloud-volume mpi4py numpy scipy scikit-image """ import argparse import logging import os import re from cloudvolume import CloudVolume from mpi4py import MPI import numpy as np from scipy.signal import find_peaks, peak_prominences, peak_widths from skimage.exposure import histogram from skimage.filters import gaussian from skimage.measure import label, regionprops from skimage.morphology import remove_small_holes COMM = MPI.COMM_WORLD RANK = COMM.Get_rank() SIZE = COMM.Get_size() LOGGER = logging.getLogger('create_background_mask.py') syslog = logging.StreamHandler() formatter = logging.Formatter('%(asctime)s %(name)s Rank %(rank)s : %(message)s') syslog.setFormatter(formatter) LOGGER.setLevel(logging.INFO) LOGGER.addHandler(syslog) LOGGER = logging.LoggerAdapter(LOGGER, {'rank': str(RANK)}) def parse_args(): """Parse command line arguments.""" p = argparse.ArgumentParser() p.add_argument('--input', type=str, help='path to the CloudVolume archive') p.add_argument('--output', type=str, help='path to the bg mask CloudVolume archive') p.add_argument('--resolution', type=int, nargs='*', default=[10, 10, 10], help='resolution of the dataset') p.add_argument('--mip', type=int, default=0, help='number of mip levels to create') p.add_argument('--chunk-size', type=int, nargs='*', default=[64, 64, 64], help='size of each CloudVolume block file') p.add_argument('--z-step', type=int, default=None) p.add_argument('--factor', type=int, nargs='*', default=[2, 2, 2], help='factor to scale between mip levels') p.add_argument('--flip-xy', action='store_true', help='pass to transplose the X and Y axes') p.add_argument('--memory-limit', type=float, default=10000, help='max memory available to CloudVolume') p.add_argument('--offset', type=int, nargs='*', default=[0, 0, 0], help='offset into the volume from the upper-left corner') p.add_argument('--quiet', action='store_true', help='pass to deactivate logging') return p.parse_args() def initialize_cloudvolume(path, resolution, offset, volume_size, chunk_size, mip, factor): """Create a new CloudVolume archive. Parameters ---------- path : str Filepath to the location to write the archive. resolution : tuple of int Imaging resolution of the images in each dimension. offset : tuple of int Offset within the volume to the start of the archive. volume_size : tuple of int The dimensions of the volume in pixels. chunk_size : tuple of int The size of each CloudVolume block in pixels. mip : int The number of mip levels to include. factor : tuple of int The factor of change in each dimension across mip levels. Returns ------- cv_args : dict The parameters needed to re-access the CloudVolume archive. """ # Set the parameters of the info file. info = CloudVolume.create_new_info( num_channels=1, layer_type='segmentation', data_type='uint32', encoding='compressed_segmentation', resolution=resolution, voxel_offset=offset, volume_size=volume_size[:-1], chunk_size=chunk_size, max_mip=0, factor=factor ) # Set up and initialize the CloudVolume object cv_args = dict( bounded=True, fill_missing=True, autocrop=False, cache=False, compress_cache=None, cdn_cache=False, progress=False, info=info, provenance=None, compress=True, non_aligned_writes=True, parallel=1) # for i in range(1, mip + 1): # info['scales'][i]['compressed_segmentation_block_size'] = \ # info['scales'][0]['compressed_segmentation_block_size'] cv = CloudVolume(path, mip=0, **cv_args) # Create the info file. LOGGER.info('Initializing image layer with config {}'.format(cv_args)) cv.commit_info() return cv_args def load_subvolume(cv, z_start, z_end, flip_xy=False): """Load an image from CloudVolume. Parameters ---------- cv : cloudvolume.CloudVolume CloudVolume image layer to mask. z_start : int The index of the first image in the layer. z_end : int The index of the last image in the layer. flip_xy : bool CloudVolume reorders the dimension of image volumes, and the order of the x and y dimensions can vary. If True, indicates that the CloudVolume layer is saved in (Y, X, Z) order; otherwise it is saved as (X, Y, Z). Returns ------- subvol : numpy.ndarray The subvolume with the dimensions reordered as (Z, Y, X). """ # Each entry in the z dimension represents one image. Extract an image. subvol = cv[:, :, z_start:z_end, :] subvol = np.squeeze(subvol) # Transpose the dimensions back to if not flip_xy: subvol = np.transpose(subvol, axes=[2, 1, 0]) LOGGER.info('Loaded subvolume with shape {}.'.format(subvol.shape)) return subvol def find_bg_mask(img): """Create a mask of background regions in x-ray microscopy. Parameters ---------- img : numpy.ndarray X-ray microscopy image. Returns ------- bgmask : numpy.ndarray Binary mask of the background of ``img``. """ if img.ndim == 2: img = np.expand_dims(img, axis=0) bgmask = np.zeros((3,) +img.shape, dtype=np.uint8) for d in range(img.ndim): for i in range(img.shape[d]): if d == 0: subimg = img[i, :, :] elif d == 1: subimg = img[:, i, :] elif d == 2: subimg = img[:, :, i] # Blur the image to smooth any background artifacts. LOGGER.info('Blurring image.') blur = gaussian(subimg, sigma=5, preserve_range=True) # Compute the image histogram and find the peaks. LOGGER.info('Finding histogram peaks.') hist, bins = histogram(blur) peaks, properties = find_peaks(hist) # , height=(0.3 * img.size)) prominences = peak_prominences(hist, peaks) widths = peak_widths(hist, peaks, rel_height=0.333, prominence_data=prominences) # Select the left-most peak (backgrounds are usually dark) and use the # width of the peak to select a threshold value. Create a mask of all # pixels less than or equal to the threshold. ordered = np.argsort(peaks) threshold = peaks[ordered[0]] + (widths[0][ordered[0]] / 2.0) # threshold = peaks[0] + (widths[0][0] / 2.0) LOGGER.info('Setting hard threshold {} for image.'.format(threshold)) mask = np.zeros(subimg.shape, dtype=np.uint8) mask[np.where(subimg <= threshold)] = 1 # Perform some clean up and find the largest connected component. LOGGER.info('Cleaning mask of image.') # remove_small_holes(mask, area_threshold=30, connectivity=2, # in_place=True) labels = label(mask) objs = regionprops(labels) # bg = None # for obj in objs: # if obj.bbox_area >= 0.85 * img.size: # coords = obj.coords # break # Select the connected component with the largest bounding box as the # background mask. objs.sort(key=lambda x: x.bbox_area, reverse=True) # objs = [o for o in objs # if np.any(np.asarray(o.bbox[:mask.ndim]) == np.asarray(mask.shape)) # or np.any(np.asarray(o.bbox[mask.ndim:]) == 0)] print(len(objs)) if len(objs) > 0: coords = tuple([objs[0].coords[:, j] for j in range(subimg.ndim)]) LOGGER.info('Setting background mask of image.') if d == 0: bgmask[d, i, coords[0], coords[1]] = 1 elif d == 1: bgmask[d, coords[0], i, coords[1]] = 1 elif d == 2: bgmask[d, coords[0], coords[1], i] = 1 LOGGER.info('Full background mask covers {} voxels.'.format(
np.sum(bgmask)
numpy.sum
# Copyright 2022 Google LLC # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # https://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for DiscretizationFactory.""" import collections from absl.testing import parameterized import numpy as np import tensorflow as tf from tensorflow_federated.python.aggregators import discretization from tensorflow_federated.python.aggregators import sum_factory from tensorflow_federated.python.core.api import test_case from tensorflow_federated.python.core.backends.native import execution_contexts from tensorflow_federated.python.core.impl.types import computation_types from tensorflow_federated.python.core.templates import aggregation_process from tensorflow_federated.python.core.templates import measured_process _test_struct_type_int = [tf.int32, (tf.int32, (2,)), (tf.int32, (3, 3))] _test_struct_type_float = [tf.float32, (tf.float32, (2,)), (tf.float32, (3, 3))] _test_nested_struct_type_float = collections.OrderedDict( a=[tf.float32, [(tf.float32, (2, 2, 1))]], b=(tf.float32, (3, 3))) def _make_test_nested_struct_value(value): return collections.OrderedDict( a=[ tf.constant(value, dtype=tf.float32), [tf.constant(value, dtype=tf.float32, shape=[2, 2, 1])] ], b=tf.constant(value, dtype=tf.float32, shape=(3, 3))) def _discretization_sum(scale_factor=2, stochastic=False, beta=0, prior_norm_bound=None): return discretization.DiscretizationFactory(sum_factory.SumFactory(), scale_factor, stochastic, beta, prior_norm_bound) def _named_test_cases_product(*args): """Utility for creating parameterized named test cases.""" named_cases = [] if len(args) == 2: dict1, dict2 = args for k1, v1 in dict1.items(): for k2, v2 in dict2.items(): named_cases.append(('_'.join([k1, k2]), v1, v2)) elif len(args) == 3: dict1, dict2, dict3 = args for k1, v1 in dict1.items(): for k2, v2 in dict2.items(): for k3, v3 in dict3.items(): named_cases.append(('_'.join([k1, k2, k3]), v1, v2, v3)) return named_cases class DiscretizationFactoryComputationTest(test_case.TestCase, parameterized.TestCase): @parameterized.named_parameters( ('float', tf.float32), ('struct_list_float_scalars', [tf.float16, tf.float32, tf.float64]), ('struct_list_float_mixed', _test_struct_type_float), ('struct_nested', _test_nested_struct_type_float)) def test_type_properties(self, value_type): factory = _discretization_sum() value_type = computation_types.to_type(value_type) process = factory.create(value_type) self.assertIsInstance(process, aggregation_process.AggregationProcess) server_state_type = computation_types.at_server( collections.OrderedDict( scale_factor=tf.float32, prior_norm_bound=tf.float32, inner_agg_process=())) expected_initialize_type = computation_types.FunctionType( parameter=None, result=server_state_type) self.assert_types_equivalent(process.initialize.type_signature, expected_initialize_type) expected_measurements_type = computation_types.at_server( collections.OrderedDict(discretize=())) expected_next_type = computation_types.FunctionType( parameter=collections.OrderedDict( state=server_state_type, value=computation_types.at_clients(value_type)), result=measured_process.MeasuredProcessOutput( state=server_state_type, result=computation_types.at_server(value_type), measurements=expected_measurements_type)) self.assert_types_equivalent(process.next.type_signature, expected_next_type) @parameterized.named_parameters(('bool', tf.bool), ('string', tf.string), ('int32', tf.int32), ('int64', tf.int64), ('int_nested', [tf.int32, [tf.int32]])) def test_raises_on_bad_component_tensor_dtypes(self, value_type): factory = _discretization_sum() value_type = computation_types.to_type(value_type) with self.assertRaisesRegex(TypeError, 'must all be floats'): factory.create(value_type) @parameterized.named_parameters( ('plain_struct', [('a', tf.int32)]), ('sequence', computation_types.SequenceType(tf.int32)), ('function', computation_types.FunctionType(tf.int32, tf.int32)), ('nested_sequence', [[[computation_types.SequenceType(tf.int32)]]])) def test_raises_on_bad_tff_value_types(self, value_type): factory = _discretization_sum() value_type = computation_types.to_type(value_type) with self.assertRaisesRegex(TypeError, 'Expected `value_type` to be'): factory.create(value_type) @parameterized.named_parameters(('negative', -1), ('zero', 0), ('string', 'lol'), ('tensor', tf.constant(3))) def test_raises_on_bad_scale_factor(self, scale_factor): with self.assertRaisesRegex(ValueError, '`scale_factor` should be a'): _discretization_sum(scale_factor=scale_factor) @parameterized.named_parameters(('number', 3.14), ('string', 'lol'), ('tensor', tf.constant(True))) def test_raises_on_bad_stochastic(self, stochastic): with self.assertRaisesRegex(ValueError, '`stochastic` should be a'): _discretization_sum(stochastic=stochastic) @parameterized.named_parameters(('negative', -1), ('too_large', 1), ('string', 'lol'), ('tensor', tf.constant(0.5))) def test_raises_on_bad_beta(self, beta): with self.assertRaisesRegex(ValueError, '`beta` should be a'): _discretization_sum(beta=beta) @parameterized.named_parameters(('negative', -0.5), ('zero', 0), ('string', 'lol'), ('tensor', tf.constant(1))) def test_raises_on_bad_prior_norm_bound(self, prior_norm_bound): with self.assertRaisesRegex(ValueError, '`prior_norm_bound` should be a'): _discretization_sum(prior_norm_bound=prior_norm_bound) class DiscretizationFactoryExecutionTest(test_case.TestCase, parameterized.TestCase): @parameterized.named_parameters( ('scalar', tf.float32, [1, 2, 3], 6, False), ('rank_1_tensor', (tf.float32, [7]), [np.arange(7.), np.arange(7.) * 2], np.arange(7.) * 3, False), ('rank_2_tensor', (tf.float32, [1, 2]), [((1, 1),), ((2, 2),)], ((3, 3),), False), ('nested', _test_nested_struct_type_float, [ _make_test_nested_struct_value(123), _make_test_nested_struct_value(456) ], _make_test_nested_struct_value(579), False), ('stochastic', tf.float32, [1, 2, 3], 6, True)) def test_sum(self, value_type, client_data, expected_sum, stochastic): """Integration test with sum.""" scale_factor = 3 factory = _discretization_sum(scale_factor, stochastic=stochastic) process = factory.create(computation_types.to_type(value_type)) state = process.initialize() for _ in range(3): output = process.next(state, client_data) self.assertEqual(output.state['scale_factor'], scale_factor) self.assertEqual(output.state['prior_norm_bound'], 0) self.assertEqual(output.state['inner_agg_process'], ()) self.assertEqual(output.measurements, collections.OrderedDict(discretize=())) # Use `assertAllClose` to compare structures. self.assertAllClose(output.result, expected_sum, atol=0) state = output.state @parameterized.named_parameters(('int32', tf.int32), ('int64', tf.int64), ('float64', tf.float64)) def test_output_dtype(self, dtype): """Checks the tensor type gets casted during preprocessing.""" x = tf.range(8, dtype=dtype) encoded_x = discretization._discretize_struct( x, scale_factor=10, stochastic=False, beta=0, prior_norm_bound=0) self.assertEqual(encoded_x.dtype, discretization.OUTPUT_TF_TYPE) @parameterized.named_parameters(('int32', tf.int32), ('int64', tf.int64), ('float64', tf.float64)) def test_revert_to_input_dtype(self, dtype): """Checks that postprocessing restores the original dtype.""" x = tf.range(8, dtype=dtype) encoded_x = discretization._discretize_struct( x, scale_factor=1, stochastic=True, beta=0, prior_norm_bound=0) decoded_x = discretization._undiscretize_struct( encoded_x, scale_factor=1, tf_dtype_struct=dtype) self.assertEqual(dtype, decoded_x.dtype) class QuantizationTest(test_case.TestCase, parameterized.TestCase): @parameterized.named_parameters( _named_test_cases_product( { 'scale_factor_1': 0.1, 'scale_factor_2': 1, 'scale_factor_3': 314, 'scale_factor_4': 2**24 }, { 'stochastic_true': True, 'stochastic_false': False }, { 'shape_1': (10,), 'shape_2': (10, 10), 'shape_3': (10, 5, 2) })) def test_error_from_rounding(self, scale_factor, stochastic, shape): dtype = tf.float32 x = tf.random.uniform(shape=shape, minval=-10, maxval=10, dtype=dtype) encoded_x = discretization._discretize_struct( x, scale_factor, stochastic=stochastic, beta=0, prior_norm_bound=0) decoded_x = discretization._undiscretize_struct( encoded_x, scale_factor, tf_dtype_struct=dtype) x, decoded_x = self.evaluate([x, decoded_x]) self.assertAllEqual(x.shape, decoded_x.shape) # For stochastic rounding, errors are bounded by the effective bin width; # for deterministic rounding, they are bounded by the half of the bin width. quantization_atol = (1 if stochastic else 0.5) / scale_factor self.assertAllClose(x, decoded_x, rtol=0.0, atol=quantization_atol) class ScalingTest(test_case.TestCase, parameterized.TestCase): @parameterized.named_parameters(('scale_factor_1', 1), ('scale_factor_2', 97), ('scale_factor_3', 10**6)) def test_scaling(self, scale_factor): # Integers to prevent rounding. x = tf.random.stateless_uniform([100], (1, 1), -100, 100, dtype=tf.int32) discretized_x = discretization._discretize_struct( x, scale_factor, stochastic=True, beta=0, prior_norm_bound=0) reverted_x = discretization._undiscretize_struct( discretized_x, scale_factor, tf_dtype_struct=tf.int32) x, discretized_x, reverted_x = self.evaluate([x, discretized_x, reverted_x]) self.assertAllEqual(x * scale_factor, discretized_x) # Scaling up. self.assertAllEqual(x, reverted_x) # Scaling down. class StochasticRoundingTest(test_case.TestCase, parameterized.TestCase): def test_conditional_rounding_bounds_norm(self): """Compare avg rounded norm across different values of beta.""" num_trials = 500 x = tf.random.uniform([100], -100, 100, dtype=tf.float32) rounded_norms = [] for beta in [0, 0.9]: avg_rounded_norm_beta = tf.reduce_mean([ tf.norm(discretization._stochastic_rounding(x, beta=beta)) for i in range(num_trials) ]) rounded_norms.append(avg_rounded_norm_beta) rounded_norms = self.evaluate(rounded_norms) # Larger beta should give smaller average norms. self.assertAllEqual(rounded_norms, sorted(rounded_norms, reverse=True)) @parameterized.named_parameters(('beta_1', 0.0), ('beta_2', 0.6)) def test_noop_on_integers(self, beta): x = tf.range(100, dtype=tf.float32) rounded_x = discretization._stochastic_rounding(x, beta=beta) x, rounded_x = self.evaluate([x, rounded_x]) self.assertAllEqual(x, rounded_x) self.assertEqual(rounded_x.dtype, np.float32) @parameterized.named_parameters( _named_test_cases_product({ 'beta_1': 0.0, 'beta_2': 0.6 }, { 'value_1': 0.2, 'value_2': 42.6, 'value_3': -3.3 })) def test_biased_inputs(self, beta, value): num_trials = 5000 x = tf.constant(value, shape=[num_trials]) rounded_x = discretization._stochastic_rounding(x, beta=beta) err_x = rounded_x - x x, rounded_x, err_x = self.evaluate([x, rounded_x, err_x]) # Check errors match. self.assertAllClose(np.mean(x), np.mean(rounded_x) - np.mean(err_x)) # Check expected value. self.assertTrue(np.floor(value) < np.mean(rounded_x) < np.ceil(value)) # The rounding events are binomially distributed and we can compute the # stddev of the error given the `num_trials` and allow for 4 stddevs as # the tolerance to give ~0.006% probability of test failure. decimal =
np.modf(value)
numpy.modf
import unittest import numpy as np from osd.masking import Mask class TestMaskScalar(unittest.TestCase): """ Uses this as a standard test data set: np.array([ 0., 1., nan, 3., nan, nan, nan, 7., 8., 9., 10., 11., 12., 13., nan]) """ def test_mask(self): np.random.seed(1) data = np.arange(15, dtype=float) data[np.random.uniform(size=15) < 0.2] = np.nan mask = Mask(~np.isnan(data)) u = mask.mask(data) q = len(u) # test that the length is correct np.testing.assert_equal(np.sum(~np.isnan(data)), q) # test that the values are correct actual = np.array([ 0., 1., 3., 7., 8., 9., 10., 11., 12., 13.]) np.testing.assert_equal(u, actual) def test_unmask(self): np.random.seed(1) data = np.arange(15, dtype=float) data[
np.random.uniform(size=15)
numpy.random.uniform
# Simple interest rate processes - some examples # # - Brownian motion # - AR(1)-model # - Vasiček-model # - Cox-Ingersoll-Ross-model import numpy as np import matplotlib.pyplot as plt from math import sqrt # Brownian motion / Random walk def sim_brownian(steps, start=0, sigma=1, discretization=1): steps_mod = int(steps / discretization) noise = sqrt(discretization) * sigma * np.random.standard_normal(steps_mod) return(start + np.cumsum(noise)) # AR(1)-model def sim_ar1(length_out, start=0, sigma=1, phi=1): noise = sigma * np.random.standard_normal(length_out) ar1 = np.zeros(length_out) for i in range(length_out - 1): ar1[i + 1] = phi * ar1[i] + noise[i] return(start + ar1) # Vasiček-model def sim_vasicek(steps, start=0, sigma=1, reversion_level=None, reversion_strength=1, discretization=1): if reversion_level is None: reversion_level = start steps_mod = int(steps / discretization) v =
np.zeros(steps_mod)
numpy.zeros
''' This code is based on https://github.com/ekwebb/fNRI which in turn is based on https://github.com/ethanfetaya/NRI (MIT licence) ''' import numpy as np import matplotlib.pyplot as plt import matplotlib from matplotlib.colors import ListedColormap import matplotlib.collections as mcoll import torch as torch from matplotlib.patches import Ellipse def gaussian(x, y, xmean, ymean, sigma): # gaussian to used as fit. return np.exp(-((x-xmean) ** 2 + (y-ymean) ** 2) / (2 * sigma ** 2)) def draw_lines(output,output_i,linestyle='-',alpha=1,darker=False,linewidth=2): """ http://nbviewer.ipython.org/github/dpsanders/matplotlib-examples/blob/master/colorline.ipynb http://matplotlib.org/examples/pylab_examples/multicolored_line.html """ loc = np.array(output[output_i,:,:,0:2]) loc = np.transpose( loc, [1,2,0] ) x = loc[:,0,:] y = loc[:,1,:] x_min = np.min(x) x_max = np.max(x) y_min = np.min(y) y_max = np.max(y) max_range = max( y_max-y_min, x_max-x_min ) xmin = (x_min+x_max)/2-max_range/2-0.1 xmax = (x_min+x_max)/2+max_range/2+0.1 ymin = (y_min+y_max)/2-max_range/2-0.1 ymax = (y_min+y_max)/2+max_range/2+0.1 cmaps = [ 'Purples', 'Greens', 'Blues', 'Oranges', 'Reds', 'Purples', 'Greens', 'Blues', 'Oranges', 'Reds' ] cmaps = [ matplotlib.cm.get_cmap(cmap, 512) for cmap in cmaps ] cmaps = [ ListedColormap(cmap(np.linspace(0., 0.8, 256))) for cmap in cmaps ] if darker: cmaps = [ ListedColormap(cmap(np.linspace(0.2, 0.8, 256))) for cmap in cmaps ] for i in range(loc.shape[-1]): lc = colorline(loc[:,0,i], loc[:,1,i], cmap=cmaps[i],linestyle=linestyle,alpha=alpha,linewidth=linewidth) return xmin, ymin, xmax, ymax def draw_lines_animation(output,linestyle='-',alpha=1,darker=False,linewidth=2, animationtype = 'default'): """ http://nbviewer.ipython.org/github/dpsanders/matplotlib-examples/blob/master/colorline.ipynb http://matplotlib.org/examples/pylab_examples/multicolored_line.html """ # animation for output used to show how physical and computational errors propagate through system global xmin, xmax, ymin, ymax # output here is of form [perturbation, particles, timestep,(x,y)] import matplotlib.pyplot as plt from matplotlib import animation Writer = animation.writers['ffmpeg'] writer = Writer(fps=15, metadata=dict(artist='Me'), bitrate=1800) # scaling of variables. loc_new = np.array(output) loc_new_x = loc_new[:, :, :, 0] loc_new_y = loc_new[:, :, :, 1] fig = plt.figure() x_min = np.min(loc_new_x[:,:,0:100]) x_max = np.max(loc_new_x[:,:,0:100]) y_min = np.min(loc_new_y[:,:,0:100]) y_max = np.max(loc_new_y[:,:,0:100]) max_range = max( y_max-y_min, x_max-x_min ) xmin = (x_min+x_max)/2-max_range/2-0.1 xmax = (x_min+x_max)/2+max_range/2+0.1 ymin = (y_min+y_max)/2-max_range/2-0.1 ymax = (y_min+y_max)/2+max_range/2+0.1 # if x >= xmax - 1.00: # p011.axes.set_xlim(x - xmax + 1.0, x + 1.0) # p021.axes.set_xlim(x - xmax + 1.0, x + 1.0) # p031.axes.set_xlim(x - xmax + 1.0, x + 1.0) # p032.axes.set_xlim(x - xmax + 1.0, x + 1.0) # plots for animation ax = plt.axes(xlim=(xmin, xmax), ylim=(ymin,ymax)) ax.set_xlabel('x') ax.set_ylabel('y') line, = ax.plot([],[],lw = 1) lines = [] cmaps = [ 'Purples', 'Greens', 'Blues', 'Oranges', 'Reds', 'Purples', 'Greens', 'Blues', 'Oranges', 'Reds' ] cmaps = [ matplotlib.cm.get_cmap(cmap, 512) for cmap in cmaps ] cmaps = [ ListedColormap(cmap(np.linspace(0., 0.8, 256))) for cmap in cmaps ] if darker: cmaps = [ ListedColormap(cmap(np.linspace(0.2, 0.8, 256))) for cmap in cmaps ] for i in range(len(loc_new_x)): for j in range(len(loc_new_x[i])): colour = cmaps[j].colors[int(len(cmaps[j].colors)-1)] lobj = ax.plot([],[], lw =1, color = colour)[0] lines.append(lobj) def init(): # initialise the lines to be plotted for line in lines: line.set_data([],[]) return lines xdata, ydata = [], [] def animate(i, xmax, xmin, ymax, ymin): # animation step xlist = [] ylist = [] # for j in range(len(loc_new_x)): # for k in range(len(loc_new_x[j])): # x = loc_new_x[j][k] # y = loc_new_y[j][k] # xlist.append(x) # ylist.append(y) if (i<=50): for j in range(len(loc_new_x)): for k in range(len(loc_new_x[j])): x = loc_new_x[j][k][0:i] y = loc_new_y[j][k][0:i] xlist.append(x) ylist.append(y) for lnum, line in enumerate(lines): line.set_data(xlist[lnum], ylist[lnum]) else: for j in range(len(loc_new_x)): for k in range(len(loc_new_x[j])): x = loc_new_x[j][k][i-50:i] y = loc_new_y[j][k][i-50:i] xlist.append(x) ylist.append(y) if (np.any(xlist < xmin)) or (np.any(xlist > xmax)) or (np.any(ylist<ymin)) or (np.any(ylist>ymax)): x_min, x_max, y_min, y_max = np.amin(np.asarray(xlist)), np.amax(np.asarray(xlist)), np.amin(np.asarray(ylist)), np.amax(np.asarray(ylist)) max_range = max(y_max - y_min, x_max - x_min) xmin = (x_min + x_max) / 2 - max_range / 2 - 0.4 xmax = (x_min + x_max) / 2 + max_range / 2 + 0.4 ymin = (y_min + y_max) / 2 - max_range / 2 - 0.4 ymax = (y_min + y_max) / 2 + max_range / 2 + 0.4 for lnum, line in enumerate(lines): line.axes.set_xlim(xmin, xmax) line.axes.set_ylim(ymin, ymax) for lnum, line in enumerate(lines): line.set_data(xlist[lnum], ylist[lnum]) return lines anim = animation.FuncAnimation(fig, animate, init_func=init, frames = len(loc_new_x[0][0]),fargs= (xmax, xmin, ymax, ymin) ,interval = 10) plt.show() anim.save(animationtype + '.mp4', writer = writer) def draw_lines_sigma(output,output_i,sigma_plot,ax, linestyle='-',alpha=1, darker=False,linewidth=2, plot_ellipses= False): """ http://nbviewer.ipython.org/github/dpsanders/matplotlib-examples/blob/master/colorline.ipynb http://matplotlib.org/examples/pylab_examples/multicolored_line.html """ # plot the trajectories for sigma with ellipses of size sigma used to visualise the predictions of sigma we get out. loc = np.array(output[output_i,:,:,0:2]) loc = np.transpose( loc, [1,2,0] ) # scaling of variables. x = loc[:,0,:] y = loc[:,1,:] x_min = np.min(x) x_max = np.max(x) y_min = np.min(y) y_max = np.max(y) max_range = max( y_max-y_min, x_max-x_min ) xmin = (x_min+x_max)/2-max_range/2-0.1 xmax = (x_min+x_max)/2+max_range/2+0.1 ymin = (y_min+y_max)/2-max_range/2-0.1 ymax = (y_min+y_max)/2+max_range/2+0.1 cmaps = [ 'Purples', 'Greens', 'Blues', 'Oranges', 'Reds', 'Purples', 'Greens', 'Blues', 'Oranges', 'Reds' ] cmaps = [ matplotlib.cm.get_cmap(cmap, 512) for cmap in cmaps ] cmaps = [ ListedColormap(cmap(np.linspace(0., 0.8, 256))) for cmap in cmaps ] if darker: cmaps = [ ListedColormap(cmap(np.linspace(0.2, 0.8, 256))) for cmap in cmaps ] # ensure we use the same colour for ellipses as for the particles, also use a small alpha to make it more transparent for i in range(loc.shape[-1]): lc = colorline(loc[:,0,i], loc[:,1,i], cmap=cmaps[i],linestyle=linestyle,alpha=alpha,linewidth=linewidth) if plot_ellipses: # isotropic therefore the ellipses become circles colour = cmaps[i].colors[int(len(cmaps[i].colors)/4)] positions = output[output_i,:,:,0:2] sigma_plot_pos = sigma_plot[output_i, :,:,0:2] ellipses = [] # get the first timestep component of (x,y) ellipses.append(Ellipse((positions[i][0][0], positions[i][0][1]), width=sigma_plot_pos[i][0][0], height=sigma_plot_pos[i][0][0], angle=0.0, color = colour)) # if Deltax^2+Deltay^2>4*(DeltaSigmax^2+DeltaSigma^2) then plot, else do not plot # keeps track of current plot value l = 0 for k in range(len(positions[i]) - 1): deltar = np.linalg.norm(positions[i][k + 1] - positions[i][l]) deltasigma = np.linalg.norm(sigma_plot_pos[i][l]) if (deltar > 2 * deltasigma): # check that it is far away from others isfarapart = True for m in range(len(positions)): for n in range(len(positions[m])): if (m != i): deltar = np.linalg.norm(positions[m][n] - positions[i][k + 1]) deltasigma = np.linalg.norm(sigma_plot_pos[i][k + 1]) if (deltar < deltasigma): isfarapart = False if isfarapart: ellipses.append(Ellipse((positions[i][k + 1][0], positions[i][k + 1][1]), width=sigma_plot_pos[i][k + 1][0], height=sigma_plot_pos[i][k + 1][0], angle=0.0, color = colour)) # updates to new r0 : Deltar = r - r0: l = k # fig, ax = plt.subplots(subplot_kw={'aspect': 'equal'}) for e in ellipses: ax.add_artist(e) e.set_clip_box(ax.bbox) return xmin, ymin, xmax, ymax def draw_lines_anisotropic(output,output_i,sigma_plot, vel_plot, ax, linestyle='-',alpha=1, darker=False,linewidth=2, plot_ellipses= False): """ http://nbviewer.ipython.org/github/dpsanders/matplotlib-examples/blob/master/colorline.ipynb http://matplotlib.org/examples/pylab_examples/multicolored_line.html """ # plot the trajectories for sigma with ellipses of size sigma used to visualise the predictions of sigma we get out. # here we use anisotropic sigma case loc = np.array(output[output_i,:,:,0:2]) loc = np.transpose( loc, [1,2,0] ) x = loc[:,0,:] y = loc[:,1,:] x_min = np.min(x) x_max = np.max(x) y_min = np.min(y) y_max = np.max(y) max_range = max( y_max-y_min, x_max-x_min ) xmin = (x_min+x_max)/2-max_range/2-0.1 xmax = (x_min+x_max)/2+max_range/2+0.1 ymin = (y_min+y_max)/2-max_range/2-0.1 ymax = (y_min+y_max)/2+max_range/2+0.1 cmaps = [ 'Purples', 'Greens', 'Blues', 'Oranges', 'Reds', 'Purples', 'Greens', 'Blues', 'Oranges', 'Reds' ] cmaps = [ matplotlib.cm.get_cmap(cmap, 512) for cmap in cmaps ] cmaps = [ ListedColormap(cmap(np.linspace(0., 0.8, 256))) for cmap in cmaps ] if darker: cmaps = [ ListedColormap(cmap(np.linspace(0.2, 0.8, 256))) for cmap in cmaps ] # ensure we use the same colour for ellipses as for the particles, also use a small alpha to make it more transparent for i in range(loc.shape[-1]): lc = colorline(loc[:,0,i], loc[:,1,i], cmap=cmaps[i],linestyle=linestyle,alpha=alpha,linewidth=linewidth) if plot_ellipses: colour = cmaps[i].colors[int(len(cmaps[i].colors) / 4)] positions = output[output_i, :, :, 0:2] sigma_plot_pos = sigma_plot[output_i, :, :, 0:2] indices_3 = torch.LongTensor([0]) if vel_plot.is_cuda: indices_3 = indices_3.cuda() # plots the uncertainty ellipses for gaussian case. # iterate through each of the atoms # need to get the angles of the terms to be plotted: velnorm = vel_plot.norm(p=2, dim=3, keepdim=True) normalisedvel = vel_plot.div(velnorm.expand_as(vel_plot)) normalisedvel[torch.isnan(normalisedvel)] = np.power(1 / 2, 1 / 2) # v||.x is just the first term of the tensor normalisedvelx = torch.index_select(normalisedvel, 3, indices_3) # angle of rotation is Theta = acos(v||.x) for normalised v|| and x (need angle in degrees not radians) angle = torch.acos(normalisedvelx).squeeze() * 180 / 3.14159 ellipses = [] ellipses.append( Ellipse((positions[i][0][0], positions[i][0][1]), width=sigma_plot_pos[i][0][0], height=sigma_plot_pos[i][0][1], angle=angle.tolist()[output_i][i][0], color = colour)) # iterate through each of the atoms # if Deltax^2+Deltay^2>4*(DeltaSigmax^2+DeltaSigma^2) then plot, else do not plot # keeps track of current plot value l = 0 for k in range(len(positions[i]) - 1): deltar = np.linalg.norm(positions[i][k + 1] - positions[i][l]) deltasigma = np.linalg.norm(sigma_plot_pos[i][l]) if (deltar > 2 * deltasigma): # check that it is far away from others isfarapart = True for m in range(len(positions)): for n in range(len(positions[m])): if (m != i): deltar = np.linalg.norm(positions[m][n] - positions[i][k + 1]) deltasigma = np.linalg.norm(sigma_plot_pos[i][k + 1]) if (deltar < deltasigma): isfarapart = False if isfarapart: ellipses.append(Ellipse( (positions[i][k + 1][0], positions[i][k + 1][1]), width=sigma_plot_pos[i][k + 1][0], height=sigma_plot_pos[i][k + 1][0], angle=angle.tolist()[output_i][i][k + 1], color = colour)) # updates to new r0 : Deltar = r - r0: l = k for e in ellipses: ax.add_artist(e) e.set_clip_box(ax.bbox) return xmin, ymin, xmax, ymax def draw_lines_sigma_animation(output_1, output_2, output_i, sigma_plot, vel_plot, alpha=1,darker=False,linewidth=2, animationtype = 'default'): """ http://nbviewer.ipython.org/github/dpsanders/matplotlib-examples/blob/master/colorline.ipynb http://matplotlib.org/examples/pylab_examples/multicolored_line.html """ # output_1 = true output # output_2 = predicted output # animation for output used to show how physical and computational errors propagate through system global xmin, xmax, ymin, ymax # output here is of form [perturbation, particles, timestep,(x,y)] import matplotlib.pyplot as plt from matplotlib import animation Writer = animation.writers['ffmpeg'] writer = Writer(fps=15, metadata=dict(artist='Me'), bitrate=1800) # gets the locations of true and predicted trajectories loc_true = np.array(output_1[output_i, :, :, 0:2]) loc_true = np.transpose(loc_true, [1, 2, 0]) loc_pred = np.array(output_2[output_i, :, :, 0:2]) loc_pred = np.transpose(loc_pred, [1, 2, 0]) # rescales the coordinates fig = plt.figure() x = loc_true[:, 0, :] y = loc_true[:, 1, :] x_pred = loc_pred[:, 0, :] y_pred = loc_pred[:, 1, :] x_min_true = np.min(x) x_max_true = np.max(x) y_min_true = np.min(y) y_max_true = np.max(y) x_min_pred = np.min(x) x_max_pred = np.max(x) y_min_pred = np.min(y) y_max_pred = np.max(y) x_min = np.minimum(x_min_true, x_min_pred) x_max = np.maximum(x_max_true, x_max_pred) y_min = np.minimum(y_min_true, y_min_pred) y_max = np.maximum(y_max_true, y_max_pred) max_range = max(y_max - y_min, x_max - x_min) xmin = (x_min + x_max) / 2 - max_range / 2 - 0.1 xmax = (x_min + x_max) / 2 + max_range / 2 + 0.1 ymin = (y_min + y_max) / 2 - max_range / 2 - 0.1 ymax = (y_min + y_max) / 2 + max_range / 2 + 0.1 # if x >= xmax - 1.00: # p011.axes.set_xlim(x - xmax + 1.0, x + 1.0) # p021.axes.set_xlim(x - xmax + 1.0, x + 1.0) # p031.axes.set_xlim(x - xmax + 1.0, x + 1.0) # p032.axes.set_xlim(x - xmax + 1.0, x + 1.0) # plots for animation ax = plt.axes(xlim=(xmin, xmax), ylim=(ymin,ymax)) ax.set_xlabel('x') ax.set_ylabel('y') line, = ax.plot([],[],lw = 1) lines = [] cmaps = ['Purples', 'Greens', 'Blues', 'Oranges', 'Reds', 'Purples', 'Greens', 'Blues', 'Oranges', 'Reds'] cmaps = [matplotlib.cm.get_cmap(cmap, 512) for cmap in cmaps] cmaps = [ListedColormap(cmap(np.linspace(0., 0.8, 256))) for cmap in cmaps] if darker: cmaps = [ListedColormap(cmap(np.linspace(0.2, 0.8, 256))) for cmap in cmaps] # ensure we use the same colour for ellipses as for the particles, also use a small alpha to make it more transparent for i in range(loc_true.shape[-1]): colour = cmaps[i].colors[int(len(cmaps[i].colors) / 4)] lobj = mcoll.LineCollection([], cmap='hot', lw=2, alpha=0.6) lines.append(lobj) for j in range(loc_pred.shape[-1]): colour = cmaps[j].colors[int(len(cmaps[j].colors) / 4)] lobj = mcoll.LineCollection([], cmap='hot', lw=2, alpha=0.6) lines.append(lobj) for line in lines: ax.add_collection(line) def init(): # initialise the lines to be plotted for line in lines: line.set_data([],[]) return lines xdata, ydata = [], [] def animate(i, xmax, xmin, ymax, ymin): for j in range(loc_true.shape[-1]): lc_true = colorline(loc_true[0:i, 0, j], loc_true[0:i, 1, j], cmap=cmaps[j], linestyle='-', alpha=alpha, linewidth=linewidth) lc_pred = colorline(loc_pred[0:i, 0, j], loc_pred[0:i, 1, j], cmap=cmaps[j], linestyle=':', alpha=alpha, linewidth=linewidth) colour = cmaps[j].colors[int(len(cmaps[j].colors) / 4)] lines[j] = lc_true lines[j+loc_true.shape[-1]] = lc_pred positions = output_2[output_i, :, 0:i, 0:2] sigma_plot_pos = sigma_plot[output_i, :, 0:i, 0:2] indices_3 = torch.LongTensor([0]) if vel_plot.is_cuda: indices_3 = indices_3.cuda() # plots the uncertainty ellipses for gaussian case. # iterate through each of the atoms # need to get the angles of the terms to be plotted: velnorm = vel_plot.norm(p=2, dim=3, keepdim=True) normalisedvel = vel_plot.div(velnorm.expand_as(vel_plot)) normalisedvel[torch.isnan(normalisedvel)] = np.power(1 / 2, 1 / 2) # v||.x is just the first term of the tensor normalisedvelx = torch.index_select(normalisedvel, 3, indices_3) # angle of rotation is Theta = acos(v||.x) for normalised v|| and x (need angle in degrees not radians) angle = torch.acos(normalisedvelx).squeeze() * 180 / 3.14159 ellipses = [] ellipses.append( Ellipse((positions[j][0][0], positions[j][0][1]), width=sigma_plot_pos[j][0][0], height=sigma_plot_pos[j][0][1], angle=angle.tolist()[output_i][j][0], color=colour)) # iterate through each of the atoms # if Deltax^2+Deltay^2>4*(DeltaSigmax^2+DeltaSigma^2) then plot, else do not plot # keeps track of current plot value l = 0 for k in range(len(positions[j]) - 1): deltar = np.linalg.norm(positions[j][k + 1] - positions[j][l]) deltasigma = np.linalg.norm(sigma_plot_pos[j][l]) if (deltar > 2 * deltasigma): # check that it is far away from others isfarapart = True for m in range(len(positions)): for n in range(len(positions[m])): if (m != j): deltar = np.linalg.norm(positions[m][n] - positions[j][k + 1]) deltasigma = np.linalg.norm(sigma_plot_pos[j][k + 1]) if (deltar < deltasigma): isfarapart = False if isfarapart: ellipses.append(Ellipse( (positions[j][k + 1][0], positions[j][k + 1][1]), width=sigma_plot_pos[j][k + 1][0], height=sigma_plot_pos[j][k + 1][0], angle=angle.tolist()[output_i][j][k + 1], color=colour)) # updates to new r0 : Deltar = r - r0: l = k for e in ellipses: ax.add_artist(e) e.set_clip_box(ax.bbox) return lines anim = animation.FuncAnimation(fig, animate, init_func=init, frames = len(output_1[0][0]),fargs= (xmax, xmin, ymax, ymin) ,interval = 10) plt.show() anim.save(animationtype + '.mp4', writer = writer) def colorline( x, y, z=None, cmap='copper', norm=plt.Normalize(0.0, 1.0), linewidth=2, alpha=0.8, linestyle='-'): """ http://nbviewer.ipython.org/github/dpsanders/matplotlib-examples/blob/master/colorline.ipynb http://matplotlib.org/examples/pylab_examples/multicolored_line.html """ # Default colors equally spaced on [0,1]: if z is None: z = np.linspace(0.0, 1.0, len(x)) if not hasattr(z, "__iter__"): z = np.array([z]) z = np.asarray(z) segments = make_segments(x, y) lc = mcoll.LineCollection(segments, array=z, cmap=cmap, norm=norm, linewidth=linewidth, alpha=alpha, linestyle=linestyle) ax = plt.gca() ax.add_collection(lc) return lc def make_segments(x, y): points =
np.array([x, y])
numpy.array
# Code derived from tensorflow/tensorflow/models/image/imagenet/classify_image.py from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import os import sys import tarfile import warnings from collections import defaultdict import numpy as np import tensorflow as tf from scipy import linalg from six.moves import urllib import pandas as pd MODEL_DIR = '/tmp/imagenet' DATA_URL = 'http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz' softmax = None pool3 = None pool3_mean_real = None pool3_std_real = None # Call this function with list of images. Each of elements should be a # numpy array with values ranging from 0 to 255. def get_features(images): assert ((images.shape[3]) == 3) assert (np.max(images) > 10) assert (np.min(images) >= 0.0) images = images.astype(np.float32) bs = 100 sess = tf.get_default_session() preds = [] feats = [] for inp in np.array_split(images, round(images.shape[0] / bs)): # sys.stdout.write(".") # sys.stdout.flush() [feat, pred] = sess.run([pool3, softmax], {'InputTensor:0': inp}) feats.append(feat.reshape(-1, 2048)) preds.append(pred) feats = np.concatenate(feats, 0) preds = np.concatenate(preds, 0) return preds, feats def update_fid_mean(images): global pool3_mean_real global pool3_std_real preds, feats = get_features(images) pool3_mean_real = np.mean(feats, axis=0) pool3_std_real = np.cov(feats, rowvar=False) def calc_scores(images, splits=10): preds, feats = get_features(images) # calc inception scores = [] for i in range(splits): part = preds[(i * preds.shape[0] // splits):((i + 1) * preds.shape[0] // splits), :] kl = part * (np.log(part) - np.log(np.expand_dims(np.mean(part, 0), 0))) kl = np.mean(np.sum(kl, 1)) scores.append(np.exp(kl)) inception_m = np.mean(scores) inception_s = np.std(scores) # fid mu2 = np.mean(feats, axis=0) sigma2 = np.cov(feats, rowvar=False) fid = calculate_frechet_distance(pool3_mean_real, pool3_std_real, mu2, sigma2) return inception_m, inception_s, fid def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6): """Numpy implementation of the Frechet Distance. The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1) and X_2 ~ N(mu_2, C_2) is d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)). Stable version by <NAME>. Params: -- mu1 : Numpy array containing the activations of the pool_3 layer of the inception net ( like returned by the function 'get_predictions') for generated samples. -- mu2 : The sample mean over activations of the pool_3 layer, precalcualted on an representive data set. -- sigma1: The covariance matrix over activations of the pool_3 layer for generated samples. -- sigma2: The covariance matrix over activations of the pool_3 layer, precalcualted on an representive data set. Returns: -- : The Frechet Distance. """ mu1 = np.atleast_1d(mu1) mu2 =
np.atleast_1d(mu2)
numpy.atleast_1d
# -*- coding: utf-8 -*- import numpy as np from scipy.interpolate import interp1d from scipy.ndimage import gaussian_filter1d import os class Pattern(object): def __init__(self, x=None, y=None, name=''): if x is None: self._x = np.linspace(0.1, 15, 100) else: self._x = x if y is None: self._y = np.log(self._x ** 2) - (self._x * 0.2) ** 2 else: self._y = y self.name = name self.offset = 0 self._scaling = 1 self.smoothing = 0 self.bkg_pattern = None def load(self, filename, skiprows=0): try: if filename.endswith('.chi'): skiprows = 4 data = np.loadtxt(filename, skiprows=skiprows) self._x = data.T[0] self._y = data.T[1] self.name = os.path.basename(filename).split('.')[:-1][0] except ValueError: print('Wrong data format for pattern file! - ' + filename) return -1 @staticmethod def from_file(filename, skip_rows=0): try: if filename.endswith('.chi'): skip_rows = 4 data = np.loadtxt(filename, skiprows=skip_rows) x = data.T[0] y = data.T[1] name = os.path.basename(filename).split('.')[:-1][0] return Pattern(x, y, name) except ValueError: print('Wrong data format for pattern file! - ' + filename) return -1 def save(self, filename, header=''): data = np.dstack((self._x, self._y)) np.savetxt(filename, data[0], header=header) def set_background(self, pattern): self.bkg_pattern = pattern def reset_background(self): self.bkg_pattern = None def set_smoothing(self, amount): self.smoothing = amount def rebin(self, bin_size): """ Returns a new pattern which is a rebinned version of the current one. """ x, y = self.data x_min = np.round(np.min(x) / bin_size) * bin_size x_max = np.round(np.max(x) / bin_size) * bin_size new_x = np.arange(x_min, x_max + 0.1 * bin_size, bin_size) bins = np.hstack((x_min - bin_size * 0.5, new_x + bin_size * 0.5)) new_y = (np.histogram(x, bins, weights=y)[0] / np.histogram(x, bins)[0]) return Pattern(new_x, new_y) @property def data(self): if self.bkg_pattern is not None: # create background function x_bkg, y_bkg = self.bkg_pattern.data if not np.array_equal(x_bkg, self._x): # the background will be interpolated f_bkg = interp1d(x_bkg, y_bkg, kind='linear') # find overlapping x and y values: ind = np.where((self._x <= np.max(x_bkg)) & (self._x >= np.min(x_bkg))) x = self._x[ind] y = self._y[ind] if len(x) == 0: # if there is no overlapping between background and pattern, raise an error raise BkgNotInRangeError(self.name) y = y * self._scaling + self.offset - f_bkg(x) else: # if pattern and bkg have the same x basis we just delete y-y_bkg x, y = self._x, self._y * self._scaling + self.offset - y_bkg else: x, y = self.original_data if self.smoothing > 0: y = gaussian_filter1d(y, self.smoothing) return x, y @data.setter def data(self, data): (x, y) = data self._x = x self._y = y self.scaling = 1 self.offset = 0 @property def original_data(self): return self._x, self._y * self._scaling + self.offset @property def x(self): return self._x @x.setter def x(self, new_value): self._x = new_value @property def y(self): return self._y @y.setter def y(self, new_y): self._y = new_y @property def scaling(self): return self._scaling @scaling.setter def scaling(self, value): if value < 0: self._scaling = 0 else: self._scaling = value def limit(self, x_min, x_max): x, y = self.data return Pattern(x[np.where((x_min < x) & (x < x_max))], y[np.where((x_min < x) & (x < x_max))]) def extend_to(self, x_value, y_value): """ Extends the current pattern to a specific x_value by filling it with the y_value. Does not modify inplace but returns a new filled Pattern :param x_value: Point to which extend the pattern should be smaller than the lowest x-value in the pattern or vice versa :param y_value: number to fill the pattern with :return: extended Pattern """ x_step = np.mean(np.diff(self.x)) x_min = np.min(self.x) x_max = np.max(self.x) if x_value < x_min: x_fill = np.arange(x_min - x_step, x_value-x_step*0.5, -x_step)[::-1] y_fill = np.zeros(x_fill.shape) y_fill.fill(y_value) new_x = np.concatenate((x_fill, self.x)) new_y = np.concatenate((y_fill, self.y)) elif x_value > x_max: x_fill = np.arange(x_max + x_step, x_value+x_step*0.5, x_step) y_fill = np.zeros(x_fill.shape) y_fill.fill(y_value) new_x = np.concatenate((self.x, x_fill)) new_y = np.concatenate((self.y, y_fill)) else: return self return Pattern(new_x, new_y) def plot(self, show=False, *args, **kwargs): import matplotlib.pyplot as plt plt.plot(self.x, self.y, *args, **kwargs) if show: plt.show() # Operators: def __sub__(self, other): orig_x, orig_y = self.data other_x, other_y = other.data if orig_x.shape != other_x.shape: # todo different shape subtraction of spectra seems the fail somehow... # the background will be interpolated other_fcn = interp1d(other_x, other_x, kind='linear') # find overlapping x and y values: ind = np.where((orig_x <= np.max(other_x)) & (orig_x >= np.min(other_x))) x = orig_x[ind] y = orig_y[ind] if len(x) == 0: # if there is no overlapping between background and pattern, raise an error raise BkgNotInRangeError(self.name) return Pattern(x, y - other_fcn(x)) else: return Pattern(orig_x, orig_y - other_y) def __add__(self, other): orig_x, orig_y = self.data other_x, other_y = other.data if orig_x.shape != other_x.shape: # the background will be interpolated other_fcn = interp1d(other_x, other_x, kind='linear') # find overlapping x and y values: ind = np.where((orig_x <= np.max(other_x)) & (orig_x >= np.min(other_x))) x = orig_x[ind] y = orig_y[ind] if len(x) == 0: # if there is no overlapping between background and pattern, raise an error raise BkgNotInRangeError(self.name) return Pattern(x, y + other_fcn(x)) else: return Pattern(orig_x, orig_y + other_y) def __rmul__(self, other): orig_x, orig_y = self.data return Pattern(
np.copy(orig_x)
numpy.copy
# coding: utf-8 # In[1]: # This code can be downloaded as a Python script and run as: # python full_vs_EM_any_dataset.py random_state dataset_name test_proportion val_proportion M_method M_alpha M_beta # test_proportion: The test proportion is from all the available true labels # val_proportion: The validation proportion is from the remaining training proportion with the true labels def is_interactive(): import __main__ as main return not hasattr(main, '__file__') import sys import argparse import numpy import matplotlib import os import glob import pandas import keras from keras import backend as K import matplotlib.pyplot as plt from sklearn.preprocessing import label_binarize from sklearn.utils import shuffle from wlc.WLweakener import computeM, generateWeak, weak_to_index, binarizeWeakLabels from experiments.visualizations import plot_history from experiments.visualizations import plot_multilabel_scatter cmap = plt.cm.get_cmap('tab20') from experiments.utils import compute_friedmanchisquare from experiments.utils import rankings_to_latex dataset_name = 'mnist' def statistical_tests(table, filename): # Friedman test ftest = compute_friedmanchisquare(table) df_rankings = pandas.DataFrame(table.rank(axis=1).mean(axis=0).sort_index()).T with open(filename + '.tex', 'w') as tf: tf.write('''\\centering\n\\caption{{Average rankings. Friedman test {:.2f}, p-value {:.2e}}}\n'''.format(ftest.statistic, ftest.pvalue) + df_rankings.to_latex(float_format='%.2f', column_format='c'*(1 + df_rankings.shape[1]))) def generate_summary(errorbar=True, zoom=False): cmap = plt.cm.get_cmap('tab20') from cycler import cycler default_cycler = (cycler(color=['darkred', 'forestgreen', 'darkblue', 'violet', 'darkorange', 'saddlebrown']) + cycler(linestyle=['-', '--', '-.', '-', '--', '-.']) + cycler(marker=['o', 'v', 'x', '*', '+', '.']) + cycler(lw=[2, 1.8, 1.6, 1.4, 1.2, 1])) plt.rcParams['figure.figsize'] = (5, 2.5) plt.rcParams["figure.dpi"] = 100 plt.rc('lines', linewidth=1) plt.rc('axes', prop_cycle=default_cycler) files_list = glob.glob("./Example_13*summary.csv") print('List of files to aggregate') print(files_list) list_ = [] for file_ in files_list: df = pandas.read_csv(file_,index_col=0, header=None, quotechar='"').T list_.append(df) df = pandas.concat(list_, axis = 0, ignore_index = True) df = df[df['dataset_name'] == dataset_name] # TODO: need to sort this number out df.weak_true_prop = df.weak_true_prop.astype(float) df.n_samples_train = df.n_samples_train.astype(float) del df['dataset_name'] df_grouped = df.groupby(['alpha', 'M_method_list', 'weak_true_prop']) for name, df_ in df_grouped: print(name) true_labels = round(min(df_.n_samples_train)) filename = 'Example_13_{}_{}true'.format(dataset_name, true_labels) n_iterations = len(df_['random_state'].unique()) columns = df_['models'].iloc[0].split(',') # TODO: To be added #statistical_tests(df_[columns], filename) columns.append('n_samples_train') df_ = df_[columns] df_ = df_.apply(pandas.to_numeric) df_.index = df_['n_samples_train'] del df_['n_samples_train'] df_.sort_index(inplace=True) df_mean = df_.groupby(df_.index).mean() df_std = df_.groupby(df_.index).std() df_count = df_.groupby(df_.index).count() min_repetitions = df_count.min().min() max_repetitions = df_count.max().max() fig = plt.figure(figsize=(4, 4)) ax = fig.add_subplot(111) for column in sorted(df_mean.columns): if errorbar: markers, caps, bars = ax.errorbar(df_mean.index, df_mean[column], yerr=df_std[column], label=column, elinewidth=0.5, capsize=2.0) # loop through bars and caps and set the alpha value [bar.set_alpha(0.5) for bar in bars] [cap.set_alpha(0.7) for cap in caps] else: ax.plot(df_mean.index, df_mean[column], label=column) #ax.set_title('dataset {}, alpha = {}'.format(dataset_name, name[0])) ax.grid(color='lightgrey') ax.set_ylabel('Mean acc. (#rep [{}-{}])'.format(min_repetitions, max_repetitions)) ax.set_xlabel('Number of training samples') ax.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=3, mode="expand", borderaxespad=0., fontsize=8) ax.set_ylim([0.0, 0.925]) ax.set_xlim([0, 36000]) fig.tight_layout() fig.savefig(filename + '.svg') ax.spines['bottom'].set_visible(False) d = .015 # how big to make the diagonal lines in axes coordinates # arguments to pass to plot, just so we don't keep repeating them kwargs = dict(transform=ax.transAxes, color='k', clip_on=False, linestyle='-', marker=',', lw=1.2 ) ax.plot((-d, +d), (-d, +d), **kwargs) # top-left diagonal ax.plot((-d, +d), (-d-d, +d-d), **kwargs) # top-left diagonal ax.plot((1 - d, 1 + d), (-d, +d), **kwargs) # top-right diagonal ax.plot((1 - d, 1 + d), (-d-d, +d-d), **kwargs) # top-right diagonal ax.set_ylim([0.886, 0.925]) fig.tight_layout() fig.savefig(filename + '_zoom.svg') if is_interactive(): get_ipython().magic(u'matplotlib inline') sys.path.append('../') # Define all the variables for this experiment random_state = 0 train_val_test_proportions = numpy.array([0.5, 0.2, 0.3]) # Train, validation and test proportions w_wt_drop_proportions = numpy.array([0.9, 0.1]) # Train set: for weak, for true [the rest to drop] M_method_list = ['complementary'] # Weak labels in training alpha = 0.0 # alpha = 0 (all noise), alpha = 1 (no noise) beta = 1 - alpha # beta = 1 (all noise), beta = 0 (no noise) max_epochs = 1000 # Upper limit on the number of epochs else: parser = argparse.ArgumentParser(description='''Example 13''', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('-r', '--random-state', type=int, default=42, help='''Random seed.''') parser.add_argument('-w', '--weak-prop', type=float, default=0.5, help='Proportion of weak labels') parser.add_argument('-t', '--weak-true-prop', type=float, default=0.5, help='''Proportion of true labels in the weak label set''') parser.add_argument('-p', '--plot-only', default=False, action='store_true', help='''Generate the summary plots and exit''') args = parser.parse_args() random_state = args.random_state weak_prop = args.weak_prop weak_true_prop = args.weak_true_prop train_val_test_proportions = numpy.array([0.5, 0.2, 0.3]) # Train, validation and test proportions w_wt_drop_proportions = numpy.array([weak_prop*( 1 - weak_true_prop), weak_true_prop]) # Train set: for weak, for true [the rest to drop] M_method_list = ['complementary'] # Weak labels in training alpha = 0.0 # alpha = 0 (all noise), alpha = 1 (no noise) beta = 1 - alpha # beta = 1 (all noise), beta = 0 (no noise) max_epochs = 1000 # Upper limit on the number of epochs matplotlib.use('Agg') if args.plot_only: generate_summary() exit() # # 1. Generation of a dataset # ## 1.a. Obtain dataset with true labels # In[2]: from keras.datasets import cifar10, mnist # cifar100.load_data(label_mode='fine') (x_train, y_train), (x_test, y_test) = mnist.load_data() X = numpy.concatenate((x_train, x_test)) y = numpy.concatenate((y_train, y_test)).flatten() X = X.astype('float32') X /= 255 X, y = shuffle(X, y) n_samples = X.shape[0] n_features = sum(X[0].shape) n_classes = 10 Y = label_binarize(y, range(n_classes)) print('n_samples = {}'.format(n_samples)) print('n_features = {}'.format(n_features)) # ## 1.b. Divide into training, validation and test # # - Validation and test will always have only true labels, while the training may have weak labels as well # # - $S_{train} = \{S_{wt-train}, S_{w-train}\} = [\{(x_i, b_i, y_i), i = 1,...,n\} X x Z x C, \{(x_i, b_i), i = 1,...,n\} \in X x Z\}]$ # - $S_{val} = \{(x_i, y_i), i = 1,...,n\} \in X x C$ # - $S_{test} = \{(x_i, y_i), i = 1,...,n\} \in X x C$ # In[3]: #train_val_test_proportions = numpy.array([0.5, 0.2, 0.3]) print('Original proportions for the 3 partitions (train, validation and test)') print(train_val_test_proportions) # Ensure that all proportions sum to 1 train_val_test_proportions /= train_val_test_proportions.sum() print('Proportions where to split') train_val_test_proportions = numpy.cumsum(train_val_test_proportions) print(train_val_test_proportions) print('Indices where to split (from a total of {} samples)'.format(X.shape[0])) indices = (train_val_test_proportions*X.shape[0]).astype(int)[:-1] print(indices) # # Divide into training, validation and test X_train, X_val, X_test = numpy.array_split(X, indices) Y_train, Y_val, Y_test = numpy.array_split(Y, indices) y_train, y_val, y_test = numpy.array_split(y, indices) print('Final sizes') print('Training samples = {}'.format(X_train.shape[0])) print('Validation samples = {}'.format(X_val.shape[0])) print('Test samples = {}'.format(X_test.shape[0])) # ## 1.c. Generate weakening processes # # - This will generate weak labels given the specified mixing process. # - It will also show 3 plots with the true labels, weak labels and the corresponding rows of the mixing matrix M. # - In all the mixing processes we remove the unlabeled option as this can be seen as the all labels (if we assume that every samples belongs to one class) # In[4]: #M_method_list = ['odd_even', 'random_weak', 'noisy', 'random_noise', 'IPL', 'quasi_IPL'] #alpha = 0.1 #beta = 1 - alpha M_list = [] for i, key in enumerate(M_method_list): M_list.append(computeM(n_classes, alpha=alpha, beta=beta, method=key, seed=random_state, unsupervised=False)) print('\nMixing matrix for set {} of type {} and shape = {}\n{}'.format( i, key, M_list[-1].shape, numpy.round(M_list[-1], decimals=2))) # ## 1.d. Divide training into weak portions # # - Currently every weak partition is of the same size # - We will assume that a proportion of each weak set has been annotated with the true labels # In[5]: #w_wt_drop_proportions = numpy.array([0.1, 0.1]) # for weak, for true [the rest to drop] cut_indices = (w_wt_drop_proportions.cumsum()*X_train.shape[0]).astype(int) print('Indices for the cuts = {}'.format(cut_indices)) X_w_train, X_wt_train, _ = numpy.array_split(X_train, cut_indices) y_w_train, y_wt_train, _ = numpy.array_split(y_train, cut_indices) Y_w_train, Y_wt_train, _ = numpy.array_split(Y_train, cut_indices) print('Portion with only weak labels = {}'.format(X_w_train.shape[0])) print('Portion with weak and true labels = {}'.format(X_wt_train.shape[0])) X_w_train_list = numpy.array_split(X_w_train, len(M_method_list)) y_w_train_list = numpy.array_split(y_w_train, len(M_method_list)) Y_w_train_list = numpy.array_split(Y_w_train, len(M_method_list)) Z_w_train_list = [] z_w_train_list = [] print('## Portion with only weak labels ##') for i, M in enumerate(M_list): print('Generating weak labels for set {} with mixing process {}'.format(i, M_method_list[i])) z_w_train_list.append(generateWeak(y_w_train_list[i], M)) Z_w_train_list.append(binarizeWeakLabels(z_w_train_list[i], n_classes)) print('Total shape = {}'.format(z_w_train_list[-1].shape)) print('Sample of z labels\n{}'.format(z_w_train_list[-1][:3])) print('Sample of Z labels\n{}'.format(Z_w_train_list[-1][:3])) X_wt_train_list = numpy.array_split(X_wt_train, len(M_method_list)) y_wt_train_list = numpy.array_split(y_wt_train, len(M_method_list)) Y_wt_train_list = numpy.array_split(Y_wt_train, len(M_method_list)) Z_wt_train_list = [] z_wt_train_list = [] print('## Portion with both weak and true labels ##') for i, M in enumerate(M_list): print('Generating weak labels for set {} with mixing process {}'.format(i, M_method_list[i])) z_wt_train_list.append(generateWeak(y_wt_train_list[i], M)) Z_wt_train_list.append(binarizeWeakLabels(z_wt_train_list[i], n_classes)) print('Total shape = {}'.format(z_wt_train_list[-1].shape)) print('Sample of z labels\n{}'.format(z_wt_train_list[-1][:3])) print('Sample of Z labels\n{}'.format(Z_wt_train_list[-1][:3])) # In[6]: from experiments.visualizations import plot_multilabel_scatter fig = plt.figure(figsize=(6, len(z_wt_train_list)*3)) j = 1 for i in range(len(Z_wt_train_list)): X_sample = X_wt_train_list[i][:100].reshape((100, -1)) ax = fig.add_subplot(len(Z_wt_train_list), 2, j) _ = plot_multilabel_scatter(X_sample, Z_wt_train_list[i][:100], fig=fig, ax=ax, title='Weak labels set {}'.format(i), cmap=cmap) ax.set_ylabel('M {}'.format(M_method_list[i])) ax = fig.add_subplot(len(Z_wt_train_list), 2, j+1) _ = plot_multilabel_scatter(X_sample, Y_wt_train_list[i][:100], fig=fig, ax=ax, title='True labels set {}'.format(i), cmap=cmap) j += 2 fig.tight_layout() # # Define a common model # In[7]: from keras.callbacks import EarlyStopping, Callback from keras import regularizers def log_loss(y_true, y_pred): y_pred = K.clip(y_pred, K.epsilon(), 1.0-K.epsilon()) out = -y_true*K.log(y_pred) return K.mean(out, axis=-1) #max_epochs = 1000 # Callback to show performance per epoch in the same line class EpochCallback(Callback): def on_epoch_end(self, epoch, logs={}): print('\rEpoch {}, val_loss = {:.2e}, val_acc = {:.2f}'.format(epoch, logs['val_loss'], logs['val_acc']), end=' ') # Callback for early stopping epoch_callback = EpochCallback() early_stopping = EarlyStopping(monitor='val_loss', min_delta=0, patience=int(max_epochs/20), verbose=2, mode='auto', baseline=None, restore_best_weights=True) def make_model(loss, l2=0.0): # Careful that it is ussing global variables for the input and output shapes numpy.random.seed(random_state) model = keras.models.Sequential() model.add(keras.layers.Flatten()) model.add(keras.layers.Dense(Y.shape[1], input_shape=X[0].shape, kernel_regularizer=regularizers.l2(l2), activation='softmax')) model.compile(optimizer='adam', loss=loss, metrics=['ce', 'mse', 'acc']) return model # Keyword arguments for the fit function fit_kwargs = dict(validation_data=(X_val, Y_val), epochs=max_epochs, verbose=0, callbacks=[early_stopping, epoch_callback], shuffle=True) # Save the final model for each method final_models = {} # # Fully supervised (upperbound) # # Train with all true labels # In[8]: train_method = 'Supervised' # In this dataset the best l2 parameter is 0.0 l2_list = numpy.array([0.0, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1e0, 1e1]) l2_list = numpy.array([1e-9]) model_supervised_list = [] val_losses = numpy.zeros_like(l2_list) for i, l2 in enumerate(l2_list): print('Evaluating l2 regularization = {}'.format(l2)) model = make_model(log_loss, l2=l2) history = model.fit(numpy.concatenate((*X_w_train_list, *X_wt_train_list)), numpy.concatenate((*Y_w_train_list, *Y_wt_train_list)), **fit_kwargs) plot_history(history, model, X_test, y_test) model_supervised_list.append(model) best_epoch = numpy.argmin(model.history.history['val_loss']) val_losses[i] = model.history.history['val_loss'][best_epoch] plt.show() best_supervised = numpy.argmin(val_losses) final_models[train_method] = model_supervised_list[best_supervised] l2 = l2_list[best_supervised] print('Best l2 = {}'.format(l2)) fig = plt.figure() ax = fig.add_subplot(111) ax.semilogx(l2_list, val_losses, 'o-') ax.scatter(l2, val_losses[best_supervised], color='gold', edgecolor='black', marker='*', s=150, zorder=3) # # Our method with EM and original M # # Train EM with all weak labels # In[ ]: def EM_log_loss(y_true, y_pred): y_pred = K.clip(y_pred, K.epsilon(), 1.0-K.epsilon()) Q = y_true * y_pred Z_em_train = Q / K.sum(Q, axis=-1, keepdims=True) out = -K.stop_gradient(Z_em_train)*K.log(y_pred) return K.mean(out, axis=-1) model = make_model(EM_log_loss, l2=l2) M_true_list = [] n_samples_train = X_w_train.shape[0] + X_wt_train.shape[0] # Add weak samples for i, M in enumerate(M_list): q = (X_w_train_list[i].shape[0]/n_samples_train) M_true_list.append(M * q) print('q_{} weak = {:.3f}'.format(i, q)) # Add true samples M_supervised = computeM(n_classes, method='supervised') for i, M in enumerate(M_list): q = (X_wt_train_list[i].shape[0]/n_samples_train) M_true_list.append(M_supervised * q) print('q_{} true = {:.3f}'.format(i, q)) M_true = numpy.concatenate(M_true_list) last_index = 0 Z_train_index_list = [] V_train_list = [] # Add weak samples for i in range(len(M_method_list)): Z_train_index_list.append(last_index + weak_to_index(Z_w_train_list[i], method=M_method_list[i])) last_index += len(M_list[i]) V_train_list.append(M_true[Z_train_index_list[-1]]) # Add true samples for i in range(len(M_method_list)): Z_train_index_list.append(last_index + weak_to_index(Y_wt_train_list[i], method='supervised')) last_index += n_classes V_train_list.append(M_true[Z_train_index_list[-1]]) history = model.fit(numpy.concatenate((*X_w_train_list, *X_wt_train_list)), numpy.concatenate(V_train_list), **fit_kwargs) plot_history(history, model, X_test, y_test) final_models['EM original M'] = model # # Our method with EM and estimated M # In[ ]: from wlc.WLweakener import estimate_M model = make_model(EM_log_loss, l2=l2) M_estimated_list = [] n_samples_train = X_w_train.shape[0] + X_wt_train.shape[0] # Add weak samples for i in range(len(M_list)): M = estimate_M(Z_wt_train_list[i], Y_wt_train_list[i], range(n_classes), reg='Partial', Z_reg=Z_w_train_list[i], alpha=1) q = (X_w_train_list[i].shape[0]/n_samples_train) M_estimated_list.append(M * q) print('q_{} weak = {:.3f}'.format(i, q)) # Add true samples M_supervised = computeM(n_classes, method='supervised') for i in range(len(M_list)): q = (X_wt_train_list[i].shape[0]/n_samples_train) M_estimated_list.append(M_supervised * q) print('q_{} true = {:.3f}'.format(i, q)) M_estimated = numpy.concatenate(M_estimated_list) last_index = 0 Z_train_index_list = [] V_train_list = [] # Add weak samples for i in range(len(M_method_list)): Z_train_index_list.append(last_index + weak_to_index(Z_w_train_list[i], method='random_weak')) last_index += 2**n_classes V_train_list.append(M_estimated[Z_train_index_list[-1]]) # Add true samples for i in range(len(M_method_list)): Z_train_index_list.append(last_index + weak_to_index(Y_wt_train_list[i], method='supervised')) last_index += n_classes V_train_list.append(M_estimated[Z_train_index_list[-1]]) history = model.fit(numpy.concatenate((*X_w_train_list, *X_wt_train_list)), numpy.concatenate(V_train_list), **fit_kwargs) plot_history(history, model, X_test, y_test) final_models['EM estimated M'] = model # In[ ]: for i, (m1, m2) in enumerate(zip(M_true_list, M_estimated_list)): fig = plt.figure(figsize=(10, 5)) ax = fig.add_subplot(1,3,1) ax.set_title('True M') cax = ax.imshow(m1, interpolation='nearest', aspect='auto') fig.colorbar(cax, orientation="horizontal") ax = fig.add_subplot(1,3,2) ax.set_title('Estimated M') cax = ax.imshow(m2, interpolation='nearest', aspect='auto') fig.colorbar(cax, orientation="horizontal") if m1.shape == m2.shape: mse = numpy.power(m1 - m2, 2).sum() ax = fig.add_subplot(1,3,3) ax.set_title('MSE = {:.2f}'.format(mse)) cax = ax.imshow(numpy.power(m1 - m2, 2), interpolation='nearest', aspect='auto') fig.colorbar(cax, orientation="horizontal") # # Weak (lowerbound) # In[ ]: model = make_model(log_loss, l2=l2) history = model.fit(numpy.concatenate((*X_w_train_list, *X_wt_train_list)),
numpy.concatenate((*Z_w_train_list, *Y_wt_train_list))
numpy.concatenate
import numpy as np import pytest import cubepy def integrand_ellipsoid_v(x, r): rho = np.asarray(x[0]) # phi = np.array(x[1]) theta = np.asarray(x[2]) return np.prod(r, axis=0) * rho ** 2 * np.sin(theta) def test_brick(): def integrand_brick(x): return np.ones_like(x) def exact_brick(r): return np.prod(r, axis=0) value, error = cubepy.integrate(integrand_brick, 0.0, 1.0) assert np.allclose(value, exact_brick(1.0)) assert np.all(error < 1e-6) lo = [0, 0, 0] hi = [1, 2, 3] value, error = cubepy.integrate(integrand_brick, lo, hi, is_1d=False) assert np.allclose(value, exact_brick(hi)) assert np.all(error < 1e-6) def test_sphere(): def integrand_sphere(x): r, _, phi = x return r ** 2 * np.sin(phi) def exact_sphere(r): return (4.0 / 3.0) * np.pi * r ** 3 value, error = cubepy.integrate( integrand_sphere, [0.0, 0.0, 0.0], [1.0, 2.0 * np.pi, np.pi] ) assert np.allclose(value, exact_sphere(1.0)) assert np.all(error < 1e-5) def test_ellipsoid(): def integrand_ellipsoid(x, a, b, c): rho, _, theta = x return a * b * c * rho ** 2 * np.sin(theta) def exact_ellipsoid(axes): return (4 / 3) * np.pi * np.prod(axes, axis=0) value, error = cubepy.integrate( integrand_ellipsoid, [0.0, 0.0, 0.0], [1.0, 2.0 * np.pi, np.pi], args=(1, 2, 3) ) assert np.allclose(value, exact_ellipsoid([1, 2, 3])) assert np.all(error < 1e-5) def test_multi(): def integrand(x): return 1 + 8 * x[0] * x[1] low = np.array( [ 1000000 * [0.0], 1000000 * [1.0], ] ) high = np.array( [ 1000000 * [3.0], 1000000 * [2.0], ] ) value, error = cubepy.integrate(integrand, low, high) assert np.allclose(value, 57) assert np.all(error < 1e-6) def test_van_dooren_de_riddler_simple_1(): lo = np.array([0.0, 0.0, 0.0, -1.0, -1.0, -1.0]) hi = np.array([2.0, 1.0, (np.pi / 2.0), 1.0, 1.0, 1.0]) value, error = cubepy.integrate( lambda x: (x[0] * x[1] ** 2 * np.sin(x[2])) / (4 + x[3] + x[4] + x[5]), lo, hi ) assert np.allclose(value, 1.434761888397263) assert np.all(error < 1e-2) def test_van_dooren_de_riddler_simple_2(): value, error = cubepy.integrate( lambda x: x[2] ** 2 * x[3] * np.exp(x[2] * x[3]) * (1 + x[0] + x[1]) ** -2, np.array([0.0, 0.0, 0.0, 0.0]), np.array([1.0, 1.0, 1.0, 2.0]), ) assert np.allclose(value, 0.5753641449035616) assert np.all(error < 1e-4) def test_van_dooren_de_riddler_simple_3(): value, error = cubepy.integrate( lambda x: 8 / (1 + 2 * (np.sum(x, axis=0))), np.array([0.0, 0.0, 0.0]), np.array([1.0, 1.0, 1.0]), ) assert
np.allclose(value, 2.152142832595894)
numpy.allclose
import numpy as np import matplotlib.pyplot as plt from mnist import mnist_data class Perceptron(object): def __init__(self, num_inputs, epochs=500, learning_rate=0.1): self.weights = np.random.uniform(low=-1., high=1., size=(num_inputs + 1) * 10).reshape(257, 10) self.weights[-1:, :] = 1 self.epochs = epochs self.learning_rate = learning_rate self.train_history = [] self.test_history = [] def predict(self, inputs): # Now the matrix mult with the weights to get the output output = np.dot(inputs, self.weights) # Now need to choose which one is the largest to give the output for this one activation = np.argmax(output) # Return the activation return activation def predict_on_set(self, test_inputs, labels, verbose=False): training_inputs = np.c_[test_inputs, np.ones(test_inputs.shape[0])] # Add biases combined = np.asarray(list(zip(training_inputs, labels))) right = 0 wrong = 0 for inputs, label in combined: prediction = self.predict(inputs) if prediction == label: right += 1 else: wrong += 1 if verbose: print((right / (wrong + right))) return (right / (wrong + right)) def train(self, training_inputs, labels, shuffle=False, neg_pred=10, pos_pred=1): training_inputs = np.c_[training_inputs, np.ones(training_inputs.shape[0])] # Add biases combined = np.asarray(list(zip(training_inputs, labels))) for _ in range(self.epochs): right = 0 wrong = 0 self.test_history.append(self.predict_on_set(x_test, y_test)) if shuffle: np.random.shuffle(combined) for inputs, label in combined: ldir = np.zeros((10, 1)) prediction = self.predict(inputs) label = label[0] if prediction == label: ldir[label] += pos_pred else: ldir[label] += neg_pred ldir[prediction] -= neg_pred if prediction == label: right += 1 else: wrong += 1 self.weights[:-1] += self.learning_rate * (ldir * inputs[:-1]).T self.weights[-1:] += self.learning_rate * ldir.T self.train_history.append(self.acc(right, wrong)) self.plot_training(neg_pred, pos_pred) return self.train_history, self.test_history def plot_training(self, neg_val, pos_val): timesteps = [i for i in range(len(self.train_history))] plt.plot(timesteps, self.train_history, label='Training Set') plt.plot(timesteps, self.test_history, label='Test Set') plt.xlabel("Epoch") plt.ylabel("Accuracy") plt.title("Accuracy over Epoch Neg: {} Pos: {}".format(np.round(neg_val, 6), np.round(pos_val, 6))) plt.legend(loc='best') plt.savefig("Neg_{}_Pos_{}_Test_{}_Train_{}.png".format(neg_val, pos_val, self.test_history[-1], self.train_history[-1]), dpi=300) plt.cla() def acc(self, right, wrong): return right / (right + wrong) x_train, y_train, x_test, y_test = mnist_data("data") # Reshape to 256 elements x_train = x_train.reshape((-1, 256)) x_test = x_test.reshape((-1, 256)) np.random.seed(1337) network = Perceptron(256) network.predict_on_set(x_test, y_test) network.train(x_train, y_train, shuffle=True) network.predict_on_set(x_test, y_test) trained_precdictions = [] test_predictions = [] for neg_val in np.logspace(-5, 5, num=10): for pos_val in np.logspace(-5, 5, num=10): print("Neg Val: {} Pos Val: {}".format(neg_val, pos_val)) np.random.seed(1337) network = Perceptron(256) network.predict_on_set(x_test, y_test, verbose=True) train_hist, test_hist = network.train(x_train, y_train, shuffle=True, neg_pred=neg_val, pos_pred=pos_val) trained_precdictions.append(train_hist) test_predictions.append(test_hist) # Now have all the predictions # Plot them all vals = np.logspace(-5, 5, num=10) fig, axes = plt.subplots(10, 10, sharex="all", sharey="all", figsize=(20, 20)) fig.subplots_adjust(wspace=0) # Now go through and plot everything for neg_val in range(10): for pos_val in range(10): axes[neg_val, pos_val].plot([i for i in range(len(trained_precdictions[neg_val + pos_val]))], trained_precdictions[neg_val + pos_val]) axes[neg_val, pos_val].plot([i for i in range(len(test_predictions[neg_val + pos_val]))], test_predictions[neg_val + pos_val]) fig.text(0.5, 0.005, 'Epoch, pos_pred value', ha='center', va='center') fig.text(0.005, 0.5, 'Fraction Correct, neg_pred value', ha='center', va='center', rotation='vertical') for index, val in enumerate(vals): axes[index, 0].set_ylabel(str(
np.round(val, 4)
numpy.round
import numpy as np import copy from generative_playground.codec.codec import get_codec from generative_playground.molecules.model_settings import get_settings from rdkit import Chem from math import floor class GraphEnvironment: def __init__(self, mask_gen, reward_fun=None, batch_size=1, save_dataset=None): self.mask_gen = mask_gen self.codec = mask_gen.grammar self.action_dim = self.codec.feature_len() self.state_dim = self.action_dim self._max_episode_steps = mask_gen.MAX_LEN self.reward_fun = reward_fun self.batch_size = batch_size self.save_dataset = save_dataset self.smiles = None self.seq_len = None self.valid = None self.done_rewards = None self.reset() def reset(self): self.mask_gen.reset() next_action = (None, [None for _ in range(self.batch_size)]) graphs, node_mask, full_logit_priors = self.mask_gen.step(next_action) self.done_rewards = [None for _ in range(self.batch_size)] self.smiles = [None for _ in range(self.batch_size)] self.seq_len = np.zeros([self.batch_size]) self.valid = np.zeros([self.batch_size]) return copy.deepcopy(graphs), node_mask, full_logit_priors def step(self, full_action): ''' Convention says environment outputs np.arrays :param rule_action: LongTensor(batch_size), or np.array(batch_size) of ints last discrete rule_action chosen :return: ''' if type(full_action)==tuple and len(full_action) == 2: # old-style inputs, separate node and rule selections node_action, rule_action = full_action else: # new-style inputs, node and rule encoded in one int node_action = [floor(a.item() / self.action_dim) for a in full_action] rule_action = [a.item() % self.action_dim for a in full_action] next_state = self.mask_gen.step((node_action, rule_action)) graphs, node_mask, full_logit_priors = next_state # TODO: the rest here is just bookkeeping + reward calculation if self.mask_gen.t < self._max_episode_steps: done = self.codec.is_padding(np.array(rule_action))# max index is padding, by convention else: done = np.ones_like(rule_action) == 1 reward = np.zeros_like(rule_action, dtype=np.float) # for those sequences just computed, calculate the reward for i in range(len(rule_action)): if self.done_rewards[i] is None and done[i]: this_graph = graphs[i] self.smiles[i] = this_graph.to_smiles() this_mol = Chem.MolFromSmiles(self.smiles[i]) if this_mol is None: print(self.smiles[i]) self.valid[i] = 0 else: self.valid[i] = 1 this_reward = self.reward_fun([self.smiles[i]])[0] self.done_rewards[i] = this_reward reward[i] = this_reward self.seq_len[i] = self.mask_gen.t #TODO: put the special string handling into the hdf5 wrapper if self.save_dataset is not None: import h5py dt = h5py.special_dtype(vlen=str) # PY3 hdf5 datatype for variable-length Unicode strings if len(self.actions) == self._max_episode_steps: # dump the whole batch to disk append_data = {'smiles': np.array(self.smiles, dtype=dt), 'actions': np.concatenate(self.actions, axis=1), 'seq_len': self.seq_len} self.save_dataset.append(append_data) return next_state, reward, done, (self.smiles, self.valid) def seed(self, random_seed): return random_seed class SequenceEnvironment: def __init__(self, molecules=True, grammar=True, reward_fun=None, batch_size=1, max_steps=None, save_dataset=None): settings = get_settings(molecules, grammar) self.codec = get_codec(molecules, grammar, settings['max_seq_length']) self.action_dim = self.codec.feature_len() self.state_dim = self.action_dim if max_steps is None: self._max_episode_steps = settings['max_seq_length'] else: self._max_episode_steps = max_steps self.reward_fun = reward_fun self.batch_size = batch_size self.save_dataset = save_dataset self.smiles = None self.seq_len = None self.valid = None self.actions = None self.done_rewards = None self.reset() def reset(self): self.actions = [] self.done_rewards = [None for _ in range(self.batch_size)] self.smiles = [None for _ in range(self.batch_size)] self.seq_len = np.zeros([self.batch_size]) self.valid = np.zeros([self.batch_size]) return [None]*self.batch_size def step(self, action): ''' Convention says environment outputs np.arrays :param action: LongTensor(batch_size), or np.array(batch_sizelast discrete action chosen :return: ''' try: # in case action is a torch.Tensor action = action.cpu().to_numpy() except: pass self.actions.append(action[:,None]) next_state = action if len(self.actions) < self._max_episode_steps: done = self.codec.is_padding(action) # max index is padding, by convention else: done = np.ones_like(action) == 1 reward =
np.zeros_like(action, dtype=np.float)
numpy.zeros_like
import numpy as np import matplotlib.pyplot as plt def input_xydim(): """ Specify the parking lot dimensions in x,y directions by the user return 1*2 np.array 'xy_dim' the first element of 'xy_dim' is the dimension in x_direction the second element of 'xy_dim' is the dimension in y_direction """ print('Please specify the parking lot dimensions:') # Input needs to be integers x_dim = np.intp(input('In x-direction:')) y_dim = np.intp(input('In y-direction:')) xy_dim = np.array([x_dim,y_dim]) return xy_dim def gdim_frm_xydim(xy_dim): """ Obtain the parking lot dimension for the grid index from xy_dim return 'g_dim' """ g_dim = np.intp(xy_dim[0]*xy_dim[1]) return g_dim def input_pkgidx(g_dim): """ Specify the parking spots index by the user return 1*pk_dim np.array 'pk_g_idx' where pk_dim is the number of spots """ #print('Please specify the num of parking spots:') pk_dim = np.int(input('Please specify the num of parking spots:')) while pk_dim >= g_dim: print('Too many parking spots!') pk_dim = np.int(input('Please specify the num of parking spots:')) pk_g_idx = -np.ones(pk_dim, dtype = int) for idx in range(pk_dim): print('Input as grid index ranging from 0 to',g_dim-1) spot_idx = np.int(input()) while (spot_idx < 0) or (spot_idx >= g_dim): print('Invalid input!') print('Input as grid index ranging from 0 to',g_dim-1) spot_idx = np.int(input()) while spot_idx in pk_g_idx: print('Repeated input!') print('Input as grid index ranging from 0 to',g_dim-1) spot_idx = np.int(input()) while (spot_idx < 0) or (spot_idx >= g_dim): print('Invalid input!') print('Input as grid index ranging from 0 to',g_dim-1) spot_idx = np.int(input()) pk_g_idx[idx] = spot_idx pk_g_idx.sort() return pk_g_idx def input_target_speed(): """ Specify the desired target speed in km/h return the desired target speed in km/h """ target_speed = np.float32(input('Please specify the desired speed in km/h: '))/3.6 return target_speed def gidx_frm_xycrd(xy_crd, xy_dim): """ Obtain the grid idex from grid xy_cord return 'g_idx', starting from 0. Example for a 3*2 grid 1 | 3 | 5 --------- 0 | 2 | 4 """ g_idx = np.intp((xy_crd[0]-1)*xy_dim[1]+xy_crd[1]-1) return g_idx def xycrd_frm_gidx(g_idx, xy_dim): """ Obtain the xy_cord from grid_idx return 'xy_cord', starting from [1,1]. Example for a 3*2 grid [1,2] | [2,2] | [3,2] --------------------- [1,1] | [2,1] | [3,1] """ x_crd =
np.floor_divide(g_idx, xy_dim[1])
numpy.floor_divide
import numpy as np from glob import glob import os import json from neuralparticles.tools.param_helpers import * from neuralparticles.tools.data_helpers import particle_radius from neuralparticles.tools.shell_script import * from neuralparticles.tools.uniio import writeParticlesUni, writeNumpyRaw, readNumpyOBJ, writeNumpyOBJ, readParticlesUni, writeUni from neuralparticles.tools.particle_grid import ParticleIdxGrid from neuralparticles.tensorflow.losses.tf_approxmatch import approx_vel, emd_loss from scipy import optimize import random import math from collections import OrderedDict import time import imageio import keras.backend as K def _approx_vel(pos, npos, h=0.5, it=1): """cost = np.linalg.norm(np.expand_dims(pos, axis=1) - np.expand_dims(npos, axis=0), axis=-1) idx = optimize.linear_sum_assignment(cost) vel = np.zeros_like(pos) vel[idx[0]] = npos[idx[1]] - pos[idx[0]]""" vel = K.eval(approx_vel(K.constant(np.expand_dims(pos, 0)), K.constant(np.expand_dims(npos, 0))))[0] dist = np.linalg.norm(np.expand_dims(pos, axis=0) - np.expand_dims(pos, axis=1), axis=-1) dist = np.exp(-dist/h) w = np.clip(np.sum(dist, axis=1, keepdims=True), 1, 10000) for i in range(it): vel = np.dot(dist, vel)/w return vel def project(n, v): return v - np.dot(n,v) * n def deviation(n, v0, v1): t = project(n, v0) return t/np.dot(t,v0) def viewWorldM(rot, pos): m = np.zeros((3,4)) m[0,0] = 1 - 2*rot[2]**2 - 2*rot[3]**2 m[0,1] = 2*rot[1]*rot[2] - 2*rot[3]*rot[0] m[0,2] = 2*rot[1]*rot[3] + 2*rot[2]*rot[0] m[1,0] = 2*rot[1]*rot[2] + 2*rot[3]*rot[0] m[1,1] = 1 - 2*rot[1]**2 - 2*rot[3]**2 m[1,2] = 2*rot[2]*rot[3] - 2*rot[1]*rot[0] m[2,0] = 2*rot[1]*rot[3] - 2*rot[2]*rot[0] m[2,1] = 2*rot[2]*rot[3] + 2*rot[1]*rot[0] m[2,2] = 1 - 2*rot[1]**2 - 2*rot[2]**2 m[0:3,3] = -pos return m A_l = np.array([ [+1.,+0.,+0.,+0.], [+0.,+0.,+1.,+0.], [-3.,+3.,-2.,-1.], [+2.,-2.,+1.,+1.] ]) A_r = np.array([ [+1.,+0.,-3.,+2.], [+0.,+0.,+3.,-2.], [+0.,+1.,-2.,+1.], [+0.,+0.,-1.,+1.] ]) data_path = getParam("data", "data/") mesh_path = getParam("mesh", "") config_path = getParam("config", "config/version_00.txt") debug = int(getParam("debug", 0)) != 0 res = int(getParam("res", -1)) eval = int(getParam("eval", 0)) != 0 test = int(getParam("test", 0)) != 0 t_end = int(getParam("t_end", -1)) gpu = getParam("gpu", "-1") min_v = np.asarray(getParam("min_v", "-2,-2,2").split(","), dtype="float32") max_v = np.asarray(getParam("max_v", "2,2,-2").split(","), dtype="float32") scale = np.abs(max_v - min_v) checkUnusedParams() if not gpu is "-1": os.environ["CUDA_VISIBLE_DEVICES"] = gpu if mesh_path == "": mesh_path = data_path with open(config_path, 'r') as f: config = json.loads(f.read()) with open(os.path.dirname(config_path) + '/' + config['data'], 'r') as f: data_config = json.loads(f.read()) with open(os.path.dirname(config_path) + '/' + config['preprocess'], 'r') as f: pre_config = json.loads(f.read()) with open(os.path.dirname(config_path) + '/' + config['train'], 'r') as f: train_config = json.loads(f.read()) sub_res = data_config['sub_res'] dim = data_config['dim'] vert_area_ratio = sub_res ** 2 if res < 0: res = data_config['res'] bnd = data_config['bnd'] min_n = pre_config['min_n'] factor = pre_config['factor'] factor_d = math.pow(factor,1/dim) lres = int(res/factor_d) search_r = res/lres * (1/sub_res) * 0.77 if factor > 1 else 0 off = data_config['data_count'] if eval else 0 discretize = data_config['disc'] max_z = data_config['max_z'] t_int = data_config['t_int'] culling = data_config["cull"] scan = data_config["scan"] random.seed(data_config['seed']) np.random.seed(data_config['seed']) if test: src_path = "%sreal/%s_%s_" % (data_path, data_config['prefix'], data_config['id']) + "d%03d_%03d" if not os.path.exists(data_path + "real/"): os.makedirs(data_path + "real/") t_int = 1 obj_cnt = len(glob(mesh_path + "*")) else: ref_path = "%sreference/%s_%s_" % (data_path, data_config['prefix'], data_config['id']) + "d%03d_%03d" src_path = "%ssource/%s_%s-%s_" % (data_path, data_config['prefix'], data_config['id'], pre_config['id']) + "d%03d_var00_%03d" if not os.path.exists(data_path + "reference/"): os.makedirs(data_path + "reference/") if not os.path.exists(data_path + "source/"): os.makedirs(data_path + "source/") obj_cnt = len(glob(mesh_path + "objs/*")) frame_cnt = data_config['frame_count'] if t_end < 0 else t_end #if (eval and obj_cnt != data_config['test_count']) or (not eval and obj_cnt != data_config['data_count']): # print("Mismatch between obj count and 'data_count'/'test_count' in config file!") # exit() if debug: ref_path = data_path + "debug/ref/d%03d_%03d" src_path = data_path + "debug/src/d%03d_%03d" if not os.path.exists(data_path + "debug/ref/"): os.makedirs(data_path + "debug/ref/") if not os.path.exists(data_path + "debug/src/"): os.makedirs(data_path + "debug/src/") obj_cnt = 1 frame_cnt = 3 for d in range(obj_cnt): print("Load dataset %d/%d" % (d+1, obj_cnt)) cam_cnt = 1 if scan: scan_path = mesh_path + "scans/%04d/" % d with open(scan_path + "cam_data.json") as f: cam_data = json.loads(f.read()) cam_cnt = len(cam_data['transform']) near, width, height = cam_data['near'], cam_data['width'], cam_data['height'] scan_path += "%04d" if not test: obj_path = mesh_path + "objs/%04d/" % d + "%04d.obj" vertices = None normals = None faces = None for t in range(frame_cnt*t_int): obj = readNumpyOBJ(obj_path%t) if t == 0: vertices = np.empty((frame_cnt*t_int, obj[0].shape[0], 3)) normals = np.empty((frame_cnt*t_int,), dtype=object) faces = np.empty((frame_cnt*t_int, obj[2].shape[0], 2, 4),dtype=int) vertices[t] = obj[0] normals[t] = obj[1] faces[t] = obj[2] min_v = np.min(vertices,axis=(0,1)) max_v = np.max(vertices,axis=(0,1)) scale = np.abs(max_v - min_v) vertices -= min_v + [0.5,0,0.5] * scale vertices *= (res - 4 * bnd) / np.max(scale) vertices += [res/2, bnd*2, res/2] print(np.min(vertices,axis=(0,1))) print(np.max(vertices,axis=(0,1))) bary_coord = np.empty((len(faces[0]),),dtype=object) data_cnt = 0 d_idx = None prev_ref = None prev_src = None prev_idx = None hdrsdf = OrderedDict([ ('dimX',lres), ('dimY',lres), ('dimZ',1 if dim == 2 else lres), ('gridType', 16), ('elementType',1), ('bytesPerElement',4), ('info',b'\0'*252), ('dimT',1), ('timestamp',(int)(time.time()*1e6))]) hdr = OrderedDict([ ('dim',0), ('dimX',res), ('dimY',res), ('dimZ',1 if dim == 2 else res), ('elementType',0), ('bytesPerElement',16), ('info',b'\0'*256), ('timestamp',(int)(time.time()*1e6))]) hdrv = hdr.copy() hdrv['elementType'] = 1 hdrv['bytesPerElement'] = 12 for ci in range(cam_cnt): print("Load cam: %d/%d" % (ci+1, cam_cnt)) if scan: viewWorld = np.array(cam_data['transform'][ci]) if os.path.isfile(scan_path%ci + ".npz"): scan_data = np.load(scan_path%ci + ".npz")['arr_0'] if discretize: scan_data = np.floor(np.clip(scan_data / max_z, 0, 1) * 256)/256 * max_z else: scan_img_path = scan_path%ci + "/%04d.png" tmp = max_z - imageio.imread(scan_img_path%0)[::-1,:,:1]/256 * max_z scan_data = np.empty((frame_cnt*t_int, tmp.shape[0], tmp.shape[1], 1)) scan_data[0] = tmp for t in range(1, frame_cnt*t_int): scan_data[t] = max_z - imageio.imread(scan_img_path%t)[::-1,:,:1]/256 * max_z viewV = np.dot(viewWorld[:3,:3], np.array([0,0,-1])) viewV = np.dot(np.array([[1,0,0],[0,0,1],[0,-1,0]]), viewV) for ti in range(1 if eval else t_int): print("Time Intervall: %d/%d" % (ti+1, t_int)) d_idx = ti + (ci + d*cam_cnt)*(1 if eval else t_int) + off print("Dataset: %d" % d_idx) for t in range(frame_cnt): t_off = ti+t*t_int print("Load mesh: %d/%d (t_off: %d/%d)" % (t+1, frame_cnt, t_off, frame_cnt*t_int)) if not test: if t == 0: data_cnt = 0 for fi, f in enumerate(faces[t_off]): v = vertices[t_off,f[0]] area = np.linalg.norm(np.cross(v[1]-v[0], v[2]-v[0]))/2 area += np.linalg.norm(np.cross(v[2]-v[0], v[3]-v[0]))/2 par_cnt = vert_area_ratio * area par_cnt = int(par_cnt) + int(np.random.random() < par_cnt % 1) bary_coord[fi] = np.random.random((par_cnt, 2)) data_cnt += par_cnt data = np.empty((data_cnt, 3)) di = 0 fltr_idx = np.zeros((data_cnt,), dtype="int32") fltr_i = 0 for fi, f in enumerate(faces[t_off]): v = vertices[t_off,f[0]] n = normals[t_off][f[1]] x01 = (v[1] - v[0]) x01 /= np.linalg.norm(x01,axis=-1,keepdims=True) x32 = (v[2] - v[3]) x32 /= np.linalg.norm(x32,axis=-1,keepdims=True) y12 = (v[2] - v[1]) y12 /= np.linalg.norm(y12,axis=-1,keepdims=True) y03 = (v[3] - v[0]) y03 /= np.linalg.norm(y03,axis=-1,keepdims=True) A_f = np.zeros((4,4,3)) A_f[0,0] = v[0] A_f[0,1] = v[3] A_f[1,0] = v[1] A_f[1,1] = v[2] A_f[0,2] = deviation(n[0], y03, x01) A_f[0,3] = deviation(n[3], y03, x32) A_f[1,2] = deviation(n[1], y12, x01) A_f[1,3] = deviation(n[2], y12, x32) A_f[2,0] = deviation(n[0], x01, -y03) A_f[2,1] = deviation(n[3], x32, -y03) A_f[3,0] = deviation(n[1], x01, -y12) A_f[3,1] = deviation(n[2], x32, -y12) A_f[2,2] = (A_f[2,1] - A_f[2,0])/np.linalg.norm(y03) A_f[2,3] = (A_f[2,1] - A_f[2,0])/np.linalg.norm(y03) A_f[3,2] = (A_f[3,1] - A_f[3,0])/
np.linalg.norm(y12)
numpy.linalg.norm
import numpy as np import typing as ty import importlib import pytest import pickle as pk from ..submitter import Submitter from ..core import Workflow from ...mark import task, annotate from .utils import identity from ..helpers import hash_value if importlib.util.find_spec("numpy") is None: pytest.skip("can't find numpy library", allow_module_level=True) @task @annotate({"return": {"b": ty.Any}}) def arrayout(val): return np.array([val, val]) def test_multiout(tmpdir): """ testing a simple function that returns a numpy array""" wf = Workflow("wf", input_spec=["val"], val=2) wf.add(arrayout(name="mo", val=wf.lzin.val)) wf.set_output([("array", wf.mo.lzout.b)]) wf.cache_dir = tmpdir with Submitter(plugin="cf", n_procs=2) as sub: sub(runnable=wf) results = wf.result(return_inputs=True) assert results[0] == {"wf.val": 2} assert np.array_equal(results[1].output.array, np.array([2, 2])) def test_multiout_st(tmpdir): """ testing a simple function that returns a numpy array, adding splitter""" wf = Workflow("wf", input_spec=["val"], val=[0, 1, 2]) wf.add(arrayout(name="mo", val=wf.lzin.val)) wf.mo.split("val").combine("val") wf.set_output([("array", wf.mo.lzout.b)]) wf.cache_dir = tmpdir with Submitter(plugin="cf", n_procs=2) as sub: sub(runnable=wf) results = wf.result(return_inputs=True) assert results[0] == {"wf.val": [0, 1, 2]} for el in range(3): assert np.array_equal(results[1].output.array[el], np.array([el, el])) def test_numpy_hash_1(): """hashing check for numeric numpy array""" A = np.array([1, 2]) A_pk = pk.loads(pk.dumps(A)) assert (A == A_pk).all() assert hash_value(A) == hash_value(A_pk) def test_numpy_hash_2(): """hashing check for numpy array of type object""" A = np.array([["NDAR"]], dtype=object) A_pk = pk.loads(pk.dumps(A)) assert (A == A_pk).all() assert hash_value(A) == hash_value(A_pk) def test_task_numpyinput_1(tmpdir): """ task with numeric numpy array as an input""" nn = identity(name="NA", x=[np.array([1, 2]), np.array([3, 4])]) nn.cache_dir = tmpdir nn.split("x") # checking the results results = nn() assert (results[0].output.out ==
np.array([1, 2])
numpy.array
import cv2 import torch import numpy as np import torchvision.transforms as transforms from torch.autograd import Variable from XuelangYOLOv1ByBobo.config import opt def predict_result(model,image_name,root_path=''): ''' 预测一张测试照片 ''' result = [] image = cv2.imread(root_path+image_name) h,w,_ = image.shape # 将图像规范化到(224,224) img = cv2.resize(image,(224,224)) # 转换为RGB img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB) mean = (123,117,104)#RGB # 减去均值 img = img - np.array(mean,dtype=np.float32) #对图像进行转化 transform = transforms.Compose([transforms.ToTensor(),]) img = transform(img) # volatile相当于requires_grad=False,不保存中间变量。仅用于纯推断 img = Variable(img[None,:,:,:],volatile=True) if opt.use_gpu: img = img.cuda() pred = model(img) #1x7x7x30 pred = pred.cpu() # 将网络输出结果转化为 可视化格式 boxes,cls_indexs,probs = decoder(pred) # 遍历一张图像上所有的预测候选框 for i,box in enumerate(boxes): x1 = int(box[0]*w) x2 = int(box[2]*w) y1 = int(box[1]*h) y2 = int(box[3]*h) cls_index = cls_indexs[i] cls_index = int(cls_index) # convert LongTensor to int prob = probs[i] prob = float(prob) result.append([(x1,y1),(x2,y2),opt.VOC_CLASSES[cls_index],image_name,prob]) return result def decoder(pred): ''' 解码 pred (tensor) 1x7x7x30 return (tensor) box[[x1,y1,x2,y2]] label[...] ''' boxes=[] cls_indexs=[] probs = [] cell_size = 1./7 pred = pred.data pred = pred.squeeze(0) #7x7x30 contain1 = pred[:,:,4].unsqueeze(2) contain2 = pred[:,:,9].unsqueeze(2) contain = torch.cat((contain1,contain2),2) mask1 = contain > 0.9 #大于阈值 mask2 = (contain==contain.max()) #we always select the best contain_prob what ever it>0.9 mask = (mask1+mask2).gt(0) min_score,min_index = torch.min(mask,2) #每个cell只选最大概率的那个预测框 for i in range(7): for j in range(7): for b in range(2): index = min_index[i,j] mask[i,j,index] = 0 if mask[i,j,b] == 1: #print(i,j,b) box = pred[i,j,b*5:b*5+4] contain_prob = torch.FloatTensor([pred[i,j,b*5+4]]) xy = torch.FloatTensor([j,i])*cell_size #cell左上角 up left of cell box[:2] = box[:2]*cell_size + xy # return cxcy relative to image box_xy = torch.FloatTensor(box.size())#转换成xy形式 convert[cx,cy,w,h] to [x1,xy1,x2,y2] box_xy[:2] = box[:2] - 0.5*box[2:] box_xy[2:] = box[:2] + 0.5*box[2:] max_prob,cls_index = torch.max(pred[i,j,10:],0) boxes.append(box_xy.view(1,4)) cls_indexs.append(cls_index) probs.append(contain_prob) boxes = torch.cat(boxes,0) #(n,4) probs = torch.cat(probs,0) #(n,) cls_indexs = torch.cat(cls_indexs,0) #(n,) keep = nms(boxes,probs) return boxes[keep],cls_indexs[keep],probs[keep] def nms(bboxes,scores,threshold=0.5): ''' bboxes(tensor) [N,4] scores(tensor) [N,] ''' x1 = bboxes[:,0] y1 = bboxes[:,1] x2 = bboxes[:,2] y2 = bboxes[:,3] areas = (x2-x1) * (y2-y1) _,order = scores.sort(0,descending=True) keep = [] while order.numel() > 0: i = order[0] keep.append(i) if order.numel() == 1: break xx1 = x1[order[1:]].clamp(min=x1[i]) yy1 = y1[order[1:]].clamp(min=y1[i]) xx2 = x2[order[1:]].clamp(max=x2[i]) yy2 = y2[order[1:]].clamp(max=y2[i]) w = (xx2-xx1).clamp(min=0) h = (yy2-yy1).clamp(min=0) inter = w*h ovr = inter / (areas[i] + areas[order[1:]] - inter) ids = (ovr<=threshold).nonzero().squeeze() if ids.numel() == 0: break order = order[ids+1] return torch.LongTensor(keep) def voc_ap(rec, prec, use_07_metric=False): if use_07_metric: # 11 point metric ap = 0. for t in np.arange(0., 1.1, 0.1): if np.sum(rec >= t) == 0: p = 0 else: p = np.max(prec[rec >= t]) ap = ap + p / 11. else: # correct ap caculation mrec = np.concatenate(([0.], rec, [1.])) mpre = np.concatenate(([0.], prec, [0.])) for i in range(mpre.size - 1, 0, -1): mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) i = np.where(mrec[1:] != mrec[:-1])[0] ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) return ap def voc_eval(preds, target, VOC_CLASSES=opt.VOC_CLASSES, threshold=0.5, use_07_metric=False, ): ''' preds {'cat':[[image_id,confidence,x1,y1,x2,y2],...],'dog':[[],...]} target {(image_id,class):[[],]} 举例: preds = { 'cat': [['image01', 0.9, 20, 20, 40, 40], ['image01', 0.8, 20, 20, 50, 50], ['image02', 0.8, 30, 30, 50, 50]], 'dog': [['image01', 0.78, 60, 60, 90, 90]]} target = {('image01', 'cat'): [[20, 20, 41, 41]], ('image01', 'dog'): [[60, 60, 91, 91]], ('image02', 'cat'): [[30, 30, 51, 51]]} ''' aps = [] # 遍历所有的类别 for i, class_ in enumerate(VOC_CLASSES): pred = preds[class_] # [[image_id,confidence,x1,y1,x2,y2],...] if len(pred) == 0: # 如果这个类别一个都没有检测到的异常情况 ap = -1 print('---class {} ap {}---'.format(class_, ap)) aps += [ap] break # print(pred) image_ids = [x[0] for x in pred] confidence = np.array([float(x[1]) for x in pred]) BB = np.array([x[2:] for x in pred]) # sort by confidence sorted_ind = np.argsort(-confidence) sorted_scores = np.sort(-confidence) BB = BB[sorted_ind, :] image_ids = [image_ids[x] for x in sorted_ind] # go down dets and mark TPs and FPs npos = 0. for (key1, key2) in target: if key2 == class_: npos += len(target[(key1, key2)]) # 统计这个类别的正样本,在这里统计才不会遗漏 nd = len(image_ids) tp = np.zeros(nd) fp = np.zeros(nd) for d, image_id in enumerate(image_ids): bb = BB[d] # 预测框 if (image_id, class_) in target: BBGT = target[(image_id, class_)] # [[],] for bbgt in BBGT: # compute overlaps # intersection ixmin = np.maximum(bbgt[0], bb[0]) iymin = np.maximum(bbgt[1], bb[1]) ixmax = np.minimum(bbgt[2], bb[2]) iymax = np.minimum(bbgt[3], bb[3]) iw = np.maximum(ixmax - ixmin + 1., 0.) ih = np.maximum(iymax - iymin + 1., 0.) inters = iw * ih union = (bb[2] - bb[0] + 1.) * (bb[3] - bb[1] + 1.) + (bbgt[2] - bbgt[0] + 1.) * ( bbgt[3] - bbgt[1] + 1.) - inters if union == 0: print(bb, bbgt) overlaps = inters / union if overlaps > threshold: tp[d] = 1 BBGT.remove(bbgt) # 这个框已经匹配到了,不能再匹配 if len(BBGT) == 0: del target[(image_id, class_)] # 删除没有box的键值 break fp[d] = 1 - tp[d] else: fp[d] = 1 fp = np.cumsum(fp) tp = np.cumsum(tp) rec = tp / float(npos) prec = tp / np.maximum(tp + fp,
np.finfo(np.float64)
numpy.finfo
#!/usr/bin/env python # coding: utf-8 # # Crypto Currency Analysis # # Crpytocurrency exchanges are websites that enable the purchase, sale, and exchange of crypto and traditional currencies. These exchanges serve the essential functions of providing liquidity for owners and establishing the relative of these currencies. As of this writing (mid-2022), [it is estimated](https://www.statista.com/statistics/730876/cryptocurrency-maket-value/) that crypocurrencies have a collective market capitalization of more than 2 trillion USD. # # The purpose of this notebook is to explore the efficiency of these exchanges by testing. An arbitrage exists on an exchange if, through a risk-free series of trades, a customer could realize a net profit. The efficient market hypothesis assumes any sustained arbitrage opportunities would be identified by investors and, as result of their trading, quickly wiped as prices reach a new equilibrium. In an efficient market, any arbitrage would be small and fleeting. Still, the market has to get to equilibrium somehow, so perhaps with real-time data and rapid execution, can a trader put themself in a position to profit from these fleeting market adjustments? # ## Bibliographic Notes # # Crytocurrency markets are still a relatively new and relatively few academic papers are available that specifically address arbitrage on those markets. Early studies, such as the following, reported periods of large, recurrent arbitrage opportunities that exist across exchanges, and that can persist for several days or weeks. # # > <NAME>., & <NAME>. (2020). Trading and arbitrage in cryptocurrency markets. Journal of Financial Economics, 135(2), 293-319. # # Subsequent work reports these prices differentials do exist, but only at a fraction of the values previously reported, and only for fleeting periods of time. # # > <NAME>., & <NAME>. (2020). Arbitrage in the Market for Cryptocurrencies. Available at SSRN 3606053. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3606053 # # The use of network algorithms to identify cross-exchange arbitrage has appeared in the academic literature, and in numerous web sites demonstrating optimization and network applications. Representative examples are cited below. # # > <NAME>., <NAME>., & <NAME>. (2021, September). JACK THE RIPPLER: Arbitrage on the Decentralized Exchange of the XRP Ledger. In 2021 3rd Conference on Blockchain Research & Applications for Innovative Networks and Services (BRAINS) (pp. 1-2). IEEE. https://arxiv.org/pdf/2106.16158.pdf # # > <NAME>., & <NAME>. (2022). Network analysis on Bitcoin arbitrage opportunities. The North American Journal of Economics and Finance, 59, 101562. https://doi.org/10.1016/j.najef.2021.101562 # # > <NAME>., & <NAME>. (2022). Dataset for Bitcoin arbitrage in different cryptocurrency exchanges. Data in Brief, 40, 107731. # # The work in this notebook is related to materials found in the following web resources. # # > https://anilpai.medium.com/currency-arbitrage-using-bellman-ford-algorithm-8938dcea56ea # # > [Crypto Trading and Arbitrage Identification Strategies](https://nbviewer.org/github/rcroessmann/sharing_public/blob/master/arbitrage_identification.ipynb) # # A more complete analysis of trading and exploiting arbitrage opportunities in decentralized finance markets is available in the following paper and thesis. # # > <NAME>. An Exploration of Novel Trading and Arbitrage Methods within Decentralised Finance. https://www.scss.tcd.ie/Donal.OMahony/bfg/202021/StephenByrneDissertation.pdf # # > <NAME>., <NAME>., <NAME>., <NAME>., & <NAME>. (2021). Intelligent System for Arbitrage Situations Searching in the Cryptocurrency Market. In CEUR Workshop Proceedings (pp. 407-440). http://ceur-ws.org/Vol-2917/paper32.pdf # # In addition to the analysis of arbitrage opportunities, convex optimization may also have an important role in the developing of trading algorithms for crypocurrency exchanges. # # > <NAME>., <NAME>., <NAME>., <NAME>., & <NAME>. (2021). Constant function market makers: Multi-asset trades via convex optimization. arXiv preprint arXiv:2107.12484. https://baincapitalcrypto.com/constant-function-market-makers-multi-asset-trades-via-convex-optimization/ and https://arxiv.org/pdf/2107.12484.pdf # # # # # ## Installations and Imports # # This notebook requires multiple libraries. The following cell performs the required installations for Google Colab. To operate your own device you will need to install the `pyomo`,`ccxt`, and `graphviz` python libraries, the graphviz executables, and a linear solver for Pyomo. # In[20]: import sys if "google.colab" in sys.modules: get_ipython().system('pip install -q ccxt') get_ipython().system('pip install -q netgraph') get_ipython().system('wget -N -q https://raw.githubusercontent.com/jckantor/MO-book/main/tools/install_on_colab.py ') get_ipython().run_line_magic('run', 'install_on_colab.py') # In[21]: import os from time import time from timeit import default_timer as timer import numpy as np import pandas as pd import pyomo.environ as pyo # ## Cryptocurrency Exchanges # # The [open-source library `ccxt`](https://github.com/ccxt/ccxt) currently supports real-time APIs for 114 exchanges on which cryptocurrencies are traded. Here we import the library and list current exchanges supported by `ccxt`. # In[22]: import ccxt print(ccxt.exchanges) # ## Exchange markets and symbols # # Each of the exchanges supported by `ccxt` offers multiple markets, each market consisting of trade between two (possibly more) currencies. `ccxt` labels each market with a symbol and market id. The market id is for HTTP request-response purposes and not relevant to this analysis. The symbol, however, is common across exchanges and suitable for arbitrage and other cross-exchange analyses. # # Each symbol is an upper case string with names for a pair of traded currencies separated by a slash. The first name is the base currency, the second name is the quote currency. # # The following cell creates a directed graph to visualize the markets available on a single exchange. The directed graph consists of nodes representing currencies, and edges trading between those currencies. The symbol for each market forms an edge with the source located at the quote currency and directed towards a destination at the base currency. # In[29]: import ccxt import matplotlib.pyplot as plt import networkx as nx from netgraph import Graph # global variables used in subsequent cells exchange = ccxt.binanceus() markets = exchange.load_markets() symbols = exchange.symbols def symbols_to_dg(symbols, in_degree=1): dg = nx.DiGraph() for base, quote in [symbol.split("/") for symbol in symbols]: dg.add_edge(quote, base) for node in dg.nodes(): if dg.out_degree(node) > 0: dg.nodes[node]["color"] = "gold" else: dg.nodes[node]["color"] = "lightblue" remove_nodes = [] for node in [node for node in dg.nodes() if dg.out_degree(node) == 0]: if dg.in_degree(node) <= in_degree: remove_nodes.append(node) dg.remove_nodes_from(remove_nodes) return dg dg_symbols = symbols_to_dg(symbols, 2) # In[30]: def netgraph_dg(dg): fig = plt.figure(figsize=(12, 18)) Graph( dg, arrows=True, node_layout="dot", node_labels=True, node_size=3, node_color={node: dg.nodes[node]["color"] for node in dg.nodes()}, edge_width=0.5, edge_alpha=0.4, ) netgraph_dg(dg_symbols) # Nodes of a directed graph are characterized incoming and outgoing edges. A node's in-degree refers to the number of incoming edges, out-degree refers to the number of outgoing edges. In this case, node with outgoing edges are highlighted because they represent currencies used to quote the price of other currencies. The currency nodes have only in-coming edge. Nodes with only one incoming edge are not candidates for arbitrage. A parameter `in_degree` specifies a minimum threshold value for these nodes to be retained for further analysis. # In[31]: def draw_dg(dg): print(f"Number of nodes = {len(dg.nodes()):3d}") print(f"Number of edges = {len(dg.edges()):3d}") fig = plt.figure(figsize=(12, 12)) pos = nx.circular_layout(dg) nx.draw( dg, pos, with_labels=True, node_color=[dg.nodes[node]["color"] for node in dg.nodes()], node_size=1000, font_size=8, arrowsize=15, connectionstyle="arc3, rad=0.1", ) # nx.draw_networkx_edge_labels( # G, pos, edge_labels={(src, dst): f"{src}/{dst}" for src, dst in dg.edges()} # ) draw_dg(dg_symbols) # ## An Exchange Order Book # An currency exchange order book presents a real-time inventory of trading orders. # # A **bid** is an order to buy some amount of the base currency at a price given in the quote currency. The buyer will receive the base currency if a transaction occurs. The price paid may be less than bid price if the exchange matches the bid to a previous offer to sell at a lower price. The size the transaction is specified in terms of the base currency that is bought or sold. # # An **ask** is an offer to sell an amount of the base currency at a quoted price. If a transaction occurs, then seller receives the quote currency at a unit price that may be higher if the exchange matches the ask order to a higher bid. # # The exchange order book maintains a list of all active orders for all symbols traded on the exchange. The highest bid will below the lowest ask. Incoming bids above the lowest ask, or incoming asks below the highest bid, will be matched and transactions executed following exchange rules. # # The following cell fetches the highest bid and lowest ask from the order book for # In[32]: import pandas as pd def fetch_order_book(dg): # get trading symbols from exchange graph trade_symbols = ["/".join([base, quote]) for quote, base in dg.edges()] def fetch_order_book_symbol(symbol, limit=1, exchange=exchange): """return order book data for a specified symbol""" start_time = timer() result = exchange.fetch_order_book(symbol, limit) result["base"], result["quote"] = symbol.split("/") result["run_time"] = timer() - start_time result["timestamp"] = exchange.milliseconds() if result["bids"]: result["bid_price"] = result["bids"][0][0] result["bid_volume"] = result["bids"][0][1] if result["asks"]: result["ask_price"] = result["asks"][0][0] result["ask_volume"] = result["asks"][0][1] return result # fetch order book data and store in a dictionary order_book = {symbol: fetch_order_book_symbol(symbol) for symbol in trade_symbols} # convert to pandas dataframe order_book = pd.DataFrame(order_book).T order_book.drop(columns=["datetime", "symbol"], inplace=True) order_book["timestamp"] = pd.to_datetime(order_book["timestamp"], unit="ms") return order_book order_book = fetch_order_book(dg_symbols) display(order_book) # ## Order Book as a Directed Graph # Here we visual the order book as a directed graph. Each order for a particular symbol is represented as an edge. Consider a symbol with base currency $b$ and quote currency $q$, with a corresponding trading symbol $b/q$. # # The appearance of a sell order for symbol $b/q$ in the order book presents an opportunity to purchase an amount of currency $b$ at the specified ask price. This opportunity is represented on the directed graph by a directed edge from the quote currency to the base currency with a 'conversion' value $a_{q\rightarrow b}$ equal to inverse of the ask price. The conversion means that one unit of the quote currency can be converted to $a_{q\rightarrow b}$ units of the base currency. The capacity of the edge is the ask volume multiplied by the ask price. # # A buy order for symbol $b/q$ presents an opportunity to sell an amount of currency $b$ at the specified bid price. The is represented by a directed edge from the base currency to the quote currency with a conversion value $a_{b\rightarrow q}$ equal to the bid price. The conversion means that one unit of the base currency can be converted to $a_{b\rightarrow q}$ units of the quote currency. The capacity of the edge is equal to bid volume. # In[33]: # dictionary of edges for (src, dst) tuples # type: 'bid' or 'ask' # conv: 1 unit of src currency produces conv units of dst currency # log10_conv: log10 of conv def order_book_to_dg(order_book): edges = dict() for symbol in order_book.index: # if not np.isnan(order_book.at[symbol, "bid_volume"]): src = order_book.at[symbol, "base"] if src == "USD": src = "USD-SRC" dst = order_book.at[symbol, "quote"] if dst == "USD": dst = "USD-DST" edges[(src, dst)] = { "type": "bid", "conv": order_book.at[symbol, "bid_price"], "log10_conv": np.log10(order_book.at[symbol, "bid_price"]), "capacity": order_book.at[symbol, "bid_volume"], } if not
np.isnan(order_book.at[symbol, "ask_volume"])
numpy.isnan
""" Tests for SimpleFFCEngine """ from __future__ import division from unittest import TestCase from itertools import product from numpy import ( full, isnan, nan, ) from numpy.testing import assert_array_equal from pandas import ( DataFrame, date_range, Int64Index, MultiIndex, rolling_mean, Series, Timestamp, ) from pandas.util.testing import assert_frame_equal from testfixtures import TempDirectory from zipline.data.equities import USEquityPricing from zipline.data.ffc.synthetic import ( ConstantLoader, MultiColumnLoader, NullAdjustmentReader, SyntheticDailyBarWriter, ) from zipline.data.ffc.frame import ( DataFrameFFCLoader, MULTIPLY, ) from zipline.data.ffc.loaders.us_equity_pricing import ( BcolzDailyBarReader, USEquityPricingLoader, ) from zipline.finance.trading import TradingEnvironment from zipline.modelling.engine import SimpleFFCEngine from zipline.modelling.factor import TestingFactor from zipline.modelling.factor.technical import ( MaxDrawdown, SimpleMovingAverage, ) from zipline.utils.lazyval import lazyval from zipline.utils.test_utils import ( make_rotating_asset_info, make_simple_asset_info, product_upper_triangle, check_arrays, ) class RollingSumDifference(TestingFactor): window_length = 3 inputs = [USEquityPricing.open, USEquityPricing.close] def from_windows(self, open, close): return (open - close).sum(axis=0) def assert_product(case, index, *levels): """Assert that a MultiIndex contains the product of `*levels`.""" case.assertIsInstance(index, MultiIndex, "%s is not a MultiIndex" % index) case.assertEqual(set(index), set(product(*levels))) class ConstantInputTestCase(TestCase): def setUp(self): self.constants = { # Every day, assume every stock starts at 2, goes down to 1, # goes up to 4, and finishes at 3. USEquityPricing.low: 1, USEquityPricing.open: 2, USEquityPricing.close: 3, USEquityPricing.high: 4, } self.assets = [1, 2, 3] self.dates = date_range('2014-01-01', '2014-02-01', freq='D', tz='UTC') self.loader = ConstantLoader( constants=self.constants, dates=self.dates, assets=self.assets, ) self.asset_info = make_simple_asset_info( self.assets, start_date=self.dates[0], end_date=self.dates[-1], ) environment = TradingEnvironment() environment.write_data(equities_df=self.asset_info) self.asset_finder = environment.asset_finder def test_bad_dates(self): loader = self.loader engine = SimpleFFCEngine(loader, self.dates, self.asset_finder) msg = "start_date must be before end_date .*" with self.assertRaisesRegexp(ValueError, msg): engine.factor_matrix({}, self.dates[2], self.dates[1]) with self.assertRaisesRegexp(ValueError, msg): engine.factor_matrix({}, self.dates[2], self.dates[2]) def test_single_factor(self): loader = self.loader finder = self.asset_finder assets = self.assets engine = SimpleFFCEngine(loader, self.dates, self.asset_finder) result_shape = (num_dates, num_assets) = (5, len(assets)) dates = self.dates[10:10 + num_dates] factor = RollingSumDifference() result = engine.factor_matrix({'f': factor}, dates[0], dates[-1]) self.assertEqual(set(result.columns), {'f'}) assert_product(self, result.index, dates, finder.retrieve_all(assets)) assert_array_equal( result['f'].unstack().values, full(result_shape, -factor.window_length), ) def test_multiple_rolling_factors(self): loader = self.loader finder = self.asset_finder assets = self.assets engine = SimpleFFCEngine(loader, self.dates, self.asset_finder) shape = num_dates, num_assets = (5, len(assets)) dates = self.dates[10:10 + num_dates] short_factor = RollingSumDifference(window_length=3) long_factor = RollingSumDifference(window_length=5) high_factor = RollingSumDifference( window_length=3, inputs=[USEquityPricing.open, USEquityPricing.high], ) results = engine.factor_matrix( {'short': short_factor, 'long': long_factor, 'high': high_factor}, dates[0], dates[-1], ) self.assertEqual(set(results.columns), {'short', 'high', 'long'}) assert_product(self, results.index, dates, finder.retrieve_all(assets)) # row-wise sum over an array whose values are all (1 - 2) assert_array_equal( results['short'].unstack().values, full(shape, -short_factor.window_length), ) assert_array_equal( results['long'].unstack().values, full(shape, -long_factor.window_length), ) # row-wise sum over an array whose values are all (1 - 3) assert_array_equal( results['high'].unstack().values, full(shape, -2 * high_factor.window_length), ) def test_numeric_factor(self): constants = self.constants loader = self.loader engine = SimpleFFCEngine(loader, self.dates, self.asset_finder) num_dates = 5 dates = self.dates[10:10 + num_dates] high, low = USEquityPricing.high, USEquityPricing.low open, close = USEquityPricing.open, USEquityPricing.close high_minus_low = RollingSumDifference(inputs=[high, low]) open_minus_close = RollingSumDifference(inputs=[open, close]) avg = (high_minus_low + open_minus_close) / 2 results = engine.factor_matrix( { 'high_low': high_minus_low, 'open_close': open_minus_close, 'avg': avg, }, dates[0], dates[-1], ) high_low_result = results['high_low'].unstack() expected_high_low = 3.0 * (constants[high] - constants[low]) assert_frame_equal( high_low_result, DataFrame( expected_high_low, index=dates, columns=self.assets, ) ) open_close_result = results['open_close'].unstack() expected_open_close = 3.0 * (constants[open] - constants[close]) assert_frame_equal( open_close_result, DataFrame( expected_open_close, index=dates, columns=self.assets, ) ) avg_result = results['avg'].unstack() expected_avg = (expected_high_low + expected_open_close) / 2.0 assert_frame_equal( avg_result, DataFrame( expected_avg, index=dates, columns=self.assets, ) ) class FrameInputTestCase(TestCase): @classmethod def setUpClass(cls): cls.env = TradingEnvironment() day = cls.env.trading_day cls.assets = Int64Index([1, 2, 3]) cls.dates = date_range( '2015-01-01', '2015-01-31', freq=day, tz='UTC', ) asset_info = make_simple_asset_info( cls.assets, start_date=cls.dates[0], end_date=cls.dates[-1], ) cls.env.write_data(equities_df=asset_info) cls.asset_finder = cls.env.asset_finder @classmethod def tearDownClass(cls): del cls.env del cls.asset_finder def setUp(self): self.dates = FrameInputTestCase.dates self.assets = FrameInputTestCase.assets @lazyval def base_mask(self): return self.make_frame(True) def make_frame(self, data): return DataFrame(data, columns=self.assets, index=self.dates) def test_compute_with_adjustments(self): dates, assets = self.dates, self.assets low, high = USEquityPricing.low, USEquityPricing.high apply_idxs = [3, 10, 16] def apply_date(idx, offset=0): return dates[apply_idxs[idx] + offset] adjustments = DataFrame.from_records( [ dict( kind=MULTIPLY, sid=assets[1], value=2.0, start_date=None, end_date=apply_date(0, offset=-1), apply_date=apply_date(0), ), dict( kind=MULTIPLY, sid=assets[1], value=3.0, start_date=None, end_date=apply_date(1, offset=-1), apply_date=apply_date(1), ), dict( kind=MULTIPLY, sid=assets[1], value=5.0, start_date=None, end_date=apply_date(2, offset=-1), apply_date=apply_date(2), ), ] ) low_base = DataFrame(self.make_frame(30.0)) low_loader = DataFrameFFCLoader(low, low_base.copy(), adjustments=None) # Pre-apply inverse of adjustments to the baseline. high_base = DataFrame(self.make_frame(30.0)) high_base.iloc[:apply_idxs[0], 1] /= 2.0 high_base.iloc[:apply_idxs[1], 1] /= 3.0 high_base.iloc[:apply_idxs[2], 1] /= 5.0 high_loader = DataFrameFFCLoader(high, high_base, adjustments) loader = MultiColumnLoader({low: low_loader, high: high_loader}) engine = SimpleFFCEngine(loader, self.dates, self.asset_finder) for window_length in range(1, 4): low_mavg = SimpleMovingAverage( inputs=[USEquityPricing.low], window_length=window_length, ) high_mavg = SimpleMovingAverage( inputs=[USEquityPricing.high], window_length=window_length, ) bounds = product_upper_triangle(range(window_length, len(dates))) for start, stop in bounds: results = engine.factor_matrix( {'low': low_mavg, 'high': high_mavg}, dates[start], dates[stop], ) self.assertEqual(set(results.columns), {'low', 'high'}) iloc_bounds = slice(start, stop + 1) # +1 to include end date low_results = results.unstack()['low'] assert_frame_equal(low_results, low_base.iloc[iloc_bounds]) high_results = results.unstack()['high'] assert_frame_equal(high_results, high_base.iloc[iloc_bounds]) class SyntheticBcolzTestCase(TestCase): @classmethod def setUpClass(cls): cls.first_asset_start = Timestamp('2015-04-01', tz='UTC') cls.env = TradingEnvironment() cls.trading_day = cls.env.trading_day cls.asset_info = make_rotating_asset_info( num_assets=6, first_start=cls.first_asset_start, frequency=cls.trading_day, periods_between_starts=4, asset_lifetime=8, ) cls.all_assets = cls.asset_info.index cls.all_dates = date_range( start=cls.first_asset_start, end=cls.asset_info['end_date'].max(), freq=cls.trading_day, ) cls.env.write_data(equities_df=cls.asset_info) cls.finder = cls.env.asset_finder cls.temp_dir = TempDirectory() cls.temp_dir.create() cls.writer = SyntheticDailyBarWriter( asset_info=cls.asset_info[['start_date', 'end_date']], calendar=cls.all_dates, ) table = cls.writer.write( cls.temp_dir.getpath('testdata.bcolz'), cls.all_dates, cls.all_assets, ) cls.ffc_loader = USEquityPricingLoader( BcolzDailyBarReader(table), NullAdjustmentReader(), ) @classmethod def tearDownClass(cls): del cls.env cls.temp_dir.cleanup() def test_SMA(self): engine = SimpleFFCEngine( self.ffc_loader, self.env.trading_days, self.finder, ) dates, assets = self.all_dates, self.all_assets window_length = 5 SMA = SimpleMovingAverage( inputs=(USEquityPricing.close,), window_length=window_length, ) results = engine.factor_matrix( {'sma': SMA}, dates[window_length], dates[-1], ) raw_closes = self.writer.expected_values_2d(dates, assets, 'close') expected_sma_result = rolling_mean( raw_closes, window_length, min_periods=1, ) expected_sma_result[
isnan(raw_closes)
numpy.isnan
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Written by <NAME> and CBIG under MIT license: https://github.com/ThomasYeoLab/CBIG/blob/master/LICENSE.md """ import os import numpy as np from scipy.stats.stats import pearsonr import torch def nanpearsonr(real, pred): '''Compute Pearson's correlation, omit NAN Args: real (ndarray): original value pred (ndarray): predicted value Returns: ndarray: Correlation value ''' n = real.shape[1] res = np.zeros((n)) for i in range(n): tmp = np.logical_not(np.isnan(real[:, i])) res[i] = pearsonr(real[tmp, i], pred[tmp, i])[0] return res def cod_znormed(real, pred): '''Compute COD (Coefficient of Determination) for z normed data Args: real (ndarray): original value pred (ndarray): predicted value Returns: float: COD value ''' tot = np.sum((real)**2, axis=-1) res = np.sum((real - pred)**2, axis=-1) return 1 - res / tot def nancod_znormed(real, pred): '''Compute COD (Coefficient of Determination) for z normed data, omit NAN Args: real (ndarray): original value pred (ndarray): predicted value Returns: ndarray: COD value ''' tot = np.nansum((real)**2, axis=-2) res = np.nansum((real - pred)**2, axis=-2) return 1 - np.divide(res, tot) def split_tra_val_with_y(split, y_test): '''split K subjects into training and validation Args: split (ndarray): array that indicate K subjects y_test (ndarray): test data to avoid same value after split train and validation data Returns: Tuple: split array for training and validation data ''' n = split.shape[0] n_rng = 1 while n_rng != 0: k = np.where(split == 0)[0] m = k.shape[0] m_tra = int(m * 0.8) k = np.random.permutation(k) split_tra = np.zeros((n)) split_tra[k[:m_tra]] = 1 split_tra = split_tra.astype(bool) split_val = np.zeros((n)) split_val[k[m_tra:]] = 1 split_val = split_val.astype(bool) y_test_tra = y_test[split_tra] if np.unique(y_test_tra).shape[0] > 1: n_rng = 0 else: np.random.seed(100 + n_rng) n_rng += 1 return split_tra, split_val def mics_z_norm(train_y, valid_y, test_y=None): '''z normalize y of training, validation and test set based on training set Args: train_y (ndarray): training y data valid_y (ndarray): validation y data test_y (ndarray, optional): testing y data Returns: Tuple: contains z-normed y data and std of training y data ''' # subtract mean of y of training set t_mu = np.nanmean(train_y, axis=0, keepdims=True) train_y = train_y - t_mu valid_y = valid_y - t_mu if test_y: test_y = test_y - t_mu # divide std of y of training set t_sigma = np.nanstd(train_y, axis=0) if train_y.ndim == 2: t_sigma_d = t_sigma[np.newaxis, :] else: t_sigma_d = t_sigma if t_sigma == 0: print('t_sigma is 0, pass divide std') return [train_y, valid_y, test_y, t_sigma] train_y = train_y / t_sigma_d valid_y = valid_y / t_sigma_d if test_y: test_y = test_y / t_sigma_d # return processed y and std for future MAE calculation return [train_y, valid_y, test_y, t_sigma] def mics_infer_metric(dataloader, net, criterion, device, t_sigma=None, need_value=False, output_size=1): '''performance inference with net on data from dataloader and calculate metric Args: dataloader: dataloader to load data for PyTorch framework net: PyTorch deep learning network criterion: criterion for loss calculation device: torch device indicate which GPU is running t_sigma (float, optional): std of training y data, only use if sex is not the behavioral measuers need_value (bool, optional): whether return record of real and predicted value output_size (int, optional): size of network output Returns: Tuple: if t_sigma is not None, correlation, MAE and loss are returned. If t_sigma is None, auccuracy and loss are returned. If need_value set to True, tuple returned also returns record of real and predicted y value alongside the metrics. If need_value is false, only metrics are returned. ''' # initialize variable for record record_loss = 0.0 if t_sigma is None: record_correct = 0.0 # count of correct prediction record_total = 0.0 # count of total prediction record_real = np.zeros((0)) record_pred = np.zeros((0, 2)) else: record_real = np.zeros((0, output_size)) # real value record_pred = np.zeros((0, output_size)) # prediction value # perform inference for (x, y) in dataloader: x, y = x.to(device), y.to(device) outputs = net(x) loss = criterion(outputs, y) record_loss += loss.item() record_real = np.concatenate((record_real, y.data.cpu().numpy()), axis=0) record_pred = np.concatenate((record_pred, outputs.data.cpu().numpy()), axis=0) if t_sigma is None: _, predicted = torch.max(outputs.data, 1) record_total += y.size(0) record_correct += (predicted == y.data).sum() # metric calculation loss = record_loss / len(dataloader) if t_sigma is None: aucc = record_correct.to(torch.float) / record_total if need_value: return aucc, loss, record_real, record_pred else: return aucc, loss else: corr = nanpearsonr(record_real, record_pred) cod = nancod_znormed(record_real, record_pred) mae = np.nanmean(np.abs(record_real - record_pred), 0) * t_sigma if need_value: return corr, cod, mae, loss, record_real, record_pred else: return corr, cod, mae, loss def mics_log(model_name, out_path, metric='cor', index=None, **kwargs): '''function to calculate the final result and save the record Args: model_name (str): name of network/model out_path (str): path to save the log metric (str, optional): metric to select best validation index (int, optional): index of optimal epoch **kwargs: record of training, validation and test value Returns: None ''' if index is None: val_record = kwargs['val_' + metric + '_record'] temp = np.mean(np.mean(val_record, axis=0), axis=1) temp = np.convolve(temp, np.ones(3, dtype=int), 'valid') / 3 index = np.nanargmax(temp) index = index + 1 print('\nBest validation at index: ', index) val_cor_record = kwargs['val_cor_record'] val_cod_record = kwargs['val_cod_record'] val_mae_record = kwargs['val_mae_record'] # save record value for future use file_str = model_name + '_base.npz' name_str = os.path.join(out_path, file_str) os.makedirs(out_path, exist_ok=True) np.savez(name_str, **kwargs) print('file saved:', name_str) # get average result for validation and test data print('Average validation corr:', np.nanmean(np.nanmean(val_cor_record[:, index, :], axis=0)), ', COD:', np.nanmean( np.nanmean(val_cod_record[:, index, :], axis=0)), ', MAE:', np.nanmean(
np.nanmean(val_mae_record[:, index, :], axis=0)
numpy.nanmean
# --- # jupyter: # jupytext: # formats: ipynb,py:light # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.3.0 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # https://gist.github.com/ajdawson/dd536f786741e987ae4e from copy import copy import cartopy.crs as ccrs import numpy as np import shapely.geometry as sgeom import matplotlib.pyplot as plt import matplotlib.colors as colors from cartopy.mpl.gridliner import LATITUDE_FORMATTER, LONGITUDE_FORMATTER import os ### Define colorbar colors champ = 255. # tot. precipitable water (grey scale) no1 = np.array([255,255,255])/champ no2 = np.array([231,231,231])/champ no3 = np.array([201,201,201])/champ no4 = np.array([171,171,171])/champ no5 = np.array([140,140,140])/champ no6 = np.array([110,110,110])/champ no7 = np.array([80,80,80])/champ # 250 hPa wind speed (colored scale) no11 = np.array([255,255,255])/champ no12 = np.array([196,225,255])/champ no13 = np.array([131,158,255])/champ no14 = np.array([255,209,177])/champ no15 = np.array([255,118,86])/champ no16 = np.array([239,102,178])/champ no17 = np.array([243,0,146])/champ def createFolder(directory): try: if not os.path.exists(directory): os.makedirs(directory) except OSError: print ('Error: Creating directory. ' + directory) def find_yx(lat, lon, point_lat, point_lon): abs_lat = abs(lat - point_lat) abs_lon = abs(lon - point_lon) c = np.maximum(abs_lat, abs_lon) y, x = np.where(c == c.min()) y = y[0] x = x[0] xx = lat[y, x].x yy = lon[y, x].y return(xx, yy) def find_side(ls, side): """ Given a shapely LineString which is assumed to be rectangular, return the line corresponding to a given side of the rectangle. """ minx, miny, maxx, maxy = ls.bounds points = {'left': [(minx, miny), (minx, maxy)], 'right': [(maxx, miny), (maxx, maxy)], 'bottom': [(minx, miny), (maxx, miny)], 'top': [(minx, maxy), (maxx, maxy)],} return sgeom.LineString(points[side]) def lambert_xticks(ax, ticks): """Draw ticks on the bottom x-axis of a Lambert Conformal projection.""" te = lambda xy: xy[0] lc = lambda t, n, b: np.vstack((np.zeros(n) + t, np.linspace(b[2], b[3], n))).T xticks, xticklabels = _lambert_ticks(ax, ticks, 'bottom', lc, te) ax.xaxis.tick_bottom() ax.set_xticks(xticks) ax.set_xticklabels([ax.xaxis.get_major_formatter()(xtick) for xtick in xticklabels]) def lambert_yticks(ax, ticks): """Draw ricks on the left y-axis of a Lamber Conformal projection.""" te = lambda xy: xy[1] lc = lambda t, n, b: np.vstack((np.linspace(b[0], b[1], n), np.zeros(n) + t)).T yticks, yticklabels = _lambert_ticks(ax, ticks, 'left', lc, te) ax.yaxis.tick_left() ax.set_yticks(yticks) ax.set_yticklabels([ax.yaxis.get_major_formatter()(ytick) for ytick in yticklabels]) def _lambert_ticks(ax, ticks, tick_location, line_constructor, tick_extractor): """Get the tick locations and labels for an axis of a Lambert Conformal projection.""" outline_patch = sgeom.LineString(ax.outline_patch.get_path().vertices.tolist()) axis = find_side(outline_patch, tick_location) n_steps = 30 extent = ax.get_extent(ccrs.PlateCarree()) _ticks = [] for t in ticks: xy = line_constructor(t, n_steps, extent) proj_xyz = ax.projection.transform_points(ccrs.Geodetic(), xy[:, 0], xy[:, 1]) xyt = proj_xyz[..., :2] ls = sgeom.LineString(xyt.tolist()) locs = axis.intersection(ls) if not locs: tick = [None] else: tick = tick_extractor(locs.xy) _ticks.append(tick[0]) # Remove ticks that aren't visible: ticklabels = copy(ticks) while True: try: index = _ticks.index(None) except ValueError: break _ticks.pop(index) ticklabels.pop(index) return _ticks, ticklabels def plt_Jet_Thick_MSLP(fnx, u_250, mslp, Z_thickness, pw, andenes_x, andenes_y): projection = ccrs.LambertConformal(central_longitude =fnx.projection_lambert.longitude_of_central_meridian, central_latitude =fnx.projection_lambert.latitude_of_projection_origin, standard_parallels = fnx.projection_lambert.standard_parallel) f, ax = plt.subplots(subplot_kw={'projection' : projection}, ) #ax.set_title('Ensemble mean %s')# %s' %(_dm.time)) ax.coastlines(resolution = '50m') ################################################### levels_u = np.arange(40,120,10) levels_th1 = np.arange(402,546,6) levels_th2 = np.arange(546,650,6) levels_p = np.arange(800,1100,4) # levels_pw = np.arange(22,78,8) # levels_pw = np.arange(14,62,8) levels_pw = np.arange(0,62,8) ################################################### # Plot contour lines for 250-hPa wind and fill U_map = colors.ListedColormap([no11, no12, no13, no14, no15, no16, no17]) norm = colors.BoundaryNorm(boundaries = levels_u, ncolors=U_map.N) _U_250 = u_250.plot.pcolormesh(ax = ax, transform = projection, levels = levels_u, cmap = U_map, norm = norm, add_colorbar = False, extend = 'both' ) cb_U_250 = plt.colorbar(_U_250, ax=ax, orientation="vertical",extend='both', shrink = 0.5) cb_U_250.set_label(label='250$\,$hPa Wind (m$\,$s$^{-1}$)', #size='large', weight='bold') ################################################### # Plot MSL pressure every 4 hPa CS_p = mslp.plot.contour(ax = ax, transform = projection, levels = levels_p, colors = 'k', linewidths = 1.8) ax.clabel(CS_p, levels_p[::2], inline=1, fmt='%1.0f', #fontsize=10 ) ################################################### # Plot the 1000-500 hPa thickness CS_th1 = Z_thickness.where(Z_thickness < 546).plot.contour(ax = ax, transform = projection, levels = levels_th1, colors = 'b', linewidths = 2., linestyles = '--') ax.clabel(CS_th1, levels_th1, inline = 1, fmt = '%1.0f') try: CS_th2 = Z_thickness.plot.contour(ax = ax, transform = projection, levels = levels_th2, colors = 'r', linewidths = 2., linestyles = '--') ax.clabel(CS_th2, levels_th2, inline = 1, fmt = '%1.0f') except (ValueError): pass # labels = ['line1'] # CS_th1.collections[0].set_label(labels[0]) # plt.legend(bbox_to_anchor=(1.1, 1.05)) ################################################### # Plot contourf for precipitable water PW_map = colors.ListedColormap([no1, no2, no3, no4, no5, no6, no7]) PW_norm = colors.BoundaryNorm(boundaries = levels_pw, ncolors=PW_map.N) _PW = pw.plot.pcolormesh(ax = ax, transform = projection, levels = levels_u, cmap = PW_map, norm = PW_norm, add_colorbar = False, extend = 'both' ) cb_PW = plt.colorbar(_PW, ax=ax, orientation="vertical",extend='both', shrink = 0.5) cb_PW.set_label(label='Precipitable water (m)', #size='large', weight='bold') ################################################### ax.plot([andenes_x], [andenes_y], color = 'red', marker = "^", transform=projection, markersize = 22 ) ################################################### map_design(f,ax) def plt_700_humidity(fnx, geop, temp, RH,andenes_x, andenes_y): projection = ccrs.LambertConformal(central_longitude =fnx.projection_lambert.longitude_of_central_meridian, central_latitude =fnx.projection_lambert.latitude_of_projection_origin, standard_parallels = fnx.projection_lambert.standard_parallel) f, ax = plt.subplots(subplot_kw={'projection' : projection}, ) #ax.set_title('Ensemble mean %s')# %s' %(_dm.time)) ax.coastlines(resolution = '50m') ################################################### # Geopotential levels_g =
np.arange(200,300,4)
numpy.arange
# -*- coding: utf-8 -*- """ Created on Sun Dec 12 15:59:10 2021 @author: joelr Estudos da Biblioteca Numpy """ import numpy as np my_array = np.array([[1, 2, 3, 4 , 5], [6, 7, 8, 9, 10 ]]) my_array = np.array([[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]]) x = my_array.copy() print(my_array) print(my_array.shape[0]) #Mostra n elementos print(np.arange(10)) #Cria vetor sequencial print(my_array[1,1]) my_array = np.empty([2,5]) #cria valores aleatórios for i in range(2): for j in range(5): my_array[i,j] = i*j print(my_array[i,j]) my_array = np.zeros([2,5]) #cria matriz de zeros my_array = np.ones([2,5]) #cria matriz de 1 aleatorio = np.random.random() my_array = np.random.random([2,5]) print(my_array[1,0:4]) print(my_array[:,3]) print(my_array[1][2]) print(type(my_array)) a = np.array([[1, 2], [3, 4]]) b = np.array([[5, 6], [7, 8]]) soma = a+b difference = a-b product = a*b quotient = a/b matrix_product = a.dot(b) for i in range(my_array.shape[0]): for j in range(my_array.shape[1]): for k in range(my_array.shape[2]): print(my_array[i,j,k]) my_array = np.array([1, 2, 3, 4], ndmin=5) print(my_array.ndim) print(my_array[1, -1])#indice negativo acessa o final do vetor print(my_array[:,0:4:2]) print(my_array[:,-3:-1]) print(my_array[:,::2]) my_array2 = np.array([1, 2, 3, 4], dtype='S') my_array2= np.array(['banana', 'maçã','3']) print(my_array.dtype) for i in my_array: for j in i: print(j) arr = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]) for x in arr: print("x represents the 2-D array:") print(x) arr1 = np.array([1, 2, 3]) arr2 = np.array([4, 5, 6]) arr = np.concatenate((arr1, arr2)) print(arr) arr1 = np.array([[1, 2], [3, 4]]) arr2 = np.array([[5, 6], [7, 8]]) arr = np.concatenate((arr1, arr2), axis=1) print(arr) arr1 = np.array([1, 2, 3]) arr2 = np.array([4, 5, 6]) arr = np.stack((arr1, arr2), axis=1) print(arr) word = "apartamento" for i in range(len(word)-1,-1,-1): print(word[i]) np.array_split(my_array,2) x = np.where(my_array == 4) #tuple com linha e coluna x = np.where(my_array[0,:]%2 == 0) #posição do número é impar x = np.where(my_array[0,:]%2 == 1) #posição do número par arr = np.array(['banana', 'cherry', 'apple']) arr = np.array([True, False, True]) arr = np.array([[3, 2, 4], [5, 0, 1]]) print(np.sort(arr)) #Filtros arr = np.array([41, 42, 43, 44])#mask x = [True, False, True, False] newarr = arr[x] print(newarr) my_array = np.array([41, 42, 43, 44]) # Create an empty list filter_arr = [] # go through each element in arr for element in arr: # if the element is higher than 42, set the value to True, otherwise False: if element > 42: filter_arr.append(True) else: filter_arr.append(False) new_array = my_array[filter_arr] print(filter_arr) print(new_array) arr = np.array([41, 42, 43, 44]) filter_arr = arr > 42 newarr = arr[filter_arr] print(filter_arr) print(newarr) #Comandos Ramdom from numpy import random x = random.randint(100)#Random inteiro x = random.rand() x = random.rand(5) x = random.rand(3,5) x=random.randint(100, size=(5,5)) x = random.choice([3, 5, 7, 9]) #retorna um valor do vetor x = random.choice([3,4,5, 6,7,8], size=(3,5)) #Constrói a matrix puxando números da base referida #configura probabolidade de escolha dos números x = random.choice([3, 5, 7, 9], p=[0.1, 0.3, 0.6, 0.0], size=(100)) x = random.choice([3, 5, 7, 9], p=[0.1, 0.3, 0.6, 0.0], size=(3, 5)) my_array = np.array([1, 2, 3, 4, 5]) random.shuffle(my_array) #embaralha os números e altera a matriz random.permutation(my_array) #embaralha os números criando uma nova matriz import matplotlib.pyplot as plt import seaborn as sns sns.distplot([0, 1, 2, 3, 4, 5], hist = True) plt.show() #Distribuição Normal Analógica # loc - (Mean) where the peak of the bell exists. # scale - (Standard Deviation) how flat the graph distribution should be. # size - The shape of the returned array. x = random.normal(size=(100, 1000)) x = random.normal(loc=0, scale=5, size=(100, 100)) sns.distplot(x, hist = True) plt.show() #distribuição binomial (Normal Digital) # n - number of trials. # p - probability of occurence of each trial (e.g. for toss of a coin 0.5 each). # size - The shape of the returned array. x = random.binomial(n=10, p=0.5, size=10) x = random.binomial(n=10, p=0.9, size=1000) sns.distplot(x, hist=True, kde=False) plt.show() #comparação entre métodos sns.distplot(random.normal(loc=50, scale=5, size=1000), hist=False, label='normal') sns.distplot(random.binomial(n=100, p=0.5, size=1000), hist=False, label='binomial') plt.show() # Poisson Distribution is a Discrete Distribution. # It estimates how many times an event can happen in a specified time. e.g. If someone eats twice a day what is probability he will eat thrice? # It has two parameters: # lam - rate or known number of occurences e.g. 2 for above problem. # size - The shape of the returned array. x = random.poisson(lam=2, size=10) sns.distplot(random.poisson(lam=7, size=10000), kde=False) plt.show() #comparação entre normal e poisson sns.distplot(random.normal(loc=50, scale=7, size=1000), hist=False, label='normal') sns.distplot(random.poisson(lam=50, size=1000), hist=False, label='poisson') plt.show() # Uniform Distribution # Used to describe probability where every event has equal chances of occuring. # E.g. Generation of random numbers. # It has three parameters: # a - lower bound - default 0 .0. # b - upper bound - default 1.0. # size - The shape of the returned array. sns.distplot(random.uniform(size=100), hist=False) plt.show() # Logistic Distribution # Logistic Distribution is used to describe growth. # Used extensively in machine learning in logistic regression, neural networks etc. # It has three parameters: # loc - mean, where the peak is. Default 0. # scale - standard deviation, the flatness of distribution. Default 1. # size - The shape of the returned array. sns.distplot(random.logistic(size=1000), hist=False) plt.show() #gaussiana x logistic distribuition sns.distplot(random.normal(scale=2, size=1000), hist=False, label='normal') sns.distplot(random.logistic(size=1000), hist=False, label='logistic') plt.show() # Pareto Distribution # A distribution following Pareto's law i.e. 80-20 distribution (20% factors cause 80% outcome). # It has two parameter: # a - shape parameter. # size - The shape of the returned array. sns.distplot(random.pareto(a=2, size=1000), kde=False) plt.show() ### Functions #Somar elementos entre vetores x = [1, 2, 3, 4] #lista y = [4, 5, 6, 7] x = np.array([1, 2, 3]) y = np.array([5, 6, 7]) z = np.add(x, y) z = np.sum([x,y]) z = np.subtract(x, y) z = np.multiply(x, y) z = np.divide(x, y) z = np.power(x,y) z = np.mod(x,y) z = np.remainder(x,y) z = np.divmod(x,y) z = np.absolute(x,y) print(z) x = np.array([-1, 2.555, 3.9]) z = np.trunc(x) z = np.fix(x) z = np.around(x) z = np.floor(x) z = np.ceil(x) x = np.arange(1,10)#não inclui o 10 z = np.log2(x) z = np.log10(x) z = np.log() x = np.array([1, 2, 3]) z = np.prod(x) z = np.prod([x,x]) # Finding LCM (Lowest Common Multiple) num1 = 4 num2 = 6 x =
np.lcm(num1, num2)
numpy.lcm
#!/usr/bin/env python3 # TAMV version 2.0RC1 # Python Script to align multiple tools on Jubilee printer with Duet3d Controller # Using images from USB camera and finding circles in those images # # TAMV originally Copyright (C) 2020 <NAME> all rights reserved. # TAMV 2.0 Copyright (C) 2021 <NAME> all rights reserved. # Released under The MIT License. Full text available via https://opensource.org/licenses/MIT # # Requires OpenCV to be installed on Pi # Requires running via the OpenCV installed python (that is why no shebang) # Requires network connection to Duet based printer running Duet/RepRap V2 or V3 # # GUI imports from PyQt5.QtWidgets import ( QAction, QApplication, QCheckBox, QCheckBox, QComboBox, QDesktopWidget, QDialog, QDialogButtonBox, QGridLayout, QGroupBox, QHBoxLayout, QHeaderView, QInputDialog, QLabel, QLineEdit, QMainWindow, QMenu, QMenuBar, QMessageBox, QPushButton, QSlider, QSpinBox, QStatusBar, QStyle, QTableWidget, QTableWidgetItem, QTextEdit, QVBoxLayout, QWidget ) from PyQt5.QtGui import QPixmap, QImage, QPainter, QColor, QIcon from PyQt5.QtCore import pyqtSignal, pyqtSlot, Qt, QThread, QMutex, QPoint, QSize # Core imports import os import sys import cv2 import numpy as np import math import DuetWebAPI as DWA import KlipperAPI as KA from time import sleep, time import datetime import json import time # graphing imports import matplotlib import matplotlib.pyplot as plt import matplotlib.cm as cm import matplotlib.patches as patches from matplotlib.ticker import FormatStrFormatter # styles global style_green, style_red, style_disabled, style_orange style_green = 'background-color: green; color: white;' style_red = 'background-color: red; color: white;' style_disabled = 'background-color: #cccccc; color: #999999; border-style: solid;' style_orange = 'background-color: dark-grey; color: orange;' class CPDialog(QDialog): def __init__(self, parent=None, title='Set Controlled Point', summary='<b>Instructions:</b><br>Jog until controlled point is centered in the window.<br>Click OK to save and return to main window.', disabled = False): super(CPDialog,self).__init__(parent=parent) self.setWindowFlag(Qt.WindowContextHelpButtonHint,False) self.setWindowTitle(title) QBtn = QDialogButtonBox.Ok | QDialogButtonBox.Cancel self.buttonBox = QDialogButtonBox(QBtn) self.buttonBox.accepted.connect(self.accept) self.buttonBox.rejected.connect(self.reject) self.layout = QGridLayout() self.layout.setSpacing(3) # add information panel self.cp_info = QLabel(summary) # add jogging grid self.buttons={} buttons_layout = QGridLayout() # X self.button_x1 = QPushButton('-1') self.button_x2 = QPushButton('-0.1') self.button_x3 = QPushButton('-0.01') self.button_x4 = QPushButton('+0.01') self.button_x5 = QPushButton('+0.1') self.button_x6 = QPushButton('+1') # set X sizes self.button_x1.setFixedSize(60,60) self.button_x2.setFixedSize(60,60) self.button_x3.setFixedSize(60,60) self.button_x4.setFixedSize(60,60) self.button_x5.setFixedSize(60,60) self.button_x6.setFixedSize(60,60) # attach actions ''' self.button_x1.clicked.connect(lambda: self.parent().printer.gCode('G91 G1 X-1 G90')) self.button_x2.clicked.connect(lambda: self.parent().printer.gCode('G91 G1 X-0.1 G90')) self.button_x3.clicked.connect(lambda: self.parent().printer.gCode('G91 G1 X-0.01 G90')) self.button_x4.clicked.connect(lambda: self.parent().printer.gCode('G91 G1 X0.01 G90')) self.button_x5.clicked.connect(lambda: self.parent().printer.gCode('G91 G1 X0.1 G90')) self.button_x6.clicked.connect(lambda: self.parent().printer.gCode('G91 G1 X1 G90')) ''' self.button_x1.clicked.connect(lambda: self.parent().printer.gCodeBatch(['G91','G1 X-1','G90'])) self.button_x2.clicked.connect(lambda: self.parent().printer.gCodeBatch(['G91','G1 X-0.1','G90'])) self.button_x3.clicked.connect(lambda: self.parent().printer.gCodeBatch(['G91','G1 X-0.01','G90'])) self.button_x4.clicked.connect(lambda: self.parent().printer.gCodeBatch(['G91','G1 X0.01','G90'])) self.button_x5.clicked.connect(lambda: self.parent().printer.gCodeBatch(['G91','G1 X0.1','G90'])) self.button_x6.clicked.connect(lambda: self.parent().printer.gCodeBatch(['G91','G1 X1','G90'])) # add buttons to window x_label = QLabel('X') buttons_layout.addWidget(x_label,0,0) buttons_layout.addWidget(self.button_x1,0,1) buttons_layout.addWidget(self.button_x2,0,2) buttons_layout.addWidget(self.button_x3,0,3) buttons_layout.addWidget(self.button_x4,0,4) buttons_layout.addWidget(self.button_x5,0,5) buttons_layout.addWidget(self.button_x6,0,6) # Y self.button_y1 = QPushButton('-1') self.button_y2 = QPushButton('-0.1') self.button_y3 = QPushButton('-0.01') self.button_y4 = QPushButton('+0.01') self.button_y5 = QPushButton('+0.1') self.button_y6 = QPushButton('+1') # set X sizes self.button_y1.setFixedSize(60,60) self.button_y2.setFixedSize(60,60) self.button_y3.setFixedSize(60,60) self.button_y4.setFixedSize(60,60) self.button_y5.setFixedSize(60,60) self.button_y6.setFixedSize(60,60) # attach actions ''' self.button_y1.clicked.connect(lambda: self.parent().printer.gCode('G91 G1 Y-1 G90')) self.button_y2.clicked.connect(lambda: self.parent().printer.gCode('G91 G1 Y-0.1 G90')) self.button_y3.clicked.connect(lambda: self.parent().printer.gCode('G91 G1 Y-0.01 G90')) self.button_y4.clicked.connect(lambda: self.parent().printer.gCode('G91 G1 Y0.01 G90')) self.button_y5.clicked.connect(lambda: self.parent().printer.gCode('G91 G1 Y0.1 G90')) self.button_y6.clicked.connect(lambda: self.parent().printer.gCode('G91 G1 Y1 G90')) ''' self.button_y1.clicked.connect(lambda: self.parent().printer.gCodeBatch(['G91','G1 Y-1','G90'])) self.button_y2.clicked.connect(lambda: self.parent().printer.gCodeBatch(['G91','G1 Y-0.1','G90'])) self.button_y3.clicked.connect(lambda: self.parent().printer.gCodeBatch(['G91','G1 Y-0.01','G90'])) self.button_y4.clicked.connect(lambda: self.parent().printer.gCodeBatch(['G91','G1 Y0.01','G90'])) self.button_y5.clicked.connect(lambda: self.parent().printer.gCodeBatch(['G91','G1 Y0.1','G90'])) self.button_y6.clicked.connect(lambda: self.parent().printer.gCodeBatch(['G91','G1 Y1','G90'])) # add buttons to window y_label = QLabel('Y') buttons_layout.addWidget(y_label,1,0) buttons_layout.addWidget(self.button_y1,1,1) buttons_layout.addWidget(self.button_y2,1,2) buttons_layout.addWidget(self.button_y3,1,3) buttons_layout.addWidget(self.button_y4,1,4) buttons_layout.addWidget(self.button_y5,1,5) buttons_layout.addWidget(self.button_y6,1,6) # Z self.button_z1 = QPushButton('-1') self.button_z2 = QPushButton('-0.1') self.button_z3 = QPushButton('-0.01') self.button_z4 = QPushButton('+0.01') self.button_z5 = QPushButton('+0.1') self.button_z6 = QPushButton('+1') # set X sizes self.button_z1.setFixedSize(60,60) self.button_z2.setFixedSize(60,60) self.button_z3.setFixedSize(60,60) self.button_z4.setFixedSize(60,60) self.button_z5.setFixedSize(60,60) self.button_z6.setFixedSize(60,60) # attach actions ''' self.button_z1.clicked.connect(lambda: self.parent().printer.gCode('G91 G1 Z-1 G90')) self.button_z2.clicked.connect(lambda: self.parent().printer.gCode('G91 G1 Z-0.1 G90')) self.button_z3.clicked.connect(lambda: self.parent().printer.gCode('G91 G1 Z-0.01 G90')) self.button_z4.clicked.connect(lambda: self.parent().printer.gCode('G91 G1 Z0.01 G90')) self.button_z5.clicked.connect(lambda: self.parent().printer.gCode('G91 G1 Z0.1 G90')) self.button_z6.clicked.connect(lambda: self.parent().printer.gCode('G91 G1 Z1 G90')) ''' self.button_z1.clicked.connect(lambda: self.parent().printer.gCodeBatch(['G91','G1 Z-1','G90'])) self.button_z2.clicked.connect(lambda: self.parent().printer.gCodeBatch(['G91','G1 Z-0.1','G90'])) self.button_z3.clicked.connect(lambda: self.parent().printer.gCodeBatch(['G91','G1 Z-0.01','G90'])) self.button_z4.clicked.connect(lambda: self.parent().printer.gCodeBatch(['G91','G1 Z0.01','G90'])) self.button_z5.clicked.connect(lambda: self.parent().printer.gCodeBatch(['G91','G1 Z0.1','G90'])) self.button_z6.clicked.connect(lambda: self.parent().printer.gCodeBatch(['G91','G1 Z1','G90'])) # add buttons to window z_label = QLabel('Z') buttons_layout.addWidget(z_label,2,0) buttons_layout.addWidget(self.button_z1,2,1) buttons_layout.addWidget(self.button_z2,2,2) buttons_layout.addWidget(self.button_z3,2,3) buttons_layout.addWidget(self.button_z4,2,4) buttons_layout.addWidget(self.button_z5,2,5) buttons_layout.addWidget(self.button_z6,2,6) #self.macro_field = QLineEdit() #self.button_macro = QPushButton('Run macro') #buttons_layout.addWidget(self.button_macro,3,1,2,1) #buttons_layout.addWidget(self.macro_field,3,2,1,-1) # Set up items on dialog grid self.layout.addWidget(self.cp_info,0,0,1,-1) self.layout.addLayout(buttons_layout,1,0,3,7) # OK/Cancel buttons self.layout.addWidget(self.buttonBox) # apply layout self.setLayout(self.layout) def setSummaryText(self, message): self.cp_info.setText(message) class DebugDialog(QDialog): def __init__(self,parent=None, message=''): super(DebugDialog,self).__init__(parent=parent) self.setWindowFlag(Qt.WindowContextHelpButtonHint,False) self.setWindowTitle('Debug Information') # Set layout details self.layout = QGridLayout() self.layout.setSpacing(3) # text area self.textarea = QTextEdit() self.textarea.setAcceptRichText(False) self.textarea.setReadOnly(True) self.layout.addWidget(self.textarea,0,0) # apply layout self.setLayout(self.layout) temp_text = '' try: if self.parent().video_thread.isRunning(): temp_text += 'Video thread running\n' except Exception as e1: None if len(message) > 0: temp_text += '\nCalibration Debug Messages:\n' + message self.textarea.setText(temp_text) class CameraSettingsDialog(QDialog): def __init__(self,parent=None, message=''): super(CameraSettingsDialog,self).__init__(parent=parent) self.setWindowFlag(Qt.WindowContextHelpButtonHint,False) self.setWindowTitle('Camera Settings') #QBtn = QDialogButtonBox.Close #self.buttonBox = QDialogButtonBox(QBtn) #self.buttonBox.accepted.connect(self.accept) #self.buttonBox.rejected.connect(self.reject) # Get camera settings from video thread try: (brightness_input, contrast_input, saturation_input, hue_input) = self.parent().video_thread.getProperties() except Exception as set1: self.updateStatusbar('Error fetching camera parameters.') print('ERROR: Camera Settings: ' + str(set1)) # Set layout details self.layout = QVBoxLayout() self.layout.setSpacing(3) # apply layout self.setLayout(self.layout) # Camera Combobox self.camera_combo = QComboBox() camera_description = str(video_src) + ': ' \ + str(self.parent().video_thread.cap.get(cv2.CAP_PROP_FRAME_WIDTH)) \ + 'x' + str(self.parent().video_thread.cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) + ' @ ' \ + str(self.parent().video_thread.cap.get(cv2.CAP_PROP_FPS)) + 'fps' self.camera_combo.addItem(camera_description) #self.camera_combo.currentIndexChanged.connect(self.parent().video_thread.changeVideoSrc) # Get cameras button self.camera_button = QPushButton('Get cameras') self.camera_button.clicked.connect(self.getCameras) if self.parent().video_thread.alignment: self.camera_button.setDisabled(True) else: self.camera_button.setDisabled(False) #self.getCameras() # Brightness slider self.brightness_slider = QSlider(Qt.Horizontal) self.brightness_slider.setMinimum(0) self.brightness_slider.setMaximum(255) self.brightness_slider.setValue(int(brightness_input)) self.brightness_slider.valueChanged.connect(self.changeBrightness) self.brightness_slider.setTickPosition(QSlider.TicksBelow) self.brightness_slider.setTickInterval(1) self.brightness_label = QLabel(str(int(brightness_input))) # Contrast slider self.contrast_slider = QSlider(Qt.Horizontal) self.contrast_slider.setMinimum(0) self.contrast_slider.setMaximum(255) self.contrast_slider.setValue(int(contrast_input)) self.contrast_slider.valueChanged.connect(self.changeContrast) self.contrast_slider.setTickPosition(QSlider.TicksBelow) self.contrast_slider.setTickInterval(1) self.contrast_label = QLabel(str(int(contrast_input))) # Saturation slider self.saturation_slider = QSlider(Qt.Horizontal) self.saturation_slider.setMinimum(0) self.saturation_slider.setMaximum(255) self.saturation_slider.setValue(int(saturation_input)) self.saturation_slider.valueChanged.connect(self.changeSaturation) self.saturation_slider.setTickPosition(QSlider.TicksBelow) self.saturation_slider.setTickInterval(1) self.saturation_label = QLabel(str(int(saturation_input))) # Hue slider self.hue_slider = QSlider(Qt.Horizontal) self.hue_slider.setMinimum(0) self.hue_slider.setMaximum(8) self.hue_slider.setValue(int(hue_input)) self.hue_slider.valueChanged.connect(self.changeHue) self.hue_slider.setTickPosition(QSlider.TicksBelow) self.hue_slider.setTickInterval(1) self.hue_label = QLabel(str(int(hue_input))) # Reset button self.reset_button = QPushButton("Reset to defaults") self.reset_button.setToolTip('Reset camera settings to defaults.') self.reset_button.clicked.connect(self.resetDefaults) # Save button self.save_button = QPushButton('Save and Close') self.save_button.setToolTip('Save current parameters to settings.json file') self.save_button.clicked.connect(self.sendUserParameters) self.save_button.setObjectName('active') # Close button self.close_button = QPushButton('Cancel and close') self.close_button.setToolTip('Cancel changes and return to main program.') self.close_button.clicked.connect(self.closeCPWindow) self.close_button.setObjectName('terminate') # Layout objects # Camera drop-down self.camera_box = QGroupBox('Camera') self.layout.addWidget(self.camera_box) cmbox = QHBoxLayout() self.camera_box.setLayout(cmbox) cmbox.addWidget(self.camera_combo) cmbox.addWidget(self.camera_button) # Brightness self.brightness_box =QGroupBox('Brightness') self.layout.addWidget(self.brightness_box) bvbox = QHBoxLayout() self.brightness_box.setLayout(bvbox) bvbox.addWidget(self.brightness_slider) bvbox.addWidget(self.brightness_label) # Contrast self.contrast_box =QGroupBox('Contrast') self.layout.addWidget(self.contrast_box) cvbox = QHBoxLayout() self.contrast_box.setLayout(cvbox) cvbox.addWidget(self.contrast_slider) cvbox.addWidget(self.contrast_label) # Saturation self.saturation_box =QGroupBox('Saturation') self.layout.addWidget(self.saturation_box) svbox = QHBoxLayout() self.saturation_box.setLayout(svbox) svbox.addWidget(self.saturation_slider) svbox.addWidget(self.saturation_label) # Hue self.hue_box =QGroupBox('Hue') self.layout.addWidget(self.hue_box) hvbox = QHBoxLayout() self.hue_box.setLayout(hvbox) hvbox.addWidget(self.hue_slider) hvbox.addWidget(self.hue_label) # Reset button self.layout.addWidget(self.reset_button) self.layout.addWidget(self.save_button) self.layout.addWidget(self.close_button) # OK Cancel buttons #self.layout.addWidget(self.buttonBox) def resetDefaults(self): self.parent().video_thread.resetProperties() (brightness_input, contrast_input, saturation_input, hue_input) = self.parent().video_thread.getProperties() brightness_input = int(brightness_input) contrast_input = int(contrast_input) saturation_input = int(saturation_input) hue_input = int(hue_input) self.brightness_slider.setValue(brightness_input) self.brightness_label.setText(str(brightness_input)) self.contrast_slider.setValue(contrast_input) self.contrast_label.setText(str(contrast_input)) self.saturation_slider.setValue(saturation_input) self.saturation_label.setText(str(saturation_input)) self.hue_slider.setValue(hue_input) self.hue_label.setText(str(hue_input)) def changeBrightness(self): parameter = int(self.brightness_slider.value()) try: self.parent().video_thread.setProperty(brightness=parameter) except: None self.brightness_label.setText(str(parameter)) def changeContrast(self): parameter = int(self.contrast_slider.value()) try: self.parent().video_thread.setProperty(contrast=parameter) except: None self.contrast_label.setText(str(parameter)) def changeSaturation(self): parameter = int(self.saturation_slider.value()) try: self.parent().video_thread.setProperty(saturation=parameter) except: None self.saturation_label.setText(str(parameter)) def changeHue(self): parameter = int(self.hue_slider.value()) try: self.parent().video_thread.setProperty(hue=parameter) except: None self.hue_label.setText(str(parameter)) def getCameras(self): # checks the first 6 indexes. i = 6 index = 0 self.camera_combo.clear() _cameras = [] original_camera_description = str(video_src) + ': ' \ + str(self.parent().video_thread.cap.get(cv2.CAP_PROP_FRAME_WIDTH)) \ + 'x' + str(self.parent().video_thread.cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) + ' @ ' \ + str(self.parent().video_thread.cap.get(cv2.CAP_PROP_FPS)) + 'fps' _cameras.append(original_camera_description) while i > 0: if index != video_src: tempCap = cv2.VideoCapture(index) if tempCap.read()[0]: api = tempCap.getBackendName() camera_description = str(index) + ': ' \ + str(tempCap.get(cv2.CAP_PROP_FRAME_WIDTH)) \ + 'x' + str(tempCap.get(cv2.CAP_PROP_FRAME_HEIGHT)) + ' @ ' \ + str(tempCap.get(cv2.CAP_PROP_FPS)) + 'fps' _cameras.append(camera_description) tempCap.release() index += 1 i -= 1 #cameras = [line for line in allOutputs if float(line['propmode']) > -1 ] _cameras.sort() for camera in _cameras: self.camera_combo.addItem(camera) self.camera_combo.setCurrentText(original_camera_description) def sendUserParameters(self): _tempSrc = self.camera_combo.currentText() _tempSrc = _tempSrc[:_tempSrc.find(':')] self.parent().saveUserParameters(cameraSrc=_tempSrc) self.close() def closeCPWindow(self): self.parent().updateStatusbar('Camera changes discarded.') self.close() class OverlayLabel(QLabel): def __init__(self): super(OverlayLabel, self).__init__() self.display_text = 'Welcome to TAMV. Enter your printer address and click \"Connect..\" to start.' def paintEvent(self, event): super(OverlayLabel, self).paintEvent(event) pos = QPoint(10, 470) painter = QPainter(self) painter.setBrush(QColor(204,204,204,230)) painter.setPen(QColor(255, 255, 255,0)) painter.drawRect(0,450,640,50) painter.setPen(QColor(0, 0, 0)) painter.drawText(pos, self.display_text) def setText(self, textToDisplay): self.display_text = textToDisplay class CalibrateNozzles(QThread): # Signals status_update = pyqtSignal(str) message_update = pyqtSignal(str) change_pixmap_signal = pyqtSignal(np.ndarray) calibration_complete = pyqtSignal() detection_error = pyqtSignal(str) result_update = pyqtSignal(object) alignment = False _running = False display_crosshair = False detection_on = False align_one_tool = False def __init__(self, parent=None, th1=1, th2=50, thstep=1, minArea=600, minCircularity=0.8,numTools=0,cycles=1, align=False): super(QThread,self).__init__(parent=parent) # transformation matrix self.transform_matrix = [] self.xray = False self.loose = False self.detector_changed = False self.detect_th1 = th1 self.detect_th2 = th2 self.detect_thstep = thstep self.detect_minArea = minArea self.detect_minCircularity = minCircularity self.numTools = numTools self.toolNames = [] self.cycles = cycles self.alignment = align self.message_update.emit('Detector created, waiting for tool..') # start with detection off self.display_crosshair = False self.detection_on = False self.align_one_tool = False # Video Parameters self.brightness_default = 0 self.contrast_default = 0 self.saturation_default = 0 self.hue_default = 0 self.brightness = -1 self.contrast = -1 self.saturation = -1 self.hue = -1 # Start Video feed self.cap = cv2.VideoCapture(video_src) self.cap.set(cv2.CAP_PROP_FRAME_WIDTH, camera_width) self.cap.set(cv2.CAP_PROP_FRAME_HEIGHT, camera_height) self.cap.set(cv2.CAP_PROP_BUFFERSIZE,1) #self.cap.set(cv2.CAP_PROP_FPS,25) self.brightness_default = self.cap.get(cv2.CAP_PROP_BRIGHTNESS) self.contrast_default = self.cap.get(cv2.CAP_PROP_CONTRAST) self.saturation_default = self.cap.get(cv2.CAP_PROP_SATURATION) self.hue_default = self.cap.get(cv2.CAP_PROP_HUE) self.ret, self.cv_img = self.cap.read() if self.ret: local_img = self.cv_img self.change_pixmap_signal.emit(local_img) else: self.cap.open(video_src) self.cap.set(cv2.CAP_PROP_FRAME_WIDTH, camera_width) self.cap.set(cv2.CAP_PROP_FRAME_HEIGHT, camera_height) self.cap.set(cv2.CAP_PROP_BUFFERSIZE,1) #self.cap.set(cv2.CAP_PROP_FPS,25) self.ret, self.cv_img = self.cap.read() local_img = self.cv_img self.change_pixmap_signal.emit(local_img) def toggleXray(self): if self.xray: self.xray = False else: self.xray = True def toggleLoose(self): self.detector_changed = True if self.loose: self.loose = False else: self.loose = True def setProperty(self,brightness=-1, contrast=-1, saturation=-1, hue=-1): try: if int(brightness) >= 0: self.brightness = brightness self.cap.set(cv2.CAP_PROP_BRIGHTNESS,self.brightness) except Exception as b1: print('Brightness exception: ', b1 ) try: if int(contrast) >= 0: self.contrast = contrast self.cap.set(cv2.CAP_PROP_CONTRAST,self.contrast) except Exception as c1: print('Contrast exception: ', c1 ) try: if int(saturation) >= 0: self.saturation = saturation self.cap.set(cv2.CAP_PROP_SATURATION,self.saturation) except Exception as s1: print('Saturation exception: ', s1 ) try: if int(hue) >= 0: self.hue = hue self.cap.set(cv2.CAP_PROP_HUE,self.hue) except Exception as h1: print('Hue exception: ', h1 ) def getProperties(self): return (self.brightness_default, self.contrast_default, self.saturation_default,self.hue_default) def resetProperties(self): self.setProperty(brightness=self.brightness_default, contrast = self.contrast_default, saturation=self.saturation_default, hue=self.hue_default) def run(self): self.createDetector() while True: if self.detection_on: if self.alignment: try: if self.loose: self.detect_minCircularity = 0.3 else: self.detect_minCircularity = 0.8 if self.detector_changed: self.createDetector() self.detector_changed = False self._running = True while self._running: self.cycles = self.parent().cycles for rep in range(self.cycles): # if self.align_one_tool == False: # _tools_to_align = self.parent().toolNames # else: # _tools_to_align = [] # for button in self.toolButtons: # if button.isChecked(): # _tools_to_align.append(button) for j,tool in enumerate(self.toolNames): # tool = int(button.text().replace('T', '')) #for tool in range(self.parent().num_tools): # process GUI events app.processEvents() # Update status bar self.status_update.emit('Calibrating T' + tool + ', cycle: ' + str(rep+1) + '/' + str(self.cycles)) # Load next tool for calibration self.parent().printer.gCode('T'+tool) # Move tool to CP coordinates self.parent().printer.gCode('G1 X' + str(self.parent().cp_coords['X'])) self.parent().printer.gCode('G1 Y' + str(self.parent().cp_coords['Y'])) self.parent().printer.gCode('G1 Z' + str(self.parent().cp_coords['Z'])) # Wait for moves to complete #while self.parent().printer.getStatus() not in 'idle': while self.parent().printer.getStatus() not in 'ready': # process GUI events app.processEvents() self.ret, self.cv_img = self.cap.read() if self.ret: local_img = self.cv_img self.change_pixmap_signal.emit(local_img) else: self.cap.open(video_src) self.cap.set(cv2.CAP_PROP_FRAME_WIDTH, camera_width) self.cap.set(cv2.CAP_PROP_FRAME_HEIGHT, camera_height) self.cap.set(cv2.CAP_PROP_BUFFERSIZE,1) #self.cap.set(cv2.CAP_PROP_FPS,25) self.ret, self.cv_img = self.cap.read() local_img = self.cv_img self.change_pixmap_signal.emit(local_img) continue # Update message bar self.message_update.emit('Searching for nozzle..') # Process runtime algorithm changes if self.loose: self.detect_minCircularity = 0.3 else: self.detect_minCircularity = 0.8 if self.detector_changed: self.createDetector() self.detector_changed = False # Analyze frame for blobs (c, transform, mpp) = self.calibrateTool(int(tool), rep) # process GUI events app.processEvents() # apply offsets to machine #self.parent().printer.gCode( 'G10 P' + tool + ' X' + str(c['X']) + ' Y' + str(c['Y']) ) # signal end of execution self._running = False # Update status bar self.status_update.emit('Calibration complete: Resetting machine.') # HBHBHB # Update debug window with results # self.parent().debugString += '\nCalibration output:\n' #self.printer.gCode('T-1') #self.parent().printer.gCode('TOOL_DROPOFF') self.parent().printer.gCode('G1 X' + str(self.parent().cp_coords['X'])) self.parent().printer.gCode('G1 Y' + str(self.parent().cp_coords['Y'])) self.parent().printer.gCode('G1 Z' + str(self.parent().cp_coords['Z'])) self.status_update.emit('Calibration complete: Done.') self.alignment = False self.detection_on = False self.display_crosshair = False self._running = False self.calibration_complete.emit() except Exception as mn1: self.alignment = False self.detection_on = False self.display_crosshair = False self._running = False self.detection_error.emit(str(mn1)) self.cap.release() else: # don't run alignment - fetch frames and detect only try: if self.loose: self.detect_minCircularity = 0.3 else: self.detect_minCircularity = 0.8 self._running = True # transformation matrix #self.transform_matrix = [] while self._running and self.detection_on: # Update status bar #self.status_update.emit('Detection mode: ON') # Process runtime algorithm changes if self.loose: self.detect_minCircularity = 0.3 else: self.detect_minCircularity = 0.8 if self.detector_changed: self.createDetector() self.detector_changed = False # Run detection and update output self.analyzeFrame() # process GUI events app.processEvents() except Exception as mn1: self._running = False self.detection_error.emit(str(mn1)) self.cap.release() else: while not self.detection_on: try: self.ret, self.cv_img = self.cap.read() if self.ret: local_img = self.cv_img self.change_pixmap_signal.emit(local_img) else: # reset capture self.cap.open(video_src) self.cap.set(cv2.CAP_PROP_FRAME_WIDTH, camera_width) self.cap.set(cv2.CAP_PROP_FRAME_HEIGHT, camera_height) self.cap.set(cv2.CAP_PROP_BUFFERSIZE,1) #self.cap.set(cv2.CAP_PROP_FPS,25) self.ret, self.cv_img = self.cap.read() if self.ret: local_img = self.cv_img self.change_pixmap_signal.emit(local_img) continue app.processEvents() except Exception as mn2: self.status_update( 'Error: ' + str(mn2) ) print('Error: ' + str(mn2)) self.cap.release() self.detection_on = False self._running = False exit() app.processEvents() app.processEvents() continue self.cap.release() def analyzeFrame(self): # Placeholder coordinates xy = [0,0] # Counter of frames with no circle. nocircle = 0 # Random time offset rd = int(round(time.time()*1000)) # reset capture #self.cap.open(video_src) #self.cap.set(cv2.CAP_PROP_FRAME_WIDTH, camera_width) #self.cap.set(cv2.CAP_PROP_FRAME_HEIGHT, camera_height) #self.cap.set(cv2.CAP_PROP_BUFFERSIZE,1) #self.cap.set(cv2.CAP_PROP_FPS,25) #toolCoordinates = None # ADDED TO FIX PROBLEM ?????? while True and self.detection_on: app.processEvents() self.ret, self.frame = self.cap.read() if not self.ret: # reset capture self.cap.open(video_src) self.cap.set(cv2.CAP_PROP_FRAME_WIDTH, camera_width) self.cap.set(cv2.CAP_PROP_FRAME_HEIGHT, camera_height) self.cap.set(cv2.CAP_PROP_BUFFERSIZE,1) #self.cap.set(cv2.CAP_PROP_FPS,25) continue if self.alignment: try: # capture tool location in machine space before processing toolCoordinates = self.parent().printer.getCoords() except Exception as c1: toolCoordinates = None # capture first clean frame for display cleanFrame = self.frame # apply nozzle detection algorithm # Detection algorithm 1: # gamma correction -> use Y channel from YUV -> GaussianBlur (7,7),6 -> adaptive threshold gammaInput = 1.2 self.frame = self.adjust_gamma(image=self.frame, gamma=gammaInput) yuv = cv2.cvtColor(self.frame, cv2.COLOR_BGR2YUV) yuvPlanes = cv2.split(yuv) yuvPlanes[0] = cv2.GaussianBlur(yuvPlanes[0],(7,7),6) yuvPlanes[0] = cv2.adaptiveThreshold(yuvPlanes[0],255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY,35,1) self.frame = cv2.cvtColor(yuvPlanes[0],cv2.COLOR_GRAY2BGR) target = [int(np.around(self.frame.shape[1]/2)),int(np.around(self.frame.shape[0]/2))] # Process runtime algorithm changes if self.loose: self.detect_minCircularity = 0.3 else: self.detect_minCircularity = 0.8 if self.detector_changed: self.createDetector() self.detector_changed = False # run nozzle detection for keypoints keypoints = self.detector.detect(self.frame) # draw the timestamp on the frame AFTER the circle detector! Otherwise it finds the circles in the numbers. if self.xray: cleanFrame = self.frame # check if we are displaying a crosshair if self.display_crosshair: self.frame = cv2.line(cleanFrame, (target[0], target[1]-25), (target[0], target[1]+25), (0, 255, 0), 1) self.frame = cv2.line(self.frame, (target[0]-25, target[1] ), (target[0]+25, target[1] ), (0, 255, 0), 1) else: self.frame = cleanFrame # update image local_img = self.frame self.change_pixmap_signal.emit(local_img) if(nocircle> 25): self.message_update.emit( 'Error in detecting nozzle.' ) nocircle = 0 continue num_keypoints=len(keypoints) if (num_keypoints == 0): if (25 < (int(round(time.time() * 1000)) - rd)): nocircle += 1 self.frame = self.putText(self.frame,'No circles found',offsety=3) self.message_update.emit( 'No circles found.' ) local_img = self.frame self.change_pixmap_signal.emit(local_img) continue if (num_keypoints > 1): if (25 < (int(round(time.time() * 1000)) - rd)): self.message_update.emit( 'Too many circles found. Please stop and clean the nozzle.' ) self.frame = self.putText(self.frame,'Too many circles found '+str(num_keypoints),offsety=3, color=(255,255,255)) self.frame = cv2.drawKeypoints(self.frame, keypoints, np.array([]), (255,255,255), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS) local_img = self.frame self.change_pixmap_signal.emit(local_img) continue # Found one and only one circle. Put it on the frame. nocircle = 0 xy = np.around(keypoints[0].pt) r = np.around(keypoints[0].size/2) # draw the blobs that look circular self.frame = cv2.drawKeypoints(self.frame, keypoints, np.array([]), (0,0,255), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS) # Note its radius and position ts = 'U{0:3.0f} V{1:3.0f} R{2:2.0f}'.format(xy[0],xy[1],r) xy = np.uint16(xy) #self.frame = self.putText(self.frame, ts, offsety=2, color=(0, 255, 0), stroke=2) self.message_update.emit(ts) # show the frame local_img = self.frame self.change_pixmap_signal.emit(local_img) rd = int(round(time.time() * 1000)) #end the loop break # and tell our parent. if self.detection_on: return (xy, target, toolCoordinates, r) else: return def calibrateTool(self, tool, rep): # timestamp for caluclating tool calibration runtime self.startTime = time.time() # average location of keypoints in frame self.average_location=[0,0] # current location self.current_location = {'X':0,'Y':0} # guess position used for camera calibration self.guess_position = [1,1] # current keypoint location self.xy = [0,0] # previous keypoint location self.oldxy = self.xy # Tracker flag to set which state algorithm is running in self.state = 0 # detected blob counter self.detect_count = 0 # Save CP coordinates to local class self.cp_coordinates = self.parent().cp_coords # number of average position loops self.position_iterations = 5 # calibration move set (0.5mm radius circle over 10 moves) self.calibrationCoordinates = [ [0,-0.5], [0.294,-0.405], [0.476,-0.155], [0.476,0.155], [0.294,0.405], [0,0.5], [-0.294,0.405], [-0.476,0.155], [-0.476,-0.155], [-0.294,-0.405] ] # Check if camera calibration matrix is already defined if len(self.transform_matrix) > 1: # set state flag to Step 2: nozzle alignment stage self.state = 200 self.parent().debugString += '\nCalibrating T'+str(tool)+':C'+str(rep)+': ' # Space coordinates self.space_coordinates = [] self.camera_coordinates = [] self.calibration_moves = 0 while True: time.sleep(1) (self.xy, self.target, self.tool_coordinates, self.radius) = self.analyzeFrame() # analyzeFrame has returned our target coordinates, average its location and process according to state self.average_location[0] += self.xy[0] self.average_location[1] += self.xy[1] self.detect_count += 1 # check if we've reached our number of detections for average positioning if self.detect_count >= self.position_iterations: # calculate average X Y position from detection self.average_location[0] /= self.detect_count self.average_location[1] /= self.detect_count # round to 3 decimal places self.average_location = np.around(self.average_location,3) # get another detection validated (self.xy, self.target, self.tool_coordinates, self.radius) = self.analyzeFrame() #### Step 1: camera calibration and transformation matrix calculation if self.state == 0: self.parent().debugString += 'Calibrating camera...\n' # Update GUI thread with current status and percentage complete self.status_update.emit('Calibrating camera..') self.message_update.emit('Calibrating rotation.. (10%)') # Save position as previous location self.oldxy = self.xy # Reset space and camera coordinates self.space_coordinates = [] self.camera_coordinates = [] # save machine coordinates for detected nozzle self.space_coordinates.append( (self.tool_coordinates['X'], self.tool_coordinates['Y']) ) # save camera coordinates self.camera_coordinates.append( (self.xy[0],self.xy[1]) ) # move carriage for calibration self.offsetX = self.calibrationCoordinates[0][0] self.offsetY = self.calibrationCoordinates[0][1] #self.parent().printer.gCode('G91 G1 X' + str(self.offsetX) + ' Y' + str(self.offsetY) +' F3000 G90 ') self.parent().printer.gCodeBatch(['G91','G1 X' + str(self.offsetX) + ' Y' + str(self.offsetY) +' F3000','G90']) # Update state tracker to second nozzle calibration move self.state = 1 continue # Check if camera is still being calibrated elif self.state >= 1 and self.state < len(self.calibrationCoordinates): # Update GUI thread with current status and percentage complete self.status_update.emit('Calibrating camera..') self.message_update.emit('Calibrating rotation.. (' + str(self.state*10) + '%)') # check if we've already moved, and calculate mpp value if self.state == 1: distance = self.getDistance(self.oldxy[0],self.oldxy[1],self.xy[0],self.xy[1]) if distance == 0: self.parent().debugString += 'Camera calibration failed because of no movement, could be to close to camera or too slow camera.\n' print('Camera calibration failed because of no movement, could be to close to camera or too slow camera.') print('self.oldxy[0]:' + str(self.oldxy[0])) print('self.oldxy[1]:' + str(self.oldxy[1])) print('self.xy[0]:' + str(self.xy[0])) print('self.xy[1]:' + str(self.xy[1])) break self.mpp = np.around(0.5/distance,4) # save position as previous position self.oldxy = self.xy # save machine coordinates for detected nozzle self.space_coordinates.append( (self.tool_coordinates['X'], self.tool_coordinates['Y']) ) # save camera coordinates self.camera_coordinates.append( (self.xy[0],self.xy[1]) ) # return carriage to relative center of movement self.offsetX = -1*self.offsetX self.offsetY = -1*self.offsetY #self.parent().printer.gCode('G91 G1 X' + str(self.offsetX) + ' Y' + str(self.offsetY) +' F3000 G90 ') self.parent().printer.gCodeBatch(['G91','G1 X' + str(self.offsetX) + ' Y' + str(self.offsetY) +' F3000','G90']) # move carriage a random amount in X&Y to collect datapoints for transform matrix self.offsetX = self.calibrationCoordinates[self.state][0] self.offsetY = self.calibrationCoordinates[self.state][1] #self.parent().printer.gCode('G91 G1 X' + str(self.offsetX) + ' Y' + str(self.offsetY) +' F3000 G90 ') self.parent().printer.gCodeBatch(['G91','G1 X' + str(self.offsetX) + ' Y' + str(self.offsetY) +' F3000','G90']) # increment state tracker to next calibration move self.state += 1 continue # check if final calibration move has been completed elif self.state == len(self.calibrationCoordinates): calibration_time = np.around(time.time() - self.startTime,1) self.parent().debugString += 'Camera calibration completed in ' + str(calibration_time) + ' seconds.\n' self.parent().debugString += 'Millimeters per pixel: ' + str(self.mpp) + '\n\n' print('Millimeters per pixel: ' + str(self.mpp)) print('Camera calibration completed in ' + str(calibration_time) + ' seconds.') # Update GUI thread with current status and percentage complete self.message_update.emit('Calibrating rotation.. (100%) - MPP = ' + str(self.mpp)) self.status_update.emit('Calibrating T' + str(tool) + ', cycle: ' + str(rep+1) + '/' + str(self.cycles)) # save position as previous position self.oldxy = self.xy # save machine coordinates for detected nozzle self.space_coordinates.append( (self.tool_coordinates['X'], self.tool_coordinates['Y']) ) # save camera coordinates self.camera_coordinates.append( (self.xy[0],self.xy[1]) ) # calculate camera transformation matrix self.transform_input = [(self.space_coordinates[i], self.normalize_coords(camera)) for i, camera in enumerate(self.camera_coordinates)] self.transform_matrix, self.transform_residual = self.least_square_mapping(self.transform_input) # define camera center in machine coordinate space self.newCenter = self.transform_matrix.T @ np.array([0, 0, 0, 0, 0, 1]) self.guess_position[0]= np.around(self.newCenter[0],3) self.guess_position[1]= np.around(self.newCenter[1],3) #self.parent().printer.gCode('G90 G1 X{0:-1.3f} Y{1:-1.3f} F1000 G90 '.format(self.guess_position[0],self.guess_position[1])) self.parent().printer.gCodeBatch(['G90','G1 X{0:-1.3f} Y{1:-1.3f} F1000'.format(self.guess_position[0],self.guess_position[1]),'G90']) # update state tracker to next phase self.state = 200 # start tool calibration timer self.startTime = time.time() self.parent().debugString += '\nCalibrating T'+str(tool)+':C'+str(rep)+': ' continue #### Step 2: nozzle alignment stage elif self.state == 200: # Update GUI thread with current status and percentage complete self.message_update.emit('Tool calibration move #' + str(self.calibration_moves)) self.status_update.emit('Calibrating T' + str(tool) + ', cycle: ' + str(rep+1) + '/' + str(self.cycles)) # increment moves counter self.calibration_moves += 1 # nozzle detected, frame rotation is set, start self.cx,self.cy = self.normalize_coords(self.xy) self.v = [self.cx**2, self.cy**2, self.cx*self.cy, self.cx, self.cy, 0] self.offsets = -1*(0.55*self.transform_matrix.T @ self.v) self.offsets[0] = np.around(self.offsets[0],3) self.offsets[1] = np.around(self.offsets[1],3) # Move it a bit #self.parent().printer.gCode( 'M564 S1' ) #self.parent().printer.gCode( 'G91 G1 X{0:-1.3f} Y{1:-1.3f} F1000 G90 '.format(self.offsets[0],self.offsets[1]) ) self.parent().printer.gCodeBatch(['G91','G1 X{0:-1.3f} Y{1:-1.3f} F1000'.format(self.offsets[0],self.offsets[1]),'G90']) # save position as previous position self.oldxy = self.xy if ( self.offsets[0] == 0.0 and self.offsets[1] == 0.0 ): self.parent().debugString += str(self.calibration_moves) + ' moves.\n' self.parent().printer.gCode( 'G1 F13200' ) # Update GUI with progress # calculate final offsets and return results self.tool_offsets = self.parent().printer.getG10ToolOffset(tool) old_final_x = np.around( (self.cp_coordinates['X'] + self.tool_offsets['X']) - self.tool_coordinates['X'], 3 ) print('T'+str(tool) + ' final_x=' + str(self.cp_coordinates['X']) + ' + ' + str(self.tool_offsets['X']) + ' - ' + str(self.tool_coordinates['X']) ) old_final_y = np.around( (self.cp_coordinates['Y'] + self.tool_offsets['Y']) - self.tool_coordinates['Y'], 3 ) print('T'+str(tool) + ' final_y=' + str(self.cp_coordinates['Y']) + ' + ' + str(self.tool_offsets['Y']) + ' - ' + str(self.tool_coordinates['Y']) ) old_string_final_x = "{:.3f}".format(old_final_x) old_string_final_y = "{:.3f}".format(old_final_y) final_x = np.around( ( self.tool_coordinates['X'] + self.tool_offsets['X'] ) - self.cp_coordinates['X'], 3 ) final_y = np.around( ( self.tool_coordinates['Y'] + self.tool_offsets['Y'] ) - self.cp_coordinates['Y'], 3 ) alt_final_x = np.around( self.cp_coordinates['X'] - self.tool_offsets['X'] - self.tool_coordinates['X'], 3 ) alt_final_y = np.around( self.cp_coordinates['Y'] - self.tool_offsets['Y'] - self.tool_coordinates['Y'], 3 ) alt_string_final_x = "{:.3f}".format(alt_final_x) alt_string_final_y = "{:.3f}".format(alt_final_y) string_final_x = "{:.3f}".format(final_x) string_final_y = "{:.3f}".format(final_y) # Save offset to output variable # HBHBHBHB _return = {} _return['X'] = final_x _return['Y'] = final_y _return['MPP'] = self.mpp _return['time'] = np.around(time.time() - self.startTime,1) self.message_update.emit('Nozzle calibrated: offset coordinates X' + str(_return['X']) + ' Y' + str(_return['Y']) ) self.parent().debugString += 'T' + str(tool) + ', cycle ' + str(rep+1) + ' completed in ' + str(_return['time']) + ' seconds.\n' print('T' + str(tool) + ', cycle ' + str(rep+1) + ' completed in ' + str(_return['time']) + ' seconds.') self.message_update.emit('T' + str(tool) + ', cycle ' + str(rep+1) + ' completed in ' + str(_return['time']) + ' seconds.') self.parent().printer.gCode( 'G1 F13200' ) self.parent().debugString += 'G10 P' + str(tool) + ' X' + string_final_x + ' Y' + string_final_y + '\n' self.parent().debugString += 'alt_G10 P' + str(tool) + ' X' + alt_string_final_x + ' Y' + alt_string_final_y + '\n' self.parent().debugString += 'old_G10 P' + str(tool) + ' X' + old_string_final_x + ' Y' + old_string_final_y + '\n' x_tableitem = QTableWidgetItem(string_final_x) x_tableitem.setBackground(QColor(100,255,100,255)) y_tableitem = QTableWidgetItem(string_final_y) y_tableitem.setBackground(QColor(100,255,100,255)) print('G10 P' + str(tool) + ' X' + string_final_x + ' Y' + string_final_y + '\n') print('altG10 P' + str(tool) + ' X' + alt_string_final_x + ' Y' + alt_string_final_y + '\n') print('oldG10 P' + str(tool) + ' X' + old_string_final_x + ' Y' + old_string_final_y + '\n') row_no = 0 for row in range(self.parent().offsets_table.rowCount()): header = self.parent().offsets_table.verticalHeaderItem(row) print('Row:' + str(row_no) + ', header.text():' + str(header.text())) if str(header.text()) == str('T'+str(tool)): row_no = row print('Found on row:' + str(row_no)) # items = self.parent().offsets_table.findItems('T'+str(tool), Qt.MatchExactly) # print('len(items):' + str(len(items))) # if len(items) == 1 : # we have found our row # item = items[0] # take the first # print('items.row:' + str(items[0].row)) # row_no = item.row self.parent().offsets_table.setItem(row_no,0,x_tableitem) self.parent().offsets_table.setItem(row_no,1,y_tableitem) self.result_update.emit({ 'tool': str(tool), 'cycle': str(rep), 'mpp': str(self.mpp), 'X': string_final_x, 'Y': string_final_y }) return(_return, self.transform_matrix, self.mpp) else: self.state = 200 continue self.avg = [0,0] self.location = {'X':0,'Y':0} self.count = 0 def normalize_coords(self,coords): xdim, ydim = camera_width, camera_height return (coords[0] / xdim - 0.5, coords[1] / ydim - 0.5) def least_square_mapping(self,calibration_points): # Compute a 2x2 map from displacement vectors in screen space to real space. n = len(calibration_points) real_coords, pixel_coords = np.empty((n,2)),np.empty((n,2)) for i, (r,p) in enumerate(calibration_points): real_coords[i] = r pixel_coords[i] = p x,y = pixel_coords[:,0],pixel_coords[:,1] A = np.vstack([x**2,y**2,x * y, x,y,np.ones(n)]).T transform = np.linalg.lstsq(A, real_coords, rcond = None) return transform[0], transform[1].mean() def getDistance(self, x1, y1, x0, y0 ): x1_float = float(x1) x0_float = float(x0) y1_float = float(y1) y0_float = float(y0) x_dist = (x1_float - x0_float) ** 2 y_dist = (y1_float - y0_float) ** 2 retVal = np.sqrt((x_dist + y_dist)) return np.around(retVal,3) def stop(self): self._running = False self.detection_on = False try: # tempCoords = self.printer.getCoords() if self.printer.isIdle(): self.parent().changTool(None) # #self.printer.gCode('T-1') # self.printer.gCode('TOOL_DROPOFF') # self.parent().printer.gCode('G1 X' + str(tempCoords['X']) + ' Y' + str(tempCoords['Y'])) # #while self.parent().printer.getStatus() not in 'idle': while self.parent().printer.getStatus() not in 'ready': time.sleep(1) except: None self.cap.release() self.exit() def createDetector(self): # Setup SimpleBlobDetector parameters. params = cv2.SimpleBlobDetector_Params() # Thresholds params.minThreshold = self.detect_th1 params.maxThreshold = self.detect_th2 params.thresholdStep = self.detect_thstep # Area params.filterByArea = True # Filter by Area. params.minArea = self.detect_minArea # Circularity params.filterByCircularity = True # Filter by Circularity params.minCircularity = self.detect_minCircularity params.maxCircularity= 1 # Convexity params.filterByConvexity = True # Filter by Convexity params.minConvexity = 0.3 params.maxConvexity = 1 # Inertia params.filterByInertia = True # Filter by Inertia params.minInertiaRatio = 0.3 # create detector self.detector = cv2.SimpleBlobDetector_create(params) def adjust_gamma(self, image, gamma=1.2): # build a lookup table mapping the pixel values [0, 255] to # their adjusted gamma values invGamma = 1.0 / gamma table = np.array([((i / 255.0) ** invGamma) * 255 for i in np.arange(0, 256)]).astype('uint8') # apply gamma correction using the lookup table return cv2.LUT(image, table) def putText(self, frame,text,color=(0, 0, 255),offsetx=0,offsety=0,stroke=1): # Offsets are in character box size in pixels. if (text == 'timestamp'): text = datetime.datetime.now().strftime('%m-%d-%Y %H:%M:%S') fontScale = 1 if (frame.shape[1] > 640): fontScale = stroke = 2 if (frame.shape[1] < 640): fontScale = 0.8 stroke = 1 offpix = cv2.getTextSize('A', cv2.FONT_HERSHEY_SIMPLEX ,fontScale, stroke) textpix = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX ,fontScale, stroke) offsety=max(offsety, (-frame.shape[0]/2 + offpix[0][1])/offpix[0][1]) # Let offsety -99 be top row offsetx=max(offsetx, (-frame.shape[1]/2 + offpix[0][0])/offpix[0][0]) # Let offsetx -99 be left edge offsety=min(offsety, (frame.shape[0]/2 - offpix[0][1])/offpix[0][1]) # Let offsety 99 be bottom row. offsetx=min(offsetx, (frame.shape[1]/2 - offpix[0][0])/offpix[0][0]) # Let offsetx 99 be right edge. cv2.putText(frame, text, (int(offsetx * offpix[0][0]) + int(frame.shape[1]/2) - int(textpix[0][0]/2) ,int(offsety * offpix[0][1]) + int(frame.shape[0]/2) + int(textpix[0][1]/2)), cv2.FONT_HERSHEY_SIMPLEX, fontScale, color, stroke) return(frame) def changeVideoSrc(self, newSrc=-1): self.cap.release() video_src = newSrc # Start Video feed self.cap.open(video_src) self.cap.set(cv2.CAP_PROP_FRAME_WIDTH, camera_width) self.cap.set(cv2.CAP_PROP_FRAME_HEIGHT, camera_height) self.cap.set(cv2.CAP_PROP_BUFFERSIZE,1) #self.cap.set(cv2.CAP_PROP_FPS,25) self.brightness_default = self.cap.get(cv2.CAP_PROP_BRIGHTNESS) self.contrast_default = self.cap.get(cv2.CAP_PROP_CONTRAST) self.saturation_default = self.cap.get(cv2.CAP_PROP_SATURATION) self.hue_default = self.cap.get(cv2.CAP_PROP_HUE) self.ret, self.cv_img = self.cap.read() if self.ret: local_img = self.cv_img self.change_pixmap_signal.emit(local_img) else: self.cap.open(video_src) self.cap.set(cv2.CAP_PROP_FRAME_WIDTH, camera_width) self.cap.set(cv2.CAP_PROP_FRAME_HEIGHT, camera_height) self.cap.set(cv2.CAP_PROP_BUFFERSIZE,1) #self.cap.set(cv2.CAP_PROP_FPS,25) self.ret, self.cv_img = self.cap.read() local_img = self.cv_img self.change_pixmap_signal.emit(local_img) class App(QMainWindow): cp_coords = {} numTools = 0 current_frame = np.ndarray mutex = QMutex() debugString = '' calibrationResults = [] def __init__(self, parent=None): super().__init__() self.setWindowFlag(Qt.WindowContextHelpButtonHint,False) self.setWindowTitle('TAMV') self.setWindowIcon(QIcon('jubilee.png')) global display_width, display_height screen = QDesktopWidget().availableGeometry() self.small_display = False # HANDLE DIFFERENT DISPLAY SIZES # 800x600 display - fullscreen app if int(screen.width()) >= 800 and int(screen.height()) >= 550 and int(screen.height() < 600): self.small_display = True print('800x600 desktop detected') display_width = 512 display_height = 384 self.setWindowFlag(Qt.FramelessWindowHint) self.showFullScreen() self.setGeometry(0,0,700,500) app_screen = self.frameGeometry() # 848x480 display - fullscreen app elif int(screen.width()) >= 800 and int(screen.height()) < 550: self.small_display = True print('848x480 desktop detected') display_width = 448 display_height = 336 self.setWindowFlag(Qt.FramelessWindowHint) self.showFullScreen() self.setGeometry(0,0,700,400) app_screen = self.frameGeometry() # larger displays - normal window else: self.small_display = False display_width = 640 display_height = 480 self.setGeometry(QStyle.alignedRect(Qt.LeftToRight,Qt.AlignHCenter,QSize(800,600),screen)) app_screen = self.frameGeometry() app_screen.moveCenter(screen.center()) self.move(app_screen.topLeft()) # SET UP STYLESHEETS FOR GUI ELEMENTS self.setStyleSheet( '\ QPushButton {\ border: 1px solid #adadad;\ border-style: outset;\ border-radius: 4px;\ font: 14px;\ padding: 6px;\ }\ QPushButton:hover,QPushButton:enabled:hover,QPushButton:enabled:!checked:hover {\ background-color: #27ae60;\ border: 1px solid #aaaaaa;\ }\ QPushButton:pressed,QPushButton:enabled:pressed,QPushButton:enabled:checked {\ background-color: #ae2776;\ border: 1px solid #aaaaaa;\ }\ QPushButton:enabled {\ background-color: green;\ color: white;\ }\ QPushButton#debug,QMessageBox > #debug {\ background-color: blue;\ color: white;\ }\ QPushButton#debug:hover, QMessageBox > QAbstractButton#debug:hover {\ background-color: green;\ color: white;\ }\ QPushButton#debug:pressed, QMessageBox > QAbstractButton#debug:pressed {\ background-color: #ae2776;\ border-style: inset;\ color: white;\ }\ QPushButton#active, QMessageBox > QAbstractButton#active {\ background-color: green;\ color: white;\ }\ QPushButton#active:pressed,QMessageBox > QAbstractButton#active:pressed {\ background-color: #ae2776;\ }\ QPushButton#terminate {\ background-color: red;\ color: white;\ }\ QPushButton#terminate:pressed {\ background-color: #c0392b;\ }\ QPushButton:disabled, QPushButton#terminate:disabled {\ background-color: #cccccc;\ color: #999999;\ }\ QInputDialog QDialogButtonBox > QPushButton:enabled, QDialog QPushButton:enabled,QPushButton[checkable="true"]:enabled {\ background-color: none;\ color: black;\ border: 1px solid #adadad;\ border-style: outset;\ border-radius: 4px;\ font: 14px;\ padding: 6px;\ }\ QPushButton:enabled:checked {\ background-color: #ae2776;\ border: 1px solid #aaaaaa;\ }\ QInputDialog QDialogButtonBox > QPushButton:pressed, QDialog QPushButton:pressed {\ background-color: #ae2776;\ }\ QInputDialog QDialogButtonBox > QPushButton:hover:!pressed, QDialog QPushButton:hover:!pressed {\ background-color: #27ae60;\ }\ ' ) # LOAD USER SAVED PARAMETERS OR CREATE DEFAULTS self.loadUserParameters() # GUI ELEMENTS DEFINITION # Menubar if not self.small_display: self._createActions() self._createMenuBar() self._connectActions() self.centralWidget = QWidget() self.setCentralWidget(self.centralWidget) # create the label that holds the image self.image_label = OverlayLabel() self.image_label.setFixedSize( display_width, display_height ) pixmap = QPixmap( display_width, display_height ) self.image_label.setPixmap(pixmap) # create a status bar self.statusBar = QStatusBar() self.statusBar.showMessage('Loading up video feed and libraries..',5000) self.setStatusBar( self.statusBar ) # CP location on statusbar self.cp_label = QLabel('<b>CP:</b> <i>undef</i>') self.statusBar.addPermanentWidget(self.cp_label) self.cp_label.setStyleSheet(style_red) # Connection status on statusbar self.connection_status = QLabel('Disconnected') self.connection_status.setStyleSheet(style_red) self.statusBar.addPermanentWidget(self.connection_status) # BUTTONS # Connect self.connection_button = QPushButton('Connect..') self.connection_button.setToolTip('Connect to a Duet machine..') self.connection_button.clicked.connect(self.connectToPrinter) self.connection_button.setFixedWidth(170) # Disconnect self.disconnection_button = QPushButton('STOP / DISCONNECT') self.disconnection_button.setToolTip('End current operation,\nunload tools, and return carriage to CP\nthen disconnect.') self.disconnection_button.clicked.connect(self.disconnectFromPrinter) self.disconnection_button.setFixedWidth(170) self.disconnection_button.setObjectName('terminate') self.disconnection_button.setDisabled(True) # Controlled point self.cp_button = QPushButton('Set Controlled Point..') self.cp_button.setToolTip('Define your origin point\nto calculate all tool offsets from.') self.cp_button.clicked.connect(self.controlledPoint) self.cp_button.setFixedWidth(170) #self.cp_button.setStyleSheet(style_disabled) self.cp_button.setDisabled(True) # Calibration Auto self.calibration_button = QPushButton('Auto Tool Alignment') self.calibration_button.setToolTip('Start alignment process.\nMAKE SURE YOUR CARRIAGE IS CLEAR TO MOVE ABOUT WITHOUT COLLISIONS!') self.calibration_button.clicked.connect(self.runCalibration) #self.calibration_button.setStyleSheet(style_disabled) self.calibration_button.setDisabled(True) self.calibration_button.setFixedWidth(170) # Calibration One Tool self.calibrate_button = QPushButton('Tool Alignment loaded tool') self.calibrate_button.setToolTip('Start alignment process for only currently loaded tool.\nMAKE SURE YOUR CARRIAGE IS CLEAR TO MOVE ABOUT WITHOUT COLLISIONS!') self.calibrate_button.clicked.connect(self.runCalibration) #self.calibrate_button.setStyleSheet(style_disabled) self.calibrate_button.setDisabled(True) self.calibrate_button.setFixedWidth(200) # Jog Panel self.jogpanel_button = QPushButton('Jog Panel') self.jogpanel_button.setToolTip('Open a control panel to move carriage.') self.jogpanel_button.clicked.connect(self.displayJogPanel) self.jogpanel_button.setDisabled(True) self.jogpanel_button.setFixedWidth(170) # Debug Info self.debug_button = QPushButton('Debug Information') self.debug_button.setToolTip('Display current debug info for troubleshooting\nand to display final G10 commands') self.debug_button.clicked.connect(self.displayDebug) self.debug_button.setFixedWidth(170) self.debug_button.setObjectName('debug') # Exit self.exit_button = QPushButton('Quit') self.exit_button.setToolTip('Unload tools, disconnect, and quit TAMV.') self.exit_button.clicked.connect(self.close) self.exit_button.setFixedWidth(170) # OTHER ELEMENTS # Repeat spinbox self.repeat_label = QLabel('Cycles: ') self.repeat_label.setAlignment(Qt.AlignRight|Qt.AlignVCenter) self.repeatSpinBox = QSpinBox() self.repeatSpinBox.setValue(1) self.repeatSpinBox.setMinimum(1) self.repeatSpinBox.setSingleStep(1) self.repeatSpinBox.setDisabled(True) # Offsets table self.offsets_box = QGroupBox("Tool Offsets") self.offsets_box.setMaximumWidth(170) self.offsets_table = QTableWidget() self.offsets_table.setColumnCount(2) self.offsets_table.horizontalHeader().setSectionResizeMode(QHeaderView.Stretch) self.offsets_table.setColumnWidth(0,50) self.offsets_table.setColumnWidth(1,50) self.offsets_table.setHorizontalHeaderItem(0, QTableWidgetItem("X")) self.offsets_table.setHorizontalHeaderItem(1, QTableWidgetItem("Y")) self.offsets_table.resizeRowsToContents() vbox = QVBoxLayout() vbox.setSpacing(1) self.offsets_box.setLayout(vbox) vbox.addWidget(self.offsets_table) self.offsets_box.setVisible(False) # Tool buttons table self.toolBoxLayout = QHBoxLayout() self.toolBoxLayout.setSpacing(1) self.toolBox = QGroupBox() self.toolBoxLayout.setContentsMargins(0,0,0,0) self.toolBox.setLayout(self.toolBoxLayout) self.toolBox.setVisible(False) self.toolButtons = [] # Xray checkbox self.xray_box = QCheckBox('X-ray') self.xray_box.setChecked(False) self.xray_box.stateChanged.connect(self.toggle_xray) self.xray_box.setDisabled(True) self.xray_box.setVisible(False) # Loose checkbox self.loose_box = QCheckBox('Loose detection') self.loose_box.setChecked(False) self.loose_box.stateChanged.connect(self.toggle_loose) self.loose_box.setDisabled(True) self.loose_box.setVisible(False) # Detection checkbox self.detect_box = QCheckBox('Detect ON') self.detect_box.setChecked(False) self.detect_box.stateChanged.connect(self.toggle_detect) # create a grid box layout grid = QGridLayout() grid.setSpacing(3) # add elements to grid # FIRST ROW grid.addWidget(self.connection_button,1,1,Qt.AlignLeft) grid.addWidget(self.detect_box,1,2,1,1) grid.addWidget(self.xray_box,1,3,1,1) grid.addWidget(self.loose_box,1,4,1,1) grid.addWidget(self.toolBox,1,5,1,1) grid.addWidget(self.disconnection_button,1,7,1,-1,Qt.AlignLeft) # SECOND ROW # THIRD ROW # main image viewer grid.addWidget(self.image_label,3,1,4,6) grid.addWidget(self.jogpanel_button,3,7,1,1) grid.addWidget(self.offsets_box,4,7,1,1) if self.small_display: grid.addWidget(self.exit_button,5,7,1,1) grid.addWidget(self.debug_button,6,7,1,1) # FOURTH ROW grid.addWidget(self.cp_button,7,1,1,1) grid.addWidget(self.calibration_button,7,2,1,1) grid.addWidget(self.calibrate_button,7,3,1,1) grid.addWidget(self.repeat_label,7,4,1,1) grid.addWidget(self.repeatSpinBox,7,5,1,1) # set the grid layout as the widgets layout self.centralWidget.setLayout(grid) # start video feed self.startVideo() # flag to draw circle self.crosshair = False def toggle_detect(self): self.video_thread.display_crosshair = not self.video_thread.display_crosshair self.video_thread.detection_on = not self.video_thread.detection_on if self.video_thread.detection_on: self.xray_box.setDisabled(False) self.xray_box.setVisible(True) self.loose_box.setDisabled(False) self.loose_box.setVisible(True) else: self.xray_box.setDisabled(True) self.xray_box.setVisible(False) self.loose_box.setDisabled(True) self.loose_box.setVisible(False) self.updateStatusbar('Detection: OFF') def cleanPrinterURL(self, inputString='/tmp/klippy_uds'): if not isinstance(inputString, str): return( 1, 'Invalid printer Local Unix domain socket', '' ) elif len(inputString) < 2: return( 1, 'Invalid printer Local Unix domain socket', '' ) else: return( 0, '', inputString ) ''' _errCode = 0 _errMsg = '' #_printerURL = 'http://localhost' _printerURL = inputString from urllib.parse import urlparse u = urlparse(inputString) scheme = u[0] netlocation = u[1] if len(scheme) < 4 or scheme.lower() not in ['http']: _errCode = 1 _errMsg = 'Invalid scheme. Please only use http connections.' elif len(netlocation) < 1: _errCode = 2 _errMsg = 'Invalid IP/network address.' elif scheme.lower() in ['https']: _errCode = 3 _errMsg = 'Cannot use https connections for Duet controllers' else: _printerURL = scheme + '://' + netlocation return( _errCode, _errMsg, _printerURL ) ''' def loadUserParameters(self): global camera_width, camera_height, video_src try: with open('settings.json','r') as inputfile: options = json.load(inputfile) camera_settings = options['camera'][0] camera_height = int( camera_settings['display_height'] ) camera_width = int( camera_settings['display_width'] ) video_src = camera_settings['video_src'] if len(str(video_src)) == 1: video_src = int(video_src) printer_settings = options['printer'][0] tempURL = printer_settings['address'] ( _errCode, _errMsg, self.printerURL ) = self.cleanPrinterURL(tempURL) if _errCode > 0: # invalid input print('Invalid printer Local Unix domain socket detected in settings.json!') print('Defaulting to \"/tmp/klippy_uds"...') self.printerURL = '/tmp/klippy_uds' except FileNotFoundError: # create parameter file with standard parameters options = {} options['camera'] = [] options['camera'].append( { 'video_src': 0, 'display_width': '640', 'display_height': '480' } ) options['printer'] = [] options['printer'].append( { 'address': '/tmp/klippy_uds', 'name': 'Hermoine' } ) try: camera_width = 640 camera_height = 480 video_src = 1 with open('settings.json','w') as outputfile: json.dump(options, outputfile) except Exception as e1: print('Error writing user settings file.') print(e1) def saveUserParameters(self, cameraSrc=-2): global camera_width, camera_height, video_src cameraSrc = int(cameraSrc) try: if cameraSrc > -2: video_src = cameraSrc options = {} options['camera'] = [] options['camera'].append( { 'video_src': video_src, 'display_width': camera_width, 'display_height': camera_height } ) options['printer'] = [] options['printer'].append( { 'address': self.printerURL, 'name': 'Default printer' } ) with open('settings.json','w') as outputfile: json.dump(options, outputfile) except Exception as e1: print('Error saving user settings file.') print(e1) if int(video_src) != cameraSrc: self.video_thread.changeVideoSrc(newSrc=cameraSrc) self.updateStatusbar('Current profile saved to settings.json') def _createMenuBar(self): menuBar = self.menuBar() # Creating menus using a QMenu object fileMenu = QMenu('&File', self) menuBar.addMenu(fileMenu) fileMenu.addAction(self.debugAction) fileMenu.addAction(self.cameraAction) fileMenu.addSeparator() fileMenu.addAction(self.saveAction) fileMenu.addSeparator() fileMenu.addAction(self.quitAction) self.analysisMenu = QMenu('&Analyze',self) menuBar.addMenu(self.analysisMenu) self.analysisMenu.addAction(self.graphAction) self.analysisMenu.addAction(self.exportAction) self.analysisMenu.setDisabled(True) def _createActions(self): # Creating action using the first constructor self.debugAction = QAction(self) self.debugAction.setText('&Debug info') self.cameraAction = QAction(self) self.cameraAction.setText('&Camera settings') self.quitAction = QAction(self) self.quitAction.setText('&Quit') self.saveAction = QAction(self) self.saveAction.setText('&Save current settings') self.graphAction = QAction(self) self.graphAction.setText('&Graph calibration data..') self.exportAction = QAction(self) self.exportAction.setText('&Export to output.json') def _connectActions(self): # Connect File actions self.debugAction.triggered.connect(self.displayDebug) self.cameraAction.triggered.connect(self.displayCameraSettings) self.quitAction.triggered.connect(self.close) self.saveAction.triggered.connect(self.saveUserParameters) self.graphAction.triggered.connect(lambda: self.analyzeResults(graph=True)) self.exportAction.triggered.connect(lambda: self.analyzeResults(export=True)) def displayCameraSettings(self): self.camera_dialog = CameraSettingsDialog(parent=self) self.camera_dialog.exec_() def displayDebug(self): dbg = DebugDialog(parent=self,message=self.debugString) if dbg.exec_(): None def displayJogPanel(self): try: local_status = self.printer.getStatus() #if local_status == 'idle': if local_status == 'ready': jogPanel = CPDialog(parent=self,summary='Control printer movement using this panel.',title='Jog Control') if jogPanel.exec_(): None except Exception as e1: self.statusBar.showMessage('Printer is not available or is busy. ') def startVideo(self): # create the video capture thread self.video_thread = CalibrateNozzles(parent=self,numTools=0, cycles=1,minArea=600, align=False) # connect its signal to the update_image slot # connect its signal to the update_image slot self.video_thread.detection_error.connect(self.updateStatusbar) self.video_thread.status_update.connect(self.updateStatusbar) self.video_thread.message_update.connect(self.updateMessagebar) self.video_thread.change_pixmap_signal.connect(self.update_image) self.video_thread.calibration_complete.connect(self.applyCalibration) self.video_thread.result_update.connect(self.addCalibrationResult) # start the thread self.video_thread.start() def stopVideo(self): try: if self.video_thread.isRunning(): self.video_thread.stop() except Exception as vs2: self.updateStatusbar('ERROR: cannot stop video') print('ERROR: cannot stop video') print(vs2) def closeEvent(self, event): try: if self.printer.isIdle(): self.changeTool(None) # tempCoords = self.printer.getCoords() # #self.printer.gCode('T-1') # self.printer.gCode('TOOL_DROPOFF') # self.printer.gCode('G1 X' + str(tempCoords['X']) + ' Y' + str(tempCoords['Y'])) except Exception as ce1: None # no printer connected usually. print() print('Thank you for using TAMV!') print('Check out www.jubilee3d.com') event.accept() def connectToPrinter(self): # temporarily suspend GUI and display status message self.image_label.setText('Waiting to connect..') self.updateStatusbar('Please enter Local Unix domain socket for Klipper') self.connection_button.setDisabled(True) self.disconnection_button.setDisabled(True) self.calibration_button.setDisabled(True) self.calibrate_button.setDisabled(True) self.cp_button.setDisabled(True) self.jogpanel_button.setDisabled(True) self.offsets_box.setVisible(False) self.connection_status.setText('Connecting..') self.connection_status.setStyleSheet(style_orange) self.cp_label.setText('<b>CP:</b> <i>undef</i>') self.cp_label.setStyleSheet(style_orange) self.repeatSpinBox.setDisabled(True) self.xray_box.setDisabled(True) self.xray_box.setChecked(False) self.xray_box.setVisible(False) self.loose_box.setDisabled(True) self.loose_box.setChecked(False) self.loose_box.setVisible(False) self.repaint() try: # check if printerURL has already been defined (user reconnecting) if len(self.printerURL) > 0: None except Exception: # printerURL initalization to defaults self.printerURL = '/tmp/klippy_uds' # Prompt user for machine connection address text, ok = QInputDialog.getText(self, 'Klipper UDS','Local Unix domain socket for Klipper: ', QLineEdit.Normal, self.printerURL) # Handle clicking OK/Connect if ok and text != '' and len(text) > 5: ( _errCode, _errMsg, tempURL ) = self.cleanPrinterURL(text) while _errCode != 0: # Invalid URL detected, pop-up window to correct this text, ok = QInputDialog.getText(self, 'Klipper UDS', _errMsg + '\nLocal Unix domain socket for Klipper: ', QLineEdit.Normal, text) if ok: ( _errCode, _errMsg, tempURL ) = self.cleanPrinterURL(text) else: self.updateStatusbar('Connection request cancelled.') self.resetConnectInterface() return # input has been parsed and is clean, proceed self.printerURL = tempURL # Handle clicking cancel elif not ok: self.updateStatusbar('Connection request cancelled.') self.resetConnectInterface() return # Handle invalid input elif len(text) < 6 or text[:4] not in ['http']: self.updateStatusbar('Invalid UDS: \"' + text ) self.resetConnectInterface() return # Update user with new state self.statusBar.showMessage('Attempting to connect to: ' + self.printerURL ) # Attempt connecting to the Duet controller try: #self.printer = DWA.DuetWebAPI(self.printerURL) self.printer = KA.KlipperAPI(self.printerURL) if not self.printer.printerType(): # connection failed for some reason self.updateStatusbar('Device at '+self.printerURL+' might not be a Klipper UDS.') self.resetConnectInterface() return else: # connection succeeded, update objects accordingly self._connected_flag = True self.tools = self.printer.getTools() self.num_tools = len(self.tools) self.video_thread.numTools = self.num_tools # UPDATE OFFSET INFORMATION self.offsets_box.setVisible(True) self.offsets_table.setRowCount(self.num_tools) for i in range(self.num_tools): current_tool = self.printer.getG10ToolOffset(self.tools[i]) offset_x = "{:.3f}".format(current_tool['X']) offset_y = "{:.3f}".format(current_tool['Y']) x_tableitem = QTableWidgetItem(offset_x) y_tableitem = QTableWidgetItem(offset_y) x_tableitem.setBackground(QColor(255,255,255,255)) y_tableitem.setBackground(QColor(255,255,255,255)) self.offsets_table.setVerticalHeaderItem(i,QTableWidgetItem('T'+str(self.tools[i]))) self.offsets_table.setItem(i,0,x_tableitem) self.offsets_table.setItem(i,1,y_tableitem) # add tool buttons toolButton = QPushButton('T'+str(self.tools[i])) toolButton.setToolTip('Fetch T' +str(self.tools[i]) + ' to current machine position.') self.toolButtons.append(toolButton) except Exception as conn1: self.updateStatusbar('Cannot connect to: ' + self.printerURL ) print('Duet Connection exception: ', conn1) self.resetConnectInterface() return # Get active tool _active = self.printer.getCurrentTool() # Display toolbox for i,button in enumerate(self.toolButtons): button.setCheckable(True) if int(_active) == i: button.setChecked(True) else: button.setChecked(False) button.clicked.connect(self.callTool) self.toolBoxLayout.addWidget(button) self.toolBox.setVisible(True) # Connection succeeded, update GUI first self.updateStatusbar('Connected to a Duet V'+str(self.printer.printerType())) self.connection_button.setText('Online: ' + self.printerURL[self.printerURL.rfind('/')+1:]) self.statusBar.showMessage('Connected to printer at ' + self.printerURL, 5000) self.connection_status.setText('Connected.') self.image_label.setText('Set your Controlled Point to continue.') # enable/disable buttons self.connection_button.setDisabled(True) self.calibration_button.setDisabled(True) self.calibrate_button.setDisabled(True) self.disconnection_button.setDisabled(False) self.cp_button.setDisabled(False) self.jogpanel_button.setDisabled(False) self.analysisMenu.setDisabled(True) # update connection status indicator to green self.connection_status.setStyleSheet(style_green) self.cp_label.setStyleSheet(style_red) def callTool(self): # handle scenario where machine is busy and user tries to select a tool. if not self.printer.isIdle(): self.updateStatusbar('Machine is not idle, cannot select tool.') return # get current active tool _active = self.printer.getCurrentTool() # get requested tool number sender = self.sender() # update buttons to new status for button in self.toolButtons: if button.text() == sender.text(): button.setChecked(True) else: button.setChecked(False) # self.toolButtons[int(self.sender().text()[1:])].setChecked(True) # handle tool already active on printer if int(_active) == int(sender.text()[1:]): msg = QMessageBox() status = msg.question( self, 'Unload ' + sender.text(), 'Unload ' + sender.text() + ' and return carriage to the current position?',QMessageBox.Yes | QMessageBox.No ) if status == QMessageBox.Yes: for button in self.toolButtons: if button.text() == sender.text(): button.setChecked(False) self.changeTool(None) # End video threads and restart default thread self.video_thread.alignment = False # Update GUI for unloading carriage self.calibration_button.setDisabled(False) self.calibrate_button.setDisabled(False) self.cp_button.setDisabled(False) self.updateMessagebar('Ready.') self.updateStatusbar('Ready.') else: # User cancelled, do nothing return else: # Requested tool is different from active tool msg = QMessageBox() status = msg.question( self, 'Confirm loading ' + sender.text(), 'Load ' + sender.text() + ' and move to current position?',QMessageBox.Yes | QMessageBox.No ) if status == QMessageBox.Yes: self.changeTool(sender.text()) # START DETECTION THREAD HANDLING # close camera settings dialog so it doesn't crash try: if self.camera_dialog.isVisible(): self.camera_dialog.reject() except: None # update GUI self.cp_button.setDisabled(False) self.jogpanel_button.setDisabled(False) self.calibration_button.setDisabled(False) self.calibrate_button.setDisabled(False) self.repeatSpinBox.setDisabled(True) else: for button in self.toolButtons: if button.text() == sender.text(): button.setChecked(False) # self.toolButtons[int(self.sender().text()[1:])].setChecked(False) def changeTool(self, tool=None): # return carriage to controlled point position if len(self.cp_coords) > 0: tempCoords = self.cp_coords else: tempCoords = self.printer.getCoords() if tool is not None: self.printer.gCode(tool) else: self.printer.gCode('TOOL_DROPOFF') self.printer.gCode('G1 X' + str(tempCoords['X']) + 'F24000') self.printer.gCode('G1 Y' + str(tempCoords['Y']) + 'F24000') self.printer.gCode('G1 Z' + str(tempCoords['Z']) + 'F24000') def resetConnectInterface(self): self.connection_button.setDisabled(False) self.disconnection_button.setDisabled(True) self.calibration_button.setDisabled(True) self.calibrate_button.setDisabled(True) self.cp_button.setDisabled(True) self.jogpanel_button.setDisabled(True) self.offsets_box.setVisible(False) self.connection_status.setText('Disconnected') self.connection_status.setStyleSheet(style_red) self.cp_label.setText('<b>CP:</b> <i>undef</i>') self.cp_label.setStyleSheet(style_red) self.repeatSpinBox.setDisabled(True) self.analysisMenu.setDisabled(True) self.detect_box.setChecked(False) self.detect_box.setDisabled(False) self.xray_box.setDisabled(True) self.xray_box.setChecked(False) self.xray_box.setVisible(False) self.loose_box.setDisabled(True) self.loose_box.setChecked(False) self.loose_box.setVisible(False) self.video_thread.detection_on = False self.video_thread.loose = False self.video_thread.xray = False self.video_thread.alignment = False index = self.toolBoxLayout.count()-1 while index >= 0: curWidget = self.toolBoxLayout.itemAt(index).widget() curWidget.setParent(None) index -= 1 self.toolBox.setVisible(False) self.toolButtons = [] self.repaint() def controlledPoint(self): # handle scenario where machine is busy and user tries to select a tool. if not self.printer.isIdle(): self.updateStatusbar('Machine is not idle, cannot select tool.') return # display crosshair on video feed at center of image self.crosshair = True self.calibration_button.setDisabled(True) self.calibrate_button.setDisabled(True) if len(self.cp_coords) > 0: #self.printer.gCode('T-1') self.printer.gCode('TOOL_DROPOFF') #self.printer.gCode('G90 G1 X'+ str(self.cp_coords['X']) + ' Y' + str(self.cp_coords['Y']) + ' Z' + str(self.cp_coords['Z']) ) self.printer.gCodeBatch(['G90','G1 X'+ str(self.cp_coords['X']) + ' Y' + str(self.cp_coords['Y']) + ' Z' + str(self.cp_coords['Z'])]) dlg = CPDialog(parent=self) if dlg.exec_(): self.cp_coords = self.printer.getCoords() self.cp_string = '(' + str(self.cp_coords['X']) + ', ' + str(self.cp_coords['Y']) + ')' self.readyToCalibrate() else: self.statusBar.showMessage('CP Setup cancelled.') self.crosshair = False def readyToCalibrate(self): self.statusBar.showMessage('Controlled Point coordinates saved.',3000) self.image_label.setText('Controlled Point set. Click \"Start Tool Alignment\" to calibrate..') self.cp_button.setText('Reset CP ') self.cp_label.setText('<b>CP:</b> ' + self.cp_string) self.cp_label.setStyleSheet(style_green) self.detect_box.setChecked(False) self.detect_box.setDisabled(False) self.detect_box.setVisible(True) self.xray_box.setDisabled(True) self.xray_box.setChecked(False) self.xray_box.setVisible(False) self.loose_box.setDisabled(True) self.loose_box.setChecked(False) self.loose_box.setVisible(False) self.video_thread.detection_on = False self.video_thread.loose = False self.video_thread.xray = False self.video_thread.alignment = False self.calibration_button.setDisabled(False) self.calibrate_button.setDisabled(False) self.cp_button.setDisabled(False) self.toolBox.setVisible(True) self.repeatSpinBox.setDisabled(False) if len(self.calibrationResults) > 1: self.analysisMenu.setDisabled(False) else: self.analysisMenu.setDisabled(True) def applyCalibration(self): # update GUI self.readyToCalibrate() # close camera settings dialog so it doesn't crash try: if self.camera_dialog.isVisible(): self.camera_dialog.reject() except: None # prompt for user to apply results # msgBox = QMessageBox(parent=self) # msgBox.setIcon(QMessageBox.Information) # msgBox.setText('Do you want to save the new offsets to your machine?') # msgBox.setWindowTitle('Calibration Results') # yes_button = msgBox.addButton('Apply offsets and save (M500)',QMessageBox.ApplyRole) # yes_button.setStyleSheet(style_green) # cancel_button = msgBox.addButton('Apply offsets',QMessageBox.NoRole) # Update debug string # self.debugString += '\nCalibration results:\n' # for result in self.calibrationResults: # calibrationCode = 'G10 P' + str(result['tool']) + ' X' + str(result['X']) + ' Y' + str(result['Y']) # self.debugString += calibrationCode + '\n' # Prompt user # returnValue = msgBox.exec() # if msgBox.clickedButton() == yes_button: # for result in self.calibrationResults: # calibrationCode = 'G10 P' + str(result['tool']) + ' X' + str(result['X']) + ' Y' + str(result['Y']) # self.printer.gCode(calibrationCode) # self.printer.gCode('M500 P10') # because of Rene. # self.statusBar.showMessage('Offsets applied and stored using M500.') # print('Offsets applied and stored using M500.') # else: # self.statusBar.showMessage('Temporary offsets applied. You must manually save these offsets.') # Clean up threads and detection self.video_thread.alignment = False self.video_thread.detect_on = False self.video_thread.display_crosshair = False # run stats self.analyzeResults() def analyzeResults(self, graph=False, export=False): if len(self.calibrationResults) < 1: self.updateStatusbar('No calibration data found.') return if graph or export: # get data as 3 dimensional array [tool][axis][datapoints] normalized around mean of each axis (numTools, totalRuns, toolData) = self.parseData(self.calibrationResults) else: # display stats to terminal self.stats() if graph: matplotlib.use('Qt5Agg',force=True) # set up color and colormap arrays colorMap = ["Greens","Oranges","Blues", "Reds"] #["Blues", "Reds","Greens","Oranges"] colors = ['blue','red','green','orange'] # initiate graph data - 1 tool per column # Row 0: scatter plot with standard deviation box # Row 1: histogram of X axis data # Row 2: histogram of Y axis data # Set backend (if needed) #plt.switch_backend('Qt4Agg') fig, axes = plt.subplots(ncols=3,nrows=numTools,constrained_layout=False) for i, data in enumerate(toolData): # create a color array the length of the number of tools in the data color = np.arange(len(data[0])) # Axis formatting # Major ticks axes[i][0].xaxis.set_major_formatter(FormatStrFormatter('%.3f')) axes[i][0].yaxis.set_major_formatter(FormatStrFormatter('%.3f')) # Minor ticks axes[i][0].xaxis.set_minor_formatter(FormatStrFormatter('%.3f')) axes[i][0].yaxis.set_minor_formatter(FormatStrFormatter('%.3f')) # Draw 0,0 lines axes[i][0].axhline() axes[i][0].axvline() # x&y std deviation box x_sigma = np.around(np.std(data[0]),3) y_sigma = np.around(np.std(data[1]),3) axes[i][0].add_patch(patches.Rectangle((-1*x_sigma,-1*y_sigma), 2*x_sigma, 2*y_sigma, color="green",fill=False, linestyle='dotted')) axes[i][0].add_patch(patches.Rectangle((-2*x_sigma,-2*y_sigma), 4*x_sigma, 4*y_sigma, color="red",fill=False, linestyle='-.')) # scatter plot for tool data axes[i][0].scatter(data[0], data[1], c=color, cmap=colorMap[i]) axes[i][0].autoscale = True # Histogram data setup # Calculate number of bins per axis x_intervals = int(np.around(math.sqrt(len(data[0])),0)+1) y_intervals = int(np.around(math.sqrt(len(data[1])),0)+1) # plot histograms x_kwargs = dict(alpha=0.5, bins=x_intervals,rwidth=.92, density=True) n, bins, hist_patches = axes[i][1].hist([data[0],data[1]],**x_kwargs, color=[colors[0],colors[1]], label=['X','Y']) axes[i][2].hist2d(data[0], data[1], bins=x_intervals, cmap='Blues') axes[i][1].legend() # add a 'best fit' line # calculate mean and std deviation per axis x_mean = np.mean(data[0]) y_mean = np.mean(data[1]) x_sigma = np.around(np.std(data[0]),3) y_sigma = np.around(np.std(data[1]),3) # calculate function lines for best fit x_best = ((1 / (np.sqrt(2 * np.pi) * x_sigma)) * np.exp(-0.5 * (1 / x_sigma * (bins - x_mean))**2)) y_best = ((1 / (np.sqrt(2 * np.pi) * y_sigma)) * np.exp(-0.5 * (1 / y_sigma * (bins - y_mean))**2)) # add best fit line to plots axes[i][1].plot(bins, x_best, '-.',color=colors[0]) axes[i][1].plot(bins, y_best, '--',color=colors[1]) x_count = int(sum( p == True for p in ((data[0] >= (x_mean - x_sigma)) & (data[0] <= (x_mean + x_sigma))) )/len(data[0])*100) y_count = int(sum( p == True for p in ((data[1] >= (y_mean - y_sigma)) & (data[1] <= (y_mean + y_sigma))) )/len(data[1])*100) # annotate std dev values annotation_text = "Xσ: " + str(x_sigma) + " ("+str(x_count) + "%)" if x_count < 68: x_count = int(sum( p == True for p in ((data[0] >= (x_mean - 2*x_sigma)) & (data[0] <= (x_mean + 2*x_sigma))) )/len(data[0])*100) annotation_text += " --> 2σ: " + str(x_count) + "%" if x_count < 95 and x_sigma*2 > 0.1: annotation_text += " -- check axis!" else: annotation_text += " -- OK" annotation_text += "\nYσ: " + str(y_sigma) + " ("+str(y_count) + "%)" if y_count < 68: y_count = int(sum( p == True for p in ((data[1] >= (y_mean - 2*y_sigma)) & (data[1] <= (y_mean + 2*y_sigma))) )/len(data[1])*100) annotation_text += " --> 2σ: " + str(y_count) + "%" if y_count < 95 and y_sigma*2 > 0.1: annotation_text += " -- check axis!" else: annotation_text += " -- OK" axes[i][0].annotate(annotation_text, (10,10),xycoords='axes pixels') axes[i][0].annotate('σ',(1.1*x_sigma,-1.1*y_sigma),xycoords='data',color='green') axes[i][0].annotate('2σ',(1.1*2*x_sigma,-1.1*2*y_sigma),xycoords='data',color='red') # # place title for graph axes[i][0].set_ylabel("Tool " + str(i) + "\nY") axes[i][0].set_xlabel("X") axes[i][2].set_ylabel("Y") axes[i][2].set_xlabel("X") if i == 0: axes[i][0].set_title('Scatter Plot') axes[i][1].set_title('Histogram') axes[i][2].set_title('2D Histogram') plt.tight_layout() figManager = plt.get_current_fig_manager() figManager.window.showMaximized() plt.ion() plt.show() if export: # export JSON data to file try: with open('output.json','w') as outputfile: json.dump(self.calibrationResults, outputfile) except Exception as e1: print('Error exporting data:') print(e1) self.updateStatusbar('Error exporting data, please check terminal for details.') def stats(self): ################################################################################### # Report on repeated executions ################################################################################### print('') print('Repeatability statistics for '+str(self.cycles)+' repeats:') print('+-------------------------------------------------------------------------------------------------------+') print('| | X | Y |') print('| T | Avg | Max | Min | StdDev | Range | Avg | Max | Min | StdDev | Range |') for index in range(self.num_tools): # create array of results for current tool _rawCalibrationData = [line for line in self.calibrationResults if line['tool'] == str(index)] # If we have not run this particular tool if len(_rawCalibrationData) < 1: continue x_array = [float(line['X']) for line in _rawCalibrationData] y_array = [float(line['Y']) for line in _rawCalibrationData] mpp_value = np.average([float(line['mpp']) for line in _rawCalibrationData]) cycles = np.max( [float(line['cycle']) for line in _rawCalibrationData] ) x_avg = np.average(x_array) y_avg = np.average(y_array) x_min = np.min(x_array) y_min = np.min(y_array) x_max = np.max(x_array) y_max = np.max(y_array) x_std = np.std(x_array) y_std = np.std(y_array) x_ran = x_max - x_min y_ran = y_max - y_min print('| {0:1.0f} '.format(index) + '| {0:7.3f} '.format(x_avg) + '| {0:7.3f} '.format(x_max) + '| {0:7.3f} '.format(x_min) + '| {0:7.3f} '.format(x_std) + '| {0:7.3f} '.format(x_ran) + '| {0:7.3f} '.format(y_avg) + '| {0:7.3f} '.format(y_max) + '| {0:7.3f} '.format(y_min) + '| {0:7.3f} '.format(y_std) + '| {0:7.3f} '.format(y_ran) + '|' ) print('+-------------------------------------------------------------------------------------------------------+') print('Note: Repeatability cannot be better than one pixel (MPP=' + str(mpp_value) + ').') def parseData( self, rawData ): # create empty output array toolDataResult = [] # get number of tools _numTools = np.max([ int(line['tool']) for line in rawData ]) + 1 _cycles = np.max([ int(line['cycle']) for line in rawData ]) for i in range(_numTools): x = [float(line['X']) for line in rawData if int(line['tool']) == i] y = [float(line['Y']) for line in rawData if int(line['tool']) == i] # variable to hold return data coordinates per tool formatted as a 2D array [x_value, y_value] tempPairs = [] # calculate stats # mean values x_mean = np.around(np.mean(x),3) y_mean = np.around(
np.mean(y)
numpy.mean
#! /usr/bin/env python """ Tutorial to demonstrate running parameter estimation on a reduced parameter space for an injected signal. This example estimates the masses using a uniform prior in both component masses and distance using a uniform in comoving volume prior on luminosity distance between luminosity distances of 100Mpc and 5Gpc, the cosmology is Planck15. """ from __future__ import division, print_function import numpy as np import bilby from sys import exit import os import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt from scipy import integrate, interpolate import scipy import lalsimulation import lal import time import h5py from scipy.ndimage.interpolation import shift #from pylal import antenna, cosmography import argparse # fixed parameter values condor_fixed_vals = {'mass_1':50.0, 'mass_2':50.0, 'mc':None, 'geocent_time':0.0, 'phase':0.0, 'ra':1.375, 'dec':-1.2108, 'psi':0.0, 'theta_jn':0.0, 'luminosity_distance':2000.0, 'a_1':0.0, 'a_2':0.0, 'tilt_1':0.0, 'tilt_2':0.0, 'phi_12':0.0, 'phi_jl':0.0, 'det':['H1','L1','V1']} # prior bounds condor_bounds = {'mass_1_min':35.0, 'mass_1_max':80.0, 'mass_2_min':35.0, 'mass_2_max':80.0, 'M_min':70.0, 'M_max':160.0, 'geocent_time_min':0.15,'geocent_time_max':0.35, 'phase_min':0.0, 'phase_max':2.0*np.pi, 'ra_min':0.0, 'ra_max':2.0*np.pi, 'dec_min':-0.5*np.pi, 'dec_max':0.5*np.pi, 'psi_min':0.0, 'psi_max':2.0*np.pi, 'theta_jn_min':0.0, 'theta_jn_max':np.pi, 'a_1_min':0.0, 'a_1_max':0.0, 'a_2_min':0.0, 'a_2_max':0.0, 'tilt_1_min':0.0, 'tilt_1_max':0.0, 'tilt_2_min':0.0, 'tilt_2_max':0.0, 'phi_12_min':0.0, 'phi_12_max':0.0, 'phi_jl_min':0.0, 'phi_jl_max':0.0, 'luminosity_distance_min':1000.0, 'luminosity_distance_max':3000.0} def parser(): """ Parses command line arguments :return: arguments """ #TODO: complete help sections parser = argparse.ArgumentParser(prog='bilby_pe.py', description='script for generating bilby samples/posterior') # arguments for data parser.add_argument('-samplingfrequency', type=float, help='sampling frequency of signal') parser.add_argument('-samplers', nargs='+', type=str, help='list of samplers to use to generate') parser.add_argument('-duration', type=float, help='duration of signal in seconds') parser.add_argument('-Ngen', type=int, help='number of samples to generate') parser.add_argument('-refgeocenttime', type=float, help='reference geocenter time') parser.add_argument('-bounds', type=str, help='dictionary of the bounds') parser.add_argument('-fixedvals', type=str, help='dictionary of the fixed values') parser.add_argument('-randpars', nargs='+', type=str, help='list of pars to randomize') parser.add_argument('-infpars', nargs='+', type=str, help='list of pars to infer') parser.add_argument('-label', type=str, help='label of run') parser.add_argument('-outdir', type=str, help='output directory') parser.add_argument('-training', type=str, help='boolean for train/test config') parser.add_argument('-seed', type=int, help='random seed') parser.add_argument('-dope', type=str, help='boolean for whether or not to do PE') return parser.parse_args() def tukey(M,alpha=0.5): """ Tukey window code copied from scipy. Parameters ---------- M: Number of points in the output window. alpha: The fraction of the window inside the cosine tapered region. Returns ------- w: The window """ n = np.arange(0, M) width = int(np.floor(alpha*(M-1)/2.0)) n1 = n[0:width+1] n2 = n[width+1:M-width-1] n3 = n[M-width-1:] w1 = 0.5 * (1 + np.cos(np.pi * (-1 + 2.0*n1/alpha/(M-1)))) w2 = np.ones(n2.shape) w3 = 0.5 * (1 + np.cos(np.pi * (-2.0/alpha + 1 + 2.0*n3/alpha/(M-1)))) w = np.concatenate((w1, w2, w3)) return np.array(w[:M]) def make_bbh(hp,hc,fs,ra,dec,psi,det,ifos,event_time): """ Turns hplus and hcross into a detector output applies antenna response and and applies correct time delays to each detector Parameters ---------- hp: h-plus version of GW waveform hc: h-cross version of GW waveform fs: sampling frequency ra: right ascension dec: declination psi: polarization angle det: detector Returns ------- ht: combined h-plus and h-cross version of waveform hp: h-plus version of GW waveform hc: h-cross version of GW waveform """ # compute antenna response and apply #Fp=ifos.antenna_response(ra,dec,float(event_time),psi,'plus') #Fc=ifos.antenna_response(ra,dec,float(event_time),psi,'cross') #Fp,Fc,_,_ = antenna.response(float(event_time), ra, dec, 0, psi, 'radians', det ) ht = hp + hc # overwrite the timeseries vector to reuse it return ht, hp, hc def gen_template(duration, sampling_frequency, pars, ref_geocent_time ): """ Generates a whitened waveform """ if sampling_frequency>4096: print('EXITING: bilby doesn\'t seem to generate noise above 2048Hz so lower the sampling frequency') exit(0) # compute the number of time domain samples Nt = int(sampling_frequency*duration) # define the start time of the timeseries start_time = ref_geocent_time-duration/2.0 # fix parameters here injection_parameters = dict( mass_1=pars['mass_1'],mass_2=pars['mass_2'], a_1=pars['a_1'], a_2=pars['a_2'], tilt_1=pars['tilt_1'], tilt_2=pars['tilt_2'], phi_12=pars['phi_12'], phi_jl=pars['phi_jl'], luminosity_distance=pars['luminosity_distance'], theta_jn=pars['theta_jn'], psi=pars['psi'], phase=pars['phase'], geocent_time=pars['geocent_time'], ra=pars['ra'], dec=pars['dec']) # Fixed arguments passed into the source model waveform_arguments = dict(waveform_approximant='IMRPhenomPv2', reference_frequency=20., minimum_frequency=20.) # Create the waveform_generator using a LAL BinaryBlackHole source function waveform_generator = bilby.gw.WaveformGenerator( duration=duration, sampling_frequency=sampling_frequency, frequency_domain_source_model=bilby.gw.source.lal_binary_black_hole, parameter_conversion=bilby.gw.conversion.convert_to_lal_binary_black_hole_parameters, waveform_arguments=waveform_arguments, start_time=start_time) # create waveform wfg = waveform_generator # extract waveform from bilby wfg.parameters = injection_parameters freq_signal = wfg.frequency_domain_strain() time_signal = wfg.time_domain_strain() # Set up interferometers. These default to their design # sensitivity ifos = bilby.gw.detector.InterferometerList(pars['det']) # set noise to be colored Gaussian noise ifos.set_strain_data_from_power_spectral_densities( sampling_frequency=sampling_frequency, duration=duration, start_time=start_time) # inject signal ifos.inject_signal(waveform_generator=waveform_generator, parameters=injection_parameters) whitened_signal_td_all = [] whitened_h_td_all = [] # iterate over ifos for i in range(len(pars['det'])): # get frequency domain noise-free signal at detector signal_fd = ifos[i].get_detector_response(freq_signal, injection_parameters) # whiten frequency domain noise-free signal (and reshape/flatten) whitened_signal_fd = signal_fd/ifos[i].amplitude_spectral_density_array #whitened_signal_fd = whitened_signal_fd.reshape(whitened_signal_fd.shape[0]) # get frequency domain signal + noise at detector h_fd = ifos[i].strain_data.frequency_domain_strain # inverse FFT noise-free signal back to time domain and normalise whitened_signal_td = np.sqrt(2.0*Nt)*np.fft.irfft(whitened_signal_fd) # whiten noisy frequency domain signal whitened_h_fd = h_fd/ifos[i].amplitude_spectral_density_array # inverse FFT noisy signal back to time domain and normalise whitened_h_td = np.sqrt(2.0*Nt)*np.fft.irfft(whitened_h_fd) whitened_h_td_all.append([whitened_h_td]) whitened_signal_td_all.append([whitened_signal_td]) return np.squeeze(np.array(whitened_signal_td_all),axis=1),np.squeeze(
np.array(whitened_h_td_all)
numpy.array
""" Various trail maps and adventures: author: <NAME> """ # <codecell> from typing import List, Tuple import numpy as np import matplotlib.pyplot as plt class TrailMap: def __init__(self, start=None, end=None): self.start = start if start != None else np.array([0, 0]) self.end = end if end != None else np.array([0, 0]) self.tol = 3 def sample(self, x, y): """ Returns odor on scale from 0 to 1 """ raise NotImplementedError('sample not implemented!') def plot(self): raise NotImplementedError('plot not implemented!') def reset(self): raise NotImplementedError('reset not implemented!') def is_done(self, x, y): is_done = np.all(np.isclose(self.end, (x, y), atol=self.tol)) return bool(is_done) def is_at_checkpoint(self, x, y): return False class StraightTrail(TrailMap): def __init__(self, end=None, narrow_factor=1): super().__init__() self.end = end if type(end) != type(None) else np.array([10, 15]) self.narrow_factor = narrow_factor def sample(self, x, y): eps = 1e-8 total_dist = np.sqrt((x - self.end[0]) ** 2 + (y - self.end[1]) ** 2) perp_dist = np.abs((self.end[0] - self.start[0]) * (self.start[1] - y) - (self.start[0] - x) * (self.end[1] - self.start[1])) / np.sqrt((self.start[0] - self.end[0]) ** 2 + (self.start[1] - self.end[1])**2 + eps) max_odor = np.sqrt(np.sum((self.end - self.start) ** 2)) + 1 odor = max_odor - total_dist odor *= 1 / (perp_dist + 1) ** self.narrow_factor # odor = 1 / (perp_dist + 1) ** self.narrow_factor # max_dist = np.sqrt(np.sum((self.end - self.start) ** 2)) # if np.isscalar(total_dist): # if total_dist > max_dist: # odor *= 1 / (total_dist - max_dist + 1) ** self.narrow_factor # else: # adjust = 1 / (np.clip(total_dist - max_dist, 0, np.inf) + 1) ** self.narrow_factor # odor *= adjust odor = np.clip(odor, 0, np.inf) return odor / max_odor return odor def plot(self, ax=None): x = np.linspace(-20, 20, 100) y = np.linspace(-20, 20, 100) xx, yy =
np.meshgrid(x, y)
numpy.meshgrid
""" """ import numpy as np from astropy.tests.helper import pytest from astropy.utils.misc import NumpyRNGContext from ..model_helpers import custom_spline, create_composite_dtype from ..model_helpers import bounds_enforcing_decorator_factory, enforce_periodicity_of_box from ..model_helpers import call_func_table, bind_default_kwarg_mixin_safe from ...custom_exceptions import HalotoolsError __all__ = ('test_enforce_periodicity_of_box', 'test_custom_spline1', 'test_check_multiple_box_lengths', 'test_velocity_flip') fixed_seed = 43 def _func_maker(i): def f(x): return x + i return f def test_custom_spline1(): table_abscissa = (0, 1) table_ordinates = (0, 1, 2) with pytest.raises(HalotoolsError) as err: __ = custom_spline(table_abscissa, table_ordinates) substr = "table_abscissa and table_ordinates must have the same length" assert substr in err.value.args[0] def test_custom_spline2(): table_abscissa = (0, 1, 2) table_ordinates = (0, 1, 2) with pytest.raises(HalotoolsError) as err: __ = custom_spline(table_abscissa, table_ordinates, k=-2) substr = "Spline degree must be non-negative" assert substr in err.value.args[0] def test_custom_spline3(): table_abscissa = (0, 1, 2) table_ordinates = (0, 1, 2) with pytest.raises(HalotoolsError) as err: __ = custom_spline(table_abscissa, table_ordinates, k=0) substr = "In spline_degree=0 edge case," assert substr in err.value.args[0] def test_create_composite_dtype(): dt1 = np.dtype([('x', 'f4')]) dt2 = np.dtype([('x', 'i4')]) with pytest.raises(HalotoolsError) as err: result = create_composite_dtype([dt1, dt2]) substr = "Inconsistent dtypes for name" assert substr in err.value.args[0] def test_bind_default_kwarg_mixin_safe(): class DummyClass(object): def __init__(self, d): self.abc = 4 constructor_kwargs = {'abc': 10} obj = DummyClass(constructor_kwargs) keyword_argument = 'abc' default_value = 0 with pytest.raises(HalotoolsError) as err: __ = bind_default_kwarg_mixin_safe( obj, keyword_argument, constructor_kwargs, default_value) substr = "Do not pass the ``abc`` keyword argument " assert substr in err.value.args[0] def test_bounds_enforcing_decorator_factory(): """ """ def f(x): return x decorator = bounds_enforcing_decorator_factory(0, 1, warning=True) decorated_f = decorator(f) result = decorated_f(-1) assert result == 0 def test_enforce_periodicity_of_box(): """ Verify that enforce_periodicity_of_box results in all points located inside [0, Lbox] """ box_length = 250 Npts = int(1e5) with NumpyRNGContext(fixed_seed): coords = np.random.uniform(0, box_length, Npts*3).reshape(Npts, 3) perturbation_size = box_length/10. with NumpyRNGContext(fixed_seed): coord_perturbations = np.random.uniform( -perturbation_size, perturbation_size, Npts*3).reshape(Npts, 3) coords += coord_perturbations newcoords = enforce_periodicity_of_box(coords, box_length) assert np.all(newcoords >= 0) assert np.all(newcoords <= box_length) def test_check_multiple_box_lengths(): """ Verify that enforce_periodicity_of_box function notices when the some points lie many box lengths beyond +/- Lbox """ box_length = 250 Npts = int(1e4) x = np.linspace(-2*box_length, box_length, Npts) with pytest.raises(HalotoolsError) as err: newcoords = enforce_periodicity_of_box(x, box_length, check_multiple_box_lengths=True) substr = "There is at least one input point with a coordinate less than -Lbox" assert substr in err.value.args[0] x = np.linspace(-box_length, 2.1*box_length, Npts) with pytest.raises(HalotoolsError) as err: newcoords = enforce_periodicity_of_box(x, box_length, check_multiple_box_lengths=True) substr = "There is at least one input point with a coordinate greater than 2*Lbox" assert substr in err.value.args[0] x = np.linspace(-box_length, 2*box_length, Npts) newcoords = enforce_periodicity_of_box(x, box_length, check_multiple_box_lengths=True) def test_velocity_flip(): """ Verify that enforce_periodicity_of_box function flips the sign of the velocity for points where PBCs needed to be enforced """ box_length = 250 Npts = int(1e4) x = np.linspace(-0.5*box_length, 1.5*box_length, Npts) vx = np.ones(Npts) newcoords, newvel = enforce_periodicity_of_box( x, box_length, velocity=vx) inbox = ((x >= 0) & (x <= box_length)) assert np.all(newvel[inbox] == 1.0) assert np.all(newvel[~inbox] == -1.0) def test_call_func_table1(): num_conc_bins = 5 f_table = list(_func_maker(i) for i in range(num_conc_bins)) num_abscissa = 7 cum_prob = np.array(list(0.1*i for i in range(num_abscissa))) func_idx = np.zeros(num_abscissa) correct_result = cum_prob result = call_func_table(f_table, cum_prob, func_idx) assert np.all(result == correct_result) def test_call_func_table2(): num_conc_bins = 5 f_table = list(_func_maker(i) for i in range(num_conc_bins)) num_abscissa = 7 cum_prob = np.array(list(0.1*i for i in range(num_abscissa))) func_idx = np.zeros(num_abscissa) + 3 func_idx[2:] = 0 correct_result =
np.zeros(num_abscissa)
numpy.zeros
# -*- coding: utf-8 -*- # * Copyright (c) 2009-2020. Authors: see NOTICE file. # * # * Licensed under the Apache License, Version 2.0 (the "License"); # * you may not use this file except in compliance with the License. # * You may obtain a copy of the License at # * # * http://www.apache.org/licenses/LICENSE-2.0 # * # * Unless required by applicable law or agreed to in writing, software # * distributed under the License is distributed on an "AS IS" BASIS, # * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # * See the License for the specific language governing permissions and # * limitations under the License. import os from io import BytesIO from queue import Queue from threading import Thread import h5py import numpy as np import requests import time from PIL import Image from cytomine.models import UploadedFile DEBUG = False def get_image_dimension(image): if image.channels > 1: return 'channel' elif image.depth > 1: return 'zStack' elif image.duration > 1: return 'time' else: return None def create_hdf5(uploaded_file, image, slices, cf, n_workers=0, tile_size=512, n_written_tiles_to_update=50): image_name = image.originalFilename dimension = get_image_dimension(image) if not dimension: log("{} | ERROR: Cannot make profile for 2D image".format(image_name)) uploaded_file.status = uploaded_file.ERROR_CONVERSION retry_update(uploaded_file) return path = os.path.dirname(uploaded_file.path) os.makedirs(path, exist_ok=True) hdf5 = h5py.File(uploaded_file.path, 'w') hdf5.create_dataset("width", data=image.width, shape=()) hdf5.create_dataset("height", data=image.height, shape=()) hdf5.create_dataset("nSlices", data=len(slices), shape=()) bpc = image.bitPerSample if image.bitPerSample else 8 hdf5.create_dataset("bpc", data=bpc, shape=()) uploaded_file.status = UploadedFile.CONVERTING uploaded_file = retry_update(uploaded_file) cf = retry_update(cf) dtype = np.uint16 if bpc > 8 else np.uint8 dataset = hdf5.create_dataset("data", shape=(image.height, image.width, len(slices)), dtype=dtype) x_tiles = int(
np.ceil(image.width / tile_size)
numpy.ceil
"""Tests for the normal distribution.""" import unittest import itertools from tests.testing import NumpyAssertions import numpy as np import scipy.sparse from probnum import prob from probnum.linalg import linops class NormalTestCase(unittest.TestCase, NumpyAssertions): """General test case for the normal distribution.""" def setUp(self): """Resources for tests.""" # Seed np.random.seed(seed=42) # Parameters m = 7 n = 3 self.constants = [-1, -2.4, 0, 200, np.pi] sparsemat = scipy.sparse.rand(m=m, n=n, density=0.1, random_state=1) self.normal_params = [ (-1, 3), (np.random.uniform(size=10), np.eye(10)), (np.array([1, -5]), linops.MatrixMult(A=np.array([[2, 1], [1, -0.1]]))), (linops.MatrixMult(A=np.array([[0, -5]])), linops.Identity(shape=(2, 2))), ( np.array([[1, 2], [-3, -0.4], [4, 1]]), linops.Kronecker(A=np.eye(3), B=5 * np.eye(2)), ), ( linops.MatrixMult(A=sparsemat.todense()), linops.Kronecker(0.1 * linops.Identity(m), linops.Identity(n)), ), ( linops.MatrixMult(A=np.random.uniform(size=(2, 2))), linops.SymmetricKronecker( A=np.array([[1, 2], [2, 1]]), B=np.array([[5, -1], [-1, 10]]) ), ), ( linops.Identity(shape=25), linops.SymmetricKronecker(A=linops.Identity(25)), ), ] def test_correct_instantiation(self): """Test whether different variants of the normal distribution are instances of Normal.""" for mean, cov in self.normal_params: with self.subTest(): dist = prob.Normal(mean=mean, cov=cov) self.assertIsInstance(dist, prob.Normal) def test_scalarmult(self): """Multiply a rv with a normal distribution with a scalar.""" for (mean, cov), const in list( itertools.product(self.normal_params, self.constants) ): with self.subTest(): normrv = const * prob.RandomVariable( distribution=prob.Normal(mean=mean, cov=cov) ) self.assertIsInstance(normrv, prob.RandomVariable) if const != 0: self.assertIsInstance(normrv.distribution, prob.Normal) else: self.assertIsInstance(normrv.distribution, prob.Dirac) def test_addition_normal(self): """Add two random variables with a normal distribution""" for (mean0, cov0), (mean1, cov1) in list( itertools.product(self.normal_params, self.normal_params) ): with self.subTest(): normrv0 = prob.RandomVariable( distribution=prob.Normal(mean=mean0, cov=cov0) ) normrv1 = prob.RandomVariable( distribution=prob.Normal(mean=mean1, cov=cov1) ) if normrv0.shape == normrv1.shape: self.assertIsInstance((normrv0 + normrv1).distribution, prob.Normal) else: with self.assertRaises(TypeError): normrv_added = normrv0 + normrv1 def test_rv_linop_kroneckercov(self): """Create a rv with a normal distribution with linear operator mean and Kronecker product kernels.""" def mv(v): return np.array([2 * v[0], 3 * v[1]]) A = linops.LinearOperator(shape=(2, 2), matvec=mv) V = linops.Kronecker(A, A) prob.RandomVariable(distribution=prob.Normal(mean=A, cov=V)) def test_normal_dimension_mismatch(self): """Instantiating a normal distribution with mismatched mean and kernels should result in a ValueError.""" for mean, cov in [ (0, [1, 2]), (
np.array([1, 2])
numpy.array
"""Interfaces to modified Helmholtz operators.""" from bempp.api.operators.boundary import common as _common import numpy as _np def single_layer( domain, range_, dual_to_range, omega, parameters=None, assembler="default_nonlocal", device_interface=None, precision=None, ): """Assemble the Helmholtz single-layer boundary operator.""" if _np.imag(omega) != 0: raise ValueError("'omega' must be real.") return _common.create_operator( "modified_helmholtz_single_layer_boundary", domain, range_, dual_to_range, parameters, assembler, [omega], "modified_helmholtz_single_layer", "default_scalar", device_interface, precision, False, ) def double_layer( domain, range_, dual_to_range, omega, parameters=None, assembler="default_nonlocal", device_interface=None, precision=None, ): """Assemble the mod. Helmholtz double-layer boundary operator.""" if
_np.imag(omega)
numpy.imag
# -*- coding: utf-8 -*- # Copyright (C) 2008-2011, <NAME> <<EMAIL>> # vim: set ts=4 sts=4 sw=4 expandtab smartindent: # # License: MIT. See COPYING.MIT file in the milk distribution import numpy as np __all__ = [ 'multi_view_learner', ] class multi_view_model(object): def __init__(self, models): self.models = models def apply(self, features): if len(features) != len(self.models): raise ValueError('milk.supervised.two_view: Nr of features does not match training data (got %s, expected %s)' % (len(features) ,len(self.models))) Ps = np.array([model.apply(f) for model,f in zip(self.models, features)]) if
np.any(Ps <= 0.)
numpy.any
#xyz Dec 2017 from __future__ import print_function import pdb, traceback import os import sys BASE_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append(BASE_DIR) from block_data_prep_util import Raw_H5f, Sort_RawH5f,Sorted_H5f,Normed_H5f,show_h5f_summary_info,MergeNormed_H5f import numpy as np import h5py import glob import time import multiprocessing as mp import itertools import zipfile,gzip from plyfile import PlyData, PlyElement TMPDEBUG=False ROOT_DIR = os.path.dirname(BASE_DIR) DATA_DIR = os.path.join(ROOT_DIR,'data') DATA_SOURCE= 'scannet_data' SCANNET_DATA_DIR = os.path.join(DATA_DIR,DATA_SOURCE) def get_stride_step_name(block_stride,block_step): assert block_step[0] == block_step[1] assert block_stride[0] == block_stride[1] assert (block_step[0] == block_step[2] and block_stride[0] == block_stride[2]) or (block_step[2]==-1 and block_stride[2]==-1) def get_str(v): assert (v*10) % 1 == 0 if v%1!=0: return '%dd%d'%(int(v),(v%1)*10) else: return str(int(v)) if block_stride[2] == -1: return 'stride-%s-step-%s'%(get_str(block_stride[0]),get_str(block_step[0])) else: return 'stride_%s_step_%s'%(get_str(block_stride[0]),get_str(block_step[0])) def zip_extract(groupe_name,house_name,file_name,file_format,zipf,house_dir_extracted): ''' extract file if not already ''' zipfile_name = '%s/%s/%s.%s'%(house_name,groupe_name,file_name,file_format) file_path = house_dir_extracted + '/' + zipfile_name if not os.path.exists(file_path): print('extracting %s...'%(file_name)) file_path_extracted = zipf.extract(zipfile_name,house_dir_extracted) print('file extracting finished: %s'%(file_path_extracted) ) assert file_path == file_path_extracted else: print('file file already extracted: %s'%(file_path)) return file_path def parse_ply_file(ply_fo,IsDelVexMultiSem): ''' element vertex 1522546 property float x property float y property float z property float nx property float ny property float nz property float tx property float ty property uchar red property uchar green property uchar blue element face 3016249 property list uchar int vertex_indices property int material_id property int segment_id property int category_id ''' plydata = PlyData.read(ply_fo) num_ele = len(plydata.elements) num_vertex = plydata['vertex'].count num_face = plydata['face'].count data_vertex = plydata['vertex'].data data_face = plydata['face'].data ## face face_vertex_indices = data_face['vertex_indices'] face_vertex_indices = np.concatenate(face_vertex_indices,axis=0) face_vertex_indices = np.reshape(face_vertex_indices,[-1,3]) face_eles = ['vertex_indices','material_id','segment_id','category_id'] datas_face = {} for e in face_eles: datas_face[e] = np.expand_dims(data_face[e],axis=-1) face_semantic = np.concatenate([datas_face['category_id'],datas_face['segment_id'],datas_face['material_id']],axis=1) ## vertex vertex_eles = ['x','y','z','nx','ny','nz','tx','ty','red','green','blue'] datas_vertex = {} for e in vertex_eles: datas_vertex[e] = np.expand_dims(data_vertex[e],axis=-1) vertex_xyz = np.concatenate([datas_vertex['x'],datas_vertex['y'],datas_vertex['z']],axis=1) vertex_nxnynz = np.concatenate([datas_vertex['nx'],datas_vertex['ny'],datas_vertex['nz']],axis=1) vertex_rgb = np.concatenate([datas_vertex['red'],datas_vertex['green'],datas_vertex['blue']],axis=1) vertex_semantic,vertex_indices_multi_semantic,face_indices_multi_semantic = get_vertex_label_from_face(face_vertex_indices,face_semantic,num_vertex) if IsDelVexMultiSem: vertex_xyz = np.delete(vertex_xyz,vertex_indices_multi_semantic,axis=0) vertex_nxnynz = np.delete(vertex_nxnynz,vertex_indices_multi_semantic,axis=0) vertex_rgb = np.delete(vertex_rgb,vertex_indices_multi_semantic,axis=0) vertex_semantic = np.delete(vertex_semantic,vertex_indices_multi_semantic,axis=0) face_vertex_indices =
np.delete(face_vertex_indices,face_indices_multi_semantic,axis=0)
numpy.delete
from torch.utils.data import Dataset import random import numpy as np import nibabel as nib import torch import os from os import listdir,path from os.path import join from collections import defaultdict from sklearn.feature_extraction.image import extract_patches import imgaug as ia from imgaug import augmenters as iaa class MakeTrainData(object): def __init__(self,patch_size,num_patches,num_classes,norm_type,is_sup): self.patch_size = patch_size self.num_patches = num_patches self.num_classes = num_classes self.is_sup = is_sup self.norm_type = norm_type def __call__(self,folder1_path,folder2_path): if self.is_sup: TrainData_path = folder1_path print(TrainData_path) TrainData_dir = listdir(TrainData_path) TrainData_dir.sort(key=lambda f: int(filter(str.isdigit, f))) if self.norm_type == 'group': _,self.mean,self.std = normalization(TrainData_path) else: self.mean, self.std = 0,1 #std = 1 to avoid 'divide-by-0' error LabelData_path = folder2_path LabelData_dir = listdir(LabelData_path) LabelData_dir.sort(key=lambda f: int(filter(str.isdigit, f))) img_patches, gt_patches = [],[] for image,label in zip(TrainData_dir, LabelData_dir): image = nib.load(join(TrainData_path,image)).get_data() label = nib.load(join(LabelData_path,label)).get_data() if self.norm_type == 'self': self.mean, self.std = np.mean(image), np.std(image) image = (image - np.mean(image))/np.std(image) sample = {'images': image, 'labels':label, 'targets': None} transform = CropPatches(self.patch_size,self.num_patches,self.num_classes) imgs,gts = transform(sample) # patches cropped from a single subject imgs_aug, gts_aug = Simple_Aug(imgs, gts) img_patches.append(imgs) gt_patches.append(gts) img_patches = np.asarray(img_patches).reshape(-1,59,59,59) gt_patches = np.asarray(gt_patches).reshape(-1,59,59,59) return np.asarray(img_patches),np.asarray(gt_patches) else: TargetData_orig_path = folder1_path print(TargetData_orig_path) TargetData_trans_path = folder2_path TargetData_orig_dir = listdir(TargetData_orig_path) TargetData_orig_dir.sort(key=lambda f: int(filter(str.isdigit, f))) TargetData_trans_dir = listdir(TargetData_trans_path) TargetData_trans_dir.sort(key=lambda f: int(filter(str.isdigit, f))) target_orig_patches,target_trans_patches = [],[] for origname,transname in zip(TargetData_orig_dir,TargetData_trans_dir): target_orig = nib.load(join(TargetData_orig_path,origname)).get_data() target_trans = nib.load(join(TargetData_trans_path,transname)).get_data() if self.norm_type == 'self': self.orig_mean, self.orig_std = np.mean(target_orig), np.std(target_orig) self.trans_mean, self.trans_std = np.mean(target_trans), np.std(target_trans) target_orig = (target_orig-self.orig_mean)/self.orig_std target_trans = (target_trans-self.trans_mean)/self.trans_std target_orig = CropTargetPatches(target_orig,self.patch_size,extraction_step=[27,27,27]) target_trans = CropTargetPatches(target_trans,self.patch_size,extraction_step=[27,27,27]) target_orig_patches.append(target_orig) target_trans_patches.append(target_trans) target_orig_patches = np.asarray(target_orig_patches).reshape(-1,59,59,59) target_trans_patches = np.asarray(target_trans_patches).reshape(-1,59,59,59) print(np.array(target_orig_patches).shape) print(np.array(target_trans_patches).shape) return np.asarray(target_orig_patches), np.asarray(target_trans_patches) class TrainDataset(Dataset): def __init__(self,args): self.data_path = args.data_path self.source_path = join(args.data_path,args.sourcefolder) self.label_path = join(args.data_path,args.labelfolder) self.patch_size = args.patch_size self.num_patches = args.num_patches self.batch_size = args.batch_size self.num_classes = args.num_classes self.norm_type = args.norm_type prepare_traindata = MakeTrainData(self.patch_size,self.num_patches,self.num_classes,self.norm_type,is_sup=True) self.img_patches, self.gt_patches = prepare_traindata(self.source_path,self.label_path) print('%%%%%%%%%%%%%%%% ', self.img_patches.shape) print('%%%%%%%%%%%%%%%% ', self.gt_patches.shape) self.length = len(self.img_patches) def __len__(self): return self.length def __getitem__(self,idx): return {'images':self.img_patches[idx], 'labels':self.gt_patches[idx]} class Target_TrainDataset(Dataset): def __init__(self,args): self.data_path = args.data_path self.target_trans_path = join(args.data_path,args.target_trans_folder) self.target_orig_path = join(args.data_path,args.target_orig_folder) self.patch_size = args.patch_size self.num_patches = args.num_patches self.num_classes = args.num_classes self.norm_type = args.norm_type prepare_targetdata = MakeTrainData(self.patch_size,self.num_patches,self.num_classes,self.norm_type,is_sup=False) self.target_orig_patches, self.target_trans_patches = prepare_targetdata(self.target_orig_path,self.target_trans_path) self.length = len(self.target_orig_patches) c = list(zip(self.target_orig_patches, self.target_trans_patches)) random.shuffle(c) self.target_orig_patches, self.target_trans_patches = zip(*c) def __len__(self): return self.length def __getitem__(self,idx): return self.target_orig_patches[idx], self.target_trans_patches[idx] class ValDataset(Dataset): def __init__(self,args): self.Val_path = args.val_path self.Val_data_path = join(self.Val_path,args.valimagefolder) self.Val_labels_path = join(self.Val_path,args.vallabelfolder) self.Val_data_dir = listdir(self.Val_data_path) self.Val_labels_dir = listdir(self.Val_labels_path) self.Val_data_dir.sort(key=lambda f: int(filter(str.isdigit, f))) self.Val_labels_dir.sort(key=lambda f: int(filter(str.isdigit, f))) self.length = len(self.Val_data_dir) self.norm_type = args.norm_type if self.norm_type == 'group': _,self.mean,self.std = normalization(args.train_path) else: self.mean, self.std = 0,1 def __len__(self): return self.length def __getitem__(self,idx): image = nib.load(join(self.Val_data_path,self.Val_data_dir[idx])).get_data() label = nib.load(join(self.Val_labels_path,self.Val_labels_dir[idx])).get_data() name = self.Val_data_dir[idx] label = np.asarray(label) if self.norm_type == 'self': self.mean, self.std = np.mean(image), np.std(image) # volume-wise intensity normalization image = (image - self.mean) / self.std sample = {'images': image, 'labels': label.astype(int), 'names': name} return sample class TestDataset(Dataset): def __init__(self,args): self.TestData_path = args.test_path self.TestData_dir = listdir(self.TestData_path) self.length = len(listdir(self.TestData_path)) self.norm_type = args.norm_type self.TestData_dir.sort(key=lambda f: int(filter(str.isdigit, f))) if self.norm_type == 'group': _,self.mean,self.std = normalization(args.train_path) else: self.mean, self.std = 0,1 def __len__(self): return self.length def __getitem__(self,idx): image = nib.load(join(self.TestData_path,self.TestData_dir[idx])).get_data() if self.norm_type == 'self': self.mean,self.std = np.mean(image), np.std(image) # volume-wise intensity normalization image = (image - self.mean) / self.std name = self.TestData_dir[idx] sample = {'images':image,'name':name, 'pop_mean':self.mean, 'pop_std':self.std} return sample class CropPatches(object): def __init__(self,patch_size,num_patches,num_classes): self.patch_size = patch_size self.num_classes = num_classes self.num_patches = num_patches def __call__(self,sample): image,label = sample['images'], sample['labels'] if sample['targets'] is not None: target = sample['targets'] targets = [] h,w,d = self.patch_size # generate the training batch with equal probability for each class fb = np.random.choice(2) if fb: index = np.argwhere(label > 0) else: index = np.argwhere(label == 0) # randomly choose N center position choose = random.sample(range(0,len(index)),self.num_patches) centers = index[choose].astype(int) images, gts = [],[] # check whether the left and right index overflow for center in centers: left = [] for i in range(3): margin_left = int(self.patch_size[i]/2) margin_right = self.patch_size[i] - margin_left left_index = center[i] - margin_left right_index = center[i] + margin_right if left_index < 0: left_index = 0 if right_index > label.shape[i]: left_index = left_index - (right_index - label.shape[i]) left.append(left_index) img = np.zeros([h,w,d]) gt =
np.zeros([h,w,d])
numpy.zeros
from os import read import os import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import axes3d import matplotlib.pyplot as plt import numpy as np import datetime import sys from tqdm import tqdm import cppsolver as cs from ..solver import Solver, Solver_jac from ..preprocess import Reading_Data, LM_data, LM_data_2mag from ..filter import lowpass_filter, mean_filter, median_filter, Magnet_KF, Magnet_UKF, Magnet_KF_cpp from ..preprocess import read_data def ang_convert(x): a = x//(2*np.pi) result = x-a*(2*np.pi) if result > np.pi: result -= np.pi * 2 return result def sigmoid(x): return 1 / (1 + np.exp(-x)) def show_track_1mag_csv_cpp(reading_path, cali_path, gt_path, pSensor, My_M, use_kalman=False): fig = plt.figure() ax = fig.gca(projection='3d') ax.set_xlim([-10, 15]) ax.set_ylim([-10, 15]) ax.set_zlim([0, 25]) # ax.set_title("Reconstructed Magnet Position") ax.set_xlabel('x(cm)') ax.set_ylabel('y(cm)') ax.set_zlabel('z(cm)') # M_choice = [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8] # M_choice = [0.8, 1, 1.2, 1.4] M_choice = [2] reading_data = Reading_Data(data_path=reading_path, cali_path=cali_path) data = reading_data.readings lm_data = LM_data(gt_path) # set the origin of the gt lm_data.offset = np.array([-1.5614192, -0.31039926, 0.90800506]) result_parameter = [] color = ['r', 'b', 'g', 'y', 'm'] for index, M in enumerate(M_choice): # model = Solver(1) # model = Finexus_Solver(-5e-2, -5e-2, 8e-2) pred_position = [] changingM = [] changingG = [] changingTheta = [] changingPhy = [] directions = [] SNR = [] cut = 5 starting_point = lm_data.get_gt(reading_data.tstamps[cut])[0] if use_kalman: kf_params = np.array([40 / np.sqrt(2) * 1e-6, 40 / np.sqrt(2) * 1e-6, 0, np.log( My_M), 1e-2 * starting_point[0], 1e-2 * starting_point[1], 1e-2 * starting_point[2], 0, 0]) model = Magnet_KF_cpp( 1, pSensor, [0.8, 0.8, 1.5]*pSensor.shape[0], kf_params, dt=1/17, ord=3) else: params = np.array([40 / np.sqrt(2) * 1e-6, 40 / np.sqrt(2) * 1e-6, 0, np.log( My_M), 1e-2 * starting_point[0], 1e-2 * starting_point[1], 1e-2 * starting_point[2], 0, 0]) params = np.array([40 / np.sqrt(2) * 1e-6, 40 / np.sqrt(2) * 1e-6, 0, np.log( My_M), 1e-2 * (-2), 1e-2 * (2), 1e-2 * (20), 0, 0]) for i in tqdm(range(cut, data.shape[0] - cut)): # fix m value and gx gy gz datai = data[i].reshape(-1, 3) if use_kalman: model.predict() result = model.update(datai) else: result = cs.solve_1mag( datai.reshape(-1), pSensor.reshape(-1), params) params = result.copy() [x0, y0, z0, Gx, Gy, Gz] = [ result[4] * 1e2, result[5] * 1e2, result[6] * 1e2, result[0], result[1], result[2] ] # [m, theta, phy] = [np.exp(result['m0'].value), np.pi * sigmoid( # result['theta0'].value), np.pi * np.tanh(result['phy0'].value)] [m, theta, phy, direction] = [ np.exp(result[3]), ang_convert(result[7]), ang_convert(result[8]), np.array([np.sin(ang_convert(result[7]))*np.cos(ang_convert(result[8])), np.sin(ang_convert(result[7]))*np.sin(ang_convert(result[8])), np.cos(ang_convert(result[7]))]), ] # [x, y, z, m] = [result['X'].value*1e2, result['Y'].value*1e2, # result['Z'].value*1e2, result['m'].value] G = np.array([Gx, Gy, Gz]) noise = np.linalg.norm(G, 2) signal = np.linalg.norm(datai - G, 2) pred_position.append(x0) pred_position.append(y0) pred_position.append(z0) changingM.append(m) changingTheta.append(theta) changingPhy.append(phy) changingG.append([Gx, Gy, Gz]) directions.append(direction) changingG = np.array(changingG) changingM = np.array(changingM) changingTheta = np.array(changingTheta) changingPhy = np.array(changingPhy) changingAng = np.stack([changingTheta, changingPhy], axis=0).T directions = np.stack(directions, axis=0) pred_position = np.array(pred_position).reshape(-1, 3) compare_label = [' ', '(fixing G)'] ax.plot(pred_position[:, 0], pred_position[:, 1], pred_position[:, 2], c=color[index % len(color)], label='Magnet') print(np.mean(pred_position, axis=0)) # sensor position ax.scatter(1e2 * pSensor[:, 0], 1e2 * pSensor[:, 1], 1e2 * pSensor[:, 2], c='r', s=1, alpha=0.5) # calculate loss gt_route = [] losses = {} losses_count = {} gt_directions = [] losses_angle = {} losses_count_angle = {} for i in range(pred_position.shape[0]): # Get gt gt = lm_data.get_gt(reading_data.tstamps[i + cut]) gt_pos = gt[0] gt_route.append(gt_pos) gt_direction = gt[1] gt_directions.append(gt_direction) # calculate loss dis = np.linalg.norm(gt_pos - np.mean(pSensor, axis=0), 2) loss1 = np.linalg.norm(gt_pos - pred_position[i], 2) loss2 = np.arccos(np.dot(gt_direction, directions[i])) # store route loss if not dis in losses.keys(): losses[dis] = loss1 losses_count[dis] = 1 else: losses[dis] += loss1 losses_count[dis] += 1 # store ang loss if not dis in losses_angle.keys(): losses_angle[dis] = loss2 losses_count_angle[dis] = 1 else: losses_angle[dis] += loss2 losses_count_angle[dis] += 1 gt_route = np.stack(gt_route, axis=0) gt_directions = np.stack(gt_directions, axis=0) ax.plot(gt_route[:, 0], gt_route[:, 1], gt_route[:, 2], c='b', alpha=0.5, linewidth=2, label='Ground Truth') plt.legend() # store the gt route and the reconstructed route tmp = reading_path.split('/') file_name = tmp[-1].split('.')[0] + '.npz' tmp.pop(0) tmp.pop(-1) result_path = os.path.join('result', 'reconstruction_result', *tmp) if not os.path.exists(result_path): os.makedirs(result_path) np.savez(os.path.join(result_path, file_name), gt=gt_route, result=pred_position, gt_ang=gt_directions, result_ang=directions, G=changingG) fig5 = plt.figure() plt.title("Reconstuct Loss") plot_loss_data = [] for dis in sorted(losses.keys()): plot_loss_data.append(dis) plot_loss_data.append(losses[dis] / losses_count[dis]) plot_loss_data = np.array(plot_loss_data).reshape(-1, 2) plt.plot(plot_loss_data[:, 0], plot_loss_data[:, 1], label='Position loss') plt.legend() fig6 = plt.figure() plt.title("Reconstuct angle Loss") plot_loss_data = [] for dis in sorted(losses_angle.keys()): plot_loss_data.append(dis) plot_loss_data.append(losses_angle[dis] / losses_count_angle[dis]) plot_loss_data = np.array(plot_loss_data).reshape(-1, 2) plt.plot(plot_loss_data[:, 0], plot_loss_data[:, 1], label='Ang loss') plt.legend() fig2 = plt.figure() plt.title("Magnet Moment") # plt.ylim(0, 10) plt.plot(changingM, label='M') plt.legend() fig3 = plt.figure() plt.title("G") plt.plot(changingG[:, 0], label='Gx') plt.plot(changingG[:, 1], label='Gy') plt.plot(changingG[:, 2], label='Gz') plt.legend() fig4 = plt.figure() plt.title("orientation") plt.ylim(-5, 5) plt.plot(changingTheta, label='theta') plt.plot(changingPhy, label='phy') plt.legend() plt.show() # plt.savefig("result/result.jpg", dpi=900) def show_track_2mag_csv_cpp(reading_path, cali_path, gt_path, pSensor, My_M, use_kalman=False): fig = plt.figure() ax = fig.gca(projection='3d') ax.set_xlim([-25, 25]) ax.set_ylim([-25, 25]) # ax.set_zlim([-2, 30]) ax.set_title("Reconstructed Magnet Position") ax.set_xlabel('x(cm)') ax.set_ylabel('y(cm)') ax.set_zlabel('z(cm)') # M_choice = [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8] # M_choice = [0.8, 1, 1.2, 1.4] M_choice = [2] reading_data = Reading_Data(data_path=reading_path, cali_path=cali_path) data = reading_data.readings lm_data = LM_data_2mag(gt_path) # set the origin of the gt lm_data.offset = np.array([-1.5614192, -0.31039926, 0.90800506]) result_parameter = [] color = ['r', 'b', 'g', 'y', 'm'] for index, M in enumerate(M_choice): pred_position = [] changingM = [] changingG = [] changingTheta = [] changingPhy = [] changingTheta2 = [] changingPhy2 = [] changingDir = [] changingDir2 = [] SNR = [] cut = 0 starting_point = lm_data.get_gt(reading_data.tstamps[cut]) params = { 'X0': 1e-2 * starting_point[0][0], 'Y0': 1e-2 * starting_point[0][1], 'Z0': 1e-2 * starting_point[0][2], 'm0': np.log(My_M), 'theta0': 0.1, 'phy0': 0.1, 'X1': 1e-2 * starting_point[2][0], 'Y1': 1e-2 * starting_point[2][1], 'Z1': 1e-2 * starting_point[2][2], 'm1': np.log(My_M), 'theta1': 0.1, 'phy1': 0.1, 'gx': 0, 'gy': 0, 'gz': 0, } params = np.array([ 40 / np.sqrt(2) * 1e-6, 40 / np.sqrt(2) * 1e-6, 0, np.log(My_M), 1e-2 * starting_point[0][0], 1e-2 * starting_point[0][1], 1e-2 * starting_point[0][2], 0, 0, 1e-2 * starting_point[2][0], 1e-2 * starting_point[2][1], 1e-2 * starting_point[2][2], 0, 0, ]) params = np.array([ 40 / np.sqrt(2) * 1e-6, 40 / np.sqrt(2) * 1e-6, 0, np.log(3), 1e-2 * 11, 1e-2 * 1, 1e-2 * (-2), np.pi*0.5, np.pi*0.5, 1e-2 * 5, 1e-2 * (7), 1e-2 * (-4), np.pi*0.5, np.pi*0.25, ]) for i in tqdm(range(cut, data.shape[0] - cut)): # if i > 5: # gt = lm_data.get_gt(reading_data.tstamps[i]) # params[4:7] = gt[0]*1e-2 # params[9:12] = gt[2]*1e-2 datai = data[i].reshape(-1, 3) result = cs.solve_2mag( datai.reshape(-1), pSensor.reshape(-1), params) params = result.copy() result_parameter.append(result) # print('the m is ', result['m0']) [x0, y0, z0, x1, y1, z1, Gx, Gy, Gz] = [ result[4] * 1e2, result[5] * 1e2, result[6] * 1e2, result[9] * 1e2, result[10] * 1e2, result[11] * 1e2, result[0], result[1], result[2] ] # [m, theta, phy] = [np.exp(result['m0'].value), np.pi * sigmoid( # result['theta0'].value), np.pi * np.tanh(result['phy0'].value)] [m, theta1, phy1, theta2, phy2] = [ np.exp(result[3]), ang_convert(result[7]), ang_convert(result[8]), ang_convert(result[12]), ang_convert(result[13]), ] # [x, y, z, m] = [result['X'].value*1e2, result['Y'].value*1e2, # result['Z'].value*1e2, result['m'].value] G = np.array([Gx, Gy, Gz]) noise = np.linalg.norm(G, 2) signal = np.linalg.norm(datai - G, 2) pred_position.append(x0) pred_position.append(y0) pred_position.append(z0) pred_position.append(x1) pred_position.append(y1) pred_position.append(z1) changingM.append(m) changingTheta.append(theta1) changingPhy.append(phy1) changingDir.append(np.array([np.sin(theta1)*np.cos(phy1), np.sin( theta1)*np.sin(phy1), np.cos(theta1), np.sin(theta2)*np.cos(phy2), np.sin( theta2)*np.sin(phy2), np.cos(theta2)])) changingTheta2.append(theta2) changingPhy2.append(phy2) changingG.append([Gx, Gy, Gz]) changingG = np.array(changingG) changingM = np.array(changingM) changingTheta = np.array(changingTheta) changingPhy = np.array(changingPhy) changingAng = np.stack([changingTheta, changingPhy], axis=0).T changingTheta2 = np.array(changingTheta2) changingPhy2 = np.array(changingPhy2) changingAng2 = np.stack([changingTheta2, changingPhy2], axis=0).T changingDir =
np.stack(changingDir, axis=0)
numpy.stack
""" Testcases for encoders: - Exclude - Log10 - Normalization Separate linear-reduction tests: - PCA - Karuhnen-Loeve """ import numpy as np from profit.sur.encoders import Encoder def test_exclude(): CONFIG = ['Exclude', [2], False, {}] COLUMNS= [2] SIZE = (10, 4) n = SIZE[0] * SIZE[1] X = np.linspace(0, n-1, n).reshape(SIZE) enc = Encoder['Exclude'](COLUMNS) assert enc.repr == CONFIG X_enc = enc.encode(X) assert np.all(X_enc == X[:, [0, 1, 3]]) X_dec = enc.decode(X_enc) assert np.all(X_dec == X) def test_log10(): from profit.sur.encoders import Log10Encoder CONFIG = ['Log10', [2, 3], False, {}] COLUMNS= [2, 3] SIZE = (10, 4) n = SIZE[0] * SIZE[1] X = np.linspace(0, n-1, n).reshape(SIZE) X_log = X.copy() X_log[:, COLUMNS] = np.log10(X_log[:, COLUMNS]) enc = Log10Encoder(COLUMNS) assert enc.repr == CONFIG X_enc = enc.encode(X) assert np.all(X_enc == X_log) X_dec = enc.decode(X_enc) assert
np.allclose(X_dec, X, atol=1e-7)
numpy.allclose
import numpy as np import os if "DEBUG" in os.environ and os.environ["DEBUG"] == 'PLOT': import plotly.offline as py import plotly.graph_objs as go import math class Face: def __init__(self, vertices, triangle_index, collision_type): self.vertices = np.array(vertices) self.index = triangle_index self.vertices_transposed = np.transpose(self.vertices) self.normal = np.array([0.0, 0.0, 0.0]) self.center = np.array([0.0, 0.0, 0.0]) self.type = None self.collision_type = collision_type self.bounding_box = None self.calc_props() def calc_props(self): [p1, p2, p3] = self.vertices u = p2 - p1 v = p3 - p1 # calc normal cross = np.cross(u, v) #print(cross) biggest_var = np.max(np.abs(cross)) if biggest_var != 0: self.normal = cross / np.max(np.abs(cross)) is_floor = self.normal[1] > 0.01 is_ceiling = self.normal[1] < -0.01 if is_floor: self.type = 'FLOOR' elif is_ceiling: self.type = 'CEILING' else: self.type = 'WALL' self.center = np.mean(self.vertices, axis=0, dtype=float) self.bounding_box = ( np.min(self.vertices_transposed[0]), # -X np.max(self.vertices_transposed[0]), # +X np.min(self.vertices_transposed[1]), # -Y np.max(self.vertices_transposed[1]), # +Y np.min(self.vertices_transposed[2]), # -Z
np.max(self.vertices_transposed[2])
numpy.max
#! /usr/bin/env python import unittest import numpy as np import openravepy as orpy # Tested package import raveutils as ru class Test_body(unittest.TestCase): @classmethod def setUpClass(cls): np.set_printoptions(precision=6, suppress=True) env = orpy.Environment() makita = env.ReadKinBodyXMLFile('objects/makita.kinbody.xml') env.AddKinBody(makita) cls.env = env print('') # dummy line @classmethod def tearDownClass(cls): cls.env.Reset() cls.env.Destroy() def test_enable_body(self): env = self.env makita = env.GetBodies()[0] # Enable ru.body.enable_body(makita, True) link_status = [l.IsEnabled() for l in makita.GetLinks()] self.assertTrue(all(link_status)) # Disable ru.body.enable_body(makita, False) link_status = [l.IsEnabled() for l in makita.GetLinks()] self.assertFalse(any(link_status)) def test_get_bounding_box_corners(self): # TODO: Write a proper test for this function env = self.env makita = env.GetBodies()[0] corners = ru.body.get_bounding_box_corners(makita) self.assertEqual(len(corners), 8) # Transform given makita = env.GetBodies()[0] transform = makita.GetTransform() corners = ru.body.get_bounding_box_corners(makita, transform) self.assertEqual(len(corners), 8) def test_set_body_color(self): env = self.env makita = env.GetBodies()[0] for _ in range(10): diffuse = np.random.sample(3) ambient =
np.random.sample(3)
numpy.random.sample
import os import numpy as np from PIL import Image import multiprocessing categories = ['background','aeroplane','bicycle','bird','boat','bottle','bus','car','cat','chair','cow', 'diningtable','dog','horse','motorbike','person','pottedplant','sheep','sofa','train','tvmonitor'] def do_python_eval(predict_folder, gt_folder, name_list, num_cls=21, input_type='png', threshold=1.0, printlog=False): TP = [] P = [] T = [] for i in range(num_cls): TP.append(multiprocessing.Value('L', 0, lock=True)) P.append(multiprocessing.Value('L', 0, lock=True)) T.append(multiprocessing.Value('L', 0, lock=True)) def compare(start,step,TP,P,T,input_type,threshold): for idx in range(start,len(name_list),step): name = name_list[idx] if input_type == 'png': predict_file = os.path.join(predict_folder,'%s.png'%name) predict = np.array(Image.open(predict_file)) #cv2.imread(predict_file) predict = predict[:,:] elif 'npy' in input_type: predict_file = os.path.join(predict_folder,'%s.npy'%name) predict_dict = np.load(predict_file, allow_pickle=True).item() h, w = list(predict_dict.values())[0].shape tensor = np.zeros((num_cls,h,w),np.float32) for key in predict_dict.keys(): v = predict_dict[key] tensor[key+1] = predict_dict[key] tensor[0,:,:] = threshold predict = np.argmax(tensor, axis=0).astype(np.uint8) gt_file = os.path.join(gt_folder,'%s.png'%name) gt = np.array(Image.open(gt_file)) cal = gt<255 mask = (predict==gt) * cal for i in range(num_cls): P[i].acquire() P[i].value +=
np.sum((predict==i)*cal)
numpy.sum
# -*- coding: utf-8 -*- ''' Data Handler Module This module contains a class for managing a data processing pipeline ''' from time import time from datetime import timedelta import numpy as np import pandas as pd from scipy.stats import mode, skew from scipy.interpolate import interp1d from sklearn.cluster import DBSCAN import cvxpy as cvx import matplotlib.pyplot as plt import matplotlib.cm as cm from pandas.plotting import register_matplotlib_converters register_matplotlib_converters() from solardatatools.time_axis_manipulation import make_time_series,\ standardize_time_axis from solardatatools.matrix_embedding import make_2d from solardatatools.data_quality import daily_missing_data_advanced from solardatatools.data_filling import zero_nighttime, interp_missing from solardatatools.clear_day_detection import find_clear_days from solardatatools.plotting import plot_2d from solardatatools.clear_time_labeling import find_clear_times from solardatatools.solar_noon import avg_sunrise_sunset from solardatatools.algorithms import CapacityChange, TimeShift, SunriseSunset class DataHandler(): def __init__(self, data_frame=None, raw_data_matrix=None, datetime_col=None, convert_to_ts=False, aggregate=None, how=lambda x: x.mean()): if data_frame is not None: if convert_to_ts: data_frame, keys = make_time_series(data_frame) self.keys = keys else: self.keys = list(data_frame.columns) self.data_frame_raw = data_frame.copy() if not isinstance(self.data_frame_raw.index, pd.DatetimeIndex): if datetime_col is not None: df = self.data_frame_raw df[datetime_col] = pd.to_datetime(df[datetime_col]) df.set_index(datetime_col, inplace=True) else: e = "Data frame must have a DatetimeIndex or" e += "the user must set the datetime_col kwarg." raise Exception(e) df_index = self.data_frame_raw.index if df_index.tz is not None: df_index = df_index.tz_localize(None) self.data_frame = None if aggregate is not None: new_data = how(self.data_frame_raw.resample(aggregate)) self.data_frame_raw = new_data else: self.data_frame_raw = None self.data_frame = None self.keys = None self.raw_data_matrix = raw_data_matrix if self.raw_data_matrix is not None: self.num_days = self.raw_data_matrix.shape[1] if self.raw_data_matrix.shape[0] <= 1400: self.data_sampling = int(24 * 60 / self.raw_data_matrix.shape[0]) else: self.data_sampling = 24 * 60 / self.raw_data_matrix.shape[0] else: self.num_days = None self.data_sampling = None self.filled_data_matrix = None self.use_column = None self.capacity_estimate = None self.start_doy = None self.day_index = None self.power_units = None # "Extra" data, i.e. additional columns to process from the table self.extra_matrices = {} # Matrix views of extra columns self.extra_quality_scores = {} # Relative quality: fraction of non-NaN values in column during daylight time periods, as defined by the main power columns # Scores for the entire data set self.data_quality_score = None # Fraction of days without data acquisition errors self.data_clearness_score = None # Fraction of days that are approximately clear/sunny # Flags for the entire data set self.inverter_clipping = None # True if there is inverter clipping, false otherwise self.num_clip_points = None # If clipping, the number of clipping set points self.capacity_changes = None # True if the apparent capacity seems to change over the data set self.normal_quality_scores = None # True if clustering of data quality scores are within decision boundaries self.time_shifts = None # True if time shifts detected and corrected in data set self.tz_correction = 0 # TZ correction factor (determined during pipeline run) # Daily scores (floats), flags (booleans), and boolean masks self.daily_scores = DailyScores() # 1D arrays of floats self.daily_flags = DailyFlags() # 1D arrays of Booleans self.boolean_masks = BooleanMasks() # 2D arrays of Booleans # Useful daily signals defined by the data set self.daily_signals = DailySignals() # Algorithm objects self.scsf = None self.capacity_analysis = None self.time_shift_analysis = None self.daytime_analysis = None # Private attributes self._ran_pipeline = False self._error_msg = '' self.__density_lower_threshold = None self.__density_upper_threshold = None self.__linearity_threshold = None self.__recursion_depth = 0 self.__initial_time = None self.__fix_dst_ran = False def run_pipeline(self, power_col=None, min_val=-5, max_val=None, zero_night=True, interp_day=True, fix_shifts=True, density_lower_threshold=0.6, density_upper_threshold=1.05, linearity_threshold=0.1, clear_day_smoothness_param=0.9, clear_day_energy_param=0.8, verbose=True, start_day_ix=None, end_day_ix=None, c1=None, c2=500., solar_noon_estimator='com', correct_tz=True, extra_cols=None, daytime_threshold=0.1, units='W'): self.daily_scores = DailyScores() self.daily_flags = DailyFlags() self.capacity_analysis = None self.time_shift_analysis = None self.extra_matrices = {} # Matrix views of extra columns self.extra_quality_scores = {} self.power_units = units if self.__recursion_depth == 0: self.tz_correction = 0 t = np.zeros(6) ###################################################################### # Preprocessing ###################################################################### t[0] = time() if self.data_frame_raw is not None: self.data_frame = standardize_time_axis(self.data_frame_raw, timeindex=True, verbose=verbose) if self.data_frame is not None: self.make_data_matrix(power_col, start_day_ix=start_day_ix, end_day_ix=end_day_ix) if max_val is not None: mat_copy = np.copy(self.raw_data_matrix) mat_copy[np.isnan(mat_copy)] = -9999 slct = mat_copy > max_val if np.sum(slct) > 0: self.raw_data_matrix[slct] = np.nan if min_val is not None: mat_copy = np.copy(self.raw_data_matrix) mat_copy[np.isnan(mat_copy)] = 9999 slct = mat_copy < min_val if np.sum(slct) > 0: self.raw_data_matrix[slct] = np.nan self.capacity_estimate = np.nanquantile(self.raw_data_matrix, 0.95) if self.capacity_estimate <= 500 and self.power_units == 'W': self.power_units = 'kW' self.boolean_masks.missing_values = np.isnan(self.raw_data_matrix) ss = SunriseSunset() ss.run_optimizer(self.raw_data_matrix, plot=False) self.boolean_masks.daytime = ss.sunup_mask_estimated self.daytime_analysis = ss ### TZ offset detection and correction ### # (1) Determine if there exists a "large" timezone offset error if power_col is None: power_col = self.data_frame.columns[0] if correct_tz: average_day = np.zeros(self.raw_data_matrix.shape[0]) all_nans = np.alltrue(np.isnan(self.raw_data_matrix), axis=1) average_day[~all_nans] = np.nanmean( self.raw_data_matrix[~all_nans, :], axis=1 ) average_day -= np.min(average_day) average_day /= np.max(average_day) ### Troubleshooting code # plt.plot(average_day) # plt.axhline(0.02, color='red', ls='--', linewidth=1) # plt.show() meas_per_hour = np.int(60 / self.data_sampling) cond1 = np.any(average_day[:meas_per_hour] > 0.02) cond2 = np.any(average_day[-meas_per_hour:] > 0.02) cond3 = self.__recursion_depth <= 2 if (cond1 or cond2) and cond3: if verbose: print( 'Warning: power generation at midnight. Attempting to correct...') # Catch values that are more than 4 hours from noon and make a # correction to the time axis (rough correction to avoid days # rolling over) rough_noon_est = np.nanmean( self.data_frame.groupby(pd.Grouper(freq='D')) \ .idxmax()[power_col].dt.time \ .apply(lambda x: 60 * x.hour + x.minute) ) / 60 self.tz_correction = 12 - np.round(rough_noon_est) self.data_frame.index = self.data_frame.index.shift( self.tz_correction, freq='H' ) if verbose: print('Done.\nRestarting the pipeline...') self.__recursion_depth += 1 if self.__initial_time is not None: self.__initial_time = t[0] self.run_pipeline( power_col=power_col, min_val=min_val, max_val=max_val, zero_night=zero_night, interp_day=interp_day, fix_shifts=fix_shifts, density_lower_threshold=density_lower_threshold, density_upper_threshold=density_upper_threshold, linearity_threshold=linearity_threshold, clear_day_smoothness_param=clear_day_smoothness_param, clear_day_energy_param=clear_day_energy_param, verbose=verbose, start_day_ix=start_day_ix, end_day_ix=end_day_ix, c1=c1, c2=c2, solar_noon_estimator=solar_noon_estimator, correct_tz=correct_tz, extra_cols=extra_cols, daytime_threshold=daytime_threshold, units=units ) return ###################################################################### # Cleaning ###################################################################### t[1] = time() self.make_filled_data_matrix(zero_night=zero_night, interp_day=interp_day) num_raw_measurements = np.count_nonzero( np.nan_to_num(self.raw_data_matrix, copy=True, nan=0.)[self.boolean_masks.daytime] ) num_filled_measurements = np.count_nonzero( np.nan_to_num(self.filled_data_matrix, copy=True, nan=0.)[self.boolean_masks.daytime] ) if num_raw_measurements > 0: ratio = num_filled_measurements / num_raw_measurements else: msg = 'Error: data set contains no non-zero values!' self._error_msg += '\n' + msg if verbose: print(msg) self.daily_scores = None self.daily_flags = None self.data_quality_score = 0.0 self.data_clearness_score = 0.0 self._ran_pipeline = True return if ratio < 0.9: msg = 'Error: data was lost during NaN filling procedure. ' msg += 'This typically occurs when\nthe time stamps are in the ' msg += 'wrong timezone. Please double check your data table.\n' self._error_msg += '\n' + msg if verbose: print(msg) self.daily_scores = None self.daily_flags = None self.data_quality_score = None self.data_clearness_score = None self._ran_pipeline = True return ### TZ offset detection and correction ### # (2) Determine if there is a "small" timezone offset error if correct_tz: average_noon = np.nanmean( avg_sunrise_sunset(self.filled_data_matrix, threshold=0.01) ) tz_offset = int(np.round(12 - average_noon)) if tz_offset != 0: self.tz_correction += tz_offset # Related to this bug fix: # https://github.com/slacgismo/solar-data-tools/commit/ae0037771c09ace08bff5a4904475da606e934da old_index = self.data_frame.index.copy() self.data_frame.index = self.data_frame.index.shift( tz_offset, freq='H' ) self.data_frame = self.data_frame.reindex(index=old_index, method='nearest', limit=1).fillna(0) meas_per_hour = self.filled_data_matrix.shape[0] / 24 roll_by = int(meas_per_hour * tz_offset) self.filled_data_matrix = np.nan_to_num( np.roll(self.filled_data_matrix, roll_by, axis=0), 0 ) self.raw_data_matrix = np.roll( self.raw_data_matrix, roll_by, axis=0 ) self.boolean_masks.daytime = np.roll( self.boolean_masks.daytime, roll_by, axis=0 ) ###################################################################### # Scoring ###################################################################### t[2] = time() t_clean = np.zeros(6) t_clean[0] = time() try: self.get_daily_scores(threshold=0.2) except: msg = 'Daily quality scoring failed.' self._error_msg += '\n' + msg if verbose: print(msg) self.daily_scores = None try: self.get_daily_flags(density_lower_threshold=density_lower_threshold, density_upper_threshold=density_upper_threshold, linearity_threshold=linearity_threshold) except: msg = 'Daily quality flagging failed.' self._error_msg += '\n' + msg if verbose: print(msg) self.daily_flags = None t_clean[1] = time() try: self.detect_clear_days(smoothness_threshold=clear_day_smoothness_param, energy_threshold=clear_day_energy_param) except: msg = 'Clear day detection failed.' self._error_msg += '\n' + msg if verbose: print(msg) t_clean[2] = time() try: self.clipping_check() except: msg = 'Clipping check failed.' self._error_msg += '\n' + msg if verbose: print(msg) self.inverter_clipping = None t_clean[3] = time() try: self.score_data_set() except: msg = 'Data set summary scoring failed.' self._error_msg += '\n' + msg if verbose: print(msg) self.data_quality_score = None self.data_clearness_score = None t_clean[4] = time() try: self.capacity_clustering() except TypeError: self.capacity_changes = None t_clean[5] = time() ###################################################################### # Fix Time Shifts ###################################################################### t[3] = time() if fix_shifts: try: self.auto_fix_time_shifts(c1=c1, c2=c2, estimator=solar_noon_estimator, threshold=daytime_threshold, periodic_detector=False) except Exception as e: msg = 'Fix time shift algorithm failed.' self._error_msg += '\n' + msg if verbose: print(msg) print('Error message:', e) print('\n') self.time_shifts = None ###################################################################### # Update daytime detection based on cleaned up data ###################################################################### # self.daytime_analysis.run_optimizer(self.filled_data_matrix, plot=False) self.daytime_analysis.calculate_times(self.filled_data_matrix) self.boolean_masks.daytime = self.daytime_analysis.sunup_mask_estimated ###################################################################### # Process Extra columns ###################################################################### t[4] = time() if extra_cols is not None: freq = int(self.data_sampling * 60) new_index = pd.date_range(start=self.day_index[0].date(), end=self.day_index[-1].date() + timedelta( days=1), freq='{}s'.format(freq))[:-1] if isinstance(extra_cols, str): extra_cols = np.atleast_1d(extra_cols) elif isinstance(extra_cols, tuple): extra_cols = [extra_cols] for col in extra_cols: self.generate_extra_matrix(col, new_index=new_index) t[5] = time() times = np.diff(t, n=1) cleaning_times = np.diff(t_clean, n=1) total_time = t[-1] - t[0] # Cleanup self.__recursion_depth = 0 if verbose: if self.__initial_time is not None: restart_msg = '{:.2f} seconds spent automatically localizing the time zone\n' restart_msg += 'Info for last pipeline run below:\n' restart_msg = restart_msg.format(t[0] - self.__initial_time) print(restart_msg) out = 'total time: {:.2f} seconds\n' out += '--------------------------------\n' out += 'Breakdown\n' out += '--------------------------------\n' out += 'Preprocessing {:.2f}s\n' out += 'Cleaning {:.2f}s\n' out += 'Filtering/Summarizing {:.2f}s\n' out += ' Data quality {:.2f}s\n' out += ' Clear day detect {:.2f}s\n' out += ' Clipping detect {:.2f}s\n' out += ' Capacity change detect {:.2f}s\n' if extra_cols is not None: out += 'Extra Column Processing {:.2f}s' print(out.format( total_time, times[0], times[1] + times[3], times[2], cleaning_times[0], cleaning_times[1], cleaning_times[2], cleaning_times[4], times[4] )) self._ran_pipeline = True return def report(self): try: if self.num_days >= 365: l1 = 'Length: {:.2f} years\n'.format(self.num_days / 365) else: l1 = 'Length: {} days\n'.format(self.num_days) if self.power_units == 'W': l1_a = 'Capacity estimate: {:.2f} kW\n'.format(self.capacity_estimate / 1000) elif self.power_units == 'kW': l1_a = 'Capacity estimate: {:.2f} kW\n'.format(self.capacity_estimate) else: l1_a = 'Capacity estimate: {:.2f} '.format(self.capacity_estimate) l1_a += self.power_units + '\n' if self.raw_data_matrix.shape[0] <= 1440: l2 = 'Data sampling: {} minute\n'.format(self.data_sampling) else: l2 = 'Data sampling: {} second\n'.format(int(self.data_sampling * 60)) l3 = 'Data quality score: {:.1f}%\n'.format(self.data_quality_score * 100) l4 = 'Data clearness score: {:.1f}%\n'.format(self.data_clearness_score * 100) l5 = 'Inverter clipping: {}\n'.format(self.inverter_clipping) l6 = 'Time shifts corrected: {}\n'.format(self.time_shifts) if self.tz_correction != 0: l7 = 'Time zone correction: {} hours'.format(int(self.tz_correction)) else: l7 = 'Time zone correction: None' p_out = l1 + l1_a + l2 + l3 + l4 + l5 + l6 + l7 if self.capacity_changes: p_out += '\nWARNING: Changes in system capacity detected!' if self.num_clip_points > 1: p_out += '\nWARNING: {} clipping set points detected!'.format( self.num_clip_points ) if not self.normal_quality_scores: p_out += '\nWARNING: Abnormal clustering of data quality scores!' print(p_out) return except TypeError: if self._ran_pipeline: m1 = 'Pipeline failed, please check data set.\n' m2 = "Try running: self.plot_heatmap(matrix='raw')\n\n" if self.num_days >= 365: l1 = 'Length: {:.2f} years\n'.format( self.num_days / 365) else: l1 = 'Length: {} days\n'.format( self.num_days) if self.power_units == 'W': l1_a = 'Capacity estimate: {:.2f} kW\n'.format(self.capacity_estimate / 1000) elif self.power_units == 'kW': l1_a = 'Capacity estimate: {:.2f} kW\n'.format(self.capacity_estimate) else: l1_a = 'Capacity estimate: {:.2f} '.format(self.capacity_estimate) l1_a += self.power_units + '\n' if self.raw_data_matrix.shape[0] <= 1440: l2 = 'Data sampling: {} minute\n'.format( self.data_sampling) else: l2 = 'Data sampling: {} second\n'.format( int(self.data_sampling * 60)) p_out = m1 + m2 + l1 + l1_a + l2 print(p_out) print('\nError messages captured from pipeline:' + self._error_msg) else: print('Please run the pipeline first!') return def augment_data_frame(self, boolean_index, column_name): """ Add a column to the data frame (tabular) representation of the data, containing True/False values at each time stamp. Boolean index is a 1-D or 2-D numpy array of True/False values. If 1-D, array should be of length N, where N is the number of days in the data set. If 2-D, the array should be of size M X N where M is the number of measurements each day and N is the number of days. :param boolean_index: Length N or size M X N numpy arrays of booleans :param column_name: Name for column :return: """ if self.data_frame is None: print('This DataHandler object does not contain a data frame.') return if boolean_index is None: print('No mask available for ' + column_name) return m, n = self.raw_data_matrix.shape index_shape = boolean_index.shape cond1 = index_shape == (m, n) cond2 = index_shape == (n ,) if not cond1 and not cond2: print('Boolean index shape does not match the data.') elif cond1: if self.time_shifts: ts = self.time_shift_analysis boolean_index = ts.invert_corrections(boolean_index) start = self.day_index[0] freq = '{}min'.format(self.data_sampling) periods = self.filled_data_matrix.size tindex = pd.date_range(start=start, freq=freq, periods=periods) series = pd.Series(data=boolean_index.ravel(order='F'), index=tindex) series.name = column_name if column_name in self.data_frame.columns: del self.data_frame[column_name] self.data_frame = self.data_frame.join(series) self.data_frame[column_name] = self.data_frame[column_name].fillna(False) elif cond2: slct_dates = self.day_index[boolean_index].date bix = np.isin(self.data_frame.index.date, slct_dates) self.data_frame[column_name] = False self.data_frame.loc[bix, column_name] = True if column_name in self.data_frame_raw.columns: del self.data_frame_raw[column_name] self.data_frame_raw = self.data_frame_raw.join(self.data_frame[column_name]) def fix_dst(self): """ Helper function for fixing data sets with known DST shift. This function works for data recorded anywhere in the United States. The choice of timezone (e.g. 'US/Pacific') does not matter, as long as the dates of the clock changes are the same. :return: """ if not self.__fix_dst_ran: df = self.data_frame_raw df_localized = df.tz_localize('US/Pacific', ambiguous='NaT', nonexistent='NaT') df_localized = df_localized[df_localized.index == df_localized.index] df_localized = df_localized.tz_convert('Etc/GMT+8') df_localized = df_localized.tz_localize(None) self.data_frame_raw = df_localized self.__fix_dst_ran = True return else: print('DST correction already performed on this data set.') return def make_data_matrix(self, use_col=None, start_day_ix=None, end_day_ix=None): df = self.data_frame if use_col is None: use_col = df.columns[0] self.raw_data_matrix, day_index = make_2d(df, key=use_col, return_day_axis=True) self.raw_data_matrix = self.raw_data_matrix[:, start_day_ix:end_day_ix] self.num_days = self.raw_data_matrix.shape[1] if self.raw_data_matrix.shape[0] <= 1400: self.data_sampling = int(24 * 60 / self.raw_data_matrix.shape[0]) else: self.data_sampling = 24 * 60 / self.raw_data_matrix.shape[0] self.use_column = use_col self.day_index = day_index[start_day_ix:end_day_ix] self.start_doy = self.day_index.dayofyear[0] return def make_filled_data_matrix(self, zero_night=True, interp_day=True): self.filled_data_matrix = np.copy(self.raw_data_matrix) if zero_night: self.filled_data_matrix = zero_nighttime(self.raw_data_matrix, night_mask=~self.boolean_masks.daytime) if interp_day: self.filled_data_matrix = interp_missing(self.filled_data_matrix) else: msk = np.isnan(self.filled_data_matrix) self.filled_data_matrix[msk] = 0 self.daily_signals.energy =
np.sum(self.filled_data_matrix, axis=0)
numpy.sum
import math import warnings from copy import copy, deepcopy from datetime import datetime from typing import Mapping, MutableMapping, MutableSequence, Optional import numpy as np # type: ignore import pytest # type: ignore from rads.rpn import ( ABS, ACOS, ACOSD, ACOSH, ADD, AND, ASIN, ASIND, ASINH, ATAN, ATAN2, ATAND, ATANH, AVG, BOXCAR, BTEST, CEIL, CEILING, COS, COSD, COSH, D2R, DIF, DIV, DUP, DXDY, EQ, EXCH, EXP, FLOOR, FMOD, GAUSS, GE, GT, HYPOT, IAND, INRANGE, INV, IOR, ISAN, ISNAN, LE, LOG, LOG10, LT, MAX, MIN, MUL, NAN, NE, NEG, NINT, OR, PI, POP, POW, R2, R2D, RINT, SIN, SIND, SINH, SQR, SQRT, SUB, SUM, TAN, TAND, TANH, YMDHMS, CompleteExpression, E, Expression, Literal, StackUnderflowError, Token, Variable, token, ) from rads.typing import FloatOrArray GOLDEN_RATIO = math.log((1 + math.sqrt(5)) / 2) class TestLiteral: def test_init(self): Literal(3) Literal(3.14) with pytest.raises(TypeError): Literal("not a number") # type: ignore def test_pops(self): assert Literal(3).pops == 0 def test_puts(self): assert Literal(3).puts == 1 def test_value(self): assert Literal(3).value == 3 assert Literal(3.14).value == 3.14 def test_call(self): stack: MutableSequence[FloatOrArray] = [] environment: MutableMapping[str, FloatOrArray] = {} assert Literal(3.14)(stack, environment) is None assert Literal(2.71)(stack, environment) is None assert stack == [3.14, 2.71] assert environment == {} def test_eq(self): assert Literal(3.14) == Literal(3.14) assert not Literal(3.14) == Literal(2.71) assert not Literal(3.14) == 3.14 def test_ne(self): assert Literal(3.14) != Literal(2.71) assert not Literal(3.14) != Literal(3.14) assert Literal(3.14) != 3.14 def test_lt(self): assert Literal(2.71) < Literal(3.14) assert not Literal(3.14) < Literal(2.71) with pytest.raises(TypeError): Literal(2.71) < 3.14 with pytest.raises(TypeError): 2.71 < Literal(3.14) def test_le(self): assert Literal(2.71) <= Literal(3.14) assert Literal(3.14) <= Literal(3.14) assert not Literal(3.14) <= Literal(2.71) with pytest.raises(TypeError): Literal(2.71) <= 3.14 with pytest.raises(TypeError): 2.71 <= Literal(3.14) def test_gt(self): assert Literal(3.14) > Literal(2.71) assert not Literal(2.71) > Literal(3.14) with pytest.raises(TypeError): Literal(3.14) > 2.71 with pytest.raises(TypeError): 3.14 > Literal(2.71) def test_ge(self): assert Literal(3.14) >= Literal(2.71) assert Literal(3.14) >= Literal(3.14) assert not Literal(2.71) >= Literal(3.14) with pytest.raises(TypeError): Literal(3.14) >= 2.71 with pytest.raises(TypeError): 3.14 >= Literal(2.71) def test_repr(self): assert repr(Literal(3)) == "Literal(3)" assert repr(Literal(3.14)) == "Literal(3.14)" def test_str(self): assert str(Literal(3)) == "3" assert str(Literal(3.14)) == "3.14" def test_pi(self): assert PI.value == pytest.approx(np.pi) def test_e(self): assert E.value == pytest.approx(np.e) class TestVariable: def test_init(self): Variable("alt") with pytest.raises(ValueError): Variable("3") with pytest.raises(ValueError): Variable("3name") with pytest.raises(TypeError): Variable(3) # type: ignore with pytest.raises(TypeError): Variable(3.14) # type: ignore def test_pops(self): assert Variable("alt").pops == 0 def test_puts(self): assert Variable("alt").puts == 1 def test_name(self): assert Variable("alt").name == "alt" def test_call(self): stack: MutableSequence[FloatOrArray] = [] environment = {"alt": np.array([1, 2, 3]), "dry_tropo": 4, "wet_tropo": 5} assert Variable("wet_tropo")(stack, environment) is None assert Variable("alt")(stack, environment) is None assert len(stack) == 2 assert stack[0] == 5 assert np.all(stack[1] == np.array([1, 2, 3])) assert len(environment) == 3 assert "alt" in environment assert "dry_tropo" in environment assert "wet_tropo" in environment assert np.all(environment["alt"] == np.array([1, 2, 3])) assert environment["dry_tropo"] == 4 assert environment["wet_tropo"] == 5 with pytest.raises(KeyError): assert Variable("alt")(stack, {}) is None assert len(stack) == 2 assert stack[0] == 5 assert np.all(stack[1] == np.array([1, 2, 3])) def test_eq(self): assert Variable("alt") == Variable("alt") assert not Variable("alt") == Variable("dry_tropo") assert not Variable("alt") == "alt" def test_ne(self): assert Variable("alt") != Variable("dry_tropo") assert not Variable("alt") != Variable("alt") assert Variable("alt") != "alt" def test_repr(self): assert repr(Variable("alt")) == "Variable('alt')" def test_str(self): assert str(Variable("alt")) == "alt" def contains_array(stack: MutableSequence[FloatOrArray]) -> bool: for item in stack: if isinstance(item, np.ndarray): return True return False def contains_nan(stack: MutableSequence[FloatOrArray]) -> bool: for item in stack: try: if math.isnan(item): return True except TypeError: pass return False def assert_token( operator: Token, pre_stack: MutableSequence[FloatOrArray], post_stack: MutableSequence[FloatOrArray], environment: Optional[Mapping[str, FloatOrArray]] = None, *, approx: bool = False, rtol: float = 1e-15, atol: float = 1e-16, ) -> None: """Assert that a token modifies the stack properly. Parameters ---------- operator Operator to test. pre_stack Stack state before calling the operator. post_stack Desired stack state after calling the operator. environment Optional dictionary like object providing the environment for variable lookup. approx Set to true to use approximate equality instead of exact. rtol Relative tolerance. Only used if :paramref:`approx` is True. atol Absolute tolerance. Only used if :paramref:`approx` is True. Raises ------ AssertionError If the operator does not produce the proper post stack state or the environment parameter is changed. """ if not environment: environment = {"dont_touch": 5} original_environment = deepcopy(environment) stack = pre_stack operator(stack, environment) # environment should be unchanged assert environment == original_environment # check stack if approx or contains_nan(post_stack) or contains_array(post_stack): assert len(stack) == len(post_stack) for a, b in zip(stack, post_stack): if isinstance(a, np.ndarray) or isinstance(b, np.ndarray): if approx: np.testing.assert_allclose( a, b, rtol=rtol, atol=atol, equal_nan=True ) else: np.testing.assert_equal(a, b) else: if math.isnan(b): assert math.isnan(a) elif approx: assert a == pytest.approx(b, rel=rtol, abs=atol) else: assert a == b else: assert stack == post_stack class TestSUBOperator: def test_repr(self): assert repr(SUB) == "SUB" def test_pops(self): assert SUB.pops == 2 def test_puts(self): assert SUB.puts == 1 def test_no_copy(self): assert copy(SUB) is SUB assert deepcopy(SUB) is SUB def test_call(self): assert_token(SUB, [2, 4], [-2]) assert_token(SUB, [2, np.array([4, 1])], [np.array([-2, 1])]) assert_token(SUB, [np.array([4, 1]), 2], [np.array([2, -1])]) assert_token(SUB, [np.array([4, 1]), np.array([1, 4])], [np.array([3, -3])]) # extra stack elements assert_token(SUB, [0, 2, 4], [0, -2]) # not enough stack elements with pytest.raises(StackUnderflowError): SUB([], {}) with pytest.raises(StackUnderflowError): SUB([1], {}) class TestADDOperator: def test_repr(self): assert repr(ADD) == "ADD" def test_pops(self): assert ADD.pops == 2 def test_puts(self): assert ADD.puts == 1 def test_no_copy(self): assert copy(ADD) is ADD assert deepcopy(ADD) is ADD def test_call(self): assert_token(ADD, [2, 4], [6]) assert_token(ADD, [2, np.array([4, 1])], [np.array([6, 3])]) assert_token(ADD, [np.array([4, 1]), 2], [np.array([6, 3])]) assert_token(ADD, [np.array([4, 1]), np.array([1, 4])], [np.array([5, 5])]) # extra stack elements assert_token(ADD, [0, 2, 4], [0, 6]) # not enough stack elements with pytest.raises(StackUnderflowError): ADD([], {}) with pytest.raises(StackUnderflowError): ADD([1], {}) class TestMULOperator: def test_repr(self): assert repr(MUL) == "MUL" def test_pops(self): assert MUL.pops == 2 def test_puts(self): assert MUL.puts == 1 def test_no_copy(self): assert copy(MUL) is MUL assert deepcopy(MUL) is MUL def test_call(self): assert_token(MUL, [2, 4], [8]) assert_token(MUL, [2, np.array([4, 1])], [np.array([8, 2])]) assert_token(MUL, [np.array([4, 1]), 2], [np.array([8, 2])]) assert_token(MUL, [np.array([4, 1]), np.array([1, 4])], [np.array([4, 4])]) # extra stack elements assert_token(MUL, [0, 2, 4], [0, 8]) # not enough stack elements with pytest.raises(StackUnderflowError): MUL([], {}) with pytest.raises(StackUnderflowError): MUL([1], {}) class TestPOPOperator: def test_repr(self): assert repr(POP) == "POP" def test_pops(self): assert POP.pops == 1 def test_puts(self): assert POP.puts == 0 def test_no_copy(self): assert copy(POP) is POP assert deepcopy(POP) is POP def test_call(self): assert_token(POP, [1], []) assert_token(POP, [1, 2], [1]) # not enough stack elements with pytest.raises(StackUnderflowError): POP([], {}) class TestNEGOperator: def test_repr(self): assert repr(NEG) == "NEG" def test_pops(self): assert NEG.pops == 1 def test_puts(self): assert NEG.puts == 1 def test_no_copy(self): assert copy(NEG) is NEG assert deepcopy(NEG) is NEG def test_call(self): assert_token(NEG, [2], [-2]) assert_token(NEG, [-2], [2]) assert_token(NEG, [np.array([4, -1])], [np.array([-4, 1])]) assert_token(NEG, [np.array([-4, 1])], [np.array([4, -1])]) # extra stack elements assert_token(NEG, [0, 2], [0, -2]) # not enough stack elements with pytest.raises(StackUnderflowError): NEG([], {}) class TestABSOperator: def test_repr(self): assert repr(ABS) == "ABS" def test_pops(self): assert ABS.pops == 1 def test_puts(self): assert ABS.puts == 1 def test_no_copy(self): assert copy(ABS) is ABS assert deepcopy(ABS) is ABS def test_call(self): assert_token(ABS, [2], [2]) assert_token(ABS, [-2], [2]) assert_token(ABS, [np.array([4, -1])], [np.array([4, 1])]) assert_token(ABS, [np.array([-4, 1])], [np.array([4, 1])]) # extra stack elements assert_token(ABS, [0, -2], [0, 2]) # not enough stack elements with pytest.raises(StackUnderflowError): ABS([], {}) class TestINVOperator: def test_repr(self): assert repr(INV) == "INV" def test_pops(self): assert INV.pops == 1 def test_puts(self): assert INV.puts == 1 def test_no_copy(self): assert copy(INV) is INV assert deepcopy(INV) is INV def test_call(self): assert_token(INV, [2], [0.5]) assert_token(INV, [-2], [-0.5]) assert_token(INV, [np.array([4, -1])], [np.array([0.25, -1])]) assert_token(INV, [np.array([-4, 1])], [np.array([-0.25, 1])]) # extra stack elements assert_token(INV, [0, 2], [0, 0.5]) # not enough stack elements with pytest.raises(StackUnderflowError): INV([], {}) class TestSQRTOperator: def test_repr(self): assert repr(SQRT) == "SQRT" def test_pops(self): assert SQRT.pops == 1 def test_puts(self): assert SQRT.puts == 1 def test_no_copy(self): assert copy(SQRT) is SQRT assert deepcopy(SQRT) is SQRT def test_call(self): assert_token(SQRT, [4], [2]) assert_token(SQRT, [np.array([4, 16])], [np.array([2, 4])]) # extra stack elements assert_token(SQRT, [0, 4], [0, 2]) # not enough stack elements with pytest.raises(StackUnderflowError): SQRT([], {}) class TestSQROperator: def test_repr(self): assert repr(SQR) == "SQR" def test_pops(self): assert SQR.pops == 1 def test_puts(self): assert SQR.puts == 1 def test_no_copy(self): assert copy(EXP) is EXP assert deepcopy(EXP) is EXP def test_call(self): assert_token(SQR, [2], [4]) assert_token(SQR, [-2], [4]) assert_token(SQR, [np.array([4, -1])], [np.array([16, 1])]) assert_token(SQR, [np.array([-4, 1])], [np.array([16, 1])]) # extra stack elements assert_token(SQR, [0, -2], [0, 4]) # not enough stack elements with pytest.raises(StackUnderflowError): SQR([], {}) class TestEXPOperator: def test_repr(self): assert repr(EXP) == "EXP" def test_pops(self): assert EXP.pops == 1 def test_puts(self): assert EXP.puts == 1 def test_no_copy(self): assert copy(EXP) is EXP assert deepcopy(EXP) is EXP def test_call(self): assert_token(EXP, [math.log(1)], [1.0], approx=True) assert_token(EXP, [math.log(2)], [2.0], approx=True) assert_token( EXP, [np.array([np.log(4), np.log(1)])], [np.array([4.0, 1.0])], approx=True ) # extra stack elements assert_token(EXP, [0, np.log(1)], [0, 1.0], approx=True) # not enough stack elements with pytest.raises(StackUnderflowError): EXP([], {}) class TestLOGOperator: def test_repr(self): assert repr(LOG) == "LOG" def test_pops(self): assert LOG.pops == 1 def test_puts(self): assert LOG.puts == 1 def test_no_copy(self): assert copy(LOG) is LOG assert deepcopy(LOG) is LOG def test_call(self): assert_token(LOG, [math.e], [1.0], approx=True) assert_token(LOG, [math.e ** 2], [2.0], approx=True) assert_token(LOG, [math.e ** -2], [-2.0], approx=True) assert_token( LOG, [np.array([np.e ** 4, np.e ** -1])], [np.array([4.0, -1.0])], approx=True, ) assert_token( LOG, [np.array([np.e ** -4, np.e ** 1])], [np.array([-4.0, 1.0])], approx=True, ) # extra stack elements assert_token(LOG, [0, np.e], [0, 1.0], approx=True) # not enough stack elements with pytest.raises(StackUnderflowError): LOG([], {}) class TestLOG10Operator: def test_repr(self): assert repr(LOG10) == "LOG10" def test_pops(self): assert LOG10.pops == 1 def test_puts(self): assert LOG10.puts == 1 def test_no_copy(self): assert copy(LOG10) is LOG10 assert deepcopy(LOG10) is LOG10 def test_call(self): assert_token(LOG10, [10], [1.0], approx=True) assert_token(LOG10, [10 ** 2], [2.0], approx=True) assert_token(LOG10, [10 ** -2], [-2.0], approx=True) assert_token( LOG10, [np.array([10 ** 4, 10 ** -1])], [np.array([4.0, -1.0])], approx=True ) assert_token( LOG10, [np.array([10 ** -4, 10 ** 1])], [np.array([-4.0, 1.0])], approx=True ) # extra stack elements assert_token(LOG10, [0, 10], [0, 1.0], approx=True) # not enough stack elements with pytest.raises(StackUnderflowError): LOG10([], {}) class TestSINOperator: def test_repr(self): assert repr(SIN) == "SIN" def test_pops(self): assert SIN.pops == 1 def test_puts(self): assert SIN.puts == 1 def test_no_copy(self): assert copy(SIN) is SIN assert deepcopy(SIN) is SIN def test_call(self): assert_token(SIN, [0.0], [0.0], approx=True) assert_token(SIN, [math.pi / 6], [1 / 2], approx=True) assert_token(SIN, [math.pi / 4], [1 / math.sqrt(2)], approx=True) assert_token(SIN, [math.pi / 3], [math.sqrt(3) / 2], approx=True) assert_token(SIN, [math.pi / 2], [1.0], approx=True) assert_token( SIN, [np.array([0.0, np.pi / 6, np.pi / 4, np.pi / 3, np.pi / 2])], [np.array([0.0, 1 / 2, 1 / np.sqrt(2), np.sqrt(3) / 2, 1.0])], approx=True, ) assert_token( SIN, [-np.array([0.0, np.pi / 6, np.pi / 4, np.pi / 3, np.pi / 2])], [-np.array([0.0, 1 / 2, 1 / np.sqrt(2), np.sqrt(3) / 2, 1.0])], approx=True, ) # extra stack elements assert_token(SIN, [0, math.pi / 2], [0, 1.0], approx=True) # not enough stack elements with pytest.raises(StackUnderflowError): SIN([], {}) class TestCOSOperator: def test_repr(self): assert repr(COS) == "COS" def test_pops(self): assert COS.pops == 1 def test_puts(self): assert COS.puts == 1 def test_no_copy(self): assert copy(COS) is COS assert deepcopy(COS) is COS def test_call(self): assert_token(COS, [0.0], [1.0], approx=True) assert_token(COS, [math.pi / 6], [math.sqrt(3) / 2], approx=True) assert_token(COS, [math.pi / 4], [1 / math.sqrt(2)], approx=True) assert_token(COS, [math.pi / 3], [1 / 2], approx=True) assert_token(COS, [math.pi / 2], [0.0], approx=True) assert_token( COS, [np.array([0.0, np.pi / 6, np.pi / 4, np.pi / 3, np.pi / 2])], [np.array([1.0, np.sqrt(3) / 2, 1 / np.sqrt(2), 1 / 2, 0.0])], approx=True, ) assert_token( COS, [-np.array([0.0, np.pi / 6, np.pi / 4, np.pi / 3, np.pi / 2])], [np.array([1.0, np.sqrt(3) / 2, 1 / np.sqrt(2), 1 / 2, 0.0])], approx=True, ) # extra stack elements assert_token(COS, [0, math.pi / 2], [0, 0.0], approx=True) # not enough stack elements with pytest.raises(StackUnderflowError): COS([], {}) class TestTANOperator: def test_repr(self): assert repr(TAN) == "TAN" def test_pops(self): assert TAN.pops == 1 def test_puts(self): assert TAN.puts == 1 def test_no_copy(self): assert copy(TAN) is TAN assert deepcopy(TAN) is TAN def test_call(self): assert_token(TAN, [0.0], [0.0], approx=True) assert_token(TAN, [math.pi / 6], [1 / math.sqrt(3)], approx=True) assert_token(TAN, [math.pi / 4], [1.0], approx=True) assert_token(TAN, [math.pi / 3], [math.sqrt(3)], approx=True) assert_token( TAN, [np.array([0.0, np.pi / 6, np.pi / 4, np.pi / 3])], [np.array([0.0, 1 / np.sqrt(3), 1.0, np.sqrt(3)])], approx=True, ) assert_token( TAN, [-np.array([0.0, np.pi / 6, np.pi / 4, np.pi / 3])], [-np.array([0.0, 1 / np.sqrt(3), 1.0, np.sqrt(3)])], approx=True, ) # extra stack elements assert_token(TAN, [0, math.pi / 4], [0, 1.0], approx=True) # not enough stack elements with pytest.raises(StackUnderflowError): TAN([], {}) class TestSINDOperator: def test_repr(self): assert repr(SIND) == "SIND" def test_pops(self): assert SIND.pops == 1 def test_puts(self): assert SIND.puts == 1 def test_no_copy(self): assert copy(COSD) is COSD assert deepcopy(COSD) is COSD def test_call(self): assert_token(SIND, [0], [0.0], approx=True) assert_token(SIND, [30], [1 / 2], approx=True) assert_token(SIND, [45], [1 / math.sqrt(2)], approx=True) assert_token(SIND, [60], [math.sqrt(3) / 2], approx=True) assert_token(SIND, [90], [1.0], approx=True) assert_token( SIND, [np.array([0, 30, 45, 60, 90])], [np.array([0.0, 1 / 2, 1 / np.sqrt(2), np.sqrt(3) / 2, 1.0])], approx=True, ) assert_token( SIND, [-np.array([0, 30, 45, 60, 90])], [-np.array([0.0, 1 / 2, 1 / np.sqrt(2), np.sqrt(3) / 2, 1.0])], approx=True, ) # extra stack elements assert_token(SIND, [0, 90], [0, 1.0], approx=True) # not enough stack elements with pytest.raises(StackUnderflowError): SIND([], {}) class TestCOSDOperator: def test_repr(self): assert repr(COSD) == "COSD" def test_pops(self): assert COSD.pops == 1 def test_puts(self): assert COSD.puts == 1 def test_no_copy(self): assert copy(COSD) is COSD assert deepcopy(COSD) is COSD def test_call(self): assert_token(COSD, [0], [1.0], approx=True) assert_token(COSD, [30], [math.sqrt(3) / 2], approx=True) assert_token(COSD, [45], [1 / math.sqrt(2)], approx=True) assert_token(COSD, [60], [1 / 2], approx=True) assert_token(COSD, [90], [0.0], approx=True) assert_token( COSD, [np.array([0, 30, 45, 60, 90])], [np.array([1.0, np.sqrt(3) / 2, 1 / np.sqrt(2), 1 / 2, 0.0])], approx=True, ) assert_token( COSD, [-np.array([0, 30, 45, 60, 90])], [np.array([1.0, np.sqrt(3) / 2, 1 / np.sqrt(2), 1 / 2, 0.0])], approx=True, ) # extra stack elements assert_token(COSD, [0, 90], [0, 0.0], approx=True) # not enough stack elements with pytest.raises(StackUnderflowError): COSD([], {}) class TestTANDOperator: def test_repr(self): assert repr(TAND) == "TAND" def test_pops(self): assert TAND.pops == 1 def test_puts(self): assert TAND.puts == 1 def test_no_copy(self): assert copy(TAND) is TAND assert deepcopy(TAND) is TAND def test_call(self): assert_token(TAND, [0], [0], approx=True) assert_token(TAND, [30], [1 / math.sqrt(3)], approx=True) assert_token(TAND, [45], [1.0], approx=True) assert_token(TAND, [60], [math.sqrt(3)], approx=True) assert_token( TAND, [np.array([0, 30, 45, 60])], [np.array([0.0, 1 / np.sqrt(3), 1.0, np.sqrt(3)])], approx=True, ) assert_token( TAND, [-np.array([0, 30, 45, 60])], [-np.array([0.0, 1 / np.sqrt(3), 1.0, np.sqrt(3)])], approx=True, ) # extra stack elements assert_token(TAND, [0, 45], [0, 1.0], approx=True) # not enough stack elements with pytest.raises(StackUnderflowError): TAND([], {}) class TestSINHOperator: def test_repr(self): assert repr(SINH) == "SINH" def test_pops(self): assert SINH.pops == 1 def test_puts(self): assert SINH.puts == 1 def test_no_copy(self): assert copy(SINH) is SINH assert deepcopy(SINH) is SINH def test_call(self): assert_token(SINH, [0.0], [0.0], approx=True) assert_token(SINH, [GOLDEN_RATIO], [0.5], approx=True) assert_token( SINH, [
np.array([0.0, GOLDEN_RATIO])
numpy.array
import numpy as np from harmonic_equation import harmonic_equation from equation import equation import low_level_tools as llt ################################################################################ def eq_11_bc(current): N, M = current[0].shape z = np.linspace(0, 1, N) x, y = np.meshgrid(z, z, indexing='ij') u_exact = np.exp(x * y) current[0][0, :] = u_exact[0, :] current[0][-1, :] = u_exact[-1, :] current[0][:, 0] = u_exact[:, 0] current[0][:, -1] = u_exact[:, -1] return current def eq_11_exact(current): N, M = current[0].shape z = np.linspace(0, 1, N) x, y = np.meshgrid(z, z, indexing='ij') u_exact = np.exp(x * y) return np.array([u_exact]) def eq_11_rhs(current): N, M = current[0].shape z = np.linspace(0, 1, N) x, y = np.meshgrid(z, z, indexing='ij') u_rhs = ((1 + np.exp(x * y)) * x ** 2 + (2 + np.cos(np.pi * x)) * y ** 2 + \ (1 + x * y) * np.exp(-x * y) + y * np.exp(x) + x * np.exp(y) + np.sin(np.pi * x * y)) * np.exp(x * y) u_rhs[0, :] = 0 u_rhs[N - 1, :] = 0 u_rhs[:, N - 1] = 0 u_rhs[:, 0] = 0 rhs = np.array([u_rhs]) return rhs def eq_11_coeff(current): N, M = current[0].shape z = np.linspace(0, 1, N) x, y = np.meshgrid(z, z, indexing='ij') ### a11 = 1 + np.exp(x * y) b11 = 2 + np.cos(np.pi * x) c11 = np.exp(-x * y) d11 = np.exp(x) e11 = np.exp(y) f11 = np.sin(np.pi * x * y) ### coeff1 = [a11, b11, c11, d11, e11, f11] coeff = np.array([coeff1]) return coeff ################################################################################ def eq_red_fox_bc(current): N, M = current[0].shape z = np.linspace(0, 1, N) x, y = np.meshgrid(z, z, indexing='ij') u_exact = np.exp(x * y) current[0][0, :] = u_exact[0, :] current[0][-1, :] = u_exact[-1, :] current[0][:, 0] = u_exact[:, 0] current[0][:, -1] = u_exact[:, -1] return current def eq_red_fox_exact(current): N, M = current[0].shape z = np.linspace(0, 1, N) x, y = np.meshgrid(z, z, indexing='ij') u_exact = np.exp(x * y) return np.array([u_exact]) def eq_red_fox_rhs(current, a=1): N, M = current[0].shape z = np.linspace(0, 1, N) x, y = np.meshgrid(z, z, indexing='ij') u_rhs = (x**2 + y**2 + a*y)*np.exp(x*y) u_rhs[0, :] = 0 u_rhs[N - 1, :] = 0 u_rhs[:, N - 1] = 0 u_rhs[:, 0] = 0 rhs = np.array([u_rhs]) return rhs def eq_red_fox_coeff(current, a=1): N, M = current[0].shape z = np.linspace(0, 1, N) x, y = np.meshgrid(z, z, indexing='ij') ### a11 = np.ones((N, N)) b11 = np.ones((N, N)) c11 = np.zeros((N, N)) d11 = a*np.ones((N, N)) e11 = np.zeros((N, N)) f11 = np.zeros((N, N)) ### coeff1 = [a11, b11, c11, d11, e11, f11] coeff = np.array([coeff1]) return coeff ################################################################################ def eq_00_bc(current): N, M = current[0].shape z = np.linspace(0, 1, N) x, y = np.meshgrid(z, z, indexing='ij') u_exact = np.sin(np.pi * x) * np.sin(np.pi * y) / 2 current[0][0, :] = u_exact[0, :] current[0][-1, :] = u_exact[-1, :] current[0][:, 0] = u_exact[:, 0] current[0][:, -1] = u_exact[:, -1] return current def eq_00_exact(current): N, M = current[0].shape z = np.linspace(0, 1, N) x, y = np.meshgrid(z, z, indexing='ij') u_exact = np.sin(np.pi * x) * np.sin(np.pi * y) / 2 return np.array([u_exact]) def eq_00_rhs(current): N, M = current[0].shape z = np.linspace(0, 1, N) x, y = np.meshgrid(z, z, indexing='ij') u_rhs = -np.pi ** 2 * np.sin(np.pi * x) * np.sin(np.pi * y) * ( 4 + y * np.cos(x * np.pi) + 4 + x * np.exp(-x * y)) / 2 + \ np.pi ** 2 *
np.cos(np.pi * x)
numpy.cos
####################################### # load mnist # import mnist import numpy as np def normalize(img): fac = 0.99 / 255 return img * fac + 0.01 def digit_to_layer(digit): return (np.arange(10) == digit).astype(np.float) train_images = np.array([normalize(img) for img in mnist.train_images()]) train_labels = np.array([digit_to_layer(digit) for digit in mnist.train_labels()]) test_images = np.array([normalize(img) for img in mnist.test_images()]) test_labels = np.array([digit_to_layer(digit) for digit in mnist.test_labels()]) ### import math from functools import reduce padding = 'valid' padding = 'same' padding = 'full' # I x I x C # O x O x K def init_tuple_counter(count_to: tuple) -> tuple: return tuple(np.zeros(len(count_to.shape), dtype=int)) def adder(counter: tuple, max: tuple) -> tuple: if counter == max: return counter counter_array = np.array(counter) length = len(counter_array) carry = True for i in range(length - 1, -1, -1): counter_array[i] = counter_array[i] + 1 carry = False if counter_array[i] > max[i]: counter_array[i] = 0 carry = True if not carry: break counted = [max[:-1] == counter_array[:-1]] if carry and counted: counter_array = max return tuple(counter_array) def conv2d(input: np.array, output: np.array, filters: np.array, stride: tuple([int, int]) = (1, 1)) \ -> np.array: ## padding needs to be implemented ## proper strides kernel_y = len(filters) kernel_x = len(filters[0]) kernel_channels = len(filters[0][0]) num_filters = len(filters[0][0][0]) batch_shape = input.shape[:-3] layer_shape = input.shape[-3:] layer_height = layer_shape[0] layer_width = layer_shape[1] layer_channel = layer_shape[2] stride_x = stride[0] stride_y = stride[1] padding = 0 ## assert padding is valid I x I x K conv_out_height = int(((layer_height - kernel_y + 2 * padding) / stride_y)) \ + 1 conv_out_width = int(((layer_width - kernel_x + 2 * padding) / stride_x)) \ + 1 conv_shape = batch_shape + (conv_out_height, conv_out_width, num_filters) # conv_out = np.ndarray(shape=conv_shape) batch_idx = np.zeros(len(batch_shape), dtype=int) while batch_idx != batch_shape: ## probably needs to be changed layer = input[tuple(batch_idx)] for y_idx in range(0, conv_out_height): y_start = y_idx * stride_y y_end = (y_idx * stride_y + kernel_y) for x_idx in range(0, conv_out_width): x_start = x_idx * stride_x x_end = (x_idx * stride_x + kernel_x) kernel = layer[y_start:y_end, x_start:x_end] for filter_idx in range(num_filters): filter = filters[:, :, :, filter_idx] multi = np.multiply(kernel, filter) product_idx = (y_idx, x_idx, filter_idx) output[tuple(batch_idx) + product_idx] = np.sum(multi) batch_idx = adder(batch_idx, batch_shape) return output def conv_output_size(layer_dimensions: tuple, kernel_dimensions: tuple, stride_dimensionsensions: tuple, padding: int): return (int(((layer_dimensions[0] - kernel_dimensions[0] + 2 * padding) \ / stride_dimensionsensions[0])) + 1, int(((layer_dimensions[1] - kernel_dimensions[1] + 2 * padding) \ / stride_dimensionsensions[1])) + 1, kernel_dimensions[3]) def generate_conv2d_filters(kernel_dimensions: tuple, k: float = 2.0) -> np.array: kernel_y = kernel_dimensions[0] kernel_x = kernel_dimensions[1] kernel_channels = kernel_dimensions[2] num_filters = kernel_dimensions[3] filters = np.ndarray(shape=kernel_dimensions) filter_shape = tuple([kernel_y, kernel_x, kernel_channels]) nl = kernel_x * kernel_y * kernel_channels std = math.sqrt(k / nl) for filter_idx in range(num_filters): filter = np.random.normal(scale=std, size=nl) filter = filter.reshape(filter_shape) filters[:, :, :, filter_idx] = filter return filters def lif_neuron(Vm: float, V_reset: float, V_th: float, tau_m: float, fire=True, leaky=True) -> np.array: if Vm >= V_th and fire: spike = 1 Vm = V_reset else: spike = 0 if leaky: Vm = Vm * math.exp(-1 / tau_m) return [Vm, spike] def flatten(input: np.array, output: np.array, flatten_dim: int): self.input_shape batch_dimensions = input.shape[:flatten_dim] flattened_dimension = tuple([math.prod(input.shape[flatten_dim:])]) output = np.reshape(input, batch_dimensions + flattened_dimension) return output def lif_neuron_pool(Vin: np.array, Vout: np.array, spike_out: np.array, Vreset: float = 0, Vth: float = 0.75, tau_m: int = 100, fire: bool = True, leaky: bool = True, time_index: int = 0) -> np.array: # [batch][time][spike_train] # [batch][ Vin ] # adequate dimensions to process # a dimensions to # assert (len(Vin.shape[-4]) > 2) #if (Vin != NULL): # s = 1 # TODO: implement smth here # generate output arrays # Vout = np.zero(shape=(Vin.shape)) # spike_out = np.zero(shape=(Vin.shape)) assert(Vin.shape == Vout.shape) # process batches batch_dimensions = Vin.shape[:max(time_index-1,0)] spike_train_length = Vin.shape[time_index] membrane_dimensions = Vin.shape[time_index+1:] for batch_idx in np.ndindex(batch_dimensions): for neuron_idx in np.ndindex(membrane_dimensions): for t_idx in range(1, spike_train_length): # membrane voltage for this step t_current = batch_idx + tuple([t_idx]) + neuron_idx t_previous = batch_idx + tuple([t_idx - 1]) + neuron_idx Vm = Vin[t_current] + Vout[t_previous] # simulate lif-neuron [Vout[t_current], spike_out[t_current]] = lif_neuron(Vm, Vreset, Vth, tau_m, fire, leaky) return [Vout, spike_out] def generate_spike_train(p: float, t: int) -> np.array: dist = np.random.uniform(1, 0, t) return np.array([int(item < p) for item in dist]) def generate_layer_spike_train(layer: np.array, train_length: int): layer_height = len(layer) layer_width = len(layer[0]) spike_layer = np.ndarray(shape=(train_length, layer_height, layer_width, 1)) for y in range(0, layer_height): for x in range(0, layer_width): train = np.array(generate_spike_train(layer[y][x], train_length)) for t in range(0, train_length): spike_layer[t, y, x, 0] = train[t] return spike_layer def avg_pool(input: np.array, output:np.array, kernel_size: tuple([int, int]) = (2, 2), stride: tuple([int, int]) = (1, 1)) -> np.array: pool = output ## padding needs to be implemented ## proper strides kernel_y = kernel_size[1] kernel_x = kernel_size[0] batch_shape = input.shape[:-3] layer_shape = input.shape[-3:] layer_height = layer_shape[0] layer_width = layer_shape[1] layer_channel = layer_shape[2] stride_x = stride[0] stride_y = stride[1] padding = 0 pool_height = int(((layer_height - kernel_y + 2 * padding) / stride_y)) + 1 pool_width = int(((layer_width - kernel_x + 2 * padding) / stride_x)) + 1 pool_shape = batch_shape + (pool_height, pool_width, layer_channel) # pool = np.ndarray(shape=pool_shape) # TODO: Update this code batch_idx = np.zeros(len(batch_shape), dtype=int) while batch_idx != batch_shape: layer = input[tuple(batch_idx)] for y_idx in range(0, pool_height): y_start = y_idx * stride_y y_end = (y_idx * stride_y + kernel_y) for x_idx in range(0, pool_width): x_start = x_idx * stride_x x_end = (x_idx * stride_x + kernel_x) for channel_idx in range(0, layer_channel): kernel = layer[y_start:y_end, x_start:x_end, channel_idx] product = np.sum(kernel) / kernel.size product_idx = (y_idx, x_idx, channel_idx) pool[tuple(batch_idx) + product_idx] = product batch_idx = adder(batch_idx, batch_shape) return pool def generate_dense_layer_weights(input_dimensions: tuple, num_neuron_output: int, k: float = 2.0) -> np.array: axons_per_neuron = math.prod(input_dimensions) synapses = np.ndarray(shape=(num_neuron_output, axons_per_neuron)) nl = axons_per_neuron std = math.sqrt(k / nl) for i in range(num_neuron_output): synapses[i] = np.random.normal(scale=std, size=nl) return synapses def dense_forward(input_neurons: np.array, output_neurons: np.array, weights: np.array) -> np.array: ins = input_neurons.shape ons = output_neurons.shape ws = weights.shape # [batch][spike time] batch_dimensions = input_neurons.shape[:-1] # [][] num_input_neurons = weights.shape[1] num_output_neurons = weights.shape[0] #[neuron y][neuron x][channel] for batch_idx in np.ndindex(batch_dimensions): for output_neuron_idx in range(num_output_neurons): # action_potential = 0 # dot product # for input_neuron_idx in range(num_input_neurons): # ax = input_neurons[batch_idx][input_neuron_idx] # wx = weights[output_neuron_idx][input_neuron_idx] # action_potential = action_potential + ax*wx output_neurons[batch_idx][output_neuron_idx] = np.dot(input_neurons[batch_idx], weights[output_neuron_idx]) return output_neurons def generate_membrane(membrane_dimensions: tuple, value: float = 0.0): membrane = np.ndarray(shape=membrane_dimensions) membrane.fill(value) return membrane # This gains the term da_lif / d_net def differentiate_spike_train(spike_train, Vth = 1): # sum of decay over time gamma = sum(spike_train) if gamma == 0: return 0 tau_m = len(spike_train) total_decay = 0 t = tk = 1 for activation in spike_train: if activation: if t != tk: decay = math.exp(-(t - tk) / tau_m) total_decay = total_decay - (1 / tau_m) * decay tk = t + 1 t = t + 1 return (1/Vth) * (1 + (1/gamma) * total_decay) class Layer: def __init__(self): self.trainable = True self.input_shape = None self.output_shape = None def count_parameters(self): raise NotImplementedError() def compute_output_shape(self, input_shape): raise NotImplementedError() def forward_propagate(self, A): raise NotImplementedError() def backward_propagate(self, dZ, cache): raise NotImplementedError() def get_weights(self): raise NotImplementedError() def set_weights(self, weights): raise NotImplementedError() def build(self, input_shape): self.input_shape = input_shape class Dropout(Layer): def __init__(self, probability): super().__init__() self.probability = probability self.mask = None def build(self, input_shape): self.input_shape = input_shape self.output_shape = input_shape self.reset() def reset(self): self.mask = np.random.binomial(1, 1-self.probability, size=self.output_shape) def forward_propagate(self, A): masked =
np.multiply(self.mask, A)
numpy.multiply
from __future__ import print_function import numpy as np from scipy.ndimage import filters,interpolation from .toplevel import * from . import sl,morph def B(a): if a.dtype==np.dtype('B'): return a return np.array(a,'B') class record: def __init__(self,**kw): self.__dict__.update(kw) def binary_objects(binary): labels,n = morph.label(binary) objects = morph.find_objects(labels) return objects @checks(ABINARY2) def estimate_scale(binary, zoom=1.0): objects = binary_objects(binary) bysize = sorted(objects,key=sl.area) scalemap = np.zeros(binary.shape) for o in bysize: if np.amax(scalemap[o])>0: continue scalemap[o] = sl.area(o)**0.5 scalemap = scalemap[(scalemap>3/zoom)&(scalemap<100/zoom)] if
np.any(scalemap)
numpy.any
""" Author: <NAME> """ from statsmodels.compat.platform import PLATFORM_LINUX32, PLATFORM_WIN from itertools import product import json import pathlib import numpy as np from numpy.testing import assert_allclose, assert_almost_equal import pandas as pd import pytest import scipy.stats from statsmodels.tsa.exponential_smoothing.ets import ETSModel import statsmodels.tsa.holtwinters as holtwinters import statsmodels.tsa.statespace.exponential_smoothing as statespace # This contains tests for the exponential smoothing implementation in # tsa/exponential_smoothing/ets.py. # # Tests are mostly done by comparing results with the R implementation in the # package forecast for the datasets `oildata` (non-seasonal) and `austourists` # (seasonal). # # Therefore, a parametrized pytest fixture ``setup_model`` is provided, which # returns a constructed model, model parameters from R in the format expected # by ETSModel, and a dictionary of reference results. Use like this: # # def test_<testname>(setup_model): # model, params, results_R = setup_model # # perform some tests # ... ############################################################################### # UTILS ############################################################################### # Below I define parameter lists for all possible model and data combinations # (for data, see below). These are used for parametrizing the pytest fixture # ``setup_model``, which should be used for all tests comparing to R output. def remove_invalid_models_from_list(modellist): # remove invalid models (no trend but damped) for i, model in enumerate(modellist): if model[1] is None and model[3]: del modellist[i] ERRORS = ("add", "mul") TRENDS = ("add", "mul", None) SEASONALS = ("add", "mul", None) DAMPED = (True, False) MODELS_DATA_SEASONAL = list( product(ERRORS, TRENDS, ("add", "mul"), DAMPED, ("austourists",),) ) MODELS_DATA_NONSEASONAL = list( product(ERRORS, TRENDS, (None,), DAMPED, ("oildata",),) ) remove_invalid_models_from_list(MODELS_DATA_SEASONAL) remove_invalid_models_from_list(MODELS_DATA_NONSEASONAL) def short_model_name(error, trend, seasonal, damped=False): short_name = {"add": "A", "mul": "M", None: "N", True: "d", False: ""} return ( short_name[error] + short_name[trend] + short_name[damped] + short_name[seasonal] ) ALL_MODELS_AND_DATA = MODELS_DATA_NONSEASONAL + MODELS_DATA_SEASONAL ALL_MODEL_IDS = [ short_model_name(*mod[:3], mod[3]) for mod in ALL_MODELS_AND_DATA ] @pytest.fixture(params=ALL_MODELS_AND_DATA, ids=ALL_MODEL_IDS) def setup_model( request, austourists, oildata, ets_austourists_fit_results_R, ets_oildata_fit_results_R, ): params = request.param error, trend, seasonal, damped = params[0:4] data = params[4] if data == "austourists": data = austourists seasonal_periods = 4 results = ets_austourists_fit_results_R[damped] else: data = oildata seasonal_periods = None results = ets_oildata_fit_results_R[damped] name = short_model_name(error, trend, seasonal) if name not in results: pytest.skip(f"model {name} not implemented or not converging in R") results_R = results[name] params = get_params_from_R(results_R) model = ETSModel( data, seasonal_periods=seasonal_periods, error=error, trend=trend, seasonal=seasonal, damped_trend=damped, ) return model, params, results_R @pytest.fixture def austourists_model(austourists): return ETSModel( austourists, seasonal_periods=4, error="add", trend="add", seasonal="add", damped_trend=True, ) @pytest.fixture def austourists_model_fit(austourists_model): return austourists_model.fit(disp=False) @pytest.fixture def oildata_model(oildata): return ETSModel(oildata, error="add", trend="add", damped_trend=True,) ############################################################################# # DATA ############################################################################# @pytest.fixture def austourists(): # austourists dataset from fpp2 package # https://cran.r-project.org/web/packages/fpp2/index.html data = [ 30.05251300, 19.14849600, 25.31769200, 27.59143700, 32.07645600, 23.48796100, 28.47594000, 35.12375300, 36.83848500, 25.00701700, 30.72223000, 28.69375900, 36.64098600, 23.82460900, 29.31168300, 31.77030900, 35.17787700, 19.77524400, 29.60175000, 34.53884200, 41.27359900, 26.65586200, 28.27985900, 35.19115300, 42.20566386, 24.64917133, 32.66733514, 37.25735401, 45.24246027, 29.35048127, 36.34420728, 41.78208136, 49.27659843, 31.27540139, 37.85062549, 38.83704413, 51.23690034, 31.83855162, 41.32342126, 42.79900337, 55.70835836, 33.40714492, 42.31663797, 45.15712257, 59.57607996, 34.83733016, 44.84168072, 46.97124960, 60.01903094, 38.37117851, 46.97586413, 50.73379646, 61.64687319, 39.29956937, 52.67120908, 54.33231689, 66.83435838, 40.87118847, 51.82853579, 57.49190993, 65.25146985, 43.06120822, 54.76075713, 59.83447494, 73.25702747, 47.69662373, 61.09776802, 66.05576122, ] index = pd.date_range("1999-01-01", "2015-12-31", freq="Q") return pd.Series(data, index) @pytest.fixture def oildata(): # oildata dataset from fpp2 package # https://cran.r-project.org/web/packages/fpp2/index.html data = [ 111.0091346, 130.8284341, 141.2870879, 154.2277747, 162.7408654, 192.1664835, 240.7997253, 304.2173901, 384.0045673, 429.6621566, 359.3169299, 437.2518544, 468.4007898, 424.4353365, 487.9794299, 509.8284478, 506.3472527, 340.1842374, 240.2589210, 219.0327876, 172.0746632, 252.5900922, 221.0710774, 276.5187735, 271.1479517, 342.6186005, 428.3558357, 442.3945534, 432.7851482, 437.2497186, 437.2091599, 445.3640981, 453.1950104, 454.4096410, 422.3789058, 456.0371217, 440.3866047, 425.1943725, 486.2051735, 500.4290861, 521.2759092, 508.9476170, 488.8888577, 509.8705750, 456.7229123, 473.8166029, 525.9508706, 549.8338076, 542.3404698, ] return pd.Series(data, index=pd.date_range("1965", "2013", freq="AS")) ############################################################################# # REFERENCE RESULTS ############################################################################# def obtain_R_results(path): with path.open("r") as f: R_results = json.load(f) # remove invalid models results = {} for damped in R_results: new_key = damped == "TRUE" results[new_key] = {} for model in R_results[damped]: if len(R_results[damped][model]): results[new_key][model] = R_results[damped][model] # get correct types for damped in results: for model in results[damped]: for key in ["alpha", "beta", "gamma", "phi", "sigma2"]: results[damped][model][key] = float( results[damped][model][key][0] ) for key in [ "states", "initstate", "residuals", "fitted", "forecast", "simulation", ]: results[damped][model][key] = np.asarray( results[damped][model][key] ) return results @pytest.fixture def ets_austourists_fit_results_R(): """ Dictionary of ets fit results obtained with script ``results/fit_ets.R``. """ path = ( pathlib.Path(__file__).parent / "results" / "fit_ets_results_seasonal.json" ) return obtain_R_results(path) @pytest.fixture def ets_oildata_fit_results_R(): """ Dictionary of ets fit results obtained with script ``results/fit_ets.R``. """ path = ( pathlib.Path(__file__).parent / "results" / "fit_ets_results_nonseasonal.json" ) return obtain_R_results(path) def fit_austourists_with_R_params(model, results_R, set_state=False): """ Fit the model with params as found by R's forecast package """ params = get_params_from_R(results_R) with model.fix_params(dict(zip(model.param_names, params))): fit = model.fit(disp=False) if set_state: states_R = get_states_from_R(results_R, model._k_states) fit.states = states_R return fit def get_params_from_R(results_R): # get params from R params = [results_R[name] for name in ["alpha", "beta", "gamma", "phi"]] # in R, initial states are order l[-1], b[-1], s[-1], s[-2], ..., s[-m] params += list(results_R["initstate"]) params = list(filter(np.isfinite, params)) return params def get_states_from_R(results_R, k_states): if k_states > 1: xhat_R = results_R["states"][1:, 0:k_states] else: xhat_R = results_R["states"][1:] xhat_R = np.reshape(xhat_R, (len(xhat_R), 1)) return xhat_R ############################################################################# # BASIC TEST CASES ############################################################################# def test_fit_model_austouritsts(setup_model): model, params, results_R = setup_model model.fit(disp=False) ############################################################################# # TEST OF MODEL EQUATIONS VS R ############################################################################# def test_smooth_vs_R(setup_model): model, params, results_R = setup_model yhat, xhat = model.smooth(params, return_raw=True) yhat_R = results_R["fitted"] xhat_R = get_states_from_R(results_R, model._k_states) assert_allclose(xhat, xhat_R, rtol=1e-5, atol=1e-5) assert_allclose(yhat, yhat_R, rtol=1e-5, atol=1e-5) def test_residuals_vs_R(setup_model): model, params, results_R = setup_model yhat = model.smooth(params, return_raw=True)[0] residuals = model._residuals(yhat) assert_allclose(residuals, results_R["residuals"], rtol=1e-5, atol=1e-5) def test_loglike_vs_R(setup_model): model, params, results_R = setup_model loglike = model.loglike(params) # the calculation of log likelihood in R is only up to a constant: const = -model.nobs / 2 * (np.log(2 * np.pi / model.nobs) + 1) loglike_R = results_R["loglik"][0] + const assert_allclose(loglike, loglike_R, rtol=1e-5, atol=1e-5) def test_forecast_vs_R(setup_model): model, params, results_R = setup_model fit = fit_austourists_with_R_params(model, results_R, set_state=True) fcast = fit.forecast(4) expected = np.asarray(results_R["forecast"]) assert_allclose(expected, fcast.values, rtol=1e-3, atol=1e-4) def test_simulate_vs_R(setup_model): model, params, results_R = setup_model fit = fit_austourists_with_R_params(model, results_R, set_state=True) innov = np.asarray([[1.76405235, 0.40015721, 0.97873798, 2.2408932]]).T sim = fit.simulate(4, anchor="end", repetitions=1, random_errors=innov) expected = np.asarray(results_R["simulation"]) assert_allclose(expected, sim.values, rtol=1e-5, atol=1e-5) def test_fit_vs_R(setup_model, reset_randomstate): model, params, results_R = setup_model if PLATFORM_WIN and model.short_name == "AAdA": start = params else: start = None fit = model.fit(disp=True, pgtol=1e-8, start_params=start) # check log likelihood: we want to have a fit that is better, i.e. a fit # that has a **higher** log-likelihood const = -model.nobs / 2 * (np.log(2 * np.pi / model.nobs) + 1) loglike_R = results_R["loglik"][0] + const loglike = fit.llf try: assert loglike >= loglike_R - 1e-4 except AssertionError: fit = model.fit(disp=True, tol=1e-8, start_params=params) loglike = fit.llf try: assert loglike >= loglike_R - 1e-4 except AssertionError: if PLATFORM_LINUX32: # Linux32 often fails to produce the correct solution. # Fixing this is low priority given the rareness of # its application pytest.xfail("Known to fail on 32-bit Linux") else: raise def test_predict_vs_R(setup_model): model, params, results_R = setup_model fit = fit_austourists_with_R_params(model, results_R, set_state=True) n = fit.nobs prediction = fit.predict(end=n + 3, dynamic=n) yhat_R = results_R["fitted"] assert_allclose(prediction[:n], yhat_R, rtol=1e-5, atol=1e-5) forecast_R = results_R["forecast"] assert_allclose(prediction[n:], forecast_R, rtol=1e-3, atol=1e-4) ############################################################################# # OTHER TESTS ############################################################################# def test_initialization_known(austourists): initial_level, initial_trend = [36.46466837, 34.72584983] model = ETSModel( austourists, error="add", trend="add", damped_trend=True, initialization_method="known", initial_level=initial_level, initial_trend=initial_trend, ) internal_params = model._internal_params(model._start_params) assert initial_level == internal_params[4] assert initial_trend == internal_params[5] assert internal_params[6] == 0 def test_initialization_heuristic(oildata): model_estimated = ETSModel( oildata, error="add", trend="add", damped_trend=True, initialization_method="estimated", ) model_heuristic = ETSModel( oildata, error="add", trend="add", damped_trend=True, initialization_method="heuristic", ) fit_estimated = model_estimated.fit(disp=False) fit_heuristic = model_heuristic.fit(disp=False) yhat_estimated = fit_estimated.fittedvalues.values yhat_heuristic = fit_heuristic.fittedvalues.values # this test is mostly just to see if it works, so we only test whether the # result is not totally off assert_allclose(yhat_estimated[10:], yhat_heuristic[10:], rtol=0.5) def test_bounded_fit(oildata): beta = [0.99, 0.99] model1 = ETSModel( oildata, error="add", trend="add", damped_trend=True, bounds={"smoothing_trend": beta}, ) fit1 = model1.fit(disp=False) assert fit1.smoothing_trend == 0.99 # same using with fix_params semantic model2 = ETSModel(oildata, error="add", trend="add", damped_trend=True,) with model2.fix_params({"smoothing_trend": 0.99}): fit2 = model2.fit(disp=False) assert fit2.smoothing_trend == 0.99 assert_allclose(fit1.params, fit2.params) fit2.summary() # check if summary runs without failing # using fit_constrained fit3 = model2.fit_constrained({"smoothing_trend": 0.99}) assert fit3.smoothing_trend == 0.99 assert_allclose(fit1.params, fit3.params) fit3.summary() def test_seasonal_periods(austourists): # test auto-deduction of period model = ETSModel(austourists, error="add", trend="add", seasonal="add") assert model.seasonal_periods == 4 # test if seasonal period raises error try: model = ETSModel(austourists, seasonal="add", seasonal_periods=0) except ValueError: pass def test_simulate_keywords(austourists_model_fit): """ check whether all keywords are accepted and work without throwing errors. """ fit = austourists_model_fit # test anchor assert_almost_equal( fit.simulate(4, anchor=-1, random_state=0).values, fit.simulate(4, anchor="2015-12-31", random_state=0).values, ) assert_almost_equal( fit.simulate(4, anchor="end", random_state=0).values, fit.simulate(4, anchor="2015-12-31", random_state=0).values, ) # test different random error options fit.simulate(4, repetitions=10) fit.simulate(4, repetitions=10, random_errors=scipy.stats.norm) fit.simulate(4, repetitions=10, random_errors=scipy.stats.norm()) fit.simulate(4, repetitions=10, random_errors=np.random.randn(4, 10)) fit.simulate(4, repetitions=10, random_errors="bootstrap") # test seeding res = fit.simulate(4, repetitions=10, random_state=10).values res2 = fit.simulate( 4, repetitions=10, random_state=np.random.RandomState(10) ).values assert np.all(res == res2) def test_predict_ranges(austourists_model_fit): # in total 68 observations fit = austourists_model_fit # first prediction is 0, last is 10 -> 11 predictions pred = fit.predict(start=0, end=10) assert len(pred) == 11 pred = fit.predict(start=10, end=20) assert len(pred) == 11 pred = fit.predict(start=10, dynamic=10, end=30) assert len(pred) == 21 # try boolean dynamic pred = fit.predict(start=0, dynamic=True, end=70) assert len(pred) == 71 pred = fit.predict(start=0, dynamic=True, end=70) assert len(pred) == 71 # try only out oof sample prediction pred = fit.predict(start=80, end=84) assert len(pred) == 5 def test_summary(austourists_model): # just try to run summary to see if it works fit = austourists_model.fit(disp=False) fit.summary() # now without estimated initial states austourists_model.set_initialization_method("heuristic") fit = austourists_model.fit(disp=False) fit.summary() # and with fixed params fit = austourists_model.fit_constrained({"smoothing_trend": 0.9}) fit.summary() def test_score(austourists_model_fit): score_cs = austourists_model_fit.model.score(austourists_model_fit.params) score_fd = austourists_model_fit.model.score( austourists_model_fit.params, approx_complex_step=False, approx_centered=True, ) assert_almost_equal(score_cs, score_fd, 4) def test_hessian(austourists_model_fit): # The hessian approximations are not very consistent, but the test makes # sure they run austourists_model_fit.model.hessian(austourists_model_fit.params) austourists_model_fit.model.hessian( austourists_model_fit.params, approx_complex_step=False, approx_centered=True, ) def test_prediction_results(austourists_model_fit): # simple test case starting at 0 pred = austourists_model_fit.get_prediction(start=0, dynamic=30, end=40,) summary = pred.summary_frame() assert len(summary["mean"].values) == 41 assert np.all(~np.isnan(summary["mean"])) # simple test case starting at not 0 pred = austourists_model_fit.get_prediction(start=10, dynamic=30, end=40) summary = pred.summary_frame() assert len(summary["mean"].values) == 31 assert np.all(~np.isnan(summary["mean"])) # long out of sample prediction pred = austourists_model_fit.get_prediction(start=0, dynamic=30, end=80) summary = pred.summary_frame() assert len(summary["mean"].values) == 81 assert np.all(~np.isnan(summary["mean"])) # long out of sample, starting in-sample pred = austourists_model_fit.get_prediction(start=67, end=80) summary = pred.summary_frame() assert len(summary["mean"].values) == 14 assert np.all(~np.isnan(summary["mean"])) # long out of sample, starting at end of sample pred = austourists_model_fit.get_prediction(start=68, end=80) summary = pred.summary_frame() assert len(summary["mean"].values) == 13 assert np.all(~np.isnan(summary["mean"])) # long out of sample, starting just out of sample pred = austourists_model_fit.get_prediction(start=69, end=80) summary = pred.summary_frame() assert len(summary["mean"].values) == 12 assert np.all(~np.isnan(summary["mean"])) # long out of sample, starting long out of sample pred = austourists_model_fit.get_prediction(start=79, end=80) summary = pred.summary_frame() assert len(summary["mean"].values) == 2 assert np.all(~np.isnan(summary["mean"])) # long out of sample, `start`== `end` pred = austourists_model_fit.get_prediction(start=80, end=80) summary = pred.summary_frame() assert len(summary["mean"].values) == 1 assert np.all(~
np.isnan(summary["mean"])
numpy.isnan
import os import sys import math import datetime import time import pytz from collections import Counter import csv # from PyQt5.QtWidgets import QApplication, QDesktopWidget, QWidget, QPushButton, QMessageBox from PyQt5.QtWidgets import QMessageBox from PyQt5.QtGui import QIcon from PyQt5.QtCore import pyqtSlot import matplotlib.pyplot as plt from matplotlib.pyplot import cm import numpy as np import scipy.interpolate from scipy.interpolate import splev, splrep import pandas as pd from pandas.plotting import register_matplotlib_converters register_matplotlib_converters() from ConfigFile import ConfigFile from MainConfig import MainConfig # This gets reset later in Controller.processSingleLevel to reflect the file being processed. if "LOGFILE" not in os.environ: os.environ["LOGFILE"] = "temp.log" class Utilities: @staticmethod def mostFrequent(List): occurence_count = Counter(List) return occurence_count.most_common(1)[0][0] @staticmethod def find_nearest(array,value): array = np.asarray(array) idx = (np.abs(array - value)).argmin() return idx # ''' ONLY FOR SORTED ARRAYS''' # idx = np.searchsorted(array, value, side="left") # if idx > 0 and (idx == len(array) or math.fabs(value - array[idx-1]) < math.fabs(value - array[idx])): # return array[idx-1] # else: # return array[idx] @staticmethod def errorWindow(winText,errorText): msgBox = QMessageBox() # msgBox.setIcon(QMessageBox.Information) msgBox.setIcon(QMessageBox.Critical) msgBox.setText(errorText) msgBox.setWindowTitle(winText) msgBox.setStandardButtons(QMessageBox.Ok) msgBox.exec_() @staticmethod def waitWindow(winText,waitText): msgBox = QMessageBox() # msgBox.setIcon(QMessageBox.Information) msgBox.setIcon(QMessageBox.Critical) msgBox.setText(waitText) msgBox.setWindowTitle(winText) # msgBox.setStandardButtons(QMessageBox.Ok) # msgBox.exec_() return msgBox @staticmethod def YNWindow(winText,infoText): msgBox = QMessageBox() msgBox.setIcon(QMessageBox.Information) msgBox.setText(infoText) msgBox.setWindowTitle(winText) msgBox.setStandardButtons(QMessageBox.Ok | QMessageBox.Cancel) returnValue = msgBox.exec_() return returnValue # Print iterations progress @staticmethod def printProgressBar (iteration, total, prefix = '', suffix = '', decimals = 1, length = 100, fill = '█'): """ Call in a loop to create terminal progress bar @params: iteration - Required : current iteration (Int) total - Required : total iterations (Int) prefix - Optional : prefix string (Str) suffix - Optional : suffix string (Str) decimals - Optional : positive number of decimals in percent complete (Int) length - Optional : character length of bar (Int) fill - Optional : bar fill character (Str) """ percent = ("{0:." + str(decimals) + "f}").format(100 * (iteration / float(total))) filledLength = int(length * iteration // total) bar = fill * filledLength + '-' * (length - filledLength) print('\r%s |%s| %s%% %s' % (prefix, bar, percent, suffix), end = '\r') # Print New Line on Complete if iteration == total: print() @staticmethod def writeLogFile(logText, mode='a'): with open('Logs/' + os.environ["LOGFILE"], mode) as logFile: logFile.write(logText + "\n") # Converts degrees minutes to decimal degrees format @staticmethod # for some reason, these were not set to static method, but didn't refer to self def dmToDd(dm, direction): d = int(dm/100) m = dm-d*100 dd = d + m/60 if direction == b'W' or direction == b'S': dd *= -1 return dd # Converts decimal degrees to degrees minutes format @staticmethod def ddToDm(dd): d = int(dd) m = abs(dd - d)*60 dm = (d*100) + m return dm # Converts GPS UTC time (HHMMSS.ds; i.e. 99 ds after midnight is 000000.99)to seconds # Note: Does not support multiple days @staticmethod def utcToSec(utc): # Use zfill to ensure correct width, fixes bug when hour is 0 (12 am) t = str(int(utc)).zfill(6) # print(t) #print(t[:2], t[2:4], t[4:]) h = int(t[:2]) m = int(t[2:4]) s = float(t[4:]) return ((h*60)+m)*60+s # Converts datetime date and UTC (HHMMSS.ds) to datetime (uses microseconds) @staticmethod def utcToDateTime(dt, utc): # Use zfill to ensure correct width, fixes bug when hour is 0 (12 am) num, dec = str(float(utc)).split('.') t = num.zfill(6) h = int(t[:2]) m = int(t[2:4]) s = int(t[4:6]) us = 10000*int(dec) # i.e. 0.55 s = 550,000 us return datetime.datetime(dt.year,dt.month,dt.day,h,m,s,us,tzinfo=datetime.timezone.utc) # Converts datetag (YYYYDDD) to date string @staticmethod def dateTagToDate(dateTag): dt = datetime.datetime.strptime(str(int(dateTag)), '%Y%j') timezone = pytz.utc dt = timezone.localize(dt) return dt.strftime('%Y%m%d') # Converts datetag (YYYYDDD) to datetime @staticmethod def dateTagToDateTime(dateTag): dt = datetime.datetime.strptime(str(int(dateTag)), '%Y%j') timezone = pytz.utc dt = timezone.localize(dt) return dt # Converts seconds of the day (NOT GPS UTCPOS) to GPS UTC (HHMMSS.SS) @staticmethod def secToUtc(sec): m, s = divmod(sec, 60) h, m = divmod(m, 60) return float("%d%02d%02d" % (h, m, s)) # Converts seconds of the day to TimeTag2 (HHMMSSmmm; i.e. 0.999 sec after midnight = 000000999) @staticmethod def secToTimeTag2(sec): #return float(time.strftime("%H%M%S", time.gmtime(sec))) t = sec * 1000 s, ms = divmod(t, 1000) m, s = divmod(s, 60) h, m = divmod(m, 60) return int("%d%02d%02d%03d" % (h, m, s, ms)) # Converts TimeTag2 (HHMMSSmmm) to seconds @staticmethod def timeTag2ToSec(tt2): t = str(int(tt2)).zfill(9) h = int(t[:2]) m = int(t[2:4]) s = int(t[4:6]) ms = int(t[6:]) # print(h, m, s, ms) return ((h*60)+m)*60+s+(float(ms)/1000.0) # Converts datetime.date and TimeTag2 (HHMMSSmmm) to datetime @staticmethod def timeTag2ToDateTime(dt,tt2): t = str(int(tt2)).zfill(9) h = int(t[:2]) m = int(t[2:4]) s = int(t[4:6]) us = 1000*int(t[6:]) # print(h, m, s, us) # print(tt2) return datetime.datetime(dt.year,dt.month,dt.day,h,m,s,us,tzinfo=datetime.timezone.utc) # Converts datetime to Timetag2 (HHMMSSmmm) @staticmethod def datetime2TimeTag2(dt): h = dt.hour m = dt.minute s = dt.second ms = dt.microsecond/1000 return int("%d%02d%02d%03d" % (h, m, s, ms)) # Converts datetime to Datetag @staticmethod def datetime2DateTag(dt): y = dt.year # mon = dt.month day = dt.timetuple().tm_yday return int("%d%03d" % (y, day)) # Converts HDFRoot timestamp attribute to seconds @staticmethod def timestampToSec(timestamp): timei = timestamp.split(" ")[3] t = timei.split(":") h = int(t[0]) m = int(t[1]) s = int(t[2]) return ((h*60)+m)*60+s # Convert GPRMC Date to Datetag @staticmethod def gpsDateToDatetime(year, gpsDate): date = str(gpsDate).zfill(6) day = int(date[:2]) mon = int(date[2:4]) return datetime.datetime(year,mon,day,0,0,0,0,tzinfo=datetime.timezone.utc) # Add a dataset to each group for DATETIME, as defined by TIMETAG2 and DATETAG # Also screens for nonsense timetags like 0.0 or NaN, and datetags that are not # in the 20th or 21st centuries @staticmethod def rootAddDateTime(node): for gp in node.groups: # print(gp.id) if gp.id != "SOLARTRACKER_STATUS": # No valid timestamps in STATUS timeData = gp.getDataset("TIMETAG2").data["NONE"].tolist() dateTag = gp.getDataset("DATETAG").data["NONE"].tolist() timeStamp = [] for i, timei in enumerate(timeData): # Converts from TT2 (hhmmssmss. UTC) and Datetag (YYYYDOY UTC) to datetime # Filter for aberrant Datetags t = str(int(timei)).zfill(9) h = int(t[:2]) m = int(t[2:4]) s = int(t[4:6]) if (str(dateTag[i]).startswith("19") or str(dateTag[i]).startswith("20")) \ and timei != 0.0 and not np.isnan(timei) \ and h < 60 and m < 60 and s < 60: dt = Utilities.dateTagToDateTime(dateTag[i]) timeStamp.append(Utilities.timeTag2ToDateTime(dt, timei)) else: msg = f"Bad Datetag or Timetag2 found. Eliminating record. {i} : {dateTag[i]} : {timei}" print(msg) Utilities.writeLogFile(msg) gp.datasetDeleteRow(i) dateTime = gp.addDataset("DATETIME") dateTime.data = timeStamp return node # Add a data column to each group dataset for DATETIME, as defined by TIMETAG2 and DATETAG # Also screens for nonsense timetags like 0.0 or NaN, and datetags that are not # in the 20th or 21st centuries @staticmethod def rootAddDateTimeL2(node): for gp in node.groups: if gp.id != "SOLARTRACKER_STATUS": # No valid timestamps in STATUS for ds in gp.datasets: # Make sure all datasets have been transcribed to columns gp.datasets[ds].datasetToColumns() if not 'Datetime' in gp.datasets[ds].columns: timeData = gp.datasets[ds].columns["Timetag2"] dateTag = gp.datasets[ds].columns["Datetag"] timeStamp = [] for i, timei in enumerate(timeData): # Converts from TT2 (hhmmssmss. UTC) and Datetag (YYYYDOY UTC) to datetime # Filter for aberrant Datetags if (str(dateTag[i]).startswith("19") or str(dateTag[i]).startswith("20")) \ and timei != 0.0 and not np.isnan(timei): dt = Utilities.dateTagToDateTime(dateTag[i]) timeStamp.append(Utilities.timeTag2ToDateTime(dt, timei)) else: gp.datasetDeleteRow(i) msg = f"Bad Datetag or Timetag2 found. Eliminating record. {dateTag[i]} : {timei}" print(msg) Utilities.writeLogFile(msg) gp.datasets[ds].columns["Datetime"] = timeStamp gp.datasets[ds].columns.move_to_end('Datetime', last=False) gp.datasets[ds].columnsToDataset() return node # Remove records if values of DATETIME are not strictly increasing # (strictly increasing values required for interpolation) @staticmethod def fixDateTime(gp): dateTime = gp.getDataset("DATETIME").data # Test for strictly ascending values # Not sensitive to UTC midnight (i.e. in datetime format) total = len(dateTime) globalTotal = total if total >= 2: # Check the first element prior to looping over rest i = 0 if dateTime[i+1] <= dateTime[i]: gp.datasetDeleteRow(i) del dateTime[i] # I'm fuzzy on why this is necessary; not a pointer? total = total - 1 msg = f'Out of order timestamp deleted at {i}' print(msg) Utilities.writeLogFile(msg) #In case we went from 2 to 1 element on the first element, if total == 1: msg = f'************Too few records ({total}) to test for ascending timestamps. Exiting.' print(msg) Utilities.writeLogFile(msg) return False i = 1 while i < total: if dateTime[i] <= dateTime[i-1]: ''' BUG?:Same values of consecutive TT2s are shockingly common. Confirmed that 1) they exist from L1A, and 2) sensor data changes while TT2 stays the same ''' gp.datasetDeleteRow(i) del dateTime[i] # I'm fuzzy on why this is necessary; not a pointer? total = total - 1 msg = f'Out of order TIMETAG2 row deleted at {i}' print(msg) Utilities.writeLogFile(msg) continue # goto while test skipping i incrementation. dateTime[i] is now the next value. i += 1 else: msg = f'************Too few records ({total}) to test for ascending timestamps. Exiting.' print(msg) Utilities.writeLogFile(msg) return False if (globalTotal - total) > 0: msg = f'Data eliminated for non-increasing timestamps: {100*(globalTotal - total)/globalTotal:3.1f}%' print(msg) Utilities.writeLogFile(msg) return True # @staticmethod # def epochSecToDateTagTimeTag2(eSec): # dateTime = datetime.datetime.utcfromtimestamp(eSec) # year = dateTime.timetuple()[0] # return # Checks if a string is a floating point number @staticmethod def isFloat(text): try: float(text) return True except ValueError: return False # Check if dataset contains NANs @staticmethod def hasNan(ds): for k in ds.data.dtype.fields.keys(): for x in range(ds.data.shape[0]): if k != 'Datetime': if np.isnan(ds.data[k][x]): return True # else: # if np.isnan(ds.data[k][x]): # return True return False # Check if the list contains strictly increasing values @staticmethod def isIncreasing(l): return all(x<y for x, y in zip(l, l[1:])) @staticmethod def windowAverage(data,window_size): min_periods = round(window_size/2) df=pd.DataFrame(data) out=df.rolling(window_size,min_periods,center=True,win_type='boxcar') # out = [item for items in out for item in items] #flattening doesn't work return out @staticmethod def movingAverage(data, window_size): # Window size will be determined experimentally by examining the dark and light data from each instrument. """ Noise detection using a low-pass filter. https://www.datascience.com/blog/python-anomaly-detection Computes moving average using discrete linear convolution of two one dimensional sequences. Args: ----- data (pandas.Series): independent variable window_size (int): rolling window size Returns: -------- ndarray of linear convolution References: ------------ [1] Wikipedia, "Convolution", http://en.wikipedia.org/wiki/Convolution. [2] API Reference: https://docs.scipy.org/doc/numpy/reference/generated/numpy.convolve.html [3] <NAME>., <NAME>., and <NAME>. 2006. Outlier detection by active learning. In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM Press, New York, 504–509 [4] <NAME>, <NAME> and <NAME> 2009. Anomaly Detection: A Survey Article No. 15 in ACM Computing Surveys""" # window = np.ones(int(window_size))/float(window_size) # Convolve is not nan-tolerant, so use a mask data = np.array(data) mask = np.isnan(data) K = np.ones(window_size, dtype=int) denom = np.convolve(~mask,K) denom = np.where(denom != 0, denom, 1) # replace the 0s with 1s to block div0 error; the numerator will be zero anyway out = np.convolve(np.where(mask,0,data), K)/denom # return np.convolve(data, window, 'same') # Slice out one half window on either side; this requires an odd-sized window return out[int(np.floor(window_size/2)):-int(np.floor(window_size/2))] @staticmethod def darkConvolution(data,avg,std,sigma): badIndex = [] for i in range(len(data)): if i < 1 or i > len(data)-2: # First and last avg values from convolution are not to be trusted badIndex.append(True) elif np.isnan(data[i]): badIndex.append(False) else: # Use stationary standard deviation anomaly (from rolling average) detection for dark data if (data[i] > avg[i] + (sigma*std)) or (data[i] < avg[i] - (sigma*std)): badIndex.append(True) else: badIndex.append(False) return badIndex @staticmethod def lightConvolution(data,avg,rolling_std,sigma): badIndex = [] for i in range(len(data)): if i < 1 or i > len(data)-2: # First and last avg values from convolution are not to be trusted badIndex.append(True) elif np.isnan(data[i]): badIndex.append(False) else: # Use rolling standard deviation anomaly (from rolling average) detection for dark data if (data[i] > avg[i] + (sigma*rolling_std[i])) or (data[i] < avg[i] - (sigma*rolling_std[i])): badIndex.append(True) else: badIndex.append(False) return badIndex @staticmethod def l1dThresholds(band,data,minRad,maxRad,minMaxBand): badIndex = [] for i in range(len(data)): badIndex.append(False) # ConfigFile setting updated directly from the checkbox in AnomDetection. # This insures values of badIndex are false if unthresholded or Min or Max are None if ConfigFile.settings["bL1dThreshold"]: # Only run on the pre-selected waveband if band == minMaxBand: if minRad or minRad==0: # beware falsy zeros... if data[i] < minRad: badIndex[-1] = True if maxRad or maxRad==0: if data[i] > maxRad: badIndex[-1] = True return badIndex # @staticmethod # def rejectOutliers(data, m): # d = np.abs(data - np.nanmedian(data)) # mdev = np.nanmedian(d) # s = d/mdev if mdev else 0. # badIndex = np.zeros((len(s),1),dtype=bool) # badIndex = [s>=m] # return badIndex @staticmethod def interp(x, y, new_x, kind='linear', fill_value=0.0): ''' Wrapper for scipy interp1d that works even if values in new_x are outside the range of values in x''' ''' NOTE: This will fill missing values at the beginning and end of data record with the nearest actual record. This is fine for integrated datasets, but may be dramatic for some gappy ancillary records of lower temporal resolution.''' # If the last value to interp to is larger than the last value interp'ed from, # then append that higher value onto the values to interp from n0 = len(x)-1 n1 = len(new_x)-1 if new_x[n1] > x[n0]: #print(new_x[n], x[n]) # msg = '********** Warning: extrapolating to beyond end of data record ********' # print(msg) # Utilities.writeLogFile(msg) x.append(new_x[n1]) y.append(y[n0]) # If the first value to interp to is less than the first value interp'd from, # then add that lesser value to the beginning of values to interp from if new_x[0] < x[0]: #print(new_x[0], x[0]) # msg = '********** Warning: extrapolating to before beginning of data record ******' # print(msg) # Utilities.writeLogFile(msg) x.insert(0, new_x[0]) y.insert(0, y[0]) new_y = scipy.interpolate.interp1d(x, y, kind=kind, bounds_error=False, fill_value=fill_value)(new_x) return new_y @staticmethod def interpAngular(x, y, new_x, fill_value="extrapolate"): ''' Wrapper for scipy interp1d that works even if values in new_x are outside the range of values in x''' ''' NOTE: Except for SOLAR_AZ and SZA, which are extrapolated, this will fill missing values at the beginning and end of data record with the nearest actual record. This is fine for integrated datasets, but may be dramatic for some gappy ancillary records of lower temporal resolution.''' if fill_value != "extrapolate": # Only extrapolate SOLAR_AZ and SZA, otherwise keep fill values constant # Some angular measurements (like SAS pointing) are + and -. Convert to all + # eliminate NaNs for i, value in enumerate(y): if value < 0: y[i] = 360 + value if np.isnan(value): x.pop(i) y.pop(i) # If the last value to interp to is larger than the last value interp'ed from, # then append that higher value onto the values to interp from n0 = len(x)-1 n1 = len(new_x)-1 if new_x[n1] > x[n0]: #print(new_x[n], x[n]) # msg = '********** Warning: extrapolating to beyond end of data record ********' # print(msg) # Utilities.writeLogFile(msg) x.append(new_x[n1]) y.append(y[n0]) # If the first value to interp to is less than the first value interp'd from, # then add that lesser value to the beginning of values to interp from if new_x[0] < x[0]: #print(new_x[0], x[0]) # msg = '********** Warning: extrapolating to before beginning of data record ******' # print(msg) # Utilities.writeLogFile(msg) x.insert(0, new_x[0]) y.insert(0, y[0]) y_rad = np.deg2rad(y) # f = scipy.interpolate.interp1d(x,y_rad,kind='linear', bounds_error=False, fill_value=None) f = scipy.interpolate.interp1d(x,y_rad,kind='linear', bounds_error=False, fill_value=fill_value) new_y_rad = f(new_x)%(2*np.pi) new_y = np.rad2deg(new_y_rad) return new_y # Cubic spline interpolation intended to get around the all NaN output from InterpolateUnivariateSpline # x is original time to be splined, y is the data to be interpolated, new_x is the time to interpolate/spline to # interpolate.splrep is intolerant of duplicate or non-ascending inputs, and inputs with fewer than 3 points @staticmethod def interpSpline(x, y, new_x): spl = splrep(x, y) new_y = splev(new_x, spl) for i in range(len(new_y)): if np.isnan(new_y[i]): print("NaN") return new_y @staticmethod def plotRadiometry(root, filename, rType, plotDelta = False): dirPath = os.getcwd() outDir = MainConfig.settings["outDir"] # If default output path (HyperInSPACE/Data) is used, choose the root HyperInSPACE path, # and build on that (HyperInSPACE/Plots/etc...) if os.path.abspath(outDir) == os.path.join(dirPath,'Data'): outDir = dirPath # Otherwise, put Plots in the chosen output directory from Main plotDir = os.path.join(outDir,'Plots','L2') if not os.path.exists(plotDir): os.makedirs(plotDir) dataDelta = None ''' Note: If only one spectrum is left in a given ensemble, deltas will be zero for Es, Li, and Lt.''' if rType=='Rrs': print('Plotting Rrs') group = root.getGroup("REFLECTANCE") Data = group.getDataset(f'{rType}_HYPER') if plotDelta: dataDelta = group.getDataset(f'{rType}_HYPER_unc') plotRange = [340, 800] if ConfigFile.settings['bL2WeightMODISA']: Data_MODISA = group.getDataset(f'{rType}_MODISA') if plotDelta: dataDelta_MODISA = group.getDataset(f'{rType}_MODISA_unc') if ConfigFile.settings['bL2WeightMODIST']: Data_MODIST = group.getDataset(f'{rType}_MODIST') if plotDelta: dataDelta_MODIST = group.getDataset(f'{rType}_MODIST_unc') if ConfigFile.settings['bL2WeightVIIRSN']: Data_VIIRSN = group.getDataset(f'{rType}_VIIRSN') if plotDelta: dataDelta_VIIRSN = group.getDataset(f'{rType}_VIIRSN_unc') if ConfigFile.settings['bL2WeightVIIRSJ']: Data_VIIRSJ = group.getDataset(f'{rType}_VIIRSJ') if plotDelta: dataDelta_VIIRSJ = group.getDataset(f'{rType}_VIIRSJ_unc') if ConfigFile.settings['bL2WeightSentinel3A']: Data_Sentinel3A = group.getDataset(f'{rType}_Sentinel3A') if plotDelta: dataDelta_Sentinel3A = group.getDataset(f'{rType}_Sentinel3A_unc') if ConfigFile.settings['bL2WeightSentinel3B']: Data_Sentinel3B = group.getDataset(f'{rType}_Sentinel3B') if plotDelta: dataDelta_Sentinel3B = group.getDataset(f'{rType}_Sentinel3B_unc') if rType=='nLw': print('Plotting nLw') group = root.getGroup("REFLECTANCE") Data = group.getDataset(f'{rType}_HYPER') if plotDelta: dataDelta = group.getDataset(f'{rType}_HYPER_unc') plotRange = [340, 800] if ConfigFile.settings['bL2WeightMODISA']: Data_MODISA = group.getDataset(f'{rType}_MODISA') if plotDelta: dataDelta_MODISA = group.getDataset(f'{rType}_MODISA_unc') if ConfigFile.settings['bL2WeightMODIST']: Data_MODIST = group.getDataset(f'{rType}_MODIST') if plotDelta: dataDelta_MODIST = group.getDataset(f'{rType}_MODIST_unc') if ConfigFile.settings['bL2WeightVIIRSN']: Data_VIIRSN = group.getDataset(f'{rType}_VIIRSN') if plotDelta: dataDelta_VIIRSN = group.getDataset(f'{rType}_VIIRSN_unc') if ConfigFile.settings['bL2WeightVIIRSJ']: Data_VIIRSJ = group.getDataset(f'{rType}_VIIRSJ') if plotDelta: dataDelta_VIIRSJ = group.getDataset(f'{rType}_VIIRSJ_unc') if ConfigFile.settings['bL2WeightSentinel3A']: Data_Sentinel3A = group.getDataset(f'{rType}_Sentinel3A') if plotDelta: dataDelta_Sentinel3A = group.getDataset(f'{rType}_Sentinel3A_unc') if ConfigFile.settings['bL2WeightSentinel3B']: Data_Sentinel3B = group.getDataset(f'{rType}_Sentinel3B') if plotDelta: dataDelta_Sentinel3B = group.getDataset(f'{rType}_Sentinel3B_unc') ''' Could include satellite convolved (ir)radiances in the future ''' if rType=='ES': print('Plotting Es') group = root.getGroup("IRRADIANCE") Data = group.getDataset(f'{rType}_HYPER') if plotDelta: dataDelta = group.getDataset(f'{rType}_HYPER_sd') plotRange = [305, 1140] if rType=='LI': print('Plotting Li') group = root.getGroup("RADIANCE") Data = group.getDataset(f'{rType}_HYPER') if plotDelta: dataDelta = group.getDataset(f'{rType}_HYPER_sd') plotRange = [305, 1140] if rType=='LT': print('Plotting Lt') group = root.getGroup("RADIANCE") Data = group.getDataset(f'{rType}_HYPER') lwData = group.getDataset(f'LW_HYPER') if plotDelta: dataDelta = group.getDataset(f'{rType}_HYPER_sd') # lwDataDelta = group.getDataset(f'LW_HYPER_sd') plotRange = [305, 1140] font = {'family': 'serif', 'color': 'darkred', 'weight': 'normal', 'size': 16, } # Hyperspectral x = [] xLw = [] wave = [] subwave = [] # accomodates Zhang, which deletes out-of-bounds wavebands # For each waveband for k in Data.data.dtype.names: if Utilities.isFloat(k): if float(k)>=plotRange[0] and float(k)<=plotRange[1]: # also crops off date and time x.append(k) wave.append(float(k)) # Add Lw to Lt plots if rType=='LT': for k in lwData.data.dtype.names: if Utilities.isFloat(k): if float(k)>=plotRange[0] and float(k)<=plotRange[1]: # also crops off date and time xLw.append(k) subwave.append(float(k)) # Satellite Bands x_MODISA = [] wave_MODISA = [] if ConfigFile.settings['bL2WeightMODISA'] and (rType == 'Rrs' or rType == 'nLw'): for k in Data_MODISA.data.dtype.names: if Utilities.isFloat(k): if float(k)>=plotRange[0] and float(k)<=plotRange[1]: # also crops off date and time x_MODISA.append(k) wave_MODISA.append(float(k)) x_MODIST = [] wave_MODIST = [] if ConfigFile.settings['bL2WeightMODIST'] and (rType == 'Rrs' or rType == 'nLw'): for k in Data_MODIST.data.dtype.names: if Utilities.isFloat(k): if float(k)>=plotRange[0] and float(k)<=plotRange[1]: # also crops off date and time x_MODIST.append(k) wave_MODIST.append(float(k)) x_VIIRSN = [] wave_VIIRSN = [] if ConfigFile.settings['bL2WeightVIIRSN'] and (rType == 'Rrs' or rType == 'nLw'): for k in Data_VIIRSN.data.dtype.names: if Utilities.isFloat(k): if float(k)>=plotRange[0] and float(k)<=plotRange[1]: # also crops off date and time x_VIIRSN.append(k) wave_VIIRSN.append(float(k)) x_VIIRSJ = [] wave_VIIRSJ = [] if ConfigFile.settings['bL2WeightVIIRSJ'] and (rType == 'Rrs' or rType == 'nLw'): for k in Data_VIIRSJ.data.dtype.names: if Utilities.isFloat(k): if float(k)>=plotRange[0] and float(k)<=plotRange[1]: # also crops off date and time x_VIIRSJ.append(k) wave_VIIRSJ.append(float(k)) x_Sentinel3A = [] wave_Sentinel3A = [] if ConfigFile.settings['bL2WeightSentinel3A'] and (rType == 'Rrs' or rType == 'nLw'): for k in Data_Sentinel3A.data.dtype.names: if Utilities.isFloat(k): if float(k)>=plotRange[0] and float(k)<=plotRange[1]: # also crops off date and time x_Sentinel3A.append(k) wave_Sentinel3A.append(float(k)) x_Sentinel3B = [] wave_Sentinel3B = [] if ConfigFile.settings['bL2WeightSentinel3B'] and (rType == 'Rrs' or rType == 'nLw'): for k in Data_Sentinel3B.data.dtype.names: if Utilities.isFloat(k): if float(k)>=plotRange[0] and float(k)<=plotRange[1]: # also crops off date and time x_Sentinel3B.append(k) wave_Sentinel3B.append(float(k)) total = Data.data.shape[0] maxRad = 0 minRad = 0 cmap = cm.get_cmap("jet") color=iter(cmap(np.linspace(0,1,total))) plt.figure(1, figsize=(8,6)) for i in range(total): # Hyperspectral y = [] dy = [] for k in x: y.append(Data.data[k][i]) if plotDelta: dy.append(dataDelta.data[k][i]) # Add Lw to Lt plots if rType=='LT': yLw = [] # dyLw = [] for k in xLw: yLw.append(lwData.data[k][i]) # if plotDelta: # dy.append(dataDelta.data[k][i]) # Satellite Bands y_MODISA = [] dy_MODISA = [] if ConfigFile.settings['bL2WeightMODISA'] and (rType == 'Rrs' or rType == 'nLw'): for k in x_MODISA: y_MODISA.append(Data_MODISA.data[k][i]) if plotDelta: dy_MODISA.append(dataDelta_MODISA.data[k][i]) y_MODIST = [] dy_MODIST = [] if ConfigFile.settings['bL2WeightMODIST'] and (rType == 'Rrs' or rType == 'nLw'): for k in x_MODIST: y_MODIST.append(Data_MODIST.data[k][i]) if plotDelta: dy_MODIST.append(dataDelta_MODIST.data[k][i]) y_VIIRSN = [] dy_VIIRSN = [] if ConfigFile.settings['bL2WeightVIIRSN'] and (rType == 'Rrs' or rType == 'nLw'): for k in x_VIIRSN: y_VIIRSN.append(Data_VIIRSN.data[k][i]) if plotDelta: dy_VIIRSN.append(dataDelta_VIIRSN.data[k][i]) y_VIIRSJ = [] dy_VIIRSJ = [] if ConfigFile.settings['bL2WeightVIIRSJ'] and (rType == 'Rrs' or rType == 'nLw'): for k in x_VIIRSJ: y_VIIRSJ.append(Data_VIIRSJ.data[k][i]) if plotDelta: dy_VIIRSJ.append(dataDelta_VIIRSJ.data[k][i]) y_Sentinel3A = [] dy_Sentinel3A = [] if ConfigFile.settings['bL2WeightSentinel3A'] and (rType == 'Rrs' or rType == 'nLw'): for k in x_Sentinel3A: y_Sentinel3A.append(Data_Sentinel3A.data[k][i]) if plotDelta: dy_Sentinel3A.append(dataDelta_Sentinel3A.data[k][i]) y_Sentinel3B = [] dy_Sentinel3B = [] if ConfigFile.settings['bL2WeightSentinel3B'] and (rType == 'Rrs' or rType == 'nLw'): for k in x_Sentinel3B: y_Sentinel3B.append(Data_Sentinel3B.data[k][i]) if plotDelta: dy_Sentinel3B.append(dataDelta_Sentinel3B.data[k][i]) c=next(color) if max(y) > maxRad: maxRad = max(y)+0.1*max(y) if rType == 'LI' and maxRad > 20: maxRad = 20 if rType == 'LT' and maxRad > 2: maxRad = 2 if min(y) < minRad: minRad = min(y)-0.1*min(y) if rType == 'LI': minRad = 0 if rType == 'LT': minRad = 0 if rType == 'ES': minRad = 0 # Plot the Hyperspectral spectrum plt.plot(wave, y, c=c, zorder=-1) # Add the Wei QA score to the Rrs plot, if calculated if rType == 'Rrs': if ConfigFile.products['bL2ProdweiQA']: groupProd = root.getGroup("DERIVED_PRODUCTS") score = groupProd.getDataset('wei_QA') QA_note = f"Score: {score.columns['QA_score'][i]}" axes = plt.gca() axes.text(1.0,1.1 - (i+1)/len(score.columns['QA_score']), QA_note, verticalalignment='top', horizontalalignment='right', transform=axes.transAxes, color=c, fontdict=font) # Add Lw to Lt plots if rType=='LT': plt.plot(subwave, yLw, c=c, zorder=-1, linestyle='dashed') if plotDelta: # Generate the polygon for uncertainty bounds deltaPolyx = wave + list(reversed(wave)) dPolyyPlus = [(y[i]+dy[i]) for i in range(len(y))] dPolyyMinus = [(y[i]-dy[i]) for i in range(len(y))] deltaPolyyPlus = y + list(reversed(dPolyyPlus)) deltaPolyyMinus = y + list(reversed(dPolyyMinus)) plt.fill(deltaPolyx, deltaPolyyPlus, alpha=0.2, c=c, zorder=-1) plt.fill(deltaPolyx, deltaPolyyMinus, alpha=0.2, c=c, zorder=-1) # Satellite Bands if ConfigFile.settings['bL2WeightMODISA']: # Plot the MODISA spectrum if plotDelta: plt.errorbar(wave_MODISA, y_MODISA, yerr=dy_MODISA, fmt='.', elinewidth=0.1, color=c, ecolor='black', zorder=3) # ecolor is broken else: plt.plot(wave_MODISA, y_MODISA, 'o', c=c) if ConfigFile.settings['bL2WeightMODIST']: # Plot the MODIST spectrum if plotDelta: plt.errorbar(wave_MODIST, y_MODIST, yerr=dy_MODIST, fmt='.', elinewidth=0.1, color=c, ecolor='black') else: plt.plot(wave_MODIST, y_MODIST, 'o', c=c) if ConfigFile.settings['bL2WeightVIIRSN']: # Plot the VIIRSN spectrum if plotDelta: plt.errorbar(wave_VIIRSN, y_VIIRSN, yerr=dy_VIIRSN, fmt='.', elinewidth=0.1, color=c, ecolor='black') else: plt.plot(wave_VIIRSN, y_VIIRSN, 'o', c=c) if ConfigFile.settings['bL2WeightVIIRSJ']: # Plot the VIIRSJ spectrum if plotDelta: plt.errorbar(wave_VIIRSJ, y_VIIRSJ, yerr=dy_VIIRSJ, fmt='.', elinewidth=0.1, color=c, ecolor='black') else: plt.plot(wave_VIIRSJ, y_VIIRSJ, 'o', c=c) if ConfigFile.settings['bL2WeightSentinel3A']: # Plot the Sentinel3A spectrum if plotDelta: plt.errorbar(wave_Sentinel3A, y_Sentinel3A, yerr=dy_Sentinel3A, fmt='.', elinewidth=0.1, color=c, ecolor='black') else: plt.plot(wave_Sentinel3A, y_Sentinel3A, 'o', c=c) if ConfigFile.settings['bL2WeightSentinel3B']: # Plot the Sentinel3B spectrum if plotDelta: plt.errorbar(wave_Sentinel3B, y_Sentinel3B, yerr=dy_Sentinel3B, fmt='.', elinewidth=0.1, color=c, ecolor='black') else: plt.plot(wave_Sentinel3B, y_Sentinel3B, 'o', c=c) axes = plt.gca() axes.set_title(filename, fontdict=font) # axes.set_xlim([390, 800]) axes.set_ylim([minRad, maxRad]) plt.xlabel('wavelength (nm)', fontdict=font) if rType=='LT': plt.ylabel('LT (LW dashed)', fontdict=font) else: plt.ylabel(rType, fontdict=font) # Tweak spacing to prevent clipping of labels plt.subplots_adjust(left=0.15) plt.subplots_adjust(bottom=0.15) note = f'Interval: {ConfigFile.settings["fL2TimeInterval"]} s' axes.text(0.95, 0.95, note, verticalalignment='top', horizontalalignment='right', transform=axes.transAxes, color='black', fontdict=font) axes.grid() # plt.show() # --> QCoreApplication::exec: The event loop is already running # Save the plot filebasename = filename.split('_') fp = os.path.join(plotDir, '_'.join(filebasename[0:-1]) + '_' + rType + '.png') plt.savefig(fp) plt.close() # This prevents displaying the plot on screen with certain IDEs @staticmethod def plotRadiometryL1D(root, filename, rType): dirPath = os.getcwd() outDir = MainConfig.settings["outDir"] # If default output path (HyperInSPACE/Data) is used, choose the root HyperInSPACE path, # and build on that (HyperInSPACE/Plots/etc...) if os.path.abspath(outDir) == os.path.join(dirPath,'Data'): outDir = dirPath # Otherwise, put Plots in the chosen output directory from Main plotDir = os.path.join(outDir,'Plots','L1D') if not os.path.exists(plotDir): os.makedirs(plotDir) plotRange = [305, 1140] if rType=='ES': print('Plotting Es') group = root.getGroup(rType) Data = group.getDataset(rType) if rType=='LI': print('Plotting Li') group = root.getGroup(rType) Data = group.getDataset(rType) if rType=='LT': print('Plotting Lt') group = root.getGroup(rType) Data = group.getDataset(rType) font = {'family': 'serif', 'color': 'darkred', 'weight': 'normal', 'size': 16, } # Hyperspectral x = [] wave = [] # For each waveband for k in Data.data.dtype.names: if Utilities.isFloat(k): if float(k)>=plotRange[0] and float(k)<=plotRange[1]: # also crops off date and time x.append(k) wave.append(float(k)) total = Data.data.shape[0] maxRad = 0 minRad = 0 cmap = cm.get_cmap("jet") color=iter(cmap(np.linspace(0,1,total))) plt.figure(1, figsize=(8,6)) for i in range(total): # Hyperspectral y = [] for k in x: y.append(Data.data[k][i]) c=next(color) if max(y) > maxRad: maxRad = max(y)+0.1*max(y) if rType == 'LI' and maxRad > 20: maxRad = 20 if rType == 'LT' and maxRad > 10: maxRad = 10 if min(y) < minRad: minRad = min(y)-0.1*min(y) if rType == 'LI': minRad = 0 if rType == 'LT': minRad = 0 if rType == 'ES': minRad = 0 # Plot the Hyperspectral spectrum plt.plot(wave, y, c=c, zorder=-1) axes = plt.gca() axes.set_title(filename, fontdict=font) # axes.set_xlim([390, 800]) axes.set_ylim([minRad, maxRad]) plt.xlabel('wavelength (nm)', fontdict=font) plt.ylabel(rType, fontdict=font) # Tweak spacing to prevent clipping of labels plt.subplots_adjust(left=0.15) plt.subplots_adjust(bottom=0.15) axes.grid() # plt.show() # --> QCoreApplication::exec: The event loop is already running # Save the plot filebasename = filename.split('_') fp = os.path.join(plotDir, '_'.join(filebasename[0:-1]) + '_' + rType + '.png') plt.savefig(fp) plt.close() # This prevents displaying the plot on screen with certain IDEs @staticmethod def plotTimeInterp(xData, xTimer, newXData, yTimer, instr, fileName): ''' Plot results of L1E time interpolation ''' dirPath = os.getcwd() outDir = MainConfig.settings["outDir"] # If default output path (HyperInSPACE/Data) is used, choose the root HyperInSPACE path, # and build on that (HyperInSPACE/Plots/etc...) if os.path.abspath(outDir) == os.path.join(dirPath,'Data'): outDir = dirPath # Otherwise, put Plots in the chosen output directory from Main plotDir = os.path.join(outDir,'Plots','L1E') if not os.path.exists(plotDir): os.makedirs(plotDir) # For the sake of MacOS, need to hack the datetimes into panda dataframes for plotting dfx = pd.DataFrame(data=xTimer, index=list(range(0,len(xTimer))), columns=['x']) # *** HACK: CONVERT datetime column to string and back again - who knows why this works? *** dfx['x'] = pd.to_datetime(dfx['x'].astype(str)) dfy = pd.DataFrame(data=yTimer, index=list(range(0,len(yTimer))), columns=['x']) dfy['x'] = pd.to_datetime(dfy['x'].astype(str)) fileBaseName,_ = fileName.split('.') register_matplotlib_converters() font = {'family': 'serif', 'color': 'darkred', 'weight': 'normal', 'size': 16, } # Steps in wavebands used for plots # step = float(ConfigFile.settings["fL3InterpInterval"]) # this is in nm # This happens prior to waveband interpolation, so each interval is ~3.3 nm ''' To Do: THIS COULD BE SET IN THE CONFIG WINDOW ''' step = 20 # this is in band intervals if instr == 'ES' or instr == 'LI' or instr == 'LT': l = round((len(xData.data.dtype.names)-3)/step) # skip date and time and datetime index = l else: l = len(xData.data.dtype.names)-3 # skip date and time and datetime index = None Utilities.printProgressBar(0, l, prefix = 'Progress:', suffix = 'Complete', length = 50) ticker = 0 if index is not None: for k in xData.data.dtype.names: if index % step == 0: if k == "Datetag" or k == "Timetag2" or k == "Datetime": continue ticker += 1 Utilities.printProgressBar(ticker, l, prefix = 'Progress:', suffix = 'Complete', length = 50) x = np.copy(xData.data[k]).tolist() new_x = np.copy(newXData.columns[k]).tolist() fig = plt.figure(figsize=(12, 4)) ax = fig.add_subplot(1, 1, 1) # ax.plot(xTimer, x, 'bo', label='Raw') ax.plot(dfx['x'], x, 'bo', label='Raw') # ax.plot(yTimer, new_x, 'k.', label='Interpolated') ax.plot(dfy['x'], new_x, 'k.', label='Interpolated') ax.legend() plt.xlabel('Date/Time (UTC)', fontdict=font) plt.ylabel(f'{instr}_{k}', fontdict=font) plt.subplots_adjust(left=0.15) plt.subplots_adjust(bottom=0.15) # plt.savefig(os.path.join('Plots','L1E',f'{fileBaseName}_{instr}_{k}.png')) plt.savefig(os.path.join(plotDir,f'{fileBaseName}_{instr}_{k}.png')) plt.close() index +=1 else: for k in xData.data.dtype.names: if k == "Datetag" or k == "Timetag2" or k == "Datetime": continue ticker += 1 Utilities.printProgressBar(ticker, l, prefix = 'Progress:', suffix = 'Complete', length = 50) x = np.copy(xData.data[k]).tolist() new_x = np.copy(newXData.columns[k]).tolist() fig = plt.figure(figsize=(12, 4)) ax = fig.add_subplot(1, 1, 1) # ax.plot(xTimer, x, 'bo', label='Raw') ax.plot(dfx['x'], x, 'bo', label='Raw') # ax.plot(yTimer, new_x, 'k.', label='Interpolated') ax.plot(dfy['x'], new_x, 'k.', label='Interpolated') ax.legend() plt.xlabel('Date/Time (UTC)', fontdict=font) plt.ylabel(f'{instr}', fontdict=font) plt.subplots_adjust(left=0.15) plt.subplots_adjust(bottom=0.15) plt.savefig(os.path.join(plotDir,f'{fileBaseName}_{instr}_{k}.png')) plt.close() print('\n') @staticmethod def specFilter(inFilePath, Dataset, timeStamp, station=None, filterRange=[400, 700],\ filterFactor=3, rType='None'): dirPath = os.getcwd() outDir = MainConfig.settings["outDir"] # If default output path (HyperInSPACE/Data) is used, choose the root HyperInSPACE path, # and build on that (HyperInSPACE/Plots/etc...) if os.path.abspath(outDir) == os.path.join(dirPath,'Data'): outDir = dirPath # Otherwise, put Plots in the chosen output directory from Main plotDir = os.path.join(outDir,'Plots','L2_Spectral_Filter') if not os.path.exists(plotDir): os.makedirs(plotDir) font = {'family': 'serif', 'color': 'darkred', 'weight': 'normal', 'size': 16, } # Collect each column name ignoring Datetag and Timetag2 (i.e. each wavelength) in the desired range x = [] wave = [] for k in Dataset.data.dtype.names: if Utilities.isFloat(k): if float(k)>=filterRange[0] and float(k)<=filterRange[1]: x.append(k) wave.append(float(k)) # Read in each spectrum total = Dataset.data.shape[0] specArray = [] normSpec = [] # cmap = cm.get_cmap("jet") # color=iter(cmap(np.linspace(0,1,total))) print('Creating plots...') plt.figure(1, figsize=(10,8)) for timei in range(total): y = [] for waveband in x: y.append(Dataset.data[waveband][timei]) specArray.append(y) peakIndx = y.index(max(y)) normSpec.append(y / y[peakIndx]) # plt.plot(wave, y / y[peakIndx], color='grey') normSpec = np.array(normSpec) aveSpec = np.median(normSpec, axis = 0) stdSpec = np.std(normSpec, axis = 0) badTimes = [] badIndx = [] # For each spectral band... for i in range(0, len(normSpec[0])-1): # For each timeseries radiometric measurement... for j, rad in enumerate(normSpec[:,i]): # Identify outliers and negative values for elimination if rad > (aveSpec[i] + filterFactor*stdSpec[i]) or \ rad < (aveSpec[i] - filterFactor*stdSpec[i]) or \ rad < 0: badIndx.append(j) badTimes.append(timeStamp[j]) badIndx = np.unique(badIndx) badTimes = np.unique(badTimes) # Duplicates each element to a list of two elements in a list: badTimes = np.rot90(np.matlib.repmat(badTimes,2,1), 3) # t0 = time.time() for timei in range(total): # for i in badIndx: if timei in badIndx: # plt.plot( wave, normSpec[i,:], color='red', linewidth=0.5, linestyle=(0, (1, 10)) ) # long-dot plt.plot( wave, normSpec[timei,:], color='red', linewidth=0.5, linestyle=(0, (5, 5)) ) # dashed else: plt.plot(wave, normSpec[timei,:], color='grey') # t1 = time.time() # print(f'Time elapsed: {str(round((t1-t0)))} Seconds') plt.plot(wave, aveSpec, color='black', linewidth=0.5) plt.plot(wave, aveSpec + filterFactor*stdSpec, color='black', linewidth=2, linestyle='dashed') plt.plot(wave, aveSpec - filterFactor*stdSpec, color='black', linewidth=2, linestyle='dashed') plt.title(f'Sigma = {filterFactor}', fontdict=font) plt.xlabel('Wavelength [nm]', fontdict=font) plt.ylabel(f'{rType} [Normalized to peak value]', fontdict=font) plt.subplots_adjust(left=0.15) plt.subplots_adjust(bottom=0.15) axes = plt.gca() axes.grid() # Save the plot _,filename = os.path.split(inFilePath) filebasename,_ = filename.rsplit('_',1) if station: fp = os.path.join(plotDir, f'STATION_{station}_{filebasename}_{rType}.png') else: fp = os.path.join(plotDir, f'{filebasename}_{rType}.png') plt.savefig(fp) plt.close() return badTimes @staticmethod def plotIOPs(root, filename, algorithm, iopType, plotDelta = False): dirPath = os.getcwd() outDir = MainConfig.settings["outDir"] # If default output path (HyperInSPACE/Data) is used, choose the root HyperInSPACE path, # and build on that (HyperInSPACE/Plots/etc...) if os.path.abspath(outDir) == os.path.join(dirPath,'Data'): outDir = dirPath # Otherwise, put Plots in the chosen output directory from Main plotDir = os.path.join(outDir,'Plots','L2_Products') if not os.path.exists(plotDir): os.makedirs(plotDir) font = {'family': 'serif', 'color': 'darkred', 'weight': 'normal', 'size': 16, } cmap = cm.get_cmap("jet") # dataDelta = None group = root.getGroup("DERIVED_PRODUCTS") # if iopType=='a': # print('Plotting absorption') if algorithm == "qaa" or algorithm == "giop": plotRange = [340, 700] qaaName = f'bL2Prod{iopType}Qaa' giopName = f'bL2Prod{iopType}Giop' if ConfigFile.products["bL2Prodqaa"] and ConfigFile.products[qaaName]: label = f'qaa_{iopType}' DataQAA = group.getDataset(label) # if plotDelta: # dataDelta = group.getDataset(f'{iopType}_HYPER_delta') xQAA = [] waveQAA = [] # For each waveband for k in DataQAA.data.dtype.names: if Utilities.isFloat(k): if float(k)>=plotRange[0] and float(k)<=plotRange[1]: # also crops off date and time xQAA.append(k) waveQAA.append(float(k)) totalQAA = DataQAA.data.shape[0] colorQAA = iter(cmap(np.linspace(0,1,totalQAA))) if ConfigFile.products["bL2Prodgiop"] and ConfigFile.products[giopName]: label = f'giop_{iopType}' DataGIOP = group.getDataset(label) # if plotDelta: # dataDelta = group.getDataset(f'{iopType}_HYPER_delta') xGIOP = [] waveGIOP = [] # For each waveband for k in DataGIOP.data.dtype.names: if Utilities.isFloat(k): if float(k)>=plotRange[0] and float(k)<=plotRange[1]: # also crops off date and time xGIOP.append(k) waveGIOP.append(float(k)) totalGIOP = DataQAA.data.shape[0] colorGIOP = iter(cmap(np.linspace(0,1,totalGIOP))) if algorithm == "gocad": plotRange = [270, 700] gocadName = f'bL2Prod{iopType}' if ConfigFile.products["bL2Prodgocad"] and ConfigFile.products[gocadName]: # ag label = f'gocad_{iopType}' agDataGOCAD = group.getDataset(label) # if plotDelta: # dataDelta = group.getDataset(f'{iopType}_HYPER_delta') agGOCAD = [] waveGOCAD = [] # For each waveband for k in agDataGOCAD.data.dtype.names: if Utilities.isFloat(k): if float(k)>=plotRange[0] and float(k)<=plotRange[1]: # also crops off date and time agGOCAD.append(k) waveGOCAD.append(float(k)) totalGOCAD = agDataGOCAD.data.shape[0] colorGOCAD = iter(cmap(np.linspace(0,1,totalGOCAD))) # Sg sgDataGOCAD = group.getDataset(f'gocad_Sg') sgGOCAD = [] waveSgGOCAD = [] # For each waveband for k in sgDataGOCAD.data.dtype.names: if Utilities.isFloat(k): if float(k)>=plotRange[0] and float(k)<=plotRange[1]: # also crops off date and time sgGOCAD.append(k) waveSgGOCAD.append(float(k)) # DOC docDataGOCAD = group.getDataset(f'gocad_doc') maxIOP = 0 minIOP = 0 # Plot plt.figure(1, figsize=(8,6)) if algorithm == "qaa" or algorithm == "giop": if ConfigFile.products["bL2Prodqaa"] and ConfigFile.products[qaaName]: for i in range(totalQAA): y = [] # dy = [] for k in xQAA: y.append(DataQAA.data[k][i]) # if plotDelta: # dy.append(dataDelta.data[k][i]) c=next(colorQAA) if max(y) > maxIOP: maxIOP = max(y)+0.1*max(y) # if iopType == 'LI' and maxIOP > 20: # maxIOP = 20 # Plot the Hyperspectral spectrum plt.plot(waveQAA, y, c=c, zorder=-1) # if plotDelta: # # Generate the polygon for uncertainty bounds # deltaPolyx = wave + list(reversed(wave)) # dPolyyPlus = [(y[i]+dy[i]) for i in range(len(y))] # dPolyyMinus = [(y[i]-dy[i]) for i in range(len(y))] # deltaPolyyPlus = y + list(reversed(dPolyyPlus)) # deltaPolyyMinus = y + list(reversed(dPolyyMinus)) # plt.fill(deltaPolyx, deltaPolyyPlus, alpha=0.2, c=c, zorder=-1) # plt.fill(deltaPolyx, deltaPolyyMinus, alpha=0.2, c=c, zorder=-1) if ConfigFile.products["bL2Prodgiop"] and ConfigFile.products[giopName]: for i in range(totalGIOP): y = [] for k in xGIOP: y.append(DataGIOP.data[k][i]) c=next(colorGIOP) if max(y) > maxIOP: maxIOP = max(y)+0.1*max(y) # Plot the Hyperspectral spectrum plt.plot(waveGIOP, y, c=c, ls='--', zorder=-1) if algorithm == "gocad": if ConfigFile.products["bL2Prodgocad"] and ConfigFile.products[gocadName]: for i in range(totalGOCAD): y = [] for k in agGOCAD: y.append(agDataGOCAD.data[k][i]) c=next(colorGOCAD) if max(y) > maxIOP: maxIOP = max(y)+0.1*max(y) # Plot the point spectrum # plt.scatter(waveGOCAD, y, s=100, c=c, marker='*', zorder=-1) plt.plot(waveGOCAD, y, c=c, marker='*', markersize=13, linestyle = '', zorder=-1) # Now extrapolate using the slopes Sg = [] for k in sgGOCAD: Sg.append(sgDataGOCAD.data[k][i]) yScaler = maxIOP*i/totalGOCAD if k == '275': wave = np.array(list(range(275, 300))) ag_extrap = agDataGOCAD.data['275'][i] * np.exp(-1*sgDataGOCAD.data[k][i] * (wave - 275)) plt.plot(wave, ag_extrap, c=[0.9, 0.9, 0.9], ls='--', zorder=-1) plt.text(285, 0.9*maxIOP - 0.12*yScaler, '{} {:.4f}'.format('S275 = ', sgDataGOCAD.data[k][i]), color=c) if k == '300': wave = np.array(list(range(300, 355))) # uses the trailing end of the last extrapolation. ag_extrap = ag_extrap[-1] * np.exp(-1*sgDataGOCAD.data[k][i] * (wave - 300)) plt.plot(wave, ag_extrap, c=[0.9, 0.9, 0.9], ls='--', zorder=-1) plt.text(300, 0.7*maxIOP - 0.12*yScaler, '{} {:.4f}'.format('S300 = ', sgDataGOCAD.data[k][i]), color=c) if k == '350': # Use the 350 slope starting at 355 (where we have ag) wave = np.array(list(range(355, 380))) ag_extrap = agDataGOCAD.data['355'][i] * np.exp(-1*sgDataGOCAD.data[k][i] * (wave - 355)) plt.plot(wave, ag_extrap, c=[0.9, 0.9, 0.9], ls='--', zorder=-1) plt.text(350, 0.5*maxIOP - 0.12*yScaler, '{} {:.4f}'.format('S350 = ', sgDataGOCAD.data[k][i]), color=c) if k == '380': wave = np.array(list(range(380, 412))) ag_extrap = agDataGOCAD.data['380'][i] * np.exp(-1*sgDataGOCAD.data[k][i] * (wave - 380)) plt.plot(wave, ag_extrap, c=[0.9, 0.9, 0.9], ls='--', zorder=-1) plt.text(380, 0.3*maxIOP - 0.12*yScaler, '{} {:.4f}'.format('S380 = ', sgDataGOCAD.data[k][i]), color=c) if k == '412': wave = np.array(list(range(412, 700))) ag_extrap = agDataGOCAD.data['412'][i] * np.exp(-1*sgDataGOCAD.data[k][i] * (wave - 412)) plt.plot(wave, ag_extrap, c=[0.9, 0.9, 0.9], ls='--', zorder=-1) plt.text(440, 0.15*maxIOP- 0.12*yScaler, '{} {:.4f}'.format('S412 = ', sgDataGOCAD.data[k][i]), color=c) # Now tack on DOC plt.text(600, 0.5 - 0.12*yScaler, '{} {:3.2f}'.format('DOC = ', docDataGOCAD.data['doc'][i]) , color=c) axes = plt.gca() axes.set_title(filename, fontdict=font) axes.set_ylim([minIOP, maxIOP]) plt.xlabel('wavelength (nm)', fontdict=font) plt.ylabel(f'{label} [1/m]', fontdict=font) # Tweak spacing to prevent clipping of labels plt.subplots_adjust(left=0.15) plt.subplots_adjust(bottom=0.15) note = f'Interval: {ConfigFile.settings["fL2TimeInterval"]} s' axes.text(0.95, 0.95, note, verticalalignment='top', horizontalalignment='right', transform=axes.transAxes, color='black', fontdict=font) axes.grid() # plt.show() # --> QCoreApplication::exec: The event loop is already running # Save the plot filebasename = filename.split('_') fp = os.path.join(plotDir, '_'.join(filebasename[0:-1]) + '_' + label + '.png') plt.savefig(fp) plt.close() # This prevents displaying the plot on screen with certain IDEs @staticmethod def readAnomAnalFile(filePath): paramDict = {} with open(filePath, newline='') as csvfile: paramreader = csv.DictReader(csvfile) for row in paramreader: paramDict[row['filename']] = [int(row['ESWindowDark']), int(row['ESWindowLight']), \ float(row['ESSigmaDark']), float(row['ESSigmaLight']), float(row['ESMinDark']), float(row['ESMaxDark']), float(row['ESMinMaxBandDark']),float(row['ESMinLight']), float(row['ESMaxLight']),float(row['ESMinMaxBandLight']), int(row['LIWindowDark']), int(row['LIWindowLight']), float(row['LISigmaDark']), float(row['LISigmaLight']), float(row['LIMinDark']), float(row['LIMaxDark']),\ float(row['LIMinMaxBandDark']),float(row['LIMinLight']),\ float(row['LIMaxLight']),float(row['LIMinMaxBandLight']),\ int(row['LTWindowDark']), int(row['LTWindowLight']), float(row['LTSigmaDark']), float(row['LTSigmaLight']), float(row['LTMinDark']), float(row['LTMaxDark']),\ float(row['LTMinMaxBandDark']),float(row['LTMinLight']),\ float(row['LTMaxLight']),float(row['LTMinMaxBandLight']),int(row['Threshold']) ] paramDict[row['filename']] = [None if v==-999 else v for v in paramDict[row['filename']]] return paramDict @staticmethod def deglitchBand(band, radiometry1D, windowSize, sigma, lightDark, minRad, maxRad, minMaxBand): ''' For a given sensor in a given band (1D), calculate the first and second outliers on the light and dark based on moving average filters. Then apply thresholds. This may benefit in the future from eliminating the thresholded values from the moving average filter analysis. ''' if lightDark == 'Dark': # For Darks, calculate the moving average and residual vectors # and the OVERALL standard deviation of the residual over the entire file # First pass avg = Utilities.movingAverage(radiometry1D, windowSize).tolist() residual = np.array(radiometry1D) - np.array(avg) stdData = np.std(residual) badIndex = Utilities.darkConvolution(radiometry1D,avg,stdData,sigma) # Second pass radiometry1D2 = np.array(radiometry1D[:]) radiometry1D2[badIndex] = np.nan radiometry1D2 = radiometry1D2.tolist() avg2 = Utilities.movingAverage(radiometry1D2, windowSize).tolist() residual = np.array(radiometry1D2) -
np.array(avg2)
numpy.array
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Image visual clutter utility functions. """ # ---------------------------------------------------------------------------- # Imports # ---------------------------------------------------------------------------- # Standard library modules from typing import Dict, List, Optional, Tuple, Union # Third-party modules import cv2 import numpy as np from scipy import signal from skimage import transform # ---------------------------------------------------------------------------- # Metadata # ---------------------------------------------------------------------------- __author__ = "<NAME>, <NAME>" __date__ = "2021-08-28" __email__ = "<EMAIL>" __version__ = "1.0" # ---------------------------------------------------------------------------- # Image visual clutter utility functions # ---------------------------------------------------------------------------- def rgb2lab(im: np.ndarray) -> np.ndarray: """ Converts the RGB color space to the CIELab color space. Args: im: Input RGB image Returns: Output Lab image """ im = im / 255.0 # get r,g,b value in the range of [0,1] # the figure from graybar.m and the infromation from the website # http://www.cinenet.net/~spitzak/conversion/whysrgb.html, we can conclude # that our RGB system is sRGB # if RGB system is sRGB mask = im >= 0.04045 im[mask] = ((im[mask] + 0.055) / 1.055) ** 2.4 im[~mask] = im[~mask] / 12.92 # Observer. = 2°, Illuminant = D65 matrix = np.array( [ [0.412453, 0.357580, 0.180423], [0.212671, 0.715160, 0.072169], [0.019334, 0.119193, 0.950227], ] ) c_im = np.dot(im, matrix.T) c_im[:, :, 0] = c_im[:, :, 0] / 95.047 c_im[:, :, 1] = c_im[:, :, 1] / 100.000 c_im[:, :, 2] = c_im[:, :, 2] / 108.833 mask = c_im >= 0.008856 c_im[mask] = c_im[mask] ** (1 / 3) c_im[~mask] = 7.787 * c_im[~mask] + 16 / 116 im_Lab = np.zeros_like(c_im) im_Lab[:, :, 0] = (116 * c_im[:, :, 1]) - 16 im_Lab[:, :, 1] = 500 * (c_im[:, :, 0] - c_im[:, :, 1]) im_Lab[:, :, 2] = 200 * (c_im[:, :, 1] - c_im[:, :, 2]) return im_Lab def normlize(arr: np.ndarray) -> np.ndarray: """ Normalizes the array input between (min, max) -> (0, 255). Args: arr: Ndarray image Returns: Normlized ndarray """ min_min = arr.min() max_max = arr.max() if min_min == max_max: return np.full_like(arr, 255 / 2).astype("uint8") else: return ( (arr - arr.min()) * (1 / (arr.max() - arr.min()) * 255) ).astype("uint8") def conv2( x: np.ndarray, y: np.ndarray, mode: Optional[str] = None ) -> np.ndarray: """ Computes the two-dimensional convolution of matrices x and y. Args: x: First ndarray y: Second ndarray mode: Method of convolution, default=None, if it sets "same" then computes the central part of the convolution Returns: Convolution ndarray of input matrices """ if mode == "same": return np.rot90( signal.convolve2d(np.rot90(x, 2), np.rot90(y, 2), mode=mode), 2 ) else: return signal.convolve2d(x, y) def RRoverlapconv(kernel: np.ndarray, in_: np.ndarray) -> np.ndarray: """ Filters the image in_ with filter kernel, where it only "counts" the part of the filter that overlaps the image. Rescales the filter so its weights which overlap the image sum to the same as the full filter kernel. Args: in_: Input ndarray image kernel: Input ndarray filter kernel Returns: Filtered ndarray of input image with the filter kernel """ # Convolve with the original kernel out = conv2(in_, kernel, mode="same") # Convolve kernel with an image of 1's, of the same size as the input image rect = np.ones_like(in_) overlapsum = conv2(rect, kernel, "same") # Now scale the output image at each pixel by the relative overlap of the filter with the image out =
np.sum(kernel)
numpy.sum
import math import numpy as np class Atom: def __init__(self, atom_string): self.id = int(atom_string[6:11]) self.name = atom_string[11:16].strip() self.alt = atom_string[16] self.resn = atom_string[17:20].strip() self.chain = atom_string[21] self.resi = int(atom_string[22:26]) self.x = float(atom_string[30:38]) self.y = float(atom_string[38:46]) self.z = float(atom_string[46:54]) self.pos = np.array([self.x,self.y,self.z]) self.occ = float(atom_string[54:60]) self.temp_factor = float(atom_string[60:66]) if len(atom_string)>=78: self.elem = atom_string[76:78].strip() def __str__(self): return self.name+"_"+str(self.resi) def __repr__(self): return 'Atom("ATOM %5d%5s %3s %c%4d %8.3f%8.3f%8.3f")' % (self.id, self.name, self.resn, self.chain, self.resi, self.x, self.y, self.z) def pdbString(self): return 'ATOM %5d%5s %3s %c%4d %8.3f%8.3f%8.3f' % (self.id, self.name, self.resn, self.chain, self.resi, self.x, self.y, self.z) def __sub__(self, other): return np.array([self.x-other.x, self.y-other.y, self.z-other.z]) def __add__(self, other): return np.array([self.x+other.x, self.y+other.y, self.z+other.z]) def distance(self, a): return math.sqrt((self.x-a.x)**2 + (self.y-a.y)**2 + (self.z-a.z)**2) def distanceSquared(self, a): return (self.x-a.x)**2 + (self.y-a.y)**2 + (self.z-a.z)**2 class PDBFile: """ A representation of a PDB-file """ def pdbDownload(self,pdb_id): hostname="ftp.wwpdb.org" directory="/pub/pdb/data/structures/all/pdb/" prefix="pdb" suffix=".ent.gz" import os, sys, ftplib, shutil, gzip # Log into server #print "Downloading %s from %s ..." % (pdb_id, hostname) ftp = ftplib.FTP() ftp.connect(hostname) ftp.login() # Download all files in file_list to_get = "%s/%s%s%s" % (directory,prefix,pdb_id.lower(),suffix) to_write = "%s%s" % (pdb_id,suffix) final_name = "%s.pdb" % to_write[:to_write.index(".")] try: ftp.retrbinary("RETR %s" % to_get,open(to_write,"wb").write) f = gzip.open(to_write,'r') g = open(final_name,'w') g.writelines(f.readlines()) f.close() g.close() os.remove(to_write) except ftplib.error_perm: os.remove(to_write) print("ERROR! %s could not be retrieved from PDB!" % to_get) ftp.quit() return None # Log out ftp.quit() return final_name def __init__(self, pdb): """ Initialize a PDBFile object using a PDB-file or PDB-id. If pdb is 4 characters long its assumed to be a PDB-id and the corresponding PDB-file will be downloaded and used. """ self.file_name = pdb self.models = [] cur_model = None if len(pdb)==4: self.file_name = self.pdbDownload(pdb) if self.file_name.endswith(".gz"): import gzip f = gzip.open(self.file_name, "r") lines = map(lambda l: l.decode('ascii'), f.readlines()) else: f = open(self.file_name,'r') lines = f.readlines() for line in lines: if line[0:4] == "ATOM": if cur_model==None: cur_model = [] cur_model.append(Atom(line)) if (line[0:6] == "ENDMDL" or line[0:5] == "MODEL") and cur_model!=None: self.models.append(cur_model) cur_model = None if cur_model!=None: self.models.append(cur_model) f.close() def removeResidues(self, residues): for model in range(len(self.models)): self.models[model] = [ a for a in self.models[model] if not a.resi in residues ] def getAtom(self, res_number, atom_name, model_number = 0): for atom in self.models[model_number]: if atom.resi==res_number and atom.name==atom_name: return atom def getAtomById(self, atom_id): for model in self.models: for atom in model: if atom.id==atom_id: return atom def getAtoms(self, model_number = 0): return self.models[model_number] def getAtomsInResi(self, resi, model_number = 0): ret = [] for atom in self.models[model_number]: if atom.resi==resi: ret.append(atom) return ret def getResidues(self, model_number = 0): ''' Return a sorted list of all residue numbers in this structure ''' ret = set() for atom in self.models[model_number]: ret.add(atom.resi) return sorted(list(ret)) def getResidueIDsandNames(self, model_number = 0): ''' Return a sorted list of all residue numbers and names in this structure ''' ret = set() for atom in self.models[model_number]: ret.add((atom.resi,atom.resn)) return sorted(list(ret)) def getChains(self, model_number = 0): ''' Return a set of unique chain identifiers ''' return set(map(lambda a: a.chain, self.models[model_number])) def getSequence(self, model_number = 0): ''' Get the sequence of this structure. Currently only works for RNA (single-char resn) ''' protresnmap={'ALA':'A','ARG':'R','ASN':'N','ASP':'D','ASX':'B','CYS':'C','GLU':'E','GLN':'Q','GLX':'Z','GLY':'G','HIS':'H','ILE':'I','LEU':'L','LYS':'K','MET':'M','PHE':'F','PRO':'P','SER':'S','THR':'T','TRP':'W','TYR':'Y','VAL':'V'} ret = '' prevResi = -1000 for atom in self.models[model_number]: if prevResi==-1000 or prevResi+1==atom.resi: if len(atom.resn)==1: #Its RNA/DNA: Just use the resn ret+=atom.resn else: #Its probably protein. Use the resn map if atom.resn in protresnmap: ret+=protresnmap[atom.resn] else: ret+='?' prevResi=atom.resi else: while prevResi<atom.resi: ret+='_' prevResi+=1 return ret def bFactorList(self, model_number = 0, names=["C4'","CA"],resis=None): """ Get a list of b-factors number of atoms with one of the specified names, an optional list of residues that can limit b factors to specified residues only, useful for comparison across non-identical sequences or with missing loops. """ ret =[] for atom in self.models[model_number]: if names and atom.name not in names: continue if resis and atom.resi not in resis: continue ret.append(atom.temp_factor) return ret def coordMatrix(self, model_number = 0, names=["C4'","CA"],resis=None): """ Get a coordinate-matrix of shape (a, 3) where a is the number of atoms with one of the specified names. New: an optional list of residues can limit the coordinate Matrix to specified residues only, useful for comparison across non-identical sequences or with missing loops. """ ret = np.zeros( shape=( len(self.models[model_number]) , 3 ) ) a = 0 for atom in self.models[model_number]: if names and atom.name not in names: continue if resis and atom.resi not in resis: continue ret[a][0] = atom.x ret[a][1] = atom.y ret[a][2] = atom.z a+=1 ret.resize(a,3) return ret def rmsd(self, pdbFile, model1=0, model2=0, names=None): """ Return the smallest root-mean-square-deviation between coordinates in self and pdbFile. If names is None, then all atoms are used. """ crds1 = self.coordMatrix(model1, names=names) crds2 = pdbFile.coordMatrix(model2, names=names) assert(crds1.shape[1] == 3) if crds1.shape[0] != crds2.shape[0]: print("Structure 1 size does not match structure 2 (", crds1.shape[0], "vs", crds2.shape[0], ")") assert(crds1.shape == crds2.shape) n = np.shape(crds1)[0] # Move crds1 to origo avg1 =
np.zeros(3)
numpy.zeros
import warnings import numpy as np import matplotlib.pyplot as plt def Watt2dBm(x): ''' converts from units of watts to dBm ''' return 10.*np.log10(x*1000.) def dBm2Watt(x): ''' converts from units of watts to dBm ''' return 10**(x/10.) /1000. class plotting(object): ''' some helper functions for plotting ''' def plotall(self): real = self.z_data_raw.real imag = self.z_data_raw.imag real2 = self.z_data_sim.real imag2 = self.z_data_sim.imag plt.subplot(221) plt.plot(real,imag,label='rawdata') plt.plot(real2,imag2,label='fit') plt.xlabel('Re(S21)') plt.ylabel('Im(S21)') plt.legend() plt.subplot(222) plt.plot(self.f_data*1e-9,np.absolute(self.z_data_raw),label='rawdata') plt.plot(self.f_data*1e-9,np.absolute(self.z_data_sim),label='fit') plt.axvline(x=self.fitresults['fr']*1e-9, ymin=0, ymax=1,color='red') plt.xlabel('f (GHz)') plt.ylabel('|S21|') plt.legend() plt.subplot(223) plt.plot(self.f_data*1e-9,np.angle(self.z_data_raw),label='rawdata') plt.plot(self.f_data*1e-9,np.angle(self.z_data_sim),label='fit') plt.xlabel('f (GHz)') plt.ylabel('arg(|S21|)') plt.legend() plt.subplot(224) text = "fr= %f GHz"%self.fitresults['fr'] plt.text(5,5,text,fontsize=20,color="red",verticalalignment ='top', horizontalalignment ='center',bbox ={'facecolor':'grey', 'pad':10}) plt.xlim([0,10]) plt.ylim([0,10]) plt.show() def plotcalibrateddata(self): real = self.z_data.real imag = self.z_data.imag plt.subplot(221) plt.plot(real,imag,label='rawdata') plt.xlabel('Re(S21)') plt.ylabel('Im(S21)') plt.legend() plt.subplot(222) plt.plot(self.f_data*1e-9,np.absolute(self.z_data),label='rawdata') plt.xlabel('f (GHz)') plt.ylabel('|S21|') plt.legend() plt.subplot(223) plt.plot(self.f_data*1e-9,np.angle(self.z_data),label='rawdata') plt.xlabel('f (GHz)') plt.ylabel('arg(|S21|)') plt.legend() plt.show() def plotrawdata(self): real = self.z_data_raw.real imag = self.z_data_raw.imag plt.subplot(221) plt.plot(real,imag,label='rawdata') plt.xlabel('Re(S21)') plt.ylabel('Im(S21)') plt.legend() plt.subplot(222) plt.plot(self.f_data*1e-9,np.absolute(self.z_data_raw),label='rawdata') plt.xlabel('f (GHz)') plt.ylabel('|S21|') plt.legend() plt.subplot(223) plt.plot(self.f_data*1e-9,np.angle(self.z_data_raw),label='rawdata') plt.xlabel('f (GHz)') plt.ylabel('arg(|S21|)') plt.legend() plt.show() class save_load(object): ''' procedures for loading and saving data used by other classes ''' def _ConvToCompl(self,x,y,dtype): ''' dtype = 'realimag', 'dBmagphaserad', 'linmagphaserad', 'dBmagphasedeg', 'linmagphasedeg' ''' if dtype=='realimag': return x+1j*y elif dtype=='linmagphaserad': return x*np.exp(1j*y) elif dtype=='dBmagphaserad': return 10**(x/20.)*np.exp(1j*y) elif dtype=='linmagphasedeg': return x*np.exp(1j*y/180.*np.pi) elif dtype=='dBmagphasedeg': return 10**(x/20.)*np.exp(1j*y/180.*np.pi) else: warnings.warn("Undefined input type! Use 'realimag', 'dBmagphaserad', 'linmagphaserad', 'dBmagphasedeg' or 'linmagphasedeg'.", SyntaxWarning) def add_data(self,f_data,z_data): self.f_data = np.array(f_data) self.z_data_raw = np.array(z_data) def cut_data(self,f1,f2): def findpos(f_data,val): pos = 0 for i in range(len(f_data)): if f_data[i]<val: pos=i return pos pos1 = findpos(self.f_data,f1) pos2 = findpos(self.f_data,f2) self.f_data = self.f_data[pos1:pos2] self.z_data_raw = self.z_data_raw[pos1:pos2] def add_fromtxt(self,fname,dtype,header_rows,usecols=(0,1,2),fdata_unit=1.,delimiter=None): ''' dtype = 'realimag', 'dBmagphaserad', 'linmagphaserad', 'dBmagphasedeg', 'linmagphasedeg' ''' data =
np.loadtxt(fname,usecols=usecols,skiprows=header_rows,delimiter=delimiter)
numpy.loadtxt
from .ldft_model import LdftModel import numpy as np import scipy.optimize as op import matplotlib.pyplot as plt from functools import reduce class LG2dAOHighl(LdftModel): """This class describes a single component lattice gas in 2d with sticky next neighbour attractions on a simple cubic lattice. The description is done within the framework of lattice density functional theory (ldft). The free energy functional was constructed by translating the model to the Asakura-Oosawa (AO) model and then setting up the functional of the resulting colloid-polymer dispersion by the Highlander version of dft. Therefor this class works with three species instead of one, namely the species of the extended AO-model (colloid, polymer clusters species accounting for attraction in x-direction and polymer for the attraction in y-direction). The free energy functional is the one for the three species. It differs from the free energy functional of the AO-model just by a correction term accounting for the zero- and one-body interaction of the polymers. If one wants the free energy of the lattice gas, one would have to calculate the semi-grand potential of the previous free energy, where the polymer clusters are treated grand-canonically and the colloids canonically. In this class extra functions are supported for this. The colloids correspond to the species in the lattice gas. Parameters ---------- size : `tuple` of `int` Shape of the systems simulation box. Expects a `Tuple` of two integers, each for one dimensional axis. epsi : `float` Attraction strength of the lattice gas particles (multiplied with the inverse temperature to make it's dimension 1). From this the value of the chemical potential of the polymer clusters is calculated. mu_fix_c : `bool`, optional: default = False Determines whether or not the system is treated canonical or grand canonical. Meant is the lattice gas system. This parameter therefore only steers the colloid-species. The others are set `True` by default. `False` for canonical. mu_c : `float`, optional: default = `None` The chemical potential for the colloid species (multiplied with the inverse temperature to make it's dimension 1). Just required when ``mu_fix==True``. The chemical potential of the polymer clusters is determined by the value of ``epsi``. dens_c : `float`, optional: default = `None` The average density of the colloids. Just required when ``mu_fix``==`False`. The average density of the polymer clusters is not required, as for those ``mu_fix`` is set `True`. v_ext_c : `numpy.ndarray`, optional: default=`None` An external potential for the colloids. Shape must be of the same shape as chosen in ``size``. This class does not consider the possibility of sticky walls. Therefore the external potential of polymers is set zero by default. bound_cond : `string`, optional: default='periodic' The boundary condition. Supports 'periodic' for periodic boundary conditions and '11_if' for a 45° tilted system with respect to the lattice. The latter is for creating slab interface with (11) orientation. If '11_if' is chosen then one dimension has to be chosen twice as the other dimension in the ``size`` parameter e.g. (64, 128). Default value is 'periodic'. r : `List` of `np.array`; Optional: default = `None` Density profile for all three species arranged in a `List`. Choose `None` in case you hand over the ``r_hist``-parameter or in case you do not want to set the variable yet. r_hist : `List` of `List` of `np.array`; Optional: default = `None` Picard-history of a density profile. It contains the density profiles for certain picard-steps of a system which has already been evolved through picard iteration. Caution! Every entry is of the format of the ``_r``-instance variable, which is a list itself containing the profile for each species. Therefore in our case the list is of length one. Use `None` if the system has no history yet. err_hist : `List` of `Tuple` of `Float`; Optional: default = `None` Contains the error at the picard-steps corresponding to the entries of `r_hist`. The entries are tuples containing an error for every species. Use `None` if no history available. it_hist : `List`; Optional: default = `None` List of the picard-steps corresponding to the density profiles at the ``r_hist``-parameter. Use `None` if no history available. Note: if ``r_hist`` is given then also this argument should be assigned with an appropriate list. """ def __init__(self, size, epsi, mu_fix_c=False, mu_c=None,\ dens_c=None, v_ext_c=None, bound_cond='periodic', r=None,\ r_hist=None, err_hist=None, it_hist=None): mu_pc=self.translate_epsi_to_mu_pc(epsi) v_ext_pc = np.zeros(size) v_ext_c = v_ext_pc if type(v_ext_c)==type(None) else v_ext_c super().__init__(size=size, mu_fix=[mu_fix_c, True, True], mu=[mu_c, mu_pc, mu_pc], dens=[dens_c, None, None], v_ext=[v_ext_c, v_ext_pc, v_ext_pc], r=r, r_hist=r_hist, err_hist=err_hist, it_hist=it_hist, bound_cond=bound_cond) def __str__(self): descrLG2dHighl = 'This is a Lattice gas described with lattice'\ +' DFT. It was translated to the AO-model and the'\ +' functional was constructed by the Highlander method'\ +' It is an object of the Type \'LG2dAOHighl\' and has'\ +' the following properties:' epsiStr='{0:<40s}: {1}\n'.format('Attr. strength \'epsi\'',\ self.epsi) motherClass = 'It inherits from \'LdftModel\', with the'\ +' following properties:' descrLdftModel=super().__str__() return descrLG2dHighl+'\n\n'+epsiStr+'\n'+motherClass+\ '\n\n'+descrLdftModel #################################################################### #Protected descriptors for internal use. These are for a more #convenient addressing of the species specific instance variables. #Important to notice: do not override the protected variables of the #super class LdftModel. Otherwise the functionality of the instance #methods in LdftModel can not be secured. #################################################################### @property def _mu_c(self): """The chemical potential of the colloid species (times the inverse temperature to make its dimension 1) (`float`, read-only). """ return self._mu[0] @property def _mu_pc1(self): """The chemical potential of the polymer species in x-direction (times the inverse temperature to make its dimension 1). (`float`, read-only) """ return self._mu[1] @property def _mu_pc2(self): """The chemical potential of the polymer species in y-direction (times the inverse temperature to make its dimension 1). (`float`, read-only) """ return self._mu[2] @property def _dens_c(self): """The average density of the colloid species (`float`, read-only). """ return self._dens[0] @property def _dens_pc1(self): """The average density of the polymer species in x-direction (`float`, read-only). """ return self._dens[1] @property def _dens_pc2(self): """The average density of the polymer species in x-direction (`float`, read-only). """ return self._dens[2] @property def _v_ext_c(self): """The external potential acting on the colloids (`np.array`, read-only) """ return self._v_ext[0] @property def _v_ext_pc1(self): """The external potential acting on the polymer clusters in x-direction. (`np.array`, read-only) """ return self._v_ext[1] @property def _v_ext_pc2(self): """The external potential acting on the polymer clusters in y-direction. (`np.array`, read-only) """ return self._v_ext[2] @property def _r_c(self): """The density profile of the colloid species. (`numpy.ndarray`, read-only) """ return self._r[0] @property def _r_pc1(self): """The density profile of the polymer species in x-direction. (`numpy.ndarray`, read-only) """ return self._r[1] @property def _r_pc2(self): """The density profile of the polymer species in y-direction. (`numpy.ndarray`, read-only) """ return self._r[2] #################################################################### #Public descriptors. These are for the user to access the variables #of interest. Some are already defined in the super class. Some of #them are reused, but others are overwritten. #################################################################### @property def epsi(self): """The attraction strength between the lattice-particles of the lattice gas. (`Float`, read-only) """ return self.translate_mu_pc_to_epsi(self._mu_pc1) @property def mu_c(self): """The chemical potential of the colloids (times the inverse temperature to make its dimension 1). It is equals the chemical potential of the particles of the lattice gas. (`float`) """ return self._mu[0] @mu_c.setter def mu_c(self, mu_c): self._mu[0]=mu_c mu_pc1=_mu_pc1 """The chemical potential of the polymer-cluster in x-direction (times the inverse temperature to make its dimension 1). (`float`, read-only) """ mu_pc2=_mu_pc2 """The chemical potential of the polymer-cluster in y-direction (times the inverse temperature to make its dimension 1). (`float`, read-only) """ @LdftModel.mu.setter def mu(self, mu): print('This setter has been deactivated in favour for \`mu_c\`') @property def dens_c(self): """The average density of the colloids. It is equals the average density in the lattice gas. (`float`) """ return self._dens[0] dens_pc1=_dens_pc1 """The average density of the polymer clusters in x-direction. (`float`, read-only) """ dens_pc2=_dens_pc2 """The average density of the polymer clusters in x-direction. (`float`, read-only) """ @LdftModel.dens.setter def dens(self, dens): print('This setter has been deactivated in favour for \ \`dens_c\`') @property def mu_fix_c(self): """Flag which determines Wether the colloids (a.k. the particles of the lattice gas) are treated canonical (`False`) or grand canonical (`True`). (`Bool`) """ return self._mu_fix[0] @mu_fix_c.setter def mu_fix_c(self, mu_fix_c): self._mu_fix[0]=mu_fix_c @LdftModel.mu_fix.setter def mu_fix(self, mu_fix): print('This setter has been deactivated in favour for \ \`mu_fix_c\`') @property def v_ext_c(self): """External potential acting on the colloids (a.k. the particles of the lattice gas). (`np.array`) """ return self._v_ext[0] @v_ext_c.setter def v_ext_c(self, v_ext_c): self._v_ext[0]=v_ext_c @LdftModel.v_ext.setter def v_ext(self, v_ext): print('This setter has been deactivated in favour for \ \`v_ext_c\`') @property def r_c(self): """The density profile of the colloids (a.k. the particles of the lattice gas). (`np.array`, read-only) """ return self._r[0] r_pc1=_r_pc1 """The density profile of the polymer clusters in x-direction. (`np.array`, read-only) """ r_pc2=_r_pc2 """The density profile of the polymer clusters in y-direction. (`np.array`, read-only) """ @property def r_c_hist(self): """Iteration history of the density profile of the colloids (a.k. the particles of the lattice gas). (`List`, read-only) """ r_c_hist = [r[0] for r in self._r_hist] return r_c_hist @property def err_c_hist(self): """Iteration history of the picard-error at the colloidal density profile. (`List`, read-only) """ err_hist =[err[0] for err in self._err_hist] return err_hist #################################################################### #Map the lattice gas to the AO-model: #################################################################### @staticmethod def translate_epsi_to_mu_pc(epsi): """Maps the attraction strength of the lattice gas ``epsi`` to the corresponding polymer cluster chemical potential. Parameters ---------- epsi : `float` The attraction strength (multiplied with the inverse temperature to make the quantity dimensionless). Returns ------- mu_pc : The chemical potential (multiplied with the inverse temperature to make the quantity dimensionless). (`float`) """ mu_pc=np.log(np.exp(epsi)-1) return mu_pc @staticmethod def translate_mu_pc_to_epsi(mu_pc): """Maps the polymer cluster chemical potential to the attraction strength of the lattice gas ``epsi``. Parameters ---------- mu_pc : `float` The polymer chemical potential (multiplied with the inverse temperature to make the quantity dimensionless). Returns ------- epsi : The attraction strength (multiplied with the inverse temperature to make the quantity dimensionless). (`float`) """ epsi=np.log(np.exp(mu_pc)+1) return epsi #################################################################### #The inhomogeneous functional: #In this section all the functions concerning the model specific #free energy functional are defined. #################################################################### def _cal_n(self): """Calculates the weighted densities necessary for the calculation of the free energy and the excess chemical potential. Returns ------- Result : `tuple` of `numpy.ndaray` """ n1 = self._r_c + self._r_pc1 n2 = self._boundary_roll(self._r_c, -1, axis=1) + self._r_pc1 n3 = self._r_c + self._r_pc2 n4 = self._boundary_roll(self._r_c, -1, axis=0) + self._r_pc2 n5 = self._r_pc1 n6 = self._r_pc2 n7 = self._r_c return n1, n2, n3, n4, n5, n6, n7 def _cal_Phi_ex_AO(self): """Calculates the excess free energy of the AO-model. Returns ------- Result : `np.array` Free energy density of the AO-model. """ n=self._cal_n() n1=n[0] n2=n[1] n3=n[2] n4=n[3] n5=n[4] n6=n[5] n7=n[6] Phi0=self._cal_Phi_0 Phi_ex = Phi0(n1)+Phi0(n2)+Phi0(n3)+Phi0(n4)-Phi0(n5)-Phi0(n6)\ -3*Phi0(n7) return Phi_ex def cal_F(self): """Calculates the free energy of the three component system. It differs from the free energy functional of the AO-model just by a correction term accounting for the zero- and one-body interaction of the polymers (see description of the class). For getting the free energy of the lattice gas use ``cal_F_lg``, which is the semi-grand potential, where the polymer clusters are treated grand canonically and the colloids canonically. Returns ------- Result : `float` Free energy of the three component system (times the inverse temperature to make the results dimension 1). """ z_pc1 = np.exp(self._mu_pc1) z_pc2 = np.exp(self._mu_pc2) r_c = self._r_c r_pc1 = self._r_pc1 r_pc2 = self._r_pc2 Phi_id = self._cal_Phi_id() Phi_ex = self._cal_Phi_ex_AO() F_id = np.sum(Phi_id) F_ex_AO = np.sum(Phi_ex) F = (F_id + F_ex_AO - np.log(z_pc1+1) *np.sum(-1+r_c+self._boundary_roll(r_c, -1, axis=1)) - np.log(z_pc2+1) *np.sum(-1+r_c+self._boundary_roll(r_c, -1, axis=0))) return F def cal_F_lg(self): """Calculates the free energy of the lattice gas. If ``self.mu_fix==False`` this should give the same result as the ``cal_semi_Om``-function. Returns ------- Result : `float` Free energy of the lattice gas. """ F_lg = self.cal_F() mu_pc1 = self._mu_pc1 mu_pc2 = self._mu_pc2 r_pc1 = self._r_pc1 r_pc2 = self._r_pc2 F_lg -= (mu_pc1*np.sum(r_pc1)+mu_pc2*np.sum(r_pc2)) return F_lg @LdftModel._RespectBoundaryCondition() def cal_mu_ex(self): n = self._cal_n() n1=n[0] n2=n[1] n3=n[2] n4=n[3] n5=n[4] n6=n[5] n7=n[6] z_pc = np.exp(self._mu_pc1) mu_c_ex = np.log((1-n1)*(1-self._boundary_roll(n2, 1, axis=1))\ *(1-n3)*(1-self._boundary_roll(n4, 1, axis=0))\ /(1-n7)**3) + 4*np.log(z_pc+1) mu_pc1_ex = np.log((1-n1)*(1-n2)/(1-n5)) mu_pc2_ex = np.log((1-n3)*(1-n4)/(1-n6)) return mu_c_ex, mu_pc1_ex, mu_pc2_ex #################################################################### #The homogeneous methods: #The following section contains all the methods concerning the bulk #properties of the system. #################################################################### @classmethod def _cal_bulk_r_pc(cls, r_c, epsi): """Calculates the bulk polymer cluster density in dependence of the colloid density and the chosen attraction strength Parameters ---------- r_c : `float` or `np.ndarray` The colloid density. epsi : `float` Attraction strength (times inverse temperature). Returns ------- r_pc : `float` or `np.ndarray` The polymer cluster density. """ mu_pc = cls.translate_epsi_to_mu_pc(epsi) z_pc = np.exp(mu_pc) r_pc = ((1+2*z_pc*(1-r_c))/(2*(z_pc+1)) - 1/(2*(z_pc+1))*np.sqrt((1+2*z_pc*(1-r_c))**2 - 4*z_pc*(z_pc+1)*(1-r_c)**2)) return r_pc @classmethod def _cal_bulk_dr_pc(cls, r_c, epsi): """Calculates the derivative of the bulk polymer cluster density with respect to the colloidal density in dependence of the colloid density and the chosen attraction strength Parameters ---------- r_c : `float` or `np.ndarray` The colloid density. epsi : `float` Attraction strength (times inverse temperature). Returns ------- dr_pc : `float` or `np.ndarray` The derivative of the polymer cluster density. """ mu_pc = cls.translate_epsi_to_mu_pc(epsi) z_pc = np.exp(mu_pc) dr_pc = -z_pc/(z_pc+1)\ *(1+(1-2*r_c)/np.sqrt(4*z_pc*(1-r_c)*r_c+1)) return dr_pc @classmethod def cal_bulk_mu_lg(cls, r_c, epsi): """Calculates the chemical potential for a bulk lattice gas. Parameters ---------- r_c : `Float` or `np.ndarray` The colloidal density. epsi : `Float` Attraction strength Returns ------- mu : `Float` or `np.ndarray` The chemical potential for the lattice gas. """ r_pc = cls._cal_bulk_r_pc(r_c, epsi) mu_pc = cls.translate_epsi_to_mu_pc(epsi) z_pc = np.exp(mu_pc) mu_c = (np.log(r_c) +4*cls._cal_dPhi_0(r_c+r_pc) -3*cls._cal_dPhi_0(r_c)-4*np.log(z_pc+1)) return mu_c @classmethod def cal_bulk_dmu_lg(cls, r_c, epsi): """Calculates the derivative of the chemical potential from the bulk lattice gas with respect to the colloidal density. Parameters ---------- r_c : `Float` or `np.ndarray` The colloidal density. epsi : `Float` Attraction strength Returns ------- dmu : `Float` or `np.ndarray` The derivative of the chemical potential from the lattice gas. """ r_pc = cls._cal_bulk_r_pc(r_c, epsi) dr_pc = cls._cal_bulk_dr_pc(r_c, epsi) mu_pc = cls.translate_epsi_to_mu_pc(epsi) z_pc = np.exp(mu_pc) dmu = 1/r_c + 4*cls._cal_d2Phi_0(r_c+r_pc)*(1+dr_pc)\ -3*cls._cal_d2Phi_0(r_c) return dmu @classmethod def _cal_bulk_f_AO_id(cls, r_c, r_pc): """Calculates the ideal gas part of the free energy density of a bulk AO-system under given colloid and polymer cluster density. Parameters ---------- r_c : `float` Colloid density r_pc : `float` Polymer cluster density Returns ------- f_id : `float` The idea gas part of the free energy density. """ f_id = r_c*(np.log(r_c)-1) +2*r_pc*(np.log(r_pc)-1) return f_id @classmethod def _cal_bulk_f_AO_ex(cls, r_c, r_pc): """Calculates the excess part of the free energy density of a bulk AO-system under given colloid and polymer cluster density. Parameters ---------- r_c : `float` Colloid density r_pc : `float` Polymer cluster density Returns ------- f_ex : `float` The excess part of the free energy density. """ n1 = n2 = n3 = n4= r_c+r_pc n5 = n6 = r_pc n7 = r_c f_ex = (cls._cal_Phi_0(n1)+cls._cal_Phi_0(n2)+cls._cal_Phi_0(n3) +cls._cal_Phi_0(n4)-3*cls._cal_Phi_0(n7) -cls._cal_Phi_0(n5)-cls._cal_Phi_0(n6)) return f_ex @classmethod def cal_bulk_f_lg(cls, r_c, epsi): """Calculates the free energy density of the bulk lattice gas under given density. (The function is the same as in ``cal_F_lg`` but simplified for bulk systems.) Parameters ---------- r_c: `float` or `np.ndarray` Density epsi: `float` Attraction strength (times inverse temperature) Returns ------- f : `float` or `np.ndarray` The free energy density of a bulk lattice gas. """ r_pc = cls._cal_bulk_r_pc(r_c, epsi) f_AO_id = cls._cal_bulk_f_AO_id(r_c, r_pc) f_AO_ex = cls._cal_bulk_f_AO_ex(r_c, r_pc) mu_pc = cls.translate_epsi_to_mu_pc(epsi) z_pc = np.exp(mu_pc) f_tilde = f_AO_id+f_AO_ex-2*np.log(z_pc+1)*(2*r_c-1) f_eff = f_tilde-2*r_pc*np.log(z_pc) return f_eff @classmethod def cal_bulk_om_lg(cls, r, epsi): """Calculates the grand potential density for a bulk lattice gas under given densities. Parameters ---------- r : `float` or `np.ndarray` The density. epsi : `float` The attraction strength (times inverse temperature). Returns ------- om : `Float` The grand potential density """ f = cls.cal_bulk_f_lg(r, epsi) mu = cls.cal_bulk_mu_lg(r, epsi) om = f-mu*r return om @classmethod def cal_bulk_p(cls, r, epsi): """Calculates the pressure of a bulk lattice gas under given density. Parameters ---------- r : `float` or `np.ndarray` The density. epsi : `float` The attraction strength (times inverse temperature). Returns ------- The pressure : `Float` """ p = -cls.cal_bulk_om_lg(r, epsi) return p @classmethod def _cal_difMu(cls, r_c, *args): """Calculates the difference between a certain chemical potential of the lattice gas and the chemical potential belonging to a certain density. This is a help-function for the function ``cal_bulk_coex_dens``. Parameters ---------- r_c : `float` The colloid density of the system *args: First argument: Attraction strength (times inverse temperature). (`float`) Second argument: The reference chemical potential which the chemical potential for at density r_c should be compared to. (`float`) Returns ------- difMu : `float` The difference between the two colloidal chem. pot. """ epsi = args[0] mu_c = args[1] mu = cls.cal_bulk_mu_lg(r_c, epsi) return mu-mu_c @classmethod def cal_bulk_coex_dens(cls, mu, epsi, init_min=0.01, init_max=0.99): """Calculates the coexisting densities of a bulk system lattice gas system under given chemical potential. Parameters ---------- mu : `Float` The chemical potential of the lattice gas. epsi : `Float` The attraction strength (times inverse temperature). Returns ------- r_coex : `Tuple` The coexisting densities arranged in a tuple of the shape (vapour_dens, liquid_dens) """ def dmu(rc, *args): epsi = args[0] mu_c = args[1] return np.diag(cls.cal_bulk_dmu_lg(rc, epsi)) if (init_max-init_min < 0.5 or init_min<=0 or init_max>=1 or abs(init_max+init_min-1)>0.01): init_min=0.01 init_max=0.99 r_coex = op.fsolve(cls._cal_difMu,
np.array([init_min, init_max])
numpy.array
from numba import njit import numpy as np def det1(A): """Compute the determinants of a series of 1x1 matrices. Parameters ---------- A : nx1x1 array_like Arrays to compute determinants of Returns ------- dets : array of length n Matrix determinants """ return A.flatten() @njit(cache=True) def det2(A): """Compute the determinants of a series of 2x2 matrices. Parameters ---------- A : nx2x2 array_like Arrays to compute determinants of Returns ------- dets : array of length n Matrix determinants """ n = np.shape(A)[0] dets = np.zeros(n) for i in range(n): dets[i] = A[i, 0, 0] * A[i, 1, 1] - A[i, 0, 1] * A[i, 1, 0] return dets @njit(cache=True) def det3(A): """Compute the determinants of a series of 3x3 matrices. Parameters ---------- A : nx3x3 array_like Arrays to compute determinants of Returns ------- dets : array of length n Matrix determinants """ n = np.shape(A)[0] dets = np.zeros(n) for i in range(n): dets[i] = ( A[i, 0, 0] * (A[i, 1, 1] * A[i, 2, 2] - A[i, 1, 2] * A[i, 2, 1]) - A[i, 0, 1] * (A[i, 1, 0] * A[i, 2, 2] - A[i, 1, 2] * A[i, 2, 0]) + A[i, 0, 2] * (A[i, 1, 0] * A[i, 2, 1] - A[i, 1, 1] * A[i, 2, 0]) ) return dets def inv1(A): """Compute the inverses of a series of 1x1 matrices. Parameters ---------- A : nx1x1 array_like Arrays to compute inverses of Returns ------- dets : nx1x1 array Matrix inverses """ return 1.0 / A @njit(cache=True) def inv2(A): """Compute the inverses of a series of 2x2 matrices. Parameters ---------- A : nx2x2 array_like Arrays to compute inverses of Returns ------- dets : nx2x2 array Matrix inverses """ invdets = 1.0 / det2(A) n = len(invdets) invs = np.zeros((n, 2, 2)) for i in range(n): invs[i, 0, 0] = invdets[i] * A[i, 1, 1] invs[i, 1, 1] = invdets[i] * A[i, 0, 0] invs[i, 0, 1] = -invdets[i] * A[i, 0, 1] invs[i, 1, 0] = -invdets[i] * A[i, 1, 0] return invs @njit(cache=True) def inv3(A): """Compute the inverses of a series of 3x3 matrices. Parameters ---------- A : nx3x3 array_like Arrays to compute inverses of Returns ------- dets : nx3x3 array Matrix inverses """ invdets = 1.0 / det3(A) n = len(invdets) invs = np.zeros((n, 3, 3)) for i in range(n): invs[i, 0, 0] = invdets[i] * (A[i, 1, 1] * A[i, 2, 2] - A[i, 1, 2] * A[i, 2, 1]) invs[i, 0, 1] = -invdets[i] * (A[i, 0, 1] * A[i, 2, 2] - A[i, 0, 2] * A[i, 2, 1]) invs[i, 0, 2] = invdets[i] * (A[i, 0, 1] * A[i, 1, 2] - A[i, 0, 2] * A[i, 1, 1]) invs[i, 1, 0] = -invdets[i] * (A[i, 1, 0] * A[i, 2, 2] - A[i, 1, 2] * A[i, 2, 0]) invs[i, 1, 1] = invdets[i] * (A[i, 0, 0] * A[i, 2, 2] - A[i, 0, 2] * A[i, 2, 0]) invs[i, 1, 2] = -invdets[i] * (A[i, 0, 0] * A[i, 1, 2] - A[i, 0, 2] * A[i, 1, 0]) invs[i, 2, 0] = invdets[i] * (A[i, 1, 0] * A[i, 2, 1] - A[i, 1, 1] * A[i, 2, 0]) invs[i, 2, 1] = -invdets[i] * (A[i, 0, 0] * A[i, 2, 1] - A[i, 0, 1] * A[i, 2, 0]) invs[i, 2, 2] = invdets[i] * (A[i, 0, 0] * A[i, 1, 1] - A[i, 0, 1] * A[i, 1, 0]) return invs if __name__ == "__main__": np.random.seed(0) A2 = np.random.rand(1000, 2, 2) A3 = np.random.rand(1000, 3, 3) dets2 = det2(A2) dets3 = det3(A3) invs2 = inv2(A2) invs3 = inv3(A3) # Check error between this implementation and numpy, use hybrid error measure (f_ref - f_test)/(f_ref + 1) which # measures the relative error for large numbers and absolute error for small numbers errors = {} errors["det2"] = np.linalg.norm((dets2 - np.linalg.det(A2)) / (dets2 + 1.0)) errors["det3"] = np.linalg.norm((dets3 - np.linalg.det(A3)) / (dets3 + 1.0)) errors["inv2"] = np.linalg.norm((invs2 - np.linalg.inv(A2)) / (invs2 + 1.0)) errors["inv3"] = np.linalg.norm((invs3 -
np.linalg.inv(A3)
numpy.linalg.inv
#!/usr/bin/env python # -*- coding: utf-8 -*- # imports import numpy as np import numpy.linalg as npla import scipy as sp import matplotlib.pyplot as plt def identity_vf(M, N, RM=None, RN=None): """Get vector field for the identity transformation. This returns the vector field (tau_u, tau_v) corresponding to the identity transformation, which maps the image plane to itself. For more details on these vector fields, see the doc for affine_to_vf inputs: -------- M : int vertical (number of rows) size of image plane being worked with N : int horizontal (number of cols) size of image plane being worked with RM : int (optional) number of points in the M direction desired. by default, this is M, giving the identity transformation. when a number other than M is provided, this corresponds to a resampling in the vertical direction. (we put this operation in this function because it is so naturally related) RN : int (optional) number of points in the N direction desired. by default, this is N, giving the identity transformation. when a number other than N is provided, this corresponds to a resampling in the horizontal direction. (we put this operation in this function because it is so naturally related) outputs: ------- eu : numpy.ndarray (size (M, N)) horizontal component of vector field corresponding to (I, 0) ev : numpy.ndarray (size (M, N)) vertical component of vector field corresponding to (I, 0) """ if RM is None: RM = M if RN is None: RN = N m_vec = np.linspace(0, M-1, RM) n_vec = np.linspace(0, N-1, RN) eu = np.dot(m_vec[:,np.newaxis], np.ones(RN)[:,np.newaxis].T) ev = np.dot(np.ones(RM)[:,np.newaxis], n_vec[:,np.newaxis].T) return (eu, ev) def get_default_pgd_dict(**kwargs): """Get default parameter dictionary for proximal gradient descent solvers Valid key-value pairs are: init_pt = function with two arguments (m, n), two return values (numpy arrays of size (m, n)) initial iterate to start GD at, represented as a function: must be a function with two arguments (m, n), the first of which represents image height and the second of which represents image width; and must return a tuple of two numpy arrays, each of size m, n, corresponding to the initial deformation field center : numpy array of shape (2,) Denotes an optional (set to np.array([0,0]) by default) center coordinate to use when solving the parametric version of the problem (parametric = True below). All affine transformations computed then have the form A * ( [i,j] - center ) + center + b, where A may have more structure if certain values of motion_model is set. This kind of reparameterization does not make a difference in the nonparametric version of the problem, so nothing is implemented for this case. sigma : float (positive) Bandwidth parameter in the gaussian filter used for the cost smoothing. (larger -> smaller cutoff frequency, i.e. more aggressive filtering) See gaussian_filter_2d sigma0 : float (positive) Bandwidth parameter in the gaussian filter used for complementary smoothing in registration_l2_spike. (larger -> smaller cutoff frequency, i.e. more aggressive filtering) See gaussian_filter_2d sigma_scene : float (positive) Bandwidth parameter in the gaussian filter used in scene smoothing in registration_l2_bbg. (larger -> smaller cutoff frequency, i.e. more aggressive filtering) See gaussian_filter_2d window : NoneType or numpy array of size (m, n) Either None, if no window is to be used, or an array of size (m, n) (same as image size), denoting the cost window function to be applied (l2 error on residual is filtered, then windowed, before computing). NOTE: current implementation makes window independent of any setting of the parameter center specified above max_iter : int Maximum number of iterations to run PGD for tol : float (positive) Minimum relative tolerance before exiting optimization: optimization stops if the absolute difference between the loss at successive iterations is below this threshold. step : float (positive) Step size. Currently using constant-step gradient descent lam : float (positive) Regularization weight (multiplicative constant on the regularization term in the loss) use_nesterov : bool Whether or not to use Nesterov accelerated gradient descent use_restarting : bool Whether or not to use adaptive restarted Nesterov accelerated gradient descent. Speeds things up significantly, but maybe does not work well out of the box with proximal iteration motion_model : string (default 'nonparametric') Sets the motion model that the registration algorithm will use (i.e. what constraints are enforced on the transformation vector field). Values that are implemented are: 'translation' transformation vector field is constrained to be translational (a pixel shift of the input). 2-dimensional. 'rigid' transformation vector field is constrained to be a rigid motion / a euclidean transformation (i.e. a combination of a positively-oriented rotation and a translation). 3-dimensional. 'similarity' transformation vector field is constrained to be a similarity transformation (i.e. a combination of a global dilation and a translation). 4-dimensional. 'affine' transformation vector field is constrained to be an affine translation (i.e. a combination of a linear map and a translation). 6-dimensional. 'nonparametric' transformation vector field is allowed to be completely general, but regularization is added to the gradient descent solver via a complexity penalty, and the solver runs proximal gradient descent instead. (see e.g. entry for lambda for more info on associated parameters). gamma : float (min 0, max 1) Nesterov accelerated GD momentum parameter. 0 corresponds to the "usual" Nesterov AGD. 1 corresponds to "vanilla" GD. The optimal value for a given problem is the reciprocal condition number. Setting this to 1 is implemented differently from setting use_nesterov to False (the algorithm is the same; but the former is slower) theta : float initial momentum term weight; typically 1 precondition : bool Whether or not to use a preconditioner (divide by some scalars on each component of the gradient) for the A and b gradients in parametric motion models (see motion_model).. epoch_len : int (positive) Length of an epoch; used for printing status messages quiet : bool If True, nothing will be printed while optimizing. record_movie : bool If True, a "movie" gets created from the optimization trajectory and logged to disk (see movie_fn param). Requires moviepy to be installed (easy with conda-forge). Potentially requires a ton of memory to store all the frames (all iterates) movie_fn : string If record_movie is True, this gives the location on disk where the movie will be saved movie_fps : int If record_movie is True, this gives the fps of the output movie. window_pad_size : int If record_movie is true, denotes the thickness of the border designating the window to be output in the movie frame_printing_stride : int If record_movie is true, denotes the interval at which log information will be written to the movie (every frame_printing_stride frames, log info is written; the actual movie fps is set by movie_fps above) font_size : int If record_movie is true, denotes the font size used for printing logging information to the output window. Set smaller for smaller-size images. NOTE: No value checking is implemented right now. Inputs: -------- kwargs : any provided key-value pairs will be added to the parameter dictionary, replacing any defaults they overlap with Outputs: -------- param_dict : dict dict of parameters to be used for a proximal gd solver. Pass these to e.g. nonparametric_registration or similar solvers. """ param_dict = {} # Problem parameters: filter bandwidths, etc param_dict['sigma'] = 3 param_dict['sigma_scene'] = 1.5 param_dict['sigma0'] = 1 param_dict['init_pt'] = lambda m, n: identity_vf(m, n) param_dict['motion_model'] = 'nonparametric' param_dict['window'] = None param_dict['center'] = np.zeros((2,)) # Solver parameters: tolerances, stopping conditions, step size, etc param_dict['max_iter'] = int(1e4) param_dict['tol'] = 1e-4 param_dict['step'] = 1 param_dict['lam'] = 1 param_dict['use_nesterov'] = False param_dict['use_restarting'] = False param_dict['gamma'] = 0 param_dict['theta'] = 1 param_dict['precondition'] = True # Logging parameters param_dict['epoch_len'] = 50 param_dict['quiet'] = False param_dict['record_movie'] = False param_dict['movie_fn'] = '' param_dict['movie_fps'] = 30 param_dict['window_pad_size'] = 5 param_dict['frame_printing_stride'] = 10 # 3 times per second param_dict['font_size'] = 30 param_dict['movie_gt'] = None param_dict['movie_proc_func'] = None # Legacy/compatibility stuff param_dict['parametric'] = False param_dict['translation_mode'] = False param_dict['rigid_motion_mode'] = False param_dict['similarity_transform_mode'] = False # Add user-provided params for arg in kwargs.keys(): param_dict[arg] = kwargs[arg] return param_dict def affine_to_vf(A, b, M, N): """Given (A, b), return associated vector field on M x N image plane An affine transformation is parameterized by an invertible matrix A and a vector b, and sends a 2D vector x to the 2D vector A*x + b. In the image context, x lies in the M by N image plane. This function takes the pair (A, b), and returns the associated vector field (tau_u, tau_v): here tau_u and tau_v are M by N matrices such that (tau_u)_{ij} = (1st row of A) * [i, j] + b_1, and (tau_v)_{ij} = (2nd row of A) * [i, j] + b_2. The matrices thus represent how the affine transformation (A, b) deforms the sampled image plane. Thus in general tau_u and tau_v have entries that may not be contained in the M by N image plane and may not be integers. These issues of boundary effects and interpolation effects are to be handled by other functions inputs: -------- A : numpy.ndarray (size (2, 2)) GL(2) part of affine transformation to apply b : numpy.ndarray (size (2,)) translation part of affine transformation to apply M : int vertical (number of rows) size of image plane being worked with N : int horizontal (number of cols) size of image plane being worked with outputs: ------- tau_u : numpy.ndarray (size (M, N)) horizontal component of vector field corresponding to (A, b) tau_v : numpy.ndarray (size (M, N)) vertical component of vector field corresponding to (A, b) """ # Do it with broadcasting tricks (dunno if it's faster) A0 = A[:,0] A1 = A[:,1] eu = np.dot(np.arange(M)[:,np.newaxis], np.ones(N)[:,np.newaxis].T) ev = np.dot(np.ones(M)[:,np.newaxis], np.arange(N)[:,np.newaxis].T) tau = A0[np.newaxis, np.newaxis, :] * eu[..., np.newaxis] + \ A1[np.newaxis, np.newaxis, :] * ev[..., np.newaxis] + \ b[np.newaxis, np.newaxis, :] * np.ones((M, N, 1)) return (tau[:,:,0], tau[:,:,1]) def vf_to_affine(tau_u, tau_v, ctr): """Get affine transformation corresponding to a vector field. General vector fields need not correspond to a particular affine transformation. In our formulation, we parameterize affine transforms as tau_u = a * (m-ctr[0] * \One)\One\\adj + b * \One (n - ctr[1]*\One)\\adj + (c + ctr[0]) * \One\One\\adj, and similarly for tau_v. We use the fact that this parameterization is used here to recover the parameters of the affine transform using simple summing/differencing. We need ctr as an input because the translation parameter is ambiguous without knowing the center. However, we can always recover the parameters of the transformation with respect to any fixed center (say, ctr = zero). In general, if one provides ctr=np.zeros((2,)) to this function, it is a left inverse of affine_to_vf called with the correct M, N parameters. inputs: -------- tau_u, tau_v : M by N numpy arrays u and v (resp.) components of the transformation field. ctr : (2,) shape numpy array center parameter that the transform was computed with. see center option in registration_l2. translation parameter is ambiguous without knowing the center. outputs: -------- A : (2,2) numpy array The A matrix corresponding to the affine transform. Follows our conventions for how we compute with vector fields in determining how the entries of A are determined b : (2,) shape numpy array The translation parameter corresponding to the affine transform. Follows standard coordinates on the image plane (as elsewhere). """ M, N = tau_u.shape a00 = tau_u[1, 0] - tau_u[0, 0] a01 = tau_u[0, 1] - tau_u[0, 0] a10 = tau_v[1, 0] - tau_v[0, 0] a11 = tau_v[0, 1] - tau_v[0, 0] A = np.array([[a00, a01], [a10, a11]]) u_sum = np.sum(tau_u) v_sum = np.sum(tau_v) m_sum = np.sum(np.arange(M) - ctr[0] * np.ones((M,))) n_sum = np.sum(np.arange(N) - ctr[1] * np.ones((N,))) b0 = (u_sum - a00 * m_sum * N - a01 * M * n_sum) / M / N - ctr[0] b1 = (v_sum - a10 * m_sum * N - a11 * M * n_sum) / M / N - ctr[1] b = np.array([b0, b1]) return A, b def registration_l2_exp(Y, X, W, Om, center, transform_mode, optim_vars, param_dict=get_default_pgd_dict(), visualize=False): """ This is yet another version of the cost-smoothed motif detection, in which we also infer a (constant) background around the motif Inputs: Y -- input image X -- motif, embedded into an image of the same size as the target image Om -- support of the motif transform_mode -- 'affine', 'similarity', 'euclidean', 'translation' Outputs: same as usual """ from time import perf_counter vecnorm_2 = lambda A: np.linalg.norm( A.ravel(), 2 ) m, n, c = Y.shape # Gradient descent parameters MAX_ITER = param_dict['max_iter'] TOL = param_dict['tol'] step = param_dict['step'] if transform_mode == 'affine': [A, b] = optim_vars elif transform_mode == 'similarity': [dil, phi, b] = optim_vars A = dil * np.array([[np.cos(phi), -np.sin(phi)], [np.sin(phi), np.cos(phi)]]) elif transform_mode == 'euclidean': [phi, b] = optim_vars A = np.array([[np.cos(phi), -np.sin(phi)], [np.sin(phi), np.cos(phi)]]) elif transform_mode == 'translation': [b] = optim_vars A = np.eye(2) else: raise ValueError('Wrong transform mode.') # initialization (here, affine motion mode) corr = np.dot(np.eye(2) - A, center) tau_u, tau_v = affine_to_vf(A, b + corr, m, n) # External smoothing: calculate gaussian weights g = gaussian_filter_2d(m,n,sigma_u=param_dict['sigma']) g = g / np.sum(g) h = gaussian_filter_2d(m,n,sigma_u=5*param_dict['sigma']) h = h / np.sum(h) # Calculate initial error error = np.inf * np.ones( (MAX_ITER,) ) Rvals = np.zeros( (MAX_ITER,) ) # initial interpolated image and error cur_Y = image_interpolation_bicubic(Y, tau_u, tau_v ) # initialize the background beta0 = cconv_fourier(h[...,np.newaxis], cur_Y - X) beta = cconv_fourier(h[...,np.newaxis], beta0) cur_X = np.zeros((m,n,c)) cur_X = (1-Om)*beta + Om*X FWres = W * cconv_fourier(g[...,np.newaxis], cur_Y-cur_X) grad_A = np.zeros( (2,2) ) grad_b = np.zeros( (2,) ) m_vec = np.arange(m) - center[0] n_vec = np.arange(n) - center[1] if param_dict['use_nesterov'] is False: for idx in range(MAX_ITER): # Get the basic gradient ingredients Y_dot_u = dimage_interpolation_bicubic_dtau1(Y, tau_u, tau_v) Y_dot_v = dimage_interpolation_bicubic_dtau2(Y, tau_u, tau_v) # Get the "tau gradient" part. # All the translation-dependent parts of the cost can be handled # here, so that the parametric parts are just the same as always. dphi_dY = cconv_fourier(dsp_flip(g)[...,np.newaxis], FWres) tau_u_dot = np.sum(dphi_dY * Y_dot_u, -1) tau_v_dot = np.sum(dphi_dY * Y_dot_v, -1) # Get parametric part gradients # Convert to parametric gradients # Get row and col sums tau_u_dot_rowsum = np.sum(tau_u_dot, 1) tau_u_dot_colsum = np.sum(tau_u_dot, 0) tau_v_dot_rowsum = np.sum(tau_v_dot, 1) tau_v_dot_colsum = np.sum(tau_v_dot, 0) # Put derivs # These need to be correctly localized to the region of interest grad_A[0, 0] = np.dot(tau_u_dot_rowsum, m_vec) grad_A[1, 0] = np.dot(tau_v_dot_rowsum, m_vec) grad_A[0, 1] = np.dot(tau_u_dot_colsum, n_vec) grad_A[1, 1] = np.dot(tau_v_dot_colsum, n_vec) grad_b[0] = np.sum(tau_u_dot_rowsum) grad_b[1] = np.sum(tau_v_dot_rowsum) # Precondition for crab body motif grad_A /= 100 dphi_dbeta0 = -cconv_fourier( dsp_flip(h)[...,np.newaxis], (1-Om) * dphi_dY ) # Now update parameters grad_norm = np.sqrt(npla.norm(grad_A.ravel(),2)**2 + npla.norm(grad_b,ord=2)**2) #phi = phi - step * grad_phi / 86 if idx > 5: if transform_mode == 'affine': A = A - step * grad_A b = b - step * grad_b elif transform_mode == 'similarity': grad_dil, grad_phi, grad_b = l2err_sim_grad(dil, phi, grad_A, grad_b) dil = dil - step * grad_dil * 0.1 phi = phi - step * grad_phi b = b - step * grad_b A = dil * np.array([[np.cos(phi), -np.sin(phi)], [np.sin(phi), np.cos(phi)]]) elif transform_mode == 'euclidean': grad_phi, grad_b = l2err_se_grad(phi, grad_A, grad_b) phi = phi - step * grad_phi b = b - step * grad_b A = np.array([[np.cos(phi), -np.sin(phi)], [np.sin(phi), np.cos(phi)]]) elif transform_mode == 'translation': b = b - step * grad_b A = np.eye(2) beta0 = beta0 - 25 * step * dphi_dbeta0 corr = np.dot(np.eye(2) - A, center) tau_u, tau_v = affine_to_vf(A, b + corr, m, n) # Bookkeeping (losses and exit check) cur_Y = image_interpolation_bicubic(Y, tau_u, tau_v ) beta = cconv_fourier(h[...,np.newaxis], beta0) cur_X = np.zeros((m,n,c)) cur_X = (1-Om)*beta + Om*X FWres = W * cconv_fourier(g[...,np.newaxis], cur_Y-cur_X) error[idx] = .5 * np.sum(FWres ** 2) cur_X_wd = cur_X * Om for ic in range(3): cur_X_wd[:,:,ic] -= np.mean(cur_X_wd[:,:,ic][cur_X_wd[:,:,ic] > 0]) cur_Y_wd = cur_Y * Om for ic in range(3): cur_Y_wd[:,:,ic] -= np.mean(cur_Y_wd[:,:,ic][cur_Y_wd[:,:,ic] > 0]) Rvals[idx] = np.sum(Om * cur_X_wd * cur_Y_wd) / ( vecnorm_2(Om * cur_X_wd) * vecnorm_2(Om * cur_Y_wd) ) if idx > 0 and error[idx] > error[idx-1]: # print('Nonmontone, cutting step') step = step / 2 else: step = step * 1.01 cur_Y_disp = cur_Y.copy() cur_Y_disp[:,:,1] = Om[:,:,1] cur_Y_disp[:,:,2] = Om[:,:,2] loopStop = perf_counter() if grad_norm < TOL: if param_dict['quiet'] is False: print(f'Met objective at iteration {idx}, ' 'exiting...') break if (idx % param_dict['epoch_len']) == 0: if param_dict['quiet'] is False: print('iter {:d} objective {:.4e} correlation {:.4f}'.format(idx, error[idx], Rvals[idx])) if visualize is True: if (idx % 10) == 0: if param_dict['quiet'] is False: plt.imshow(cur_Y_disp) plt.show() # This next block of code is for Nesterov accelerated GD. else: raise NotImplementedError('Test function only implements vanilla GD') if transform_mode == 'affine': optim_vars_new = [A, b] elif transform_mode == 'similarity': optim_vars_new = [dil, phi, b] elif transform_mode == 'euclidean': optim_vars_new = [phi, b] elif transform_mode == 'translation': optim_vars_new = [b] return tau_u, tau_v, optim_vars_new, error, Rvals def dilate_support(Om,sigma): M = Om.shape[0] N = Om.shape[1] psi = gaussian_filter_2d(M,N,sigma_u=sigma) delta = np.exp(-2) * ((2.0*np.pi*sigma) ** -.5) Om_tilde = cconv_fourier(psi[...,np.newaxis],Om) for i in range(M): for j in range(N): if Om_tilde[i,j,0] < delta: Om_tilde[i,j,0] = 0 Om_tilde[i,j,1] = 0 Om_tilde[i,j,2] = 0 else: Om_tilde[i,j,0] = 1 Om_tilde[i,j,1] = 1 Om_tilde[i,j,2] = 1 return Om_tilde def rotation_mat(theta): sin = np.sin(theta) cos = np.cos(theta) mat = np.array([[cos, -sin], [sin, cos]]) return mat def l2err_se_grad(phi, grad_A, grad_b): """ Calculate loss gradient in SE registration prob using aff gradient This gradient is for the parametric version of the problem, with the parameterization in terms of the special euclidean group (oriented rigid motions of the plane). It wraps l2err_aff_grad, since chain rule lets us easily calculate this problem's gradient using the affine problem's gradient. Implementation ideas: - for ease of implementation, require the current angle phi as an input, although it could probably be determined from tau_u and tau_v in general. Inputs: phi : angle parameter of matrix part of current rigid motion iterate. grad_A : gradient of the cost with respect to A (matrix parameter of affine transform) (output from l2err_aff_grad) grad_b : gradient of the cost with respect to b (translation parameter of affine transform) (output from l2err_aff_grad) Outputs: grad_phi : gradient of the cost with respect to phi (angular parameter of rotational part of special euclidean transform: grad_b : gradient of the cost with respect to b (translation parameter of rigid motion) """ # rigid motion derivative matrix G = np.array([[-np.sin(phi), -np.cos(phi)], [np.cos(phi), -np.sin(phi)]]) # Put derivatives grad_phi = np.sum(G * grad_A) return grad_phi, grad_b def l2err_sim_grad(dil, phi, grad_A, grad_b): """ Calculate loss gradient in similarity xform registration prob This gradient is for the parametric version of the problem, with the parameterization in terms of the similarity transformations (rigid motions with the rotation multiplied by a scale parameter). It wraps l2err_aff_grad, since chain rule lets us easily calculate this problem's gradient using the affine problem's gradient. Implementation ideas: - for ease of implementation, require the current angle phi as an input, although it could probably be determined from tau_u and tau_v in general. Inputs: dil : dilation (scale) parameter of matrix part of current similarity transform iterate. phi : angle parameter of matrix part of current rigid motion iterate. grad_A : gradient of the cost with respect to A (matrix parameter of affine transform) (output from l2err_aff_grad) grad_b : gradient of the cost with respect to b (translation parameter of affine transform) (output from l2err_aff_grad) Outputs: grad_phi : gradient of the cost with respect to dil (dilation/scale parameter of similarity transform) grad_phi : gradient of the cost with respect to phi (angular parameter of rotational part of special euclidean transform: grad_b : gradient of the cost with respect to b (translation parameter of rigid motion) """ # rigid motion matrix G = np.array([[np.cos(phi), -np.sin(phi)], [np.sin(phi), np.cos(phi)]]) # rigid motion derivative matrix Gdot = np.array([[-np.sin(phi), -np.cos(phi)], [np.cos(phi), -np.sin(phi)]]) # Put derivatives grad_dil = np.sum(G * grad_A) grad_phi = dil * np.sum(Gdot * grad_A) return grad_dil, grad_phi, grad_b def apply_random_transform( X0, Om0, c, mode, s_dist, phi_dist, theta_dist, b_dist, return_params=True ): N0 = X0.shape[0] N1 = X0.shape[1] C = X0.shape[2] tf_params = sample_random_transform( mode, s_dist, phi_dist, theta_dist, b_dist ) A = tf_params[0] b = tf_params[1] # apply the transformation corr = np.dot(np.eye(2) - A, c) (tau_u, tau_v) = affine_to_vf(A, b + corr, N0, N1) X = image_interpolation_bicubic(X0, tau_u, tau_v) Om = image_interpolation_bicubic(Om0, tau_u, tau_v) if return_params is False: return X, Om else: return X, Om, tf_params def sample_random_transform( mode, s_dist, phi_dist, theta_dist, b_dist ): s_min = s_dist[0] s_max = s_dist[1] phi_min = phi_dist[0] phi_max = phi_dist[1] theta_min = theta_dist[0] theta_max = theta_dist[1] b_min = b_dist[0] b_max = b_dist[1] b = np.zeros((2,)) b[0] = np.random.uniform(b_min,b_max) b[1] = np.random.uniform(b_min,b_max) if mode == 'affine': s1 = np.random.uniform(s_min,s_max) s2 = np.random.uniform(s_min,s_max) phi = np.random.uniform(phi_min,phi_max) theta = np.random.uniform(theta_min,theta_max) U = np.array([[np.cos(phi), -np.sin(phi)], [np.sin(phi), np.cos(phi)]]) V = np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]) S = np.diag([s1, s2]) A = np.matmul( U, np.matmul(S,V.transpose() ) ) return [A, b, None, None] elif mode == 'similarity': dil = np.random.uniform(s_min,s_max) phi = np.random.uniform(phi_min,phi_max) A = dil * np.array([[np.cos(phi), -
np.sin(phi)
numpy.sin
import tensorflow as tf import numpy as np from copy import deepcopy import matplotlib.pyplot as plt from IPython import display import pdb from tensorflow.contrib.layers import flatten import random class LeNet: def __init__(self, x, y_, doDecom = [True, True, True, True, False]): self.build(x, y_) self.doDecom = doDecom def build(self, x, y_): in_dim = int(x.get_shape()[1]) out_dim = int(y_.get_shape()[1]) self.x = x # Hyperparameters mu = 0 sigma = 0.1 # Layer 1: Convolutional. Input = 32x32x1. Output = 28x28x6. self.conv1_w = tf.Variable(tf.truncated_normal(shape = [5,5,1,6],mean = mu, stddev = sigma),name = 'conv1_w') self.conv1_b = tf.Variable(tf.zeros(6),name = 'conv1_b') self.conv1 = tf.nn.conv2d(self.x,self.conv1_w, strides = [1,1,1,1], padding = 'VALID') + self.conv1_b self.relu1 = tf.nn.relu(self.conv1) # Pooling. Input = 28x28x6. Output = 14x14x6. self.pool_1 = tf.nn.max_pool(self.relu1,ksize = [1,2,2,1], strides = [1,2,2,1], padding = 'VALID') # Layer 2: Convolutional. Output = 10x10x16. self.conv2_w = tf.Variable(tf.truncated_normal(shape = [5,5,6,16], mean = mu, stddev = sigma),name = 'conv2_w') self.conv2_b = tf.Variable(tf.zeros(16),name = 'conv2_b') self.conv2 = tf.nn.conv2d(self.pool_1, self.conv2_w, strides = [1,1,1,1], padding = 'VALID') + self.conv2_b self.relu2 = tf.nn.relu(self.conv2) # Pooling. Input = 10x10x16. Output = 5x5x16. self.pool_2 = tf.nn.max_pool(self.relu2, ksize = [1,2,2,1], strides = [1,2,2,1], padding = 'VALID') # Flatten. Input = 5x5x16. Output = 400. self.fla = flatten(self.pool_2) # Layer 3: Fully Connected. Input = 400. Output = 120. self.fc1_w = tf.Variable(tf.truncated_normal(shape = (400,120), mean = mu, stddev = sigma),name = 'fc1_w') self.fc1_b = tf.Variable(tf.zeros(120),name = 'fc1_b') self.fc1 = tf.matmul(self.fla,self.fc1_w) + self.fc1_b self.relu3 = tf.nn.relu(self.fc1) # Layer 4: Fully Connected. Input = 120. Output = 84. self.fc2_w = tf.Variable(tf.truncated_normal(shape = (120,84), mean = mu, stddev = sigma),name = 'fc2_w') self.fc2_b = tf.Variable(tf.zeros(84),name = 'fc2_b') self.fc2 = tf.matmul(self.relu3,self.fc2_w) + self.fc2_b self.relu4 = tf.nn.relu(self.fc2) # Layer 5: Fully Connected. Input = 84. Output = number of features. self.fc3_w = tf.Variable(tf.truncated_normal(shape = (84,out_dim), mean = mu , stddev = sigma),name = 'fc3_w') self.fc3_b = tf.Variable(tf.zeros(out_dim),name = 'fc3_b') self.y = tf.matmul(self.relu4, self.fc3_w) + self.fc3_b # lists self.var_list = [self.conv1_w, self.conv1_b, self.conv2_w, self.conv2_b, self.fc1_w, self.fc1_b, self.fc2_w, self.fc2_b, self.fc3_w, self.fc3_b] self.hidden_list = [self.conv1, self.conv2, self.fc1, self.fc2, self.y] self.input_list = [self.x, self.pool_1, self.fla, self.relu3, self.relu4] # vanilla single-task loss one_hot_targets = y_ self.cross_entropy = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=one_hot_targets , logits=self.y)) # performance metrics correct_prediction = tf.equal(tf.argmax(self.y,1), tf.argmax(y_,1)) self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) def rebuild_decom(self, x, y_): in_dim = int(x.get_shape()[1]) out_dim = int(y_.get_shape()[1]) self.x = x self.var_list = [] pos = 0 # Hyperparameters mu = 0 sigma = 0.1 # Layer 1: Convolutional. Input = 32x32x1. Output = 28x28x6. if self.doDecom[0]: self.conv1_w1 = tf.Variable(tf.convert_to_tensor(np.float32(np.expand_dims(np.expand_dims(self.weights_svd[pos],axis=0),axis=0))), trainable = False) self.conv1_w2 = tf.Variable(tf.convert_to_tensor(np.float32(self.weights_svd[pos+1]))) self.conv1_w3 = tf.Variable(tf.convert_to_tensor(np.float32(np.expand_dims(np.expand_dims(self.weights_svd[pos+2],axis=0),axis=0))), trainable = False) self.conv1_b = tf.Variable(tf.convert_to_tensor(np.float32(self.weights_w[1]))) self.conv1 = tf.nn.conv2d(self.x,self.conv1_w1, strides = [1,1,1,1], padding = 'VALID') self.conv1 = tf.nn.conv2d(self.conv1,self.conv1_w2, strides = [1,1,1,1], padding = 'VALID') self.conv1 = tf.nn.conv2d(self.conv1,self.conv1_w3, strides = [1,1,1,1], padding = 'VALID') + self.conv1_b self.relu1 = tf.nn.relu(self.conv1) self.pool_1 = tf.nn.max_pool(self.relu1,ksize = [1,2,2,1], strides = [1,2,2,1], padding = 'VALID') self.var_list.append(self.conv1_w1) self.var_list.append(self.conv1_w2) self.var_list.append(self.conv1_w3) self.var_list.append(self.conv1_b) pos = pos + 3 else: self.conv1_w = tf.Variable(tf.convert_to_tensor(np.float32(self.weights_svd[pos]))) self.conv1_b = tf.Variable(tf.convert_to_tensor(np.float32(self.weights_w[1]))) self.conv1 = tf.nn.conv2d(self.x,self.conv1_w, strides = [1,1,1,1], padding = 'VALID') + self.conv1_b self.relu1 = tf.nn.relu(self.conv1) # Pooling. Input = 28x28x6. Output = 14x14x6. self.pool_1 = tf.nn.max_pool(self.relu1,ksize = [1,2,2,1], strides = [1,2,2,1], padding = 'VALID') self.var_list.append(self.conv1_w) self.var_list.append(self.conv1_b) pos = pos + 1 # Layer 2: Convolutional. Output = 10x10x16. if self.doDecom[1]: self.conv2_w1 = tf.Variable(tf.convert_to_tensor(np.float32(np.expand_dims(np.expand_dims(self.weights_svd[pos],axis=0),axis=0))), trainable = False) self.conv2_w2 = tf.Variable(tf.convert_to_tensor(np.float32(self.weights_svd[pos+1]))) self.conv2_w3 = tf.Variable(tf.convert_to_tensor(np.float32(np.expand_dims(np.expand_dims(self.weights_svd[pos+2],axis=0),axis=0))), trainable = False) self.conv2_b = tf.Variable(tf.convert_to_tensor(np.float32(self.weights_w[3]))) self.conv2 = tf.nn.conv2d(self.pool_1,self.conv2_w1, strides = [1,1,1,1], padding = 'VALID') self.conv2 = tf.nn.conv2d(self.conv2,self.conv2_w2, strides = [1,1,1,1], padding = 'VALID') self.conv2 = tf.nn.conv2d(self.conv2,self.conv2_w3, strides = [1,1,1,1], padding = 'VALID') + self.conv2_b self.relu2 = tf.nn.relu(self.conv2) self.pool_2 = tf.nn.max_pool(self.relu2, ksize = [1,2,2,1], strides = [1,2,2,1], padding = 'VALID') self.fla = flatten(self.pool_2) self.var_list.append(self.conv2_w1) self.var_list.append(self.conv2_w2) self.var_list.append(self.conv2_w3) self.var_list.append(self.conv2_b) pos = pos + 3 else: self.conv2_w = tf.Variable(tf.convert_to_tensor(np.float32(self.weights_svd[pos]))) self.conv2_b = tf.Variable(tf.convert_to_tensor(np.float32(self.weights_w[3]))) self.conv2 = tf.nn.conv2d(self.pool_1, self.conv2_w, strides = [1,1,1,1], padding = 'VALID') + self.conv2_b self.relu2 = tf.nn.relu(self.conv2) # Pooling. Input = 10x10x16. Output = 5x5x16. self.pool_2 = tf.nn.max_pool(self.relu2, ksize = [1,2,2,1], strides = [1,2,2,1], padding = 'VALID') # Flatten. Input = 5x5x16. Output = 400. self.fla = flatten(self.pool_2) self.var_list.append(self.conv2_w) self.var_list.append(self.conv2_b) pos = pos + 1 # Layer 3: Fully Connected. Input = 400. Output = 120. if self.doDecom[2]: self.fc1_w1 = tf.Variable(tf.convert_to_tensor(np.float32(self.weights_svd[pos])), trainable = False) self.fc1_w2 = tf.Variable(tf.convert_to_tensor(np.float32(self.weights_svd[pos+1]))) self.fc1_w3 = tf.Variable(tf.convert_to_tensor(np.float32(self.weights_svd[pos+2])), trainable = False) self.fc1_b = tf.Variable(tf.convert_to_tensor(np.float32(self.weights_w[5]))) self.fc1 = tf.matmul(tf.matmul(tf.matmul(self.fla,self.fc1_w1),self.fc1_w2),self.fc1_w3) + self.fc1_b self.relu3 = tf.nn.relu(self.fc1) self.var_list.append(self.fc1_w1) self.var_list.append(self.fc1_w2) self.var_list.append(self.fc1_w3) self.var_list.append(self.fc1_b) pos = pos + 3 else: self.fc1_w = tf.Variable(tf.convert_to_tensor(np.float32(self.weights_svd[pos]))) self.fc1_b = tf.Variable(tf.convert_to_tensor(np.float32(self.weights_w[5]))) self.fc1 = tf.matmul(self.fla,self.fc1_w) + self.fc1_b self.relu3 = tf.nn.relu(self.fc1) self.var_list.append(self.fc1_w) self.var_list.append(self.fc1_b) pos = pos + 1 # Layer 4: Fully Connected. Input = 120. Output = 84. if self.doDecom[3]: self.fc2_w1 = tf.Variable(tf.convert_to_tensor(np.float32(self.weights_svd[pos])), trainable = False) self.fc2_w2 = tf.Variable(tf.convert_to_tensor(np.float32(self.weights_svd[pos+1]))) self.fc2_w3 = tf.Variable(tf.convert_to_tensor(np.float32(self.weights_svd[pos+2])), trainable = False) self.fc2_b = tf.Variable(tf.convert_to_tensor(np.float32(self.weights_w[7]))) self.fc2 = tf.matmul(tf.matmul(tf.matmul(self.relu3,self.fc2_w1),self.fc2_w2),self.fc2_w3) + self.fc2_b self.relu4 = tf.nn.relu(self.fc2) self.var_list.append(self.fc2_w1) self.var_list.append(self.fc2_w2) self.var_list.append(self.fc2_w3) self.var_list.append(self.fc2_b) pos = pos + 3 else: self.fc2_w = tf.Variable(tf.convert_to_tensor(np.float32(self.weights_svd[pos]))) self.fc2_b = tf.Variable(tf.convert_to_tensor(
np.float32(self.weights_w[7])
numpy.float32
# -*- coding: utf-8 -*- """ Created on Tue Apr 6 01:21:42 2021 @author: dv516 """ import numpy as np import pickle import pyro pyro.enable_validation(True) # can help with debugging pyro.set_rng_seed(1) from algorithms.PyBobyqa_wrapped.Wrapper_for_pybobyqa import PyBobyqaWrapper from algorithms.Bayesian_opt_Pyro.utilities_full import BayesOpt from algorithms.nesterov_random.nesterov_random import nesterov_random from algorithms.simplex.simplex_method import simplex_method from algorithms.CUATRO.CUATRO import CUATRO from algorithms.Finite_differences.Finite_differences import finite_Diff_Newton from algorithms.Finite_differences.Finite_differences import Adam_optimizer from algorithms.Finite_differences.Finite_differences import BFGS_optimizer from algorithms.SQSnobfit_wrapped.Wrapper_for_SQSnobfit import SQSnobFitWrapper from algorithms.DIRECT_wrapped.Wrapper_for_Direct import DIRECTWrapper from case_studies.Controller_tuning.Control_system import reactor_phi_2st, reactor_phi_2stNS import matplotlib.pyplot as plt def scaled_to_absolute(x, bounds): absolute = bounds[:,0] + np.array(x)*(bounds[:,1] - bounds[:,0]) return absolute def absolute_to_scaled(x, bounds): scaled = (np.array(x) - bounds[:,0])/(bounds[:,1] - bounds[:,0]) return scaled def average_from_list(solutions_list): N = len(solutions_list) f_best_all = np.zeros((N, 100)) for i in range(N): f_best = np.array(solutions_list[i]['f_best_so_far']) x_ind = np.array(solutions_list[i]['samples_at_iteration']) for j in range(100): ind = np.where(x_ind <= j+1) if len(ind[0]) == 0: f_best_all[i, j] = f_best[0] else: f_best_all[i, j] = f_best[ind][-1] f_median = np.median(f_best_all, axis = 0) # f_av = np.average(f_best_all, axis = 0) # f_std = np.std(f_best_all, axis = 0) f_min = np.min(f_best_all, axis = 0) f_max = np.max(f_best_all, axis = 0) return f_best_all, f_median, f_min, f_max def plot_reactor_respRand(pi, plot, method, bounds, noise, c, x0 = [.6, 310], xref = [.666, 308.489], N=200, T=8, NS = False): ax1, ax2, ax3, ax4 = plot if not NS: _, sys_resp, control_resp = reactor_phi_2st(pi, bounds, noise, x0 = x0, N = N, \ T = T, return_sys_resp = True) else: _, sys_resp, control_resp = reactor_phi_2stNS(pi, noise, x0 = x0, N = N, \ T = T, return_sys_resp = True) x1 = np.array(sys_resp)[:,0] ; x2 = np.array(sys_resp)[:,1] ax1.plot(np.arange(len(x1))/len(x1)*T, x1, c = c, label = method ) ax1.plot([0, T], [xref[0], xref[0]], '--k') ax2.plot([0, T], [xref[1], xref[1]], '--k') ax2.plot(np.arange(len(x2))/len(x2)*T, x2, c = c) u1 = np.array(control_resp)[:,0] ; u2 = np.array(control_resp)[:,1] ax3.plot(np.arange(len(u1))/len(u1)*T, u1, c = c, label = method ) ax4.plot(np.arange(len(u2))/len(u2)*T, u2, c=c) return ax1, ax2, ax3, ax4 def fix_starting_points(complete_list, x0, init_out, only_starting_point = False): if only_starting_point: for i in range(len(complete_list)): dict_out = complete_list[i] f_arr = dict_out['f_best_so_far'] N_eval = len(f_arr) g_arr = dict_out['g_best_so_far'] dict_out['x_best_so_far'][0] = np.array(x0) dict_out['f_best_so_far'][0] = init_out[0] dict_out['g_best_so_far'][0] = np.array(init_out[1]) complete_list[i] = dict_out else: for i in range(len(complete_list)): dict_out = complete_list[i] f_arr = dict_out['f_best_so_far'] N_eval = len(f_arr) g_arr = dict_out['g_best_so_far'] dict_out['x_best_so_far'][0] = np.array(x0) dict_out['f_best_so_far'][0] = init_out[0] dict_out['g_best_so_far'][0] = np.array(init_out[1]) for j in range(1, N_eval): if (g_arr[j] > 1e-3).any() or (init_out[0] < f_arr[j]): dict_out['x_best_so_far'][j] = np.array(x0) dict_out['f_best_so_far'][j] = init_out[0] dict_out['g_best_so_far'][j] = np.array(init_out[1]) complete_list[i] = dict_out return complete_list def cost_control_noise(x, bounds_abs, noise, N_SAA, x0 = [.116, 368.489], \ N = 200, T = 20, NS = False): f_SAA = 0 ; g_SAA = -np.inf if not NS: f = lambda x: reactor_phi_2st(x, bounds_abs, noise, x0 = x0, N = N, \ T = T, return_sys_resp = False) else: f = lambda x: reactor_phi_2stNS(x, noise, x0 = x0, N = N, \ T = T, return_sys_resp = False) for i in range(N_SAA): f_sample = f(x) f_SAA += f_sample[0]/N_SAA g_SAA = np.maximum(g_SAA, float(f_sample[1][0])) return f_SAA, [g_SAA] pi = [.8746, .0257, -1.43388, -0.00131, 0.00016, 55.8692, 0.7159, .0188, .00017] pi_init = [.8746, .0257, -1.43388, -0.00131, 0.00016, 0, 0, 0, 0, 0] bounds_abs = np.zeros((10, 2)) for i in range(5): if pi[i] > 0: bounds_abs[i] = [pi[i]/2, pi[i]*2] bounds_abs[i+5] = [-pi[i]*10, pi[i]*10] else: bounds_abs[i] = [pi[i]*2, pi[i]/2] bounds_abs[i+5] = [pi[i]*10, -pi[i]*10] x0 = (np.array(pi_init) - bounds_abs[:,0]) / (bounds_abs[:,1]-bounds_abs[:,0]) N_SAA = 1 noise = np.array([.001, 1])/3 cost_rand = lambda x: cost_control_noise(x, bounds_abs, noise, N_SAA, \ x0 = [.116, 368.489], N = 200, T = 20) ContrSynRand_DIRECT_cost = lambda x, grad: cost_rand(x) bounds = np.array([[0, 1]]*10) x0 = (np.array(pi_init) - bounds_abs[:,0]) / (bounds_abs[:,1]-bounds_abs[:,0]) initial_outputRand = cost_rand(x0) x0_abs = np.array(pi_init) cost_randNS = lambda x: cost_control_noise(x, bounds_abs, noise, N_SAA, \ x0 = [.116, 368.489], N = 200, T = 20, NS = True) max_f_eval = 100 N = 10 ContrSynRand_pybobyqa_list = [] for i in range(N): rnd_seed = i ContrSynRand_pybobyqa = PyBobyqaWrapper().solve(cost_rand, x0, bounds=bounds.T, \ maxfun= max_f_eval, constraints=1, \ seek_global_minimum = True, \ objfun_has_noise = True) ContrSynRand_pybobyqa_list.append(ContrSynRand_pybobyqa) print('10 Py-BOBYQA iterations completed') N = 10 ContrSynRand_simplex_list = [] for i in range(N): rnd_seed = i ContrSynRand_simplex = simplex_method(cost_rand, x0, bounds, max_iter = 50, \ constraints = 1, rnd_seed = i, mu_con = 1e6) ContrSynRand_simplex_list.append(ContrSynRand_simplex) print('10 simplex iterations completed') N = 10 ContrSynRand_FiniteDiff_list = [] for i in range(N): rnd_seed = i ContrSynRand_FiniteDiff = finite_Diff_Newton(cost_randNS, x0_abs, bounds = bounds_abs, \ con_weight = 1e6, check_bounds = True) ContrSynRand_FiniteDiff_list.append(ContrSynRand_FiniteDiff) print('10 Approx Newton iterations completed') N = 10 ContrSynRand_BFGS_list = [] for i in range(N): rnd_seed = i ContrSynRand_BFGS = BFGS_optimizer(cost_randNS, x0_abs, bounds = bounds_abs, \ con_weight = 1e6, check_bounds = True) ContrSynRand_BFGS_list.append(ContrSynRand_BFGS) print('10 BFGS iterations completed') N = 10 ContrSynRand_Adam_list = [] for i in range(N): rnd_seed = i ContrSynRand_Adam = Adam_optimizer(cost_rand, x0, method = 'forward', \ bounds = bounds, alpha = 0.4, \ beta1 = 0.2, beta2 = 0.1, \ max_f_eval = 100, con_weight = 1e6, \ check_bounds = True) ContrSynRand_Adam_list.append(ContrSynRand_Adam) print('10 Adam iterations completed') N_min_s = 15 init_radius = 0.5 method = 'Discrimination' N = 10 ContrSynRand_CUATRO_global_list = [] for i in range(N): rnd_seed = i ContrSynRand_CUATRO_global = CUATRO(cost_rand, x0, init_radius, bounds = bounds, \ N_min_samples = N_min_s, tolerance = 1e-10,\ beta_red = 0.9, rnd = rnd_seed, method = 'global', \ constr_handling = method) ContrSynRand_CUATRO_global_list.append(ContrSynRand_CUATRO_global) print('10 CUATRO global iterations completed') N_min_s = 6 init_radius = 0.5 # method = 'Fitting' method = 'Discrimination' N = 10 ContrSynRand_CUATRO_local_list = [] for i in range(N): rnd_seed = i ContrSynRand_CUATRO_local = CUATRO(cost_rand, x0, init_radius, bounds = bounds, \ N_min_samples = N_min_s, tolerance = 1e-10,\ beta_red = 0.9, rnd = rnd_seed, method = 'local', \ constr_handling = method) ContrSynRand_CUATRO_local_list.append(ContrSynRand_CUATRO_local) print('10 CUATRO local iterations completed') N = 10 ContrSynRand_SQSnobFit_list = [] for i in range(N): ContrSynRand_SQSnobFit = SQSnobFitWrapper().solve(cost_randNS, x0_abs, bounds_abs, mu_con = 1e6, \ maxfun = max_f_eval, constraints=1) ContrSynRand_SQSnobFit_list.append(ContrSynRand_SQSnobFit) print('10 SnobFit iterations completed') ### SQSnobfit tends to fail, so manually add failure: # dict_fail = {} # dict_fail['x_best_so_far'] = N = 10 ContrSynRand_DIRECT_list = [] for i in range(N): ContrSynRand_DIRECT = DIRECTWrapper().solve(ContrSynRand_DIRECT_cost, x0, bounds, mu_con = 1e6, \ maxfun = max_f_eval, constraints=1) ContrSynRand_DIRECT_list.append(ContrSynRand_DIRECT) print('10 DIRECT iterations completed') with open('BayesContrSynRand_list.pickle', 'rb') as handle: ContrSynRand_Bayes_list = pickle.load(handle) ContrSynRand_Bayes_list = fix_starting_points(ContrSynRand_Bayes_list, x0, initial_outputRand) ContrSynRand_DIRECT_list = fix_starting_points(ContrSynRand_DIRECT_list, x0, initial_outputRand) ContrSynRand_simplex_list = fix_starting_points(ContrSynRand_simplex_list, x0, initial_outputRand) ContrSynRand_pybobyqa_list = fix_starting_points(ContrSynRand_pybobyqa_list, x0, initial_outputRand) plt.rcParams["font.family"] = "Times New Roman" ft = int(15) font = {'size': ft} plt.rc('font', **font) params = {'legend.fontsize': 12.5, 'legend.handlelength': 2} plt.rcParams.update(params) fig1 = plt.figure() ax1 = fig1.add_subplot() for i in range(len(ContrSynRand_pybobyqa_list)): x_best = np.array(ContrSynRand_pybobyqa_list[i]['x_best_so_far']) f_best = np.array(ContrSynRand_pybobyqa_list[i]['f_best_so_far']) x_ind = np.array(ContrSynRand_pybobyqa_list[i]['samples_at_iteration']) ax1.step(x_ind, f_best, where = 'post', label = 'Py-BOBYQA'+str(i)) # ax1.plot(x_ind, f_best, label = 'CUATRO_g'+str(i)) ax1.legend() ax1.set_xlabel('Nbr. of function evaluations') ax1.set_ylabel('Best function evaluation') ax1.set_yscale('log') fig1.savefig('ContrSyn_random_plots/ContrSyn_PyBOBYQA_Convergence_plot.svg', format = "svg") fig1 = plt.figure() ax1 = fig1.add_subplot() for i in range(len(ContrSynRand_FiniteDiff_list)): x_best = np.array(ContrSynRand_FiniteDiff_list[i]['x_best_so_far']) f_best = np.array(ContrSynRand_FiniteDiff_list[i]['f_best_so_far']) x_ind = np.array(ContrSynRand_FiniteDiff_list[i]['samples_at_iteration']) ax1.step(x_ind, f_best, where = 'post', label = 'Fin. Diff.'+str(i)) # ax1.plot(x_ind, f_best, label = 'CUATRO_g'+str(i)) ax1.legend() ax1.set_xlabel('Nbr. of function evaluations') ax1.set_ylabel('Best function evaluation') ax1.set_yscale('log') fig1.savefig('ContrSyn_random_plots/ContrSyn_FiniteDiff_Convergence_plot.svg', format = "svg") fig1 = plt.figure() ax1 = fig1.add_subplot() for i in range(len(ContrSynRand_BFGS_list)): x_best = np.array(ContrSynRand_BFGS_list[i]['x_best_so_far']) f_best = np.array(ContrSynRand_BFGS_list[i]['f_best_so_far']) x_ind = np.array(ContrSynRand_BFGS_list[i]['samples_at_iteration']) ax1.step(x_ind, f_best, where = 'post', label = 'BFGS'+str(i)) # ax1.plot(x_ind, f_best, label = 'CUATRO_g'+str(i)) ax1.legend() ax1.set_xlabel('Nbr. of function evaluations') ax1.set_ylabel('Best function evaluation') ax1.set_yscale('log') fig1.savefig('ContrSyn_random_plots/ContrSyn_BFGS_Convergence_plot.svg', format = "svg") fig1 = plt.figure() ax1 = fig1.add_subplot() for i in range(len(ContrSynRand_Adam_list)): x_best = np.array(ContrSynRand_Adam_list[i]['x_best_so_far']) f_best = np.array(ContrSynRand_Adam_list[i]['f_best_so_far']) x_ind = np.array(ContrSynRand_Adam_list[i]['samples_at_iteration']) ax1.step(x_ind, f_best, where = 'post', label = 'Adam'+str(i)) # ax1.plot(x_ind, f_best, label = 'CUATRO_g'+str(i)) ax1.legend() ax1.set_xlabel('Nbr. of function evaluations') ax1.set_ylabel('Best function evaluation') ax1.set_yscale('log') fig1.savefig('ContrSyn_random_plots/ContrSyn_Adam_Convergence_plot.svg', format = "svg") fig1 = plt.figure() ax1 = fig1.add_subplot() for i in range(len(ContrSynRand_CUATRO_global_list)): x_best = np.array(ContrSynRand_CUATRO_global_list[i]['x_best_so_far']) f_best = np.array(ContrSynRand_CUATRO_global_list[i]['f_best_so_far']) x_ind = np.array(ContrSynRand_CUATRO_global_list[i]['samples_at_iteration']) ax1.step(x_ind, f_best, where = 'post', label = 'CUATRO_g'+str(i)) # ax1.plot(x_ind, f_best, label = 'CUATRO_g'+str(i)) ax1.legend() ax1.set_xlabel('Nbr. of function evaluations') ax1.set_ylabel('Best function evaluation') ax1.set_yscale('log') fig1.savefig('ContrSyn_random_plots/ContrSyn_CUATROg_Convergence_plot.svg', format = "svg") fig1 = plt.figure() ax1 = fig1.add_subplot() for i in range(len(ContrSynRand_CUATRO_local_list)): x_best = np.array(ContrSynRand_CUATRO_local_list[i]['x_best_so_far']) f_best = np.array(ContrSynRand_CUATRO_local_list[i]['f_best_so_far']) x_ind = np.array(ContrSynRand_CUATRO_local_list[i]['samples_at_iteration']) ax1.step(x_ind, f_best, where = 'post', label = 'CUATRO_l'+str(i)) # ax1.plot(x_ind, f_best, label = 'CUATRO_l'+str(i)) ax1.legend() ax1.set_xlabel('Nbr. of function evaluations') ax1.set_ylabel('Best function evaluation') ax1.set_yscale('log') fig1.savefig('ContrSyn_random_plots/ContrSyn_CUATROl_Convergence_plot.svg', format = "svg") fig1 = plt.figure() ax1 = fig1.add_subplot() for i in range(len(ContrSynRand_Bayes_list)): x_best = np.array(ContrSynRand_Bayes_list[i]['x_best_so_far']) f_best = np.array(ContrSynRand_Bayes_list[i]['f_best_so_far']) nbr_feval = len(ContrSynRand_Bayes_list[i]['f_store']) ax1.step(np.arange(len(f_best)), f_best, where = 'post', \ label = 'BO'+str(i)+'; #f_eval: ' + str(nbr_feval)) ax1.legend() ax1.set_xlabel('Nbr. of function evaluations') ax1.set_ylabel('Best function evaluation') ax1.set_yscale('log') fig1.savefig('ContrSyn_random_plots/ContrSyn_BO_Convergence_plot.svg', format = "svg") fig1 = plt.figure() ax1 = fig1.add_subplot() for i in range(len(ContrSynRand_simplex_list)): x_best = np.array(ContrSynRand_simplex_list[i]['x_best_so_far']) f_best = np.array(ContrSynRand_simplex_list[i]['f_best_so_far']) x_ind = np.array(ContrSynRand_simplex_list[i]['samples_at_iteration']) ax1.step(x_ind, f_best, where = 'post', label = 'Simplex'+str(i)) ax1.legend() ax1.set_xlabel('Nbr. of function evaluations') ax1.set_ylabel('Best function evaluation') ax1.set_yscale('log') fig1.savefig('ContrSyn_random_plots/ContrSyn_Simplex_Convergence_plot.svg', format = "svg") # ## Change to x_best_So_far # fig1 = plt.figure() # ax1 = fig1.add_subplot() # for i in range(len(ContrSynRand_Nest_list)): # x_best = np.array(ContrSynRand_Nest_list[i]['x_best_so_far']) # f_best = np.array(ContrSynRand_Nest_list[i]['f_best_so_far']) # x_ind = np.array(ContrSynRand_Nest_list[i]['samples_at_iteration']) # ax1.step(x_ind, f_best, where = 'post', label = 'Nest.'+str(i)) # ax1.legend() # ax1.set_yscale('log') # ax1.set_xlabel('Nbr. of function evaluations') # ax1.set_ylabel('Best function evaluation') # fig1.savefig('ContrSyn_random_plots/ContrSyn_Nesterov_Convergence_plot.svg', format = "svg") fig1 = plt.figure() ax1 = fig1.add_subplot() for i in range(len(ContrSynRand_SQSnobFit_list)): x_best = np.array(ContrSynRand_SQSnobFit_list[i]['x_best_so_far']) f_best = np.array(ContrSynRand_SQSnobFit_list[i]['f_best_so_far']) x_ind = np.array(ContrSynRand_SQSnobFit_list[i]['samples_at_iteration']) ax1.step(x_ind, f_best, where = 'post', label = 'SQSnobfit.'+str(i)) ax1.legend() ax1.set_yscale('log') ax1.set_xlabel('Nbr. of function evaluations') ax1.set_ylabel('Best function evaluation') fig1.savefig('ContrSyn_random_plots/ContrSyn_SQSnobFit_Convergence_plot.svg', format = "svg") fig1 = plt.figure() ax1 = fig1.add_subplot() for i in range(len(ContrSynRand_DIRECT_list)): x_best = np.array(ContrSynRand_DIRECT_list[i]['x_best_so_far']) f_best = np.array(ContrSynRand_DIRECT_list[i]['f_best_so_far']) x_ind = np.array(ContrSynRand_DIRECT_list[i]['samples_at_iteration']) ax1.step(x_ind, f_best, where = 'post', label = 'DIRECT'+str(i)) ax1.legend() ax1.set_yscale('log') ax1.set_xlabel('Nbr. of function evaluations') ax1.set_ylabel('Best function evaluation') fig1.savefig('ContrSyn_random_plots/ContrSyn_DIRECT_Convergence_plot.svg', format = "svg") sol_Cg = average_from_list(ContrSynRand_CUATRO_global_list) test_CUATROg, test_av_CUATROg, test_min_CUATROg, test_max_CUATROg = sol_Cg sol_Cl = average_from_list(ContrSynRand_CUATRO_local_list) test_CUATROl, test_av_CUATROl, test_min_CUATROl, test_max_CUATROl = sol_Cl # sol_Nest = average_from_list(ContrSynRand_Nest_list) # test_Nest, test_av_Nest, test_min_Nest, test_max_Nest = sol_Nest sol_Splx = average_from_list(ContrSynRand_simplex_list) test_Splx, test_av_Splx, test_min_Splx, test_max_Splx = sol_Splx sol_SQSF = average_from_list(ContrSynRand_SQSnobFit_list) test_SQSF, test_av_SQSF, test_min_SQSF, test_max_SQSF = sol_SQSF sol_DIR = average_from_list(ContrSynRand_DIRECT_list) test_DIR, test_av_DIR, test_min_DIR, test_max_DIR = sol_DIR sol_pybbyqa = average_from_list(ContrSynRand_pybobyqa_list) test_pybbqa, test_av_pybbqa, test_min_pybbqa, test_max_pybbqa = sol_pybbyqa sol_findiff = average_from_list(ContrSynRand_FiniteDiff_list) test_findiff, test_av_findiff, test_min_findiff, test_max_findiff = sol_findiff sol_BFGS = average_from_list(ContrSynRand_BFGS_list) test_BFGS, test_av_BFGS, test_min_BFGS, test_max_BFGS = sol_BFGS sol_Adam = average_from_list(ContrSynRand_Adam_list) test_Adam, test_av_Adam, test_min_Adam, test_max_Adam = sol_Adam sol_BO = average_from_list(ContrSynRand_Bayes_list) test_BO, test_av_BO, test_min_BO, test_max_BO = sol_BO fig = plt.figure() ax = fig.add_subplot() ax.step(np.arange(1, 101), test_av_CUATROg, where = 'post', label = 'CUATRO_g', c = 'b') ax.fill_between(np.arange(1, 101), test_min_CUATROg, \ test_max_CUATROg, color = 'b', alpha = .5) ax.step(np.arange(1, 101), test_av_CUATROl, where = 'post', label = 'CUATRO_l', c = 'c') ax.fill_between(np.arange(1, 101), test_min_CUATROl, \ test_max_CUATROl, color = 'c', alpha = .5) ax.step(np.arange(1, 101), test_av_pybbqa, where = 'post', label = 'Py-BOBYQA ', c = 'green') ax.fill_between(np.arange(1, 101), test_min_pybbqa, \ test_max_pybbqa, color = 'green', alpha = .5) ax.step(np.arange(1, 101), test_av_SQSF, where = 'post', label = 'Snobfit*', c = 'orange') ax.fill_between(np.arange(1, 101), test_min_SQSF, \ test_max_SQSF, color = 'orange', alpha = .5) ax.step(np.arange(1, 101), test_av_BO, where = 'post', label = 'Bayes. Opt.', c = 'red') ax.fill_between(np.arange(1, 101), test_min_BO, \ test_max_BO, color = 'red', alpha = .5) ax.legend() ax.set_yscale('log') ax.set_xlabel('Number of function evaluations') ax.set_ylabel('Best function evaluation') ax.set_xlim([1, 100]) ax.set_ylim([1, 150]) ax.legend(loc = 'upper right') fig.savefig('ContrSyn_publication_plots/ContrSyn_Model.svg', format = "svg") fig = plt.figure() ax = fig.add_subplot() # ax.step(np.arange(1, 101), test_av_Nest, where = 'post', label = 'Nesterov', c = 'brown') # ax.fill_between(np.arange(1, 101), test_min_Nest, \ # test_max_Nest, color = 'brown', alpha = .5) ax.step(np.arange(1, 101), test_av_Splx, where = 'post', label = 'Simplex', c = 'green') ax.fill_between(
np.arange(1, 101)
numpy.arange
# -*- coding: utf-8 -*- """ Created on Tue Mar 3 10:33:41 2020 @author: <NAME> """ # ============================================================================= # Import Libraries # ============================================================================= import numpy as np from numba import jit import matplotlib.pyplot as plt # ============================================================================= # Define Functions # ============================================================================= def ar_1(mu, a, sigma, T, x_0): """ This function computes a simulated ar1 process assuming x_t = mu + a*x_{t-1} + e_t """ x_path = np.zeros(T) x_path[0] = x_0 shocks = np.random.normal(0,sigma,T) # The first term isn't used and will be ignored for sake of code readability # iteratively construct the AR1 according to x_t = mu + a*x_{t-1} + e_t for t in range(1,T): x_path[t] = mu + a*x_path[t-1] + shocks[t] return x_path # Return the path of the AR1 def censored_ar_1(mu, a, sigma, T, x_0): """ This function computes a simulated ar1 process assuming x_t = max(mu + a*x_{t-1} + e_t,0) """ x_path = np.zeros(T) x_path[0] = x_0 shocks = np.random.normal(0,sigma,T) # The first term isn't used and will be ignored for sake of code readability # iteratively construct the AR1 according to x_t = mu + a*x_{t-1} + e_t for t in range(1,T): x_path[t] = max(mu + a*x_path[t-1] + shocks[t], 0) return x_path # Return the path of the AR1 def compound_interest_rates(interest_path): ''' This function takes in a path of portfolio returns (a Tx1 numpy array) and it returns a T+1xT+1 numpy array. The returned array can be seen as a lower triangular matrix with ones on the diagonal and whose lower diagonal entries correspond to the product of the returns up to that index. ''' T = len(interest_path) # The number of periods - 1 (because we exclued the intial period) CI = np.zeros([T+1,T+1]) # Initialize the matrix of compund interest paths in each period. # Loop over rows and columns and sub in the corresponding compound interest rates for the matrix multiplication for i in range(T+1): for j in range(T+1): if j < i: CI[i, j] = np.prod(interest_path[j:i]) elif j == i: CI[i, j] = 1 elif j > i: continue return CI def asset_path(income_path, consumption_path, initial_savings, interest_path): """ This fucntion computes the total amount you would have saved given a time series of interest rates given by interest_path and a time series of savings amounts given by savings path with the first index corresponding to the first time period. It computes the value of the asset at time T-1, the final index. Inputs: All inputs need to be Tx1 Numpy Arrays """ T = len(income_path) # How many time periods? S = np.subtract(income_path, consumption_path) # Compute per period savings as per period income minus consumption S = np.insert(arr = S, obj = 0, values = initial_savings) # Technical trick, from a mathemtical perspective we can consider initial assets to simply be the savings in period 0. CI = compound_interest_rates(interest_path) # Convert the per period interest path to a compounded interest matrix per period A = np.dot(CI,S) #Final asset time series is just this dot product return A #@jit(nopython = True) # This skips the python interpreter in favor of a more low level interpreter, helps speed up large scale simulations def asset_monte_carlo(N, T, percentiles, initial_savings, inc_fn, cons_fn, int_fn): ''' This function runs a monte-carlo simulation on the intrest rate, income and consumption stochastic processes to obtain quantiles on asset values (Q_t) for each time period and the expected return ''' sim_A = np.empty([N,T+1]) #Simulated assets form an NXT+1 matrix which will be collapsed into T+1x1 vectors corresponding to the percentiles #Randomly simulate asset paths according to the inc_fun, cons_fn and int_fn functions, # then compile the simulated paths into a matrix for n in range(N): income_path = inc_fn() consumption_path = cons_fn() interest_path = int_fn() A_n = asset_path(income_path, consumption_path, initial_savings, interest_path) sim_A[n, :] =
np.transpose(A_n)
numpy.transpose
"""@package sqp_linsearch Constraints on the original Voce-Chaboche model for limited information optimization. """ from numdifftools import nd_algopy as nda import numpy as np def g3_vco_upper(x, constants, variables): """ Constraint on the maximum ratio of stress at saturation to initial yield stress for the original VC model. :param np.ndarray x: Parameters of original Voce-Chaboche model. :param dict constants: Defines the constants for the constraint. :param dict variables: Defines constraint values that depend on x. :return float: Value of the constraint in standard form. """ max_hardening_to_yield = constants['rho_yield_sup'] n_backstresses = int((len(x) - 4) / 2) sy0 = x[1] q_inf = x[2] sum_ck_gammak = 0. for i in range(n_backstresses): c_ind = 4 + 2 * i gamma_ind = 5 + 2 * i sum_ck_gammak += x[c_ind] / x[gamma_ind] return (sy0 + q_inf + sum_ck_gammak) / sy0 - max_hardening_to_yield def g3_vco_lower(x, constants, variables): """ Constraint on the minimum ratio of stress at saturation to initial yield stress for the original VC model. :param np.ndarray x: Parameters of original Voce-Chaboche model. :param dict constants: Defines the constants for the constraint. :param dict variables: Defines constraint values that depend on x. :return float: Value of the constraint in standard form. """ min_hardening_to_yield = constants['rho_yield_inf'] n_backstresses = int((len(x) - 4) / 2) sy0 = x[1] q_inf = x[2] sum_ck_gammak = 0. for i in range(n_backstresses): c_ind = 4 + 2 * i gamma_ind = 5 + 2 * i sum_ck_gammak += x[c_ind] / x[gamma_ind] return -(sy0 + q_inf + sum_ck_gammak) / sy0 + min_hardening_to_yield def g4_vco_upper(x, constants, variables): """ Constraint on the maximum ratio of isotropic to combined isotropic/kinematic hardening at saturation for the original VC model. :param np.ndarray x: Parameters of original Voce-Chaboche model. :param dict constants: Defines the constants for the constraint. :param dict variables: Defines constraint values that depend on x. :return float: Value of the constraint in standard form. """ iso_kin_ratio_max = constants['rho_iso_sup'] q_inf = x[2] n_backstresses = int((len(x) - 4) / 2) sum_ck_gammak = 0. for i in range(n_backstresses): c_ind = 4 + 2 * i gamma_ind = 5 + 2 * i sum_ck_gammak += x[c_ind] / x[gamma_ind] return q_inf / (q_inf + sum_ck_gammak) - iso_kin_ratio_max def g4_vco_lower(x, constants, variables): """ Constraint on the minimum ratio of isotropic to combined isotropic/kinematic hardening at saturation for the original VC model. :param np.ndarray x: Parameters of original Voce-Chaboche model. :param dict constants: Defines the constants for the constraint. :param dict variables: Defines constraint values that depend on x. :return float: Value of the constraint in standard form. """ iso_kin_ratio_min = constants['rho_iso_inf'] q_inf = x[2] n_backstresses = int((len(x) - 4) / 2) sum_ck_gammak = 0. for i in range(n_backstresses): c_ind = 4 + 2 * i gamma_ind = 5 + 2 * i sum_ck_gammak += x[c_ind] / x[gamma_ind] return -q_inf / (q_inf + sum_ck_gammak) + iso_kin_ratio_min def g5_vco_lower(x, constants, variables): """ Constraint on the lower bound ratio of gamma_1 to b for the original VC model. :param np.ndarray x: Parameters of original Voce-Chaboche model. :param dict constants: Defines the constants for the constraint. :param dict variables: Defines constraint values that depend on x. :return float: Value of the constraint in standard form. """ b = x[3] gamma1 = x[5] gamma_b_ratio_min = constants['rho_gamma_inf'] return -gamma1 / b + gamma_b_ratio_min def g5_vco_upper(x, constants, variables): """ Constraint on the upper bound ratio of gamma_1 to b for the original VC model. :param np.ndarray x: Parameters of original Voce-Chaboche model. :param dict constants: Defines the constants for the constraint. :param dict variables: Defines constraint values that depend on x. :return float: Value of the constraint in standard form. """ b = x[3] gamma1 = x[5] gamma_b_ratio_max = constants['rho_gamma_sup'] return gamma1 / b - gamma_b_ratio_max def g6_vco_lower(x, constants, variables): """ Constraint on the lower bound ratio of gamma_1 to gamma_2 for the original VC model. gamma_1 is always x[5] and gamma_2 is always x[7]. :param np.ndarray x: Parameters of original Voce-Chaboche model. :param dict constants: Defines the constants for the constraint. :param dict variables: Defines constraint values that depend on x. :return float: Value of the constraint in standard form. """ gamma1 = x[5] gamma2 = x[7] gamma_1_2_ratio_min = constants['rho_gamma_12_inf'] return -gamma1 / gamma2 + gamma_1_2_ratio_min def g6_vco_upper(x, constants, variables): """ Constraint on the upper bound ratio of gamma_1 to gamma_2 for the original VC model. gamma_1 is always x[5] and gamma_2 is always x[7]. :param np.ndarray x: Parameters of original Voce-Chaboche model. :param dict constants: Defines the constants for the constraint. :param dict variables: Defines constraint values that depend on x. :return float: Value of the constraint in standard form. """ gamma1 = x[5] gamma2 = x[7] gamma_1_2_ratio_max = constants['rho_gamma_12_sup'] return gamma1 / gamma2 - gamma_1_2_ratio_max def g_kin_ratio_vco_lower(x, constants, variables): c1 = x[4] gamma1 = x[5] c2 = x[6] gamma2 = x[7] gamma_kin_ratio_min = constants['rho_kin_ratio_inf'] return -(c1 / gamma1) / (c2 / gamma2) + gamma_kin_ratio_min def g_kin_ratio_vco_upper(x, constants, variables): c1 = x[4] gamma1 = x[5] c2 = x[6] gamma2 = x[7] gamma_kin_ratio_max = constants['rho_kin_ratio_sup'] return (c1 / gamma1) / (c2 / gamma2) - gamma_kin_ratio_max # Gradients and Hessians of all the above constraints def g3_vco_lower_gradient(x, constants, variables): fun_wrapper = lambda x1: g3_vco_lower(x1, constants, variables) grad_fun = nda.Gradient(fun_wrapper) grad = grad_fun(x) return
np.reshape(grad, (-1, 1))
numpy.reshape
""" Simulate GHOST/Veloce instrument observations. This is a simple simulation code for GHOST or Veloce, with a class :class:`GhostArm` that simulates a single arm of the instrument. The key default parameters are hardwired for each named configuration in the :func:`__init__ <GhostArm.__init__>` function of ARM. Note that in this simulation code, the 'x' and 'y' directions are the along-slit and dispersion directions respectively (similar to physical axes), but by convention, images are returned/displayed with a vertical slit and a horizontal dispersion direction. For a simple simulation, run, e.g.:: import pymfe blue = pymfe.ghost.Arm('blue') blue.simulate_frame() TODO: 1) Add spectrograph aberrations (just focus and coma) 2) Add pupil illumination plus aberrations. """ from __future__ import division, print_function import numpy as np from .polyspect import Polyspect GHOST_BLUE_SZX = 4112 # 4096 # GHOST_BLUE_SZY = 4096 # 4112 # GHOST_RED_SZX = 6160 GHOST_RED_SZY = 6144 class GhostArm(Polyspect): """ Class representing an arm of the spectrograph. A class for each arm of the spectrograph. The initialisation function takes a series of strings representing the configuration. It can be ``"red"`` or ``"blue"`` for the arm (first string), and ``"std"`` or ``"high"`` for the mode (second string). This class initialises and inherits all attributes and methods from :any:`Polyspect`, which is the module that contains all spectrograph generic functions. """ def __init__(self, arm='blue', mode='std', detector_x_bin=1, detector_y_bin=1): """ The class initialisation takes the arm, resolution mode and binning modes as inputs and defines all needed attributes. It starts by initialising the :any:`Polyspect` class with the correct detector sizes ``szx`` and ``szy``, order numbers (``m_min``, ``m_max``) and whether the CCD is transposed. Transposed in this case implies that the spectral direction is in the x axis of the CCD image, which is the case for the GHOST data. Most of the parameters sent to the :class:`PolySpect <polyfit.polyspect.PolySpect>` initialization function are self-explanatory, but here is a list of those that may not be: +------------------------------+---------------------------------------+ | **Variable Name** | **Purpose/meaning** | +------------------------------+---------------------------------------+ | ``m_ref``, ``m_min`` and | Reference, minimum and maximum order | | ``m_max`` | indices for the camera. | +------------------------------+---------------------------------------+ | ``szx`` and ``szy`` | Number of pixels in the x and y | | | directions | +------------------------------+---------------------------------------+ | ``nlenslets`` | Number of lenslets in the IFU | +------------------------------+---------------------------------------+ | ``lenslet_high_size`` and | Unused | | ``lenslet_std_size`` | | +------------------------------+---------------------------------------+ Attributes ---------- arm: str Which arm of the GHOST spectrograph is to be initialized. Can be ``'red'`` or ``'blue'``. spect: str Which spectrograph in usage. Defaults to ``'ghost'``. lenslet_high_size: int Lenslet flat-to-flat in microns for high mode. Defaults to ``118.0```. lenslet_std_size: int Lenslet flat-to-flat in microns for standard mode. Defaults to ``197.0``. mode: str Resolution mode. Can be either ``'std'`` or ``'high'``. nlenslets: int Number of lenslets of the IFU. This value is set depending on whether ``mode`` is ``'std'`` (17) or ``'high'`` (28). detector_x_bin: int, optional The x binning of the detector. Defaults to 1. detector_y_bin: int, optional The y binning of the detector. Defaults to 1. """ # MCW 190822 - swapped szy and szx values for new data if arm == 'red': Polyspect.__init__(self, m_ref=50, szx=GHOST_RED_SZX, szy=GHOST_RED_SZY, m_min=34, m_max=64, transpose=True) elif arm == 'blue': Polyspect.__init__(self, m_ref=80, szx=GHOST_BLUE_SZX, szy=GHOST_BLUE_SZY, m_min=63, m_max=95, transpose=True) #was 63 and 95, or 62 and 92 for shifted NRC data. else: print("Unknown spectrograph arm!") raise UserWarning # A lot of these parameters are yet unused. # These are a legacy of the original simulator and are left here # because they may become useful in the future. self.spect = 'ghost' self.arm = arm self.lenslet_high_size = 118.0 # Lenslet flat-to-flat in microns self.lenslet_std_size = 197.0 # Lenslet flat-to-flat in microns self.mode = mode # x is in the spatial direction for this module, contrary to intuition # and convention because Mike is weird like this.... # y is in the spectral direction self.ybin, self.xbin = detector_x_bin, detector_y_bin # Now we determine the number of fibers based on mode. if mode == 'high': self.nlenslets = 28 elif mode == 'std': self.nlenslets = 17 else: print("Unknown mode!") raise UserWarning def bin_data(self, data): """ Generic data binning function. Generic function used to create a binned equivalent of a spectrograph image array for the purposes of equivalent extraction. Data are binned to the binning specified by the class attributes ``detector_x_bin`` and ``detector_y_bin``. This function is mostly used to re-bin calibration images (flat, arc, etc) to the binning of related science data prior to performing extraction. .. note:: This function is now implemented elsewhere as the :any:`ghost.primitives_ghost.GHOST._rebin_ghost_ad` method in the :any:`ghost.primitives_ghost.GHOST` primtive class, and takes care of all the binning. Parameters ---------- data: :obj:`numpy.ndarray` The (unbinned) data to be binned Raises ------ UserWarning If the data provided is not consistent with CCD size, i.e., not unbinned Returns ------- binned_array: :obj:`numpy.ndarray` Re-binned data. """ if data.shape != (self.szx, self.szy): raise UserWarning('Input data for binning is not in the expected' 'format') if self.xbin == 1 and self.ybin == 1: return data rows = self.xbin cols = self.ybin binned_array = data.reshape(int(data.shape[0] / rows), rows, int(data.shape[1] / cols), cols).sum(axis=1).sum(axis=2) return binned_array def slit_flat_convolve(self, flat, slit_profile=None, spatpars=None, microns_pix=None, xpars=None, num_conv=3): """ Correlate a flat field image with a slit profile image. Note that this is not convolution, as we don't want to shift the image. Function that takes a flat field image and a slit profile and convolves them in two dimensions. Returns result of the convolution, which should be used for tramline fitting in findApertures. This function is a first step in finding the centre of each order. Given the potentially overlapping nature of fiber images in flat field frames, a convolution method is employed with a sampled slit profile, in which the center of the order will, ideally, match the profile best and reveal the maximum of the convolution. A convolution map is then fed into a fitting function where the location of the maxima in the map are found, and a model is fit to determine a continuous function describing the centre of the orders. Unfortunately, the slit magnification changes across the detector. Rather than writing a giant for loop, num_conv convolutions are performed with a different slit magnification corresponding to each order stored in the list orders. For each of these orders, a convolution is done in 2D by interpolating the magnified slit profile with the slit coordinates, normalising it and inverse Fourier transforming the product between the flat transform and the shifted slit profile:: # Create the slit model. mod_slit = np.interp(profilex*spat_scale[i], slit_coord, slit_profile) # Normalise the slit model and Fourier transform for convolution mod_slit /= np.sum(mod_slit) mod_slit_ft = np.fft.rfft(np.fft.fftshift(mod_slit)) flat_conv_cube[j, :, i] = np.fft.irfft((im_fft[:, i] * mod_slit_ft)/num_conv) Now, we have the convolution at ``num_conv`` orders, and the final result is an interpolation between these. .. note:: The function currently contains code related to convoling with a fixed synthetic profile, which is not used. This is legacy code and sometimes used only for testing purposes. The normal usage is to have the spatial scale model parameters as inputs which determine the slit magnification as a function of order and pixel along the orders. The flat convolution is done using only a smaller number of orders (defaults to 3) and interpolated over the others but could in principle be done with all orders considered. Parameters ---------- flat: :obj:`numpy.ndarray` A flat field image from the spectrograph slit_profile: :obj:`numpy.ndarray`, optional A slit profile as a 1D array with the slit profile fiber amplitudes. If none is supplied this function will assume identical fibers and create one to be used in the convolution based on default parameters specified in the ghost class. spatpars: :obj:`numpy.ndarray`, optional The 2D polynomial parameters for the slit spatial scale. Required if slit_profile is not None. microns_pix: float, optional The slit scale in microns per pixel. Required if slit_profile is not None. xpars: :obj:`numpy.ndarray`, optional The 2D polynomial parameters for the x (along-slit) coordinate. Required if slit_profile is not None. num_conv: int, optional, optional The number of different convolution functions to use for different orders. The final convolved profile is an interpolation between these. Returns ------- flat_conv: :obj:`numpy.ndarray` The convolved 2D array. """ # FIXME: Error checking of inputs is needed here # TODO: Based on test of speed, the convolution code with an input # slit_profile could go order-by-order. if self.arm == 'red': # Now put in the default fiber profile parameters for each mode. # These are used by the convolution function on polyspect # These were determined based on visual correspondence with # simulated data and may need to be revised once we have real # data. The same applies to the blue arm parameters. if self.mode == 'std': fiber_separation = 4.15 profile_sigma = 1.1 elif self.mode == 'high': fiber_separation = 2.49 profile_sigma = 0.7 elif self.arm == 'blue': # Additional slit rotation accross an order needed to match Zemax. # self.extra_rot = 2.0 # Now put in the default fiber profile parameters for each mode. # These are used by the convolution function on polyspect if self.mode == 'std': fiber_separation = 3.97 profile_sigma = 1.1 elif self.mode == 'high': fiber_separation = 2.53 profile_sigma = 0.7 else: print("Unknown spectrograph arm!") raise UserWarning # Fourier transform the flat for convolution im_fft = np.fft.rfft(flat, axis=0) # Create a x baseline for convolution xbase = flat.shape[0] profilex = np.arange(xbase) - xbase // 2 # This is the original code which is based on the fixed fiber_separation # defined above. if slit_profile is None: flat_conv = np.zeros_like(im_fft) # At this point create a slit profile # Now create a model of the slit profile mod_slit = np.zeros(xbase) if self.mode == 'high': nfibers = 26 else: nfibers = self.nlenslets for i in range(-(nfibers // 2), -(nfibers // 2) + nfibers): mod_slit += np.exp(-(profilex - i * fiber_separation) ** 2 / 2.0 / profile_sigma ** 2) # Normalise the slit model and fourier transform for convolution mod_slit /= np.sum(mod_slit) mod_slit_ft = np.fft.rfft(np.fft.fftshift(mod_slit)) # Now convolved in 2D for i in range(im_fft.shape[1]): flat_conv[:, i] = im_fft[:, i] * mod_slit_ft # Now inverse transform. flat_conv = np.fft.irfft(flat_conv, axis=0) # If a profile is given, do this instead. else: flat_conv = np.zeros_like(flat) flat_conv_cube = np.zeros((num_conv, flat.shape[0], flat.shape[1])) # Our orders that we'll evaluate the spatial scale at: orders = np.linspace(self.m_min, self.m_max, num_conv).astype(int) mprimes = self.m_ref / orders - 1 y_values = np.arange(self.szy) # The slit coordinate in microns slit_coord = (np.arange(len(slit_profile)) - len(slit_profile) // 2) * microns_pix x_map = np.empty((len(mprimes), self.szy)) # Now convolved in 2D for j, mprime in enumerate(mprimes): # The spatial scales spat_scale = self.evaluate_poly(spatpars)[ orders[j] - self.m_min] # The x pixel values, just for this order x_map[j] = self.evaluate_poly(xpars)[orders[j] - self.m_min] for i in range(im_fft.shape[1]): # Create the slit model. mod_slit = np.interp(profilex * spat_scale[i], slit_coord, slit_profile) # Normalise the slit model and Fourier transform for # convolution mod_slit /= np.sum(mod_slit) mod_slit_ft = np.fft.rfft(np.fft.fftshift(mod_slit)) # FIXME: Remove num_conv on next line and see if it makes # a difference! flat_conv_cube[j, :, i] = np.fft.irfft( (im_fft[:, i] * mod_slit_ft.conj()) / num_conv ) # Work through every y coordinate and interpolate between the # convolutions with the different slit profiles. x_ix = np.arange(flat.shape[0]) - flat.shape[0] // 2 # Create an m index, and reverse x_map if needed. # FIXME: This assumes a minimum size of x_map which should be # checked above, i.e. mprimes has 2 or more elements. m_map_ix = np.arange(len(mprimes)) if x_map[1, 0] < x_map[0, 0]: m_map_ix = m_map_ix[::-1] x_map = x_map[::-1] for i in range(im_fft.shape[1]): m_ix_for_interp =
np.interp(x_ix, x_map[:, i], m_map_ix)
numpy.interp
import numpy as np import matplotlib.pyplot as plt from gym_flock.envs.spatial.utils import _get_pos_diff from scipy.spatial import Delaunay from pathlib import Path def in_obstacle(obstacles, px, py): """ Check if query point is within any of the rectangular obstacles :param obstacles: list of rectangular obstacles [(xmin, xmax, ymin, ymax)] :param px: query point x coordinate :param py: query point y coordinate :return: """ for (xmin, xmax, ymin, ymax) in obstacles: if xmin <= px <= xmax and ymin <= py <= ymax: return True return False def gen_obstacle_grid(ranges): obstacle_list = [] for (x1, x2) in ranges: for (y1, y2) in ranges: obstacle_list.append((x1, x2, y1, y2)) return obstacle_list def generate_lattice(free_region, lattice_vectors): """ Generate hexagonal lattice From https://stackoverflow.com/questions/6141955/efficiently-generate-a-lattice-of-points-in-python :param free_region: :param lattice_vectors: :return: """ (xmin, xmax, ymin, ymax) = free_region image_shape = np.array([xmax - xmin, ymax - ymin]) center_pix = image_shape // 2 # Get the lower limit on the cell size. dx_cell = max(abs(lattice_vectors[0][0]), abs(lattice_vectors[1][0])) dy_cell = max(abs(lattice_vectors[0][1]), abs(lattice_vectors[1][1])) # Get an over estimate of how many cells across and up. nx = image_shape[0] // dx_cell ny = image_shape[1] // dy_cell # Generate a square lattice, with too many points. x_sq = np.arange(-nx, nx, dtype=float) y_sq = np.arange(-ny, nx, dtype=float) x_sq.shape = x_sq.shape + (1,) y_sq.shape = (1,) + y_sq.shape # Now shear the whole thing using the lattice vectors x_lattice = lattice_vectors[0][0] * x_sq + lattice_vectors[1][0] * y_sq y_lattice = lattice_vectors[0][1] * x_sq + lattice_vectors[1][1] * y_sq # Trim to fit in box. mask = ((x_lattice < image_shape[0] / 2.0) & (x_lattice > -image_shape[0] / 2.0)) mask = mask & ((y_lattice < image_shape[1] / 2.0) & (y_lattice > -image_shape[1] / 2.0)) x_lattice = x_lattice[mask] y_lattice = y_lattice[mask] # Translate to the center pix. x_lattice += (center_pix[0] + xmin) y_lattice += (center_pix[1] + ymin) # Make output compatible with original version. out = np.empty((len(x_lattice), 2), dtype=float) out[:, 0] = y_lattice out[:, 1] = x_lattice return out def reject_collisions(points, obstacles=None): """ :param points: :param obstacles: :return: """ if obstacles is None or len(obstacles) is 0: return points # remove points within obstacle n_points = np.shape(points)[0] flag = np.ones((n_points,), dtype=np.bool) for i in range(n_points): if in_obstacle(obstacles, points[i, 0], points[i, 1]): flag[i] = False return points[flag, :] def gen_square(env): env.x_max = env.x_max_init * env.n_agents / 4 env.y_max = env.y_max_init * env.n_agents / 4 per_side = int(env.n_targets / 4) targets = set() # initialize fixed grid of targets tempx = np.linspace(-env.x_max, -env.x_max, 1) tempy =
np.linspace(-env.y_max, env.y_max, per_side, endpoint=False)
numpy.linspace
from matplotlib import pyplot as plt from matplotlib import animation import numpy as np class Flock(object): def __init__(self, flock_params, boid_params): """Initialise a flock with boid and flock information""" self.boid_count = flock_params['boid_count'] self.fly_middle_strength = flock_params['fly_middle_strength'] self.nearby_distance = flock_params['nearby_distance'] self.formation_distance = flock_params['formation_distance'] self.speed_formation_strength = flock_params['speed_formation_strength'] lower_pos_limit = np.array([boid_params['min_x_position'],boid_params['min_y_position']]) upper_pos_limit = np.array([boid_params['max_x_position'],boid_params['max_y_position']]) lower_vel_limit = np.array([boid_params['min_x_velocity'],boid_params['min_y_velocity']]) upper_vel_limit = np.array([boid_params['max_x_velocity'],boid_params['max_y_velocity']]) self.positions = lower_pos_limit[:,np.newaxis] + \ np.random.rand(2, int(self.boid_count))*(upper_pos_limit - lower_pos_limit)[:,np.newaxis] self.velocities = lower_vel_limit[:,np.newaxis] + \ np.random.rand(2, int(self.boid_count))*(upper_vel_limit - lower_vel_limit)[:,np.newaxis] """I define helper functions so that Flock can call fly_middle or fly_away if need to""" def fly_middle(self): """Fly towards the middle""" Flock.fly_middle_helper(self.positions,self.velocities,self.fly_middle_strength) self.positions += self.velocities @staticmethod def fly_middle_helper(positions, velocities, fly_middle_strength): """A helper method that does the maths for fly_middle""" positions=np.asarray(positions) velocities=np.asarray(velocities) middle =
np.mean(positions, 1)
numpy.mean
"""Causal Generative Neural Networks. Author : <NAME> & <NAME> Ref : Causal Generative Neural Networks (https://arxiv.org/abs/1711.08936) Date : 09/5/17 .. MIT License .. .. Copyright (c) 2018 <NAME> .. .. Permission is hereby granted, free of charge, to any person obtaining a copy .. of this software and associated documentation files (the "Software"), to deal .. in the Software without restriction, including without limitation the rights .. to use, copy, modify, merge, publish, distribute, sublicense, and/or sell .. copies of the Software, and to permit persons to whom the Software is .. furnished to do so, subject to the following conditions: .. .. The above copyright notice and this permission notice shall be included in all .. copies or substantial portions of the Software. .. .. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR .. IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, .. FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE .. AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER .. LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, .. OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE .. SOFTWARE. """ import networkx as nx import numpy as np import itertools import warnings import torch as th from copy import deepcopy from joblib import Parallel, delayed from sklearn.preprocessing import scale from tqdm import trange from .model import GraphModel from ..pairwise.GNN import GNN from ...utils.loss import MMDloss from ...utils.Settings import SETTINGS from ...utils.graph import dagify_min_edge def message_warning(msg, *a, **kwargs): """Ignore everything except the message.""" return str(msg) + '\n' warnings.formatwarning = message_warning class CGNN_block(th.nn.Module): """CGNN 'block' which represents a FCM equation between a cause and its parents.""" def __init__(self, sizes): """Init the block with the network sizes.""" super(CGNN_block, self).__init__() layers = [] for i, j in zip(sizes[:-2], sizes[1:-1]): print(i,j) layers.append(th.nn.Linear(i, j)) layers.append(th.nn.ReLU()) layers.append(th.nn.Linear(sizes[-2], sizes[-1])) self.layers = th.nn.Sequential(*layers) def forward(self, x): """Forward through the network.""" return self.layers(x) def reset_parameters(self): for layer in self.layers: if hasattr(layer, "reset_parameters"): layer.reset_parameters() class CGNN_model(th.nn.Module): """Class for one CGNN instance.""" def __init__(self, adj_matrix, batch_size, nh=20, gpu=None, gpu_id=0, confounding=False, initial_graph=None, **kwargs): """Init the model by creating the blocks and extracting the topological order.""" super(CGNN_model, self).__init__() gpu = SETTINGS.get_default(gpu=gpu) device = 'cuda:{}'.format(gpu_id) if gpu else 'cpu' self.topological_order = [i for i in nx.topological_sort(nx.DiGraph(adj_matrix))] self.adjacency_matrix = adj_matrix self.confounding = confounding if initial_graph is None: self.i_adj_matrix = self.adjacency_matrix else: self.i_adj_matrix = initial_graph self.blocks = th.nn.ModuleList() self.generated = [None for i in range(self.adjacency_matrix.shape[0])] self.noise = th.zeros(batch_size, self.adjacency_matrix.shape[0]).to(device) self.corr_noise = dict([[(i, j), th.zeros(batch_size, 1).to(device)] for i, j in zip(*np.nonzero(self.i_adj_matrix)) if i < j]) self.criterion = MMDloss(batch_size, device=device) self.score = th.FloatTensor([0]).to(device) for i in range(self.adjacency_matrix.shape[0]): if not confounding: self.blocks.append(CGNN_block([int(self.adjacency_matrix[:, i].sum()) + 1, nh, 1])) else: self.blocks.append(CGNN_block([int(self.i_adj_matrix[:, i].sum()) + int(self.adjacency_matrix[:, i].sum()) + 1, nh, 1])) def forward(self): """Generate according to the topological order of the graph.""" self.noise.data.normal_() if not self.confounding: for i in self.topological_order: self.generated[i] = self.blocks[i](th.cat([v for c in [ [self.generated[j] for j in np.nonzero(self.adjacency_matrix[:, i])[0]], [self.noise[:, [i]]]] for v in c], 1)) else: for i in self.topological_order: self.generated[i] = self.blocks[i](th.cat([v for c in [ [self.generated[j] for j in np.nonzero(self.adjacency_matrix[:, i])[0]], [self.corr_noise[min(i, j), max(i, j)] for j in
np.nonzero(self.i_adj_matrix[:, i])
numpy.nonzero
import pvl from pysis import isis from warnings import warn from pysis.exceptions import ProcessError from numbers import Number import numpy as np import tempfile def point_info(cube_path, x, y, point_type, allow_outside=False): """ Use Isis's campt to get image/ground point info from an image Parameters ---------- cube_path : str path to the input cube x : float point in the x direction. Either a sample or a longitude value depending on the point_type flag y : float point in the y direction. Either a line or a latitude value depending on the point_type flag point_type : str Options: {"image", "ground"} Pass "image" if x,y are in image space (sample, line) or "ground" if in ground space (longitude, lattiude) Returns ------- : PvlObject Pvl object containing campt returns """ point_type = point_type.lower() if point_type not in {"image", "ground"}: raise Exception(f'{point_type} is not a valid point type, valid types are ["image", "ground"]') if isinstance(x, Number) and isinstance(y, Number): x, y = [x], [y] if point_type == "image": # convert to ISIS pixels x = np.add(x, .5) y = np.add(y, .5) if pvl.load(cube_path).get("IsisCube").get("Mapping"): pvlres = [] # We have a projected image for x,y in zip(x,y): try: if point_type.lower() == "ground": pvlres.append(isis.mappt(from_=cube_path, longitude=x, latitude=y, allowoutside=allow_outside, coordsys="UNIVERSAL", type_=point_type)) elif point_type.lower() == "image": pvlres.append(isis.mappt(from_=cube_path, sample=x, line=y, allowoutside=allow_outside, type_=point_type)) except ProcessError as e: print(f"CAMPT call failed, image: {cube_path}\n{e.stderr}") return dictres = [dict(pvl.loads(res)["Results"]) for res in pvlres] if len(dictres) == 1: dictres = dictres[0] else: with tempfile.NamedTemporaryFile("w+") as f: # ISIS's campt wants points in a file, so write to a temp file if point_type == "ground": # campt uses lat, lon for ground but sample, line for image. # So swap x,y for ground-to-image calls x,y = y,x f.write("\n".join(["{}, {}".format(xval,yval) for xval,yval in zip(x, y)])) f.flush() try: pvlres = isis.campt(from_=cube_path, coordlist=f.name, allowoutside=allow_outside, usecoordlist=True, coordtype=point_type) except ProcessError as e: warn(f"CAMPT call failed, image: {cube_path}\n{e.stderr}") return pvlres = pvl.loads(pvlres) dictres = [] if len(x) > 1 and len(y) > 1: for r in pvlres: if r['GroundPoint']['Error'] is not None: raise ProcessError(returncode=1, cmd=['pysis.campt()'], stdout=r, stderr=r['GroundPoint']['Error']) return else: # convert all pixels to PLIO pixels from ISIS r[1]["Sample"] -= .5 r[1]["Line"] -= .5 dictres.append(dict(r[1])) else: if pvlres['GroundPoint']['Error'] is not None: raise ProcessError(returncode=1, cmd=['pysis.campt()'], stdout=pvlres, stderr=pvlres['GroundPoint']['Error']) return else: pvlres["GroundPoint"]["Sample"] -= .5 pvlres["GroundPoint"]["Line"] -= .5 dictres = dict(pvlres["GroundPoint"]) return dictres def image_to_ground(cube_path, sample, line, lattype="PlanetocentricLatitude", lonttype="PositiveEast360Longitude"): """ Use Isis's campt to convert a line sample point on an image to lat lon Returns ------- lats : np.array, float 1-D array of latitudes or single floating point latitude lons : np.array, float 1-D array of longitudes or single floating point longitude """ try: res = point_info(cube_path, sample, line, "image") except ProcessError as e: raise ProcessError(returncode=e.returncode, cmd=e.cmd, stdout=e.stdout, stderr=e.stderr) try: if isinstance(res, list): lats, lons = np.asarray([[r[lattype].value, r[lonttype].value] for r in res]).T else: lats, lons = res[lattype].value, res[lonttype].value except Exception as e: if isinstance(res, list): lats, lons =
np.asarray([[r[lattype], r[lonttype]] for r in res])
numpy.asarray
import numpy as np import nanonet.tb as tb def test_simple_atomic_chain(): """ """ site_energy = -1.0 coupling = -1.0 l_const = 1.0 a = tb.Orbitals('A') a.add_orbital(title='s', energy=-1, ) xyz_file = """1 H cell A 0.0000000000 0.0000000000 0.0000000000 """ tb.set_tb_params(PARAMS_A_A={'ss_sigma': -1.0}) h = tb.Hamiltonian(xyz=xyz_file, nn_distance=1.1) h.initialize() PRIMITIVE_CELL = [[0, 0, l_const]] h.set_periodic_bc(PRIMITIVE_CELL) num_points = 10 kk = np.linspace(0, 3.14 / l_const, num_points, endpoint=True) band_structure = [] for jj in range(num_points): vals, _ = h.diagonalize_periodic_bc([0.0, 0.0, kk[jj]]) band_structure.append(vals) band_structure = np.array(band_structure) desired_value = site_energy + 2 * coupling * np.cos(l_const * kk) np.testing.assert_allclose(band_structure, desired_value[:, np.newaxis], atol=1e-9) def test_atomic_chain_two_kinds_of_atoms(): """ """ site_energy1 = -1.0 site_energy2 = -2.0 coupling = -1.0 l_const = 2.0 a = tb.Orbitals('A') a.add_orbital(title='s', energy=site_energy1, ) b = tb.Orbitals('B') b.add_orbital(title='s', energy=site_energy2, ) xyz_file = """2 H cell A 0.0000000000 0.0000000000 0.0000000000 B 0.0000000000 0.0000000000 1.0000000000 """ tb.set_tb_params(PARAMS_A_B={'ss_sigma': coupling}) h = tb.Hamiltonian(xyz=xyz_file, nn_distance=1.1) h.initialize() PRIMITIVE_CELL = [[0, 0, l_const]] h.set_periodic_bc(PRIMITIVE_CELL) num_points = 10 kk = np.linspace(0, 3.14 / 2, num_points, endpoint=True) band_structure = [] for jj in range(num_points): vals, _ = h.diagonalize_periodic_bc([0.0, 0.0, kk[jj]]) band_structure.append(vals) band_structure = np.array(band_structure) desired_value = np.zeros(band_structure.shape) b = site_energy1 + site_energy2 c = site_energy1 * site_energy2 - (2.0 * coupling *
np.cos(0.5 * kk * l_const)
numpy.cos