prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
import os import time import numpy as np __author__ = "<NAME>" __email__ = "<EMAIL>" from decorator import decorator from scipy import integrate from scipy.interpolate import interp1d, InterpolatedUnivariateSpline from .transform import arcmin2rad, fwhm2sigma import yaml from pprint import pprint from contextlib import contextmanager ######################################################### # CMB and Noise Power Spectra ######################################################### # ------------------ # CMB Power Spectrum # ------------------ def load_Cl_Planck2018(lmin=0): """ load Cl from camb generated Dl file Parameters ---------- lmax: max ell number lmin: min ell number Returns ------- Cls available keys in Cls : L, TT, EE, BB, TE """ assert lmin == 0, "lmin=0 cannot be changed. It is only to indicate explicitly that the " \ "returned results will start from lmin=0.\n" \ "If you want to get the Cl in a custom ell range use utilities.get_CMB_Cl." Cl_fname = os.path.join(os.path.dirname(__file__), "Cl_Planck2018_camb.npz") Cls = np.load(Cl_fname) # L = Cls['ell'] # Cl_TT = Cls['tt'] # Cl_EE = Cls['ee'] # Cl_BB = Cls['bb'] # Cl_TE = Cls['te'] return Cls def get_CMB_Cl(lmax, lmin=0, mode="TT", return_ell=False, uK=False): """ load Cl from camb generated Dl file Parameters ---------- lmax: int max ell number lmin: int min ell number mode: str CMB mode to return (e.g. "TT", "EE", etc) return_ell: bool if True, returns the corresponding ell array as well Returns ------- Cl [K^2] or ell, Cl [K^2] available keys in Cls : L, TT, EE, BB, TE """ Cl_fname = os.path.join(os.path.dirname(__file__), "Cl_Planck2018_camb.npz") Cls = load_Cl_Planck2018() L = Cls['L'][lmin:lmax+1] Cl = Cls[mode][lmin:lmax+1] if uK: Cl *= 1E12 if return_ell: return L, Cl else: return Cl # -------------------- # Noise Power Spectrum # -------------------- def _compute_Nl(sigma_n, lmax, lmin=0, fwhm=None, apply_beam=False, uK=False, return_ell=False): """ compute the instrumental noise power spectrum (uK^2) Parameters ---------- sigma_n [uK-arcmin]: noise level in uK-arcmin can a scalar or an array for multiple channels the length must match that of fwhm lmax: maximum ell mode in the power spectrum lmin: minimum ell mode in the power spectrum fwhm [arcmin]: beam fwhm in arcmins can be scalar or an array for multiple channels apply_beam: if True, deconvolves the noise with beam uK: bool if True, the returned Nl will be in uK^2 units return_ell: bool if True, returns the corresponding ell array as well Returns ------- Nl [K^2] or ell, Nl [K^2] """ # make sure input is an array if np.isscalar(sigma_n): sigma_n = [sigma_n] #convert sigma_n to radians sigma_n = arcmin2rad(np.asarray(sigma_n)) # set up ell L = np.arange(lmin, lmax + 1) # determine number of channels n_channels = len(sigma_n) # calculate w^(-1) noise power spectrum prefactor w_inverse = sigma_n ** 2 # calculate the noise power spectrum N_l (no beam) for each channel Nl_channel = np.array([w_inverse[channel] * np.ones(L.shape) for channel in range(n_channels)]) # apply beam to the noise power spectrum if apply_beam: if fwhm: # convert scalar fwhm to list for consistency if np.isscalar(fwhm): fwhm = [fwhm] # convert fwhm to radians fwhm = arcmin2rad(np.asarray(fwhm)) # check the length and dimensions of the input assert len(fwhm) == len(sigma_n), "fwhm and sigma_n must have the same length" assert np.ndim(fwhm) == np.ndim(sigma_n) == 1 # convert fwhm to sigma sigma_theta = fwhm ** 2 / 8 /
np.log(2)
numpy.log
import unittest import numpy as np import torch from torch.autograd import Variable import torch.nn from pyoptmat import ode, models, flowrules, hardening, utility, damage from pyoptmat.temperature import ConstantParameter as CP torch.set_default_tensor_type(torch.DoubleTensor) torch.autograd.set_detect_anomaly(True) def differ(mfn, p0, eps=1.0e-6): v0 = mfn(p0).numpy() puse = p0.numpy() result = np.zeros(puse.shape) for ind, val in np.ndenumerate(puse): dp = np.abs(val) * eps if dp < eps: dp = eps pcurr = np.copy(puse) pcurr[ind] += dp v1 = mfn(torch.tensor(pcurr)).numpy() result[ind] = (v1 - v0) / dp return result def simple_diff(fn, p0): res = [] for i in range(len(p0)): def mfn(pi): ps = [pp for pp in p0] ps[i] = pi return fn(ps) res.append(differ(mfn, p0[i])) return res class CommonGradient: def test_gradient_strain(self): bmodel = self.model_fn([Variable(pi, requires_grad=True) for pi in self.p]) res = torch.norm( bmodel.solve_strain(self.times, self.strains, self.temperatures) ) res.backward() grad = self.extract_grad(bmodel) ngrad = simple_diff( lambda p: torch.norm( self.model_fn(p).solve_strain( self.times, self.strains, self.temperatures ) ), self.p, ) for i, (p1, p2) in enumerate(zip(grad, ngrad)): print(i, p1, p2) self.assertTrue(np.allclose(p1, p2, rtol=1e-4)) def test_gradient_stress(self): bmodel = self.model_fn([Variable(pi, requires_grad=True) for pi in self.p]) res = torch.norm( bmodel.solve_stress(self.times, self.stresses, self.temperatures) ) res.backward() grad = self.extract_grad(bmodel) ngrad = simple_diff( lambda p: torch.norm( self.model_fn(p).solve_stress( self.times, self.stresses, self.temperatures ) ), self.p, ) # Skipping the first step helps with noise issues for i, (p1, p2) in enumerate(zip(grad[1:], ngrad[1:])): print(i, p1, p2) self.assertTrue(np.allclose(p1, p2, rtol=1e-4, atol=1e-7)) class TestPerfectViscoplasticity(unittest.TestCase, CommonGradient): def setUp(self): self.ntime = 10 self.nbatch = 10 self.E = torch.tensor(100000.0) self.n = torch.tensor(5.2) self.eta = torch.tensor(110.0) self.p = [self.E, self.n, self.eta] self.model_fn = lambda p: models.ModelIntegrator( models.InelasticModel( CP(p[0]), flowrules.PerfectViscoplasticity(CP(p[1]), CP(p[2])) ), use_adjoint=False, ) self.extract_grad = lambda m: [ m.model.E.pvalue.grad.numpy(), m.model.flowrule.n.pvalue.grad.numpy(), m.model.flowrule.eta.pvalue.grad.numpy(), ] self.times = torch.transpose( torch.tensor( np.array([np.linspace(0, 1, self.ntime) for i in range(self.nbatch)]) ), 1, 0, ) self.strains = torch.transpose( torch.tensor( np.array( [np.linspace(0, 0.003, self.ntime) for i in range(self.nbatch)] ) ), 1, 0, ) self.stresses = torch.transpose( torch.tensor( np.array( [np.linspace(0, 100.0, self.ntime) for i in range(self.nbatch)] ) ), 1, 0, ) self.temperatures = torch.zeros_like(self.strains) class TestIsotropicOnly(unittest.TestCase, CommonGradient): def setUp(self): self.ntime = 10 self.nbatch = 10 self.E = torch.tensor(100000.0) self.n = torch.tensor(5.2) self.eta = torch.tensor(110.0) self.R = torch.tensor(100.0) self.d = torch.tensor(5.1) self.s0 = torch.tensor(10.0) self.p = [self.E, self.n, self.eta, self.s0, self.R, self.d] self.model_fn = lambda p: models.ModelIntegrator( models.InelasticModel( CP(p[0]), flowrules.IsoKinViscoplasticity( CP(p[1]), CP(p[2]), CP(p[3]), hardening.VoceIsotropicHardeningModel(CP(p[4]), CP(p[5])), hardening.NoKinematicHardeningModel(), ), ), use_adjoint=False, ) self.extract_grad = lambda m: [ m.model.E.pvalue.grad.numpy(), m.model.flowrule.n.pvalue.grad.numpy(), m.model.flowrule.eta.pvalue.grad.numpy(), m.model.flowrule.s0.pvalue.grad.numpy(), m.model.flowrule.isotropic.R.pvalue.grad.numpy(), m.model.flowrule.isotropic.d.pvalue.grad.numpy(), ] self.times = torch.transpose( torch.tensor( np.array([np.linspace(0, 1, self.ntime) for i in range(self.nbatch)]) ), 1, 0, ) self.strains = torch.transpose( torch.tensor( np.array( [np.linspace(0, 0.003, self.ntime) for i in range(self.nbatch)] ) ), 1, 0, ) self.stresses = torch.transpose( torch.tensor( np.array( [np.linspace(0, 200.0, self.ntime) for i in range(self.nbatch)] ) ), 1, 0, ) self.temperatures = torch.zeros_like(self.strains) class TestHardeningViscoplasticity(unittest.TestCase, CommonGradient): def setUp(self): self.ntime = 10 self.nbatch = 10 self.E = torch.tensor(100000.0) self.n = torch.tensor(5.2) self.eta = torch.tensor(110.0) self.R = torch.tensor(100.0) self.d = torch.tensor(5.1) self.C = torch.tensor(1000.0) self.g = torch.tensor(10.0) self.s0 = torch.tensor(10.0) self.p = [self.E, self.n, self.eta, self.s0, self.R, self.d, self.C, self.g] self.model_fn = lambda p: models.ModelIntegrator( models.InelasticModel( CP(p[0]), flowrules.IsoKinViscoplasticity( CP(p[1]), CP(p[2]), CP(p[3]), hardening.VoceIsotropicHardeningModel(CP(p[4]), CP(p[5])), hardening.FAKinematicHardeningModel(CP(p[6]), CP(p[7])), ), ), use_adjoint=False, ) self.extract_grad = lambda m: [ m.model.E.pvalue.grad.numpy(), m.model.flowrule.n.pvalue.grad.numpy(), m.model.flowrule.eta.pvalue.grad.numpy(), m.model.flowrule.s0.pvalue.grad.numpy(), m.model.flowrule.isotropic.R.pvalue.grad.numpy(), m.model.flowrule.isotropic.d.pvalue.grad.numpy(), m.model.flowrule.kinematic.C.pvalue.grad.numpy(), m.model.flowrule.kinematic.g.pvalue.grad.numpy(), ] self.times = torch.transpose( torch.tensor( np.array([np.linspace(0, 1, self.ntime) for i in range(self.nbatch)]) ), 1, 0, ) self.strains = torch.transpose( torch.tensor( np.array( [
np.linspace(0, 0.003, self.ntime)
numpy.linspace
from fv3fit.keras._models.normalizer import LayerStandardScaler import numpy as np import pytest import tempfile import tensorflow as tf @pytest.fixture(params=["standard"]) def scaler(request): if request.param == "standard": return LayerStandardScaler() else: raise NotImplementedError() @pytest.mark.parametrize("n_samples, n_features", [(10, 1), (10, 5)]) def test_normalize_layer_properties(scaler, n_samples, n_features): X =
np.random.uniform(0, 10, size=[n_samples, n_features])
numpy.random.uniform
import data_analysis as ed import integration_ME as ME import matplotlib.pyplot as plt from matplotlib import gridspec, cm import numpy as np from tqdm import tqdm import pandas as pd import seaborn as sns from scipy.stats import gaussian_kde import models as md Nmax = ed.Nmax sbcolorcycle=sns.color_palette("Set1",n_colors=9,desat=0.8) # Setting Colour palette sns.set_palette("Set1",n_colors=9,desat=0.8) sbcolorcyclebright=sns.color_palette("bright") sbcolorcycledark=sns.color_palette("dark") sbcolorcyclemuted=sns.color_palette("muted") sns.set_style("ticks") # Set plot properties sns.despine() colorcycle=["#e41a1c", #RED "#377eb8","#4daf4a", #BLUE, GREEN "#ff7f00","#984ea3", #ORANGE, PURPLE "#999999","#f781bf","#a65628","#ffff33"] #GREY, PINK, BROWN def plottrajectory(model = 'BergU', bayes = 'SMC', gamma = 300, source = 'file', condition = 'final', bestpar_idx = 'MAP', resurrection = 'withzeros', subfolder = 'smc/'): # plots the experimental trajectories, their statistics and the prediction of the model for a given set of parameters # if 'source'== pars then the parameters are the array pars, if 'file' exract from fitting # if 'bestpar_idx' == 'MAP' then the kde is usedd to calculate the MAP and plot that trajectory, otherwise use int to select a dataset # model : what model from models.py to use # bayes : currently only using 'SMC' - sequential monte carlo # gamma : value of the load # condition: what iteration of the SMC to choose from. 'final' returns the last one # resurrection: choose alignment of resurrectiont races ca ben 'withzeros' or 'nozeros' stride_plots = 1 # stride even more to have less crammed correlation plots condition = str(condition) fontsize = 15 if resurrection == 'nozeros': str_res = 'statnum_resurrection_nozeros' str_common_vector_res = 'common_time_vector_resurrection_nozeros' str_longest_vector_res = 'longest_time_vector_resurrection_nozeros' str_mean_res = 'mean_resurrection_nozeros' elif resurrection == 'withzeros' : str_res = 'statnum_resurrection_withzeros' str_common_vector_res = 'common_time_vector_resurrection_withzeros' str_longest_vector_res = 'longest_time_vector_resurrection_withzeros' str_mean_res = 'mean_resurrection_withzeros' if md.model_properties[model]['integrator_name']=='Berg': N_dimension = Nmax+1 elif md.model_properties[model]['integrator_name']=='WeakStrong': parnames = [] N_dimension = int((Nmax+1)*(Nmax+2)/2) data1 = None lklh_list = np.array([]) if source == 'file': if bayes == 'SMC': # only option in the last implementation # gamma_file = gamma # if model in ['BergU','BergO','BergOO','WeakStrongU_fixstrong','WeakStrongU','WeakStrongU_doublefix']: gamma_file = 300 data1_sorted = np.loadtxt('{}pars_{}_MF_{}_{}.out'.format(subfolder,model,gamma_file,condition)) if bestpar_idx == 'MAP': # calculate MAP kde = gaussian_kde(data1_sorted.T, bw_method = 1.0) localdensity = kde.evaluate(data1_sorted.T) sortedidxs = localdensity.argsort() data1_sorted = data1_sorted[sortedidxs] localdensity_sorted = localdensity[sortedidxs] bestpars = data1_sorted[-1] worstpars = data1_sorted[0] print("Best pars for the stochastic model are: {}".format(bestpars)) print("Worst pars for the stochastic model are: {}".format(worstpars)) distance = 0 gammas = [300,500,1300] integrator_name = md.model_properties[model]['integrator_name'] sto_trajs = False resurrectionzeros = md.model_properties[model]['resurrectionzeros'] for xgamma in gammas: integration_pars = md.prior_to_integrator(bestpars,model,xgamma) distance += ed.DistanceLikelihood(xgamma, integrator_name, integration_pars, return_trajs = False, sto_trajs = False,resurrectionzeros = resurrectionzeros) bestpars = md.prior_to_integrator(bestpars,model,gamma) print("Distance at MAP is: {}".format(distance)) elif bestpar_idx == 'score': # calculate the score of all the points and select the best one (this might take time) gammas = [300,500,1300] distances = [] integrator_name = md.model_properties[model]['integrator_name'] resurrectionzeros = md.model_properties[model]['resurrectionzeros'] distances = np.loadtxt('{}distances_{}_MF_{}_{}.out'.format(subfolder,model,gamma_file,condition)) # for par in tqdm(data1_sorted): # distance = 0 # for xgamma in gammas: # integration_pars = md.prior_to_integrator(par,model,xgamma) # distance += ed.DistanceLikelihood(xgamma, integrator_name, integration_pars, # return_trajs = False, sto_trajs = False,resurrectionzeros = resurrectionzeros) # distances.append(distance) bestidx = np.argmin(distances) worstidx = np.argmax(distances) bestpars = md.prior_to_integrator(data1_sorted[bestidx],model,gamma) worstpars = md.prior_to_integrator(data1_sorted[worstidx],model,gamma) print("Best sample distance is: {}".format(distances[bestidx])) print("For parameter set:", data1_sorted[bestidx]) print("Worst sample distance is: {}".format(distances[worstidx])) else: bestpars = data1_sorted[bestpar_idx] bestpars = md.prior_to_integrator(bestpars,model,gamma) print("Particular point chosen : {}".format(bestpars)) else: print('source', source) bestpars = md.prior_to_integrator(source,model,gamma) print("Using custom parameter set (in sampling space):", source) distance = 0 gammas = [300,500,1300] integrator_name = md.model_properties[model]['integrator_name'] resurrectionzeros = md.model_properties[model]['resurrectionzeros'] for xgamma in gammas: integration_pars = md.prior_to_integrator(source,model,xgamma) distance += ed.DistanceLikelihood(xgamma, integrator_name, integration_pars, return_trajs = False, sto_trajs = False,resurrectionzeros = resurrectionzeros) print("With distance: ", distance) ## preparing figures and axes fig = plt.figure(figsize = [15,5]) spec = gridspec.GridSpec(ncols=3, nrows=1, figure=fig, wspace = 0.01) axes = [] for expcondition in range(3): axes.append(plt.subplot(spec[expcondition])) if expcondition > 0 : axes[expcondition].yaxis.set_ticklabels([]) ################################ Plotting trajectories # Getting the stochastic trajectories if md.model_properties[model]['integrator_name'] == 'Berg': A = ME.Berg_Matrix(*bestpars, N=Nmax) Aext = ME.GetEigenElements(A) # to avoid inverting the matrix constantly P0_before_stall = ME.Equilibrium(Aext, eigen_given = True) P0_resurrection = np.zeros(Nmax+1) P0_resurrection[0] = 1 elif md.model_properties[model]['integrator_name'] == 'WeakStrong': A = ME.WeakStrong_Matrix(*bestpars, N=Nmax) Aext = ME.GetEigenElements(A) # to avoid inverting the matrix constantly P0_before_stall = ME.Equilibrium(Aext, eigen_given = True) params_stall = bestpars[:] params_stall[1] = 0 # forbidden dettachment A_stall = ME.WeakStrong_Matrix(*params_stall, N=Nmax) Aext_stall = ME.GetEigenElements(A_stall) P_eq_stall = ME.Normalize(ME.Equilibrium(Aext_stall,eigen_given = True)) M = len(P0_before_stall) # number of possible states P0_resurrection = np.zeros(M) P0_resurrection[0] = 1 # first state is (empty state) is the only populated one ## Due to the fact that the initial condition for stalls is not fixed, the statistics are computed using all the trajectories Pt_release_cumulative = np.zeros((len(ed.data_light_stats[gamma]['longest_time_vector_release']),N_dimension)) N_release = 0 Pt_resurrection_cumulative = np.zeros((len(ed.data_light_stats[gamma][str_longest_vector_res]),N_dimension)) # each one will contain the mean and var of the different release traces (due to different initial conditions) mean_release = np.array([]).reshape(0,len(ed.data_light_stats[gamma]['longest_time_vector_release'])) mean_release_weak = np.array([]).reshape(0,len(ed.data_light_stats[gamma]['longest_time_vector_release'])) mean_release_strong = np.array([]).reshape(0,len(ed.data_light_stats[gamma]['longest_time_vector_release'])) var_release = np.array([]).reshape(0,len(ed.data_light_stats[gamma]['longest_time_vector_release'])) mean_resurrection = np.array([]).reshape(0,len(ed.data_light_stats[gamma][str_longest_vector_res])) mean_resurrection_weak = np.array([]).reshape(0,len(ed.data_light_stats[gamma][str_longest_vector_res])) mean_resurrection_strong=
np.array([])
numpy.array
# encoding=utf8 # pylint: disable=mixed-indentation, trailing-whitespace, multiple-statements, attribute-defined-outside-init, logging-not-lazy, arguments-differ, line-too-long, redefined-builtin, singleton-comparison, no-self-use, bad-continuation import logging from scipy.spatial.distance import euclidean as ed from numpy import apply_along_axis, argmin, argmax, sum, full, inf, asarray, mean, where, sqrt from NiaPy.util import fullArray from NiaPy.algorithms.algorithm import Algorithm logging.basicConfig() logger = logging.getLogger('NiaPy.algorithms.basic') logger.setLevel('INFO') __all__ = ['KrillHerdV1', 'KrillHerdV2', 'KrillHerdV3', 'KrillHerdV4', 'KrillHerdV11'] class KrillHerd(Algorithm): r"""Implementation of krill herd algorithm. **Algorithm:** Krill Herd Algorithm **Date:** 2018 **Authors:** <NAME> **License:** MIT **Reference URL:** http://www.sciencedirect.com/science/article/pii/S1007570412002171 **Reference paper:** <NAME>, <NAME>, Krill herd: A new bio-inspired optimization algorithm, Communications in Nonlinear Science and Numerical Simulation, Volume 17, Issue 12, 2012, Pages 4831-4845, ISSN 1007-5704, https://doi.org/10.1016/j.cnsns.2012.05.010. """ Name = ['KrillHerd', 'KH'] @staticmethod def typeParameters(): return { 'NP': lambda x: isinstance(x, int) and x > 0, 'N_max': lambda x: isinstance(x, (int, float)) and x > 0, 'V_f': lambda x: isinstance(x, (int, float)) and x > 0, 'D_max': lambda x: isinstance(x, (int, float)) and x > 0, 'C_t': lambda x: isinstance(x, (int, float)) and x > 0, 'W_n': lambda x: isinstance(x, (int, float)) and x > 0, 'W_f': lambda x: isinstance(x, (int, float)) and x > 0, 'd_s': lambda x: isinstance(x, (int, float)) and x > 0, 'nn': lambda x: isinstance(x, int) and x > 0, 'Cr': lambda x: isinstance(x, float) and 0 <= x <= 1, 'Mu': lambda x: isinstance(x, float) and 0 <= x <= 1, 'epsilon': lambda x: isinstance(x, float) and 0 < x < 1 } def setParameters(self, NP=50, N_max=0.01, V_f=0.02, D_max=0.002, C_t=0.93, W_n=0.42, W_f=0.38, d_s=2.63, nn=5, Cr=0.2, Mu=0.05, epsilon=1e-31, **ukwargs): r"""Set the arguments of an algorithm. **Arguments:** NP {integer} -- Number of krill herds in population N_max {real} -- maximum induced speed V_f {real} -- foraging speed D_max {real} -- maximum diffsion speed C_t {real} -- constant $\in [0, 2]$ W_n {real} or {array} -- inerta weights of the motion iduced from neighbors $\in [0, 1]$ W_f {real} or {array} -- inerta weights of the motion iduced from fraging $\in [0, 1]$ d_s {real} -- maximum euclidean distance for neighbors nn {integer} -- maximu neighbors for neighbors effect Cr {real} -- Crossover rate Mu {real} -- Mutation rate epsilon {real} -- Small numbers for devision """ self.N, self.N_max, self.V_f, self.D_max, self.C_t, self.W_n, self.W_f, self.d_s, self.nn, self._Cr, self._Mu, self.epsilon = NP, N_max, V_f, D_max, C_t, W_n, W_f, d_s, nn, Cr, Mu, epsilon if ukwargs: logger.info('Unused arguments: %s' % (ukwargs)) def initWeights(self, task): return fullArray(self.W_n, task.D), fullArray(self.W_f, task.D) def sensRange(self, ki, KH): return sum([ed(KH[ki], KH[i]) for i in range(self.N)]) / (self.nn * self.N) def getNeigbors(self, i, ids, KH): N = list() for j in range(self.N): if j != i and ids > ed(KH[i], KH[j]): N.append(j) return N def funX(self, x, y): return ((y - x) + self.epsilon) / (ed(y, x) + self.epsilon) def funK(self, x, y, b, w): return ((x - y) + self.epsilon) / ((w - b) + self.epsilon) def induceNeigborsMotion(self, i, n, W, KH, KH_f, ikh_b, ikh_w, task): Ni = self.getNeigbors(i, self.sensRange(i, KH), KH) Nx, Nf, f_b, f_w = KH[Ni], KH_f[Ni], KH_f[ikh_b], KH_f[ikh_w] alpha_l = sum(asarray([self.funK(KH_f[i], j, f_b, f_w) for j in Nf]) * asarray([self.funX(KH[i], j) for j in Nx]).T) alpha_t = 2 * (1 + self.rand() * task.Iters / task.nGEN) return self.N_max * (alpha_l + alpha_t) + W * n def induceFragingMotion(self, i, x, x_f, f, W, KH, KH_f, ikh_b, ikh_w, task): beta_f = 2 * (1 - task.Iters / task.nGEN) * self.funK(KH_f[i], x_f, KH_f[ikh_b], KH_f[ikh_w]) * self.funX(KH[i], x) if KH_f[ikh_b] < KH_f[i] else 0 beta_b = self.funK(KH_f[i], KH_f[ikh_b], KH_f[ikh_b], KH_f[ikh_w]) * self.funX(KH[i], KH[ikh_b]) return self.V_f * (beta_f + beta_b) + W * f def inducePhysicalDiffusion(self, task): return self.D_max * (1 - task.Iters / task.nGEN) * self.uniform(-1, 1, task.D) def deltaT(self, task): return self.C_t * sum(task.bcRange()) def crossover(self, x, xo, Cr): return [xo[i] if self.rand() < Cr else x[i] for i in range(len(x))] def mutate(self, x, x_b, Mu): return [x[i] if self.rand() < Mu else (x_b[i] + self.rand()) for i in range(len(x))] def getFoodLocation(self, KH, KH_f, task): x_food = task.repair(asarray([sum(KH[:, i] / KH_f) for i in range(task.D)]) / sum(1 / KH_f), rnd=self.Rand) x_food_f = task.eval(x_food) return x_food, x_food_f def Mu(self, xf, yf, xf_best, xf_worst): return self._Mu / (self.funK(xf, yf, xf_best, xf_worst) + 1e-31) def Cr(self, xf, yf, xf_best, xf_worst): return self._Cr * self.funK(xf, yf, xf_best, xf_worst) def runTask(self, task): KH, N, F, x, x_fit = self.uniform(task.Lower, task.Upper, [self.N, task.D]), full(self.N, .0), full(self.N, .0), None, task.optType.value * inf W_n, W_f = self.initWeights(task) while not task.stopCondI(): KH_f = apply_along_axis(task.eval, 1, KH) ikh_b, ikh_w = argmin(KH_f), argmax(KH_f) if KH_f[ikh_b] < x_fit: x, x_fit = KH[ikh_b], KH_f[ikh_b] x_food, x_food_f = self.getFoodLocation(KH, KH_f, task) if x_food_f < x_fit: x, x_fit = x_food, x_food_f N = asarray([self.induceNeigborsMotion(i, N[i], W_n, KH, KH_f, ikh_b, ikh_w, task) for i in range(self.N)]) F = asarray([self.induceFragingMotion(i, x_food, x_food_f, F[i], W_f, KH, KH_f, ikh_b, ikh_w, task) for i in range(self.N)]) D = asarray([self.inducePhysicalDiffusion(task) for i in range(self.N)]) KH_n = KH + (self.deltaT(task) * (N + F + D)) Cr = asarray([self.Cr(KH_f[i], KH_f[ikh_b], KH_f[ikh_b], KH_f[ikh_w]) for i in range(self.N)]) KH_n = asarray([self.crossover(KH_n[i], KH[i], Cr[i]) for i in range(self.N)]) Mu = asarray([self.Mu(KH_f[i], KH_f[ikh_b], KH_f[ikh_b], KH_f[ikh_w]) for i in range(self.N)]) KH_n = asarray([self.mutate(KH_n[i], KH[ikh_b], Mu[i]) for i in range(self.N)]) KH = apply_along_axis(task.repair, 1, KH_n, rnd=self.Rand) return x, x_fit class KrillHerdV4(KrillHerd): r"""Implementation of krill herd algorithm. **Algorithm:** Krill Herd Algorithm **Date:** 2018 **Authors:** <NAME> **License:** MIT **Reference URL:** http://www.sciencedirect.com/science/article/pii/S1007570412002171 **Reference paper:** <NAME>, <NAME>, Krill herd: A new bio-inspired optimization algorithm, Communications in Nonlinear Science and Numerical Simulation, Volume 17, Issue 12, 2012, Pages 4831-4845, ISSN 1007-5704, https://doi.org/10.1016/j.cnsns.2012.05.010. """ Name = ['KrillHerdV4', 'KHv4'] @staticmethod def typeParameters(): d = KrillHerd.typeParameters() del d['Cr'] del d['Mu'] del d['epsilon'] return d def setParameters(self, NP=50, N_max=0.01, V_f=0.02, D_max=0.002, C_t=0.93, W_n=0.42, W_f=0.38, d_s=2.63, **ukwargs): KrillHerd.setParameters(self, NP, N_max, V_f, D_max, C_t, W_n, W_f, d_s, 4, 0.2, 0.05, 1e-31, **ukwargs) class KrillHerdV1(KrillHerd): r"""Implementation of krill herd algorithm. **Algorithm:** Krill Herd Algorithm **Date:** 2018 **Authors:** <NAME> **License:** MIT **Reference URL:** http://www.sciencedirect.com/science/article/pii/S1007570412002171 **Reference paper:** <NAME>, <NAME>, Krill herd: A new bio-inspired optimization algorithm, Communications in Nonlinear Science and Numerical Simulation, Volume 17, Issue 12, 2012, Pages 4831-4845, ISSN 1007-5704, https://doi.org/10.1016/j.cnsns.2012.05.010. """ Name = ['KrillHerdV1', 'KHv1'] @staticmethod def typeParameters(): return KrillHerdV4.typeParameters() def crossover(self, x, xo, Cr): return x def mutate(self, x, x_b, Mu): return x class KrillHerdV2(KrillHerd): r"""Implementation of krill herd algorithm. **Algorithm:** Krill Herd Algorithm **Date:** 2018 **Authors:** <NAME> **License:** MIT **Reference URL:** http://www.sciencedirect.com/science/article/pii/S1007570412002171 **Reference paper:** <NAME>, <NAME>, Krill herd: A new bio-inspired optimization algorithm, Communications in Nonlinear Science and Numerical Simulation, Volume 17, Issue 12, 2012, Pages 4831-4845, ISSN 1007-5704, https://doi.org/10.1016/j.cnsns.2012.05.010. """ Name = ['KrillHerdV2', 'KHv2'] @staticmethod def typeParameters(): d = KrillHerd.typeParameters() del d['Mu'] return d def mutate(self, x, x_b, Mu): return x class KrillHerdV3(KrillHerd): r"""Implementation of krill herd algorithm. **Algorithm:** Krill Herd Algorithm **Date:** 2018 **Authors:** <NAME> **License:** MIT **Reference URL:** http://www.sciencedirect.com/science/article/pii/S1007570412002171 **Reference paper:** <NAME>, <NAME>, Krill herd: A new bio-inspired optimization algorithm, Communications in Nonlinear Science and Numerical Simulation, Volume 17, Issue 12, 2012, Pages 4831-4845, ISSN 1007-5704, https://doi.org/10.1016/j.cnsns.2012.05.010. """ Name = ['KrillHerdV3', 'KHv3'] @staticmethod def typeParameters(): d = KrillHerd.typeParameters() del d['Cr'] return d def crossover(self, x, xo, Cr): return x class KrillHerdV11(KrillHerd): r"""Implementation of krill herd algorithm. **Algorithm:** Krill Herd Algorithm **Date:** 2018 **Authors:** <NAME> **License:** MIT **Reference URL:** **Reference paper:** """ Name = ['KrillHerdV11', 'KHv11'] def ElitistSelection(self, KH, KH_f, KHo, KHo_f): ipb =
where(KHo_f >= KH_f)
numpy.where
import numpy as np from .. import lasso, group_lasso, strong_rules, warm_start from ..basil import basil_inner_loop, basil from ...tests.decorators import set_seed_for_test @set_seed_for_test() def test_lasso_agreement(n=200,p=50): ''' check to see if it agrees with lasso path ''' X = np.random.standard_normal((n,p)) Y = np.random.standard_normal(n) betaX = np.zeros(p) betaX[:3] = [3,4,5] Y += np.dot(X, betaX) + np.random.standard_normal(n) groups = np.arange(p) group_lasso1 = group_lasso.gaussian(X, Y, groups) lagrange_sequence = group_lasso.default_lagrange_sequence(group_lasso1.penalty, group_lasso1.grad_solution, nstep=23) # initialized at "null" model sol1 = strong_rules(group_lasso1, lagrange_sequence, (group_lasso1.solution, group_lasso1.grad_solution), inner_tol=1.e-12) weights = np.ones(p) lasso2 = lasso.gaussian(X, Y, weights) sol2 = strong_rules(lasso2, lagrange_sequence, (lasso2.solution, lasso2.grad_solution), inner_tol=1.e-12) beta1 = sol1['beta'] beta2 = sol2['beta'] np.testing.assert_allclose(beta1, beta2) @set_seed_for_test() def test_path_subsample(n=200,p=50): ''' compare a subsample path to the full path on subsampled data ''' X = np.random.standard_normal((n,p)) Y = np.random.standard_normal(n) betaX = np.zeros(p) betaX[:3] = [3,4,5] Y += np.dot(X, betaX) + np.random.standard_normal(n) cases = range(n//2) groups = ['a', 'a', 'a', 'b', 'b'] for i in range(9): groups.extend([str(i)]*5) np.random.shuffle(groups) group_lasso1 = group_lasso.gaussian(X, Y, groups) group_lasso1 = group_lasso1.subsample(cases) lagrange_sequence = group_lasso.default_lagrange_sequence(group_lasso1.penalty, group_lasso1.grad_solution, nstep=23) # initialized at "null" model sol1 = strong_rules(group_lasso1, lagrange_sequence, (group_lasso1.solution, group_lasso1.grad_solution), inner_tol=1.e-10) beta1 = sol1['beta'] group_lasso2 = group_lasso.gaussian(X[cases], Y[cases], groups) sol2 = strong_rules(group_lasso2, lagrange_sequence, (group_lasso2.solution, group_lasso2.grad_solution), inner_tol=1.e-10) beta2 = sol2['beta'] np.testing.assert_allclose(beta1, beta2, rtol=1.e-3) @set_seed_for_test() def test_path(): ''' run a basic path algorithm ''' n, p = 200, 50 X = np.random.standard_normal((n,p)) Y = np.random.standard_normal(n) betaX = np.zeros(p) betaX[:3] = [3,4,5] np.random.shuffle(betaX) Y += np.dot(X, betaX) + np.random.standard_normal(n) groups = ['a', 'a', 'a', 'b', 'b'] for i in range(9): groups.extend([str(i)]*5) np.random.shuffle(groups) group_lasso1 = group_lasso.gaussian(X, Y, groups) lagrange_sequence = group_lasso.default_lagrange_sequence(group_lasso1.penalty, group_lasso1.grad_solution, nstep=23) # initialized at "null" model sol1 = strong_rules(group_lasso1, lagrange_sequence, (group_lasso1.solution, group_lasso1.grad_solution), inner_tol=1.e-5) beta1 = sol1['beta'] @set_seed_for_test() def test_unpenalized(n=200, p=50): ''' run a basic path algorithm with some unpenalized variables ''' X = np.random.standard_normal((n,p)) Y = np.random.standard_normal(n) betaX = np.zeros(p) betaX[:3] = [3,4,5] Y += np.dot(X, betaX) + np.random.standard_normal(n) groups = ['a', 'a', 'a', 'b', 'b'] for i in range(9): groups.extend([str(i)]*5) weights = dict([(g,1) for g in np.unique(groups)]) weights['2'] = weights['3'] = 0 weights['a'] = weights['b'] = 2 group_lasso1 = group_lasso.gaussian(X, Y, groups, weights=weights) lagrange_sequence = group_lasso.default_lagrange_sequence(group_lasso1.penalty, group_lasso1.grad_solution, nstep=23) # initialized at "null" model sol1 = strong_rules(group_lasso1, lagrange_sequence, (group_lasso1.solution, group_lasso1.grad_solution), inner_tol=1.e-5) beta1 = sol1['beta'] @set_seed_for_test() def test_elastic_net(n=200, p=50): ''' run a basic elastic net path algorithm ''' X = np.random.standard_normal((n,p)) Y = np.random.standard_normal(n) betaX = np.zeros(p) betaX[:3] = [3,4,5] np.random.shuffle(betaX) Y += np.dot(X, betaX) + np.random.standard_normal(n) enet = np.zeros(X.shape[1]) enet[4:7] = 0 groups = ['a', 'a', 'a', 'b', 'b'] for i in range(9): groups.extend([str(i)]*5) group_lasso1 = group_lasso.gaussian(X, Y, groups, alpha=0.5, elastic_net_param=enet) lagrange_sequence = group_lasso.default_lagrange_sequence(group_lasso1.penalty, group_lasso1.grad_solution, nstep=23) # initialized at "null" model sol1 = strong_rules(group_lasso1, lagrange_sequence, (group_lasso1.solution, group_lasso1.grad_solution), inner_tol=1.e-5) beta1 = sol1['beta'] @set_seed_for_test() def test_elastic_net_unpenalized(n=200, p=50): ''' run a basic elastic net path algorithm with unpenalized ''' X = np.random.standard_normal((n,p)) Y = np.random.standard_normal(n) betaX = np.zeros(p) betaX[:3] = [3,4,5] Y += np.dot(X, betaX) + np.random.standard_normal(n) enet = np.ones(X.shape[1]) enet[4:8] = 0 groups = ['a', 'a', 'a', 'b', 'b'] for i in range(9): groups.extend([str(i)]*5) weights = dict([(g,1) for g in np.unique(groups)]) weights['2'] = weights['3'] = 0 weights['a'] = weights['b'] = 2 group_lasso1 = group_lasso.gaussian(X, Y, groups, weights=weights, alpha=0.5, elastic_net_param=enet) lagrange_sequence = group_lasso.default_lagrange_sequence(group_lasso1.penalty, group_lasso1.grad_solution, nstep=23) # initialized at "null" model sol1 = strong_rules(group_lasso1, lagrange_sequence, (group_lasso1.solution, group_lasso1.grad_solution), inner_tol=1.e-5) beta1 = sol1['beta'] @set_seed_for_test() def test_basil_inner_loop(n=1000,p=600): ''' test one run of the BASIL inner loop ''' X = np.random.standard_normal((n,p)) Y = np.random.standard_normal(n) betaX = np.zeros(p) betaX[:3] = np.array([3,4,5]) * np.sqrt(n) Y += np.dot(X, betaX) + np.random.standard_normal(n) enet = np.ones(X.shape[1]) enet[4:8] = 0 groups = ['a', 'a', 'a', 'b', 'b'] i = 0 while True: groups.extend([str(i)]*5) i += 1 if len(groups) >= p: break groups = groups[:p] weights = dict([(g,1) for g in np.unique(groups)]) weights['2'] = weights['3'] = 0 weights['a'] = weights['b'] = 2 group_lasso1 = group_lasso.gaussian(X, Y, groups, weights=weights, alpha=0.5, elastic_net_param=enet) lagrange_sequence = group_lasso.default_lagrange_sequence(group_lasso1.penalty, group_lasso1.grad_solution, nstep=100) # initialized at "null" model sol1 = basil_inner_loop(group_lasso1, lagrange_sequence[:50], (group_lasso1.solution.copy(), group_lasso1.grad_solution.copy()), inner_tol=1.e-14, step_nvar=10) lagrange1, beta1, grad1, active1 = sol1 print(np.array(beta1).shape, 'chunk of path') print(active1, 'active') @set_seed_for_test() def test_basil(n=200,p=100): ''' run BASIL ''' X = np.random.standard_normal((n,p)) Y = np.random.standard_normal(n) betaX = np.zeros(p) betaX[:3] = np.array([3,4,5]) * np.sqrt(n) Y += np.dot(X, betaX) + np.random.standard_normal(n) groups = ['a', 'a', 'a', 'b', 'b'] i = 0 while True: groups.extend([str(i)]*5) i += 1 if len(groups) >= p: break groups = groups[:p] weights = dict([(g,1) for g in np.unique(groups)]) weights['a'] = weights['b'] = 2 group_lasso1 = group_lasso.gaussian(X, Y, groups, weights=weights) print(group_lasso1.penalty) print(np.linalg.norm(group_lasso1.solution)) lagrange_sequence = group_lasso.default_lagrange_sequence(group_lasso1.penalty, group_lasso1.grad_solution, nstep=100) # initialized at "null" model sol1 = basil(group_lasso1, lagrange_sequence, (group_lasso1.solution.copy(), group_lasso1.grad_solution.copy()), inner_tol=1.e-14, step_nvar=10, step_lagrange=20) group_lasso2 = group_lasso.gaussian(X, Y, groups, weights=weights) print(group_lasso2.penalty) print(np.linalg.norm(group_lasso2.solution)) sol2 = warm_start(group_lasso2, lagrange_sequence, (group_lasso2.solution.copy(), group_lasso2.grad_solution.copy()), inner_tol=1.e-14)['beta'] assert(np.linalg.norm(sol1 - sol2) / np.linalg.norm(sol2) < 1.e-4) @set_seed_for_test() def test_basil_unpenalized(n=200,p=100): ''' run BASIL w/ unpenalized variables ''' X = np.random.standard_normal((n,p)) Y = np.random.standard_normal(n) betaX = np.zeros(p) betaX[:3] = np.array([3,4,5]) * np.sqrt(n) Y += np.dot(X, betaX) + np.random.standard_normal(n) enet =
np.ones(X.shape[1])
numpy.ones
# -*- coding: utf-8 -*- """ Created on Sat Nov 9 13:57:18 2019 @author: <NAME> """ ''' In this script I tried some code for implementing 1. convolution 2. pooling 3. back convolution 4. back pooling for "Single/Multi Channel" inputs like MNIST by using ony Nnmpy ''' ''' output[i, j] = np.sum(im_region * self.filters, axis=(1, 2)) #For a 2D * 3D @axis ''' import numpy as np #X = np.array([[[1,0,-1],[1,0,-1],[1,0,-1]] , [[1,0,-1],[1,0,-1],[1,0,-1]] , [[1,0,-1],[1,0,-1],[1,0,-1]]]) #Y = np.array([[[3,0,1,2,7,4],[1,5,8,9,3,1],[2,7,2,5,1,3],[0,1,3,1,7,8],[4,2,1,6,2,8],[2,4,5,2,3,9]],[[3,0,1,2,7,4],[1,5,8,9,3,1],[2,7,2,5,1,3],[0,1,3,1,7,8],[4,2,1,6,2,8],[2,4,5,2,3,9]],[[3,0,1,2,7,4],[1,5,8,9,3,1],[2,7,2,5,1,3],[0,1,3,1,7,8],[4,2,1,6,2,8],[2,4,5,2,3,9]]]) X = np.array([[1,0,-1],[1,0,-1],[1,0,-1]]) Y = np.array([[3,0,1,2,7,4],[1,5,8,9,3,1],[2,7,2,5,1,3],[0,1,3,1,7,8],[4,2,1,6,2,8],[2,4,5,2,3,9]]) k,l=X.shape i,j=Y.shape Op1 = np.zeros((i-k+1,i-k+1)) #---------------single layer Conv 1st filter---------------------------------------------------- for b in range(j-l+1): for a in range(i-k+1): Op1[b,a] = np.sum(
np.multiply(X,Y[b:k+b,a:a+3])
numpy.multiply
import numpy as np import xarray as xr from scipy.spatial import Voronoi from scipy.spatial import Delaunay from ..graph import Graph from ...core.utils import as_id_array from ..ugrid import (MESH_ATTRS, update_node_coords, update_nodes_at_link, update_links_at_patch) def remove_bad_patches(max_node_spacing, nodes_at_patch, neighbors_at_patch): from .ext.delaunay import remove_tris max_node_dist = np.ptp(nodes_at_patch, axis=1) bad_patches = as_id_array(np.where(max_node_dist > max_node_spacing)[0]) if len(bad_patches) > 0: remove_tris(nodes_at_patch, neighbors_at_patch, bad_patches) nodes_at_patch = nodes_at_patch[:-len(bad_patches), :] neighbors_at_patch = neighbors_at_patch[:-len(bad_patches), :] return nodes_at_patch, neighbors_at_patch def setup_links_and_patches(node_y_and_x, max_node_spacing=None): from .ext.delaunay import _setup_links_at_patch, remove_tris delaunay = Delaunay(list(zip(node_y_and_x[1], node_y_and_x[0]))) nodes_at_patch =
np.asarray(delaunay.simplices, dtype=int)
numpy.asarray
# -*- coding: utf-8 -*- """ Created on Tue May 5 07:24:33 2020 @author: Ciaran """ import numpy as np import Metrica_Viz as mviz import scipy import scipy.signal as signal def remove_player_velocities(team): # remove player velocoties and acceleeration measures that are already in the 'team' dataframe columns = [c for c in team.columns if c.split('_')[-1] in ['vx','vy','ax','ay','speed','acceleration']] # Get the player ids team = team.drop(columns=columns) return team def lastrow_calc_player_velocities(team, smoothing=True, filter_='Savitzky-Golay', window=7, polyorder=1, maxspeed = 12): """ calc_player_velocities( tracking_data ) Calculate player velocities in x & y direciton, and total player speed at each timestamp of the tracking data Parameters ----------- team: the tracking DataFrame for home or away team smoothing: boolean variable that determines whether velocity measures are smoothed. Default is True. filter: type of filter to use when smoothing the velocities. Default is Savitzky-Golay, which fits a polynomial of order 'polyorder' to the data within each window window: smoothing window size in # of frames polyorder: order of the polynomial for the Savitzky-Golay filter. Default is 1 - a linear fit to the velcoity, so gradient is the acceleration maxspeed: the maximum speed that a player can realisitically achieve (in meters/second). Speed measures that exceed maxspeed are tagged as outliers and set to NaN. Returrns ----------- team : the tracking DataFrame with columns for speed in the x & y direction and total speed added """ # remove any velocity data already in the dataframe team = remove_player_velocities(team) # Get the player ids player_ids = np.unique( [ c[:-2] for c in team.columns if c[:3] in ['att','def'] ] ) # Calculate the timestep from one frame to the next. Should always be 0.05 within the same half dt = team['Time [s]'].diff() # estimate velocities for players in team maxspeed = 12 smoothing=True #filter_='Savitzky-Golay' for player in player_ids: # cycle through players individually # difference player positions in timestep dt to get unsmoothed estimate of velicity vx = team[player+"_x"].diff() / dt vy = team[player+"_y"].diff() / dt if maxspeed>0: # remove unsmoothed data points that exceed the maximum speed (these are most likely position errors) raw_speed = np.sqrt( vx**2 + vy**2 ) vx[ raw_speed>maxspeed ] = np.nan vy[ raw_speed>maxspeed ] = np.nan if smoothing: #if filter_=='Savitzky-Golay': # calculate velocity # vx = signal.savgol_filter(vx,window_length=7,polyorder=1) # vy = signal.savgol_filter(vy,window_length=7,polyorder=1) #elif filter_=='moving average': ma_window = np.ones( window ) / window # calculate velocity vx = np.convolve( vx , ma_window, mode='same' ) vy = np.convolve( vy , ma_window, mode='same' ) # put player speed in x,y direction, and total speed back in the data frame team[player + "_vx"] = vx team[player + "_vy"] = vy team[player + "_speed"] = np.sqrt( vx**2 + vy**2 ) return team class player(object): """ player() class Class defining a player object that stores position, velocity, time-to-intercept and pitch control contributions for a player __init__ Parameters ----------- pid: id (jersey number) of player team: row of tracking data for team teamname: team name "Home" or "Away" params: Dictionary of model parameters (default model parameters can be generated using default_model_params() ) methods include: ----------- simple_time_to_intercept(r_final): time take for player to get to target position (r_final) given current position probability_intercept_ball(T): probability player will have controlled ball at time T given their expected time_to_intercept """ # player object holds position, velocity, time-to-intercept and pitch control contributions for each player def __init__(self,pid,team,teamname,params): self.id = pid self.teamname = teamname self.playername = "%s_%s_" % (teamname,pid) self.vmax = params['max_player_speed'] # player max speed in m/s. Could be individualised self.reaction_time = params['reaction_time'] # player reaction time in 's'. Could be individualised self.tti_sigma = params['tti_sigma'] # standard deviation of sigmoid function (see Eq 4 in Spearman, 2018) self.get_position(team) self.get_velocity(team) self.PPCF = 0. # initialise this for later def get_position(self,team): self.position = np.array( [ team[self.playername+'x'], team[self.playername+'y'] ] ) self.inframe = not np.any( np.isnan(self.position) ) def get_velocity(self,team): self.velocity = np.array( [ team[self.playername+'vx'], team[self.playername+'vy'] ] ) if np.any( np.isnan(self.velocity) ): self.velocity = np.array([0.,0.]) def simple_time_to_intercept(self, r_final): self.PPCF = 0. # initialise this for later # Time to intercept assumes that the player continues moving at current velocity for 'reaction_time' seconds # and then runs at full speed to the target position. r_reaction = self.position + self.velocity*self.reaction_time self.time_to_intercept = self.reaction_time + np.linalg.norm(r_final-r_reaction)/self.vmax return self.time_to_intercept def probability_intercept_ball(self,T): # probability of a player arriving at target location at time 'T' given their expected time_to_intercept (time of arrival), as described in Spearman 2018 f = 1/(1. + np.exp( -np.pi/
np.sqrt(3.0)
numpy.sqrt
import copy import logging.config import os import pickle # for Logging handling import sys import time import numpy as np from numpy.linalg import LinAlgError from scipy.optimize import minimize import model logger = logging.getLogger(__name__) def nonzero_indices(a): """Get an index with non-zero element. Parameters ---------- a : numpy.ndarray array Returns ------- np.nonzero() : numpy.ndarray Index with non-zero element """ return (np.nonzero(a)[0]) def create_directory(dir_name): """create directory Parameters ---------- dir_name : str(file path) create directory name Returns ------- None """ if not os.path.isdir(dir_name): os.makedirs(dir_name) else: pass def calc_diff(C_pre, C_pos, t_pre, t_pos, rss_pre, rss_pos): """calculate difference Parameters ---------- C_pre : numpy.ndarray initialize control points C_pos : numpy.ndarray control points t_pre : numpy.ndarray initialize parameters t_pos : numpy.ndarray parameters rss_pre : int initialize rss rss_pos : int rss Returns ------- np.abs() : numpy.ndarray absolute value """ if t_pre.shape[1] > t_pos.shape[1]: t_pos = np.c_[t_pos, 1 - np.sum(t_pos, axis=1)] else: t_pre = np.c_[t_pre, 1 - np.sum(t_pre, axis=1)] t_pos = np.c_[t_pos, 1 - np.sum(t_pos, axis=1)] ratio_sum = 0 for key in C_pre: ratio_sum += np.linalg.norm(C_pre[key] - C_pos[key]) / np.linalg.norm( C_pre[key]) diff = rss_pre - rss_pos logger.debug("{} {} {}".format(rss_pre, rss_pos, diff)) return (np.abs(diff)) def calc_gd_igd(dd1, dd2): """Calculate gd and igd. Parameters ---------- dd1 : numpy.ndarray estimated bezier simplex sample dd2 : numpy.ndarray validation data Returns ------- gd : float Generational Distance igd : float Inverted Generational Distance """ gd = 0 igd = 0 for i in range(dd2.shape[0]): d2 = dd2[i, :] tmp = dd1 - d2 norm = np.linalg.norm(tmp, 1, axis=1) v = np.min(norm) gd += v for i in range(dd1.shape[0]): d1 = dd1[i, :] tmp = dd2 - d1 norm = np.linalg.norm(tmp, 1, axis=1) v = np.min(norm) igd += v return (gd / dd2.shape[0], igd / dd1.shape[0]) class BorgesPastvaTrainer: """Polynomial Regression Trainer. Attributes ---------- dimSpace : int degree dimSimplex : int dimension degree : int dimension of constol point """ def __init__(self, dimSpace, degree, dimSimplex): """Borges Pastva Trainer initialize. Parameters ---------- dimSpace : int degree degree : int dimension of constol point dimSimplex : int dimension Returns ---------- None """ self.dimSpace = dimSpace # degree of bezier simplex self.dimSimplex = dimSimplex # dimension of bezier simplex self.degree = degree # dimension of constol point self.bezier_simplex = model.BezierSimplex(dimSpace=self.dimSpace, dimSimplex=self.dimSimplex, degree=self.degree) def initialize_control_point(self, data): """Initialize control point. Parameters ---------- data : list test data Returns ---------- C : dict control point """ bezier_simplex = model.BezierSimplex(dimSpace=self.dimSpace, dimSimplex=self.dimSimplex, degree=self.degree) C = bezier_simplex.initialize_control_point(data) return (C) def gradient(self, c, t): """Calculate gradient. Parameters ---------- c : dict control point t : [t[0], t[1], t[2], t[3]] parameter Returns ---------- g : float gradient """ g = {} x = {} for d in range(self.dimSimplex - 1): x[d] = np.zeros(self.dimSpace) for d in range(self.dimSimplex - 1): for key in self.bezier_simplex.Mf_all.keys(): for i in range(self.dimSpace): x[d][i] += self.bezier_simplex.monomial_diff( multi_index=key, d0=d, d1=None)( *t[0:self.dimSimplex - 1]) * c[key][i] for d in x: g[(d, )] = x[d] return (g) def hessian(self, c, t): """Calculate hessian. Parameters ---------- c : dict control point t : [t[0], t[1], t[2], t[3]] parameter Returns ---------- h : dict hessian matrix """ h = {} x = {} for d1 in range(self.dimSimplex - 1): for d2 in range(self.dimSimplex - 1): x[(d1, d2)] = np.zeros(self.dimSpace) for d1 in range(self.dimSimplex - 1): for d2 in range(self.dimSimplex - 1): for key in self.bezier_simplex.Mf_all.keys(): for i in range(self.dimSpace): x[(d1, d2)][i] += self.bezier_simplex.monomial_diff( multi_index=key, d0=d1, d1=d2)( *t[0:self.dimSimplex - 1]) * c[key][i] for (d1, d2) in x: h[(d1, d2)] = x[(d1, d2)] return (h) def initialize_parameter(self, c, data): """Initialize parameter. Parameters ---------- c : dict control point data : numpy.ndarray sample points Returns ---------- tt_ : numpy.ndarray nearest parameter of each sample points xx_ : numpy.ndarray nearest points on the current bezier simplex """ tt, xx = self.bezier_simplex.meshgrid(c) tt_ = np.empty([data.shape[0], self.dimSimplex]) xx_ = np.empty([data.shape[0], self.dimSpace]) for i in range(data.shape[0]): a = data[i, :] tmp = xx - a norm = np.linalg.norm(tmp, axis=1) amin = np.argmin(norm) tt_[i, :] = tt[amin, :] xx_[i, :] = xx[amin, :] return (tt_, xx_) def inner_product(self, c, t, x): """Inner product. Parameters ---------- c : dict control point t : [t[0], t[1], t[2], t[3]] parameter x : numpy.ndarray point Returns ---------- f : numpy.ndarray point """ g = self.gradient(c, t) b = self.bezier_simplex.sampling(c, t) f = np.array(np.zeros(self.dimSimplex - 1)) for d in range(self.dimSimplex - 1): f[d] = sum(g[(d, )][i] * (b[i] - x[i]) for i in range(self.dimSpace)) return (f) def inner_product_jaccobian(self, c, t, x): """Inner product(jaccobian). Parameters ---------- c : dict control point t : [t[0], t[1], t[2], t[3]] parameter x : numpy.ndarray point Returns ---------- j : numpy.ndarray jaccobian matrix """ g = self.gradient(c, t) b = self.bezier_simplex.sampling(c, t) h = self.hessian(c, t) j = np.zeros([self.dimSimplex - 1, self.dimSimplex - 1]) for d1 in range(self.dimSimplex - 1): for d2 in range(self.dimSimplex - 1): j[d1, d2] = sum(h[(d1, d2)][i] * (b[i] - x[i]) + g[(d1, )][i] * g[(d2, )][i] for i in range(self.dimSpace)) return (j) def newton_method(self, c, t_init, x, newton_itr=20, tolerance=10**(-5)): """Newton method. Parameters ---------- c : dict control point t_init : list parameter x : numpy.ndarray point newton_itr : int iterate value tolerance : int tolerance Returns ---------- t_k : numpy.ndarray output point """ t_k = copy.deepcopy(t_init) for k in range(newton_itr): f = self.inner_product(c, t_k, x) if np.linalg.norm(f) > tolerance: j = self.inner_product_jaccobian(c, t_k, x) # for Logging handling try: d = np.linalg.solve(j, f) except LinAlgError as e: logger.critical("{0}".format(e)) logger.critical("The arguments are shown below") logger.critical(j) logger.critical(f) sys.exit() t_k = t_k - d else: break return (t_k) def projection_onto_simplex(self, t): """Projection onto simplex. Parameters ---------- t : list parameter Returns ---------- res : numpy.ndarray parameter """ if np.min(t) >= 0 and np.sum(t) <= 1: return (t) else: tmp = np.append(t, 1 - np.sum(t)) def l2norm(x): return (np.linalg.norm(x - tmp)) cons = [] for i in range(self.dimSimplex): cons = cons + [{'type': 'ineq', 'fun': lambda x: x[i]}] cons = cons + [{'type': 'eq', 'fun': lambda x: -np.sum(x) + 1}] res = minimize(l2norm, x0=tmp, constraints=cons) return (res.x[0:self.dimSimplex - 1]) def update_parameter(self, c, t_mat, data): """Projection onto simplex. Parameters ---------- c : dict control point t_mat : list parameter data : list test data Returns ---------- tt_ : numpy.ndarray parameter xx_ : numpy.ndarray points """ tt_ = np.empty([data.shape[0], self.dimSimplex - 1]) xx_ = np.empty([data.shape[0], self.dimSpace]) for i in range(data.shape[0]): x = data[i] t = t_mat[i][0:self.dimSimplex - 1] t_hat = self.newton_method(c, t, x) t_hat2 = self.projection_onto_simplex(t_hat) x_hat = self.bezier_simplex.sampling(c, t_hat2) tt_[i] = t_hat2 xx_[i] = x_hat return (tt_, xx_) def normal_equation(self, t_mat, data, c, indices_all, indices_fix): """Normal equation. Parameters ---------- t_mat : list parameter data : list test data c : dict control point indices_all : list all index indices_fix : list fix index Returns ---------- mat_l : numpy.ndarray output points mat_r : numpy.ndarray output points """ mat_r = np.empty([t_mat.shape[0], len(indices_all) - len(indices_fix)]) mat_l = copy.deepcopy(data) for i in range(t_mat.shape[0]): jj = 0 for j in range(len(indices_all)): key = indices_all[j] if key not in indices_fix: mat_r[i, jj] = self.bezier_simplex.monomial_diff( multi_index=key, d0=None, d1=None)(*t_mat[i, 0:self.dimSimplex - 1]) jj += 1 if key in indices_fix: mat_l[i, :] = mat_l[i] - self.bezier_simplex.monomial_diff( multi_index=key, d0=None, d1=None)( *t_mat[i, 0:self.dimSimplex - 1]) * c[key] return (mat_l, mat_r) def update_control_point(self, t_mat, data, c, indices_all, indices_fix): """Normal equation. Parameters ---------- t_mat : list parameter data : list test data c : dict control point indices_all : list all index indices_fix : list fix index(control point) Returns ---------- dic_c : numpy.ndarray output points """ dic_c = {} for key in indices_all: dic_c[key] = np.empty(self.dimSpace) mat_l, mat_r = self.normal_equation(t_mat, data, c, indices_all, indices_fix) for i in range(data.shape[1]): y = mat_l[:, i] # for Logging handling try: c_hat = np.linalg.solve(np.dot(mat_r.T, mat_r), np.dot(mat_r.T, y)) except LinAlgError as e: logger.critical("{0}".format(e)) logger.critical("The arguments are shown below") logger.critical(np.dot(mat_r.T, mat_r)) logger.critical(np.dot(mat_r.T, y)) sys.exit() jj = 0 for j in range(len(indices_all)): key = indices_all[j] if key in indices_fix: dic_c[key][i] = c[key][i] if key not in indices_fix: dic_c[key][i] = c_hat[jj] jj += 1 return (dic_c) def train(self, data, result_dir='', flag_write_meshgrid=1, C_init=None, indices_fix=None, max_iteration=30, tolerance=10**(-4), data_val=None): """Borges Pastva Training. Parameters ---------- data : list test data result_dir : str(file path) directory name flag_write_meshgrid : int fragment C_init : dict control point indices_fix : list fix index max_iteration : int max iteration tolerance : int tolerance data_val all data Returns ---------- C_pos : numpy.ndarray output points """ create_directory(result_dir) create_directory(result_dir + '/control_points') create_directory(result_dir + '/meshgrid') start = time.time() # concat data if isinstance(data, dict): logger.debug("input data is dictionary!!!") index = 0 for key in data: if len(key) == 1: data[key] = data[key].reshape((1, self.dimSpace)) if index == 0: data_array = data[key] else: data_array = np.r_[data_array, data[key]] index = index + 1 data = data_array else: logger.debug("input data is ndarray!!!") logger.debug("datashape{}".format(data.shape)) # initialize parameter C_pre = copy.deepcopy(C_init) tt_init, xx_pre = self.initialize_parameter(c=C_pre, data=data) tt_pre = tt_init rss_pre = 100000 for itr in range(max_iteration): self.bezier_simplex.write_control_point( C=C_pre, filename=result_dir + '/control_points/control_point_itr_' + '{0:03d}'.format(itr)) if flag_write_meshgrid == 1: self.bezier_simplex.write_meshgrid(C=C_pre, filename=result_dir + '/meshgrid/meshgrid_itr_' + '{0:03d}'.format(itr)) # update t tt_pos, xx_pos = self.update_parameter(c=C_pre, t_mat=tt_pre, data=data) # update control points C_pos = self.update_control_point(t_mat=tt_pos, data=data, c=C_pre, indices_all=list(C_pre.keys()), indices_fix=indices_fix) # calc rss rss_pos =
np.linalg.norm(data - xx_pos)
numpy.linalg.norm
import matplotlib.pyplot as plt import numpy as np import pandas as pd from kameleon_rks.tools.convergence_stats import autocorr def pdf_grid(Xs, Ys, est): D = np.zeros((len(Xs), len(Ys))) G = np.zeros(D.shape) # this is in-efficient, log_pdf_multiple on a 2d array is faster for i, x in enumerate(Xs): for j, y in enumerate(Ys): point = np.array([x, y]) D[j, i] = est.log_pdf(point) G[j, i] = np.linalg.norm(est.grad(point)) return D, G def visualise_fit_2d(est, X, Xs=None, Ys=None): # visualise found fit plt.figure() if Xs is None: Xs = np.linspace(-5, 5) if Ys is None: Ys = np.linspace(-5, 5) D, G = pdf_grid(Xs, Ys, est) plt.subplot(121) visualise_array(Xs, Ys, D, X) plt.title("log pdf") plt.subplot(122) visualise_array(Xs, Ys, G, X) plt.title("gradient norm") plt.tight_layout() def visualise_array(Xs, Ys, A, samples=None): im = plt.imshow(A, origin='lower') im.set_extent([Xs.min(), Xs.max(), Ys.min(), Ys.max()]) im.set_interpolation('nearest') im.set_cmap('gray') if samples is not None: plt.plot(samples[:, 0], samples[:, 1], 'bx') plt.ylim([Ys.min(), Ys.max()]) plt.xlim([Xs.min(), Xs.max()]) def visualise_trajectory(Qs, acc_probs, log_pdf_q, D, log_pdf=None, Z=None, log_domain=True): assert Qs.ndim == 2 plot_density = log_pdf is not None and D == 2 plt.figure(figsize=(10, 12)) plt.subplot(411) # plot density if given and dimension is 2 if plot_density: Xs =
np.linspace(-30, 30, 75)
numpy.linspace
import matplotlib.pyplot as plt import cv2 import imutils import numpy as np import os cap = cv2.VideoCapture('./example.mp4') def dist(i,j): return ( (i[0]-j[0])**2 + (i[1]-j[1])**2 )**0.5 def actuate(x,y): if(0<=x<=200): signal(1) if(200<=x<=200): signal(2) if(400<=x<=600): signal(3) if(600<=x<=800): signal(4) def signal(x): return 0 def oneframe(ix): ret,frame = cap.read() #plt.imshow(frame) hog = cv2.HOGDescriptor() hog.setSVMDetector(cv2.HOGDescriptor_getDefaultPeopleDetector()) image = frame (regions, _) = hog.detectMultiScale(image, winStride=(4, 4), padding=(4, 4), scale=1.05) hpts = [(i[0] + int(i[2]/2), i[1] + int(i[-1]/2) ) for i in regions] close = [] far = [] near = [] dists = [] for i in range(len(hpts)): for j in range(len(hpts)): if(hpts[i]!=hpts[j]): dists.append(dist(hpts[i],hpts[j])) if(dist(hpts[i],hpts[j])<100): close.append(i) if(dist(hpts[i],hpts[j])>100 and dist(hpts[i],hpts[j])<400): near.append(i) if(dist(hpts[i],hpts[j])>500): far.append(i) close,near,far = np.unique(close),np.unique(near),
np.unique(far)
numpy.unique
import numpy as np class MutiplicativeCascade: def __init__(self, k_max, M, randomize=False): self.k_max = k_max self.M = M self.randomize = randomize self.data = [] def cascade(self): y = self._cascade_recursively(1, 1, 1, self.k_max, self.M, self.randomize) x = np.linspace(0, 1, num=len(y), endpoint=False) y = np.insert(y, 0, 0) x = np.append(x, 1) self.data = np.stack([x, y], axis=1) def _cascade_recursively(self, x, y, k, k_max, M, randomize=False): """ :param x: width of current cell :param y: height of current cell :param k: current branch of the recursion tree :param k_max: max depth of the recursion tree :param M: array m0, m1, ..., mb where sum(M) = 1 :param randomize: whether or not to shuffle M before assigning mass to child cells. See page 13 of "A Multifractal Model of Asset Returns" 1997 :return: [y, ...] corresponding to multiplicative cascade y coordinates """ a = x * y x_next = x / len(M) M_shuffle = np.copy(M) if randomize: np.random.shuffle(M_shuffle) else: M_shuffle = M_shuffle y_i =
np.array([])
numpy.array
#!/usr/bin/env python """ @authors: <NAME>, <NAME> Date Created: 9/24/2011 """ from __future__ import division, print_function from future.utils import iteritems, viewitems from builtins import int import os import sys import subprocess import time from copy import copy import multiprocessing as mpr import argparse import fnmatch from collections import OrderedDict # MapPy try: from . import raster_tools except: import raster_tools from . import utils from .errors import logger from .helpers import _iteration_parameters # Numpy try: import numpy as np except ImportError: raise ImportError('NumPy must be installed') # Numexpr try: import numexpr as ne ne.set_num_threads(mpr.cpu_count()) numexpr_installed = True except: numexpr_installed = False # Carray # try: # import carray as ca # carray_installed = True # except: # carray_installed = False # GDAL try: from osgeo import gdal from osgeo.gdalconst import * except ImportError: raise ImportError('GDAL must be installed') # Scikit-image try: from skimage.exposure import rescale_intensity except ImportError: raise ImportError('Scikit-image must be installed') try: import deprecation except ImportError: raise ImportError('deprecation must be installed (pip install deprecation)') old_settings = np.seterr(all='ignore') class SensorInfo(object): """ A class to hold sensor names, wavelengths, and equations. """ def __init__(self): self.sensors = utils.SUPPORTED_SENSORS self.band_orders = utils.SENSOR_BAND_DICT # The wavelengths needed to compute the index. # The wavelengths are loaded in order, so the # order should match the equations in # ``self.equations``. self.wavelength_lists = utils.VI_WAVELENGTHS # The vegetation index equations. The arrays are # loaded from ``self.wavelength_lists``. For example, # ``array01`` of 'ARVI' would be the 'blue' wavelength. self.equations = \ {'ARVI': '((array03 / scale_factor) - ((array02 / scale_factor) - ' 'y*((array01 / scale_factor) - (array02 / scale_factor)))) / ' '((array03 / scale_factor) + ((array02 / scale_factor) - ' 'y*((array01 / scale_factor) - (array02 / scale_factor))))', 'BRIGHT': '((array01 / scale_factor)**2 + (array02 / scale_factor)**2 + (array03 / scale_factor)**2 + (array04 / scale_factor)**2)**0.5', 'CBI': '((array02 / scale_factor) - (array01 / scale_factor)) / ' '((array02 / scale_factor) + (array01 / scale_factor))', 'CIRE': '((array02 / scale_factor) / (array01 / scale_factor)) - 1.', 'EVI': 'g * (((array03 / scale_factor) - (array02 / scale_factor)) / ' '((array03 / scale_factor) + (c1 * (array02 / scale_factor)) - ' '(c2 * (array01 / scale_factor)) + L))', 'EVI2': 'g * (((array02 / scale_factor) - (array01 / scale_factor)) / ' '((array02 / scale_factor) + L + (c1 * (array01 / scale_factor))))', 'IPVI': '(array02 / scale_factor) / ((array02 / scale_factor) + (array01 / scale_factor))', 'MSAVI': '((2 * array02 + 1) - ((((2 * array02 + 1)**2) - (8 * (array02 - array01)))**.5)) / 2', 'GNDVI': '((array02 / scale_factor) - (array01 / scale_factor)) / ' '((array02 / scale_factor) + (array01 / scale_factor))', 'MNDWI': '((array02 / scale_factor) - (array01 / scale_factor)) / ' '((array02 / scale_factor) + (array01 / scale_factor))', 'NDSI': '((array02 / scale_factor) - (array01 / scale_factor)) / ' '((array02 / scale_factor) + (array01 / scale_factor))', 'NDBAI': '((array02 / scale_factor) - (array01 / scale_factor)) / ' '((array02 / scale_factor) + (array01 / scale_factor))', 'NBRI': '((array02 / scale_factor) - (array01 / scale_factor)) / ' '((array02 / scale_factor) + (array01 / scale_factor))', 'NDII': '(array03 - array02 + array01) / (array03 + array02 + array01)', 'NDVI': '((array02 / scale_factor) - (array01 / scale_factor)) / ' '((array02 / scale_factor) + (array01 / scale_factor))', 'RENDVI': '((array02 / scale_factor) - (array01 / scale_factor)) / ' '((array02 / scale_factor) + (array01 / scale_factor))', 'NDWI': '((array02 / scale_factor) - (array01 / scale_factor)) / ' '((array02 / scale_factor) + (array01 / scale_factor))', 'PNDVI': '((array02 / scale_factor) - (array01 / scale_factor)) / ' '((array02 / scale_factor) + (array01 / scale_factor))', 'RBVI': '((array02 / scale_factor) - (array01 / scale_factor)) / ' '((array02 / scale_factor) + (array01 / scale_factor))', 'GBVI': '((array02 / scale_factor) - (array01 / scale_factor)) / ' '((array02 / scale_factor) + (array01 / scale_factor))', 'ONDVI': '(4. / pi) * arctan(((array02 / scale_factor) - (array01 / scale_factor)) / ' '((array02 / scale_factor) + (array01 / scale_factor)))', 'SATVI': '((((array02 / scale_factor) - (array01 / scale_factor)) / ' '((array02 / scale_factor) + (array01 / scale_factor) + L)) * (1. + L)) - ' '((array03 / scale_factor) / 2.)', 'SAVI': '(((array02 / scale_factor) - (array01 / scale_factor)) / ' '((array02 / scale_factor) + (array01 / scale_factor) + L)) * (1. + L)', 'OSAVI': 'arctan(((((array02 / scale_factor) - (array01 / scale_factor)) / ' '((array02 / scale_factor) + (array01 / scale_factor) + L)) * (1. + L)) / 1.5) * 2.', 'SVI': '(array02 / scale_factor) / (array01 / scale_factor)', 'TNDVI': 'sqrt((((array02 / scale_factor) - (array01 / scale_factor)) / ' '((array02 / scale_factor) + (array01 / scale_factor))) * .5)', 'TVI': 'sqrt((((array02 / scale_factor) - (array01 / scale_factor)) / ' '((array02 / scale_factor) + (array01 / scale_factor))) + .5)', 'TWVI': '((array02 / scale_factor) - (array01 / scale_factor)) / ' '((array02 / scale_factor) + (array01 / scale_factor))', 'YNDVI': '((array02 / scale_factor) - (array01 / scale_factor)) / ' '((array02 / scale_factor) + (array01 / scale_factor))', 'VCI': '(((array02 - array01) / (array02 + array01)) - min_ndvi) / (max_ndvi - min_ndvi)', 'VISMU': '((array01 / scale_factor) + (array02 / scale_factor) + (array03 / scale_factor)) / 3.', 'WI': '(array01 / scale_factor) + (array02 / scale_factor)'} # The data ranges for scaling, but only # used if the output storage type is not # equal to 'float32'. self.data_ranges = {'ARVI': (), 'BRIGHT': (0.0, 1.0), 'CBI': (-1.0, 1.0), 'CIRE': (-1.0, 1.0), 'EVI': (0., 1.0), 'EVI2': (0., 1.0), 'IPVI': (), 'MSAVI': (), 'GNDVI': (-1.0, 1.0), 'MNDWI': (-1.0, 1.0), 'NDSI': (-1.0, 1.0), 'NDBAI': (-1.0, 1.0), 'NBRI': (-1.0, 1.0), 'NDII': (-1.0, 1.0), 'NDVI': (-1.0, 1.0), 'RENDVI': (-1.0, 1.0), 'NDWI': (-1.0, 1.0), 'PNDVI': (-1.0, 1.0), 'RBVI': (-1.0, 1.0), 'GBVI': (-1.0, 1.0), 'ONDVI': (), 'SATVI': (), 'SAVI': (), 'OSAVI': (), 'SVI': (), 'TNDVI': (), 'TVI': (), 'YNDVI': (-1.0, 1.0), 'TWVI': (-1, 1), 'VCI': (), 'VISMU': (0., 1.0), 'WI': (0.0, 1.0)} def list_expected_band_order(self, sensor): # Return the dictionary sorted by values self.expected_band_order = OrderedDict(sorted(list(iteritems(self.band_orders[sensor])), key=lambda sbo: sbo[1])) logger.info('\nExpected band order for {}:\n'.format(sensor)) logger.info(' WAVELENGTH Band') logger.info(' ---------- ----') sp = ' ' for w, b in viewitems(self.expected_band_order): gap_string = '' gap_len = 12 - len(w) for gx in range(0, gap_len): gap_string += sp logger.info(' {}{}{:d}'.format(w.upper(), gap_string, b)) print('') def list_indice_options(self, sensor): """ Lists the vegetation indices that can be computed from the given sensor. Args: sensor (str): The sensor. """ if sensor not in self.sensors: raise NameError('{} not a sensor option. Choose one of {}'.format(sensor, ', '.join(self.sensors))) self.sensor_indices = [] # A list of wavelengths in the # current sensor. sensor_wavelengths = list(self.band_orders[sensor]) # All of the vegetation index wavelengths must # be in the sensor wavelength. for veg_index, indice_wavelengths in viewitems(self.wavelength_lists): if set(indice_wavelengths).issubset(sensor_wavelengths): self.sensor_indices.append(veg_index) class VegIndicesEquations(SensorInfo): """ A class to compute vegetation indices Args: image_array (ndarray) no_data (Optional[int]): The output 'no data' value. Overflows and NaNs are filled with ``no_data``. Default is 0. in_no_data (Optional[int]): The input 'no data' value. chunk_size (Optional[int]): The chunk size to determine whether to use ``ne.evaluate``. Default is -1, or use ``numexpr``. mask_array (Optional[2d array]): A mask where anything equal to 255 is background. Default is None. """ def __init__(self, image_array, no_data=0, in_no_data=0, chunk_size=-1, mask_array=None): self.image_array = np.float32(image_array) self.no_data = no_data self.in_no_data = in_no_data self.chunk_size = chunk_size self.mask_array = mask_array SensorInfo.__init__(self) try: self.array_dims, self.array_rows, self.array_cols = image_array.shape except: raise ValueError('The input array must be at least 3d.') def rescale_range(self, array2rescale, in_range=()): if self.out_type > 3: raise ValueError('The output type cannot be greater than 3.') if self.out_type == 2: if in_range: array2rescale_ = np.uint8(rescale_intensity(array2rescale, in_range=in_range, out_range=(0, 254))) else: array2rescale_ = np.uint8(rescale_intensity(array2rescale, out_range=(0, 254))) elif self.out_type == 3: if in_range: array2rescale_ = np.uint16(rescale_intensity(array2rescale, in_range=in_range, out_range=(0, 10000))) else: array2rescale_ = np.uint16(rescale_intensity(array2rescale, out_range=(0, 10000))) return np.where(array2rescale == self.no_data, self.no_data, array2rescale_) def compute(self, vi_index, out_type=1, scale_factor=1.0, **kwargs): """ Args: vi_index (str): The vegetation index to compute. out_type (Optional[int]): This controls the output scaling. Default is 1, or return 'as is'. Choices are [1, 2, 3]. 1 = raw values (float32) 2 = scaled (byte) 3 = scaled (uint16) scale_factor (Optional[float]): A scale factor to divide the inputs by. Default is 1. Example: >>> from mappy.features import VegIndicesEquations >>> >>> # Create a fake 2-band array. >>> image_stack = np.random.randn(2, 100, 100, dtype='float32') >>> >>> # Setup the vegetation index object. >>> vie = VegIndicesEquations(image_stack) >>> >>> # Calculate the NDVI vegetation index. >>> ndvi = vie.compute('NDVI') """ self.vi_index = vi_index self.out_type = out_type self.n_bands = len(self.wavelength_lists[self.vi_index.upper()]) # Use ``numexpr``. if self.chunk_size == -1: if vi_index.lower() == 'twvi': imcopy = self.image_array.copy() if kwargs: self.image_array = imcopy[:2] self.vi_index = 'evi2' evi2 = self.run_index(scale_factor, **kwargs) self.image_array = imcopy[1:] self.vi_index = 'ndsi' ndsi = self.run_index(scale_factor, **kwargs) else: self.image_array = imcopy[:2] self.vi_index = 'evi2' evi2 = self.run_index(scale_factor) self.image_array = imcopy[1:] self.vi_index = 'ndsi' ndsi = self.run_index(scale_factor) ndsi = rescale_intensity(ndsi, in_range=(-1, 1), out_range=(0, 1)) self.image_array = np.stack((evi2, ndsi)) self.vi_index = 'twvi' if kwargs: return self.run_index(scale_factor, **kwargs) else: return self.run_index(scale_factor) else: vi_functions = {'ARVI': self.ARVI, 'BRIGHT': self.BRIGHT, 'CBI': self.CBI, 'CIre': self.CIre, 'EVI': self.EVI, 'EVI2': self.EVI2, 'IPVI': self.IPVI, 'GNDVI': self.GNDVI, 'MNDWI': self.MNDWI, 'MSAVI': self.MSAVI, 'NDSI': self.NDSI, 'NDBAI': self.NDBAI, 'NBRI': self.NBR, 'NDVI': self.NDVI, 'RENDVI': self.RENDVI, 'ONDVI': self.ONDVI, 'NDWI': self.NDWI, 'PNDVI': self.PNDVI, 'RBVI': self.RBVI, 'GBVI': self.GBVI, 'SATVI': self.SATVI, 'SAVI': self.SAVI, 'OSAVI': self.OSAVI, 'SVI': self.SVI, 'TNDVI': self.TNDVI, 'TVI': self.TVI, 'TWVI': self.TWVI, 'YNDVI': self.YNDVI, 'VCI': self.VCI, 'WI': self.WI} if self.vi_index.upper() not in vi_functions: raise NameError('{} is not a vegetation index option.'.format(self.vi_index)) vi_function = vi_functions[self.vi_index.upper()] if kwargs: return vi_function(kwargs) else: return vi_function() def run_index(self, scale_factor, y=1., g=2.5, L=1., min_ndvi=-1, max_ndvi=1, **kwargs): # EVI defaults if self.vi_index.upper() == 'EVI' and not kwargs: c1 = 6.0 c2 = 7.5 elif self.vi_index.upper() == 'EVI2' and not kwargs: c1 = 2.4 no_data = self.no_data in_no_data = self.in_no_data pi = np.pi # Setup a mask if isinstance(self.mask_array, np.ndarray): mask_array = self.mask_array mask_equation = 'where(mask_array == 1, no_data, index_array)' if self.n_bands == 2: if self.image_array.shape[0] != 2: logger.error(' The input array should have {:d} dimensions.'.format(self.n_bands)) raise ValueError array01 = self.image_array[0] array02 = self.image_array[1] if not isinstance(self.mask_array, np.ndarray): mask_equation = 'where((array01 == in_no_data) | (array02 == in_no_data), no_data, index_array)' elif self.n_bands == 3: if self.image_array.shape[0] != 3: logger.error(' The input array should have {:d} dimensions.'.format(self.n_bands)) raise ValueError array01 = self.image_array[0] array02 = self.image_array[1] array03 = self.image_array[2] if not isinstance(self.mask_array, np.ndarray): mask_equation = 'where((array01 == in_no_data) | (array02 == in_no_data) | (array03 == in_no_data), no_data, index_array)' else: logger.error(' The input array needs 2 or 3 bands.') raise ValueError index_array = ne.evaluate(self.equations[self.vi_index.upper()]) if self.vi_index.upper() == 'WI': index_array = np.where(index_array > 0.5, 0, 1.0 - (index_array / 0.5)) d_range = self.data_ranges[self.vi_index.upper()] if d_range: if d_range[0] == -9999: scale_data = False else: scale_data = True # Clip lower and upper bounds. index_array = ne.evaluate('where(index_array < {:f}, {:f}, index_array)'.format(d_range[0], d_range[0])) index_array = ne.evaluate('where(index_array > {:f}, {:f}, index_array)'.format(d_range[1], d_range[1])) # if self.out_type != 1: # index_array += abs(d_range[0]) else: scale_data = False if scale_data: if self.data_ranges[self.vi_index.upper()]: if self.out_type == 2: index_array = np.uint8(self.rescale_range(index_array, in_range=d_range)) elif self.out_type == 3: index_array = np.uint16(self.rescale_range(index_array, in_range=d_range)) else: if self.out_type == 2: index_array = np.uint8(self.rescale_range(index_array, in_range=(0, 10000))) elif self.out_type == 3: index_array = np.uint16(index_array) index_array[np.isinf(index_array) | np.isnan(index_array)] = self.no_data index_array = ne.evaluate(mask_equation) return index_array def ARVI(self, y=1): """ Atmospherically Resistant Vegetation Index (ARVI) Equation: (nir - rb) / (nir + rb) where, rb = red - y(blue - red) where, y = gamma value (weighting factor depending on aersol type), (0.7 to 1.3) """ try: blue = self.image_array[0] red = self.image_array[1] nir = self.image_array[2] except: raise ValueError('\nThe input array should have {:d} dimensions.\n'.format(self.n_bands)) rb1 = np.multiply(np.subtract(blue, red), y) rb = np.subtract(red, rb1) arvi = self.NDVI() arvi[(blue == 0) | (red == 0) | (nir == 0)] = self.no_data arvi[np.isinf(arvi) | np.isnan(arvi)] = self.no_data if self.out_type > 1: arvi = self.rescale_range(arvi) return arvi def BRIGHT(self): try: green = self.image_array[0] red = self.image_array[1] nir = self.image_array[2] midir = self.image_array[3] except: raise ValueError('\nThe input array should have {:d} dimensions.\n'.format(self.n_bands)) bright = np.sqrt(green**2 + red**2 + nir**2 + midir**2) bright[(green == 0) | (red == 0) | (nir == 0) | (midir == 0)] = self.no_data bright[np.isinf(bright) | np.isnan(bright)] = self.no_data if self.out_type > 1: bright = self.rescale_range(bright) return bright def CBI(self): """ Coastal-Blue Index Equation: CBI = (blue - cblue) / (blue + cblue) """ try: cblue = self.image_array[0] blue = self.image_array[1] except: raise ValueError('\nThe input array should have {:d} dimensions.\n'.format(self.n_bands)) cbi = self.main_index(cblue, blue) cbi[(cblue == 0) | (blue == 0)] = self.no_data cbi[np.isinf(cbi) | np.isnan(cbi)] = self.no_data if self.out_type > 1: cbi = self.rescale_range(cbi, in_range=(-1., 1.)) return cbi def CIre(self): """ Chlorophyll Index red-edge (CIre) References: Clevers, J.G.P.W. & <NAME>. (2013) Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and -3. International Journal of Applied Earth Observation and Geoinformation, 23, 344-351. """ try: rededge = self.image_array[0] rededge3 = self.image_array[1] except: raise ValueError('\nThe input array should have {:d} dimensions.\n'.format(self.n_bands)) ci_re = np.subtract(np.divide(rededge3, rededge), 1.) ci_re[(rededge == 0) | (rededge3 == 0)] = self.no_data ci_re[np.isinf(ci_re) | np.isnan(ci_re)] = self.no_data if self.out_type > 1: ci_re = self.rescale_range(ci_re, in_range=(0., 1.)) return ci_re def EVI(self, c1=6., c2=7.5, g=2.5, L=1.): """ Enhanced Vegetation Index (EVI) Equation: g * [ nir - Red ------------------------------ nir + C1 * Red - C2 * Blue + L ] C1 = 6 C2 = 7.5 L = 1 g = 2.5 References: Huete et al. (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83, 195-213. """ try: blue = self.image_array[0] red = self.image_array[1] nir = self.image_array[2] except: raise ValueError('\nThe input array should have {:d} dimensions.\n'.format(self.n_bands)) top = np.subtract(nir, red) red_c1 = np.multiply(c1, red) blue_c2 = np.multiply(c2, blue) bottom = np.add(np.add(np.subtract(red_c1, blue_c2), nir), L) evi = np.divide(top, bottom) evi = np.multiply(evi, g) evi[(blue == 0) | (red == 0) | (nir == 0)] = self.no_data evi[np.isinf(evi) | np.isnan(evi)] = self.no_data if self.out_type > 1: evi = self.rescale_range(evi, in_range=(0., 1.)) return evi def EVI2(self, c1=2.4, g=2.5, L=1.): """ Enhanced Vegetation Index (EVI2) Reference: <NAME>, <NAME>, <NAME>, and <NAME>. 2008. "Development of a two-band enhanced vegetation index without a blue band." Remote Sensing of Environment 112: 3833-3845. Equation: g * [ nir - Red --------------------- nir + (C1 * Red) + 1 ] c1 = 2.4 g = 2.5 """ try: red = self.image_array[0] nir = self.image_array[1] except: raise ValueError('\nThe input array should have {:d} dimensions.\n'.format(self.n_bands)) top = np.subtract(nir, red) bottom = np.add(np.add(np.multiply(red, c1), nir), L) evi2 = np.divide(top, bottom) evi2 = np.multiply(evi2, g) evi2[(red == 0) | (nir == 0)] = self.no_data evi2[np.isinf(evi2) | np.isnan(evi2)] = self.no_data if self.out_type > 1: evi2 = self.rescale_range(evi2, in_range=(0., 1.)) return evi2 def IPVI(self): """ Equation: IPVI = nir / (nir + red) """ try: red = self.image_array[0] nir = self.image_array[1] except: raise ValueError('\nThe input array should have {:d} dimensions.\n'.format(self.n_bands)) bottom = np.add(nir, red) ipvi = np.divide(nir, bottom) ipvi[(red == 0) | (nir == 0)] = self.no_data ipvi[np.isinf(ipvi) | np.isnan(ipvi)] = self.no_data if self.out_type > 1: ipvi = self.rescale_range(ipvi) return ipvi def MSAVI(self): """ Modified Soil Adjusted Vegetation Index (MSAVI2) Equation: ((2 * nir + 1) - sqrt(((2 * nir + 1)^2) - (8 * (nir - Red)))) / 2 """ try: red = self.image_array[0] nir = self.image_array[1] except: raise ValueError('\nThe input array should have {:d} dimensions.\n'.format(self.n_bands)) topR1 = np.add(np.multiply(nir, 2.), 1.) topR2 = np.power(topR1, 2.) topR4 = np.multiply(np.subtract(nir, red), 8.) topR5 = np.subtract(topR2, topR4) topR6 = np.sqrt(topR5) msavi = np.subtract(topR1, topR6) msavi = np.divide(msavi, 2.) msavi[(red == 0) | (nir == 0)] = self.no_data msavi[np.isinf(msavi) | np.isnan(msavi)] = self.no_data if self.out_type > 1: msavi = self.rescale_range(msavi) return msavi def GNDVI(self): """ Green Normalised Difference Vegetation Index (GNDVI) Equation: GNDVI = (NIR - green) / (NIR + green) """ try: green = self.image_array[0] nir = self.image_array[1] except: raise ValueError('\nThe input array should have {:d} dimensions.\n'.format(self.n_bands)) gndvi = self.main_index(green, nir) gndvi[(gndvi < -1.)] = -1. gndvi[(gndvi > 1.)] = 1. gndvi[(green == 0) | (nir == 0)] = self.no_data gndvi[np.isinf(gndvi) | np.isnan(gndvi)] = self.no_data if self.out_type > 1: gndvi = self.rescale_range(gndvi, in_range=(-1., 1.)) return gndvi def MNDWI(self): """ Modified Normalised Difference Water Index (MNDWI) Equation: MNDWI = (green - MidIR) / (green + MidIR) Reference: <NAME> (2006) Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. IJRS 27:14. """ try: midir = self.image_array[0] green = self.image_array[1] except: raise ValueError('\nThe input array should have {:d} dimensions.\n'.format(self.n_bands)) mndwi = self.main_index(midir, green) mndwi[(mndwi < -1.)] = -1. mndwi[(mndwi > 1.)] = 1. mndwi[(green == 0) | (midir == 0)] = self.no_data mndwi[np.isinf(mndwi) | np.isnan(mndwi)] = self.no_data if self.out_type > 1: mndwi = self.rescale_range(mndwi, in_range=(-1., 1.)) return mndwi def NDSI(self): """ Normalised Difference Soil Index (NDSI) (Rogers) or Normalised Difference Water Index (NDWI) (Gao) Equation: NDSI = (MidIR - NIR) / (MidIR + NIR) References: <NAME>. & <NAME>. (2004) 'Reducing signature variability in unmixing coastal marsh Thematic Mapper scenes using spectral indices' International Journal of Remote Sensing, 25(12), 2317-2335. <NAME> (1996) 'NDWI A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water From Space' Remote Sensing of Environment. """ try: nir = self.image_array[0] midir = self.image_array[1] except: raise ValueError('\nThe input array should have {:d} dimensions.\n'.format(self.n_bands)) ndsi = self.main_index(nir, midir) ndsi[(ndsi < -1.)] = -1. ndsi[(ndsi > 1.)] = 1. ndsi[(nir == 0) | (midir == 0)] = self.no_data ndsi[np.isinf(ndsi) | np.isnan(ndsi)] = self.no_data if self.out_type > 1: ndsi = self.rescale_range(ndsi, in_range=(-1., 1.)) return ndsi def NDBAI(self): """ Normalised Difference Bareness Index (NDBaI) Equation: NDBaI = (FarIR - MidIR) / (FarIR + MidIR) Reference: <NAME>, Chen, Xiaoling (2005) 'Use of Normalized Difference Bareness Index in Quickly Mapping Bare Areas from TM/ETM+' IEEE. """ try: midir = self.image_array[0] farir = self.image_array[1] except: raise ValueError('\nThe input array should have {:d} dimensions.\n'.format(self.n_bands)) ndbai = self.main_index(midir, farir) ndbai[(ndbai < -1.)] = -1. ndbai[(ndbai > 1.)] = 1. ndbai[(midir == 0) | (farir == 0)] = self.no_data ndbai[np.isinf(ndbai) | np.isnan(ndbai)] = self.no_data if self.out_type > 1: ndbai = self.rescale_range(ndbai, in_range=(-1., 1.)) return ndbai def NBR(self): """ Normalised Burn Ratio (NBR) Equation: NBR = (NIR - FarIR) / (NIR + FarIR) """ try: farir = self.image_array[0] nir = self.image_array[1] except: raise ValueError('\nThe input array should have {:d} dimensions.\n'.format(self.n_bands)) nbr = self.main_index(farir, nir) nbr[(nbr < -1.)] = -1. nbr[(nbr > 1.)] = 1. nbr[(nbr == 0) | (nir == 0)] = self.no_data nbr[np.isinf(nbr) | np.isnan(nbr)] = self.no_data if self.out_type > 1: nbr = self.rescale_range(nbr, in_range=(-1.0, 1.0)) return nbr def NDVI(self): """ Normalised Difference Vegetation Index (NDVI) Equation: NDVI = (NIR - red) / (NIR + red) """ try: red = self.image_array[0] nir = self.image_array[1] except: raise ValueError('\nThe input array should have {:d} dimensions.\n'.format(self.n_bands)) ndvi = self.main_index(red, nir) ndvi[(ndvi < -1.)] = -1. ndvi[(ndvi > 1.)] = 1. ndvi[(red == 0) | (nir == 0)] = self.no_data ndvi[np.isinf(ndvi) | np.isnan(ndvi)] = self.no_data if self.out_type > 1: ndvi = self.rescale_range(ndvi, in_range=(-1., 1.)) return ndvi def RENDVI(self): """ Rededge Normalised Difference Vegetation Index (RENDVI) Equation: RENDVI = (NIR - rededge) / (NIR + rededge) """ try: rededge = self.image_array[0] nir = self.image_array[1] except: raise ValueError('\nThe input array should have {:d} dimensions.\n'.format(self.n_bands)) rendvi = self.main_index(rededge, nir) rendvi[(rendvi < -1.)] = -1. rendvi[(rendvi > 1.)] = 1. rendvi[(rededge == 0) | (nir == 0)] = self.no_data rendvi[np.isinf(rendvi) | np.isnan(rendvi)] = self.no_data if self.out_type > 1: rendvi = self.rescale_range(rendvi, in_range=(-1., 1.)) return rendvi def NDWI(self): """ Normalised Difference Water Index (NDWI) Equation: NDWI = (green - NIR) / (green + NIR) Reference: <NAME>. (1996) 'The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features, International Journal of Remote Sensing, 17(7), 1425-1432. """ try: nir = self.image_array[0] green = self.image_array[1] except: raise ValueError('\nThe input array should have {:d} dimensions.\n'.format(self.n_bands)) ndwi = self.main_index(nir, green) ndwi[(ndwi < -1.)] = -1. ndwi[(ndwi > 1.)] = 1. ndwi[(green == 0) | (nir == 0)] = self.no_data ndwi[np.isinf(ndwi) | np.isnan(ndwi)] = self.no_data if self.out_type > 1: ndwi = self.rescale_range(ndwi, in_range=(-1., 1.)) return ndwi def PNDVI(self): """ Pseudo Normalised Difference Vegetation Index (PNDVI) Equation: PNDVI = (red - green) / (red + green) """ try: green = self.image_array[0] red = self.image_array[1] except: raise ValueError('\nThe input array should have {:d} dimensions.\n'.format(self.n_bands)) pndvi = self.main_index(green, red) pndvi[(pndvi < -1.)] = -1. pndvi[(pndvi > 1.)] = 1. pndvi[(green == 0) | (red == 0)] = self.no_data pndvi[np.isinf(pndvi) |
np.isnan(pndvi)
numpy.isnan
import numpy as np import torchvision from torch.utils.data import DataLoader from torchvision import transforms _torch_supported_dataset = ('mnist', 'fashion', 'cifar10', 'svhn') _torch_dataset_key_mapping = { 'mnist': 'MNIST', 'fashion': 'FashionMNIST', 'cifar10': 'CIFAR10', 'svhn': 'SVHN', } _dataset_ratio_mapping = { 'mnist': [4000, 2000, 1000, 750, 500, 350, 200, 100, 60, 40], 'fashion': [4000, 2000, 1000, 750, 500, 350, 200, 100, 60, 40], 'cifar10': [4500, 2000, 1000, 800, 600, 500, 400, 250, 150, 80], 'svhn': [4500, 2000, 1000, 800, 600, 500, 400, 250, 150, 80], } def dataset_to_numpy(dataset): loader = DataLoader(dataset, len(dataset)) x, y = next(iter(loader)) return x.numpy(), y.numpy() def load_data(name, seed, imbalance=None, data_dir=None): name = name.lower() if data_dir is None: data_dir = './data/%s/' % name func_name = _torch_dataset_key_mapping[name] # if name in _torch_dataset_key_mapping else None dataset_func = getattr(torchvision.datasets, func_name) transform = transforms.Compose([transforms.ToTensor(), ]) if name in ('mnist', 'fashion', 'cifar10'): train_dataset = dataset_func(data_dir, train=True, transform=transform, download=True) test_dataset = dataset_func(data_dir, train=False, transform=transform, download=True) elif name == 'svhn': train_dataset = dataset_func(data_dir, split='train', transform=transform, download=True) test_dataset = dataset_func(data_dir, split='test', transform=transform, download=True) else: raise NotImplementedError X_train, y_train = dataset_to_numpy(train_dataset) X_test, y_test = dataset_to_numpy(test_dataset) X_train, y_train = _shuffle(X_train, y_train, seed) X_train = np.transpose(X_train, axes=[0, 2, 3, 1]) X_test = np.transpose(X_test, axes=[0, 2, 3, 1]) n_classes = len(np.unique(y_test)) print(X_train.shape, y_train.shape, X_test.shape, y_test.shape) print([
np.count_nonzero(y_train == i)
numpy.count_nonzero
import logging from collections import OrderedDict from typing import Dict, Union, List import numpy from panda3d.bullet import BulletBoxShape, BulletRigidBodyNode, BulletGhostNode from panda3d.core import Vec3, LQuaternionf, BitMask32, Vec4, CardMaker, TextureStage, RigidBodyCombiner, \ TransparencyAttrib, SamplerState, NodePath from pgdrive.constants import Decoration, BodyName, CamMask from pgdrive.scene_creator.blocks.constants import BlockDefault from pgdrive.scene_creator.lane.abs_lane import AbstractLane, LineType, LaneNode, LineColor from pgdrive.scene_creator.lane.circular_lane import CircularLane from pgdrive.scene_creator.lane.straight_lane import StraightLane from pgdrive.scene_creator.road.road import Road from pgdrive.scene_creator.road.road_network import RoadNetwork from pgdrive.utils.asset_loader import AssetLoader from pgdrive.utils.coordinates_shift import panda_position from pgdrive.utils.element import Element from pgdrive.utils.math_utils import norm from pgdrive.world.pg_physics_world import PGPhysicsWorld class BlockSocket: """ A pair of roads in reverse direction Positive_road is right road, and Negative road is left road on which cars drive in reverse direction BlockSocket is a part of block used to connect other blocks """ def __init__(self, positive_road: Road, negative_road: Road = None): self.positive_road = positive_road self.negative_road = negative_road if negative_road else None self.index = None def set_index(self, block_name: str, index: int): self.index = self.get_real_index(block_name, index) @classmethod def get_real_index(cls, block_name: str, index: int): return "{}-socket{}".format(block_name, index) class Block(Element, BlockDefault): """ Abstract class of Block, BlockSocket: a part of previous block connecting this block <---------------------------------------------- road_2_end <---------------------- road_2_start <~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~> road_1_start ----------------------> road_1_end ----------------------------------------------> BlockSocket = tuple(road_1, road_2) When single-direction block created, road_2 in block socket is useless. But it's helpful when a town is created. """ def __init__(self, block_index: int, pre_block_socket: BlockSocket, global_network: RoadNetwork, random_seed): super(Block, self).__init__(random_seed) # block information assert self.ID is not None, "Each Block must has its unique ID When define Block" assert self.SOCKET_NUM is not None, "The number of Socket should be specified when define a new block" if block_index == 0: from pgdrive.scene_creator.blocks import FirstBlock assert isinstance(self, FirstBlock), "only first block can use block index 0" elif block_index < 0: logging.debug("It is recommended that block index should > 1") self._block_name = str(block_index) + self.ID self.block_index = block_index self.number_of_sample_trial = 0 # each block contains its own road network and a global network self._global_network = global_network self.block_network = RoadNetwork() # used to spawn npc self._reborn_roads = [] # own sockets, one block derives from a socket, but will have more sockets to connect other blocks self._sockets = OrderedDict() # used to connect previous blocks, save its info here self.pre_block_socket = pre_block_socket self.pre_block_socket_index = pre_block_socket.index # a bounding box used to improve efficiency x_min, x_max, y_min, y_max self.bounding_box = None # used to create this block, but for first block it is nonsense if block_index != 0: self.positive_lanes = self.pre_block_socket.positive_road.get_lanes(self._global_network) self.negative_lanes = self.pre_block_socket.negative_road.get_lanes(self._global_network) self.positive_lane_num = len(self.positive_lanes) self.negative_lane_num = len(self.negative_lanes) self.positive_basic_lane = self.positive_lanes[-1] # most right or outside lane is the basic lane self.negative_basic_lane = self.negative_lanes[-1] # most right or outside lane is the basic lane self.lane_width = self.positive_basic_lane.width_at(0) if self.render: # render pre-load self.road_texture = self.loader.loadTexture(AssetLoader.file_path("textures", "sci", "color.jpg")) self.road_texture.setMinfilter(SamplerState.FT_linear_mipmap_linear) self.road_texture.setAnisotropicDegree(8) self.road_normal = self.loader.loadTexture(AssetLoader.file_path("textures", "sci", "normal.jpg")) self.ts_color = TextureStage("color") self.ts_normal = TextureStage("normal") self.side_texture = self.loader.loadTexture(AssetLoader.file_path("textures", "sidewalk", "color.png")) self.side_texture.setMinfilter(SamplerState.FT_linear_mipmap_linear) self.side_texture.setAnisotropicDegree(8) self.side_normal = self.loader.loadTexture(AssetLoader.file_path("textures", "sidewalk", "normal.png")) self.sidewalk = self.loader.loadModel(AssetLoader.file_path("models", "box.bam")) def construct_block(self, root_render_np: NodePath, pg_physics_world: PGPhysicsWorld) -> bool: """ Randomly Construct a block, if overlap return False """ self.set_config(self.PARAMETER_SPACE.sample()) success = self._sample_topology() self._create_in_world() self.attach_to_pg_world(root_render_np, pg_physics_world) return success def destruct_block(self, pg_physics_world: PGPhysicsWorld): self._clear_topology() self.detach_from_pg_world(pg_physics_world) self.node_path.removeNode() self.dynamic_nodes.clear() self.static_nodes.clear() def _sample_topology(self) -> bool: """ Sample a new topology, clear the previous settings at first """ self.number_of_sample_trial += 1 self._clear_topology() no_cross = self._try_plug_into_previous_block() self._global_network.add(self.block_network) return no_cross def construct_from_config(self, config: Dict, root_render_np: NodePath, pg_physics_world: PGPhysicsWorld): assert set(config.keys()) == self.PARAMETER_SPACE.parameters, \ "Make sure the parameters' name are as same as what defined in pg_space.py" self.set_config(config) success = self._sample_topology() self._create_in_world() self.attach_to_pg_world(root_render_np, pg_physics_world) return success def get_socket(self, index: Union[str, int]) -> BlockSocket: if isinstance(index, int): if index < 0 or index >= len(self._sockets): raise ValueError("Socket of {}: index out of range".format(self.class_name)) socket_index = list(self._sockets)[index] else: assert index.startswith(self._block_name) socket_index = index assert socket_index in self._sockets, (socket_index, self._sockets.keys()) return self._sockets[socket_index] def add_reborn_roads(self, reborn_roads: Union[List[Road], Road]): """ Use this to add spawn roads instead of modifying the list directly """ if isinstance(reborn_roads, List): for road in reborn_roads: self._add_one_reborn_road(road) elif isinstance(reborn_roads, Road): self._add_one_reborn_road(reborn_roads) else: raise ValueError("Only accept List[Road] or Road in this func") def get_reborn_roads(self): return self._reborn_roads def get_reborn_lanes(self): """ return a 2-dim array [[]] to keep the lane index """ ret = [] for road in self._reborn_roads: lanes = road.get_lanes(self.block_network) ret.append(lanes) return ret def add_sockets(self, sockets: Union[List[BlockSocket], BlockSocket]): """ Use this to add sockets instead of modifying the list directly """ if isinstance(sockets, BlockSocket): self._add_one_socket(sockets) elif isinstance(sockets, List): for socket in sockets: self._add_one_socket(socket) def set_part_idx(self, x): """ It is necessary to divide block to some parts in complex block and give them unique id according to part idx """ self.PART_IDX = x self.ROAD_IDX = 0 # clear the road idx when create new part def add_road_node(self): """ Call me to get a new node name of this block. It is more accurate and recommended to use road_node() to get a node name """ self.ROAD_IDX += 1 return self.road_node(self.PART_IDX, self.ROAD_IDX - 1) def road_node(self, part_idx: int, road_idx: int) -> str: """ return standard road node name """ return self._block_name + str(part_idx) + self.DASH + str(road_idx) + self.DASH def _add_one_socket(self, socket: BlockSocket): assert isinstance(socket, BlockSocket), "Socket list only accept BlockSocket Type" if socket.index is not None and not socket.index.startswith(self._block_name): logging.warning( "The adding socket has index {}, which is not started with this block name {}. This is dangerous! " "Current block has sockets: {}.".format(socket.index, self._block_name, self.get_socket_indices()) ) if socket.index is None: # if this socket is self block socket socket.set_index(self._block_name, len(self._sockets)) self._sockets[socket.index] = socket def _add_one_reborn_road(self, reborn_road: Road): assert isinstance(reborn_road, Road), "Spawn roads list only accept Road Type" self._reborn_roads.append(reborn_road) def _clear_topology(self): self._global_network -= self.block_network self.block_network.graph.clear() self.PART_IDX = 0 self.ROAD_IDX = 0 self._reborn_roads.clear() self._sockets.clear() def _try_plug_into_previous_block(self) -> bool: """ Try to plug this Block to previous block's socket, return True for success, False for road cross """ raise NotImplementedError """------------------------------------- For Render and Physics Calculation ---------------------------------- """ def _create_in_world(self): """ Create NodePath and Geom node to perform both collision detection and render """ self.lane_line_node_path = NodePath(RigidBodyCombiner(self._block_name + "_lane_line")) self.sidewalk_node_path = NodePath(RigidBodyCombiner(self._block_name + "_sidewalk")) self.lane_node_path = NodePath(RigidBodyCombiner(self._block_name + "_lane")) self.lane_vis_node_path = NodePath(RigidBodyCombiner(self._block_name + "_lane_vis")) graph = self.block_network.graph for _from, to_dict in graph.items(): for _to, lanes in to_dict.items(): self._add_lane_surface(_from, _to, lanes) for _id, l in enumerate(lanes): line_color = l.line_color self._add_lane(l, _id, line_color) self.lane_line_node_path.flattenStrong() self.lane_line_node_path.node().collect() self.sidewalk_node_path.flattenStrong() self.sidewalk_node_path.node().collect() self.sidewalk_node_path.hide(CamMask.ScreenshotCam) # only bodies reparent to this node self.lane_node_path.flattenStrong() self.lane_node_path.node().collect() self.lane_vis_node_path.flattenStrong() self.lane_vis_node_path.node().collect() self.lane_vis_node_path.hide(CamMask.DepthCam | CamMask.ScreenshotCam) self.node_path = NodePath(self._block_name) self.node_path.hide(CamMask.Shadow) self.sidewalk_node_path.reparentTo(self.node_path) self.lane_line_node_path.reparentTo(self.node_path) self.lane_node_path.reparentTo(self.node_path) self.lane_vis_node_path.reparentTo(self.node_path) self.bounding_box = self.block_network.get_bounding_box() def _add_lane(self, lane: AbstractLane, lane_id: int, colors: List[Vec4]): parent_np = self.lane_line_node_path lane_width = lane.width_at(0) for k, i in enumerate([-1, 1]): line_color = colors[k] if lane.line_types[k] == LineType.NONE or (lane_id != 0 and k == 0): if isinstance(lane, StraightLane): continue elif isinstance(lane, CircularLane) and lane.radius != lane_width / 2: # for ramp render continue if lane.line_types[k] == LineType.CONTINUOUS or lane.line_types[k] == LineType.SIDE: if isinstance(lane, StraightLane): lane_start = lane.position(0, i * lane_width / 2) lane_end = lane.position(lane.length, i * lane_width / 2) middle = lane.position(lane.length / 2, i * lane_width / 2) self._add_lane_line2bullet(lane_start, lane_end, middle, parent_np, line_color, lane.line_types[k]) elif isinstance(lane, CircularLane): segment_num = int(lane.length / Block.CIRCULAR_SEGMENT_LENGTH) for segment in range(segment_num): lane_start = lane.position(segment * Block.CIRCULAR_SEGMENT_LENGTH, i * lane_width / 2) lane_end = lane.position((segment + 1) * Block.CIRCULAR_SEGMENT_LENGTH, i * lane_width / 2) middle = (lane_start + lane_end) / 2 self._add_lane_line2bullet( lane_start, lane_end, middle, parent_np, line_color, lane.line_types[k] ) # for last part lane_start = lane.position(segment_num * Block.CIRCULAR_SEGMENT_LENGTH, i * lane_width / 2) lane_end = lane.position(lane.length, i * lane_width / 2) middle = (lane_start + lane_end) / 2 self._add_lane_line2bullet(lane_start, lane_end, middle, parent_np, line_color, lane.line_types[k]) if lane.line_types[k] == LineType.SIDE: radius = lane.radius if isinstance(lane, CircularLane) else 0.0 segment_num = int(lane.length / Block.SIDEWALK_LENGTH) for segment in range(segment_num): lane_start = lane.position(segment * Block.SIDEWALK_LENGTH, i * lane_width / 2) lane_end = lane.position((segment + 1) * Block.SIDEWALK_LENGTH, i * lane_width / 2) middle = (lane_start + lane_end) / 2 self._add_sidewalk2bullet(lane_start, lane_end, middle, radius, lane.direction) # for last part lane_start = lane.position(segment_num * Block.SIDEWALK_LENGTH, i * lane_width / 2) lane_end = lane.position(lane.length, i * lane_width / 2) middle = (lane_start + lane_end) / 2 if norm(lane_start[0] - lane_end[0], lane_start[1] - lane_end[1]) > 1e-1: self._add_sidewalk2bullet(lane_start, lane_end, middle, radius, lane.direction) elif lane.line_types[k] == LineType.BROKEN: straight = True if isinstance(lane, StraightLane) else False segment_num = int(lane.length / (2 * Block.STRIPE_LENGTH)) for segment in range(segment_num): lane_start = lane.position(segment * Block.STRIPE_LENGTH * 2, i * lane_width / 2) lane_end = lane.position( segment * Block.STRIPE_LENGTH * 2 + Block.STRIPE_LENGTH, i * lane_width / 2 ) middle = lane.position( segment * Block.STRIPE_LENGTH * 2 + Block.STRIPE_LENGTH / 2, i * lane_width / 2 ) self._add_lane_line2bullet( lane_start, lane_end, middle, parent_np, line_color, lane.line_types[k], straight ) lane_start = lane.position(segment_num * Block.STRIPE_LENGTH * 2, i * lane_width / 2) lane_end = lane.position(lane.length + Block.STRIPE_LENGTH, i * lane_width / 2) middle = (lane_end[0] + lane_start[0]) / 2, (lane_end[1] + lane_start[1]) / 2 self._add_lane_line2bullet( lane_start, lane_end, middle, parent_np, line_color, lane.line_types[k], straight ) if straight: lane_start = lane.position(0, i * lane_width / 2) lane_end = lane.position(lane.length, i * lane_width / 2) middle = lane.position(lane.length / 2, i * lane_width / 2) self._add_box_body(lane_start, lane_end, middle, parent_np, lane.line_types[k], line_color) def _add_box_body(self, lane_start, lane_end, middle, parent_np: NodePath, line_type, line_color): length = norm(lane_end[0] - lane_start[0], lane_end[1] - lane_start[1]) if LineType.prohibit(line_type): node_name = BodyName.White_continuous_line if line_color == LineColor.GREY else BodyName.Yellow_continuous_line else: node_name = BodyName.Broken_line body_node = BulletGhostNode(node_name) body_node.setActive(False) body_node.setKinematic(False) body_node.setStatic(True) body_np = parent_np.attachNewNode(body_node) shape = BulletBoxShape(Vec3(length / 2, Block.LANE_LINE_WIDTH / 2, Block.LANE_LINE_GHOST_HEIGHT)) body_np.node().addShape(shape) mask = Block.CONTINUOUS_COLLISION_MASK if line_type != LineType.BROKEN else Block.BROKEN_COLLISION_MASK body_np.node().setIntoCollideMask(BitMask32.bit(mask)) self.dynamic_nodes.append(body_np.node()) body_np.setPos(panda_position(middle, Block.LANE_LINE_GHOST_HEIGHT / 2)) direction_v = lane_end - lane_start theta = -numpy.arctan2(direction_v[1], direction_v[0]) body_np.setQuat(LQuaternionf(numpy.cos(theta / 2), 0, 0, numpy.sin(theta / 2))) def _add_lane_line2bullet( self, lane_start, lane_end, middle, parent_np: NodePath, color: Vec4, line_type: LineType, straight_stripe=False ): length = norm(lane_end[0] - lane_start[0], lane_end[1] - lane_start[1]) if length <= 0: return if LineType.prohibit(line_type): node_name = BodyName.White_continuous_line if color == LineColor.GREY else BodyName.Yellow_continuous_line else: node_name = BodyName.Broken_line # add bullet body for it if straight_stripe: body_np = parent_np.attachNewNode(node_name) else: body_node = BulletGhostNode(node_name) body_node.setActive(False) body_node.setKinematic(False) body_node.setStatic(True) body_np = parent_np.attachNewNode(body_node) # its scale will change by setScale body_height = Block.LANE_LINE_GHOST_HEIGHT shape = BulletBoxShape( Vec3(length / 2 if line_type != LineType.BROKEN else length, Block.LANE_LINE_WIDTH / 2, body_height) ) body_np.node().addShape(shape) mask = Block.CONTINUOUS_COLLISION_MASK if line_type != LineType.BROKEN else Block.BROKEN_COLLISION_MASK body_np.node().setIntoCollideMask(BitMask32.bit(mask)) self.dynamic_nodes.append(body_np.node()) # position and heading body_np.setPos(panda_position(middle, Block.LANE_LINE_GHOST_HEIGHT / 2)) direction_v = lane_end - lane_start theta = -numpy.arctan2(direction_v[1], direction_v[0]) body_np.setQuat(LQuaternionf(numpy.cos(theta / 2), 0, 0, numpy.sin(theta / 2))) if self.render: # For visualization lane_line = self.loader.loadModel(AssetLoader.file_path("models", "box.bam")) lane_line.setScale(length, Block.LANE_LINE_WIDTH, Block.LANE_LINE_THICKNESS) lane_line.setPos(Vec3(0, 0 - Block.LANE_LINE_GHOST_HEIGHT / 2)) lane_line.reparentTo(body_np) body_np.set_color(color) def _add_sidewalk2bullet(self, lane_start, lane_end, middle, radius=0.0, direction=0): length = norm(lane_end[0] - lane_start[0], lane_end[1] - lane_start[1]) body_node = BulletRigidBodyNode(BodyName.Sidewalk) body_node.setActive(False) body_node.setKinematic(False) body_node.setStatic(True) side_np = self.sidewalk_node_path.attachNewNode(body_node) shape = BulletBoxShape(Vec3(1 / 2, 1 / 2, 1 / 2)) body_node.addShape(shape) body_node.setIntoCollideMask(BitMask32.bit(self.CONTINUOUS_COLLISION_MASK)) self.dynamic_nodes.append(body_node) if radius == 0: factor = 1 else: if direction == 1: factor = (1 - self.SIDEWALK_LINE_DIST / radius) else: factor = (1 + self.SIDEWALK_WIDTH / radius) * (1 + self.SIDEWALK_LINE_DIST / radius) direction_v = lane_end - lane_start vertical_v = (-direction_v[1], direction_v[0]) / numpy.linalg.norm(direction_v) middle += vertical_v * (self.SIDEWALK_WIDTH / 2 + self.SIDEWALK_LINE_DIST) side_np.setPos(panda_position(middle, 0)) theta = -numpy.arctan2(direction_v[1], direction_v[0]) side_np.setQuat(LQuaternionf(
numpy.cos(theta / 2)
numpy.cos
import numpy as np import scipy.stats import matplotlib.pyplot as plt # plt.style.use('seaborn-colorblind') # plt.style.use('grayscale') from tqdm import tqdm def gauss(x, mu=0, sigma=1): return ( 1 / np.sqrt(2 * np.pi * sigma ** 2) * np.exp(-0.5 * (x - mu) ** 2 / sigma ** 2) ) def f(x): return (1 + x ** 2) ** (-0.5) * gauss(x) if __name__ == "__main__": np.random.seed(2019) lower, upper = -5, 5 exact = 0.78964 V = upper - lower Ns =
np.logspace(3, 6, 50, dtype=int)
numpy.logspace
# -*- coding: utf-8 -*- """ pytests for resource handlers """ from datetime import datetime import h5py import numpy as np import os import pandas as pd import pytest from rex import TESTDATADIR from rex.multi_file_resource import (MultiH5, MultiH5Path, MultiFileNSRDB, MultiFileWTK) from rex.renewable_resource import (NSRDB, WindResource) from rex.utilities.exceptions import ResourceKeyError, ResourceRuntimeError def NSRDB_res(): """ Init NSRDB resource handler """ path = os.path.join(TESTDATADIR, 'nsrdb/ri_100_nsrdb_2012.h5') return NSRDB(path) def NSRDB_2018(): """ Init NSRDB resource handler """ path = os.path.join(TESTDATADIR, 'nsrdb', 'nsrdb*2018.h5') return MultiFileNSRDB(path) def NSRDB_2018_list(): """ Init NSRDB resource handler """ path = os.path.join(TESTDATADIR, 'nsrdb/nsrdb*2018.h5') path, h5_files = MultiH5Path._get_h5_files(path) return MultiFileNSRDB(h5_files) def WindResource_res(): """ Init WindResource resource handler """ path = os.path.join(TESTDATADIR, 'wtk/ri_100_wtk_2012.h5') return WindResource(path) def FiveMinWind_res(): """ Init WindResource resource handler """ path = os.path.join(TESTDATADIR, 'wtk', 'wtk*m.h5') return MultiFileWTK(path) def FiveMinWind_list(): """ Init WindResource resource handler """ path = os.path.join(TESTDATADIR, 'wtk/wtk*m.h5') path, h5_files = MultiH5Path._get_h5_files(path) return MultiFileWTK(h5_files) def wind_group(): """ Init WindResource resource handler """ path = os.path.join(TESTDATADIR, 'wtk/ri_wtk_2012_group.h5') return WindResource(path, group='group') def check_res(res_cls): """ Run test on len and shape methods """ time_index = res_cls.time_index meta = res_cls.meta res_shape = (len(time_index), len(meta)) assert len(res_cls) == len(time_index) assert res_cls.shape == res_shape assert np.all(np.isin(['meta', 'time_index'], res_cls.datasets)) assert np.all(~np.isin(['meta', 'time_index', 'coordinates'], res_cls.resource_datasets)) def check_attrs(res_cls, dset): """ Check dataset attributes extraction """ truth = res_cls.get_attrs(dset=dset) test = res_cls.attrs[dset] msg = "{} attributes do not match!".format(dset) assert truth == test, msg truth = res_cls.get_scale_factor(dset) test = res_cls.scale_factors[dset] msg = "{} scale factors do not match!".format(dset) assert truth == test, msg truth = res_cls.get_units(dset) test = res_cls.units[dset] msg = "{} units do not match!".format(dset) assert truth == test, msg def check_properties(res_cls, dset): """ Check dataset properties extraction """ shape, dtype, chunks = res_cls.get_dset_properties(dset) test = res_cls.shapes[dset] msg = "{} shape does not match!".format(dset) assert shape == test, msg test = res_cls.dtypes[dset] msg = "{} dtype does not match!".format(dset) assert dtype == test, msg test = res_cls.chunks[dset] msg = "{} chunks do not match!".format(dset) assert chunks == test, msg def check_meta(res_cls): """ Run tests on meta data """ with h5py.File(res_cls.h5_file, 'r') as f: ds_name = 'meta' if res_cls._group: ds_name = '{}/{}'.format(res_cls._group, ds_name) baseline = pd.DataFrame(f[ds_name][...]) sites = slice(0, len(baseline)) meta = res_cls['meta', sites] cols = ['latitude', 'longitude', 'elevation', 'timezone'] assert np.allclose(baseline[cols].values[sites], meta[cols].values) sites = len(baseline) sites = slice(int(sites / 3), int(sites / 2)) meta = res_cls['meta', sites] cols = ['latitude', 'longitude', 'elevation', 'timezone'] assert np.allclose(baseline[cols].values[sites], meta[cols].values) sites = 5 meta = res_cls['meta', sites] cols = ['latitude', 'longitude', 'elevation', 'timezone'] assert np.allclose(baseline[cols].values[sites], meta[cols].values) sites = sorted(np.random.choice(len(baseline), 5, replace=False)) meta = res_cls['meta', sites] cols = ['latitude', 'longitude', 'elevation', 'timezone'] assert np.allclose(baseline[cols].values[sites], meta[cols].values) meta = res_cls['meta'] cols = ['latitude', 'longitude', 'elevation', 'timezone'] assert np.allclose(baseline[cols].values, meta[cols].values) assert isinstance(meta, pd.DataFrame) meta_shape = meta.shape max_sites = int(meta_shape[0] * 0.8) # single site meta = res_cls['meta', max_sites] assert isinstance(meta, pd.DataFrame) assert meta.shape == (1, meta_shape[1]) # site slice meta = res_cls['meta', :max_sites] assert isinstance(meta, pd.DataFrame) assert meta.shape == (max_sites, meta_shape[1]) # site list sites = sorted(np.random.choice(meta_shape[0], max_sites, replace=False)) meta = res_cls['meta', sites] assert isinstance(meta, pd.DataFrame) assert meta.shape == (len(sites), meta_shape[1]) # select columns meta = res_cls['meta', :, ['latitude', 'longitude']] assert isinstance(meta, pd.DataFrame) assert meta.shape == (meta_shape[0], 2) lat_lon = res_cls.lat_lon assert np.allclose(baseline[['latitude', 'longitude']].values, lat_lon) def check_time_index(res_cls): """ Run tests on time_index """ time_index = res_cls['time_index'] time_shape = time_index.shape assert isinstance(time_index, pd.DatetimeIndex) assert str(time_index.tz) == 'UTC' # single timestep time_index = res_cls['time_index', 50] assert isinstance(time_index, datetime) # time slice time_index = res_cls['time_index', 100:200] assert isinstance(time_index, pd.DatetimeIndex) assert time_index.shape == (100,) # list of timesteps steps = sorted(np.random.choice(time_shape[0], 50, replace=False)) time_index = res_cls['time_index', steps] assert isinstance(time_index, pd.DatetimeIndex) assert time_index.shape == (50,) def check_dset(res_cls, ds_name): """ Run tests on dataset ds_name """ ds_shape = res_cls.shape max_sites = int(ds_shape[1] * 0.8) arr = res_cls[ds_name] ds = res_cls[ds_name] assert isinstance(ds, np.ndarray) assert ds.shape == ds_shape assert np.allclose(arr, ds) # single site all time ds = res_cls[ds_name, :, 1] assert isinstance(ds, np.ndarray) assert ds.shape == (ds_shape[0],) # single time all sites ds = res_cls[ds_name, 10] assert isinstance(ds, np.ndarray) assert ds.shape == (ds_shape[1],) assert np.allclose(arr[10], ds) # single value ds = res_cls[ds_name, 10, max_sites] assert isinstance(ds, (np.integer, np.floating)) assert np.allclose(arr[10, max_sites], ds) # site slice sites = slice(int(max_sites / 2), max_sites) ds = res_cls[ds_name, :, sites] assert isinstance(ds, np.ndarray) assert ds.shape == (ds_shape[0], sites.stop - sites.start) assert np.allclose(arr[:, sites], ds) # time slice ds = res_cls[ds_name, 10:20] assert isinstance(ds, np.ndarray) assert ds.shape == (10, ds_shape[1]) assert np.allclose(arr[10:20], ds) # slice in time and space ds = res_cls[ds_name, 100:200, sites] assert isinstance(ds, np.ndarray) assert ds.shape == (100, sites.stop - sites.start) assert np.allclose(arr[100:200, sites], ds) # site list sites = sorted(np.random.choice(ds_shape[1], max_sites, replace=False)) ds = res_cls[ds_name, :, sites] assert isinstance(ds, np.ndarray) assert ds.shape == (ds_shape[0], len(sites)) assert np.allclose(arr[:, sites], ds) # site list single time sites = sorted(np.random.choice(ds_shape[1], max_sites, replace=False)) ds = res_cls[ds_name, 0, sites] assert isinstance(ds, np.ndarray) assert ds.shape == (len(sites),) assert np.allclose(arr[0, sites], ds) # time list times = sorted(np.random.choice(ds_shape[0], 100, replace=False)) ds = res_cls[ds_name, times] assert isinstance(ds, np.ndarray) assert ds.shape == (100, ds_shape[1]) assert np.allclose(arr[times], ds) # time list single site ds = res_cls[ds_name, times, 0] assert isinstance(ds, np.ndarray) assert ds.shape == (100,) assert np.allclose(arr[times, 0], ds) # boolean mask mask = res_cls.time_index.month == 7 ds = res_cls[ds_name, mask] assert isinstance(ds, np.ndarray) assert ds.shape == (mask.sum(), ds_shape[1]) assert np.allclose(arr[mask], ds) # time and site lists with pytest.raises(IndexError): assert res_cls[ds_name, times, sites] def check_dset_handler(res_cls, ds_name): """ Run tests on dataset ds_name """ ds_shape = res_cls.shape max_sites = int(ds_shape[1] * 0.8) dset = res_cls.open_dataset(ds_name) arr = dset[...] ds = res_cls[ds_name] assert isinstance(ds, np.ndarray) assert ds.shape == ds_shape assert np.allclose(arr, ds) # single site all time ds = dset[:, 1] assert isinstance(ds, np.ndarray) assert ds.shape == (ds_shape[0],) # single time all sites ds = dset[10] assert isinstance(ds, np.ndarray) assert ds.shape == (ds_shape[1],) assert np.allclose(arr[10], ds) # single value ds = dset[10, max_sites] assert isinstance(ds, (np.integer, np.floating)) assert np.allclose(arr[10, max_sites], ds) # site slice sites = slice(int(max_sites / 2), max_sites) ds = dset[:, sites] assert isinstance(ds, np.ndarray) assert ds.shape == (ds_shape[0], sites.stop - sites.start) assert np.allclose(arr[:, sites], ds) # time slice ds = dset[10:20] assert isinstance(ds, np.ndarray) assert ds.shape == (10, ds_shape[1]) assert
np.allclose(arr[10:20], ds)
numpy.allclose
import numpy as np from scipy.special import erf from scipy.interpolate import interp1d from scipy.integrate import quad,cumtrapz,trapz,solve_ivp from scipy.optimize import fmin,brentq,fixed_point import scipy.linalg as linalg import time # helper function for the peak number density (BBKS 1986) def f(x): return np.where(x>.03, .5*(x**3-3*x)*(erf(2.5**.5*x)+erf(2.5**.5*.5*x))+(2./(5*np.pi))**.5*((7.75*x**2+1.6)*np.exp(-.625*x**2)+(.5*x**2-1.6)*np.exp(-2.5*x**2)), 3**5*5**1.5/(7*2**11*(2*np.pi)**.5)*x**8*(1-.625*x**2) ) # moments of the power spectrum def sigmaj2(j,k,Pk): integrand = Pk*k**(2*j) return trapz(integrand,x=np.log(k),axis=0) def sigmaj(j,k,Pk): return np.sqrt(sigmaj2(j,k,Pk)) # ellipsoidal collapse threshold def ec_func(f,e,p): return 1+0.47*(5*(e**2-p*np.abs(p))*f**2)**0.615 def ec_scale(e,p): func = lambda f: ec_func(f,e,p) try: return fixed_point(func,1.1,maxiter=25) except: return 0 dc = 3./5*(3*np.pi/2)**(2./3) # linear delta at collapse dv = 3./5*(3./4 + 9*np.pi/8)**(2./3) # linear delta at virialization dt = 3./5*(3*np.pi/4)**(2./3) # linear delta at turnaround # window functions def sinc(x): return np.where(x > 0.1, np.divide(np.sin(x),x,where=x>0.1), 1. - x**2/6. + x**4/120. - x**6/5040. + x**8/362880.) def W(x): return 3*np.where(x > 0.1, np.divide(np.sin(x)-x*np.cos(x),x**3,where=x>0.1), 1./3. - x**2/30. + x**4/840. - x**6/45360. + x**8/3991680.) # peak ellipticity/prolateness distributions def fep(e,p,nu): return 1125./np.sqrt(10*np.pi)*e*(e**2-p**2)*nu**5*np.exp(-5./2*nu**2*(3*e**2+p**2)) def fe(e,nu): return 45*e*np.exp(-10*e**2*nu**2)*nu**2*(e*
np.sqrt(10./np.pi)
numpy.sqrt
from __future__ import print_function, division import warnings warnings.filterwarnings("ignore") import os.path import pandas as pd import torch import torch.nn as nn import numpy as np import torchvision from torchvision import datasets, models, transforms import dlib import os, re import argparse def rect_to_bb(rect): # take a bounding predicted by dlib and convert it # to the format (x, y, w, h) as we would normally do # with OpenCV x = rect.left() y = rect.top() w = rect.right() - x h = rect.bottom() - y # return a tuple of (x, y, w, h) return (x, y, w, h) def detect_face(image_paths, SAVE_DETECTED_AT, default_max_size=800,size = 300, padding = 0.25): cnn_face_detector = dlib.cnn_face_detection_model_v1('dlib_models/mmod_human_face_detector.dat') sp = dlib.shape_predictor('dlib_models/shape_predictor_5_face_landmarks.dat') base = 2000 # largest width and height for index, image_path in enumerate(image_paths): if index % 1000 == 0: print('---%d/%d---' %(index, len(image_paths))) img = dlib.load_rgb_image(image_path) old_height, old_width, _ = img.shape if old_width > old_height: new_width, new_height = default_max_size, int(default_max_size * old_height / old_width) else: new_width, new_height = int(default_max_size * old_width / old_height), default_max_size img = dlib.resize_image(img, rows=new_height, cols=new_width) dets = cnn_face_detector(img, 1) num_faces = len(dets) if num_faces == 0: print("Sorry, there were no faces found in '{}'".format(image_path)) continue # Find the 5 face landmarks we need to do the alignment. faces = dlib.full_object_detections() for detection in dets: rect = detection.rect faces.append(sp(img, rect)) images = dlib.get_face_chips(img, faces, size=size, padding = padding) for idx, image in enumerate(images): img_name = image_path.split("/")[-1] path_sp = img_name.split(".") face_name = os.path.join(SAVE_DETECTED_AT, path_sp[0] + "_" + "face" + str(idx) + "." + path_sp[-1]) dlib.save_image(image, face_name) def predidct_age_gender_race(save_prediction_at, imgs_path = 'cropped_faces/'): img_names = [os.path.join(imgs_path, x) for x in os.listdir(imgs_path)] # ! not sorted with python default "sorted" img_names = sorted(img_names) # ! python sort is not true natural order sorting device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model_fair_7 = torchvision.models.resnet34(pretrained=True) model_fair_7.fc = nn.Linear(model_fair_7.fc.in_features, 18) model_fair_7.load_state_dict(torch.load('fair_face_models/res34_fair_align_multi_7_20190809.pt')) # fairface_alldata_20191111 model_fair_7 = model_fair_7.to(device) model_fair_7.eval() model_fair_4 = torchvision.models.resnet34(pretrained=True) model_fair_4.fc = nn.Linear(model_fair_4.fc.in_features, 18) model_fair_4.load_state_dict(torch.load('fair_face_models/fairface_alldata_4race_20191111.pt')) model_fair_4 = model_fair_4.to(device) model_fair_4.eval() trans = transforms.Compose([ transforms.ToPILImage(), transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) # img pth of face images face_names = [] # list within a list. Each sublist contains scores for all races. Take max for predicted race race_scores_fair = [] gender_scores_fair = [] age_scores_fair = [] race_preds_fair = [] gender_preds_fair = [] age_preds_fair = [] race_scores_fair_4 = [] race_preds_fair_4 = [] for index, img_name in enumerate(img_names): if index % 1000 == 0: print("Predicting... {}/{}".format(index, len(img_names))) face_names.append(img_name) image = dlib.load_rgb_image(img_name) image = trans(image) image = image.view(1, 3, 224, 224) # reshape image to match model dimensions (1 batch size) image = image.to(device) # fair outputs = model_fair_7(image) outputs = outputs.cpu().detach().numpy() outputs = np.squeeze(outputs) race_outputs = outputs[:7] gender_outputs = outputs[7:9] age_outputs = outputs[9:18] race_score = np.exp(race_outputs) / np.sum(np.exp(race_outputs)) gender_score = np.exp(gender_outputs) / np.sum(np.exp(gender_outputs)) age_score = np.exp(age_outputs) / np.sum(np.exp(age_outputs)) race_pred = np.argmax(race_score) gender_pred = np.argmax(gender_score) age_pred = np.argmax(age_score) race_scores_fair.append(race_score) gender_scores_fair.append(gender_score) age_scores_fair.append(age_score) race_preds_fair.append(race_pred) gender_preds_fair.append(gender_pred) age_preds_fair.append(age_pred) # fair 4 class outputs = model_fair_4(image) outputs = outputs.cpu().detach().numpy() outputs = np.squeeze(outputs) race_outputs = outputs[:4] race_score = np.exp(race_outputs) / np.sum(np.exp(race_outputs)) race_pred = np.argmax(race_score) race_scores_fair_4.append(race_score) race_preds_fair_4.append(race_pred) # !!! end prediction result = pd.DataFrame([face_names, race_preds_fair, race_preds_fair_4, gender_preds_fair, age_preds_fair, race_scores_fair, race_scores_fair_4, gender_scores_fair, age_scores_fair, ]).T result.columns = ['face_name_align', 'race_preds_fair', 'race_preds_fair_4', 'gender_preds_fair', 'age_preds_fair', 'race_scores_fair', 'race_scores_fair_4', 'gender_scores_fair', 'age_scores_fair'] # ! race with 7 labels result.loc[result['race_preds_fair'] == 0, 'race'] = 'White' result.loc[result['race_preds_fair'] == 1, 'race'] = 'Black' result.loc[result['race_preds_fair'] == 2, 'race'] = 'Latino_Hispanic' result.loc[result['race_preds_fair'] == 3, 'race'] = 'East Asian' result.loc[result['race_preds_fair'] == 4, 'race'] = 'Southeast Asian' result.loc[result['race_preds_fair'] == 5, 'race'] = 'Indian' result.loc[result['race_preds_fair'] == 6, 'race'] = 'Middle Eastern' # race fair 4 result.loc[result['race_preds_fair_4'] == 0, 'race4'] = 'White' result.loc[result['race_preds_fair_4'] == 1, 'race4'] = 'Black' result.loc[result['race_preds_fair_4'] == 2, 'race4'] = 'Asian' result.loc[result['race_preds_fair_4'] == 3, 'race4'] = 'Indian' # gender result.loc[result['gender_preds_fair'] == 0, 'gender'] = 'Male' result.loc[result['gender_preds_fair'] == 1, 'gender'] = 'Female' # age result.loc[result['age_preds_fair'] == 0, 'age'] = '0-2' result.loc[result['age_preds_fair'] == 1, 'age'] = '3-9' result.loc[result['age_preds_fair'] == 2, 'age'] = '10-19' result.loc[result['age_preds_fair'] == 3, 'age'] = '20-29' result.loc[result['age_preds_fair'] == 4, 'age'] = '30-39' result.loc[result['age_preds_fair'] == 5, 'age'] = '40-49' result.loc[result['age_preds_fair'] == 6, 'age'] = '50-59' result.loc[result['age_preds_fair'] == 7, 'age'] = '60-69' result.loc[result['age_preds_fair'] == 8, 'age'] = '70+' result[['face_name_align', 'race', 'race4', 'gender', 'age', 'race_scores_fair', 'race_scores_fair_4', 'gender_scores_fair', 'age_scores_fair']].to_csv(save_prediction_at, index=False) print("saved results at ", save_prediction_at) # ! convert scores into csv style race_scores_fair_np =
np.array(race_scores_fair)
numpy.array
""" Classes for GP models with Stan """ from argparse import Namespace import time import numpy as np import copy from bo.pp.pp_core import DiscPP import bo.pp.stan.gp_hier2 as gpstan2 import bo.pp.stan.gp_hier3 as gpstan3 import bo.pp.stan.gp_hier2_matern as gpstan2_matern from bo.pp.gp.gp_utils import kern_exp_quad, kern_matern32, \ get_cholesky_decomp, solve_upper_triangular, solve_lower_triangular, \ sample_mvn from bo.util.print_utils import suppress_stdout_stderr class StanGpPP(DiscPP): """ Hierarchical GPs implemented with Stan """ def __init__(self, data=None, modelp=None, printFlag=True): """ Constructor """ self.set_model_params(modelp) self.set_data(data) self.ndimx = self.modelp.ndimx self.set_model() super(StanGpPP,self).__init__() if printFlag: self.print_str() def set_model_params(self,modelp): if modelp is None: modelp = Namespace(ndimx=1, model_str='optfixedsig', gp_mean_transf_str='constant') if modelp.model_str=='optfixedsig': modelp.kernp = Namespace(u1=.1, u2=5., n1=10., n2=10., sigma=1e-5) modelp.infp = Namespace(niter=1000) elif modelp.model_str=='opt' or modelp.model_str=='optmatern32': modelp.kernp = Namespace(ig1=1., ig2=5., n1=10., n2=20., n3=.01, n4=.01) modelp.infp = Namespace(niter=1000) elif modelp.model_str=='samp' or modelp.model_str=='sampmatern32': modelp.kernp = Namespace(ig1=1., ig2=5., n1=10., n2=20., n3=.01, n4=.01) modelp.infp = Namespace(niter=1500, nwarmup=500) self.modelp = modelp def set_data(self, data): """ Set self.data """ if data is None: pass #TODO: handle case where there's no data self.data_init = copy.deepcopy(data) self.data = self.get_transformed_data(self.data_init, self.modelp.gp_mean_transf_str) def get_transformed_data(self, data, transf_str='linear'): """ Transform data, for non-zero-mean GP """ newdata = Namespace(X=data.X) if transf_str=='linear': mmat,_,_,_ = np.linalg.lstsq(np.concatenate([data.X, np.ones((data.X.shape[0],1))],1), data.y.flatten(), rcond=None) self.gp_mean_vec = lambda x: np.matmul(np.concatenate([x, np.ones((x.shape[0],1))],1), mmat) newdata.y = data.y - self.gp_mean_vec(data.X).reshape(-1,1) if transf_str=='constant': yconstant = data.y.mean() #yconstant = 0. self.gp_mean_vec = lambda x: np.array([yconstant for xcomp in x]) newdata.y = data.y - self.gp_mean_vec(data.X).reshape(-1,1) return newdata def set_model(self): """ Set GP regression model """ self.model = self.get_model() def get_model(self): """ Returns GPRegression model """ if self.modelp.model_str=='optfixedsig': return gpstan3.get_model(print_status=False) elif self.modelp.model_str=='opt' or self.modelp.model_str=='samp': return gpstan2.get_model(print_status=False) elif self.modelp.model_str=='optmatern32' or \ self.modelp.model_str=='sampmatern32': return gpstan2_matern.get_model(print_status=False) def infer_post_and_update_samples(self, seed=5000012, print_result=False): """ Update self.sample_list """ data_dict = self.get_stan_data_dict() with suppress_stdout_stderr(): if self.modelp.model_str=='optfixedsig' or self.modelp.model_str=='opt' \ or self.modelp.model_str=='optmatern32': stanout = self.model.optimizing(data_dict, iter=self.modelp.infp.niter, #seed=seed, as_vector=True, algorithm='Newton') seed=seed, as_vector=True, algorithm='LBFGS') elif self.modelp.model_str=='samp' or self.modelp.model_str=='sampmatern32': stanout = self.model.sampling(data_dict, iter=self.modelp.infp.niter + self.modelp.infp.nwarmup, warmup=self.modelp.infp.nwarmup, chains=1, seed=seed, refresh=1000) print('-----') self.sample_list = self.get_sample_list_from_stan_out(stanout) if print_result: self.print_inference_result() def get_stan_data_dict(self): """ Return data dict for stan sampling method """ if self.modelp.model_str=='optfixedsig': return {'u1':self.modelp.kernp.u1, 'u2':self.modelp.kernp.u2, 'n1':self.modelp.kernp.n1, 'n2':self.modelp.kernp.n2, 'sigma':self.modelp.kernp.sigma, 'D':self.ndimx, 'N':len(self.data.X), 'x':self.data.X, 'y':self.data.y.flatten()} elif self.modelp.model_str=='opt' or self.modelp.model_str=='samp': return {'ig1':self.modelp.kernp.ig1, 'ig2':self.modelp.kernp.ig2, 'n1':self.modelp.kernp.n1, 'n2':self.modelp.kernp.n2, 'n3':self.modelp.kernp.n3, 'n4':self.modelp.kernp.n4, 'D':self.ndimx, 'N':len(self.data.X), 'x':self.data.X, 'y':self.data.y.flatten()} elif self.modelp.model_str=='optmatern32' or \ self.modelp.model_str=='sampmatern32': return {'ig1':self.modelp.kernp.ig1, 'ig2':self.modelp.kernp.ig2, 'n1':self.modelp.kernp.n1, 'n2':self.modelp.kernp.n2, 'n3':self.modelp.kernp.n3, 'n4':self.modelp.kernp.n4, 'D':self.ndimx, 'N':len(self.data.X), 'x':self.data.X, 'y':self.data.y.flatten(), 'covid':2} def get_sample_list_from_stan_out(self, stanout): """ Convert stan output to sample_list """ if self.modelp.model_str=='optfixedsig': return [Namespace(ls=stanout['rho'], alpha=stanout['alpha'], sigma=self.modelp.kernp.sigma)] elif self.modelp.model_str=='opt' or self.modelp.model_str=='optmatern32': return [Namespace(ls=stanout['rho'], alpha=stanout['alpha'], sigma=stanout['sigma'])] elif self.modelp.model_str=='samp' or \ self.modelp.model_str=='sampmatern32': sdict = stanout.extract(['rho','alpha','sigma']) return [Namespace(ls=sdict['rho'][i], alpha=sdict['alpha'][i], sigma=sdict['sigma'][i]) for i in range(sdict['rho'].shape[0])] def print_inference_result(self): """ Print results of stan inference """ if self.modelp.model_str=='optfixedsig' or self.modelp.model_str=='opt' or \ self.modelp.model_str=='optmatern32': print('*ls pt est = '+str(self.sample_list[0].ls)+'.') print('*alpha pt est = '+str(self.sample_list[0].alpha)+'.') print('*sigma pt est = '+str(self.sample_list[0].sigma)+'.') elif self.modelp.model_str=='samp' or \ self.modelp.model_str=='sampmatern32': ls_arr = np.array([ns.ls for ns in self.sample_list]) alpha_arr = np.array([ns.alpha for ns in self.sample_list]) sigma_arr = np.array([ns.sigma for ns in self.sample_list]) print('*ls mean = '+str(ls_arr.mean())+'.') print('*ls std = '+str(ls_arr.std())+'.') print('*alpha mean = '+str(alpha_arr.mean())+'.') print('*alpha std = '+str(alpha_arr.std())+'.') print('*sigma mean = '+str(sigma_arr.mean())+'.') print('*sigma std = '+str(sigma_arr.std())+'.') print('-----') def sample_pp_post_pred(self, nsamp, input_list, full_cov=False, nloop=None): """ Sample from posterior predictive of PP. Inputs: input_list - list of np arrays size=(-1,) Returns: list (len input_list) of np arrays (size=(nsamp,1)).""" if self.modelp.model_str=='optfixedsig' or self.modelp.model_str=='opt' or \ self.modelp.model_str=='optmatern32': nloop = 1 sampids = [0] elif self.modelp.model_str=='samp' or \ self.modelp.model_str=='sampmatern32': if nloop is None: nloop=nsamp nsamp = int(nsamp/nloop) sampids = np.random.randint(len(self.sample_list), size=(nloop,)) ppred_list = [] for i in range(nloop): samp = self.sample_list[sampids[i]] postmu, postcov = self.gp_post(self.data.X, self.data.y, np.stack(input_list), samp.ls, samp.alpha, samp.sigma, full_cov) if full_cov: ppred_list.extend(list(sample_mvn(postmu, postcov, nsamp))) else: ppred_list.extend(list(np.random.normal(postmu.reshape(-1,), postcov.reshape(-1,), size=(nsamp, len(input_list))))) return self.get_reverse_transform(list(
np.stack(ppred_list)
numpy.stack
''' Python script to calculate statistic functions like the autocorrelation function (ACF), the second-order structure function (SF) and so on. Developed by <NAME>. 7/23/2021 8/19/2021 ''' # modules import numpy as np from scipy.fft import fft, ifft, fftn, ifftn, fftfreq, fftshift, ifftshift from scipy.fft import rfftfreq import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable #import seaborn as sns #sns.set_palette('gist_earth') # Class StatsVF class StatsVfield(): def __init__(self, data, axes, derr=[]) -> None: self.data = data self.datashape = data.shape self.ndim = len(data.shape) self.derr = derr if type(axes) == list: if len(axes) != self.ndim: print ('ERROR: Dimension of given data and axes do not match.') return elif type(axes).__name__ == 'ndarray': if len(axes.shape) != self.ndim: print ('ERROR: Dimension of given data and axes do not match.') return else: print ('ERROR: axes must be list or ndarray containing xi, or ndarray of x.') return if self.ndim == 1: self.nx = self.datashape[0] if type(axes) == list: self.x = axes[0] elif type(axes).__name__ == 'ndarray': self.x = axes self.dx = self.x[1] - self.x[0] elif self.ndim == 2: self.nx, self.ny = self.datashape self.x, self.y = axes self.dx = self.x[1] - self.x[0] self.dy = self.y[1] - self.y[0] elif self.ndim == 3: self.nx, self.ny, self.nz = self.datashape self.x, self.y, self.z = axes self.dx = self.x[1] - self.x[0] self.dy = self.y[1] - self.y[0] self.dz = self.z[1] - self.z[0] elif self.ndim > 3: print ('ERROR: Dimension must be <= 3.') return self.acf = [] self.sf = [] self.tau_x = [] def calc_sf(self, p_order=2): ''' Calculate the second-order structure function (SF). Other orders will be supported in future. Usage ----- vf = StatsVfield(data, axes) vf.calc_sf() vf.sf # call the calculated SF Parameters ---------- - p_order: Order of the structuer function. Currently not used. ''' if self.ndim == 1: if len(self.derr) == 0: self.sf = sf_1d(self.data) else: self.sf, self.sf_err = sf_1d(self.data, derr=self.derr) elif self.ndim == 2: if len(self.derr) == 0: self.sf = sf_2d(self.data) else: self.sf, self.sf_err = sf_2d(self.data, derr=self.derr) elif self.ndim == 3: print ('3D is being developed.') return self.get_tau(realfreq=True) def calc_ac(self, method='FFT', realfreq=False): ''' Calculate autocorrelation (AC). Usage ----- vf = StatsVfield(data, axes) vf.calc_ac() vf.acf # call the calculated ACF Parameters ---------- - method: Calculation ways; FFT or iterative. FFT mode uses Fast Fourier Transform, while iterative mode calculates ACF iteratively sliding an input data set. - realfreq: If True, only ACF within positive tau will be return. Option only for in one-dimensional data set. ''' if self.ndim == 1: if method == 'FFT': self.acf = ac_fft1(self.data, realfreq=realfreq) elif method == 'iterative': if len(self.derr) == 0: self.acf = ac_1d(self.data, realfreq=realfreq) else: self.acf, self.acf_err = ac_1d(self.data, derr=self.derr, realfreq=realfreq) elif self.ndim == 2: if method == 'FFT': self.acf = ac_fft2(self.data) elif method == 'iterative': if len(self.derr) == 0: self.acf = ac_2d(self.data) else: self.acf, self.acf_err = ac_2d(self.data, derr=self.derr) #if len(self.tau_x) == 0: self.get_tau(realfreq=realfreq) def calc_ps(self, method='FFT', realfreq=False): ''' Calculate power-spectrum (PS). Still under development. Usage ----- Coming soon.. ''' if self.ndim == 1: self.ps = pspec_1d(self.data, realfreq=realfreq) elif self.ndim == 2: print ('Still being developed, sorry.') #self.ps = pspec_2d(self.data, realfreq=realfreq) if realfreq: self.freq_x = rfftfreq(self.nx + self.nx - 1, self.dx) # nx -1 is for zero-padding else: self.freq_x = fftshift(fftfreq(self.nx + self.nx - 1, self.dx)) #print(len(self.ps), len(self.freq_x)) def get_tau(self, realfreq=False): ''' Get tau for ACF and SF. Parameters ---------- - realfreq: For one-dimensional data set, if True, only positive tau will be returned. ''' if self.ndim == 1: if realfreq: self.tau_x = np.arange(0, self.nx, 1)*self.dx else: self.tau_x = np.concatenate([np.arange(-(self.nx - 1), 0, 1)*self.dx, np.arange(0, self.nx, 1)*self.dx]) elif self.ndim == 2: self.tau_x = np.concatenate([np.arange(-(self.nx - 1), 0, 1)*self.dx, np.arange(0, self.nx, 1)*self.dx]) self.tau_y = np.concatenate([np.arange(-(self.ny - 1), 0, 1)*self.dy, np.arange(0, self.ny, 1)*self.dy]) elif self.ndim == 3: print ('3D is being developed.') return def collapse(self): if self.ndim == 1: print ('Data is one dimensional. No more collapse.') return elif self.ndim == 2: tau_xx, tau_yy = np.meshgrid(self.tau_x, self.tau_y) tau_rr = np.sqrt(tau_xx*tau_xx + tau_yy*tau_yy) tau_sort = np.unique(tau_rr) self.tau_col = tau_sort if len(self.acf) != 0: self.acf_col = np.array([ np.nanmean(self.acf[tau_rr == tau_i]) for tau_i in tau_sort]) self.acf_err_col = np.array([ np.sqrt(np.nansum(self.acf_err[tau_rr == tau_i]**2))/np.count_nonzero(~np.isnan(self.acf_err[tau_rr == tau_i])) for tau_i in tau_sort]) if len(self.sf) !=0: self.sf_col = np.array([ np.nanmean(self.sf[tau_rr == tau_i]) for tau_i in tau_sort]) self.sf_err_col = np.array([ np.sqrt(np.nansum(self.sf_err[tau_rr == tau_i]**2))/np.count_nonzero(~np.isnan(self.sf_err[tau_rr == tau_i])) for tau_i in tau_sort]) def get_tauzero(self): if self.ndim == 2: print ('Currently get_tauzero only supports one-dimensional data.') return if 'acf' in self.__dict__.keys(): indx = [i for i in range(len(self.acf)-1) if self.acf[i]*self.acf[i+1] <=0] if len(indx) > 0: indx_tau0 = indx[0] self.tau0 = self.tau_x[indx_tau0] else: self.tau0 = np.nan else: print ('ACF is not found. Calculate ACF first by vf.calc_ac().') return def sf_plawfit(self, pini, taurange=[], cutzero=True): ''' ''' from scipy.optimize import leastsq # fit function # power law plaw = lambda x, param: param[0]*(x**(param[1])) errfunc = lambda param, x, y: plaw(x, param) - y #res = leastsq(errfunc, [1e-3, -3], args=(freq_fft[1:], np.abs(res_spec[1:])**2.)) # linear fln = lambda x, param: param[0] + param[1]*x errfunc2 = lambda param, x, y: fln(x, param) - y # fit param if cutzero: tau_fit = self.tau_x[1:] sf_fit = self.sf[1:] else: tau_fit = self.tau_x sf_fit = self.sf # fitting range if len(taurange) == 2: where_fit = (tau_fit > taurange[0]) & (tau_fit <= taurange[-1]) sf_fit = sf_fit[where_fit] tau_fit = tau_fit[where_fit] #res = leastsq(errfunc2, [-3, -3], args=(np.log10(tau_sf[where_fit]), np.log10(sf_slice[where_fit]))) #p_out = res[0] res = leastsq(errfunc2, pini, args=(np.log10(tau_fit), np.log10(sf_fit))) pout = res[0] self.fit_results = dict({'pini': pini, 'pout': pout}) # functions for debug def gaussian2D(x, y, A, mx, my, sigx, sigy, pa=0, peak=True): ''' Generate normalized 2D Gaussian Parameters ---------- x: x value (coordinate) y: y value A: Amplitude. Not a peak value, but the integrated value. mx, my: mean values sigx, sigy: standard deviations pa: position angle [deg]. Counterclockwise is positive. ''' x, y = rotate2d(x,y,pa) mx, my = rotate2d(mx, my, pa) if peak: coeff = A else: coeff = A/(2.0*np.pi*sigx*sigy) expx = np.exp(-(x-mx)*(x-mx)/(2.0*sigx*sigx)) expy = np.exp(-(y-my)*(y-my)/(2.0*sigy*sigy)) gauss=coeff*expx*expy return gauss # main functions # autocorrelation function def ac_1d(data, derr=[], realfreq=True): ''' Calculate auto-correlation. Parameters ---------- Return ------ ''' #from itertools import product nx = len(data) d_in = data.copy() - np.nanmean(data) if realfreq: # auto-correlation d_ac = np.array([ np.nanmean(d_in[0:nx-j]*d_in[j:nx]) for j in range(nx)])/np.nanvar(data) else: # zero-padding d_in = np.concatenate([d_in, np.zeros(nx-1)]) d_shift = data.copy() - np.nanmean(data) d_shift = np.concatenate([np.zeros(nx-1), d_shift]) # replace zero with nan to skip d_in[d_in == 0.] = np.nan d_shift[d_shift == 0.] = np.nan nx_out = 2*nx - 1 d_ac = np.array([ np.nanmean(d_in[0:nx_out-i]*d_shift[i:nx_out]) for i in range(nx_out) ])/np.nanvar(data) if len(derr) == 0: return d_ac else: # error propagation if realfreq: d_in_err = derr.copy() # assuming error of mean can be ignored d_ac_err = np.array([ np.sqrt(np.nansum((d_in[0:nx-j]*d_in_err[j:nx])**2\ + (d_in[j:nx]*d_in_err[0:nx-j])**2 ))\ /np.count_nonzero(~np.isnan(d_in[0:nx-j]*d_in[j:nx])) for j in range(nx)])/np.nanvar(data) else: # zero-padding d_in_err = np.concatenate([derr, np.zeros(nx-1)]) d_shift_err = np.concatenate([np.zeros(nx-1), derr]) d_in_err[d_in_err == 0.] = np.nan d_shift_err[d_shift_err == 0.] = np.nan # error of each element: # (m1 +/- sig1)*(m2 +/- sig2) = m1*m2 +/- sqrt((m1*sig2)^2 + (m2*sig1)^2) # error of mean # sqrt(Sum(sig_i^2))/N d_ac_err = np.array([ np.sqrt(np.nansum((d_in[0:nx_out-i]*d_shift_err[i:nx_out])**2 \ + (d_in_err[0:nx_out-i]*d_shift[i:nx_out])**2))\ /np.count_nonzero(~np.isnan(d_in[0:nx_out-i]*d_shift[i:nx_out])) for i in range(nx_out) ])/np.nanvar(data) return d_ac, d_ac_err def ac_fft1(data, realfreq=False): ''' Calculate auto-correlation using FFT. ''' nx = len(data) d_in = np.r_[data - np.nanmean(data), np.zeros(nx-1)] # zero-padding d_ft = fft(d_in) # Fourier transform d_ft_cnj = np.conjugate(fft(d_in)) # complex conjugate d_ac = ifft(d_ft*d_ft_cnj).real d_ac /= np.r_[np.arange(1,nx+1,1)[::-1], np.arange(1,nx,1)] # weighting d_ac /= np.nanvar(data) if realfreq: d_ac = d_ac[:len(d_ac)//2+1] else: d_ac = fftshift(d_ac) return d_ac def ac_2d(data, derr=[]): ''' Calculate auto-correlation. Parameters ---------- Return ------ ''' nx, ny = data.shape # zero-padding for convolution d_in = data.copy() - np.nanmean(data) d_in = np.r_[d_in, np.zeros((d_in.shape[0]-1,d_in.shape[1]))] d_in = np.c_[d_in, np.zeros((d_in.shape[0],d_in.shape[1]-1))] d_shift = data.copy() - np.nanmean(data) d_shift = np.r_[np.zeros((d_shift.shape[0]-1,d_shift.shape[1])), d_shift] d_shift = np.c_[np.zeros((d_shift.shape[0],d_shift.shape[1]-1)), d_shift] # replace zero with nan to skip d_in[d_in == 0.] = np.nan d_shift[d_shift == 0.] = np.nan # autocorrelation nx_out = 2*nx - 1 ny_out = 2*ny - 1 d_ac = np.array([ [np.nanmean( d_in[:nx_out - k, :ny_out - l] * d_shift[k:nx_out, l:ny_out]) for l in range(ny_out)] for k in range(nx_out)]) d_ac /= np.nanvar(data) if len(derr) == 0: return d_ac else: # error propagation # zero-padding d_in_err = derr.copy() d_in_err = np.r_[d_in_err, np.zeros((d_in_err.shape[0]-1, d_in_err.shape[1]))] d_in_err = np.c_[d_in_err, np.zeros((d_in_err.shape[0], d_in_err.shape[1]-1))] d_shift_err = derr.copy() d_shift_err = np.r_[np.zeros((d_shift_err.shape[0]-1, d_shift_err.shape[1])), d_shift_err] d_shift_err = np.c_[np.zeros((d_shift_err.shape[0], d_shift_err.shape[1]-1)), d_shift_err] d_in_err[d_in_err == 0.] = np.nan d_shift_err[d_shift_err == 0.] = np.nan # error of each element: # (m1 +/- sig1)*(m2 +/- sig2) = m1*m2 +/- sqrt((m1*sig2)^2 + (m2*sig1)^2) # error of mean # sqrt(Sum(sig_i^2))/N d_ac_err = np.array([[ np.sqrt(np.nansum((d_in[:nx_out - k, :ny_out - l]*d_shift_err[k:nx_out, l:ny_out])**2 \ + (d_in_err[:nx_out - k, :ny_out - l]*d_shift[k:nx_out, l:ny_out])**2))\ /np.count_nonzero(~np.isnan(d_in[:nx_out - k, :ny_out - l]*d_shift[k:nx_out, l:ny_out])) for l in range(ny_out)] for k in range(nx_out)] )/np.nanvar(data) return d_ac, d_ac_err def ac_fft2(data): nx, ny = data.shape d_in = data.copy() d_in[np.isnan(d_in)] = 0. # fill nan with zero d_in -= np.nanmean(data) # zero-padding d_in = np.r_[d_in, np.zeros((d_in.shape[0]-1,d_in.shape[1]))] # zero-padding for convolution d_in = np.c_[d_in, np.zeros((d_in.shape[0],d_in.shape[1]-1))] # zero-padding for convolution d_ft = fftn(d_in) # Fourier transform d_ft_cnj = np.conjugate(d_ft) # complex conjugate d_ac = ifftn(d_ft*d_ft_cnj).real # weighting with sample number #print(d_ac.shape[0], nx) wx = np.concatenate([np.arange(1, nx+1, 1), np.arange(nx-1, 0, -1)]) wx = ifftshift(wx) wy = np.concatenate([np.arange(1, ny+1, 1), np.arange(ny-1, 0, -1)]) wy = ifftshift(wy) #wx = np.r_[np.arange(1, d_ac.shape[0]//2+2, 1)[::-1], np.arange(1,d_ac.shape[0]//2+1,1)] #wy = np.r_[np.arange(1, d_ac.shape[1]//2+2, 1)[::-1], np.arange(1,d_ac.shape[1]//2+1,1)] wxx, wyy = np.meshgrid(wx, wy) d_ac /= (wxx*wyy)*np.nanvar(data) #if realfreq: # print("Resultant ACF has only the positive axis.") # print("The output axis length is nx/2.") # d_ac = d_ac[0:d_ac.shape[1]//2+1,0:d_ac.shape[0]//2+1] #else: d_ac = ifftshift(d_ac) return d_ac # structure function def sf_1d(data, derr=[]): ''' Calculate the structure function. Parameters ---------- Return ------ ''' nx = len(data) d_sf = np.array([ np.nanmean((data[:nx-i] - data[i:nx])**2.) for i in range(nx) ]) if len(derr) == 0: return d_sf else: # error propagation d_sf_err = np.array([ np.sqrt(np.nansum((4.* (data[:nx-i] - data[i:nx])**2. * (derr[:nx-i]**2 + derr[i:nx]**2.))))\ /np.count_nonzero(~np.isnan((data[:nx-i] - data[i:nx]))) for i in range(nx) ]) return d_sf, d_sf_err def sf_2d(data, derr=[], normalize=False): ''' Calculate auto-correlation. Parameters ---------- Return ------ ''' nx, ny = data.shape # zero-padding for convolution d_in = data.copy() - np.nanmean(data) d_in = np.r_[d_in, np.zeros((d_in.shape[0]-1,d_in.shape[1]))] d_in = np.c_[d_in, np.zeros((d_in.shape[0],d_in.shape[1]-1))] d_shift = data.copy() - np.nanmean(data) d_shift = np.r_[np.zeros((d_shift.shape[0]-1,d_shift.shape[1])), d_shift] d_shift = np.c_[np.zeros((d_shift.shape[0],d_shift.shape[1]-1)), d_shift] # replace zero with nan to skip d_in[d_in == 0.] = np.nan d_shift[d_shift == 0.] = np.nan # structure function nx_out = 2*nx - 1 ny_out = 2*ny - 1 d_sf = np.array([[ np.nanmean( (d_in[:nx_out - k, :ny_out - l] - d_shift[k:nx_out, l:ny_out])**2. ) for l in range(ny_out)] for k in range(nx_out)]) if normalize: d_sf /= d_sf[0,0] if len(derr) == 0: return d_sf else: # error propagation # zero-padding d_in_err = derr.copy() d_in_err = np.r_[d_in_err, np.zeros((d_in_err.shape[0]-1, d_in_err.shape[1]))] d_in_err = np.c_[d_in_err, np.zeros((d_in_err.shape[0], d_in_err.shape[1]-1))] d_shift_err = derr.copy() d_shift_err = np.r_[np.zeros((d_shift_err.shape[0]-1, d_shift_err.shape[1])), d_shift_err] d_shift_err = np.c_[np.zeros((d_shift_err.shape[0], d_shift_err.shape[1]-1)), d_shift_err] d_in_err[d_in_err == 0.] = np.nan d_shift_err[d_shift_err == 0.] = np.nan d_sf_err = np.array([[ np.sqrt(np.nansum((4.* (d_in[:nx_out - k, :ny_out - l] - d_shift[k:nx_out, l:ny_out])**2.\ * (d_in_err[:nx_out - k, :ny_out - l]**2. + d_shift_err[k:nx_out, l:ny_out]**2.))))\ /np.count_nonzero(~np.isnan(d_in[:nx_out - k, :ny_out - l] - d_shift[k:nx_out, l:ny_out])) for l in range(ny_out)] for k in range(nx_out)]) return d_sf, d_sf_err def pspec_1d(data, realfreq=False): ''' Calculate Power-spectrum using FFT. ''' nx = len(data) d_in = np.r_[data - np.nanmean(data), np.zeros(nx-1)] # zero-padding d_ft = fft(d_in) # Fourier transform d_ft_cnj = np.conjugate(fft(d_in)) # complex conjugate d_ps = (d_ft*d_ft_cnj).real # Power spectrum if realfreq: d_ps = d_ps[:len(d_ps)//2+1] else: d_ps = fftshift(d_ps) return d_ps def binning(bin_e, coordinates, data): ''' Binning data according to given bins and a set of coordinates and data. ''' #bin_c = 0.5 .*(bin_e[2:length(bin_e)] .+ bin_e[1:length(bin_e)-1]) d_bin = np.zeros(len(bin_e)-1) for i in range(len(bin_e)-1): indx = np.where( (coordinates >= bin_e[i]) & (coordinates < bin_e[i+1])) if len(indx[0]) == 0: d_bin[i] = np.nan else: d_bin[i] = np.nanmean(data[indx]) return d_bin # for debug def main(): # --------- input -------- # test with sin curve nx, ny = [32, 32] x = np.linspace(-np.pi,np.pi,nx) y = np.linspace(-np.pi,np.pi,nx) dx = x[1] - x[0] dy = y[1] - y[0] phi = 0.*np.pi # phase shift # ------------------------ # ---------- start --------- # grid xx, yy = np.meshgrid(x, y, indexing='ij') z =
np.sin(xx+phi)
numpy.sin
"""Classes to extend **legacypipe**.""" import os import re import logging import numpy as np from legacypipe.decam import DecamImage from legacypipe.bok import BokImage from legacypipe.mosaic import MosaicImage from legacypipe.ptf import PtfImage from legacypipe.cfht import MegaPrimeImage from legacypipe.survey import LegacySurveyData from legacypipe.runs import DecamSurvey, NinetyPrimeMosaic from legacypipe.runcosmos import DecamImagePlusNoise, CosmosSurvey from astrometry.util.ttime import Time import tractor import galsim logger = logging.getLogger('obiwan.kenobi') def get_git_version(dirnm=None): """ Run 'git describe' in the current directory (or given dir) and return the result as a string. Parameters ---------- dirnm : string, default=None If not ``None``, 'cd' to the given directory before running 'git describe'. Returns ------- version : string Git version. Notes ----- Taken from https://github.com/legacysurvey/legacypipe/blob/master/py/legacypipe/survey.py """ from legacypipe.survey import get_git_version as get_legacypipe_git_version if dirnm is None: import obiwan dirnm = os.path.dirname(obiwan.__file__) return get_legacypipe_git_version(dirnm=dirnm) def get_version(): """Return :func:`get_git_version` if not empty, else :attr:`obiwan.__version__`.""" toret = get_git_version() if not toret: from .version import __version__ toret = __version__ return toret class get_randoms_id(object): """Handle identifier related to input random catalog: file id, row start, skip id.""" _keys = ['fileid','rowstart','skipid'] _default = [0]*len(_keys) _template = 'file%s_rs%s_skip%s' _kwargs_match_template = {key:'(?P<%s>.*?)' % key for key in _keys} @classmethod def keys(cls): """Return keys.""" return cls._keys @classmethod def default(cls): """Return default values.""" return cls._default @classmethod def template(cls): """Return string template.""" return cls._template @classmethod def kwargs_match_template(cls): """Return kwargs to reconstruct match template.""" return cls._kwargs_match_template @classmethod def match_template(cls): """Return match template.""" return cls._template % tuple(cls._kwargs_match_template[key] for key in cls.keys()) @classmethod def as_dict(cls, **kwargs): """Return randoms id kwargs corresponding to kwargs.""" return {key_: kwargs.get(key_,def_) for key_,def_ in zip(cls.keys(),cls.default())} @classmethod def as_list(cls, **kwargs): """Return list corresponding to randoms id kwargs.""" toret = cls.as_dict(**kwargs) return [toret[key_] for key_ in cls.keys()] def __new__(cls, **kwargs): """Return string corresponding to randoms id kwargs.""" return cls._template % tuple(cls.as_list(**kwargs)) @classmethod def match(cls,string): """Match randoms id in ``string`` and return randoms id kwargs.""" match = re.match(cls.match_template() + '$',string) return {key: int(match.group(key)) for key in cls.keys()} def find_file(base_dir=None, filetype=None, brickname=None, source='obiwan', **kwargs): """ Return file name. Shortcut to :meth:`LegacySurveySim.find_file`. base_dir : string, default=None **Obiwan** (if ``source == 'obiwan'``) or legacypipe (if ``source == 'legacypipe'``) root file directory. filetype : string, default=None Type of file to find. brickname : string, default=None Brick name. source : string, default='obiwan' If 'obiwan', return an **Obiwan** output file name, else a **legacypipe** file name. kwargs : dict Other arguments to file paths (e.g. :meth:`get_randoms_id.keys`). """ if source == 'obiwan': survey = LegacySurveySim(survey_dir=base_dir,output_dir=base_dir,kwargs_file=get_randoms_id.as_dict(**kwargs)) else: survey = LegacySurveyData(survey_dir=base_dir,output_dir=base_dir) kwargs = {key:val for key,val in kwargs.items() if key not in get_randoms_id.keys()} return survey.find_file(filetype,brick=brickname,output=False,**kwargs) def find_legacypipe_file(survey_dir, filetype, brickname=None, **kwargs): """ Return **legacypipe** file name. survey_dir : string Survey directory. filetype : string Type of file to find. brickname : string Brick name. kwargs : dict Other arguments to file paths (e.g. :meth:`get_randoms_id.keys`). """ return find_file(base_dir=survey_dir,filetype=filetype,brickname=brickname,source='legacypipe',**kwargs) def find_obiwan_file(output_dir, filetype, brickname=None, **kwargs): """ Return **Obiwan** output file name. output_dir : string **Obiwan** output directory. filetype : string Type of file to find. brickname : string Brick name. kwargs : dict Other arguments to file paths (e.g. :meth:`get_randoms_id.keys`). """ return find_file(base_dir=output_dir,filetype=filetype,brickname=brickname,source='obiwan',**kwargs) class BaseSimSurvey(object): """ Dumb class with **Obiwan** attributes for future multiple inheritance. Attributes ---------- simcat : SimCatalog See below. sim_stamp : string See below. add_sim_noise : string See below. image_eq_model : bool See below. kwargs_file : dict See below. rng : numpy.random.RandomState Random state, from :attr:`seed``. image_typemap : dict Mapping (camera,class) used by :class:`legacypipe.survey.LegacySurveyData`. survey_dir : string Directory containing input imaging data. output_dir : string Directory containing output catalogs. """ def __init__(self, *args, simcat=None, sim_stamp='tractor', add_sim_noise=False, image_eq_model=False, seed=0, kwargs_file=None, **kwargs): """ kwargs are to be passed on to :class:`legacypipe.survey.LegacySurveyData`-inherited classes, other arguments are specific to :class:`BaseSimSurvey`. Only ``survey_dir`` must be specified to obtain bricks through :meth:`get_brick_by_name`. Parameters ---------- simcat : SimCatalog, default=None Simulated source catalog for a given brick (not CCD). sim_stamp : string, default='tractor' Method to simulate objects, either 'tractor' (:class:`TractorSimStamp`) or 'galsim' (:class:`GalSimStamp`). add_sim_noise : string, default=False Add noise from the simulated source to the image. Choices: ['gaussian','poisson']. image_eq_model : bool, default=False Wherever add a simulated source, replace both image and inverse variance of the image with that of the simulated source only. seed : int, default=0 For random number generators. kwargs_file : dict, default=None Extra arguments to file paths (e.g. :meth:`get_randoms_id.keys`). kwargs : dict Arguments for :class:`legacypipe.survey.LegacySurveyData`. """ super(BaseSimSurvey, self).__init__(*args,**kwargs) self.image_typemap = { 'decam': DecamSimImage, 'decam+noise': DecamSimImagePlusNoise, 'mosaic': MosaicSimImage, 'mosaic3': MosaicSimImage, '90prime': BokSimImage, 'ptf': PtfSimImage, 'megaprime': MegaPrimeSimImage, } kwargs_file = kwargs_file or {} for key in ['simcat','sim_stamp','add_sim_noise','image_eq_model','kwargs_file']: setattr(self,key,locals()[key]) self.rng = np.random.RandomState(seed) def find_file(self, filetype, brick=None, output=False, stage=None, **kwargs): """ Return the file name of a Legacy Survey file. Parameters ---------- filetype : string Type of file to find, including: - 'randoms': input random catalogues - 'pickle': pickle files - 'checkpoint': checkpoint files - 'log' : log files - 'ps' : ps (resources time series) catalogs - 'tractor': **Tractor** catalogs - 'depth': PSF depth maps - 'galdepth': canonical galaxy depth maps - 'nexp': number-of-exposure maps. brick : string, defaut=None Brick name. output : bool, default=False Whether we are about to write this file; will use :attr:`output_dir` as the base directory rather than :attr:`survey_dir`. stage : string, default=None Stage, only used if ``filetype == 'pickle'``. kwargs : dict Arguments for :meth:`legacypipe.survey.LegacySurveyData.find_file`. Returns ------- fn : string Path to the specified file (whether or not it exists). """ if brick is None: brickname = '%(brick)s' brickpre = '%(brick).3s' else: brickname = brick brickpre = brick[:3] if stage is None: stage = '%(stage)s' if filetype == 'randoms': base_dir = os.path.join(self.output_dir,'obiwan',brickpre,brickname,get_randoms_id(**self.kwargs_file)) return os.path.join(base_dir,'randoms-%s.fits' % brickname) if filetype == 'pickle': base_dir = os.path.join(self.output_dir,'pickle',brickpre,brickname,get_randoms_id(**self.kwargs_file)) return os.path.join(base_dir,'pickle-%s-%s.pickle' % (brickname,stage)) if filetype == 'checkpoint': base_dir = os.path.join(self.output_dir,'checkpoint',brickpre,brickname,get_randoms_id(**self.kwargs_file)) return os.path.join(base_dir,'checkpoint-%s.pickle' % brickname) if filetype == 'log': base_dir = os.path.join(self.output_dir,'log',brickpre,brickname,get_randoms_id(**self.kwargs_file)) return os.path.join(base_dir,'log-%s.log' % brickname) if filetype == 'ps': sources_fn = super(BaseSimSurvey,self).find_file('ref-sources',brick=brick,output=output,**kwargs) dirname = os.path.dirname(sources_fn) basename = os.path.basename(sources_fn).replace('reference','ps') fn = os.path.join(dirname,basename) if fn == sources_fn: # make sure not to overwrite ref sources catalogs raise ValueError('ps path is the same as reference sources = %s' % sources_fn) else: fn = super(BaseSimSurvey,self).find_file(filetype,brick=brick,output=output,**kwargs) def wrap(fn): basename = os.path.basename(fn) dirname = os.path.dirname(fn) ddirname = os.path.dirname(dirname) if os.path.dirname(ddirname).endswith('/coadd'): return os.path.join(ddirname,brickname,get_randoms_id(**self.kwargs_file),basename) if ddirname.endswith('/metrics') or ddirname.endswith('/tractor') or ddirname.endswith('/tractor-i'): return os.path.join(dirname,brickname,get_randoms_id(**self.kwargs_file),basename) return fn if isinstance(fn,list): fn = list(map(wrap,fn)) elif fn is not None: fn = wrap(fn) return fn class LegacySurveySim(BaseSimSurvey,LegacySurveyData): """Extend :class:`BaseSimSurvey` with :class:`legacypipe.survey.LegacySurveyData`.""" class CosmosSim(BaseSimSurvey,CosmosSurvey): """ Extend :class:`BaseSimSurvey` with a filter for cosmos CCDs. Call with BaseSimSurvey arguments plus additional CosmosSurvey argument ``subset``. """ class DecamSim(BaseSimSurvey,DecamSurvey): """Extend :class:`BaseSimSurvey` with a filter for DECam CCDs.""" class NinetyPrimeMosaicSim(BaseSimSurvey,NinetyPrimeMosaic): """Extend :class:`BaseSimSurvey` with a filter for mosaic or 90prime CCDs.""" runs = { 'decam': DecamSim, '90prime-mosaic': NinetyPrimeMosaicSim, 'south': DecamSim, 'north': NinetyPrimeMosaicSim, 'cosmos': CosmosSim, None: LegacySurveySim, } def get_survey(name, **kwargs): """ Return an instance of the :class:`BaseSimSurvey`-inherited class given by name. See :attr:`obiwan.kenobi.runs` dictionary. """ survey_class = runs[name] if name != 'cosmos': kwargs.pop('subset',None) survey = survey_class(**kwargs) return survey class GSImage(galsim.Image): """Extend :class:`galsim.Image`, with other ``__setitem__`` options.""" def __setitem__(self, *args): """ Extend ``galsim.Image.__setitem__`` to allow: - numpy-style ``self[ndarray1] = ndarray2`` - hybdrid-style ``self[bounds] = ndarray`` """ if len(args) == 2: # allows numpy-style ``self[ndarray1] = ndarray2`` if isinstance(args[0], np.ndarray): self._array[args[0]] = args[1] return # allows settings ``self[bounds] = ndarray`` if isinstance(args[0], galsim.BoundsI) and isinstance(args[1], np.ndarray): args = (args[0],self.__class__(args[1], bounds=args[0])) super(GSImage,self).__setitem__(*args) def _Image(array, bounds, wcs): """ Function of :mod:`galsim.image` redefined to have all methods of :class:`galsim.Image` consistent within :class:`GSImage` (e.g. :meth:`galsim.Image.copy`). Equivalent to ``GSImage(array, bounds, wcs)``, but without the overhead of sanity checks, and the other options for how to provide the arguments. """ ret = GSImage.__new__(GSImage) ret.wcs = wcs ret._dtype = array.dtype.type if ret._dtype in GSImage._alias_dtypes: ret._dtype = GSImage._alias_dtypes[ret._dtype] array = array.astype(ret._dtype) ret._array = array ret._bounds = bounds return ret galsim.image._Image = _Image class BaseSimImage(object): """Dumb class that extends :meth:`legacypipe.image.get_tractor_image` for future multiple inheritance.""" def get_tractor_image(self, **kwargs): get_dq = kwargs.get('dq', True) kwargs['dq'] = True # dq required in the following if not kwargs.get('nanomaggies', True): raise NotImplementedError('In Obiwan, images are assumed to be in nanomaggies.') #print('slice',kwargs['slc']) tim = super(BaseSimImage,self).get_tractor_image(**kwargs) if tim is None: # this can be None when the edge of a CCD overlaps return tim tim_dq = GSImage(tim.dq,xmin=1,ymin=1) if not get_dq: del tim.dq if self.survey.simcat is None or not len(self.survey.simcat): # empty catalog return tim # Grab the data and inverse variance images [nanomaggies!] tim_image = GSImage(tim.getImage(),xmin=1,ymin=1) with np.errstate(divide='ignore', invalid='ignore'): tim_var = GSImage(1./tim.getInvvar(),xmin=1,ymin=1) # Also store galaxy sims and sims invvar sims_image = tim_image.copy() sims_image.fill(0.) sims_var = sims_image.copy() # Store simulated galaxy images in tim object # Loop on each object. if self.survey.sim_stamp == 'tractor': objstamp = TractorSimStamp(tim) else: objstamp = GalSimStamp(tim) any_overlap = False for obj in self.survey.simcat: t0 = Time() logger.info('%s drawing object id=%d, band=%s: flux=%.2g, sersic=%.2f, shape_r=%.2f, shape_e1=%.2f, shape_e2=%.2f', objstamp.__class__.__name__,obj.id,objstamp.band,obj.get('flux_%s' % objstamp.band),obj.sersic,obj.shape_r,obj.shape_e1,obj.shape_e2) stamp = objstamp.draw(obj) if stamp is None: logger.debug('Stamp does not overlap tim for object id=%d',obj.id) continue t0 = logger.debug('Finished drawing object id=%d: band=%s flux=%.2f addedflux=%.2f in %s', obj.id,objstamp.band,obj.get('flux_%s' % objstamp.band),stamp.array.sum(),Time()-t0) overlap = stamp.bounds & tim_image.bounds # Add source if at least 1 pix falls on the CCD if overlap.area() > 0: any_overlap = True logger.debug('Stamp overlaps tim: id=%d band=%s',obj.id,objstamp.band) stamp = stamp[overlap].array nano2e = self.get_nano2e(tim=tim,x=np.arange(overlap.xmin,overlap.xmax+1),y=np.arange(overlap.ymin,overlap.ymax+1)) if self.survey.add_sim_noise: stamp_pos = stamp.clip(0) if self.survey.add_sim_noise == 'gaussian': logger.debug('Adding Gaussian noise.') stamp += np.sqrt(stamp_pos)/np.sqrt(nano2e)*self.survey.rng.randn(*stamp.shape) else: # poisson logger.debug('Adding Poisson noise.') stamp += self.survey.rng.poisson(stamp_pos*nano2e,size=stamp.shape)/nano2e - stamp_pos # Add stamp to image tim_image[overlap] += stamp # Compute stamp variance stamp_var = np.abs(stamp)/nano2e stamp_var[tim_dq[overlap].array > 0] = 0. tim_var[overlap] += stamp_var # Extra sims_image[overlap] += stamp sims_var[overlap] += stamp_var tim.sims_image = sims_image.array tim.sims_inverr =
np.zeros_like(tim.sims_image)
numpy.zeros_like
# Copyright 2019 <NAME>. # # This file is part of Mi3-GPU. # # Mi3-GPU is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, version 3 of the License. # # Mi3-GPU is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Mi3-GPU. If not, see <http://www.gnu.org/licenses/>. # #Contact: allan.haldane _AT_ gmail.com import scipy import numpy as np from numpy.random import RandomState import pyopencl as cl import pyopencl.array as cl_array import os, time, warnings import textwrap from utils import printsome import collections cf = cl.mem_flags rng_buf_mul = 1024 ################################################################################ os.environ['PYOPENCL_COMPILER_OUTPUT'] = '0' os.environ['PYOPENCL_NO_CACHE'] = '1' os.environ["CUDA_CACHE_DISABLE"] = '1' def printPlatform(log, p, n=0): log("Platform {} '{}':".format(n, p.name)) log(" Vendor: {}".format(p.vendor)) log(" Version: {}".format(p.version)) exts = ("\n" + " "*16).join(textwrap.wrap(p.extensions, 80-16)) log(" Extensions: {}".format(exts)) def printDevice(log, d): log(" Device '{}':".format(d.name)) log(" Vendor: {}".format(d.vendor)) log(" Version: {}".format(d.version)) log(" Driver Version: {}".format(d.driver_version)) log(" Max Clock Frequency: {}".format(d.max_clock_frequency)) log(" Max Compute Units: {}".format(d.max_compute_units)) log(" Max Work Group Size: {}".format(d.max_work_group_size)) log(" Global Mem Size: {}".format(d.global_mem_size)) log(" Global Mem Cache Size: {}".format(d.global_mem_cache_size)) log(" Local Mem Size: {}".format(d.local_mem_size)) log(" Max Constant Buffer Size: {}".format(d.max_constant_buffer_size)) def printGPUs(log): for n,p in enumerate(cl.get_platforms()): printPlatform(log, p, n) for d in p.get_devices(): printDevice(log, d) log("") ################################################################################ # The GPU performs two main types of computation: MCMC runs, and perturbed # coupling updates. MCMCGPU methods are asynchronous on the host. # Functions that return data do not return the data directly, but return a # FutureBuf object. The data may be obtained by FutureBuf.read(), which is # blocking. # The gpu has two sequence buffers: A "small" buffer for MCMC gpu generation, # and an optional "large buffer" for combined sequence sets. # The opencl queue is created as an out-of-order queue, and so kernel order is # managed by the MCMCGPU class itself. By default, it makes all opencl # commands wait until the last command is finished, but all methods also # have a wait_for argument to override this. `None` means wait until the last # command is done, or it can be a list of opencl events to wait for. Set it # to the empty list [] to run immediately. # Note that in openCL implementations there is generally a limit on the number # of queued commands allowed in a context. If you reach the limit, all queues # will block until a kernel finishes. So we must be careful not to fill up a # single queue before others, so do `for i in range(100): for g in gpus: # g.command()` instead of `for g in gpus: for i in range(100): g.command()` as # the latter may fill the first gpu's queue, blocking the rest. # See CL_DEVICE_QUEUE_ON_DEVICE_MAX_SIZE and CL_DEVICE_MAX_ON_DEVICE_EVENTS # Note that on some systems there is a watchdog timer that kills any kernel # that runs for too long. You will get a CL_OUT_OF_RESOURCES error if this # happens, which occurs when the *following* kernel is run. class FutureBuf: def __init__(self, buffer, event, postprocess=None): self.buffer = buffer self.event = event self.postfunc = postprocess self.shape = buffer.shape self.dtype = buffer.dtype def read(self): self.event.wait() if self.postfunc != None: return self.postfunc(self.buffer) return self.buffer class MCMCGPU: def __init__(self, gpuinfo, L, q, nseq, wgsize, outdir, vsize, seed, profile=False): if nseq%512 != 0: raise ValueError("nwalkers/ngpus must be a multiple of 512") # this guarantees that all kernel access to seqmem is coalesced and # simplifies the histogram kernels self.L = L self.q = q self.nPairs = L*(L-1)//2 self.events = collections.deque() self.SWORDS = ((L-1)//4+1) #num words needed to store a sequence self.SBYTES = (4*self.SWORDS) #num bytes needed to store a sequence self.nseq = {'main': nseq} self.nwalkers = nseq device, gpunum, ctx, prg = gpuinfo self.gpunum = gpunum self.ctx = ctx self.prg = prg self.device = device self.wgsize = wgsize self.nhist, self.histws = histogram_heuristic(q) # sanity checks (should be checked elsewhere before this) if nseq%wgsize != 0: raise Exception("nseq per GPU must be a multiple of wgsize") if wgsize < q*q: raise Exception("wgsize cannot be less than q*q") self.logfn = os.path.join(outdir, 'gpu-{}.log'.format(gpunum)) with open(self.logfn, "wt") as f: printDevice(f.write, device) self.mcmcprg = prg.metropolis self.rngstate = RandomState(seed) #setup opencl for this device self.log("Getting CL Queue") qprop = cl.command_queue_properties.OUT_OF_ORDER_EXEC_MODE_ENABLE self.profile = profile if profile: qprop |= cl.command_queue_properties.PROFILING_ENABLE self.queue = cl.CommandQueue(ctx, device=device, properties=qprop) self.log("\nOpenCL Device Compilation Log:") self.log(self.prg.get_build_info(device, cl.program_build_info.LOG)) maxwgs = self.mcmcprg.get_work_group_info( cl.kernel_work_group_info.WORK_GROUP_SIZE, device) self.log("Max MCMC WGSIZE: {}".format(maxwgs)) self.initted = [] self.bufs = {} self.buf_spec = {} self.seqbufs = {} self.Ebufs = {} self.largebufs = [] # setup essential buffers nPairs, SWORDS = self.nPairs, self.SWORDS j_pad = 3*self.wgsize self._setupBuffer( 'J', '<f4', (nPairs, q*q), pad=j_pad) self._setupBuffer('Junpacked', '<f4', (L*L, q*q), pad=j_pad) self._setupBuffer( 'bi', '<f4', (nPairs, q*q)), self._setupBuffer( 'bicount', '<u4', (nPairs, q*q)), self._setupBuffer( 'seq main', '<u4', (SWORDS, self.nseq['main'])), self._setupBuffer('seqL main', '<u4', (L, self.nseq['main']//4)), self._setupBuffer( 'E main', '<f4', (self.nseq['main'],)), self.unpackedJ = False #use to keep track of whether J is unpacked self.repackedSeqT = {'main': False} self.lastevt = None def log(self, msg): #logs are rare, so just open the file every time with open(self.logfn, "at") as f: print("{: 10.3f}".format(time.process_time()), msg, file=f) def logevt(self, name, evt, nbytes=None): self.lastevt = evt # don't save events if not profiling. # note that saved events use up memory - free it using logprofile if self.profile: if len(self.events)%1000 == 0 and len(self.events) != 0: self.log("Warning: Over {} profiling events are not flushed " "(using up memory)".format(len(self.events))) if nbytes: self.events.append((evt, name, nbytes)) else: self.events.append((evt, name)) return evt def _evtlist(self, evts): if evts is None: return [] elif isinstance(evts, cl.Event): return [evts] else: return evts def _waitevt(self, evts=None): if evts is None and self.lastevt is not None: return [self.lastevt] return self._evtlist(evts) def logProfile(self): if not self.profile: return def isComplete(e): return (e.command_execution_status == cl.command_execution_status.COMPLETE) with open(self.logfn, "at") as f: while len(self.events) != 0 and isComplete(self.events[0][0]): dat = self.events.popleft() evt, name, size = dat[0],dat[1],(dat[2] if len(dat)==3 else '') print("EVT", name, evt.profile.start, evt.profile.end, size, file=f) def _setupBuffer(self, bufname, buftype, bufshape, pad=None, flags=cf.READ_WRITE): flags = flags | cf.ALLOC_HOST_PTR nelem = int(np.product(bufshape)) if pad: nelem = nelem + pad size = np.dtype(buftype).itemsize * nelem buf = cl.Buffer(self.ctx, flags, size=size) self.bufs[bufname] = buf self.buf_spec[bufname] = (buftype, bufshape, flags) # add it to convenience dicts if applicable names = bufname.split() if len(names) > 1: bufs = {'seq': self.seqbufs, 'E': self.Ebufs} if names[0] in bufs: bufs[names[0]][names[1]] = buf def require(self, *reqs): for r in reqs: if r not in self.initted: raise Exception("{} not initialized".format(r)) def _initcomponent(self, cmp): if cmp in self.initted: raise Exception("Already initialized {}".format(cmp)) self.initted.append(cmp) def initMCMC(self, nsteps, rng_offset, rng_span): self._initcomponent('MCMC') # rngstates should be size of mwc64xvec2_state_t self.nsteps = nsteps self._setupBuffer('rngstates', '<2u8', (self.nseq['main'],)), self._setupBuffer( 'Bs', '<f4', (self.nseq['main'],)), self._setupBuffer( 'randpos', '<u4', (self.nsteps*rng_buf_mul,)) self.randpos_offset = rng_buf_mul*self.nsteps self.setBuf('Bs', np.ones(self.nseq['main'], dtype='<f4')) self._initMCMC_RNG(rng_offset, rng_span) self.nsteps = int(nsteps) def initLargeBufs(self, nseq_large): self._initcomponent('Large') self.nseq['large'] = nseq_large self._setupBuffer( 'seq large', '<u4', (self.SWORDS, nseq_large)) self._setupBuffer( 'seqL large', '<u4', (self.L, nseq_large//4)), self._setupBuffer( 'E large', '<f4', (nseq_large,)) self._setupBuffer('weights large', '<f4', (nseq_large,)) self.largebufs.extend(['seq large', 'seqL large', 'E large', 'weights large']) self.nstoredseqs = 0 # it is important to zero out the large seq buffer, because # if it is partially full we may need to compute energy # over the padding sequences at the end to get a full wg. buf = self.bufs['seq large'] self.fillBuf('seq large', 0) self.repackedSeqT['large'] = False def initSubseq(self): self.require('Large') self._initcomponent('Subseq') self._setupBuffer('markpos', '<u1', (self.SBYTES,), flags=cf.READ_ONLY) self.markPos(np.zeros(self.SBYTES, '<u1')) ## we may want to select replicas at a particular temperature #def initMarkSeq(self): # self._initcomponent('Markseq') # self._setupBuffer( 'markseqs', '<i4', (self.nseq['main'],)) # self.setBuf('markseqs', np.arange(self.nseq['main'], dtype='<i4')) # self.nmarks = self.nseq['main'] def initJstep(self): self._initcomponent('Jstep') nPairs, q = self.nPairs, self.q self._setupBuffer( 'dJ', '<f4', (nPairs, q*q)) self._setupBuffer('bi target', '<f4', (nPairs, q*q)) self._setupBuffer( 'Creg', '<f4', (nPairs, q*q)) self._setupBuffer( 'Xlambdas', '<f4', (nPairs,)) self._setupBuffer( 'neff', '<f4', (1,)) self._setupBuffer( 'weights', '<f4', (self.nseq['main'],)) def packSeqs_4(self, seqs): """ Converts seqs to 4-byte uint format on CPU, padded to 32bits, assumes little endian. Each row's bytes are a0 a1 a2 a3 b0 b1 b2 b3 c0 c1 c2 c3 ... for sequences a, b, c, so each uint32 correaponds to 4 seq bytes. """ if seqs.dtype != np.dtype('<u1'): raise Exception("seqs must have u1 dtype") bseqs = np.zeros((seqs.shape[0], self.SBYTES), dtype='<u1', order='C') bseqs[:,:self.L] = seqs mem = np.zeros((self.SWORDS, seqs.shape[0]), dtype='<u4', order='C') for i in range(self.SWORDS): mem[i,:] = bseqs.view(np.uint32)[:,i] return mem def unpackSeqs_4(self, mem): """ reverses packSeqs_4 (on CPU)""" bseqs = np.zeros((mem.shape[1], self.SBYTES), dtype='<u1', order='C') for i in range(self.SWORDS): #undo memory rearrangement bseqs.view(np.uint32)[:,i] = mem[i,:] return bseqs[:,:self.L] def repackseqs_T(self, bufname, wait_for=None): """ On GPU, copies the seq buffer (in 4-byte format) to a seqL buffer in "transpose" format, which is just the usual CPU sequence buffer but transposed. """ self.log("repackseqs_T") nseq = self.nseq[bufname] inseq_dev = self.bufs['seq ' + bufname] outseq_dev = self.bufs['seqL ' + bufname] self.repackedSeqT[bufname] = True return self.logevt('repackseqs_T', self.prg.unpackseqs1(self.queue, (self.SWORDS*256,), (256,), inseq_dev, np.uint32(nseq), outseq_dev, np.uint32(nseq//4), wait_for=self._waitevt(wait_for))) def unpackJ(self, wait_for=None): """convert J from format where every row is a unique ij pair (L choose 2 rows) to format with every pair, all orders (L^2 rows).""" # quit if J already loaded/unpacked if self.unpackedJ: return wait_for self.log("unpackJ") q, nPairs = self.q, self.nPairs self.unpackedJ = True return self.logevt('unpackJ', self.prg.unpackfV(self.queue, (nPairs*q*q,), (q*q,), self.bufs['J'], self.bufs['Junpacked'], wait_for=self._waitevt(wait_for))) def _initMCMC_RNG(self, rng_offset, rng_span, wait_for=None): self.require('MCMC') self.log("initMCMC_RNG") # Idea is we want to divide the rng stream into non-overlapping chunks # for each walker. This GPU was given a span of rng_span, so divide it # by number of walkers (times 2 since each rng call advances by 2 for # vec2). # Read mwc64 docs for more info. mwc64 doc says each walker's stream # offset is (rng_offset + walker_span*(get_global_id(0)*vectorSize + # vecind)) where vectorSize is 2. Note that rng_offset is not # multiplied by 2! rng_offset = np.uint64(rng_offset) nwalkers = np.uint64(self.nseq['main']) v2 = np.uint64(2) # walker span is the # of rng calls assigned per walker walker_span = np.uint64(rng_span)//(v2*nwalkers) # factor of 2 for vec2 self.log("RNG offset: {} walker-span: {} nwalkers {}".format( rng_offset, walker_span, nwalkers)) # Warning: It is very important that the walker rng stream offsets # across gpus are all distinct, or else some walkers will be highly # correlated. Touch this code with care. assert(walker_span*v2*nwalkers <= rng_span) wgsize = self.wgsize while wgsize > nwalkers: wgsize = wgsize//2 return self.logevt('initMCMC_RNG', self.prg.initRNG2(self.queue, (nwalkers,), (wgsize,), self.bufs['rngstates'], np.uint64(rng_offset), walker_span, wait_for=self._waitevt(wait_for))) def updateRngPos(self, wait_evt=None): self.randpos_offset = self.randpos_offset + self.nsteps rng_evt = None bufsize = rng_buf_mul*self.nsteps if self.randpos_offset >= bufsize: # all gpus use same position-rng series. This way there is no # difference between running on one gpu vs splitting on multiple rng = self.rngstate.randint(0, self.L, size=bufsize).astype('u4') rng_evt = self.setBuf('randpos', rng, wait_for=wait_evt) self.randpos_offset = 0 return np.uint32(self.randpos_offset), rng_evt def runMCMC(self, wait_for=None): """Performs a single round of mcmc sampling (nsteps MC steps)""" t1 = time.time() self.require('MCMC') self.log("runMCMC") wait_evt = self._waitevt(wait_for) nseq = self.nseq['main'] nsteps = self.nsteps wait_unpack = self.unpackJ(wait_for=wait_evt) rngoffset, wait_rng = self.updateRngPos(wait_evt) wait = self._evtlist(wait_unpack) + self._evtlist(wait_rng) self.repackedSeqT['main'] = False return self.logevt('mcmc', self.mcmcprg(self.queue, (nseq,), (self.wgsize,), self.bufs['Junpacked'], self.bufs['rngstates'], rngoffset, self.bufs['randpos'], np.uint32(nsteps), self.Ebufs['main'], self.bufs['Bs'], self.seqbufs['main'], wait_for=wait)) def measureFPerror(self, log, nloops=3): log("Measuring FP Error") for n in range(nloops): self.runMCMC() e1 = self.getBuf('E main').read() self.calcEnergies('main') e2 = self.getBuf('E main').read() log("Run", n, "Error:", np.mean((e1-e2)**2)) log(' Final E MC', printsome(e1), '...') log(" Final E rc", printsome(e2), '...') seqs = self.getBuf('seq main').read() J = self.getBuf('J').read() e3 = getEnergies(seqs, J) log(" Exact E", e3[:5]) log(" Error:", np.mean([float((a-b)**2) for a,b in zip(e1, e3)])) def calcBicounts(self, seqbufname, wait_for=None): self.log("calcBicounts " + seqbufname) L, q, nPairs, nhist = self.L, self.q, self.nPairs, self.nhist if seqbufname == 'main': nseq = self.nseq[seqbufname] buflen = nseq else: nseq = self.nstoredseqs buflen = self.nseq[seqbufname] seq_dev = self.seqbufs[seqbufname] localhist = cl.LocalMemory(nhist*q*q*np.dtype(np.uint32).itemsize) return self.logevt('calcBicounts', self.prg.countBivariate(self.queue, (nPairs*nhist,), (nhist,), self.bufs['bicount'], np.uint32(nseq), seq_dev, np.uint32(buflen), localhist, wait_for=self._waitevt(wait_for))) def bicounts_to_bimarg(self, seqbufname='main', wait_for=None): self.log("bicounts_to_bimarg ") q, nPairs = self.q, self.nPairs if seqbufname == 'main': nseq = self.nseq['main'] else: nseq = self.nstoredseqs nworkunits = self.wgsize*((nPairs*q*q-1)//self.wgsize+1) return self.logevt('bicounts_to_bimarg', self.prg.bicounts_to_bimarg(self.queue, (nworkunits,), (self.wgsize,), self.bufs['bicount'], self.bufs['bi'], np.uint32(nseq), wait_for=self._waitevt(wait_for))) def calcEnergies(self, seqbufname, Jbufname='J', wait_for=None): self.log("calcEnergies " + seqbufname) energies_dev = self.Ebufs[seqbufname] seq_dev = self.seqbufs[seqbufname] buflen = self.nseq[seqbufname] if seqbufname == 'main': nseq = self.nseq[seqbufname] else: nseq = self.nstoredseqs # pad to be a multiple of wgsize (uses dummy seqs at end) nseq = nseq + ((self.wgsize - nseq) % self.wgsize) return self.logevt('getEnergies', self.prg.getEnergies(self.queue, (nseq,), (self.wgsize,), self.bufs[Jbufname], seq_dev, np.uint32(buflen), energies_dev, wait_for=self._waitevt(wait_for))) def weightedMarg(self, seqbufname='main', wait_for=None): self.require('Jstep') self.log("weightedMarg") q, L, nPairs = self.q, self.L, self.nPairs nhist, histws = self.nhist, self.histws if seqbufname == 'main': nseq = self.nseq[seqbufname] buflen = nseq//4 weights_dev = self.bufs['weights'] else: nseq = self.nstoredseqs buflen = self.nseq[seqbufname]//4 weights_dev = self.bufs['weights large'] # pad to be a multiple of 512 (uses dummy seqs at end) nseq = nseq + ((512 - nseq) % 512) # XXX find correct padding here if not self.repackedSeqT[seqbufname]: wait_for = self.repackseqs_T(seqbufname, wait_for=self._waitevt(wait_for)) seq_dev = self.bufs['seqL ' + seqbufname] return self.logevt('weightedMarg', self.prg.weightedMarg(self.queue, (nPairs*histws,), (histws,), self.bufs['bi'], weights_dev, np.uint32(nseq), seq_dev, np.uint32(buflen), wait_for=self._waitevt(wait_for))) def renormalize_bimarg(self, wait_for=None): self.log("renormalize_bimarg") q, nPairs = self.q, self.nPairs return self.logevt('renormalize_bimarg', self.prg.renormalize_bimarg(self.queue, (nPairs*q*q,), (q*q,), self.bufs['bi'], wait_for=self._waitevt(wait_for))) def addBiBuffer(self, bufname, otherbuf, wait_for=None): # used for combining results from different gpus, where otherbuf is a # buffer "belonging" to another gpu self.log("addbuf") selfbuf = self.bufs[bufname] if selfbuf.size != otherbuf.size: raise Exception('Tried to add bufs of different sizes') q, nPairs = self.q, self.nPairs nworkunits = self.wgsize*((nPairs*q*q-1)//self.wgsize+1) return self.logevt('addbuf', self.prg.addBiBufs(self.queue, (nworkunits,), (self.wgsize,), selfbuf, otherbuf, wait_for=self._waitevt(wait_for))) def updateJ(self, gamma, pc, Jbuf='dJ', wait_for=None): self.require('Jstep') self.log("updateJ") q, nPairs = self.q, self.nPairs #find next highest multiple of wgsize, for num work units nworkunits = self.wgsize*((nPairs*q*q-1)//self.wgsize+1) bibuf = self.bufs['bi'] Jin = Jout = self.bufs[Jbuf] self.unpackedJ = False return self.logevt('updateJ', self.prg.updatedJ(self.queue, (nworkunits,), (self.wgsize,), self.bufs['bi target'], bibuf, np.float32(gamma), np.float32(pc), Jin, Jout, wait_for=self._waitevt(wait_for))) def reg_l1z(self, gamma, pc, lJ, wait_for=None): self.require('Jstep') self.log("reg_l1z") q, nPairs = self.q, self.nPairs bibuf = self.bufs['bi'] self.unpackedJ = None return self.logevt('reg_l1z', self.prg.reg_l1z(self.queue, (nPairs*q*q,), (q*q,), bibuf, np.float32(gamma),
np.float32(pc)
numpy.float32
""" ----------------------------------------------------------------------- Harmoni: a Novel Method for Eliminating Spurious Neuronal Interactions due to the Harmonic Components in Neuronal Data <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME> https://doi.org/10.1101/2021.10.06.463319 ----------------------------------------------------------------------- script for: ** proof of concept example ** ----------------------------------------------------------------------- (c) <NAME> (<EMAIL>) @ Neurolgy Dept, MPI CBS, 2021 https://github.com/minajamshidi (c) please cite the above paper in case of using this code for your research License: MIT License ----------------------------------------------------------------------- last modified: 20210930 by \Mina ----------------------------------------------------------------------- ----------------------------------------------------------------------- """ import os.path as op from matplotlib import pyplot as plt import numpy as np from numpy import pi import mne from mne.minimum_norm import read_inverse_operator from tools_connectivity_plot import * from tools_connectivity import * from tools_meeg import * from tools_source_space import * from tools_general import * from harmoni.harmonitools import harmonic_removal # ----------------------------------------- # paths # ----------------------------------------- # subjects_dir = '/NOBACKUP/mne_data/' subjects_dir = '/data/pt_02076/mne_data/MNE-fsaverage-data/' subject = 'fsaverage' _oct = '6' fwd_dir = op.join(subjects_dir, subject, 'bem', subject + '-oct' + _oct + '-64ch-fwd.fif') inv_op_dir = op.join(subjects_dir, subject, 'bem', subject + '-oct' + _oct + '-64ch-inv.fif') simulated_data_dir = '../harmoni-supplementary-data/simulated_data/proof_of_concept_data' raw_dir = '../harmoni-supplementary-data/simulated_data/proofconcept_simulated_sesorspace-raw.fif' # ----------------------------------------- # set parameters # ----------------------------------------- iir_params = dict(order=2, ftype='butter') # Head ---------------------- parcellation = dict(name='aparc', abb='DK') labels = mne.read_labels_from_annot(subject, subjects_dir=subjects_dir, parc=parcellation['name']) labels_med = [] # labels[-2:] labels = labels[:-1] labels_sorted, idx_sorted = rearrange_labels(labels, order='anterior_posterior') # rearrange labels n_parc = len(labels) fwd = mne.read_forward_solution(fwd_dir) fwd_fixed = mne.convert_forward_solution(fwd, surf_ori=True, force_fixed=True, use_cps=True) leadfield = fwd_fixed['sol']['data'] src = fwd_fixed['src'] # inv operator----------------------------------------- inv_method = 'eLORETA' inv_op = read_inverse_operator(inv_op_dir) # ---------------------------------------- # load simulated data # ----------------------------------------- simulated_raw = mne.io.read_raw_fif(raw_dir) fs = simulated_raw.info['sfreq'] dict_simulated_data = load_pickle(simulated_data_dir) conn_alpha_orig1 = dict_simulated_data['conn_alpha_orig1'] conn_beta_orig1 = dict_simulated_data['conn_beta_orig1'] conn_cfc_orig1 = dict_simulated_data['conn_cfc_orig1'] # -------------------------------------------------------------------- # Compute the source-space data from simulated raw # -------------------------------------------------------------------- # alpha sources -------- raw_alpha = simulated_raw.copy() raw_alpha.load_data() raw_alpha.filter(l_freq=8, h_freq=12, method='iir', iir_params=iir_params) raw_alpha.set_eeg_reference(projection=True) pow_alpha_sensor = np.mean(raw_alpha.get_data()**2, axis=1) plot_topomap_(pow_alpha_sensor, simulated_raw.info, title='power of alpha band') stc_alpha_raw = mne.minimum_norm.apply_inverse_raw(raw_alpha, inverse_operator=inv_op, lambda2=0.05, method=inv_method, pick_ori='normal') parcel_series_alpha = extract_parcel_time_series(stc_alpha_raw.data, labels, src, mode='svd', n_select=1) # beta sources -------- raw_beta = simulated_raw.copy() raw_beta.load_data() raw_beta.filter(l_freq=16, h_freq=24, method='iir', iir_params=iir_params) raw_beta.set_eeg_reference(projection=True) pow_beta_sensor = np.mean(raw_beta.get_data()**2, axis=1) plot_topomap_(pow_beta_sensor, simulated_raw.info, title='power of beta band') stc_beta_raw = mne.minimum_norm.apply_inverse_raw(raw_beta, inverse_operator=inv_op, lambda2=0.1, method=inv_method, pick_ori='normal') parcel_series_beta = extract_parcel_time_series(stc_beta_raw.data, labels, src, mode='svd', n_select=1) # -------------------------------------------------------------------- # Harmoni --> minimization stage: regress out alpha from beta in each ROI # -------------------------------------------------------------------- parcel_series_beta_corr = harmonic_removal(parcel_series_alpha, parcel_series_beta, int(fs), n=2, mp=True) # -------------------------------------------------------------------- # regress out alpha from beta pair-wise # -------------------------------------------------------------------- # Compute Connectivity ------------------------ # cross-frequency connectivity .................. conn_mat_cfc_orig = compute_conn_2D_parallel(parcel_series_alpha, parcel_series_beta, 1, 2, fs, 'abs') conn_mat_beta_orig = compute_conn_2D_parallel(parcel_series_beta, parcel_series_beta, 1, 1, fs, 'imag') conn_mat_alpha_orig = compute_conn_2D_parallel(parcel_series_alpha, parcel_series_alpha, 1, 1, fs, 'imag') # within-frequency connectivity .................. conn_mat_beta_corr = \ compute_conn_2D_parallel(parcel_series_beta_corr, parcel_series_beta_corr, 1, 1, fs, 'imag') conn_mat_cfc_corr = compute_conn_2D_parallel(parcel_series_alpha, parcel_series_beta_corr, 1, 2, fs, 'abs') # -------------------------------------------------------------------- # rearrange label # -------------------------------------------------------------------- beta_orig1 = np.abs(conn_beta_orig1[idx_sorted, :][:, idx_sorted]) alpha_orig1 = np.abs(conn_alpha_orig1[idx_sorted, :][:, idx_sorted]) cfc_orig1 = np.abs(conn_cfc_orig1[idx_sorted, :][:, idx_sorted]) beta_orig = np.abs(conn_mat_beta_orig[idx_sorted, :][:, idx_sorted]) alpha_orig = np.abs(conn_mat_alpha_orig[idx_sorted, :][:, idx_sorted]) cfc_orig = conn_mat_cfc_orig[idx_sorted, :][:, idx_sorted] cfc_corr = conn_mat_cfc_corr[idx_sorted, :][:, idx_sorted] beta_corr =
np.abs(conn_mat_beta_corr[idx_sorted, :][:, idx_sorted])
numpy.abs
from typing import Any import numpy as np from scipy import linalg from scipy.stats import chi2 from tqdm import tqdm from changedet.algos.base import MetaAlgo from changedet.algos.catalog import AlgoCatalog from changedet.utils import InitialChangeMask, contrast_stretch, np_weight_stats @AlgoCatalog.register("irmad") class IRMAD(MetaAlgo): """Iteratively Reweighted Multivariate Alteration Detection The Multivariate Alteration Detection (MAD) algorithm aims to identify a linear transformation that minimises the correlation between the canonical components of the two images thereby maximising change information. Iteratively Reweighted (IR)-MAD is an improvement on the MAD approach where observations are iteratively reweighted in order to establish a better no change background which allows better separability between change and no-change. Accepted flags -------------- - niter = Number of iterations IRMAD should be run - sig = Change map significance level - icm = Initial change mask References ---------- - <NAME>. (2007). The regularized iteratively reweighted MAD method for change detection in multi- and hyperspectral data. IEEE Transactions on Image Processing, 16(2):463–478. Internet http://www2.compute.dtu.dk/pubdb/pubs/4695-full.html. """ @classmethod def run(cls, im1: np.ndarray, im2: np.ndarray, **flags: Any) -> np.ndarray: """Run IRMAD algorithm. Args: im1 (np.ndarray): Image 1 array im2 (np.ndarray): Image 2 array flags (dict): Flags for the algorithm Run `changedet --algo irmad algo_obj --help` for information on flags. """ niter = flags.get("niter", 10) sig = flags.get("sig", 0.0001) apply_icm = flags.get("icm", False) if apply_icm: raise NotImplementedError( "Initial Change Mask is under construction and not ready for use" ) logger = flags["logger"] logger.info( "Running IRMAD algorithm for %d iteration(s) with significance level %f", niter, sig, ) ch1, r1, c1 = im1.shape m = r1 * c1 N = ch1 im1r = im1.reshape(N, m).T im2r = im2.reshape(N, m).T # Calculate ICM if apply_icm: icm = InitialChangeMask() change_mask = icm.prepare(im1, im2, plot=True) if change_mask is None: logger.warn("Invalid threshold. Skipping ICM") change_mask =
np.ones((m, 1))
numpy.ones
# -*- coding: utf-8 -*- ''' @Time : 2020/05/06 21:09 @Author : Tianxiaomo @File : dataset.py @Noice : @Modificattion : @Author : @Time : @Detail : ''' import os import random import sys import cv2 import numpy as np import torch from torch.utils.data.dataset import Dataset def rand_uniform_strong(min, max): if min > max: swap = min min = max max = swap return random.random() * (max - min) + min def rand_scale(s): scale = rand_uniform_strong(1, s) if random.randint(0, 1) % 2: return scale return 1. / scale def rand_precalc_random(min, max, random_part): if max < min: swap = min min = max max = swap return (random_part * (max - min)) + min def fill_truth_detection(bboxes, num_boxes, classes, flip, dx, dy, sx, sy, net_w, net_h): if bboxes.shape[0] == 0: return bboxes, 10000 np.random.shuffle(bboxes) bboxes[:, 0] -= dx bboxes[:, 2] -= dx bboxes[:, 1] -= dy bboxes[:, 3] -= dy bboxes[:, 0] = np.clip(bboxes[:, 0], 0, sx) bboxes[:, 2] = np.clip(bboxes[:, 2], 0, sx) bboxes[:, 1] = np.clip(bboxes[:, 1], 0, sy) bboxes[:, 3] = np.clip(bboxes[:, 3], 0, sy) out_box = list(np.where(((bboxes[:, 1] == sy) & (bboxes[:, 3] == sy)) | ((bboxes[:, 0] == sx) & (bboxes[:, 2] == sx)) | ((bboxes[:, 1] == 0) & (bboxes[:, 3] == 0)) | ((bboxes[:, 0] == 0) & (bboxes[:, 2] == 0)))[0]) list_box = list(range(bboxes.shape[0])) for i in out_box: list_box.remove(i) bboxes = bboxes[list_box] if bboxes.shape[0] == 0: return bboxes, 10000 bboxes = bboxes[np.where((bboxes[:, 4] < classes) & (bboxes[:, 4] >= 0))[0]] if bboxes.shape[0] > num_boxes: bboxes = bboxes[:num_boxes] min_w_h = np.array([bboxes[:, 2] - bboxes[:, 0], bboxes[:, 3] - bboxes[:, 1]]).min() bboxes[:, 0] *= (net_w / sx) bboxes[:, 2] *= (net_w / sx) bboxes[:, 1] *= (net_h / sy) bboxes[:, 3] *= (net_h / sy) if flip: temp = net_w - bboxes[:, 0] bboxes[:, 0] = net_w - bboxes[:, 2] bboxes[:, 2] = temp return bboxes, min_w_h def rect_intersection(a, b): minx = max(a[0], b[0]) miny = max(a[1], b[1]) maxx = min(a[2], b[2]) maxy = min(a[3], b[3]) return [minx, miny, maxx, maxy] def image_data_augmentation(mat, w, h, pleft, ptop, swidth, sheight, flip, dhue, dsat, dexp, gaussian_noise, blur, truth): try: img = mat oh, ow, _ = img.shape pleft, ptop, swidth, sheight = int(pleft), int(ptop), int(swidth), int(sheight) # crop src_rect = [pleft, ptop, swidth + pleft, sheight + ptop] # x1,y1,x2,y2 img_rect = [0, 0, ow, oh] new_src_rect = rect_intersection(src_rect, img_rect) # 交集 dst_rect = [max(0, -pleft), max(0, -ptop), max(0, -pleft) + new_src_rect[2] - new_src_rect[0], max(0, -ptop) + new_src_rect[3] - new_src_rect[1]] # cv2.Mat sized if (src_rect[0] == 0 and src_rect[1] == 0 and src_rect[2] == img.shape[0] and src_rect[3] == img.shape[1]): sized = cv2.resize(img, (w, h), cv2.INTER_LINEAR) else: cropped = np.zeros([sheight, swidth, 3]) cropped[:, :, ] = np.mean(img, axis=(0, 1)) cropped[dst_rect[1]:dst_rect[3], dst_rect[0]:dst_rect[2]] = \ img[new_src_rect[1]:new_src_rect[3], new_src_rect[0]:new_src_rect[2]] # resize sized = cv2.resize(cropped, (w, h), cv2.INTER_LINEAR) # flip if flip: # cv2.Mat cropped sized = cv2.flip(sized, 1) # 0 - x-axis, 1 - y-axis, -1 - both axes (x & y) # HSV augmentation # cv2.COLOR_BGR2HSV, cv2.COLOR_RGB2HSV, cv2.COLOR_HSV2BGR, cv2.COLOR_HSV2RGB if dsat != 1 or dexp != 1 or dhue != 0: if img.shape[2] >= 3: hsv_src = cv2.cvtColor(sized.astype(np.float32), cv2.COLOR_RGB2HSV) # RGB to HSV hsv = cv2.split(hsv_src) hsv[1] *= dsat hsv[2] *= dexp hsv[0] += 179 * dhue hsv_src = cv2.merge(hsv) sized = np.clip(cv2.cvtColor(hsv_src, cv2.COLOR_HSV2RGB), 0, 255) # HSV to RGB (the same as previous) else: sized *= dexp if blur: if blur == 1: dst = cv2.GaussianBlur(sized, (17, 17), 0) # cv2.bilateralFilter(sized, dst, 17, 75, 75) else: ksize = (blur / 2) * 2 + 1 dst = cv2.GaussianBlur(sized, (ksize, ksize), 0) if blur == 1: img_rect = [0, 0, sized.cols, sized.rows] for b in truth: left = (b.x - b.w / 2.) * sized.shape[1] width = b.w * sized.shape[1] top = (b.y - b.h / 2.) * sized.shape[0] height = b.h * sized.shape[0] roi(left, top, width, height) roi = roi & img_rect dst[roi[0]:roi[0] + roi[2], roi[1]:roi[1] + roi[3]] = sized[roi[0]:roi[0] + roi[2], roi[1]:roi[1] + roi[3]] sized = dst if gaussian_noise: noise = np.array(sized.shape) gaussian_noise = min(gaussian_noise, 127) gaussian_noise = max(gaussian_noise, 0) cv2.randn(noise, 0, gaussian_noise) # mean and variance sized = sized + noise except: print("OpenCV can't augment image: " + str(w) + " x " + str(h)) sized = mat return sized def filter_truth(bboxes, dx, dy, sx, sy, xd, yd): bboxes[:, 0] -= dx bboxes[:, 2] -= dx bboxes[:, 1] -= dy bboxes[:, 3] -= dy bboxes[:, 0] = np.clip(bboxes[:, 0], 0, sx) bboxes[:, 2] = np.clip(bboxes[:, 2], 0, sx) bboxes[:, 1] = np.clip(bboxes[:, 1], 0, sy) bboxes[:, 3] = np.clip(bboxes[:, 3], 0, sy) out_box = list(np.where(((bboxes[:, 1] == sy) & (bboxes[:, 3] == sy)) | ((bboxes[:, 0] == sx) & (bboxes[:, 2] == sx)) | ((bboxes[:, 1] == 0) & (bboxes[:, 3] == 0)) | ((bboxes[:, 0] == 0) & (bboxes[:, 2] == 0)))[0]) list_box = list(range(bboxes.shape[0])) for i in out_box: list_box.remove(i) bboxes = bboxes[list_box] bboxes[:, 0] += xd bboxes[:, 2] += xd bboxes[:, 1] += yd bboxes[:, 3] += yd return bboxes def blend_truth_mosaic(out_img, img, bboxes, w, h, cut_x, cut_y, i_mixup, left_shift, right_shift, top_shift, bot_shift): left_shift = min(left_shift, w - cut_x) top_shift = min(top_shift, h - cut_y) right_shift = min(right_shift, cut_x) bot_shift = min(bot_shift, cut_y) if i_mixup == 0: bboxes = filter_truth(bboxes, left_shift, top_shift, cut_x, cut_y, 0, 0) out_img[:cut_y, :cut_x] = img[top_shift:top_shift + cut_y, left_shift:left_shift + cut_x] if i_mixup == 1: bboxes = filter_truth(bboxes, cut_x - right_shift, top_shift, w - cut_x, cut_y, cut_x, 0) out_img[:cut_y, cut_x:] = img[top_shift:top_shift + cut_y, cut_x - right_shift:w - right_shift] if i_mixup == 2: bboxes = filter_truth(bboxes, left_shift, cut_y - bot_shift, cut_x, h - cut_y, 0, cut_y) out_img[cut_y:, :cut_x] = img[cut_y - bot_shift:h - bot_shift, left_shift:left_shift + cut_x] if i_mixup == 3: bboxes = filter_truth(bboxes, cut_x - right_shift, cut_y - bot_shift, w - cut_x, h - cut_y, cut_x, cut_y) out_img[cut_y:, cut_x:] = img[cut_y - bot_shift:h - bot_shift, cut_x - right_shift:w - right_shift] return out_img, bboxes def draw_box(img, bboxes): for b in bboxes: img = cv2.rectangle(img, (b[0], b[1]), (b[2], b[3]), (0, 255, 0), 2) return img class Yolo_dataset(Dataset): def __init__(self, lable_path, cfg, train=True): super(Yolo_dataset, self).__init__() if cfg.mixup == 2: print("cutmix=1 - isn't supported for Detector") raise elif cfg.mixup == 2 and cfg.letter_box: print("Combination: letter_box=1 & mosaic=1 - isn't supported, use only 1 of these parameters") raise self.cfg = cfg self.train = train truth = {} f = open(lable_path, 'r', encoding='utf-8') for line in f.readlines(): data = line.split(" ") truth[data[0]] = [] for i in data[1:]: truth[data[0]].append([int(float(j)) for j in i.split(',')]) self.truth = truth self.imgs = list(self.truth.keys()) def __len__(self): return len(self.truth.keys()) def __getitem__(self, index): if not self.train: return self._get_val_item(index) img_path = self.imgs[index] bboxes = np.array(self.truth.get(img_path), dtype=np.float) img_path = os.path.join(self.cfg.dataset_dir, img_path) use_mixup = self.cfg.mixup if random.randint(0, 1): use_mixup = 0 if use_mixup == 3: min_offset = 0.2 cut_x = random.randint(int(self.cfg.w * min_offset), int(self.cfg.w * (1 - min_offset))) cut_y = random.randint(int(self.cfg.h * min_offset), int(self.cfg.h * (1 - min_offset))) r1, r2, r3, r4, r_scale = 0, 0, 0, 0, 0 dhue, dsat, dexp, flip, blur = 0, 0, 0, 0, 0 gaussian_noise = 0 out_img = np.zeros([self.cfg.h, self.cfg.w, 3]) out_bboxes = [] for i in range(use_mixup + 1): if i != 0: img_path = random.choice(list(self.truth.keys())) bboxes = np.array(self.truth.get(img_path), dtype=np.float) img_path = os.path.join(self.cfg.dataset_dir, img_path) img = cv2.imread(img_path) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) if img is None: continue oh, ow, oc = img.shape dh, dw, dc = np.array(np.array([oh, ow, oc]) * self.cfg.jitter, dtype=np.int) dhue = rand_uniform_strong(-self.cfg.hue, self.cfg.hue) dsat = rand_scale(self.cfg.saturation) dexp = rand_scale(self.cfg.exposure) pleft = random.randint(-dw, dw) pright = random.randint(-dw, dw) ptop = random.randint(-dh, dh) pbot = random.randint(-dh, dh) flip = random.randint(0, 1) if self.cfg.flip else 0 if (self.cfg.blur): tmp_blur = random.randint(0, 2) # 0 - disable, 1 - blur background, 2 - blur the whole image if tmp_blur == 0: blur = 0 elif tmp_blur == 1: blur = 1 else: blur = self.cfg.blur if self.cfg.gaussian and random.randint(0, 1): gaussian_noise = self.cfg.gaussian else: gaussian_noise = 0 if self.cfg.letter_box: img_ar = ow / oh net_ar = self.cfg.w / self.cfg.h result_ar = img_ar / net_ar # print(" ow = %d, oh = %d, w = %d, h = %d, img_ar = %f, net_ar = %f, result_ar = %f \n", ow, oh, w, h, img_ar, net_ar, result_ar); if result_ar > 1: # sheight - should be increased oh_tmp = ow / net_ar delta_h = (oh_tmp - oh) / 2 ptop = ptop - delta_h pbot = pbot - delta_h # print(" result_ar = %f, oh_tmp = %f, delta_h = %d, ptop = %f, pbot = %f \n", result_ar, oh_tmp, delta_h, ptop, pbot); else: # swidth - should be increased ow_tmp = oh * net_ar delta_w = (ow_tmp - ow) / 2 pleft = pleft - delta_w pright = pright - delta_w # printf(" result_ar = %f, ow_tmp = %f, delta_w = %d, pleft = %f, pright = %f \n", result_ar, ow_tmp, delta_w, pleft, pright); swidth = ow - pleft - pright sheight = oh - ptop - pbot truth, min_w_h = fill_truth_detection(bboxes, self.cfg.boxes, self.cfg.classes, flip, pleft, ptop, swidth, sheight, self.cfg.w, self.cfg.h) if (min_w_h / 8) < blur and blur > 1: # disable blur if one of the objects is too small blur = min_w_h / 8 ai = image_data_augmentation(img, self.cfg.w, self.cfg.h, pleft, ptop, swidth, sheight, flip, dhue, dsat, dexp, gaussian_noise, blur, truth) if use_mixup == 0: out_img = ai out_bboxes = truth if use_mixup == 1: if i == 0: old_img = ai.copy() old_truth = truth.copy() elif i == 1: out_img = cv2.addWeighted(ai, 0.5, old_img, 0.5) out_bboxes = np.concatenate([old_truth, truth], axis=0) elif use_mixup == 3: if flip: tmp = pleft pleft = pright pright = tmp left_shift = int(min(cut_x, max(0, (-int(pleft) * self.cfg.w / swidth)))) top_shift = int(min(cut_y, max(0, (-int(ptop) * self.cfg.h / sheight)))) right_shift = int(min((self.cfg.w - cut_x), max(0, (-int(pright) * self.cfg.w / swidth)))) bot_shift = int(min(self.cfg.h - cut_y, max(0, (-int(pbot) * self.cfg.h / sheight)))) out_img, out_bbox = blend_truth_mosaic(out_img, ai, truth.copy(), self.cfg.w, self.cfg.h, cut_x, cut_y, i, left_shift, right_shift, top_shift, bot_shift) out_bboxes.append(out_bbox) # print(img_path) if use_mixup == 3: out_bboxes = np.concatenate(out_bboxes, axis=0) out_bboxes1 = np.zeros([self.cfg.boxes, 5]) out_bboxes1[:min(out_bboxes.shape[0], self.cfg.boxes)] = out_bboxes[:min(out_bboxes.shape[0], self.cfg.boxes)] return out_img, out_bboxes1 def _get_val_item(self, index): """ """ img_path = self.imgs[index] bboxes_with_cls_id = np.array(self.truth.get(img_path), dtype=np.float) img = cv2.imread(os.path.join(self.cfg.dataset_dir, img_path)) # img_height, img_width = img.shape[:2] img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # img = cv2.resize(img, (self.cfg.w, self.cfg.h)) # img = torch.from_numpy(img.transpose(2, 0, 1)).float().div(255.0).unsqueeze(0) num_objs = len(bboxes_with_cls_id) target = {} # boxes to coco format boxes = bboxes_with_cls_id[...,:4] boxes[..., 2:] = boxes[..., 2:] - boxes[..., :2] # box width, box height target['boxes'] = torch.as_tensor(boxes, dtype=torch.float32) target['labels'] = torch.as_tensor(bboxes_with_cls_id[...,-1].flatten(), dtype=torch.int64) target['image_id'] = torch.tensor([get_image_id(img_path)]) target['area'] = (target['boxes'][:,3])*(target['boxes'][:,2]) target['iscrowd'] = torch.zeros((num_objs,), dtype=torch.int64) return img, target ## MOD def get_image_id(filename:str) -> int: """ Convert a string to a integer. Make sure that the images and the `image_id`s are in one-one correspondence. There are already `image_id`s in annotations of the COCO dataset, in which case this function is unnecessary. For creating one's own `get_image_id` function, one can refer to https://github.com/google/automl/blob/master/efficientdet/dataset/create_pascal_tfrecord.py#L86 or refer to the following code (where the filenames are like 'level1_123.jpg') >>> lv, no = os.path.splitext(os.path.basename(filename))[0].split("_") >>> lv = lv.replace("level", "") >>> no = f"{int(no):04d}" >>> return int(lv+no) """ # raise NotImplementedError("Create your own 'get_image_id' function") # lv, no = os.path.splitext(os.path.basename(filename))[0].split("_") # lv = lv.replace("level", "") # no = f"{int(no):04d}" id = os.path.splitext(os.path.basename(filename))[0] return int(id) if __name__ == "__main__": from cfg import Cfg import matplotlib.pyplot as plt random.seed(2020)
np.random.seed(2020)
numpy.random.seed
import numpy as np def conv2d(img, kernel, padding='valid'): assert img.ndim == 2, 'Image needs to be in 2d array' assert kernel.ndim == 2, 'Kernel needs to be in 2d array' assert kernel.shape[0] % 2 == 1 and kernel.shape[1] % 2 == 1, 'Please make odd kernel size' if img.dtype == 'uint8': img = img/255 s1 = np.array(img.shape) + np.array(kernel.shape) - 1 fsize = 2**np.ceil(np.log2(s1)).astype('int32') fslice = tuple([slice(0, int(sz)) for sz in s1]) new_x = np.fft.fft2(img, fsize) new_y = np.fft.fft2(kernel, fsize) ret = np.fft.ifft2(new_x*new_y)[fslice] ret = ret.real if padding == 'full': return ret elif padding == 'same': p = (kernel.shape[0] - 1)//2 else: # 'valid' p = kernel.shape[0] - 1 return ret[p:-p, p:-p] def rgb2hsv(img): assert img.ndim == 3, 'Image needs to be in 3d' if img.dtype == 'uint8': img = img/255.0 r, g, b = img[:, :, 0], img[:, :, 1], img[:, :, 2] mx = np.max(img, axis=2) mn = np.min(img, axis=2) df = mx - mn + 1e-7 hsv = np.zeros_like(img) # H idx = np.where(mx == mn) hsv[idx[0], idx[1], 0] = 0 idx = np.where(mx == r) hsv[idx[0], idx[1], 0] = (60*((g[idx[0], idx[1]] - b[idx[0], idx[1]])/df[idx[0], idx[1]]) + 360).astype('int32') % 360 idx = np.where(mx == g) hsv[idx[0], idx[1], 0] = (60*((b[idx[0], idx[1]] - r[idx[0], idx[1]])/df[idx[0], idx[1]]) + 480).astype('int32') % 360 idx = np.where(mx == b) hsv[idx[0], idx[1], 0] = (60*((r[idx[0], idx[1]] - g[idx[0], idx[1]])/df[idx[0], idx[1]]) + 600).astype('int32') % 360 # S idx = np.where(mx == 0) hsv[idx[0], idx[1], 1] = 0 idx = np.where(mx != 0) hsv[idx[0], idx[1], 1] = df[idx[0], idx[1]]/mx[idx[0], idx[1]] # V hsv[:, :, 2] = mx return hsv def rgb2gray(img, method='avg', format='rgb'): # format exists because cv2 load image in bgr order assert img.ndim == 3, 'Image needs to be in 3d' if img.dtype == 'uint8': img = img/255.0 if method == 'avg': return np.mean(img, axis=2) else: R = 0.299 G = 0.587 B = 0.114 return np.dot(img[..., :3], [R, G, B]) if format == 'rgb' else np.dot(img[..., :3], [B, G, R]) def sobel(img, return_direction=False): Kx = np.asarray([[1, 0, -1], [2, 0, -2], [1, 0, -1]]) Ky = np.asarray([[1, 2, 1], [0, 0, 0], [-1, -2, -1]]) Gx = conv2d(img, Kx) Gy = conv2d(img, Ky) Gm = np.sqrt(Gx**2, Gy**2) if return_direction: return Gm, np.arctan2(Gy, Gx) else: return Gm def make_gaussian_kernel(size, sigma): ax = np.arange(-size//2+1, size//2+1) xx, yy = np.meshgrid(ax, ax) kernel = np.exp(-(xx**2 + yy**2)/(2.*(sigma**2))) return kernel/kernel.sum() def canny(img, k=11, sigma=1, alpha=0.1, beta=0.2, return_direction=False): if img.ndim == 3: img = rgb2gray(img) Kg = make_gaussian_kernel(k, sigma) img = conv2d(img, Kg) Gm, Gd = sobel(img, return_direction=True) Z = non_max_suspression(Gm, Gd, alpha, beta) T = alpha*
np.max(Gm)
numpy.max
import torch import numpy as np from mushroom_rl.approximators import Regressor from mushroom_rl.approximators.parametric import TorchApproximator from mushroom_rl.utils.torch import to_float_tensor from mushroom_rl.utils.dataset import parse_dataset from mushroom_rl.utils.value_functions import compute_gae from mushroom_rl.algorithms.actor_critic.deep_actor_critic.ppo import PPO from mushroom_rl.utils.minibatches import minibatch_generator class GAIL(PPO): """ Generative Adversarial Imitation Learning(GAIL) implementation. Uses PPO policy updates instead of TRPO. "Generative Adversarial Imitation Learning" <NAME>., & <NAME>. (2016). """ def __init__(self, mdp_info, policy_class, policy_params, discriminator_params, critic_params, actor_optimizer, n_epochs_policy, n_epochs_discriminator, batch_size_policy, eps_ppo, lam, demonstrations=None, env_reward_frac=0.0, state_mask=None, act_mask=None, critic_fit_params=None, discriminator_fit_params=None): # initialize PPO agent policy = policy_class(**policy_params) super(GAIL, self).__init__(mdp_info, policy, actor_optimizer, critic_params, n_epochs_policy, batch_size_policy, eps_ppo, lam, critic_fit_params=critic_fit_params) # discriminator params self._discriminator_fit_params = (dict() if discriminator_fit_params is None else discriminator_fit_params) discriminator_params.setdefault("loss", torch.nn.BCELoss()) discriminator_params.setdefault("batch_size", 128) self._D = Regressor(TorchApproximator, **discriminator_params) self._n_epochs_discriminator = n_epochs_discriminator self._env_reward_frac = env_reward_frac self._demonstrations = demonstrations # should be: dict(states=np.array, actions=(np.array/None)) assert 0.0 <= env_reward_frac <= 1.0, "Environment reward must be between [0,1]" assert demonstrations is not None or env_reward_frac == 1.0, "No demonstrations have been loaded" # select which observations / actions to discriminate if not "actions" in demonstrations: act_mask = [] self._state_mask = np.arange(demonstrations["states"].shape[1]) \ if state_mask is None else np.array(state_mask, dtype=np.int64) self._act_mask = np.arange(demonstrations["actions"].shape[1]) \ if act_mask is None else
np.array(act_mask, dtype=np.int64)
numpy.array
import os import tempfile import numpy as np import scipy.ndimage.measurements as meas from functools import reduce import warnings import sys sys.path.append(os.path.abspath(r'../lib')) import NumCppPy as NumCpp # noqa E402 #################################################################################### def factors(n): return set(reduce(list.__add__, ([i, n//i] for i in range(1, int(n**0.5) + 1) if n % i == 0))) #################################################################################### def test_seed(): np.random.seed(1) #################################################################################### def test_abs(): randValue = np.random.randint(-100, -1, [1, ]).astype(np.double).item() assert NumCpp.absScaler(randValue) == np.abs(randValue) components = np.random.randint(-100, -1, [2, ]).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.absScaler(value), 9) == np.round(np.abs(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.absArray(cArray), np.abs(data)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) + \ 1j * np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.absArray(cArray), 9), np.round(np.abs(data), 9)) #################################################################################### def test_add(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(-100, 100, [shape.rows, shape.cols]) data2 = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.add(cArray1, cArray2), data1 + data2) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) value = np.random.randint(-100, 100) assert np.array_equal(NumCpp.add(cArray, value), data + value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) value = np.random.randint(-100, 100) assert np.array_equal(NumCpp.add(value, cArray), data + value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.add(cArray1, cArray2), data1 + data2) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) value = np.random.randint(-100, 100) + 1j * np.random.randint(-100, 100) assert np.array_equal(NumCpp.add(cArray, value), data + value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) value = np.random.randint(-100, 100) + 1j * np.random.randint(-100, 100) assert np.array_equal(NumCpp.add(value, cArray), data + value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArray(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 data2 = np.random.randint(1, 100, [shape.rows, shape.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.add(cArray1, cArray2), data1 + data2) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) data1 = np.random.randint(1, 100, [shape.rows, shape.cols]) real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.add(cArray1, cArray2), data1 + data2) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) value = np.random.randint(-100, 100) + 1j * np.random.randint(-100, 100) assert np.array_equal(NumCpp.add(cArray, value), data + value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) value = np.random.randint(-100, 100) + 1j * np.random.randint(-100, 100) assert np.array_equal(NumCpp.add(value, cArray), data + value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) value = np.random.randint(-100, 100) assert np.array_equal(NumCpp.add(cArray, value), data + value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) value = np.random.randint(-100, 100) assert np.array_equal(NumCpp.add(value, cArray), data + value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.add(cArray1, cArray2), data1 + data2) #################################################################################### def test_alen(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert NumCpp.alen(cArray) == shape.rows #################################################################################### def test_all(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert NumCpp.all(cArray, NumCpp.Axis.NONE).astype(bool).item() == np.all(data).item() shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert NumCpp.all(cArray, NumCpp.Axis.NONE).astype(bool).item() == np.all(data).item() shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.all(cArray, NumCpp.Axis.ROW).flatten().astype(bool), np.all(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.all(cArray, NumCpp.Axis.ROW).flatten().astype(bool), np.all(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.all(cArray, NumCpp.Axis.COL).flatten().astype(bool), np.all(data, axis=1)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.all(cArray, NumCpp.Axis.COL).flatten().astype(bool), np.all(data, axis=1)) #################################################################################### def test_allclose(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) cArray3 = NumCpp.NdArray(shape) tolerance = 1e-5 data1 = np.random.randn(shape.rows, shape.cols) data2 = data1 + tolerance / 10 data3 = data1 + 1 cArray1.setArray(data1) cArray2.setArray(data2) cArray3.setArray(data3) assert NumCpp.allclose(cArray1, cArray2, tolerance) and not NumCpp.allclose(cArray1, cArray3, tolerance) #################################################################################### def test_amax(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert NumCpp.amax(cArray, NumCpp.Axis.NONE).item() == np.max(data) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert NumCpp.amax(cArray, NumCpp.Axis.NONE).item() == np.max(data) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.amax(cArray, NumCpp.Axis.ROW).flatten(), np.max(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.amax(cArray, NumCpp.Axis.ROW).flatten(), np.max(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.amax(cArray, NumCpp.Axis.COL).flatten(), np.max(data, axis=1)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.amax(cArray, NumCpp.Axis.COL).flatten(), np.max(data, axis=1)) #################################################################################### def test_amin(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert NumCpp.amin(cArray, NumCpp.Axis.NONE).item() == np.min(data) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert NumCpp.amin(cArray, NumCpp.Axis.NONE).item() == np.min(data) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.amin(cArray, NumCpp.Axis.ROW).flatten(), np.min(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.amin(cArray, NumCpp.Axis.ROW).flatten(), np.min(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.amin(cArray, NumCpp.Axis.COL).flatten(), np.min(data, axis=1)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.amin(cArray, NumCpp.Axis.COL).flatten(), np.min(data, axis=1)) #################################################################################### def test_angle(): components = np.random.randint(-100, -1, [2, ]).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.angleScaler(value), 9) == np.round(np.angle(value), 9) # noqa shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) + \ 1j * np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.angleArray(cArray), 9), np.round(np.angle(data), 9)) #################################################################################### def test_any(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert NumCpp.any(cArray, NumCpp.Axis.NONE).astype(bool).item() == np.any(data).item() shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert NumCpp.any(cArray, NumCpp.Axis.NONE).astype(bool).item() == np.any(data).item() shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.any(cArray, NumCpp.Axis.ROW).flatten().astype(bool), np.any(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.any(cArray, NumCpp.Axis.ROW).flatten().astype(bool), np.any(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.any(cArray, NumCpp.Axis.COL).flatten().astype(bool), np.any(data, axis=1)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.any(cArray, NumCpp.Axis.COL).flatten().astype(bool), np.any(data, axis=1)) #################################################################################### def test_append(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(0, 100, [shape.rows, shape.cols]) data2 = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.append(cArray1, cArray2, NumCpp.Axis.NONE).getNumpyArray().flatten(), np.append(data1, data2)) shapeInput = np.random.randint(20, 100, [2, ]) numRows = np.random.randint(1, 100, [1, ]).item() shape1 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) shape2 = NumCpp.Shape(shapeInput[0].item() + numRows, shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape1) cArray2 = NumCpp.NdArray(shape2) data1 = np.random.randint(0, 100, [shape1.rows, shape1.cols]) data2 = np.random.randint(0, 100, [shape2.rows, shape2.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.append(cArray1, cArray2, NumCpp.Axis.ROW).getNumpyArray(), np.append(data1, data2, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) NumCppols = np.random.randint(1, 100, [1, ]).item() shape1 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) shape2 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item() + NumCppols) cArray1 = NumCpp.NdArray(shape1) cArray2 = NumCpp.NdArray(shape2) data1 = np.random.randint(0, 100, [shape1.rows, shape1.cols]) data2 = np.random.randint(0, 100, [shape2.rows, shape2.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.append(cArray1, cArray2, NumCpp.Axis.COL).getNumpyArray(), np.append(data1, data2, axis=1)) #################################################################################### def test_arange(): start = np.random.randn(1).item() stop = np.random.randn(1).item() * 100 step = np.abs(np.random.randn(1).item()) if stop < start: step *= -1 data = np.arange(start, stop, step) assert np.array_equal(np.round(NumCpp.arange(start, stop, step).flatten(), 9), np.round(data, 9)) #################################################################################### def test_arccos(): value = np.abs(np.random.rand(1).item()) assert np.round(NumCpp.arccosScaler(value), 9) == np.round(np.arccos(value), 9) components = np.random.rand(2).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.arccosScaler(value), 9) == np.round(np.arccos(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.arccosArray(cArray), 9), np.round(np.arccos(data), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.arccosArray(cArray), 9), np.round(np.arccos(data), 9)) #################################################################################### def test_arccosh(): value = np.abs(np.random.rand(1).item()) + 1 assert np.round(NumCpp.arccoshScaler(value), 9) == np.round(np.arccosh(value), 9) components = np.random.rand(2).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.arccoshScaler(value), 9) == np.round(np.arccosh(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.rand(shape.rows, shape.cols) + 1 cArray.setArray(data) assert np.array_equal(np.round(NumCpp.arccoshArray(cArray), 9), np.round(np.arccosh(data), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.arccoshArray(cArray), 9), np.round(np.arccosh(data), 9)) #################################################################################### def test_arcsin(): value = np.abs(np.random.rand(1).item()) assert np.round(NumCpp.arcsinScaler(value), 9) == np.round(np.arcsin(value), 9) components = np.random.rand(2).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.arcsinScaler(value), 9) == np.round(np.arcsin(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.arcsinArray(cArray), 9), np.round(np.arcsin(data), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols) cArray.setArray(data) np.array_equal(np.round(NumCpp.arcsinArray(cArray), 9), np.round(np.arcsin(data), 9)) #################################################################################### def test_arcsinh(): value = np.abs(np.random.rand(1).item()) assert np.round(NumCpp.arcsinhScaler(value), 9) == np.round(np.arcsinh(value), 9) components = np.random.rand(2).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.arcsinhScaler(value), 9) == np.round(np.arcsinh(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.arcsinhArray(cArray), 9), np.round(np.arcsinh(data), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols) cArray.setArray(data) np.array_equal(np.round(NumCpp.arcsinhArray(cArray), 9), np.round(np.arcsinh(data), 9)) #################################################################################### def test_arctan(): value = np.abs(np.random.rand(1).item()) assert np.round(NumCpp.arctanScaler(value), 9) == np.round(np.arctan(value), 9) components = np.random.rand(2).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.arctanScaler(value), 9) == np.round(np.arctan(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.arctanArray(cArray), 9), np.round(np.arctan(data), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols) cArray.setArray(data) np.array_equal(np.round(NumCpp.arctanArray(cArray), 9), np.round(np.arctan(data), 9)) #################################################################################### def test_arctan2(): xy = np.random.rand(2) * 2 - 1 assert np.round(NumCpp.arctan2Scaler(xy[1], xy[0]), 9) == np.round(np.arctan2(xy[1], xy[0]), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArrayX = NumCpp.NdArray(shape) cArrayY = NumCpp.NdArray(shape) xy = np.random.rand(*shapeInput, 2) * 2 - 1 xData = xy[:, :, 0].reshape(shapeInput) yData = xy[:, :, 1].reshape(shapeInput) cArrayX.setArray(xData) cArrayY.setArray(yData) assert np.array_equal(np.round(NumCpp.arctan2Array(cArrayY, cArrayX), 9), np.round(np.arctan2(yData, xData), 9)) #################################################################################### def test_arctanh(): value = np.abs(np.random.rand(1).item()) assert np.round(NumCpp.arctanhScaler(value), 9) == np.round(np.arctanh(value), 9) components = np.random.rand(2).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.arctanhScaler(value), 9) == np.round(np.arctanh(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.arctanhArray(cArray), 9), np.round(np.arctanh(data), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols) cArray.setArray(data) np.array_equal(np.round(NumCpp.arctanhArray(cArray), 9), np.round(np.arctanh(data), 9)) #################################################################################### def test_argmax(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.argmax(cArray, NumCpp.Axis.NONE).item(), np.argmax(data)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.argmax(cArray, NumCpp.Axis.NONE).item(), np.argmax(data)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.argmax(cArray, NumCpp.Axis.ROW).flatten(), np.argmax(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.argmax(cArray, NumCpp.Axis.ROW).flatten(), np.argmax(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.argmax(cArray, NumCpp.Axis.COL).flatten(), np.argmax(data, axis=1)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.argmax(cArray, NumCpp.Axis.COL).flatten(), np.argmax(data, axis=1)) #################################################################################### def test_argmin(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.argmin(cArray, NumCpp.Axis.NONE).item(), np.argmin(data)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.argmin(cArray, NumCpp.Axis.NONE).item(), np.argmin(data)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.argmin(cArray, NumCpp.Axis.ROW).flatten(), np.argmin(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.argmin(cArray, NumCpp.Axis.ROW).flatten(), np.argmin(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.argmin(cArray, NumCpp.Axis.COL).flatten(), np.argmin(data, axis=1)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.argmin(cArray, NumCpp.Axis.COL).flatten(), np.argmin(data, axis=1)) #################################################################################### def test_argsort(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) dataFlat = data.flatten() assert np.array_equal(dataFlat[NumCpp.argsort(cArray, NumCpp.Axis.NONE).flatten().astype(np.uint32)], dataFlat[np.argsort(data, axis=None)]) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) dataFlat = data.flatten() assert np.array_equal(dataFlat[NumCpp.argsort(cArray, NumCpp.Axis.NONE).flatten().astype(np.uint32)], dataFlat[np.argsort(data, axis=None)]) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) pIdx = np.argsort(data, axis=0) cIdx = NumCpp.argsort(cArray, NumCpp.Axis.ROW).astype(np.uint16) allPass = True for idx, row in enumerate(data.T): if not np.array_equal(row[cIdx[:, idx]], row[pIdx[:, idx]]): allPass = False break assert allPass shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) pIdx = np.argsort(data, axis=0) cIdx = NumCpp.argsort(cArray, NumCpp.Axis.ROW).astype(np.uint16) allPass = True for idx, row in enumerate(data.T): if not np.array_equal(row[cIdx[:, idx]], row[pIdx[:, idx]]): allPass = False break assert allPass shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) pIdx = np.argsort(data, axis=1) cIdx = NumCpp.argsort(cArray, NumCpp.Axis.COL).astype(np.uint16) allPass = True for idx, row in enumerate(data): if not np.array_equal(row[cIdx[idx, :]], row[pIdx[idx, :]]): # noqa allPass = False break assert allPass shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) pIdx = np.argsort(data, axis=1) cIdx = NumCpp.argsort(cArray, NumCpp.Axis.COL).astype(np.uint16) allPass = True for idx, row in enumerate(data): if not np.array_equal(row[cIdx[idx, :]], row[pIdx[idx, :]]): allPass = False break assert allPass #################################################################################### def test_argwhere(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) randValue = np.random.randint(0, 100, [1, ]).item() data2 = data > randValue cArray.setArray(data2) assert np.array_equal(NumCpp.argwhere(cArray).flatten(), np.argwhere(data.flatten() > randValue).flatten()) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag randValue = np.random.randint(0, 100, [1, ]).item() data2 = data > randValue cArray.setArray(data2) assert np.array_equal(NumCpp.argwhere(cArray).flatten(), np.argwhere(data.flatten() > randValue).flatten()) #################################################################################### def test_around(): value = np.abs(np.random.rand(1).item()) * np.random.randint(1, 10, [1, ]).item() numDecimalsRound = np.random.randint(0, 10, [1, ]).astype(np.uint8).item() assert NumCpp.aroundScaler(value, numDecimalsRound) == np.round(value, numDecimalsRound) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.rand(shape.rows, shape.cols) * np.random.randint(1, 10, [1, ]).item() cArray.setArray(data) numDecimalsRound = np.random.randint(0, 10, [1, ]).astype(np.uint8).item() assert np.array_equal(NumCpp.aroundArray(cArray, numDecimalsRound), np.round(data, numDecimalsRound)) #################################################################################### def test_array_equal(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) cArray3 = NumCpp.NdArray(shape) data1 = np.random.randint(1, 100, shapeInput) data2 = np.random.randint(1, 100, shapeInput) cArray1.setArray(data1) cArray2.setArray(data1) cArray3.setArray(data2) assert NumCpp.array_equal(cArray1, cArray2) and not NumCpp.array_equal(cArray1, cArray3) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) cArray3 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data1) cArray3.setArray(data2) assert NumCpp.array_equal(cArray1, cArray2) and not NumCpp.array_equal(cArray1, cArray3) #################################################################################### def test_array_equiv(): shapeInput1 = np.random.randint(1, 100, [2, ]) shapeInput3 = np.random.randint(1, 100, [2, ]) shape1 = NumCpp.Shape(shapeInput1[0].item(), shapeInput1[1].item()) shape2 = NumCpp.Shape(shapeInput1[1].item(), shapeInput1[0].item()) shape3 = NumCpp.Shape(shapeInput3[0].item(), shapeInput3[1].item()) cArray1 = NumCpp.NdArray(shape1) cArray2 = NumCpp.NdArray(shape2) cArray3 = NumCpp.NdArray(shape3) data1 = np.random.randint(1, 100, shapeInput1) data3 = np.random.randint(1, 100, shapeInput3) cArray1.setArray(data1) cArray2.setArray(data1.reshape([shapeInput1[1].item(), shapeInput1[0].item()])) cArray3.setArray(data3) assert NumCpp.array_equiv(cArray1, cArray2) and not NumCpp.array_equiv(cArray1, cArray3) shapeInput1 = np.random.randint(1, 100, [2, ]) shapeInput3 = np.random.randint(1, 100, [2, ]) shape1 = NumCpp.Shape(shapeInput1[0].item(), shapeInput1[1].item()) shape2 = NumCpp.Shape(shapeInput1[1].item(), shapeInput1[0].item()) shape3 = NumCpp.Shape(shapeInput3[0].item(), shapeInput3[1].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape1) cArray2 = NumCpp.NdArrayComplexDouble(shape2) cArray3 = NumCpp.NdArrayComplexDouble(shape3) real1 = np.random.randint(1, 100, [shape1.rows, shape1.cols]) imag1 = np.random.randint(1, 100, [shape1.rows, shape1.cols]) data1 = real1 + 1j * imag1 real3 = np.random.randint(1, 100, [shape3.rows, shape3.cols]) imag3 = np.random.randint(1, 100, [shape3.rows, shape3.cols]) data3 = real3 + 1j * imag3 cArray1.setArray(data1) cArray2.setArray(data1.reshape([shapeInput1[1].item(), shapeInput1[0].item()])) cArray3.setArray(data3) assert NumCpp.array_equiv(cArray1, cArray2) and not NumCpp.array_equiv(cArray1, cArray3) #################################################################################### def test_asarray(): values = np.random.randint(0, 100, [2, ]).astype(np.double) assert np.array_equal(NumCpp.asarrayArray1D(*values).flatten(), values) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag assert np.array_equal(NumCpp.asarrayArray1D(*values).flatten(), values) values = np.random.randint(0, 100, [2, ]).astype(np.double) assert np.array_equal(NumCpp.asarrayArray1DCopy(*values).flatten(), values) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag assert np.array_equal(NumCpp.asarrayArray1DCopy(*values).flatten(), values) values = np.random.randint(0, 100, [2, ]).astype(np.double) data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayArray2D(*values), data) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayArray2D(*values), data) values = np.random.randint(0, 100, [2, ]).astype(np.double) data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayArray2DCopy(*values), data) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayArray2DCopy(*values), data) values = np.random.randint(0, 100, [2, ]).astype(np.double) assert np.array_equal(NumCpp.asarrayVector1D(*values).flatten(), values) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag assert np.array_equal(NumCpp.asarrayVector1D(*values).flatten(), values) values = np.random.randint(0, 100, [2, ]).astype(np.double) assert np.array_equal(NumCpp.asarrayVector1DCopy(*values).flatten(), values) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag assert np.array_equal(NumCpp.asarrayVector1DCopy(*values).flatten(), values) values = np.random.randint(0, 100, [2, ]).astype(np.double) data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayVector2D(*values), data) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayVector2D(*values), data) values = np.random.randint(0, 100, [2, ]).astype(np.double) data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayVectorArray2D(*values), data) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayVectorArray2D(*values), data) values = np.random.randint(0, 100, [2, ]).astype(np.double) data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayVectorArray2DCopy(*values), data) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayVectorArray2DCopy(*values), data) values = np.random.randint(0, 100, [2, ]).astype(np.double) assert np.array_equal(NumCpp.asarrayDeque1D(*values).flatten(), values) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag assert np.array_equal(NumCpp.asarrayDeque1D(*values).flatten(), values) values = np.random.randint(0, 100, [2, ]).astype(np.double) data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayDeque2D(*values), data) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayDeque2D(*values), data) values = np.random.randint(0, 100, [2, ]).astype(np.double) assert np.array_equal(NumCpp.asarrayList(*values).flatten(), values) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag assert np.array_equal(NumCpp.asarrayList(*values).flatten(), values) values = np.random.randint(0, 100, [2, ]).astype(np.double) assert np.array_equal(NumCpp.asarrayIterators(*values).flatten(), values) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag assert np.array_equal(NumCpp.asarrayIterators(*values).flatten(), values) values = np.random.randint(0, 100, [2, ]).astype(np.double) assert np.array_equal(NumCpp.asarrayPointerIterators(*values).flatten(), values) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag assert np.array_equal(NumCpp.asarrayPointerIterators(*values).flatten(), values) values = np.random.randint(0, 100, [2, ]).astype(np.double) assert np.array_equal(NumCpp.asarrayPointer(*values).flatten(), values) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag assert np.array_equal(NumCpp.asarrayPointer(*values).flatten(), values) values = np.random.randint(0, 100, [2, ]).astype(np.double) data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayPointer2D(*values), data) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayPointer2D(*values), data) values = np.random.randint(0, 100, [2, ]).astype(np.double) assert np.array_equal(NumCpp.asarrayPointerShell(*values).flatten(), values) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag assert np.array_equal(NumCpp.asarrayPointerShell(*values).flatten(), values) values = np.random.randint(0, 100, [2, ]).astype(np.double) data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayPointerShell2D(*values), data) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayPointerShell2D(*values), data) values = np.random.randint(0, 100, [2, ]).astype(np.double) assert np.array_equal(NumCpp.asarrayPointerShellTakeOwnership(*values).flatten(), values) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag assert np.array_equal(NumCpp.asarrayPointerShellTakeOwnership(*values).flatten(), values) values = np.random.randint(0, 100, [2, ]).astype(np.double) data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayPointerShell2DTakeOwnership(*values), data) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayPointerShell2DTakeOwnership(*values), data) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) cArrayCast = NumCpp.astypeDoubleToUint32(cArray).getNumpyArray() assert np.array_equal(cArrayCast, data.astype(np.uint32)) assert cArrayCast.dtype == np.uint32 shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) cArrayCast = NumCpp.astypeDoubleToComplex(cArray).getNumpyArray() assert np.array_equal(cArrayCast, data.astype(np.complex128)) assert cArrayCast.dtype == np.complex128 shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real =
np.random.randint(1, 100, [shape.rows, shape.cols])
numpy.random.randint
import numpy as np def standardize(x_test, x_train): """ standardizes the train and test data matrices input: x_test: matrix which contains test data x_train: matrix which contains train data return: standardized matrices x_test, x_train """ for i in range(x_test.shape[1]): x_test[:, i], x_train[:, i] = standardize_col(x_test[:, i], x_train[:, i]) return x_test, x_train def standardize_col(x1, x2): """ standardizes arrays of train and test data after having set -999 values to 0 input: x_1: column of (test) data matrix x_2: column of (train) data matrix return: standardized columns x_1,x_2 """ index_x1 = np.where(x1 == -999) index_x2 = np.where(x2 == -999) x1_clean = np.delete(x1, index_x1) x2_clean = np.delete(x2, index_x2) x_clean = np.append(x1_clean, x2_clean) x1 = x1 - np.mean(x_clean, axis =0) x2 = x2 - np.mean(x_clean, axis =0) x1[index_x1] = np.mean(x_clean, axis =0) x2[index_x2] = np.mean(x_clean, axis =0) # where -999 #x1[index_x1] = 0 #x2[index_x2] = 0 # where -999 std = np.std(np.append(x1, x2), ddof=1) x1 = x1/std x2 = x2/std return x1, x2 def remove_outliers(x_train, ys_train): """ discards data points containing outliers, i.e. values being far away from the mean input: x_train: matrix which contains train data ys_train: array which contains labels return: train and label data without outliers """ index = [] threshold = 8.5 for i in range(x_train.shape[0]): if np.amax(np.abs(x_train[i, :])) > threshold: index.append(i) x_train = np.delete(x_train, index, 0) ys_train =
np.delete(ys_train, index, 0)
numpy.delete
""" Implementation of K-nearest neighbor (KNN) from scratch where you can either use 2-loops (inefficient), 1-loop (better) or a heavily vectorized zero-loop implementation. Programmed by <NAME> <aladdin.persson at hotmail dot com> * 2020-04-24 Initial coding """ import numpy as np class KNearestNeighbor: def __init__(self, k): self.k = k self.eps = 1e-8 def train(self, X, y): self.X_train = X self.y_train = y def predict(self, X_test, num_loops=0): if num_loops == 0: distances = self.compute_distance_vectorized(X_test) elif num_loops == 1: distances = self.compute_distance_one_loop(X_test) else: distances = self.compute_distance_two_loops(X_test) return self.predict_labels(distances) def compute_distance_two_loops(self, X_test): """ Inefficient naive implementation, use only as a way of understanding what kNN is doing """ num_test = X_test.shape[0] num_train = self.X_train.shape[0] distances =
np.zeros((num_test, num_train))
numpy.zeros
from typing import Union, Dict, List, Optional from pathlib import Path from datetime import date import numpy as np from tqdm import tqdm import pandas as pd from .utils import get_basin_list from .datautils import load_forcing, load_discharge def split_basins( camels_root: Union[str, Path], basin_list: Union[str, Path], split: List[float], store_folder: Union[str, Path], timeseries: List[str], dataset: List[str], seed: int, normalize: bool = True, ): if isinstance(basin_list, str): basin_list = Path(basin_list) elif not isinstance(basin_list, Path): raise TypeError(f"basin_list must be Path or str, not {type(basin_list)}") if isinstance(store_folder, str): store_folder = Path(store_folder) elif not isinstance(store_folder, Path): raise TypeError(f"basin_list must be Path or str, not {type(basin_list)}") if sum(split) > 1: raise ValueError(f"sum of splits must be 1, not {sum(split)}") if len(split) not in (2, 3): raise ValueError(f"length of split must be 2 or 3, not {len(split)}") np.random.seed(seed) store_folder = store_folder / f"split_seed_{seed}" store_folder.mkdir(parents=True, exist_ok=True) basins = np.loadtxt(basin_list, dtype="str") np.random.shuffle(basins) if len(split) == 2: basins_test = basins[: int(len(basins) * split[1])] basins_train = basins[int(len(basins) * split[1]) :] else: basins_test = basins[: int(len(basins) * split[2])] basins_validation = basins[ int(len(basins) * split[2]) : int(len(basins) * split[1]) + int(len(basins) * split[2]) ] basins_train = basins[ int(len(basins) * split[1]) + int(len(basins) * split[2]) : ] np.savetxt(store_folder / "basins_test.txt", basins_test, fmt="%s") np.savetxt(store_folder / "basins_train.txt", basins_train, fmt="%s") if len(split) == 3: np.savetxt(store_folder / "basins_validation.txt", basins_validation, fmt="%s") if normalize: create_normalization_file( camels_root, store_folder / "basins_train.txt", dataset=dataset, timeseries=timeseries, ) def cross_validation_split( camels_root: Union[str, Path], basin_list: Union[str, Path], k: int, test_split: float, store_folder: Union[str, Path], seed: int, dataset: List[str], timeseries: List[str], normalize: bool = True, ): if isinstance(basin_list, str): basin_list = Path(basin_list) elif not isinstance(basin_list, Path): raise TypeError(f"basin_list must be Path or str, not {type(basin_list)}") if isinstance(store_folder, str): store_folder = Path(store_folder) elif not isinstance(store_folder, Path): raise TypeError(f"basin_list must be Path or str, not {type(basin_list)}") store_folder = store_folder / f"cross_validation_seed_{seed}" store_folder.mkdir(parents=True, exist_ok=True) np.random.seed(seed) basins = np.loadtxt(basin_list, dtype="str") np.random.shuffle(basins) basins_test = basins[: int(len(basins) * test_split)] basins = basins[int(len(basins) * test_split) :] basins_split = np.array_split(basins, k)
np.savetxt(store_folder / "basins_test.txt", basins_test, fmt="%s")
numpy.savetxt
# Copyright (c) 2009-2017 <NAME> <<EMAIL>> # # This module is free software. You can redistribute it and/or modify it under # the terms of the MIT License, see the file COPYING included with this # distribution. """ Module to calculate motif scoring metrics. Includes ROC AUC, MNCP, enrichment and others, which are calculated on the basis of motif scanning results. """ # External imports from scipy.stats import stats, scoreatpercentile, kstest, fisher_exact from sklearn.metrics import precision_recall_curve, roc_auc_score, roc_curve, average_precision_score import numpy as np __all__ = [ "recall_at_fdr", "fraction_fpr", "score_at_fpr", "enr_at_fpr", "max_enrichment", "phyper_at_fpr", "mncp", "roc_auc", "roc_auc_xlim", "pr_auc", "max_fmeasure", "ks_pvalue", "ks_significance", ] def requires_scores(f): f.input_type = "score" return f def requires_positions(f): f.input_type = "pos" return f @requires_scores def values_to_labels(fg_vals, bg_vals): """ Convert two arrays of values to an array of labels and an array of scores. Parameters ---------- fg_vals : array_like The list of values for the positive set. bg_vals : array_like The list of values for the negative set. Returns ------- y_true : array Labels. y_score : array Values. """ y_true = np.hstack((np.ones(len(fg_vals)), np.zeros(len(bg_vals)))) y_score = np.hstack((fg_vals, bg_vals)) return y_true, y_score @requires_scores def recall_at_fdr(fg_vals, bg_vals, fdr_cutoff=0.1): """ Computes the recall at a specific FDR (default 10%). Parameters ---------- fg_vals : array_like The list of values for the positive set. bg_vals : array_like The list of values for the negative set. fdr : float, optional The FDR (between 0.0 and 1.0). Returns ------- recall : float The recall at the specified FDR. """ if len(fg_vals) == 0: return 0.0 y_true, y_score = values_to_labels(fg_vals, bg_vals) precision, recall, _ = precision_recall_curve(y_true, y_score) fdr = 1 - precision cutoff_index = next(i for i, x in enumerate(fdr) if x <= fdr_cutoff) return recall[cutoff_index] @requires_scores def matches_at_fpr(fg_vals, bg_vals, fpr=0.01): """ Computes the hypergeometric p-value at a specific FPR (default 1%). Parameters ---------- fg_vals : array_like The list of values for the positive set. bg_vals : array_like The list of values for the negative set. fpr : float, optional The FPR (between 0.0 and 1.0). Returns ------- fraction : float The fraction positives at the specified FPR. """ fg_vals = np.array(fg_vals) s = scoreatpercentile(bg_vals, 100 - fpr * 100) return [sum(fg_vals >= s), sum(bg_vals >= s)] @requires_scores def phyper_at_fpr(fg_vals, bg_vals, fpr=0.01): """ Computes the hypergeometric p-value at a specific FPR (default 1%). Parameters ---------- fg_vals : array_like The list of values for the positive set. bg_vals : array_like The list of values for the negative set. fpr : float, optional The FPR (between 0.0 and 1.0). Returns ------- fraction : float The fraction positives at the specified FPR. """ fg_vals = np.array(fg_vals) s = scoreatpercentile(bg_vals, 100 - fpr * 100) table = [ [sum(fg_vals >= s), sum(bg_vals >= s)], [sum(fg_vals < s), sum(bg_vals < s)], ] return fisher_exact(table, alternative="greater")[1] @requires_scores def fraction_fpr(fg_vals, bg_vals, fpr=0.01): """ Computes the fraction positives at a specific FPR (default 1%). Parameters ---------- fg_vals : array_like The list of values for the positive set. bg_vals : array_like The list of values for the negative set. fpr : float, optional The FPR (between 0.0 and 1.0). Returns ------- fraction : float The fraction positives at the specified FPR. """ fg_vals = np.array(fg_vals) s = scoreatpercentile(bg_vals, 100 - 100 * fpr) return len(fg_vals[fg_vals >= s]) / float(len(fg_vals)) @requires_scores def score_at_fpr(fg_vals, bg_vals, fpr=0.01): """ Returns the motif score at a specific FPR (default 1%). Parameters ---------- fg_vals : array_like The list of values for the positive set. bg_vals : array_like The list of values for the negative set. fpr : float, optional The FPR (between 0.0 and 1.0). Returns ------- score : float The motif score at the specified FPR. """ bg_vals = np.array(bg_vals) return scoreatpercentile(bg_vals, 100 - 100 * fpr) @requires_scores def enr_at_fpr(fg_vals, bg_vals, fpr=0.01): """ Computes the enrichment at a specific FPR (default 1%). Parameters ---------- fg_vals : array_like The list of values for the positive set. bg_vals : array_like The list of values for the negative set. fpr : float, optional The FPR (between 0.0 and 1.0). Returns ------- enrichment : float The enrichment at the specified FPR. """ pos =
np.array(fg_vals)
numpy.array
from numpy.testing import (assert_allclose, assert_almost_equal, assert_array_equal, assert_array_almost_equal_nulp) import numpy as np import pytest import matplotlib.mlab as mlab from matplotlib.cbook.deprecation import MatplotlibDeprecationWarning def _stride_repeat(*args, **kwargs): with pytest.warns(MatplotlibDeprecationWarning): return mlab.stride_repeat(*args, **kwargs) class TestStride: def get_base(self, x): y = x while y.base is not None: y = y.base return y def calc_window_target(self, x, NFFT, noverlap=0, axis=0): """ This is an adaptation of the original window extraction algorithm. This is here to test to make sure the new implementation has the same result. """ step = NFFT - noverlap ind = np.arange(0, len(x) - NFFT + 1, step) n = len(ind) result = np.zeros((NFFT, n)) # do the ffts of the slices for i in range(n): result[:, i] = x[ind[i]:ind[i]+NFFT] if axis == 1: result = result.T return result @pytest.mark.parametrize('shape', [(), (10, 1)], ids=['0D', '2D']) def test_stride_windows_invalid_input_shape(self, shape): x = np.arange(np.prod(shape)).reshape(shape) with pytest.raises(ValueError): mlab.stride_windows(x, 5) @pytest.mark.parametrize('n, noverlap', [(0, None), (11, None), (2, 2), (2, 3)], ids=['n less than 1', 'n greater than input', 'noverlap greater than n', 'noverlap equal to n']) def test_stride_windows_invalid_params(self, n, noverlap): x = np.arange(10) with pytest.raises(ValueError): mlab.stride_windows(x, n, noverlap) @pytest.mark.parametrize('shape', [(), (10, 1)], ids=['0D', '2D']) def test_stride_repeat_invalid_input_shape(self, shape): x = np.arange(np.prod(shape)).reshape(shape) with pytest.raises(ValueError): _stride_repeat(x, 5) @pytest.mark.parametrize('axis', [-1, 2], ids=['axis less than 0', 'axis greater than input shape']) def test_stride_repeat_invalid_axis(self, axis): x = np.array(0) with pytest.raises(ValueError): _stride_repeat(x, 5, axis=axis) def test_stride_repeat_n_lt_1_ValueError(self): x = np.arange(10) with pytest.raises(ValueError): _stride_repeat(x, 0) @pytest.mark.parametrize('axis', [0, 1], ids=['axis0', 'axis1']) @pytest.mark.parametrize('n', [1, 5], ids=['n1', 'n5']) def test_stride_repeat(self, n, axis): x = np.arange(10) y = _stride_repeat(x, n, axis=axis) expected_shape = [10, 10] expected_shape[axis] = n yr = np.repeat(np.expand_dims(x, axis), n, axis=axis) assert yr.shape == y.shape assert_array_equal(yr, y) assert tuple(expected_shape) == y.shape assert self.get_base(y) is x @pytest.mark.parametrize('axis', [0, 1], ids=['axis0', 'axis1']) @pytest.mark.parametrize('n, noverlap', [(1, 0), (5, 0), (15, 2), (13, -3)], ids=['n1-noverlap0', 'n5-noverlap0', 'n15-noverlap2', 'n13-noverlapn3']) def test_stride_windows(self, n, noverlap, axis): x = np.arange(100) y = mlab.stride_windows(x, n, noverlap=noverlap, axis=axis) expected_shape = [0, 0] expected_shape[axis] = n expected_shape[1 - axis] = 100 // (n - noverlap) yt = self.calc_window_target(x, n, noverlap=noverlap, axis=axis) assert yt.shape == y.shape assert_array_equal(yt, y) assert tuple(expected_shape) == y.shape assert self.get_base(y) is x @pytest.mark.parametrize('axis', [0, 1], ids=['axis0', 'axis1']) def test_stride_windows_n32_noverlap0_unflatten(self, axis): n = 32 x = np.arange(n)[np.newaxis] x1 = np.tile(x, (21, 1)) x2 = x1.flatten() y = mlab.stride_windows(x2, n, axis=axis) if axis == 0: x1 = x1.T assert y.shape == x1.shape assert_array_equal(y, x1) def test_stride_ensure_integer_type(self): N = 100 x = np.full(N + 20, np.nan) y = x[10:-10] y[:] = 0.3 # previous to #3845 lead to corrupt access y_strided = mlab.stride_windows(y, n=33, noverlap=0.6) assert_array_equal(y_strided, 0.3) # previous to #3845 lead to corrupt access y_strided = mlab.stride_windows(y, n=33.3, noverlap=0) assert_array_equal(y_strided, 0.3) # even previous to #3845 could not find any problematic # configuration however, let's be sure it's not accidentally # introduced y_strided = _stride_repeat(y, n=33.815) assert_array_equal(y_strided, 0.3) def _apply_window(*args, **kwargs): with pytest.warns(MatplotlibDeprecationWarning): return mlab.apply_window(*args, **kwargs) class TestWindow: def setup(self): np.random.seed(0) n = 1000 self.sig_rand = np.random.standard_normal(n) + 100. self.sig_ones = np.ones(n) def check_window_apply_repeat(self, x, window, NFFT, noverlap): """ This is an adaptation of the original window application algorithm. This is here to test to make sure the new implementation has the same result. """ step = NFFT - noverlap ind = np.arange(0, len(x) - NFFT + 1, step) n = len(ind) result = np.zeros((NFFT, n)) if np.iterable(window): windowVals = window else: windowVals = window(np.ones(NFFT, x.dtype)) # do the ffts of the slices for i in range(n): result[:, i] = windowVals * x[ind[i]:ind[i]+NFFT] return result def test_window_none_rand(self): res = mlab.window_none(self.sig_ones) assert_array_equal(res, self.sig_ones) def test_window_none_ones(self): res = mlab.window_none(self.sig_rand) assert_array_equal(res, self.sig_rand) def test_window_hanning_rand(self): targ = np.hanning(len(self.sig_rand)) * self.sig_rand res = mlab.window_hanning(self.sig_rand) assert_allclose(targ, res, atol=1e-06) def test_window_hanning_ones(self): targ = np.hanning(len(self.sig_ones)) res = mlab.window_hanning(self.sig_ones) assert_allclose(targ, res, atol=1e-06) def test_apply_window_1D_axis1_ValueError(self): x = self.sig_rand window = mlab.window_hanning with pytest.raises(ValueError): _apply_window(x, window, axis=1, return_window=False) def test_apply_window_1D_els_wrongsize_ValueError(self): x = self.sig_rand window = mlab.window_hanning(np.ones(x.shape[0]-1)) with pytest.raises(ValueError): _apply_window(x, window) def test_apply_window_0D_ValueError(self): x = np.array(0) window = mlab.window_hanning with pytest.raises(ValueError): _apply_window(x, window, axis=1, return_window=False) def test_apply_window_3D_ValueError(self): x = self.sig_rand[np.newaxis][np.newaxis] window = mlab.window_hanning with pytest.raises(ValueError): _apply_window(x, window, axis=1, return_window=False) def test_apply_window_hanning_1D(self): x = self.sig_rand window = mlab.window_hanning window1 = mlab.window_hanning(np.ones(x.shape[0])) y, window2 = _apply_window(x, window, return_window=True) yt = window(x) assert yt.shape == y.shape assert x.shape == y.shape assert_allclose(yt, y, atol=1e-06) assert_array_equal(window1, window2) def test_apply_window_hanning_1D_axis0(self): x = self.sig_rand window = mlab.window_hanning y = _apply_window(x, window, axis=0, return_window=False) yt = window(x) assert yt.shape == y.shape assert x.shape == y.shape assert_allclose(yt, y, atol=1e-06) def test_apply_window_hanning_els_1D_axis0(self): x = self.sig_rand window = mlab.window_hanning(np.ones(x.shape[0])) window1 = mlab.window_hanning y = _apply_window(x, window, axis=0, return_window=False) yt = window1(x) assert yt.shape == y.shape assert x.shape == y.shape assert_allclose(yt, y, atol=1e-06) def test_apply_window_hanning_2D_axis0(self): x = np.random.standard_normal([1000, 10]) + 100. window = mlab.window_hanning y = _apply_window(x, window, axis=0, return_window=False) yt = np.zeros_like(x) for i in range(x.shape[1]): yt[:, i] = window(x[:, i]) assert yt.shape == y.shape assert x.shape == y.shape assert_allclose(yt, y, atol=1e-06) def test_apply_window_hanning_els1_2D_axis0(self): x = np.random.standard_normal([1000, 10]) + 100. window = mlab.window_hanning(np.ones(x.shape[0])) window1 = mlab.window_hanning y = _apply_window(x, window, axis=0, return_window=False) yt = np.zeros_like(x) for i in range(x.shape[1]): yt[:, i] = window1(x[:, i]) assert yt.shape == y.shape assert x.shape == y.shape assert_allclose(yt, y, atol=1e-06) def test_apply_window_hanning_els2_2D_axis0(self): x = np.random.standard_normal([1000, 10]) + 100. window = mlab.window_hanning window1 = mlab.window_hanning(np.ones(x.shape[0])) y, window2 = _apply_window(x, window, axis=0, return_window=True) yt = np.zeros_like(x) for i in range(x.shape[1]): yt[:, i] = window1*x[:, i] assert yt.shape == y.shape assert x.shape == y.shape assert_allclose(yt, y, atol=1e-06) assert_array_equal(window1, window2) def test_apply_window_hanning_els3_2D_axis0(self): x = np.random.standard_normal([1000, 10]) + 100. window = mlab.window_hanning window1 = mlab.window_hanning(np.ones(x.shape[0])) y, window2 = _apply_window(x, window, axis=0, return_window=True) yt = _apply_window(x, window1, axis=0, return_window=False) assert yt.shape == y.shape assert x.shape == y.shape assert_allclose(yt, y, atol=1e-06) assert_array_equal(window1, window2) def test_apply_window_hanning_2D_axis1(self): x = np.random.standard_normal([10, 1000]) + 100. window = mlab.window_hanning y = _apply_window(x, window, axis=1, return_window=False) yt = np.zeros_like(x) for i in range(x.shape[0]): yt[i, :] = window(x[i, :]) assert yt.shape == y.shape assert x.shape == y.shape assert_allclose(yt, y, atol=1e-06) def test_apply_window_hanning_2D_els1_axis1(self): x = np.random.standard_normal([10, 1000]) + 100. window = mlab.window_hanning(np.ones(x.shape[1])) window1 = mlab.window_hanning y = _apply_window(x, window, axis=1, return_window=False) yt = np.zeros_like(x) for i in range(x.shape[0]): yt[i, :] = window1(x[i, :]) assert yt.shape == y.shape assert x.shape == y.shape assert_allclose(yt, y, atol=1e-06) def test_apply_window_hanning_2D_els2_axis1(self): x = np.random.standard_normal([10, 1000]) + 100. window = mlab.window_hanning window1 = mlab.window_hanning(np.ones(x.shape[1])) y, window2 = _apply_window(x, window, axis=1, return_window=True) yt = np.zeros_like(x) for i in range(x.shape[0]): yt[i, :] = window1 * x[i, :] assert yt.shape == y.shape assert x.shape == y.shape assert_allclose(yt, y, atol=1e-06) assert_array_equal(window1, window2) def test_apply_window_hanning_2D_els3_axis1(self): x = np.random.standard_normal([10, 1000]) + 100. window = mlab.window_hanning window1 = mlab.window_hanning(np.ones(x.shape[1])) y = _apply_window(x, window, axis=1, return_window=False) yt = _apply_window(x, window1, axis=1, return_window=False) assert yt.shape == y.shape assert x.shape == y.shape assert_allclose(yt, y, atol=1e-06) def test_apply_window_stride_windows_hanning_2D_n13_noverlapn3_axis0(self): x = self.sig_rand window = mlab.window_hanning yi = mlab.stride_windows(x, n=13, noverlap=2, axis=0) y = _apply_window(yi, window, axis=0, return_window=False) yt = self.check_window_apply_repeat(x, window, 13, 2) assert yt.shape == y.shape assert x.shape != y.shape assert_allclose(yt, y, atol=1e-06) def test_apply_window_hanning_2D_stack_axis1(self): ydata = np.arange(32) ydata1 = ydata+5 ydata2 = ydata+3.3 ycontrol1 = _apply_window(ydata1, mlab.window_hanning) ycontrol2 = mlab.window_hanning(ydata2) ydata = np.vstack([ydata1, ydata2]) ycontrol = np.vstack([ycontrol1, ycontrol2]) ydata = np.tile(ydata, (20, 1)) ycontrol = np.tile(ycontrol, (20, 1)) result = _apply_window(ydata, mlab.window_hanning, axis=1, return_window=False) assert_allclose(ycontrol, result, atol=1e-08) def test_apply_window_hanning_2D_stack_windows_axis1(self): ydata = np.arange(32) ydata1 = ydata+5 ydata2 = ydata+3.3 ycontrol1 = _apply_window(ydata1, mlab.window_hanning) ycontrol2 = mlab.window_hanning(ydata2) ydata = np.vstack([ydata1, ydata2]) ycontrol = np.vstack([ycontrol1, ycontrol2]) ydata = np.tile(ydata, (20, 1)) ycontrol = np.tile(ycontrol, (20, 1)) result = _apply_window(ydata, mlab.window_hanning, axis=1, return_window=False) assert_allclose(ycontrol, result, atol=1e-08) def test_apply_window_hanning_2D_stack_windows_axis1_unflatten(self): n = 32 ydata = np.arange(n) ydata1 = ydata+5 ydata2 = ydata+3.3 ycontrol1 = _apply_window(ydata1, mlab.window_hanning) ycontrol2 = mlab.window_hanning(ydata2) ydata = np.vstack([ydata1, ydata2]) ycontrol = np.vstack([ycontrol1, ycontrol2]) ydata = np.tile(ydata, (20, 1)) ycontrol = np.tile(ycontrol, (20, 1)) ydata = ydata.flatten() ydata1 = mlab.stride_windows(ydata, 32, noverlap=0, axis=0) result = _apply_window(ydata1, mlab.window_hanning, axis=0, return_window=False) assert_allclose(ycontrol.T, result, atol=1e-08) class TestDetrend: def setup(self): np.random.seed(0) n = 1000 x = np.linspace(0., 100, n) self.sig_zeros = np.zeros(n) self.sig_off = self.sig_zeros + 100. self.sig_slope = np.linspace(-10., 90., n) self.sig_slope_mean = x - x.mean() sig_rand = np.random.standard_normal(n) sig_sin = np.sin(x*2*np.pi/(n/100)) sig_rand -= sig_rand.mean() sig_sin -= sig_sin.mean() self.sig_base = sig_rand + sig_sin self.atol = 1e-08 def test_detrend_none_0D_zeros(self): input = 0. targ = input mlab.detrend_none(input) assert input == targ def test_detrend_none_0D_zeros_axis1(self): input = 0. targ = input mlab.detrend_none(input, axis=1) assert input == targ def test_detrend_str_none_0D_zeros(self): input = 0. targ = input mlab.detrend(input, key='none') assert input == targ def test_detrend_detrend_none_0D_zeros(self): input = 0. targ = input mlab.detrend(input, key=mlab.detrend_none) assert input == targ def test_detrend_none_0D_off(self): input = 5.5 targ = input mlab.detrend_none(input) assert input == targ def test_detrend_none_1D_off(self): input = self.sig_off targ = input res = mlab.detrend_none(input) assert_array_equal(res, targ) def test_detrend_none_1D_slope(self): input = self.sig_slope targ = input res = mlab.detrend_none(input) assert_array_equal(res, targ) def test_detrend_none_1D_base(self): input = self.sig_base targ = input res = mlab.detrend_none(input) assert_array_equal(res, targ) def test_detrend_none_1D_base_slope_off_list(self): input = self.sig_base + self.sig_slope + self.sig_off targ = input.tolist() res = mlab.detrend_none(input.tolist()) assert res == targ def test_detrend_none_2D(self): arri = [self.sig_base, self.sig_base + self.sig_off, self.sig_base + self.sig_slope, self.sig_base + self.sig_off + self.sig_slope] input = np.vstack(arri) targ = input res = mlab.detrend_none(input) assert_array_equal(res, targ) def test_detrend_none_2D_T(self): arri = [self.sig_base, self.sig_base + self.sig_off, self.sig_base + self.sig_slope, self.sig_base + self.sig_off + self.sig_slope] input = np.vstack(arri) targ = input res = mlab.detrend_none(input.T) assert_array_equal(res.T, targ) def test_detrend_mean_0D_zeros(self): input = 0. targ = 0. res = mlab.detrend_mean(input) assert_almost_equal(res, targ) def test_detrend_str_mean_0D_zeros(self): input = 0. targ = 0. res = mlab.detrend(input, key='mean') assert_almost_equal(res, targ) def test_detrend_detrend_mean_0D_zeros(self): input = 0. targ = 0. res = mlab.detrend(input, key=mlab.detrend_mean) assert_almost_equal(res, targ) def test_detrend_mean_0D_off(self): input = 5.5 targ = 0. res = mlab.detrend_mean(input) assert_almost_equal(res, targ) def test_detrend_str_mean_0D_off(self): input = 5.5 targ = 0. res = mlab.detrend(input, key='mean') assert_almost_equal(res, targ) def test_detrend_detrend_mean_0D_off(self): input = 5.5 targ = 0. res = mlab.detrend(input, key=mlab.detrend_mean) assert_almost_equal(res, targ) def test_detrend_mean_1D_zeros(self): input = self.sig_zeros targ = self.sig_zeros res = mlab.detrend_mean(input) assert_allclose(res, targ, atol=self.atol) def test_detrend_mean_1D_base(self): input = self.sig_base targ = self.sig_base res = mlab.detrend_mean(input) assert_allclose(res, targ, atol=self.atol) def test_detrend_mean_1D_base_off(self): input = self.sig_base + self.sig_off targ = self.sig_base res = mlab.detrend_mean(input) assert_allclose(res, targ, atol=self.atol) def test_detrend_mean_1D_base_slope(self): input = self.sig_base + self.sig_slope targ = self.sig_base + self.sig_slope_mean res = mlab.detrend_mean(input) assert_allclose(res, targ, atol=self.atol) def test_detrend_mean_1D_base_slope_off(self): input = self.sig_base + self.sig_slope + self.sig_off targ = self.sig_base + self.sig_slope_mean res = mlab.detrend_mean(input) assert_allclose(res, targ, atol=1e-08) def test_detrend_mean_1D_base_slope_off_axis0(self): input = self.sig_base + self.sig_slope + self.sig_off targ = self.sig_base + self.sig_slope_mean res = mlab.detrend_mean(input, axis=0) assert_allclose(res, targ, atol=1e-08) def test_detrend_mean_1D_base_slope_off_list(self): input = self.sig_base + self.sig_slope + self.sig_off targ = self.sig_base + self.sig_slope_mean res = mlab.detrend_mean(input.tolist()) assert_allclose(res, targ, atol=1e-08) def test_detrend_mean_1D_base_slope_off_list_axis0(self): input = self.sig_base + self.sig_slope + self.sig_off targ = self.sig_base + self.sig_slope_mean res = mlab.detrend_mean(input.tolist(), axis=0) assert_allclose(res, targ, atol=1e-08) def test_detrend_mean_2D_default(self): arri = [self.sig_off, self.sig_base + self.sig_off] arrt = [self.sig_zeros, self.sig_base] input = np.vstack(arri) targ = np.vstack(arrt) res = mlab.detrend_mean(input) assert_allclose(res, targ, atol=1e-08) def test_detrend_mean_2D_none(self): arri = [self.sig_off, self.sig_base + self.sig_off] arrt = [self.sig_zeros, self.sig_base] input = np.vstack(arri) targ = np.vstack(arrt) res = mlab.detrend_mean(input, axis=None) assert_allclose(res, targ, atol=1e-08) def test_detrend_mean_2D_none_T(self): arri = [self.sig_off, self.sig_base + self.sig_off] arrt = [self.sig_zeros, self.sig_base] input = np.vstack(arri).T targ = np.vstack(arrt) res = mlab.detrend_mean(input, axis=None) assert_allclose(res.T, targ, atol=1e-08) def test_detrend_mean_2D_axis0(self): arri = [self.sig_base, self.sig_base + self.sig_off, self.sig_base + self.sig_slope, self.sig_base + self.sig_off + self.sig_slope] arrt = [self.sig_base, self.sig_base, self.sig_base + self.sig_slope_mean, self.sig_base + self.sig_slope_mean] input = np.vstack(arri).T targ = np.vstack(arrt).T res = mlab.detrend_mean(input, axis=0) assert_allclose(res, targ, atol=1e-08) def test_detrend_mean_2D_axis1(self): arri = [self.sig_base, self.sig_base + self.sig_off, self.sig_base + self.sig_slope, self.sig_base + self.sig_off + self.sig_slope] arrt = [self.sig_base, self.sig_base, self.sig_base + self.sig_slope_mean, self.sig_base + self.sig_slope_mean] input = np.vstack(arri) targ = np.vstack(arrt) res = mlab.detrend_mean(input, axis=1) assert_allclose(res, targ, atol=1e-08) def test_detrend_mean_2D_axism1(self): arri = [self.sig_base, self.sig_base + self.sig_off, self.sig_base + self.sig_slope, self.sig_base + self.sig_off + self.sig_slope] arrt = [self.sig_base, self.sig_base, self.sig_base + self.sig_slope_mean, self.sig_base + self.sig_slope_mean] input =
np.vstack(arri)
numpy.vstack
#!/usr/bin/env python # -*- coding: utf-8 -*- import unittest.mock import pytest import numpy as np from graphdot.model.gaussian_process import LowRankApproximateGPR np.random.seed(0) @pytest.mark.parametrize('X', [ np.arange(25), np.linspace(0, 1, 25), np.linspace(-1, 1, 25), ]) @pytest.mark.parametrize('y', [ np.zeros(25), -np.ones(25), np.ones(25), np.arange(25), np.sin(np.linspace(0, 1, 25) * 2 * np.pi), np.linspace(-1, 1, 25), ] + [ np.random.rand(25) for _ in range(5) ] + [ np.random.randn(25) for _ in range(5) ]) def test_nystrom_fit_self_consistency(X, y): class Kernel: def __call__(self, X, Y=None, s=0.01): return np.exp( -np.subtract.outer(X, Y if Y is not None else X)**2 / s**2 ) def diag(self, X): return
np.ones_like(X)
numpy.ones_like
import numpy as np import pytest from scipy.stats import (bootstrap, BootstrapDegenerateDistributionWarning, monte_carlo_test, permutation_test) from numpy.testing import assert_allclose, assert_equal, suppress_warnings from scipy import stats from scipy import special from .. import _resampling as _resampling from scipy._lib._util import rng_integers from scipy.optimize import root def test_bootstrap_iv(): message = "`data` must be a sequence of samples." with pytest.raises(ValueError, match=message): bootstrap(1, np.mean) message = "`data` must contain at least one sample." with pytest.raises(ValueError, match=message): bootstrap(tuple(), np.mean) message = "each sample in `data` must contain two or more observations..." with pytest.raises(ValueError, match=message): bootstrap(([1, 2, 3], [1]), np.mean) message = ("When `paired is True`, all samples must have the same length ") with pytest.raises(ValueError, match=message): bootstrap(([1, 2, 3], [1, 2, 3, 4]), np.mean, paired=True) message = "`vectorized` must be `True` or `False`." with pytest.raises(ValueError, match=message): bootstrap(1, np.mean, vectorized='ekki') message = "`axis` must be an integer." with pytest.raises(ValueError, match=message): bootstrap(([1, 2, 3],), np.mean, axis=1.5) message = "could not convert string to float" with pytest.raises(ValueError, match=message): bootstrap(([1, 2, 3],), np.mean, confidence_level='ni') message = "`n_resamples` must be a positive integer." with pytest.raises(ValueError, match=message): bootstrap(([1, 2, 3],), np.mean, n_resamples=-1000) message = "`n_resamples` must be a positive integer." with pytest.raises(ValueError, match=message): bootstrap(([1, 2, 3],), np.mean, n_resamples=1000.5) message = "`batch` must be a positive integer or None." with pytest.raises(ValueError, match=message): bootstrap(([1, 2, 3],), np.mean, batch=-1000) message = "`batch` must be a positive integer or None." with pytest.raises(ValueError, match=message): bootstrap(([1, 2, 3],), np.mean, batch=1000.5) message = "`method` must be in" with pytest.raises(ValueError, match=message): bootstrap(([1, 2, 3],), np.mean, method='ekki') message = "`method = 'BCa' is only available for one-sample statistics" def statistic(x, y, axis): mean1 = np.mean(x, axis) mean2 = np.mean(y, axis) return mean1 - mean2 with pytest.raises(ValueError, match=message): bootstrap(([.1, .2, .3], [.1, .2, .3]), statistic, method='BCa') message = "'herring' cannot be used to seed a" with pytest.raises(ValueError, match=message): bootstrap(([1, 2, 3],), np.mean, random_state='herring') @pytest.mark.parametrize("method", ['basic', 'percentile', 'BCa']) @pytest.mark.parametrize("axis", [0, 1, 2]) def test_bootstrap_batch(method, axis): # for one-sample statistics, batch size shouldn't affect the result np.random.seed(0) x = np.random.rand(10, 11, 12) res1 = bootstrap((x,), np.mean, batch=None, method=method, random_state=0, axis=axis, n_resamples=100) res2 = bootstrap((x,), np.mean, batch=10, method=method, random_state=0, axis=axis, n_resamples=100) assert_equal(res2.confidence_interval.low, res1.confidence_interval.low) assert_equal(res2.confidence_interval.high, res1.confidence_interval.high) assert_equal(res2.standard_error, res1.standard_error) @pytest.mark.parametrize("method", ['basic', 'percentile', 'BCa']) def test_bootstrap_paired(method): # test that `paired` works as expected np.random.seed(0) n = 100 x = np.random.rand(n) y = np.random.rand(n) def my_statistic(x, y, axis=-1): return ((x-y)**2).mean(axis=axis) def my_paired_statistic(i, axis=-1): a = x[i] b = y[i] res = my_statistic(a, b) return res i = np.arange(len(x)) res1 = bootstrap((i,), my_paired_statistic, random_state=0) res2 = bootstrap((x, y), my_statistic, paired=True, random_state=0) assert_allclose(res1.confidence_interval, res2.confidence_interval) assert_allclose(res1.standard_error, res2.standard_error) @pytest.mark.parametrize("method", ['basic', 'percentile', 'BCa']) @pytest.mark.parametrize("axis", [0, 1, 2]) @pytest.mark.parametrize("paired", [True, False]) def test_bootstrap_vectorized(method, axis, paired): # test that paired is vectorized as expected: when samples are tiled, # CI and standard_error of each axis-slice is the same as those of the # original 1d sample if not paired and method == 'BCa': # should re-assess when BCa is extended pytest.xfail(reason="BCa currently for 1-sample statistics only") np.random.seed(0) def my_statistic(x, y, z, axis=-1): return x.mean(axis=axis) + y.mean(axis=axis) + z.mean(axis=axis) shape = 10, 11, 12 n_samples = shape[axis] x = np.random.rand(n_samples) y = np.random.rand(n_samples) z = np.random.rand(n_samples) res1 = bootstrap((x, y, z), my_statistic, paired=paired, method=method, random_state=0, axis=0, n_resamples=100) reshape = [1, 1, 1] reshape[axis] = n_samples x = np.broadcast_to(x.reshape(reshape), shape) y = np.broadcast_to(y.reshape(reshape), shape) z = np.broadcast_to(z.reshape(reshape), shape) res2 = bootstrap((x, y, z), my_statistic, paired=paired, method=method, random_state=0, axis=axis, n_resamples=100) assert_allclose(res2.confidence_interval.low, res1.confidence_interval.low) assert_allclose(res2.confidence_interval.high, res1.confidence_interval.high) assert_allclose(res2.standard_error, res1.standard_error) result_shape = list(shape) result_shape.pop(axis) assert_equal(res2.confidence_interval.low.shape, result_shape) assert_equal(res2.confidence_interval.high.shape, result_shape) assert_equal(res2.standard_error.shape, result_shape) @pytest.mark.parametrize("method", ['basic', 'percentile', 'BCa']) def test_bootstrap_against_theory(method): # based on https://www.statology.org/confidence-intervals-python/ data = stats.norm.rvs(loc=5, scale=2, size=5000, random_state=0) alpha = 0.95 dist = stats.t(df=len(data)-1, loc=np.mean(data), scale=stats.sem(data)) expected_interval = dist.interval(confidence=alpha) expected_se = dist.std() res = bootstrap((data,), np.mean, n_resamples=5000, confidence_level=alpha, method=method, random_state=0) assert_allclose(res.confidence_interval, expected_interval, rtol=5e-4) assert_allclose(res.standard_error, expected_se, atol=3e-4) tests_R = {"basic": (23.77, 79.12), "percentile": (28.86, 84.21), "BCa": (32.31, 91.43)} @pytest.mark.parametrize("method, expected", tests_R.items()) def test_bootstrap_against_R(method, expected): # Compare against R's "boot" library # library(boot) # stat <- function (x, a) { # mean(x[a]) # } # x <- c(10, 12, 12.5, 12.5, 13.9, 15, 21, 22, # 23, 34, 50, 81, 89, 121, 134, 213) # # Use a large value so we get a few significant digits for the CI. # n = 1000000 # bootresult = boot(x, stat, n) # result <- boot.ci(bootresult) # print(result) x = np.array([10, 12, 12.5, 12.5, 13.9, 15, 21, 22, 23, 34, 50, 81, 89, 121, 134, 213]) res = bootstrap((x,), np.mean, n_resamples=1000000, method=method, random_state=0) assert_allclose(res.confidence_interval, expected, rtol=0.005) tests_against_itself_1samp = {"basic": 1780, "percentile": 1784, "BCa": 1784} @pytest.mark.parametrize("method, expected", tests_against_itself_1samp.items()) def test_bootstrap_against_itself_1samp(method, expected): # The expected values in this test were generated using bootstrap # to check for unintended changes in behavior. The test also makes sure # that bootstrap works with multi-sample statistics and that the # `axis` argument works as expected / function is vectorized. np.random.seed(0) n = 100 # size of sample n_resamples = 999 # number of bootstrap resamples used to form each CI confidence_level = 0.9 # The true mean is 5 dist = stats.norm(loc=5, scale=1) stat_true = dist.mean() # Do the same thing 2000 times. (The code is fully vectorized.) n_replications = 2000 data = dist.rvs(size=(n_replications, n)) res = bootstrap((data,), statistic=np.mean, confidence_level=confidence_level, n_resamples=n_resamples, batch=50, method=method, axis=-1) ci = res.confidence_interval # ci contains vectors of lower and upper confidence interval bounds ci_contains_true = np.sum((ci[0] < stat_true) & (stat_true < ci[1])) assert ci_contains_true == expected # ci_contains_true is not inconsistent with confidence_level pvalue = stats.binomtest(ci_contains_true, n_replications, confidence_level).pvalue assert pvalue > 0.1 tests_against_itself_2samp = {"basic": 892, "percentile": 890} @pytest.mark.parametrize("method, expected", tests_against_itself_2samp.items()) def test_bootstrap_against_itself_2samp(method, expected): # The expected values in this test were generated using bootstrap # to check for unintended changes in behavior. The test also makes sure # that bootstrap works with multi-sample statistics and that the # `axis` argument works as expected / function is vectorized. np.random.seed(0) n1 = 100 # size of sample 1 n2 = 120 # size of sample 2 n_resamples = 999 # number of bootstrap resamples used to form each CI confidence_level = 0.9 # The statistic we're interested in is the difference in means def my_stat(data1, data2, axis=-1): mean1 = np.mean(data1, axis=axis) mean2 = np.mean(data2, axis=axis) return mean1 - mean2 # The true difference in the means is -0.1 dist1 = stats.norm(loc=0, scale=1) dist2 = stats.norm(loc=0.1, scale=1) stat_true = dist1.mean() - dist2.mean() # Do the same thing 1000 times. (The code is fully vectorized.) n_replications = 1000 data1 = dist1.rvs(size=(n_replications, n1)) data2 = dist2.rvs(size=(n_replications, n2)) res = bootstrap((data1, data2), statistic=my_stat, confidence_level=confidence_level, n_resamples=n_resamples, batch=50, method=method, axis=-1) ci = res.confidence_interval # ci contains vectors of lower and upper confidence interval bounds ci_contains_true = np.sum((ci[0] < stat_true) & (stat_true < ci[1])) assert ci_contains_true == expected # ci_contains_true is not inconsistent with confidence_level pvalue = stats.binomtest(ci_contains_true, n_replications, confidence_level).pvalue assert pvalue > 0.1 @pytest.mark.parametrize("method", ["basic", "percentile"]) @pytest.mark.parametrize("axis", [0, 1]) def test_bootstrap_vectorized_3samp(method, axis): def statistic(*data, axis=0): # an arbitrary, vectorized statistic return sum((sample.mean(axis) for sample in data)) def statistic_1d(*data): # the same statistic, not vectorized for sample in data: assert sample.ndim == 1 return statistic(*data, axis=0) np.random.seed(0) x = np.random.rand(4, 5) y = np.random.rand(4, 5) z = np.random.rand(4, 5) res1 = bootstrap((x, y, z), statistic, vectorized=True, axis=axis, n_resamples=100, method=method, random_state=0) res2 = bootstrap((x, y, z), statistic_1d, vectorized=False, axis=axis, n_resamples=100, method=method, random_state=0) assert_allclose(res1.confidence_interval, res2.confidence_interval) assert_allclose(res1.standard_error, res2.standard_error) @pytest.mark.xfail_on_32bit("Failure is not concerning; see gh-14107") @pytest.mark.parametrize("method", ["basic", "percentile", "BCa"]) @pytest.mark.parametrize("axis", [0, 1]) def test_bootstrap_vectorized_1samp(method, axis): def statistic(x, axis=0): # an arbitrary, vectorized statistic return x.mean(axis=axis) def statistic_1d(x): # the same statistic, not vectorized assert x.ndim == 1 return statistic(x, axis=0) np.random.seed(0) x = np.random.rand(4, 5) res1 = bootstrap((x,), statistic, vectorized=True, axis=axis, n_resamples=100, batch=None, method=method, random_state=0) res2 = bootstrap((x,), statistic_1d, vectorized=False, axis=axis, n_resamples=100, batch=10, method=method, random_state=0) assert_allclose(res1.confidence_interval, res2.confidence_interval) assert_allclose(res1.standard_error, res2.standard_error) @pytest.mark.parametrize("method", ["basic", "percentile", "BCa"]) def test_bootstrap_degenerate(method): data = 35 * [10000.] if method == "BCa": with np.errstate(invalid='ignore'): with pytest.warns(BootstrapDegenerateDistributionWarning): res = bootstrap([data, ], np.mean, method=method) assert_equal(res.confidence_interval, (np.nan, np.nan)) else: res = bootstrap([data, ], np.mean, method=method) assert_equal(res.confidence_interval, (10000., 10000.)) assert_equal(res.standard_error, 0) @pytest.mark.parametrize("method", ["basic", "percentile", "BCa"]) def test_bootstrap_gh15678(method): # Check that gh-15678 is fixed: when statistic function returned a Python # float, method="BCa" failed when trying to add a dimension to the float rng = np.random.default_rng(354645618886684) dist = stats.norm(loc=2, scale=4) data = dist.rvs(size=100, random_state=rng) data = (data,) res = bootstrap(data, stats.skew, method=method, n_resamples=100, random_state=np.random.default_rng(9563)) # this always worked because np.apply_along_axis returns NumPy data type ref = bootstrap(data, stats.skew, method=method, n_resamples=100, random_state=np.random.default_rng(9563), vectorized=False) assert_allclose(res.confidence_interval, ref.confidence_interval) assert_allclose(res.standard_error, ref.standard_error) assert isinstance(res.standard_error, np.float64) def test_jackknife_resample(): shape = 3, 4, 5, 6 np.random.seed(0) x = np.random.rand(*shape) y = next(_resampling._jackknife_resample(x)) for i in range(shape[-1]): # each resample is indexed along second to last axis # (last axis is the one the statistic will be taken over / consumed) slc = y[..., i, :] expected = np.delete(x, i, axis=-1) assert np.array_equal(slc, expected) y2 = np.concatenate(list(_resampling._jackknife_resample(x, batch=2)), axis=-2) assert np.array_equal(y2, y) @pytest.mark.parametrize("rng_name", ["RandomState", "default_rng"]) def test_bootstrap_resample(rng_name): rng = getattr(np.random, rng_name, None) if rng is None: pytest.skip(f"{rng_name} not available.") rng1 = rng(0) rng2 = rng(0) n_resamples = 10 shape = 3, 4, 5, 6 np.random.seed(0) x = np.random.rand(*shape) y = _resampling._bootstrap_resample(x, n_resamples, random_state=rng1) for i in range(n_resamples): # each resample is indexed along second to last axis # (last axis is the one the statistic will be taken over / consumed) slc = y[..., i, :] js = rng_integers(rng2, 0, shape[-1], shape[-1]) expected = x[..., js] assert np.array_equal(slc, expected) @pytest.mark.parametrize("score", [0, 0.5, 1]) @pytest.mark.parametrize("axis", [0, 1, 2]) def test_percentile_of_score(score, axis): shape = 10, 20, 30 np.random.seed(0) x = np.random.rand(*shape) p = _resampling._percentile_of_score(x, score, axis=-1) def vectorized_pos(a, score, axis): return np.apply_along_axis(stats.percentileofscore, axis, a, score) p2 = vectorized_pos(x, score, axis=-1)/100 assert_allclose(p, p2, 1e-15) def test_percentile_along_axis(): # the difference between _percentile_along_axis and np.percentile is that # np.percentile gets _all_ the qs for each axis slice, whereas # _percentile_along_axis gets the q corresponding with each axis slice shape = 10, 20 np.random.seed(0) x = np.random.rand(*shape) q = np.random.rand(*shape[:-1]) * 100 y = _resampling._percentile_along_axis(x, q) for i in range(shape[0]): res = y[i] expected = np.percentile(x[i], q[i], axis=-1) assert_allclose(res, expected, 1e-15) @pytest.mark.parametrize("axis", [0, 1, 2]) def test_vectorize_statistic(axis): # test that _vectorize_statistic vectorizes a statistic along `axis` def statistic(*data, axis): # an arbitrary, vectorized statistic return sum((sample.mean(axis) for sample in data)) def statistic_1d(*data): # the same statistic, not vectorized for sample in data: assert sample.ndim == 1 return statistic(*data, axis=0) # vectorize the non-vectorized statistic statistic2 = _resampling._vectorize_statistic(statistic_1d) np.random.seed(0) x = np.random.rand(4, 5, 6) y = np.random.rand(4, 1, 6) z = np.random.rand(1, 5, 6) res1 = statistic(x, y, z, axis=axis) res2 = statistic2(x, y, z, axis=axis) assert_allclose(res1, res2) @pytest.mark.xslow() @pytest.mark.parametrize("method", ["basic", "percentile", "BCa"]) def test_vector_valued_statistic(method): # Generate 95% confidence interval around MLE of normal distribution # parameters. Repeat 100 times, each time on sample of size 100. # Check that confidence interval contains true parameters ~95 times. # Confidence intervals are estimated and stochastic; a test failure # does not necessarily indicate that something is wrong. More important # than values of `counts` below is that the shapes of the outputs are # correct. rng = np.random.default_rng(2196847219) params = 1, 0.5 sample = stats.norm.rvs(*params, size=(100, 100), random_state=rng) def statistic(data): return stats.norm.fit(data) res = bootstrap((sample,), statistic, method=method, axis=-1, vectorized=False) counts = np.sum((res.confidence_interval.low.T < params) & (res.confidence_interval.high.T > params), axis=0) assert np.all(counts >= 90) assert np.all(counts <= 100) assert res.confidence_interval.low.shape == (2, 100) assert res.confidence_interval.high.shape == (2, 100) assert res.standard_error.shape == (2, 100) # --- Test Monte Carlo Hypothesis Test --- # class TestMonteCarloHypothesisTest: atol = 2.5e-2 # for comparing p-value def rvs(self, rvs_in, rs): return lambda *args, **kwds: rvs_in(*args, random_state=rs, **kwds) def test_input_validation(self): # test that the appropriate error messages are raised for invalid input def stat(x): return stats.skewnorm(x).statistic message = "`axis` must be an integer." with pytest.raises(ValueError, match=message): monte_carlo_test([1, 2, 3], stats.norm.rvs, stat, axis=1.5) message = "`vectorized` must be `True` or `False`." with pytest.raises(ValueError, match=message): monte_carlo_test([1, 2, 3], stats.norm.rvs, stat, vectorized=1.5) message = "`rvs` must be callable." with pytest.raises(TypeError, match=message): monte_carlo_test([1, 2, 3], None, stat) message = "`statistic` must be callable." with pytest.raises(TypeError, match=message): monte_carlo_test([1, 2, 3], stats.norm.rvs, None) message = "`n_resamples` must be a positive integer." with pytest.raises(ValueError, match=message): monte_carlo_test([1, 2, 3], stats.norm.rvs, stat, n_resamples=-1000) message = "`n_resamples` must be a positive integer." with pytest.raises(ValueError, match=message): monte_carlo_test([1, 2, 3], stats.norm.rvs, stat, n_resamples=1000.5) message = "`batch` must be a positive integer or None." with pytest.raises(ValueError, match=message): monte_carlo_test([1, 2, 3], stats.norm.rvs, stat, batch=-1000) message = "`batch` must be a positive integer or None." with pytest.raises(ValueError, match=message): monte_carlo_test([1, 2, 3], stats.norm.rvs, stat, batch=1000.5) message = "`alternative` must be in..." with pytest.raises(ValueError, match=message): monte_carlo_test([1, 2, 3], stats.norm.rvs, stat, alternative='ekki') def test_batch(self): # make sure that the `batch` parameter is respected by checking the # maximum batch size provided in calls to `statistic` rng = np.random.default_rng(23492340193) x = rng.random(10) def statistic(x, axis): batch_size = 1 if x.ndim == 1 else len(x) statistic.batch_size = max(batch_size, statistic.batch_size) statistic.counter += 1 return stats.skewtest(x, axis=axis).statistic statistic.counter = 0 statistic.batch_size = 0 kwds = {'sample': x, 'statistic': statistic, 'n_resamples': 1000, 'vectorized': True} kwds['rvs'] = self.rvs(stats.norm.rvs, np.random.default_rng(32842398)) res1 = monte_carlo_test(batch=1, **kwds) assert_equal(statistic.counter, 1001) assert_equal(statistic.batch_size, 1) kwds['rvs'] = self.rvs(stats.norm.rvs, np.random.default_rng(32842398)) statistic.counter = 0 res2 = monte_carlo_test(batch=50, **kwds) assert_equal(statistic.counter, 21) assert_equal(statistic.batch_size, 50) kwds['rvs'] = self.rvs(stats.norm.rvs, np.random.default_rng(32842398)) statistic.counter = 0 res3 = monte_carlo_test(**kwds) assert_equal(statistic.counter, 2) assert_equal(statistic.batch_size, 1000) assert_equal(res1.pvalue, res3.pvalue) assert_equal(res2.pvalue, res3.pvalue) @pytest.mark.parametrize('axis', range(-3, 3)) def test_axis(self, axis): # test that Nd-array samples are handled correctly for valid values # of the `axis` parameter rng = np.random.default_rng(2389234) norm_rvs = self.rvs(stats.norm.rvs, rng) size = [2, 3, 4] size[axis] = 100 x = norm_rvs(size=size) expected = stats.skewtest(x, axis=axis) def statistic(x, axis): return stats.skewtest(x, axis=axis).statistic res = monte_carlo_test(x, norm_rvs, statistic, vectorized=True, n_resamples=20000, axis=axis) assert_allclose(res.statistic, expected.statistic) assert_allclose(res.pvalue, expected.pvalue, atol=self.atol) @pytest.mark.parametrize('alternative', ("less", "greater")) @pytest.mark.parametrize('a', np.linspace(-0.5, 0.5, 5)) # skewness def test_against_ks_1samp(self, alternative, a): # test that monte_carlo_test can reproduce pvalue of ks_1samp rng = np.random.default_rng(65723433) x = stats.skewnorm.rvs(a=a, size=30, random_state=rng) expected = stats.ks_1samp(x, stats.norm.cdf, alternative=alternative) def statistic1d(x): return stats.ks_1samp(x, stats.norm.cdf, mode='asymp', alternative=alternative).statistic norm_rvs = self.rvs(stats.norm.rvs, rng) res = monte_carlo_test(x, norm_rvs, statistic1d, n_resamples=1000, vectorized=False, alternative=alternative) assert_allclose(res.statistic, expected.statistic) if alternative == 'greater': assert_allclose(res.pvalue, expected.pvalue, atol=self.atol) elif alternative == 'less': assert_allclose(1-res.pvalue, expected.pvalue, atol=self.atol) @pytest.mark.parametrize('hypotest', (stats.skewtest, stats.kurtosistest)) @pytest.mark.parametrize('alternative', ("less", "greater", "two-sided")) @pytest.mark.parametrize('a', np.linspace(-2, 2, 5)) # skewness def test_against_normality_tests(self, hypotest, alternative, a): # test that monte_carlo_test can reproduce pvalue of normality tests rng = np.random.default_rng(85723405) x = stats.skewnorm.rvs(a=a, size=150, random_state=rng) expected = hypotest(x, alternative=alternative) def statistic(x, axis): return hypotest(x, axis=axis).statistic norm_rvs = self.rvs(stats.norm.rvs, rng) res = monte_carlo_test(x, norm_rvs, statistic, vectorized=True, alternative=alternative) assert_allclose(res.statistic, expected.statistic) assert_allclose(res.pvalue, expected.pvalue, atol=self.atol) @pytest.mark.parametrize('a', np.arange(-2, 3)) # skewness parameter def test_against_normaltest(self, a): # test that monte_carlo_test can reproduce pvalue of normaltest rng = np.random.default_rng(12340513) x = stats.skewnorm.rvs(a=a, size=150, random_state=rng) expected = stats.normaltest(x) def statistic(x, axis): return stats.normaltest(x, axis=axis).statistic norm_rvs = self.rvs(stats.norm.rvs, rng) res = monte_carlo_test(x, norm_rvs, statistic, vectorized=True, alternative='greater') assert_allclose(res.statistic, expected.statistic) assert_allclose(res.pvalue, expected.pvalue, atol=self.atol) @pytest.mark.parametrize('a', np.linspace(-0.5, 0.5, 5)) # skewness def test_against_cramervonmises(self, a): # test that monte_carlo_test can reproduce pvalue of cramervonmises rng = np.random.default_rng(234874135) x = stats.skewnorm.rvs(a=a, size=30, random_state=rng) expected = stats.cramervonmises(x, stats.norm.cdf) def statistic1d(x): return stats.cramervonmises(x, stats.norm.cdf).statistic norm_rvs = self.rvs(stats.norm.rvs, rng) res = monte_carlo_test(x, norm_rvs, statistic1d, n_resamples=1000, vectorized=False, alternative='greater') assert_allclose(res.statistic, expected.statistic) assert_allclose(res.pvalue, expected.pvalue, atol=self.atol) @pytest.mark.parametrize('dist_name', ('norm', 'logistic')) @pytest.mark.parametrize('i', range(5)) def test_against_anderson(self, dist_name, i): # test that monte_carlo_test can reproduce results of `anderson`. Note: # `anderson` does not provide a p-value; it provides a list of # significance levels and the associated critical value of the test # statistic. `i` used to index this list. # find the skewness for which the sample statistic matches one of the # critical values provided by `stats.anderson` def fun(a): rng = np.random.default_rng(394295467) x = stats.tukeylambda.rvs(a, size=100, random_state=rng) expected = stats.anderson(x, dist_name) return expected.statistic - expected.critical_values[i] with suppress_warnings() as sup: sup.filter(RuntimeWarning) sol = root(fun, x0=0) assert(sol.success) # get the significance level (p-value) associated with that critical # value a = sol.x[0] rng = np.random.default_rng(394295467) x = stats.tukeylambda.rvs(a, size=100, random_state=rng) expected = stats.anderson(x, dist_name) expected_stat = expected.statistic expected_p = expected.significance_level[i]/100 # perform equivalent Monte Carlo test and compare results def statistic1d(x): return stats.anderson(x, dist_name).statistic dist_rvs = self.rvs(getattr(stats, dist_name).rvs, rng) with suppress_warnings() as sup: sup.filter(RuntimeWarning) res = monte_carlo_test(x, dist_rvs, statistic1d, n_resamples=1000, vectorized=False, alternative='greater') assert_allclose(res.statistic, expected_stat) assert_allclose(res.pvalue, expected_p, atol=2*self.atol) class TestPermutationTest: rtol = 1e-14 # -- Input validation -- # def test_permutation_test_iv(self): def stat(x, y, axis): return stats.ttest_ind((x, y), axis).statistic message = "each sample in `data` must contain two or more ..." with pytest.raises(ValueError, match=message): permutation_test(([1, 2, 3], [1]), stat) message = "`data` must be a tuple containing at least two samples" with pytest.raises(ValueError, match=message): permutation_test((1,), stat) with pytest.raises(TypeError, match=message): permutation_test(1, stat) message = "`axis` must be an integer." with pytest.raises(ValueError, match=message): permutation_test(([1, 2, 3], [1, 2, 3]), stat, axis=1.5) message = "`permutation_type` must be in..." with pytest.raises(ValueError, match=message): permutation_test(([1, 2, 3], [1, 2, 3]), stat, permutation_type="ekki") message = "`vectorized` must be `True` or `False`." with pytest.raises(ValueError, match=message): permutation_test(([1, 2, 3], [1, 2, 3]), stat, vectorized=1.5) message = "`n_resamples` must be a positive integer." with pytest.raises(ValueError, match=message): permutation_test(([1, 2, 3], [1, 2, 3]), stat, n_resamples=-1000) message = "`n_resamples` must be a positive integer." with pytest.raises(ValueError, match=message): permutation_test(([1, 2, 3], [1, 2, 3]), stat, n_resamples=1000.5) message = "`batch` must be a positive integer or None." with pytest.raises(ValueError, match=message): permutation_test(([1, 2, 3], [1, 2, 3]), stat, batch=-1000) message = "`batch` must be a positive integer or None." with pytest.raises(ValueError, match=message): permutation_test(([1, 2, 3], [1, 2, 3]), stat, batch=1000.5) message = "`alternative` must be in..." with pytest.raises(ValueError, match=message): permutation_test(([1, 2, 3], [1, 2, 3]), stat, alternative='ekki') message = "'herring' cannot be used to seed a" with pytest.raises(ValueError, match=message): permutation_test(([1, 2, 3], [1, 2, 3]), stat, random_state='herring') # -- Test Parameters -- # @pytest.mark.parametrize('permutation_type', ['pairings', 'samples', 'independent']) def test_batch(self, permutation_type): # make sure that the `batch` parameter is respected by checking the # maximum batch size provided in calls to `statistic` np.random.seed(0) x = np.random.rand(10) y = np.random.rand(10) def statistic(x, y, axis): batch_size = 1 if x.ndim == 1 else len(x) statistic.batch_size = max(batch_size, statistic.batch_size) statistic.counter += 1 return np.mean(x, axis=axis) - np.mean(y, axis=axis) statistic.counter = 0 statistic.batch_size = 0 kwds = {'n_resamples': 1000, 'permutation_type': permutation_type, 'vectorized': True, 'random_state': 0} res1 = stats.permutation_test((x, y), statistic, batch=1, **kwds) assert_equal(statistic.counter, 1001) assert_equal(statistic.batch_size, 1) statistic.counter = 0 res2 = stats.permutation_test((x, y), statistic, batch=50, **kwds) assert_equal(statistic.counter, 21) assert_equal(statistic.batch_size, 50) statistic.counter = 0 res3 = stats.permutation_test((x, y), statistic, batch=1000, **kwds) assert_equal(statistic.counter, 2) assert_equal(statistic.batch_size, 1000) assert_equal(res1.pvalue, res3.pvalue) assert_equal(res2.pvalue, res3.pvalue) @pytest.mark.parametrize('permutation_type, exact_size', [('pairings', special.factorial(3)**2), ('samples', 2**3), ('independent', special.binom(6, 3))]) def test_permutations(self, permutation_type, exact_size): # make sure that the `permutations` parameter is respected by checking # the size of the null distribution np.random.seed(0) x = np.random.rand(3) y = np.random.rand(3) def statistic(x, y, axis): return np.mean(x, axis=axis) - np.mean(y, axis=axis) kwds = {'permutation_type': permutation_type, 'vectorized': True, 'random_state': 0} res = stats.permutation_test((x, y), statistic, n_resamples=3, **kwds) assert_equal(res.null_distribution.size, 3) res = stats.permutation_test((x, y), statistic, **kwds) assert_equal(res.null_distribution.size, exact_size) # -- Randomized Permutation Tests -- # # To get reasonable accuracy, these next three tests are somewhat slow. # Originally, I had them passing for all combinations of permutation type, # alternative, and RNG, but that takes too long for CI. Instead, split # into three tests, each testing a particular combination of the three # parameters. def test_randomized_test_against_exact_both(self): # check that the randomized and exact tests agree to reasonable # precision for permutation_type='both alternative, rng = 'less', 0 nx, ny, permutations = 8, 9, 24000 assert special.binom(nx + ny, nx) > permutations x = stats.norm.rvs(size=nx) y = stats.norm.rvs(size=ny) data = x, y def statistic(x, y, axis): return np.mean(x, axis=axis) - np.mean(y, axis=axis) kwds = {'vectorized': True, 'permutation_type': 'independent', 'batch': 100, 'alternative': alternative, 'random_state': rng} res = permutation_test(data, statistic, n_resamples=permutations, **kwds) res2 = permutation_test(data, statistic, n_resamples=np.inf, **kwds) assert res.statistic == res2.statistic assert_allclose(res.pvalue, res2.pvalue, atol=1e-2) @pytest.mark.slow() def test_randomized_test_against_exact_samples(self): # check that the randomized and exact tests agree to reasonable # precision for permutation_type='samples' alternative, rng = 'greater', None nx, ny, permutations = 15, 15, 32000 assert 2**nx > permutations x = stats.norm.rvs(size=nx) y = stats.norm.rvs(size=ny) data = x, y def statistic(x, y, axis): return np.mean(x - y, axis=axis) kwds = {'vectorized': True, 'permutation_type': 'samples', 'batch': 100, 'alternative': alternative, 'random_state': rng} res = permutation_test(data, statistic, n_resamples=permutations, **kwds) res2 = permutation_test(data, statistic, n_resamples=np.inf, **kwds) assert res.statistic == res2.statistic assert_allclose(res.pvalue, res2.pvalue, atol=1e-2) def test_randomized_test_against_exact_pairings(self): # check that the randomized and exact tests agree to reasonable # precision for permutation_type='pairings' alternative = 'two-sided' try: rng = np.random.default_rng(1) except AttributeError: rng = np.random.RandomState(1) nx, ny, permutations = 8, 8, 40000 assert special.factorial(nx) > permutations x = stats.norm.rvs(size=nx) y = stats.norm.rvs(size=ny) data = [x] def statistic1d(x): return stats.pearsonr(x, y)[0] statistic = _resampling._vectorize_statistic(statistic1d) kwds = {'vectorized': True, 'permutation_type': 'samples', 'batch': 100, 'alternative': alternative, 'random_state': rng} res = permutation_test(data, statistic, n_resamples=permutations, **kwds) res2 = permutation_test(data, statistic, n_resamples=np.inf, **kwds) assert res.statistic == res2.statistic assert_allclose(res.pvalue, res2.pvalue, atol=1e-2) @pytest.mark.parametrize('alternative', ('less', 'greater')) # Different conventions for two-sided p-value here VS ttest_ind. # Eventually, we can add multiple options for the two-sided alternative # here in permutation_test. @pytest.mark.parametrize('permutations', (30, 1e9)) @pytest.mark.parametrize('axis', (0, 1, 2)) def test_against_permutation_ttest(self, alternative, permutations, axis): # check that this function and ttest_ind with permutations give # essentially identical results. x = np.arange(3*4*5).reshape(3, 4, 5) y = np.moveaxis(np.arange(4)[:, None, None], 0, axis) res1 = stats.ttest_ind(x, y, permutations=permutations, axis=axis, random_state=0, alternative=alternative) def statistic(x, y, axis): return stats.ttest_ind(x, y, axis=axis).statistic res2 = permutation_test((x, y), statistic, vectorized=True, n_resamples=permutations, alternative=alternative, axis=axis, random_state=0) assert_allclose(res1.statistic, res2.statistic, rtol=self.rtol) if permutations == 30: # Even one-sided p-value is defined differently in ttest_ind for # randomized tests. See permutation_test references [2] and [3]. assert_allclose((res1.pvalue*30+1)/31, res2.pvalue, rtol=self.rtol) else: assert_allclose(res1.pvalue, res2.pvalue, rtol=self.rtol) # -- Independent (Unpaired) Sample Tests -- # def test_against_kstest(self): np.random.seed(0) x = stats.norm.rvs(size=4, scale=1) y = stats.norm.rvs(size=5, loc=3, scale=3) alternative = 'greater' expected = stats.ks_2samp(x, y, alternative=alternative, mode='exact') def statistic1d(x, y): return stats.ks_2samp(x, y, mode='asymp', alternative=alternative).statistic res = permutation_test((x, y), statistic1d, n_resamples=np.inf, alternative=alternative) assert_allclose(res.statistic, expected.statistic, rtol=self.rtol) assert_allclose(res.pvalue, expected.pvalue, rtol=self.rtol) @pytest.mark.parametrize('alternative', ("less", "greater", "two-sided")) def test_against_ansari(self, alternative): np.random.seed(0) x = stats.norm.rvs(size=4, scale=1) y = stats.norm.rvs(size=5, scale=3) # ansari has a different convention for 'alternative' alternative_correspondence = {"less": "greater", "greater": "less", "two-sided": "two-sided"} alternative_scipy = alternative_correspondence[alternative] expected = stats.ansari(x, y, alternative=alternative_scipy) def statistic1d(x, y): return stats.ansari(x, y).statistic res = permutation_test((x, y), statistic1d, n_resamples=np.inf, alternative=alternative) assert_allclose(res.statistic, expected.statistic, rtol=self.rtol) assert_allclose(res.pvalue, expected.pvalue, rtol=self.rtol) @pytest.mark.parametrize('alternative', ("less", "greater", "two-sided")) def test_against_mannwhitneyu(self, alternative): np.random.seed(0) x = stats.uniform.rvs(size=(3, 5, 2), loc=0) y = stats.uniform.rvs(size=(3, 5, 2), loc=0.05) expected = stats.mannwhitneyu(x, y, axis=1, alternative=alternative) def statistic(x, y, axis): return stats.mannwhitneyu(x, y, axis=axis).statistic res = permutation_test((x, y), statistic, vectorized=True, n_resamples=np.inf, alternative=alternative, axis=1) assert_allclose(res.statistic, expected.statistic, rtol=self.rtol) assert_allclose(res.pvalue, expected.pvalue, rtol=self.rtol) def test_against_cvm(self): np.random.seed(0) x = stats.norm.rvs(size=4, scale=1) y = stats.norm.rvs(size=5, loc=3, scale=3) expected = stats.cramervonmises_2samp(x, y, method='exact') def statistic1d(x, y): return stats.cramervonmises_2samp(x, y, method='asymptotic').statistic # cramervonmises_2samp has only one alternative, greater res = permutation_test((x, y), statistic1d, n_resamples=np.inf, alternative='greater') assert_allclose(res.statistic, expected.statistic, rtol=self.rtol) assert_allclose(res.pvalue, expected.pvalue, rtol=self.rtol) @pytest.mark.xslow() @pytest.mark.parametrize('axis', (-1, 2)) def test_vectorized_nsamp_ptype_both(self, axis): # Test that permutation_test with permutation_type='independent' works # properly for a 3-sample statistic with nd array samples of different # (but compatible) shapes and ndims. Show that exact permutation test # and random permutation tests approximate SciPy's asymptotic pvalues # and that exact and random permutation test results are even closer # to one another (than they are to the asymptotic results). np.random.seed(0) # Three samples, different (but compatible) shapes with different ndims x = np.random.rand(3) y = np.random.rand(1, 3, 2) z = np.random.rand(2, 1, 4) data = (x, y, z) # Define the statistic (and pvalue for comparison) def statistic1d(*data): return stats.kruskal(*data).statistic def pvalue1d(*data): return stats.kruskal(*data).pvalue statistic = _resampling._vectorize_statistic(statistic1d) pvalue = _resampling._vectorize_statistic(pvalue1d) # Calculate the expected results x2 = np.broadcast_to(x, (2, 3, 3)) # broadcast manually because y2 = np.broadcast_to(y, (2, 3, 2)) # _vectorize_statistic doesn't z2 = np.broadcast_to(z, (2, 3, 4)) expected_statistic = statistic(x2, y2, z2, axis=axis) expected_pvalue = pvalue(x2, y2, z2, axis=axis) # Calculate exact and randomized permutation results kwds = {'vectorized': False, 'axis': axis, 'alternative': 'greater', 'permutation_type': 'independent', 'random_state': 0} res = permutation_test(data, statistic1d, n_resamples=np.inf, **kwds) res2 = permutation_test(data, statistic1d, n_resamples=1000, **kwds) # Check results assert_allclose(res.statistic, expected_statistic, rtol=self.rtol) assert_allclose(res.statistic, res2.statistic, rtol=self.rtol) assert_allclose(res.pvalue, expected_pvalue, atol=6e-2) assert_allclose(res.pvalue, res2.pvalue, atol=3e-2) # -- Paired-Sample Tests -- # @pytest.mark.parametrize('alternative', ("less", "greater", "two-sided")) def test_against_wilcoxon(self, alternative): np.random.seed(0) x = stats.uniform.rvs(size=(3, 6, 2), loc=0) y = stats.uniform.rvs(size=(3, 6, 2), loc=0.05) # We'll check both 1- and 2-sample versions of the same test; # we expect identical results to wilcoxon in all cases. def statistic_1samp_1d(z): # 'less' ensures we get the same of two statistics every time return stats.wilcoxon(z, alternative='less').statistic def statistic_2samp_1d(x, y): return stats.wilcoxon(x, y, alternative='less').statistic def test_1d(x, y): return stats.wilcoxon(x, y, alternative=alternative) test = _resampling._vectorize_statistic(test_1d) expected = test(x, y, axis=1) expected_stat = expected[0] expected_p = expected[1] res1 = permutation_test((x-y,), statistic_1samp_1d, vectorized=False, permutation_type='samples', n_resamples=np.inf, alternative=alternative, axis=1) res2 = permutation_test((x, y), statistic_2samp_1d, vectorized=False, permutation_type='samples', n_resamples=np.inf, alternative=alternative, axis=1) # `wilcoxon` returns a different statistic with 'two-sided' assert_allclose(res1.statistic, res2.statistic, rtol=self.rtol) if alternative != 'two-sided':
assert_allclose(res2.statistic, expected_stat, rtol=self.rtol)
numpy.testing.assert_allclose
# get level-1 model for each dataset, for example the averaged model # for data 5-57-21k, which includes predictions from xgboost, # random forest ..., projected features from pca, ica, and selected features # from some models, the model should be able to give prediction score # for each biz_id, used for level-2 model from __future__ import division from __future__ import absolute_import from __future__ import print_function from __future__ import unicode_literals from os import path import os import pickle import argparse import numpy as np import xgboost as xgb from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import ExtraTreesClassifier from sklearn.feature_selection import SelectFromModel from sets import Set from utils import * np.random.seed(123213) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--data', choices=['21k', 'v3', 'colHist'], default="21k") parser.add_argument('--prob', choices=['75', '50'], default='75') parser.add_argument('--reps', choices=['5', '9'], default='5') parser.add_argument('--yix', type=int, default=0) return parser.parse_args() def get_data_train(args): data_dir = path.join("../feature/", args.reps + "_" + args.prob) if args.data == '21k': X_path = path.join(data_dir, "X_train.npy") y_path = path.join(data_dir, "y_train.npy") X = np.load(X_path) y = np.load(y_path) sel_range = range(0, 2048) return X[:, sel_range], y[:, args.yix] elif args.data == 'colHist': X_path = path.join(data_dir, "X_train.npy") y_path = path.join(data_dir, "y_train.npy") X = np.load(X_path) y = np.load(y_path) sel_range = range(2048, 2048 + 772) return X[:, sel_range], y[:, args.yix] elif args.data == 'v3': X_path = path.join(data_dir, "X_train.npy") y_path = path.join(data_dir, "y_train.npy") X = np.load(X_path) y = np.load(y_path) sel_range = range(2048 + 772, 6916) return X[:, sel_range], y[:, args.yix] def get_data_test(args): data_dir = path.join("../feature/", args.reps + "_" + args.prob) if args.data == '21k': X_path = path.join(data_dir, "X_test.npy") biz_path = path.join(data_dir, "bizlist.npy") X = np.load(X_path) biz_list = np.load(biz_path) sel_range = range(0, 2048) return X[:, sel_range], biz_list elif args.data == 'colHist': X_path = path.join(data_dir, "X_test.npy") biz_path = path.join(data_dir, "bizlist.npy") X = np.load(X_path) biz_list = np.load(biz_path) sel_range = range(2048, 2048 + 772) return X[:, sel_range], biz_list elif args.data == 'v3': X_path = path.join(data_dir, "X_test.npy") biz_path = path.join(data_dir, "bizlist.npy") X = np.load(X_path) biz_list = np.load(biz_path) sel_range = range(2048 + 772, 6916) return X[:, sel_range], biz_list class level1_model: def get_fitted(self): pass def get_feature_list(self, X_train=None, y_train=None): pass def predict(self, X_test): pass class level1_xgboost(level1_model): def __init__(self, args): self.args = args model_dir = "_".join(("xgboost_f1", args.reps, args.prob, args.data)) model_name = "model_" + str(args.yix) + ".pkl" outfold_name = "outFold_" + str(args.yix) + ".npy" model_path = path.join(path.dirname(__file__), model_dir, model_name) outfold_path = path.join( path.dirname(__file__), model_dir, outfold_name) with open(model_path, 'r') as f: self.clf = pickle.load(f) self.outfold_pred = np.load(outfold_path) def get_fitted(self): return np.array([self.outfold_pred]).T def get_feature_list(self, X_train=None, y_train=None): f_score = self.clf.get_fscore() k = np.array(f_score.keys()) v = np.array(f_score.values()) f_ix = k[v > np.mean(v)] f_list = map(lambda x: int(x[1:]), f_ix) return {args.data: f_list} def predict(self, X_test): dtest = xgb.DMatrix(X_test) return np.array([self.clf.predict(dtest, output_margin=True)]).T class level1_rf(level1_model): def __init__(self, args): self.args = args model_dir = "_".join(("randomForest", args.reps, args.prob, args.data)) model_name = "model_" + str(args.yix) + ".pkl" outfold_name = "outFold_" + str(args.yix) + ".npy" param_name = "param_" + str(args.yix) + ".pkl" model_path = path.join(path.dirname(__file__), model_dir, model_name) outfold_path = path.join( path.dirname(__file__), model_dir, outfold_name) param_path = path.join(path.dirname(__file__), model_dir, param_name) with open(model_path, 'r') as f: self.clf = pickle.load(f) with open(param_path, 'r') as f: self.params = pickle.load(f) self.outfold_pred = np.load(outfold_path) def get_fitted(self): return np.array([self.outfold_pred]).T def get_feature_list(self, X_train, y_train): weight = y_train.shape[0] / (2 * np.bincount(y_train)) sample_weight = np.array([weight[i] for i in y_train]) clf = RandomForestClassifier(**self.params) clf.fit(X_train, y_train, sample_weight) score = np.array(clf.feature_importances_) sel_ix = np.arange(score.shape[0])[score > np.mean(score)] return {args.data: list(sel_ix)} def predict(self, X_test): pred_list = [] for cclf in self.clf: pred = cclf.predict_proba(X_test)[:, 1] pred_list.append(pred) return np.array([np.mean(np.array(pred_list), axis=0)]).T class level1_extree(level1_model): def __init__(self, args): self.args = args model_dir = "_".join(("extraTree", args.reps, args.prob, args.data)) model_name = "model_" + str(args.yix) + ".pkl" outfold_name = "outFold_" + str(args.yix) + ".npy" param_name = "param_" + str(args.yix) + ".pkl" model_path = path.join(path.dirname(__file__), model_dir, model_name) outfold_path = path.join( path.dirname(__file__), model_dir, outfold_name) param_path = path.join(path.dirname(__file__), model_dir, param_name) with open(model_path, 'r') as f: self.clf = pickle.load(f) with open(param_path, 'r') as f: self.params = pickle.load(f) self.outfold_pred = np.load(outfold_path) def get_fitted(self): return np.array([self.outfold_pred]).T def get_feature_list(self, X_train, y_train): weight = y_train.shape[0] / (2 * np.bincount(y_train)) sample_weight = np.array([weight[i] for i in y_train]) clf = ExtraTreesClassifier(**self.params) clf.fit(X_train, y_train, sample_weight) score = np.array(clf.feature_importances_) sel_ix = np.arange(score.shape[0])[score > np.mean(score)] return {args.data: list(sel_ix)} def predict(self, X_test): pred_list = [] for cclf in self.clf: pred = cclf.predict_proba(X_test)[:, 1] pred_list.append(pred) return np.array([np.mean(np.array(pred_list), axis=0)]).T class level1_pca(level1_model): def __init__(self, args): self.args = args model_dir = "_".join(("pca", args.reps, args.prob, args.data)) model_name = "model.pkl" outfold_name = "outFold.npy" param_name = "param.pkl" model_path = path.join(path.dirname(__file__), model_dir, model_name) outfold_path = path.join( path.dirname(__file__), model_dir, outfold_name) param_path = path.join(path.dirname(__file__), model_dir, param_name) with open(model_path, 'r') as f: self.clf = pickle.load(f) with open(param_path, 'r') as f: self.params = pickle.load(f) self.outfold_pred = np.load(outfold_path) def get_fitted(self): return self.outfold_pred def get_feature_list(self, X_train=None, y_train=None): return {args.data: []} def predict(self, X_test): return self.clf.transform(X_test) class level1_ica(level1_model): def __init__(self, args): self.args = args model_dir = "_".join(("ica", args.reps, args.prob, args.data)) model_name = "model.pkl" outfold_name = "outFold.npy" param_name = "param.pkl" model_path = path.join(path.dirname(__file__), model_dir, model_name) outfold_path = path.join( path.dirname(__file__), model_dir, outfold_name) param_path = path.join(path.dirname(__file__), model_dir, param_name) with open(model_path, 'r') as f: self.clf = pickle.load(f) with open(param_path, 'r') as f: self.params = pickle.load(f) self.outfold_pred =
np.load(outfold_path)
numpy.load
# pylint: disable=C0302, C1802, C0209, R1705, W0201 import os, resource from typing import Any, List, Optional, Tuple, Union import numpy as np from maddness.util.least_squares import ( # type: ignore[attr-defined] _XW_encoded, encoded_lstsq, sparse_encoded_lstsq, ) from maddness.util.hash_function_helper import ( # type: ignore[attr-defined] Bucket, MultiSplit, create_codebook_start_end_idxs, ) def learn_binary_tree_splits( X: np.ndarray, nsplits: int = 4, # levels of resulting binary hash tree return_prototypes: bool = True, # return_buckets: bool = False, X_orig: Optional[np.ndarray] = None, check_x_dims: int = 8, # can be used to check more or less dims with max losses learn_quantize_params: bool = False, ) -> Tuple[list, int, Union[list, np.ndarray]]: assert nsplits <= 4 # >4 splits means >16 split_vals for this func's impl X = X.copy().astype(np.float32) N, D = X.shape # D amount of IDx per codebook X_orig = X.copy() if X_orig is None else X_orig.copy() # initially, one big bucket with everything buckets = [ Bucket(sumX=X.sum(axis=0), sumX2=(X * X).sum(axis=0), point_ids=np.arange(N)) ] # total_loss = sum([bucket.loss for bucket in buckets]) # print("================================") # print("learn_binary_tree_splits(): initial loss: ", total_loss) splits = [] col_losses = np.zeros(D, dtype=np.float32) OFFSET = 0.0 SCALE_BY = 1.0 X = X * SCALE_BY + OFFSET # X_orig = X_orig + OFFSET for _ in range(nsplits): # in the original code there are more strategies: eigenvec, bucket_eigenvecs, kurtosis # dim_heuristic == "bucket_sse": col_losses[:] = 0 # set all zero for buck in buckets: col_losses += buck.col_sum_sqs() # return variance try_dims = np.argsort(col_losses)[::-1][ :check_x_dims ] # choose biggest column losses losses = np.zeros(len(try_dims), dtype=X.dtype) all_split_vals = [] # vals chosen by each bucket/group for each dim # determine for this dim what the best split vals are for each # group and what the loss is when using these split vals for d, dim in enumerate(try_dims): split_vals = [] # each bucket contributes one split val for _, buck in enumerate(buckets): # X.shape (50000, 32), dim is a number 0-31, val 1D, loss 1D val, loss = buck.optimal_split_val(X, dim, X_orig=X_orig) losses[d] += loss if d > 0 and losses[d] >= np.min(losses[:d]): # early stop break split_vals.append(val) all_split_vals.append(split_vals) # determine best dim to split on, and pull out associated split # vals for all buckets best_tried_dim_idx = np.argmin(losses) best_dim = try_dims[best_tried_dim_idx] use_split_vals = all_split_vals[best_tried_dim_idx] split = MultiSplit(dim=best_dim, vals=use_split_vals) if learn_quantize_params: # simple version, which also handles 1 bucket: just set min # value to be avg of min splitval and xval, and max value to # be avg of max splitval and xval x = X[:, best_dim] # Vector (50000, 1) offset = (np.min(x) + np.min(use_split_vals)) / 2 upper_val = (np.max(x) + np.max(use_split_vals)) / 2 - offset # TODO: why this specific scale value?? scale = 254.0 / upper_val # if learn_quantize_params == "int16": scale = 2.0 ** int(np.log2(scale)) split.offset = offset split.scaleby = scale split.vals = (split.vals - split.offset) * split.scaleby # TODO: look at clippings split.vals = np.clip(split.vals, 0, 255).astype(np.int32) else: split.offset = OFFSET split.scaleby = SCALE_BY splits.append(split) # apply this split to get next round of buckets new_buckets = [] for i, buck in enumerate(buckets): val = use_split_vals[i] new_buckets += list(buck.split(X, dim=best_dim, val=val, X_orig=X_orig)) buckets = new_buckets # pylint: disable=consider-using-generator loss = sum([bucket.loss for bucket in buckets]) # print("learn_binary_tree_splits(): returning loss: ", loss) if return_prototypes: prototypes = np.vstack([buck.col_means() for buck in buckets]) assert prototypes.shape == (len(buckets), X.shape[1]) return splits, loss, prototypes # if return_buckets: return splits, loss, buckets def init_and_learn_hash_function( X: np.ndarray, C: int, pq_perm_algo: str = "start" ) -> Tuple[np.ndarray, list, np.ndarray, list]: _, D = X.shape K = 16 X = X.astype(np.float32) X_error = X.copy().astype(np.float32) X_orig = X all_prototypes = np.zeros((C, K, D), dtype=np.float32) all_splits: List = [] pq_idxs = create_codebook_start_end_idxs(X, C, algo=pq_perm_algo) # ------------------------ 0th iteration; initialize all codebooks all_splits = [] all_buckets = [] for c in range(C): start_idx, end_idx = pq_idxs[c] idxs = np.arange(start_idx, end_idx) # in original code there is other selections based on PCA and disjoint PCA use_X_error = X_error[:, idxs] use_X_orig = X_orig[:, idxs] # learn codebook to soak current residuals multisplits, _, buckets = learn_binary_tree_splits( use_X_error, X_orig=use_X_orig, return_prototypes=False ) for split in multisplits: split.dim = idxs[split.dim] all_splits.append(multisplits) all_buckets.append(buckets) # update residuals and store prototypes # idxs = IDs that were look at for current codebook # buck.point_ids = rows that landed in certain K # [ 0 5 21 ... 99950 99979 99999] (N=100000) # X_error = is here still the A input # remove centroid from all the points that lie in a certain codebook # set prototype value centroid = np.zeros(D, dtype=np.float32) for b, buck in enumerate(buckets): # print(b, idxs, buck.point_ids, centroid, buck.col_means()) if len(buck.point_ids): centroid[:] = 0 centroid[idxs] = buck.col_means() X_error[buck.point_ids] -= centroid # update centroid here in case we want to regularize it somehow all_prototypes[c, b] = centroid # X_error = A_input - all_centroids ram_usage = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss print( f"Learning progress {X.shape}-{C}-{K}: {c + 1}/{C} " f"({(ram_usage / (1024 * 1024)):.3f} GB)" ) return X_error, all_splits, all_prototypes, all_buckets def apply_hash_function(X: np.ndarray, splits: List[MultiSplit]) -> np.ndarray: N, _ = X.shape nsplits = len(splits) assert len(splits) >= 1 # original code had a distinction: not sure why group_ids = np.zeros(N, dtype=np.int32) for i in range(nsplits): split = splits[i] vals = split.vals[group_ids] indicators = split.preprocess_x(X[:, split.dim]) > vals group_ids = (group_ids * 2) + indicators return group_ids def maddness_encode( X: np.ndarray, multisplits_lists: list[list[MultiSplit]] ) -> np.ndarray: N, _ = X.shape C = len(multisplits_lists) A_enc = np.empty((N, C), dtype=np.int32, order="F") # column-major for c in range(C): A_enc[:, c] = apply_hash_function(X, multisplits_lists[c]) return np.ascontiguousarray(A_enc) # @_memory.cache def learn_proto_and_hash_function( X: np.ndarray, C: int, lut_work_const: int = -1 ) -> Tuple[list[list[MultiSplit]], np.ndarray, np.ndarray]: _, D = X.shape K = 16 used_perm_algo = "start" # or end X_orig = X.astype(np.float32) # X_error = X_orig - centroid shape: [N, D] X_error, all_splits, all_prototypes, _ = init_and_learn_hash_function( X, C, pq_perm_algo=used_perm_algo ) msv_orig = (X_orig * X_orig).mean() mse_error = (X_error * X_error).mean() print( "X_error mse / X mean squared value: ", mse_error / msv_orig, mse_error, msv_orig, np.mean(X_orig), ) squared_diff = np.square(X_orig - X_error).mean() print("Error to Original squared diff", squared_diff) # optimize prototypes discriminatively conditioned on assignments # applying g(A) [N, C] with values from 0-K (50000, 16) A_enc = maddness_encode(X, all_splits) # optimizing prototypes if lut_work_const != 1: # if it's 1, equivalent to just doing PQ if lut_work_const < 0: # print("fitting dense lstsq to X_error") W = encoded_lstsq(A_enc=A_enc, Y=X_error) else: W, _ = sparse_encoded_lstsq( A_enc, X_error, nnz_blocks=lut_work_const, pq_perm_algo=used_perm_algo ) all_prototypes_delta = W.reshape(C, K, D) all_prototypes += all_prototypes_delta # check how much improvement we got X_error -= _XW_encoded(A_enc, W) # if we fit to X_error mse_res = (X_error * X_error).mean() print("X_error mse / X mse after lstsq: ", mse_res / msv_orig) ram_usage = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss print( f"After Ridge regression {X.shape}-{C}-{K}" f"({(ram_usage / (1024 * 1024)):.3f} GB)" ) report_array = np.array( [ mse_error, msv_orig, mse_error / msv_orig, np.mean(X_orig), mse_res, mse_res / msv_orig, ram_usage / (1024 * 1024), ] ) return all_splits, all_prototypes, report_array def maddness_lut(q: np.ndarray, all_prototypes: np.ndarray) -> np.ndarray: q = q.reshape(1, 1, -1) # all_prototypes is shape C, K, D return (q * all_prototypes).sum(axis=2) # C, K def maddness_quantize_luts(luts: np.ndarray, force_power_of_2: bool = True) -> Any: mins = luts.min(axis=(0, 2)) maxs = luts.max(axis=(0, 2)) gaps = maxs - mins gap = np.max(gaps) if force_power_of_2: exponent = np.ceil(np.log2(gap)) scale = 2 ** int(-exponent) # scale is a power of 2, so can just shift scale *= 255.5 - 1e-10 # so max val is at most 255 else: scale = (255.5 - 1e-10) / gap offsets = mins[np.newaxis, :, np.newaxis] luts_quantized = (luts - offsets) * scale luts_quantized = (luts_quantized + 0.5).astype(np.int64) assert np.min(luts_quantized) >= 0 assert np.max(luts_quantized) <= 255.0 return luts_quantized, offsets.sum(), scale # pylint: disable=R0902 class MaddnessMatmul: def __init__(self, C: int = 16, lut_work_const: int = -1) -> None: # checks if lut_work_const > 0 and lut_work_const > C: raise Exception("lut_work_const > C: {} > {}".format(lut_work_const, C)) self.lut_work_const = lut_work_const self.C = C self.K = 16 self.A_enc: Optional[np.ndarray] = None self.luts: Optional[np.ndarray] = None self.quantize_lut = False self.upcast_every = 16 self.upcast_every = min(self.C, self.upcast_every) # important otherwise wrong summation assert self.upcast_every in (1, 2, 4, 8, 16, 32, 64, 128, 256) self.accumulate_how = "mean" # sum def _learn_hash_buckets_and_prototypes(self, A: np.ndarray) -> None: _, D = A.shape if D < self.C: raise Exception("D < C: {} < {}".format(D, self.C)) self.splits_lists, self.prototypes, _ = learn_proto_and_hash_function( A, self.C, lut_work_const=self.lut_work_const ) def _encode_A(self, A: np.ndarray) -> np.ndarray: idxs = maddness_encode(A, self.splits_lists) # offsets = [ 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240] offsets = np.arange(self.C, dtype=np.int32) * self.K return idxs + offsets def _create_lut(self, B: np.ndarray) -> Tuple[np.ndarray, float, float]: B = np.atleast_2d(B) luts =
np.zeros((B.shape[0], self.C, self.K))
numpy.zeros
""" io images --------- Module to format images to be used by this framework. """ import numpy as np from itertools import product def create_locs_features_from_image(image): """Create locs and features from image. Parameters ---------- image: np.ndarray the image matrix represented using numpy. Returns ------- locs: np.ndarray the locations positions. The grid positions of the image. feats: np.ndarray the intensity of the image. """ sh = image.shape if len(sh) == 2: image = image.reshape((sh[0], sh[1], 1)) map2indices = lambda x, y: x + y*sh[0] n = np.prod(sh[:2]) locs =
np.zeros((n, 2))
numpy.zeros
# a421_one_movie_recommender.py # A basic movie recommendation code using average for a single user and single movie. # This code is based on the netflix-style-recommender project shared on GitHub. # It was written by Nikhil22. # The code has been modified from its original version. import numpy as np # define the movies, users, and different ratings movies = ["Back to the Future", "Guardians of the Galaxy", "Avatar", "Indiana Jones", "2001: A Space Odyssey"] genres = ["Action", "Adventure", "Science Fiction", "Comedy"] #TODO 1 change these values to the names of the students in your group users = ["Tyler", "John", "Sarah", "Matt"] #TODO 2 paste your ratings tables here movie_ratings =[[8,8,0,5], [6,6,0,7], [3,8,0,7], [0,9,0,0], [0,0,0,0]] user_preferences = [[4,5,5,3], [3,3,5,4], [3,3,3,4], [4,4,3,5]] movie_genre = [[0.6, 0.0, 0.3, 0.1], [0.2, 0.3, 0.3, 0.2], [0.3, 0.3, 0.4, 0.0], [0.6, 0.2, 0.0, 0.2], [0.4, 0.0, 0.6, 0.0]] # TODO Your ratings, rate the five movies in the list below # notice how your recommendations change when you add a rating for 1 movie your_ratings = np.zeros((5, 1)) your_ratings[0] = 5 # rating for Back to the Future your_ratings[1] = 1 # rating for Guardians of the Galaxy your_ratings[2] = 3 # rating for Avatar your_ratings[3] = 3 # rating for Indiana Jones your_ratings[4] = 6 # rating for The Matrix # --- Normalization Process --- # ratings, movies_features, and user_prefs are arrays which are more structured lists ratings = np.array(movie_ratings) movie_features = np.array(movie_genre) user_prefs =
np.array(user_preferences)
numpy.array
"""Cox-Ingersoll-Ross (CIR) model dx_t = (drift - speed * x_t) * dt + volatility * sqrt(x_t) * dw_t d[sqrt(x_t)] = ((drift / 2 - volatility ** 2 / 4) / sqrt(x_t) - speed / 2 * sqrt(x_t)) * dt + volatility / 2 * dw_t """ from pprint import pprint import numpy as np import matplotlib.pyplot as plt from time_series_model_template import TimeSeriesModel class CoxIngersollRoss(TimeSeriesModel): def __init__(self): self.drift = None self.speed = None self.volatility = None def fit_parameters(self, dt, x, method='OLS'): methods = {'OLS': self.fit_parameters_ols, 'MLE': self.fit_parameters_mle} methods[method](dt, x) def fit_parameters_ols(self, dt, x): sqrt_x = np.sqrt(x) y = np.diff(x) / sqrt_x[:-1] xx = np.vstack((sqrt_x[:-1], 1. / sqrt_x[:-1])).T (a, b), (sum_error2,), _, _ = np.linalg.lstsq(xx, y, rcond=-1) self.speed = - a / dt self.drift = b / dt sigma2 = sum_error2 / (len(y) - 2) / dt self.volatility = np.sqrt(sigma2) def fit_parameters_ols_2(self, dt, x): sqrt_x = np.sqrt(x) xx = np.vstack((sqrt_x[:-1], 1 / sqrt_x[:-1])).T y = sqrt_x[1:] (a, b), (sum_error2,), _, _ = np.linalg.lstsq(xx, y, rcond=-1) self.speed = 2 * (1 - a) / dt sigma2 = sum_error2 / (len(y) - 2) * 4 / dt self.volatility = np.sqrt(sigma2) self.drift = 2 * (b / dt + sigma2 / 4) def fit_parameters_mle(self, dt, x): pass def simulate(self, x0, t): x = np.zeros_like(t) # sqrt_x = np.zeros_like(t) x[0] = x0 # sqrt_x[0] = np.sqrt(x0) for i in range(1, len(t)): dt = t[i] - t[i-1] dw = np.random.normal(0, 1) * np.sqrt(dt) # sqrt_x[i] = sqrt_x[i - 1] + ( # (self.drift / 2 - self.volatility ** 2 / 4) / sqrt_x[i - 1] - self.speed / 2 * sqrt_x[i - 1] # ) * dt + self.volatility / 2 * dw x[i] = x[i - 1] + (self.drift - self.speed * x[i - 1]) * dt + self.volatility * np.sqrt(x[i - 1]) * dw # x = sqrt_x return x def main(): np.random.seed(0) v_model = CoxIngersollRoss() v_speed, v_drift, v_volatility = .1, .01, 0.03 dt = 1./252 t = np.arange(0, 30., dt) n_run = 100 speeds = [] drifts = [] volatility = [] for _ in range(n_run): v_model.speed = v_speed v_model.drift = v_drift v_model.volatility = v_volatility x0 = np.random.normal(1e-2, v_volatility * np.sqrt(dt)) x = v_model.simulate(x0, t) v_model.fit_parameters(dt, x) plt.plot(t, x) speeds.append(v_model.parameters['speed']) drifts.append(v_model.parameters['drift']) volatility.append(v_model.parameters['volatility']) # break str_format = '.2f' pprint(f"volatility: {np.min(volatility):.3f} {np.mean(volatility):.3f} {np.max(volatility):.3f}") pprint(f"speed: {np.min(speeds):.3f} {np.mean(speeds):.3f} {np.max(speeds):.3f}") pprint(f"drift: {np.min(drifts):.3f} {np.mean(drifts):.3f} {
np.max(drifts)
numpy.max
# -*- coding: utf-8 -*- """ Created on Mon Mar 29 10:52:58 2021 @author: <NAME> """ import pickle import numpy as np import os import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import matplotlib import torch #import region_labels def extract_weights_single(dataset, view, model, training_type, shot_n, cv_n): if model == 'sag': fs_path = '{}/weights/W_{}_{}_{}_view_{}_{}.pickle'.format(model, training_type, dataset, model, view, shot_n) cv_path = '{}/weights/W_MainModel_{}_{}_{}_view_{}_CV_{}.pickle'.format(model,training_type, dataset, model, view, cv_n) else: fs_path = '{}/weights/W_{}_{}_{}{}_view_{}.pickle'.format(model, training_type, dataset, model, shot_n, view) cv_path = '{}/weights/W_MainModel_{}_{}_{}_CV_{}_view_{}.pickle'.format(model,training_type, dataset, model, cv_n, view) if training_type == 'Few_Shot': x_path = fs_path else: x_path = cv_path with open(x_path,'rb') as f: weights = pickle.load(f) if model == 'sag': weights_vector = torch.mean(weights['w'], 1).detach().numpy() if model == 'diffpool': weights_vector = torch.mean(weights['w'], 1).detach().numpy() if model == 'gcn': weights_vector = weights['w'].squeeze().detach().numpy() if model == 'gat': weights_vector = weights['w'].squeeze().detach().numpy() if model == 'gunet': weights_vector = torch.mean(weights['w'], 0).detach().numpy() return weights_vector def extract_weights(dataset, view, model, training_type): runs = [] if training_type == 'Few_Shot': for shot_i in range(5): runs.append(extract_weights_single(dataset, view, model, training_type, shot_i, 0)) if training_type == '3Fold': for cv_i in range(3): runs.append(extract_weights_single(dataset, view, model, training_type, 0, cv_i)) if training_type == '5Fold': for cv_i in range(5): runs.append(extract_weights_single(dataset, view, model, training_type, 0, cv_i)) if training_type == '10Fold': for cv_i in range(10): runs.append(extract_weights_single(dataset, view, model, training_type, 0, cv_i)) runs = np.array(runs) weights = np.mean(runs, axis=0) return weights def top_biomarkers(weights, K_i): weights_normalized = np.abs(weights) result = [] w_sorted = weights_normalized.argsort() #verified for i in range(1, 1+K_i): result.append(w_sorted[-1*i]) return result def sim(nodes1, nodes2): if len(nodes1)==len(nodes2): counter = 0 for i in nodes1: for k in nodes2: if i==k: counter+=1 return counter/len(nodes1) else: print('nodes vectors are not caompatible') def sim_respective(nodes1, nodes2): if len(nodes1)==len(nodes2): counter = 0 for i in range(len(nodes1)): if nodes1[i]==nodes2[i]: counter+=1 return counter/len(nodes1) else: print('nodes vectors are not caompatible') def sim_respective_weighted(rank1, rank2, strength1, strength2): # ongoing if len(rank1)==len(rank2) and len(strength1) == len(strength2) and len(rank1)==len(strength1): n_views = max(rank1) differences_rank = np.abs(rank1 - rank2) differences_rank_weights = 1 - (differences_rank *1/n_views) differences_strength = np.abs(strength1 - strength2) max_diff_strength = max(differences_strength) differences_strength_norm = differences_strength/max_diff_strength differences_strength_weights = 1 - differences_strength_norm sum_weights = np.sum(differences_rank_weights*differences_strength_weights) weighted_intersection = sum_weights/len(rank1) return weighted_intersection else: print('nodes vectors are not caompatible') def view_specific_rep(dataset,view,training_type, models): #models = ['diffpool', 'gat', 'gcn', 'gunet', 'sag'] Ks = [5, 10, 15, 20] rep = np.zeros([len(models), len(models), len(Ks)]) for i in range(rep.shape[0]): for j in range(rep.shape[1]): weights_i = extract_weights(dataset, view, models[i], training_type) weights_j = extract_weights(dataset, view, models[j], training_type) a=4 for k in range(rep.shape[2]): top_bio_i = top_biomarkers(weights_i, Ks[k]) top_bio_j = top_biomarkers(weights_j, Ks[k]) rep[i,j,k] = sim(top_bio_i, top_bio_j) rep_mean = np.mean(rep, axis=2) rep_dict = {} rep_dict['matrix'] = rep_mean rep_dict['dataset'] = dataset rep_dict['view'] = view rep_dict['models'] = models rep_dict['training_type'] = training_type return rep_dict def overall_avg_rep_cv_fixed(data_dict, training_type): dataset = data_dict['dataset'] views = data_dict['views'] models = data_dict['models'] rep = np.zeros([len(models), len(models), len(views)]) for view in views: rep_dict = view_specific_rep(dataset,view,training_type,models) rep[:,:,view] = rep_dict['matrix'] rep_mean = np.mean(rep, axis=2) rep_dict = {} rep_dict['matrix'] = rep_mean rep_dict['models'] = models rep_dict['dataset'] = dataset rep_dict['training_type'] = training_type return rep_dict def overall_avg_rep(data_dict): models = data_dict['models'] dataset = data_dict['dataset'] training_types = data_dict['training_types'] rep = np.zeros([len(models), len(models), len(training_types)]) for i in range(len(training_types)): if i ==2: s = 3 rep_dict = overall_avg_rep_cv_fixed(data_dict, training_types[i]) rep[:,:,i] = rep_dict['matrix'] rep_mean = np.mean(rep, axis=2) rep_dict = {} rep_dict['matrix'] = rep_mean rep_dict['models'] = models rep_dict['dataset'] = dataset return rep_dict def overall_avg_rep_plot(rep_dict, save_fig=False): models = rep_dict['models'] df_cm = pd.DataFrame(rep_dict['matrix'], index = [i for i in models], columns = [i for i in models]) plt.figure(figsize = (10,7)) sns.heatmap(df_cm, annot=True ,vmin=0, vmax=1) title_msg = 'Overall average reproducibility Dataset: '+rep_dict['dataset'] plt.title(title_msg) if save_fig==True: plt.savefig("./imgs/Rep_"+ rep_dict['dataset'] + '_avg'+".png") plt.show() plt.close() def GNN_specific_rep_vect(dataset,views,training_type, model): #models = ['diffpool', 'gat', 'gcn', 'gunet', 'sag'] Ks = [5, 10, 15, 20] rep = np.zeros([len(views), len(views), len(Ks)]) for i in range(rep.shape[0]): for j in range(rep.shape[1]): weights_i = extract_weights(dataset, views[i], model, training_type) weights_j = extract_weights(dataset, views[j], model, training_type) for k in range(rep.shape[2]): top_bio_i = top_biomarkers(weights_i, Ks[k]) top_bio_j = top_biomarkers(weights_j, Ks[k]) rep[i,j,k] = sim(top_bio_i, top_bio_j) rep_mean = np.mean(rep, axis=2) rep_vec = np.sum(rep_mean, axis=1) rep_dict = {} rep_dict['strength_vector'] = rep_vec rep_dict['rank_vector'] = rep_vec.argsort()[::-1].argsort() # verified rep_dict['dataset'] = dataset rep_dict['views'] = views rep_dict['model'] = model rep_dict['training_type'] = training_type return rep_dict def overall_corr_rep_cv_fixed(data_dict, training_type): dataset = data_dict['dataset'] views = data_dict['views'] models = data_dict['models'] rep_rank = np.zeros([len(models), len(models)]) rep_strength = np.zeros([len(models), len(models)]) for i in range(len(models)): rep_vect_i = GNN_specific_rep_vect(dataset,views,training_type, models[i]) rep_rank_i = rep_vect_i['rank_vector'] rep_strength_i = rep_vect_i['strength_vector'] for j in range(len(models)): rep_vect_j = GNN_specific_rep_vect(dataset,views,training_type, models[j]) rep_rank_j = rep_vect_j['rank_vector'] rep_strength_j = rep_vect_j['strength_vector'] corr_rank = np.corrcoef(rep_rank_i, rep_rank_j) corr_strength = np.corrcoef(rep_strength_i, rep_strength_j) rep_rank[i,j] = corr_rank[0,1] rep_strength[i,j] = corr_strength[0,1] #rep_mean = np.mean(rep, axis=2) rep_dict = {} rep_dict['rank_matrix'] = rep_rank rep_dict['strength_matrix'] = rep_strength rep_dict['models'] = models rep_dict['dataset'] = dataset rep_dict['training_type'] = training_type return rep_dict def overall_corr_rep(data_dict): models = data_dict['models'] dataset = data_dict['dataset'] training_types = data_dict['training_types'] rep_rank = np.zeros([len(models), len(models), len(training_types)]) rep_strength = np.zeros([len(models), len(models), len(training_types)]) for i in range(len(training_types)): rep_dict = overall_corr_rep_cv_fixed(data_dict, training_types[i]) rep_rank[:,:,i] = rep_dict['rank_matrix'] rep_strength[:,:,i] = rep_dict['strength_matrix'] rep_rank_mean = np.mean(rep_rank, axis=2) rep_strength_mean =
np.mean(rep_strength, axis=2)
numpy.mean
from initialise_parameters import params, control_data, categories, calculated_categories, change_in_categories from math import exp, ceil, log, floor, sqrt import numpy as np from scipy.integrate import ode from scipy.stats import norm, gamma import pandas as pd import statistics import os import pickle from tqdm import tqdm cwd = os.getcwd() import pdb def timing_function(t,time_vector): for ii in range(ceil(len(time_vector)/2)): if t>=time_vector[2*ii] and t<time_vector[2*ii+1]: return True # if wasn't in any of these time interval return False ## # ----------------------------------------------------------------------------------- ## class simulator: def __init__(self): pass ## #----------------------------------------------------------------- ## def ode_system(self,t,y, # state of system infection_matrix,age_categories,symptomatic_prob,hospital_prob,critical_prob,beta, # params latentRate,removalRate,hospRate,deathRateICU,deathRateNoIcu, # more params better_hygiene,remove_symptomatic,remove_high_risk,ICU_capacity # control ): ## dydt = np.zeros(y.shape) I_vec = [ y[params.I_ind+i*params.number_compartments] for i in range(age_categories)] H_vec = [ y[params.H_ind+i*params.number_compartments] for i in range(age_categories)] A_vec = [ y[params.A_ind+i*params.number_compartments] for i in range(age_categories)] total_I = sum(I_vec) # better hygiene if timing_function(t,better_hygiene['timing']): # control in place control_factor = better_hygiene['value'] else: control_factor = 1 # removing symptomatic individuals if timing_function(t,remove_symptomatic['timing']): # control in place remove_symptomatic_rate = min(total_I,remove_symptomatic['rate']) # if total_I too small then can't take this many off site at once else: remove_symptomatic_rate = 0 S_removal = 0 for i in range(age_categories - remove_high_risk['n_categories_removed'],age_categories): S_removal += y[params.S_ind + i*params.number_compartments] # add all old people to remove for i in range(age_categories): # removing symptomatic individuals # these are put into Q ('quarantine'); quarantine_sick = remove_symptomatic_rate * y[params.I_ind + i*params.number_compartments]/total_I # no age bias in who is moved # removing susceptible high risk individuals # these are moved into O ('offsite') if i in range(age_categories - remove_high_risk['n_categories_removed'],age_categories) and timing_function(t,remove_high_risk['timing']): remove_high_risk_people = min(remove_high_risk['rate'],S_removal) # only removing high risk (within time control window). Can't remove more than we have else: remove_high_risk_people = 0 # ICU capacity if sum(H_vec)>0: # can't divide by 0 ICU_for_this_age = ICU_capacity['value'] * y[params.H_ind + i*params.number_compartments]/sum(H_vec) # ICU beds allocated on a first come, first served basis based on the numbers in hospital else: ICU_for_this_age = ICU_capacity['value'] # ODE system: # S dydt[params.S_ind + i*params.number_compartments] = (- y[params.S_ind + i*params.number_compartments] * control_factor * beta * (np.dot(infection_matrix[i,:],I_vec) + params.AsymptInfectiousFactor*np.dot(infection_matrix[i,:],A_vec)) - remove_high_risk_people * y[params.S_ind + i*params.number_compartments] / S_removal ) # E dydt[params.E_ind + i*params.number_compartments] = ( y[params.S_ind + i*params.number_compartments] * control_factor * beta * (np.dot(infection_matrix[i,:],I_vec) + params.AsymptInfectiousFactor*np.dot(infection_matrix[i,:],A_vec)) - latentRate * y[params.E_ind + i*params.number_compartments]) # I dydt[params.I_ind + i*params.number_compartments] = (latentRate * (1-symptomatic_prob[i]) * y[params.E_ind + i*params.number_compartments] - removalRate * y[params.I_ind + i*params.number_compartments] - quarantine_sick ) # A dydt[params.A_ind + i*params.number_compartments] = (latentRate * symptomatic_prob[i] * y[params.E_ind + i*params.number_compartments] - removalRate * y[params.A_ind + i*params.number_compartments]) # H dydt[params.H_ind + i*params.number_compartments] = (removalRate * (hospital_prob[i]) * y[params.I_ind + i*params.number_compartments] - hospRate * y[params.H_ind + i*params.number_compartments] # + deathRateNoIcu * (1 - params.death_prob) * max(0,y[params.C_ind + i*params.number_compartments] - ICU_for_this_age) # recovered despite no ICU (0, since now assume death_prob is 1) + deathRateICU * (1 - params.death_prob_with_ICU) * min(y[params.C_ind + i*params.number_compartments],ICU_for_this_age) # recovered from ICU + (hospital_prob[i]) * params.quarant_rate * y[params.Q_ind + i*params.number_compartments] # proportion of removed people who were hospitalised once returned ) # Critical care (ICU) dydt[params.C_ind + i*params.number_compartments] = ( min(hospRate * (critical_prob[i]) * y[params.H_ind + i*params.number_compartments], ICU_for_this_age - y[params.C_ind + i*params.number_compartments] + deathRateICU * y[params.C_ind + i*params.number_compartments] # with ICU treatment ) # amount entering is minimum of: amount of beds available**/number needing it # **including those that will be made available by new deaths - deathRateICU * y[params.C_ind + i*params.number_compartments] # with ICU treatment ) # Uncared - no ICU dydt[params.U_ind + i*params.number_compartments] = ( hospRate * (critical_prob[i]) * y[params.H_ind + i*params.number_compartments] # number needing care - min(hospRate * (critical_prob[i]) * y[params.H_ind + i*params.number_compartments], ICU_for_this_age - y[params.C_ind + i*params.number_compartments] + deathRateICU * y[params.C_ind + i*params.number_compartments] ) # minus number who get it (these entered category C) - deathRateNoIcu * y[params.U_ind + i*params.number_compartments] # without ICU treatment ) # R dydt[params.R_ind + i*params.number_compartments] = (removalRate * (1 - hospital_prob[i]) * y[params.I_ind + i*params.number_compartments] + removalRate * y[params.A_ind + i*params.number_compartments] + hospRate * (1 - critical_prob[i]) * y[params.H_ind + i*params.number_compartments] + (1 - hospital_prob[i]) * params.quarant_rate * y[params.Q_ind + i*params.number_compartments] # proportion of removed people who recovered once returned ) # D dydt[params.D_ind + i*params.number_compartments] = (deathRateNoIcu * y[params.U_ind + i*params.number_compartments] # died without ICU treatment (all cases that don't get treatment die) + deathRateICU * (params.death_prob_with_ICU) * y[params.C_ind + i*params.number_compartments] # died despite attempted ICU treatment ) # O dydt[params.O_ind + i*params.number_compartments] = remove_high_risk_people * y[params.S_ind + i*params.number_compartments] / S_removal # Q dydt[params.Q_ind + i*params.number_compartments] = quarantine_sick - params.quarant_rate * y[params.Q_ind + i*params.number_compartments] return dydt ## #-------------------------------------------------------------------- ## def run_model(self,T_stop,population,population_frame,infection_matrix,beta, control_dict, # control latentRate = params.latent_rate, removalRate = params.removal_rate, hospRate = params.hosp_rate, deathRateICU = params.death_rate_with_ICU, deathRateNoIcu = params.death_rate # more params ): E0 = 0 # exposed I0 = 1/population # sympt A0 = 1/population # asympt R0 = 0 # recovered H0 = 0 # hospitalised/needing hospital care C0 = 0 # critical (cared) D0 = 0 # dead O0 = 0 # offsite Q0 = 0 # quarantined U0 = 0 # critical (uncared) S0 = 1 - I0 - R0 - C0 - H0 - D0 - O0 - Q0 - U0 age_categories = int(population_frame.shape[0]) y0 = np.zeros(params.number_compartments*age_categories) population_vector = np.asarray(population_frame.Population_structure) # initial conditions for i in range(age_categories): y0[params.S_ind + i*params.number_compartments] = (population_vector[i]/100)*S0 y0[params.E_ind + i*params.number_compartments] = (population_vector[i]/100)*E0 y0[params.I_ind + i*params.number_compartments] = (population_vector[i]/100)*I0 y0[params.A_ind + i*params.number_compartments] = (population_vector[i]/100)*A0 y0[params.R_ind + i*params.number_compartments] = (population_vector[i]/100)*R0 y0[params.H_ind + i*params.number_compartments] = (population_vector[i]/100)*H0 y0[params.C_ind + i*params.number_compartments] = (population_vector[i]/100)*C0 y0[params.D_ind + i*params.number_compartments] = (population_vector[i]/100)*D0 y0[params.O_ind + i*params.number_compartments] = (population_vector[i]/100)*O0 y0[params.Q_ind + i*params.number_compartments] = (population_vector[i]/100)*Q0 y0[params.U_ind + i*params.number_compartments] = (population_vector[i]/100)*U0 symptomatic_prob = np.asarray(population_frame.p_symptomatic) hospital_prob = np.asarray(population_frame.p_hospitalised) critical_prob = np.asarray(population_frame.p_critical) sol = ode(self.ode_system).set_f_params(infection_matrix,age_categories,symptomatic_prob,hospital_prob,critical_prob,beta, # params latentRate,removalRate,hospRate,deathRateICU,deathRateNoIcu, # more params control_dict['better_hygiene'],control_dict['remove_symptomatic'],control_dict['remove_high_risk'],control_dict['ICU_capacity'] # control params ) tim = np.linspace(0,T_stop, T_stop+1) # 1 time value per day sol.set_initial_value(y0,tim[0]) y_out = np.zeros((len(y0),len(tim))) i2 = 0 y_out[:,0] = sol.y for t in tim[1:]: if sol.successful(): sol.integrate(t) i2=i2+1 y_out[:,i2] = sol.y else: raise RuntimeError('ode solver unsuccessful') y_plot = np.zeros((len(categories.keys()), len(tim) )) for name in calculated_categories: y_plot[categories[name]['index'],:] = y_out[categories[name]['index'],:] for i in range(1, population_frame.shape[0]): # age_categories y_plot[categories[name]['index'],:] = y_plot[categories[name]['index'],:] + y_out[categories[name]['index'] + i*params.number_compartments,:] for name in change_in_categories: # daily change in name_changed_var = name[-1] # name of the variable we want daily change of y_plot[categories[name]['index'],:] = np.concatenate([[0],np.diff(y_plot[categories[name_changed_var]['index'],:])]) # finally, E = y_plot[categories['CE']['index'],:] I = y_plot[categories['CI']['index'],:] A = y_plot[categories['CA']['index'],:] y_plot[categories['Ninf']['index'],:] = [E[i] + I[i] + A[i] for i in range(len(E))] # change in total number of people with active infection return {'y': y_out,'t': tim, 'y_plot': y_plot} #-------------------------------------------------------------------- def GeneratePercentiles(sols): n_time_points = len(sols[0]['t']) y_plot = np.zeros((len(categories.keys()), len(sols) , n_time_points )) for k, sol in enumerate(sols): sol['y'] = np.asarray(sol['y']) for name in categories.keys(): y_plot[categories[name]['index'],k,:] = sol['y_plot'][categories[name]['index']] y_L95, y_U95, y_LQ, y_UQ, y_median = [np.zeros((len(categories.keys()),n_time_points)) for i in range(5)] for name in categories.keys(): y_L95[categories[name]['index'],:] = np.asarray([ np.percentile(y_plot[categories[name]['index'],:,i],2.5) for i in range(n_time_points) ]) y_LQ[categories[name]['index'],:] = np.asarray([ np.percentile(y_plot[categories[name]['index'],:,i],25) for i in range(n_time_points) ]) y_UQ[categories[name]['index'],:] = np.asarray([ np.percentile(y_plot[categories[name]['index'],:,i],75) for i in range(n_time_points) ]) y_U95[categories[name]['index'],:] = np.asarray([ np.percentile(y_plot[categories[name]['index'],:,i],97.5) for i in range(n_time_points) ]) y_median[categories[name]['index'],:] = np.asarray([statistics.median(y_plot[categories[name]['index'],:,i]) for i in range(n_time_points) ]) return [y_U95, y_UQ, y_LQ, y_L95, y_median] def GenerateInfectionMatrix(population_frame,camp,control_dict): infection_matrix = np.asarray(pd.read_csv(os.path.join(os.path.dirname(cwd),'Parameters/Contact_matrix_' + camp + '.csv'))) #np.ones((population_frame.shape[0],population_frame.shape[0])) infection_matrix = infection_matrix[:,1:] next_generation_matrix = np.matmul(0.01*np.diag(population_frame.Population_structure) , infection_matrix ) largest_eigenvalue = max(np.linalg.eig(next_generation_matrix)[0]) # max eigenvalue beta_list = np.linspace(params.beta_list[0],params.beta_list[2],20) beta_list = np.real((1/largest_eigenvalue)* beta_list) # in case eigenvalue imaginary if control_dict['shielding']['used']: # increase contact within group and decrease between groups divider = -1 # determines which groups separated. -1 means only oldest group separated from the rest infection_matrix[:divider,:divider] = params.shield_increase*infection_matrix[:divider,:divider] infection_matrix[:divider,divider:] = params.shield_decrease*infection_matrix[:divider,divider:] infection_matrix[divider:,:divider] = params.shield_decrease*infection_matrix[divider:,:divider] infection_matrix[divider:,divider] = params.shield_increase*infection_matrix[divider:,divider:] return infection_matrix, beta_list, largest_eigenvalue def simulate_range_of_R0s(population_frame, population, control_dict, camp, t_stop=200): # gives solution for middle R0, as well as solutions for a range of R0s between an upper and lower bound infection_matrix, beta_list, largest_eigenvalue = GenerateInfectionMatrix(population_frame,camp,control_dict) sols = [] sols_raw = {} for beta in beta_list: result=simulator().run_model(T_stop=t_stop,infection_matrix=infection_matrix,population=population,population_frame=population_frame,beta=beta,control_dict=control_dict) sols.append(result) sols_raw[beta*largest_eigenvalue/params.removal_rate]=result [y_U95, y_UQ, y_LQ, y_L95, y_median] = GeneratePercentiles(sols) StandardSol = [] StandardSol.append(simulator().run_model(T_stop=t_stop,infection_matrix=infection_matrix,population=population,population_frame=population_frame,beta=params.beta_list[1],control_dict=control_dict)) return sols_raw, StandardSol, [y_U95, y_UQ, y_LQ, y_L95, y_median] def SimulateOverRangeOfParameters(population_frame, population, control_dict, camp, numberOfIterations, t_stop=200): infection_matrix, beta_list, largest_eigenvalue = GenerateInfectionMatrix(population_frame,camp,control_dict) ParamCsv = pd.read_csv(os.path.join(os.path.dirname(cwd),'Parameters/GeneratedParams.csv')) sols = [] configDict = [] sols_raw = {} for ii in tqdm(range(min(numberOfIterations,len(ParamCsv)))): latentRate = 1/ParamCsv.LatentPeriod[ii] removalRate = 1/ParamCsv.RemovalPeriod[ii] beta = removalRate*ParamCsv.R0[ii]/largest_eigenvalue hospRate = 1/ParamCsv.HospPeriod[ii] deathRateICU = 1/ParamCsv.DeathICUPeriod[ii] deathRateNoIcu = 1/ParamCsv.DeathNoICUPeriod[ii] result = simulator().run_model(T_stop=t_stop,infection_matrix=infection_matrix,population=population,population_frame=population_frame,beta=beta, control_dict= control_dict, latentRate = latentRate, removalRate = removalRate, hospRate = hospRate, deathRateICU = deathRateICU, deathRateNoIcu = deathRateNoIcu ) sols.append(result) Dict = dict(beta = beta, latentRate = latentRate, removalRate = removalRate, hospRate = hospRate, deathRateICU = deathRateICU, deathRateNoIcu = deathRateNoIcu ) configDict.append(Dict) sols_raw[(ParamCsv.R0[ii],latentRate,removalRate,hospRate,deathRateICU,deathRateNoIcu)]=result [y_U95, y_UQ, y_LQ, y_L95, y_median] = GeneratePercentiles(sols) # standard run StandardSol = [] StandardSol.append(simulator().run_model(T_stop=t_stop,infection_matrix=infection_matrix,population=population,population_frame=population_frame,beta=params.beta_list[1],control_dict=control_dict)) return sols_raw, StandardSol, [y_U95, y_UQ, y_LQ, y_L95, y_median], configDict def object_dump(file_name,object_to_dump): # check if file path exists - if not create outdir = os.path.dirname(file_name) if not os.path.exists(outdir): os.makedirs(os.path.join(cwd,outdir),exist_ok=True) with open(file_name, 'wb') as handle: pickle.dump(object_to_dump,handle,protocol=pickle.HIGHEST_PROTOCOL) return None def generate_csv(data_to_save,population_frame,filename,input_type=None,time_vec=None): category_map = {} for key in categories.keys(): category_map[str(categories[key]['index'])] = key print(category_map) if input_type=='percentile': csv_sol = np.transpose(data_to_save) solution_csv = pd.DataFrame(csv_sol) col_names = [] for i in range(csv_sol.shape[1]): col_names.append(categories[category_map[str(i)]]['longname']) solution_csv.columns = col_names solution_csv['Time'] = time_vec # this is our dataframe to be saved elif input_type=='raw': final_frame=pd.DataFrame() for key, value in tqdm(data_to_save.items()): csv_sol = np.transpose(value['y']) # age structured solution_csv = pd.DataFrame(csv_sol) # setup column names col_names = [] number_categories_with_age = csv_sol.shape[1] for i in range(number_categories_with_age): ii = i % params.number_compartments jj = floor(i/params.number_compartments) col_names.append(categories[category_map[str(ii)]]['longname'] + ': ' + str(
np.asarray(population_frame.Age)
numpy.asarray
from statsmodels.compat.numpy import lstsq from statsmodels.compat.pandas import assert_index_equal from statsmodels.compat.platform import PLATFORM_WIN from statsmodels.compat.python import lrange import os import warnings import numpy as np from numpy.testing import ( assert_, assert_allclose, assert_almost_equal, assert_equal, assert_raises, ) import pandas as pd from pandas import DataFrame, Series, date_range import pytest from scipy.interpolate import interp1d from statsmodels.datasets import macrodata, modechoice, nile, randhie, sunspots from statsmodels.tools.sm_exceptions import ( CollinearityWarning, InfeasibleTestError, InterpolationWarning, MissingDataError, ) # Remove imports when range unit root test gets an R implementation from statsmodels.tools.validation import array_like, bool_like from statsmodels.tsa.arima_process import arma_acovf from statsmodels.tsa.statespace.sarimax import SARIMAX from statsmodels.tsa.stattools import ( acf, acovf, adfuller, arma_order_select_ic, breakvar_heteroskedasticity_test, ccovf, coint, grangercausalitytests, innovations_algo, innovations_filter, kpss, levinson_durbin, levinson_durbin_pacf, pacf, pacf_burg, pacf_ols, pacf_yw, range_unit_root_test, zivot_andrews, ) DECIMAL_8 = 8 DECIMAL_6 = 6 DECIMAL_5 = 5 DECIMAL_4 = 4 DECIMAL_3 = 3 DECIMAL_2 = 2 DECIMAL_1 = 1 CURR_DIR = os.path.dirname(os.path.abspath(__file__)) @pytest.fixture(scope="module") def acovf_data(): rnd = np.random.RandomState(12345) return rnd.randn(250) class CheckADF(object): """ Test Augmented Dickey-Fuller Test values taken from Stata. """ levels = ["1%", "5%", "10%"] data = macrodata.load_pandas() x = data.data["realgdp"].values y = data.data["infl"].values def test_teststat(self): assert_almost_equal(self.res1[0], self.teststat, DECIMAL_5) def test_pvalue(self): assert_almost_equal(self.res1[1], self.pvalue, DECIMAL_5) def test_critvalues(self): critvalues = [self.res1[4][lev] for lev in self.levels] assert_almost_equal(critvalues, self.critvalues, DECIMAL_2) class TestADFConstant(CheckADF): """ Dickey-Fuller test for unit root """ @classmethod def setup_class(cls): cls.res1 = adfuller(cls.x, regression="c", autolag=None, maxlag=4) cls.teststat = 0.97505319 cls.pvalue = 0.99399563 cls.critvalues = [-3.476, -2.883, -2.573] class TestADFConstantTrend(CheckADF): """""" @classmethod def setup_class(cls): cls.res1 = adfuller(cls.x, regression="ct", autolag=None, maxlag=4) cls.teststat = -1.8566374 cls.pvalue = 0.67682968 cls.critvalues = [-4.007, -3.437, -3.137] # FIXME: do not leave commented-out # class TestADFConstantTrendSquared(CheckADF): # """ # """ # pass # TODO: get test values from R? class TestADFNoConstant(CheckADF): """""" @classmethod def setup_class(cls): with pytest.warns(FutureWarning): adfuller(cls.x, regression="nc", autolag=None, maxlag=4) cls.res1 = adfuller(cls.x, regression="n", autolag=None, maxlag=4) cls.teststat = 3.5227498 cls.pvalue = 0.99999 # Stata does not return a p-value for noconstant. # Tau^max in MacKinnon (1994) is missing, so it is # assumed that its right-tail is well-behaved cls.critvalues = [-2.587, -1.950, -1.617] # No Unit Root class TestADFConstant2(CheckADF): @classmethod def setup_class(cls): cls.res1 = adfuller(cls.y, regression="c", autolag=None, maxlag=1) cls.teststat = -4.3346988 cls.pvalue = 0.00038661 cls.critvalues = [-3.476, -2.883, -2.573] class TestADFConstantTrend2(CheckADF): @classmethod def setup_class(cls): cls.res1 = adfuller(cls.y, regression="ct", autolag=None, maxlag=1) cls.teststat = -4.425093 cls.pvalue = 0.00199633 cls.critvalues = [-4.006, -3.437, -3.137] class TestADFNoConstant2(CheckADF): @classmethod def setup_class(cls): cls.res1 = adfuller(cls.y, regression="n", autolag=None, maxlag=1) cls.teststat = -2.4511596 cls.pvalue = 0.013747 # Stata does not return a p-value for noconstant # this value is just taken from our results cls.critvalues = [-2.587, -1.950, -1.617] _, _1, _2, cls.store = adfuller( cls.y, regression="n", autolag=None, maxlag=1, store=True ) def test_store_str(self): assert_equal( self.store.__str__(), "Augmented Dickey-Fuller Test Results" ) class CheckCorrGram(object): """ Set up for ACF, PACF tests. """ data = macrodata.load_pandas() x = data.data["realgdp"] filename = os.path.join(CURR_DIR, "results", "results_corrgram.csv") results = pd.read_csv(filename, delimiter=",") class TestACF(CheckCorrGram): """ Test Autocorrelation Function """ @classmethod def setup_class(cls): cls.acf = cls.results["acvar"] # cls.acf = np.concatenate(([1.], cls.acf)) cls.qstat = cls.results["Q1"] cls.res1 = acf(cls.x, nlags=40, qstat=True, alpha=0.05, fft=False) cls.confint_res = cls.results[["acvar_lb", "acvar_ub"]].values def test_acf(self): assert_almost_equal(self.res1[0][1:41], self.acf, DECIMAL_8) def test_confint(self): centered = self.res1[1] - self.res1[1].mean(1)[:, None] assert_almost_equal(centered[1:41], self.confint_res, DECIMAL_8) def test_qstat(self): assert_almost_equal(self.res1[2][:40], self.qstat, DECIMAL_3) # 3 decimal places because of stata rounding # FIXME: enable/xfail/skip or delete # def pvalue(self): # pass # NOTE: should not need testing if Q stat is correct class TestACF_FFT(CheckCorrGram): # Test Autocorrelation Function using FFT @classmethod def setup_class(cls): cls.acf = cls.results["acvarfft"] cls.qstat = cls.results["Q1"] cls.res1 = acf(cls.x, nlags=40, qstat=True, fft=True) def test_acf(self): assert_almost_equal(self.res1[0][1:], self.acf, DECIMAL_8) def test_qstat(self): # todo why is res1/qstat 1 short assert_almost_equal(self.res1[1], self.qstat, DECIMAL_3) class TestACFMissing(CheckCorrGram): # Test Autocorrelation Function using Missing @classmethod def setup_class(cls): cls.x = np.concatenate((np.array([np.nan]), cls.x)) cls.acf = cls.results["acvar"] # drop and conservative cls.qstat = cls.results["Q1"] cls.res_drop = acf( cls.x, nlags=40, qstat=True, alpha=0.05, missing="drop", fft=False ) cls.res_conservative = acf( cls.x, nlags=40, qstat=True, alpha=0.05, fft=False, missing="conservative", ) cls.acf_none = np.empty(40) * np.nan # lags 1 to 40 inclusive cls.qstat_none = np.empty(40) * np.nan cls.res_none = acf( cls.x, nlags=40, qstat=True, alpha=0.05, missing="none", fft=False ) def test_raise(self): with pytest.raises(MissingDataError): acf( self.x, nlags=40, qstat=True, fft=False, alpha=0.05, missing="raise", ) def test_acf_none(self): assert_almost_equal(self.res_none[0][1:41], self.acf_none, DECIMAL_8) def test_acf_drop(self): assert_almost_equal(self.res_drop[0][1:41], self.acf, DECIMAL_8) def test_acf_conservative(self): assert_almost_equal( self.res_conservative[0][1:41], self.acf, DECIMAL_8 ) def test_qstat_none(self): # todo why is res1/qstat 1 short assert_almost_equal(self.res_none[2], self.qstat_none, DECIMAL_3) # FIXME: enable/xfail/skip or delete # how to do this test? the correct q_stat depends on whether nobs=len(x) is # used when x contains NaNs or whether nobs<len(x) when x contains NaNs # def test_qstat_drop(self): # assert_almost_equal(self.res_drop[2][:40], self.qstat, DECIMAL_3) class TestPACF(CheckCorrGram): @classmethod def setup_class(cls): cls.pacfols = cls.results["PACOLS"] cls.pacfyw = cls.results["PACYW"] def test_ols(self): pacfols, confint = pacf(self.x, nlags=40, alpha=0.05, method="ols") assert_almost_equal(pacfols[1:], self.pacfols, DECIMAL_6) centered = confint - confint.mean(1)[:, None] # from edited Stata ado file res = [[-0.1375625, 0.1375625]] * 40 assert_almost_equal(centered[1:41], res, DECIMAL_6) # check lag 0 assert_equal(centered[0], [0.0, 0.0]) assert_equal(confint[0], [1, 1]) assert_equal(pacfols[0], 1) def test_ols_inefficient(self): lag_len = 5 pacfols = pacf_ols(self.x, nlags=lag_len, efficient=False) x = self.x.copy() x -= x.mean() n = x.shape[0] lags = np.zeros((n - 5, 5)) lead = x[5:] direct = np.empty(lag_len + 1) direct[0] = 1.0 for i in range(lag_len): lags[:, i] = x[5 - (i + 1) : -(i + 1)] direct[i + 1] = lstsq(lags[:, : (i + 1)], lead, rcond=None)[0][-1] assert_allclose(pacfols, direct, atol=1e-8) def test_yw(self): pacfyw = pacf_yw(self.x, nlags=40, method="mle") assert_almost_equal(pacfyw[1:], self.pacfyw, DECIMAL_8) def test_ld(self): pacfyw = pacf_yw(self.x, nlags=40, method="mle") pacfld = pacf(self.x, nlags=40, method="ldb") assert_almost_equal(pacfyw, pacfld, DECIMAL_8) pacfyw = pacf(self.x, nlags=40, method="yw") pacfld = pacf(self.x, nlags=40, method="lda") assert_almost_equal(pacfyw, pacfld, DECIMAL_8) class TestBreakvarHeteroskedasticityTest(object): from scipy.stats import chi2, f def test_1d_input(self): input_residuals = [0.0, 1.0, 2.0, 3.0, 4.0, 5.0] expected_statistic = (4.0 ** 2 + 5.0 ** 2) / (0.0 ** 2 + 1.0 ** 2) # ~ F(2, 2), two-sided test expected_pvalue = 2 * min( self.f.cdf(expected_statistic, 2, 2), self.f.sf(expected_statistic, 2, 2), ) actual_statistic, actual_pvalue = breakvar_heteroskedasticity_test( input_residuals ) assert actual_statistic == expected_statistic assert actual_pvalue == expected_pvalue def test_2d_input_with_missing_values(self): input_residuals = np.array( [ [0.0, 0.0, np.nan], [1.0, np.nan, 1.0], [2.0, 2.0, np.nan], [3.0, 3.0, 3.0], [4.0, 4.0, 4.0], [5.0, 5.0, 5.0], [6.0, 6.0, 6.0], [7.0, 7.0, 7.0], [8.0, 8.0, 8.0], ] ) expected_statistic = np.array( [ (8.0 ** 2 + 7.0 ** 2 + 6.0 ** 2) / (0.0 ** 2 + 1.0 ** 2 + 2.0 ** 2), (8.0 ** 2 + 7.0 ** 2 + 6.0 ** 2) / (0.0 ** 2 + 2.0 ** 2), np.nan, ] ) expected_pvalue = np.array( [ 2 * min( self.f.cdf(expected_statistic[0], 3, 3), self.f.sf(expected_statistic[0], 3, 3), ), 2 * min( self.f.cdf(expected_statistic[1], 3, 2), self.f.sf(expected_statistic[1], 3, 2), ), np.nan, ] ) actual_statistic, actual_pvalue = breakvar_heteroskedasticity_test( input_residuals ) assert_equal(actual_statistic, expected_statistic) assert_equal(actual_pvalue, expected_pvalue) @pytest.mark.parametrize( "subset_length,expected_statistic,expected_pvalue", [ (2, 41, 2 * min(f.cdf(41, 2, 2), f.sf(41, 2, 2))), (0.5, 10, 2 * min(f.cdf(10, 3, 3), f.sf(10, 3, 3))), ], ) def test_subset_length( self, subset_length, expected_statistic, expected_pvalue ): input_residuals = [0.0, 1.0, 2.0, 3.0, 4.0, 5.0] actual_statistic, actual_pvalue = breakvar_heteroskedasticity_test( input_residuals, subset_length=subset_length, ) assert actual_statistic == expected_statistic assert actual_pvalue == expected_pvalue @pytest.mark.parametrize( "alternative,expected_statistic,expected_pvalue", [ ("two-sided", 41, 2 * min(f.cdf(41, 2, 2), f.sf(41, 2, 2))), ("decreasing", 1 / 41, f.sf(1 / 41, 2, 2)), ("increasing", 41, f.sf(41, 2, 2)), ], ) def test_alternative( self, alternative, expected_statistic, expected_pvalue ): input_residuals = [0.0, 1.0, 2.0, 3.0, 4.0, 5.0] actual_statistic, actual_pvalue = breakvar_heteroskedasticity_test( input_residuals, alternative=alternative, ) assert actual_statistic == expected_statistic assert actual_pvalue == expected_pvalue def test_use_chi2(self): input_residuals = [0.0, 1.0, 2.0, 3.0, 4.0, 5.0] expected_statistic = (4.0 ** 2 + 5.0 ** 2) / (0.0 ** 2 + 1.0 ** 2) expected_pvalue = 2 * min( self.chi2.cdf(2 * expected_statistic, 2), self.chi2.sf(2 * expected_statistic, 2), ) actual_statistic, actual_pvalue = breakvar_heteroskedasticity_test( input_residuals, use_f=False, ) assert actual_statistic == expected_statistic assert actual_pvalue == expected_pvalue class CheckCoint(object): """ Test Cointegration Test Results for 2-variable system Test values taken from Stata """ levels = ["1%", "5%", "10%"] data = macrodata.load_pandas() y1 = data.data["realcons"].values y2 = data.data["realgdp"].values def test_tstat(self): assert_almost_equal(self.coint_t, self.teststat, DECIMAL_4) # this does not produce the old results anymore class TestCoint_t(CheckCoint): """ Get AR(1) parameter on residuals """ @classmethod def setup_class(cls): # cls.coint_t = coint(cls.y1, cls.y2, trend="c")[0] cls.coint_t = coint(cls.y1, cls.y2, trend="c", maxlag=0, autolag=None)[ 0 ] cls.teststat = -1.8208817 cls.teststat = -1.830170986148 def test_coint(): nobs = 200 scale_e = 1 const = [1, 0, 0.5, 0] np.random.seed(123) unit = np.random.randn(nobs).cumsum() y = scale_e * np.random.randn(nobs, 4) y[:, :2] += unit[:, None] y += const y = np.round(y, 4) # FIXME: enable/xfail/skip or delete for trend in []: # ['c', 'ct', 'ctt', 'n']: print("\n", trend) print(coint(y[:, 0], y[:, 1], trend=trend, maxlag=4, autolag=None)) print(coint(y[:, 0], y[:, 1:3], trend=trend, maxlag=4, autolag=None)) print(coint(y[:, 0], y[:, 2:], trend=trend, maxlag=4, autolag=None)) print(coint(y[:, 0], y[:, 1:], trend=trend, maxlag=4, autolag=None)) # results from Stata egranger res_egranger = {} # trend = 'ct' res = res_egranger["ct"] = {} res[0] = [ -5.615251442239, -4.406102369132, -3.82866685109, -3.532082997903, ] res[1] = [ -5.63591313706, -4.758609717199, -4.179130554708, -3.880909696863, ] res[2] = [ -2.892029275027, -4.758609717199, -4.179130554708, -3.880909696863, ] res[3] = [-5.626932544079, -5.08363327039, -4.502469783057, -4.2031051091] # trend = 'c' res = res_egranger["c"] = {} # first critical value res[0][1] has a discrepancy starting at 4th decimal res[0] = [ -5.760696844656, -3.952043522638, -3.367006313729, -3.065831247948, ] # manually adjusted to have higher precision as in other cases res[0][1] = -3.952321293401682 res[1] = [ -5.781087068772, -4.367111915942, -3.783961136005, -3.483501524709, ] res[2] = [ -2.477444137366, -4.367111915942, -3.783961136005, -3.483501524709, ] res[3] = [ -5.778205811661, -4.735249216434, -4.152738973763, -3.852480848968, ] # trend = 'ctt' res = res_egranger["ctt"] = {} res[0] = [ -5.644431269946, -4.796038299708, -4.221469431008, -3.926472577178, ] res[1] = [-5.665691609506, -5.111158174219, -4.53317278104, -4.23601008516] res[2] = [-3.161462374828, -5.111158174219, -4.53317278104, -4.23601008516] res[3] = [ -5.657904558563, -5.406880189412, -4.826111619543, -4.527090164875, ] # The following for 'n' are only regression test numbers # trend = 'n' not allowed in egranger # trend = 'n' res = res_egranger["n"] = {} nan = np.nan # shortcut for table res[0] = [-3.7146175989071137, nan, nan, nan] res[1] = [-3.8199323012888384, nan, nan, nan] res[2] = [-1.6865000791270679, nan, nan, nan] res[3] = [-3.7991270451873675, nan, nan, nan] with pytest.warns(FutureWarning): # Ensure warning raised for nc rather than n coint(y[:, 0], y[:, 1], trend="nc", maxlag=4, autolag=None) for trend in ["c", "ct", "ctt", "n"]: res1 = {} res1[0] = coint(y[:, 0], y[:, 1], trend=trend, maxlag=4, autolag=None) res1[1] = coint( y[:, 0], y[:, 1:3], trend=trend, maxlag=4, autolag=None ) res1[2] = coint(y[:, 0], y[:, 2:], trend=trend, maxlag=4, autolag=None) res1[3] = coint(y[:, 0], y[:, 1:], trend=trend, maxlag=4, autolag=None) for i in range(4): res = res_egranger[trend] assert_allclose(res1[i][0], res[i][0], rtol=1e-11) r2 = res[i][1:] r1 = res1[i][2] assert_allclose(r1, r2, rtol=0, atol=6e-7) # use default autolag #4490 res1_0 = coint(y[:, 0], y[:, 1], trend="ct", maxlag=4) assert_allclose(res1_0[2], res_egranger["ct"][0][1:], rtol=0, atol=6e-7) # the following is just a regression test assert_allclose( res1_0[:2], [-13.992946638547112, 2.270898990540678e-27], rtol=1e-10, atol=1e-27, ) def test_coint_identical_series(): nobs = 200 scale_e = 1 np.random.seed(123) y = scale_e * np.random.randn(nobs) warnings.simplefilter("always", CollinearityWarning) with pytest.warns(CollinearityWarning): c = coint(y, y, trend="c", maxlag=0, autolag=None) assert_equal(c[1], 0.0) assert_(np.isneginf(c[0])) def test_coint_perfect_collinearity(): # test uses nearly perfect collinearity nobs = 200 scale_e = 1 np.random.seed(123) x = scale_e * np.random.randn(nobs, 2) y = 1 + x.sum(axis=1) + 1e-7 * np.random.randn(nobs) warnings.simplefilter("always", CollinearityWarning) with warnings.catch_warnings(record=True) as w: c = coint(y, x, trend="c", maxlag=0, autolag=None) assert_equal(c[1], 0.0) assert_(np.isneginf(c[0])) class TestGrangerCausality(object): def test_grangercausality(self): # some example data mdata = macrodata.load_pandas().data mdata = mdata[["realgdp", "realcons"]].values data = mdata.astype(float) data = np.diff(np.log(data), axis=0) # R: lmtest:grangertest r_result = [0.243097, 0.7844328, 195, 2] # f_test gr = grangercausalitytests(data[:, 1::-1], 2, verbose=False) assert_almost_equal(r_result, gr[2][0]["ssr_ftest"], decimal=7) assert_almost_equal( gr[2][0]["params_ftest"], gr[2][0]["ssr_ftest"], decimal=7 ) def test_grangercausality_single(self): mdata = macrodata.load_pandas().data mdata = mdata[["realgdp", "realcons"]].values data = mdata.astype(float) data = np.diff(np.log(data), axis=0) gr = grangercausalitytests(data[:, 1::-1], 2, verbose=False) gr2 = grangercausalitytests(data[:, 1::-1], [2], verbose=False) assert 1 in gr assert 1 not in gr2 assert_almost_equal( gr[2][0]["ssr_ftest"], gr2[2][0]["ssr_ftest"], decimal=7 ) assert_almost_equal( gr[2][0]["params_ftest"], gr2[2][0]["ssr_ftest"], decimal=7 ) def test_granger_fails_on_nobs_check(self, reset_randomstate): # Test that if maxlag is too large, Granger Test raises a clear error. x = np.random.rand(10, 2) grangercausalitytests(x, 2, verbose=False) # This should pass. with pytest.raises(ValueError): grangercausalitytests(x, 3, verbose=False) def test_granger_fails_on_finite_check(self, reset_randomstate): x = np.random.rand(1000, 2) x[500, 0] = np.nan x[750, 1] = np.inf with pytest.raises(ValueError, match="x contains NaN"): grangercausalitytests(x, 2) def test_granger_fails_on_zero_lag(self, reset_randomstate): x = np.random.rand(1000, 2) with pytest.raises( ValueError, match="maxlag must be a non-empty list containing only positive integers", ): grangercausalitytests(x, [0, 1, 2]) class TestKPSS: """ R-code ------ library(tseries) kpss.stat(x, "Level") kpss.stat(x, "Trend") In this context, x is the vector containing the macrodata['realgdp'] series. """ @classmethod def setup(cls): cls.data = macrodata.load_pandas() cls.x = cls.data.data["realgdp"].values def test_fail_nonvector_input(self, reset_randomstate): # should be fine with pytest.warns(InterpolationWarning): kpss(self.x, nlags="legacy") x = np.random.rand(20, 2) assert_raises(ValueError, kpss, x) def test_fail_unclear_hypothesis(self): # these should be fine, with pytest.warns(InterpolationWarning): kpss(self.x, "c", nlags="legacy") with pytest.warns(InterpolationWarning): kpss(self.x, "C", nlags="legacy") with pytest.warns(InterpolationWarning): kpss(self.x, "ct", nlags="legacy") with pytest.warns(InterpolationWarning): kpss(self.x, "CT", nlags="legacy") assert_raises( ValueError, kpss, self.x, "unclear hypothesis", nlags="legacy" ) def test_teststat(self): with pytest.warns(InterpolationWarning): kpss_stat, _, _, _ = kpss(self.x, "c", 3) assert_almost_equal(kpss_stat, 5.0169, DECIMAL_3) with pytest.warns(InterpolationWarning): kpss_stat, _, _, _ = kpss(self.x, "ct", 3) assert_almost_equal(kpss_stat, 1.1828, DECIMAL_3) def test_pval(self): with pytest.warns(InterpolationWarning): _, pval, _, _ = kpss(self.x, "c", 3) assert_equal(pval, 0.01) with pytest.warns(InterpolationWarning): _, pval, _, _ = kpss(self.x, "ct", 3) assert_equal(pval, 0.01) def test_store(self): with pytest.warns(InterpolationWarning): _, _, _, store = kpss(self.x, "c", 3, True) # assert attributes, and make sure they're correct assert_equal(store.nobs, len(self.x)) assert_equal(store.lags, 3) # test autolag function _kpss_autolag against SAS 9.3 def test_lags(self): # real GDP from macrodata data set with pytest.warns(InterpolationWarning): res = kpss(self.x, "c", nlags="auto") assert_equal(res[2], 9) # real interest rates from macrodata data set res = kpss(sunspots.load().data["SUNACTIVITY"], "c", nlags="auto") assert_equal(res[2], 7) # volumes from nile data set with pytest.warns(InterpolationWarning): res = kpss(nile.load().data["volume"], "c", nlags="auto") assert_equal(res[2], 5) # log-coinsurance from randhie data set with pytest.warns(InterpolationWarning): res = kpss(randhie.load().data["lncoins"], "ct", nlags="auto") assert_equal(res[2], 75) # in-vehicle time from modechoice data set with pytest.warns(InterpolationWarning): res = kpss(modechoice.load().data["invt"], "ct", nlags="auto") assert_equal(res[2], 18) def test_kpss_fails_on_nobs_check(self): # Test that if lags exceeds number of observations KPSS raises a # clear error # GH5925 nobs = len(self.x) msg = r"lags \({}\) must be < number of observations \({}\)".format( nobs, nobs ) with pytest.raises(ValueError, match=msg): kpss(self.x, "c", nlags=nobs) def test_kpss_autolags_does_not_assign_lags_equal_to_nobs(self): # Test that if *autolags* exceeds number of observations, we set # suitable lags # GH5925 base = np.array([0, 0, 0, 0, 0, 1, 1.0]) data_which_breaks_autolag = np.r_[np.tile(base, 297 // 7), [0, 0, 0]] kpss(data_which_breaks_autolag, nlags="auto") def test_legacy_lags(self): # Test legacy lags are the same with pytest.warns(InterpolationWarning): res = kpss(self.x, "c", nlags="legacy") assert_equal(res[2], 15) def test_unknown_lags(self): # Test legacy lags are the same with pytest.raises(ValueError): kpss(self.x, "c", nlags="unknown") def test_none(self): with pytest.warns(FutureWarning): kpss(self.x, nlags=None) class TestRUR: """ Simple implementation ------ Since an R implementation of the test cannot be found, the method is tested against a simple implementation using a for loop. In this context, x is the vector containing the macrodata['realgdp'] series. """ @classmethod def setup(cls): cls.data = macrodata.load_pandas() cls.x = cls.data.data["realgdp"].values # To be removed when range unit test gets an R implementation def simple_rur(self, x, store=False): x = array_like(x, "x") store = bool_like(store, "store") nobs = x.shape[0] # if m is not one, n != m * n if nobs != x.size: raise ValueError("x of shape {0} not understood".format(x.shape)) # Table from [1] has been replicated using 200,000 samples # Critical values for new n_obs values have been identified pvals = [0.01, 0.025, 0.05, 0.10, 0.90, 0.95] n = np.array( [25, 50, 100, 150, 200, 250, 500, 1000, 2000, 3000, 4000, 5000] ) crit = np.array( [ [0.6626, 0.8126, 0.9192, 1.0712, 2.4863, 2.7312], [0.7977, 0.9274, 1.0478, 1.1964, 2.6821, 2.9613], [0.907, 1.0243, 1.1412, 1.2888, 2.8317, 3.1393], [0.9543, 1.0768, 1.1869, 1.3294, 2.8915, 3.2049], [0.9833, 1.0984, 1.2101, 1.3494, 2.9308, 3.2482], [0.9982, 1.1137, 1.2242, 1.3632, 2.9571, 3.2482], [1.0494, 1.1643, 1.2712, 1.4076, 3.0207, 3.3584], [1.0846, 1.1959, 1.2988, 1.4344, 3.0653, 3.4073], [1.1121, 1.2200, 1.3230, 1.4556, 3.0948, 3.4439], [1.1204, 1.2295, 1.3318, 1.4656, 3.1054, 3.4632], [1.1309, 1.2347, 1.3318, 1.4693, 3.1165, 3.4717], [1.1377, 1.2402, 1.3408, 1.4729, 3.1252, 3.4807], ] ) # Interpolation for nobs inter_crit = np.zeros((1, crit.shape[1])) for i in range(crit.shape[1]): f = interp1d(n, crit[:, i]) inter_crit[0, i] = f(nobs) # Calculate RUR stat count = 0 max_p = x[0] min_p = x[0] for v in x[1:]: if v > max_p: max_p = v count = count + 1 if v < min_p: min_p = v count = count + 1 rur_stat = count / np.sqrt(len(x)) k = len(pvals) - 1 for i in range(len(pvals) - 1, -1, -1): if rur_stat < inter_crit[0, i]: k = i else: break p_value = pvals[k] warn_msg = """\ The test statistic is outside of the range of p-values available in the look-up table. The actual p-value is {direction} than the p-value returned. """ direction = "" if p_value == pvals[-1]: direction = "smaller" elif p_value == pvals[0]: direction = "larger" if direction: warnings.warn( warn_msg.format(direction=direction), InterpolationWarning ) crit_dict = { "10%": inter_crit[0, 3], "5%": inter_crit[0, 2], "2.5%": inter_crit[0, 1], "1%": inter_crit[0, 0], } if store: from statsmodels.stats.diagnostic import ResultsStore rstore = ResultsStore() rstore.nobs = nobs rstore.H0 = "The series is not stationary" rstore.HA = "The series is stationary" return rur_stat, p_value, crit_dict, rstore else: return rur_stat, p_value, crit_dict def test_fail_nonvector_input(self, reset_randomstate): with pytest.warns(InterpolationWarning): range_unit_root_test(self.x) x = np.random.rand(20, 2) assert_raises(ValueError, range_unit_root_test, x) def test_teststat(self): with pytest.warns(InterpolationWarning): rur_stat, _, _ = range_unit_root_test(self.x) simple_rur_stat, _, _ = self.simple_rur(self.x) assert_almost_equal(rur_stat, simple_rur_stat, DECIMAL_3) def test_pval(self): with pytest.warns(InterpolationWarning): _, pval, _ = range_unit_root_test(self.x) _, simple_pval, _ = self.simple_rur(self.x) assert_equal(pval, simple_pval) def test_store(self): with pytest.warns(InterpolationWarning): _, _, _, store = range_unit_root_test(self.x, True) # assert attributes, and make sure they're correct assert_equal(store.nobs, len(self.x)) def test_pandasacovf(): s = Series(lrange(1, 11)) assert_almost_equal(acovf(s, fft=False), acovf(s.values, fft=False)) def test_acovf2d(reset_randomstate): dta = sunspots.load_pandas().data dta.index = date_range(start="1700", end="2009", freq="A")[:309] del dta["YEAR"] res = acovf(dta, fft=False) assert_equal(res, acovf(dta.values, fft=False)) x = np.random.random((10, 2)) with pytest.raises(ValueError): acovf(x, fft=False) @pytest.mark.parametrize("demean", [True, False]) @pytest.mark.parametrize("adjusted", [True, False]) def test_acovf_fft_vs_convolution(demean, adjusted, reset_randomstate): q = np.random.normal(size=100) F1 = acovf(q, demean=demean, adjusted=adjusted, fft=True) F2 = acovf(q, demean=demean, adjusted=adjusted, fft=False) assert_almost_equal(F1, F2, decimal=7) @pytest.mark.parametrize("demean", [True, False]) @pytest.mark.parametrize("adjusted", [True, False]) def test_ccovf_fft_vs_convolution(demean, adjusted, reset_randomstate): x = np.random.normal(size=128) y = np.random.normal(size=128) F1 = ccovf(x, y, demean=demean, adjusted=adjusted, fft=False) F2 = ccovf(x, y, demean=demean, adjusted=adjusted, fft=True) assert_almost_equal(F1, F2, decimal=7) @pytest.mark.parametrize("demean", [True, False]) @pytest.mark.parametrize("adjusted", [True, False]) @pytest.mark.parametrize("fft", [True, False]) def test_compare_acovf_vs_ccovf(demean, adjusted, fft, reset_randomstate): x = np.random.normal(size=128) F1 = acovf(x, demean=demean, adjusted=adjusted, fft=fft) F2 = ccovf(x, x, demean=demean, adjusted=adjusted, fft=fft) assert_almost_equal(F1, F2, decimal=7) @pytest.mark.smoke @pytest.mark.slow def test_arma_order_select_ic(): # smoke test, assumes info-criteria are right from statsmodels.tsa.arima_process import arma_generate_sample arparams = np.array([0.75, -0.25]) maparams = np.array([0.65, 0.35]) arparams = np.r_[1, -arparams] maparam = np.r_[1, maparams] # FIXME: Never used nobs = 250 np.random.seed(2014) y = arma_generate_sample(arparams, maparams, nobs) res = arma_order_select_ic(y, ic=["aic", "bic"], trend="n") # regression tests in case we change algorithm to minic in sas aic_x = np.array( [ [764.36517643, 552.7342255, 484.29687843], [562.10924262, 485.5197969, 480.32858497], [507.04581344, 482.91065829, 481.91926034], [484.03995962, 482.14868032, 483.86378955], [481.8849479, 483.8377379, 485.83756612], ] ) bic_x = np.array( [ [767.88663735, 559.77714733, 494.86126118], [569.15216446, 496.08417966, 494.41442864], [517.61019619, 496.99650196, 499.52656493], [498.12580329, 499.75598491, 504.99255506], [499.49225249, 504.96650341, 510.48779255], ] ) aic = DataFrame(aic_x, index=lrange(5), columns=lrange(3)) bic = DataFrame(bic_x, index=lrange(5), columns=lrange(3)) assert_almost_equal(res.aic.values, aic.values, 5) assert_almost_equal(res.bic.values, bic.values, 5) assert_equal(res.aic_min_order, (1, 2)) assert_equal(res.bic_min_order, (1, 2)) assert_(res.aic.index.equals(aic.index)) assert_(res.aic.columns.equals(aic.columns)) assert_(res.bic.index.equals(bic.index)) assert_(res.bic.columns.equals(bic.columns)) index = pd.date_range("2000-1-1", freq="M", periods=len(y)) y_series = pd.Series(y, index=index) res_pd = arma_order_select_ic( y_series, max_ar=2, max_ma=1, ic=["aic", "bic"], trend="n" ) assert_almost_equal(res_pd.aic.values, aic.values[:3, :2], 5) assert_almost_equal(res_pd.bic.values, bic.values[:3, :2], 5) assert_equal(res_pd.aic_min_order, (2, 1)) assert_equal(res_pd.bic_min_order, (1, 1)) res = arma_order_select_ic(y, ic="aic", trend="n") assert_almost_equal(res.aic.values, aic.values, 5) assert_(res.aic.index.equals(aic.index)) assert_(res.aic.columns.equals(aic.columns)) assert_equal(res.aic_min_order, (1, 2)) def test_arma_order_select_ic_failure(): # this should trigger an SVD convergence failure, smoke test that it # returns, likely platform dependent failure... # looks like AR roots may be cancelling out for 4, 1? y = np.array( [ 0.86074377817203640006, 0.85316549067906921611, 0.87104653774363305363, 0.60692382068987393851, 0.69225941967301307667, 0.73336177248909339976, 0.03661329261479619179, 0.15693067239962379955, 0.12777403512447857437, -0.27531446294481976, -0.24198139631653581283, -0.23903317951236391359, -0.26000241325906497947, -0.21282920015519238288, -0.15943768324388354896, 0.25169301564268781179, 0.1762305709151877342, 0.12678133368791388857, 0.89755829086753169399, 0.82667068795350151511, ] ) import warnings with warnings.catch_warnings(): # catch a hessian inversion and convergence failure warning warnings.simplefilter("ignore") res = arma_order_select_ic(y) def test_acf_fft_dataframe(): # regression test #322 result = acf( sunspots.load_pandas().data[["SUNACTIVITY"]], fft=True, nlags=20 ) assert_equal(result.ndim, 1) def test_levinson_durbin_acov(): rho = 0.9 m = 20 acov = rho ** np.arange(200) sigma2_eps, ar, pacf, _, _ = levinson_durbin(acov, m, isacov=True) assert_allclose(sigma2_eps, 1 - rho ** 2) assert_allclose(ar, np.array([rho] + [0] * (m - 1)), atol=1e-8) assert_allclose(pacf, np.array([1, rho] + [0] * (m - 1)), atol=1e-8) @pytest.mark.parametrize("missing", ["conservative", "drop", "raise", "none"]) @pytest.mark.parametrize("fft", [False, True]) @pytest.mark.parametrize("demean", [True, False]) @pytest.mark.parametrize("adjusted", [True, False]) def test_acovf_nlags(acovf_data, adjusted, demean, fft, missing): full = acovf( acovf_data, adjusted=adjusted, demean=demean, fft=fft, missing=missing ) limited = acovf( acovf_data, adjusted=adjusted, demean=demean, fft=fft, missing=missing, nlag=10, ) assert_allclose(full[:11], limited) @pytest.mark.parametrize("missing", ["conservative", "drop"]) @pytest.mark.parametrize("fft", [False, True]) @pytest.mark.parametrize("demean", [True, False]) @pytest.mark.parametrize("adjusted", [True, False]) def test_acovf_nlags_missing(acovf_data, adjusted, demean, fft, missing): acovf_data = acovf_data.copy() acovf_data[1:3] = np.nan full = acovf( acovf_data, adjusted=adjusted, demean=demean, fft=fft, missing=missing ) limited = acovf( acovf_data, adjusted=adjusted, demean=demean, fft=fft, missing=missing, nlag=10, ) assert_allclose(full[:11], limited) def test_acovf_error(acovf_data): with pytest.raises(ValueError): acovf(acovf_data, nlag=250, fft=False) def test_pacf2acf_ar(): pacf = np.zeros(10) pacf[0] = 1 pacf[1] = 0.9 ar, acf = levinson_durbin_pacf(pacf) assert_allclose(acf, 0.9 ** np.arange(10.0)) assert_allclose(ar, pacf[1:], atol=1e-8) ar, acf = levinson_durbin_pacf(pacf, nlags=5) assert_allclose(acf, 0.9 ** np.arange(6.0)) assert_allclose(ar, pacf[1:6], atol=1e-8) def test_pacf2acf_levinson_durbin(): pacf = -(0.9 ** np.arange(11.0)) pacf[0] = 1 ar, acf = levinson_durbin_pacf(pacf) _, ar_ld, pacf_ld, _, _ = levinson_durbin(acf, 10, isacov=True) assert_allclose(ar, ar_ld, atol=1e-8) assert_allclose(pacf, pacf_ld, atol=1e-8) # From R, FitAR, PacfToAR ar_from_r = [ -4.1609, -9.2549, -14.4826, -17.6505, -17.5012, -14.2969, -9.5020, -4.9184, -1.7911, -0.3486, ] assert_allclose(ar, ar_from_r, atol=1e-4) def test_pacf2acf_errors(): pacf = -(0.9 ** np.arange(11.0)) pacf[0] = 1 with pytest.raises(ValueError): levinson_durbin_pacf(pacf, nlags=20) with pytest.raises(ValueError): levinson_durbin_pacf(pacf[1:]) with pytest.raises(ValueError): levinson_durbin_pacf(np.zeros(10)) with pytest.raises(ValueError): levinson_durbin_pacf(np.zeros((10, 2))) def test_pacf_burg(): rnd = np.random.RandomState(12345) e = rnd.randn(10001) y = e[1:] + 0.5 * e[:-1] pacf, sigma2 = pacf_burg(y, 10) yw_pacf = pacf_yw(y, 10) assert_allclose(pacf, yw_pacf, atol=5e-4) # Internal consistency check between pacf and sigma2 ye = y - y.mean() s2y = ye.dot(ye) / 10000 pacf[0] = 0 sigma2_direct = s2y * np.cumprod(1 - pacf ** 2) assert_allclose(sigma2, sigma2_direct, atol=1e-3) def test_pacf_burg_error(): with pytest.raises(ValueError): pacf_burg(np.empty((20, 2)), 10) with pytest.raises(ValueError): pacf_burg(np.empty(100), 101) def test_innovations_algo_brockwell_davis(): ma = -0.9 acovf = np.array([1 + ma ** 2, ma]) theta, sigma2 = innovations_algo(acovf, nobs=4) exp_theta = np.array([[0], [-0.4972], [-0.6606], [-0.7404]]) assert_allclose(theta, exp_theta, rtol=1e-4) assert_allclose(sigma2, [1.81, 1.3625, 1.2155, 1.1436], rtol=1e-4) theta, sigma2 = innovations_algo(acovf, nobs=500) assert_allclose(theta[-1, 0], ma) assert_allclose(sigma2[-1], 1.0) def test_innovations_algo_rtol(): ma = np.array([-0.9, 0.5]) acovf = np.array([1 + (ma ** 2).sum(), ma[0] + ma[1] * ma[0], ma[1]]) theta, sigma2 = innovations_algo(acovf, nobs=500) theta_2, sigma2_2 = innovations_algo(acovf, nobs=500, rtol=1e-8) assert_allclose(theta, theta_2) assert_allclose(sigma2, sigma2_2) def test_innovations_errors(): ma = -0.9 acovf = np.array([1 + ma ** 2, ma]) with pytest.raises(TypeError): innovations_algo(acovf, nobs=2.2) with pytest.raises(ValueError): innovations_algo(acovf, nobs=-1) with pytest.raises(ValueError): innovations_algo(
np.empty((2, 2))
numpy.empty
import torch import numpy as np import cv2 import tqdm import os import json from pycocotools.mask import * from src.unet_plus import SE_Res50UNet,SE_Res101UNet import time local_time = time.strftime('%Y-%m-%d-%H-%M',time.localtime(time.time())) TEST_IMG_PATH = '/mnt/jinnan2_round2_test_b_20190424' NORMAL_LIST_PATH = 'cvfly_normal_list_b.txt' SUBMIT_PATH = './submit/cvfly_test_b_{}.json'.format(local_time) SE50_MODEL_PATH = './models/se50/best_fold3_se50.pth' SE101_MODEL_PATH = './models/se101/best_se101.pth' def get_models(is_clc = False): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model50 = SE_Res50UNet(6, cls_only=is_clc) model50.load_state_dict(torch.load(SE50_MODEL_PATH), strict=True) model50 = model50.to(device) model50.eval() model101 = SE_Res101UNet(6,cls_only = is_clc) model101.load_state_dict(torch.load(SE101_MODEL_PATH), strict=True) model101 = model101.to(device) model101.eval() return model50, model101 def clc_aug(img): img_list = [] img_list.append(img.copy()) img_list.append(np.flipud(img).copy()) img_list.append(np.fliplr(img).copy()) return img_list def clc_aug_tensor(img,size = None): img = cv2.resize(img, size) assert img.shape[0] == img.shape[1] img_list = [] img_list.append(img.copy()) img_list.append(
np.flipud(img)
numpy.flipud
"""Mobjects that represent coordinate systems.""" __all__ = [ "CoordinateSystem", "Axes", "ThreeDAxes", "NumberPlane", "PolarPlane", "ComplexPlane", ] import fractions as fr import numbers from typing import Callable, Dict, Iterable, Optional, Sequence, Tuple, Union import numpy as np from colour import Color from manim.mobject.opengl_compatibility import ConvertToOpenGL from .. import config from ..constants import * from ..mobject.functions import ParametricFunction from ..mobject.geometry import ( Arrow, Circle, DashedLine, Dot, Line, Rectangle, RegularPolygon, ) from ..mobject.number_line import NumberLine from ..mobject.svg.tex_mobject import MathTex from ..mobject.types.vectorized_mobject import ( Mobject, VDict, VectorizedPoint, VGroup, VMobject, ) from ..utils.color import ( BLACK, BLUE, BLUE_D, GREEN, LIGHT_GREY, WHITE, YELLOW, color_gradient, invert_color, ) from ..utils.config_ops import merge_dicts_recursively, update_dict_recursively from ..utils.simple_functions import binary_search from ..utils.space_ops import angle_of_vector class CoordinateSystem: """ Abstract class for Axes and NumberPlane Examples -------- .. manim:: CoordSysExample :save_last_frame: class CoordSysExample(Scene): def construct(self): # the location of the ticks depends on the x_range and y_range. grid = Axes( x_range=[0, 1, 0.05], # step size determines num_decimal_places. y_range=[0, 1, 0.05], x_length=9, y_length=5.5, axis_config={ "numbers_to_include": np.arange(0, 1 + 0.1, 0.1), "number_scale_value": 0.5, }, tips=False, ) # Labels for the x-axis and y-axis. y_label = grid.get_y_axis_label("y", edge=LEFT, direction=LEFT, buff=0.4) x_label = grid.get_x_axis_label("x") grid_labels = VGroup(x_label, y_label) graphs = VGroup() for n in np.arange(1, 20 + 0.5, 0.5): graphs += grid.get_graph(lambda x: x ** n, color=WHITE) graphs += grid.get_graph( lambda x: x ** (1 / n), color=WHITE, use_smoothing=False ) # Extra lines and labels for point (1,1) graphs += grid.get_horizontal_line(grid.c2p(1, 1, 0), color=BLUE) graphs += grid.get_vertical_line(grid.c2p(1, 1, 0), color=BLUE) graphs += Dot(point=grid.c2p(1, 1, 0), color=YELLOW) graphs += Tex("(1,1)").scale(0.75).next_to(grid.c2p(1, 1, 0)) title = Title( # spaces between braces to prevent SyntaxError r"Graphs of $y=x^{ {1}\over{n} }$ and $y=x^n (n=1,2,3,...,20)$", include_underline=False, scale_factor=0.85, ) self.add(title, graphs, grid, grid_labels) """ def __init__( self, x_range=None, y_range=None, x_length=None, y_length=None, dimension=2, ): self.dimension = dimension default_step = 1 if x_range is None: x_range = [ round(-config["frame_x_radius"]), round(config["frame_x_radius"]), default_step, ] elif len(x_range) == 2: x_range = [*x_range, default_step] if y_range is None: y_range = [ round(-config["frame_y_radius"]), round(config["frame_y_radius"]), default_step, ] elif len(y_range) == 2: y_range = [*y_range, default_step] self.x_range = x_range self.y_range = y_range self.x_length = x_length self.y_length = y_length self.num_sampled_graph_points_per_tick = 10 def coords_to_point(self, *coords): raise NotImplementedError() def point_to_coords(self, point): raise NotImplementedError() def c2p(self, *coords): """Abbreviation for coords_to_point""" return self.coords_to_point(*coords) def p2c(self, point): """Abbreviation for point_to_coords""" return self.point_to_coords(point) def get_axes(self): raise NotImplementedError() def get_axis(self, index): return self.get_axes()[index] def get_x_axis(self): return self.get_axis(0) def get_y_axis(self): return self.get_axis(1) def get_z_axis(self): return self.get_axis(2) def get_x_axis_label(self, label_tex, edge=UR, direction=UR, **kwargs): return self.get_axis_label( label_tex, self.get_x_axis(), edge, direction, **kwargs ) def get_y_axis_label( self, label_tex, edge=UR, direction=UP * 0.5 + RIGHT, **kwargs ): return self.get_axis_label( label_tex, self.get_y_axis(), edge, direction, **kwargs ) # move to a util_file, or Mobject()?? @staticmethod def create_label_tex(label_tex) -> "Mobject": """Checks if the label is a ``float``, ``int`` or a ``str`` and creates a :class:`~.MathTex` label accordingly. Parameters ---------- label_tex : The label to be compared against the above types. Returns ------- :class:`~.Mobject` The label. """ if ( isinstance(label_tex, float) or isinstance(label_tex, int) or isinstance(label_tex, str) ): label_tex = MathTex(label_tex) return label_tex def get_axis_label( self, label: Union[float, str, "Mobject"], axis: "Mobject", edge: Sequence[float], direction: Sequence[float], buff: float = SMALL_BUFF, ) -> "Mobject": """Gets the label for an axis. Parameters ---------- label The label. Can be any mobject or `int/float/str` to be used with :class:`~.MathTex` axis The axis to which the label will be added. edge The edge of the axes to which the label will be added. ``RIGHT`` adds to the right side of the axis direction Allows for further positioning of the label. buff The distance of the label from the line. Returns ------- :class:`~.Mobject` The positioned label along the given axis. """ label = self.create_label_tex(label) label.next_to(axis.get_edge_center(edge), direction, buff=buff) label.shift_onto_screen(buff=MED_SMALL_BUFF) return label def get_axis_labels( self, x_label: Union[float, str, "Mobject"] = "x", y_label: Union[float, str, "Mobject"] = "y", ) -> "VGroup": """Defines labels for the x_axis and y_axis of the graph. Parameters ---------- x_label The label for the x_axis y_label The label for the y_axis Returns ------- :class:`~.VGroup` A :class:`~.Vgroup` of the labels for the x_axis and y_axis. See Also -------- :class:`get_x_axis_label` :class:`get_y_axis_label` """ self.axis_labels = VGroup( self.get_x_axis_label(x_label), self.get_y_axis_label(y_label), ) return self.axis_labels def add_coordinates( self, *axes_numbers: Union[ Optional[Iterable[float]], Union[Dict[float, Union[str, float, "Mobject"]]] ], **kwargs, ): """Adds labels to the axes. Parameters ---------- axes_numbers The numbers to be added to the axes. Use ``None`` to represent an axis with default labels. Examples -------- .. code-block:: python ax = ThreeDAxes() x_labels = range(-4, 5) z_labels = range(-4, 4, 2) ax.add_coordinates(x_labels, None, z_labels) # default y labels, custom x & z labels ax.add_coordinates(x_labels) # only x labels .. code-block:: python # specifically control the position and value of the labels using a dict ax = Axes(x_range=[0, 7]) x_pos = [x for x in range(1, 8)] # strings are automatically converted into a `Tex` mobject. x_vals = ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday"] x_dict = dict(zip(x_pos, x_vals)) ax.add_coordinates(x_dict) """ self.coordinate_labels = VGroup() # if nothing is passed to axes_numbers, produce axes with default labelling if not axes_numbers: axes_numbers = [None for _ in range(self.dimension)] for axis, values in zip(self.axes, axes_numbers): if isinstance(values, dict): labels = axis.add_labels(values, **kwargs) else: labels = axis.add_numbers(values, **kwargs) self.coordinate_labels.add(labels) return self def get_line_from_axis_to_point( self, index: int, point: Sequence[float], line_func: Line = DashedLine, color: Color = LIGHT_GREY, stroke_width: float = 2, ) -> Line: """Returns a straight line from a given axis to a point in the scene. Parameters ---------- index Specifies the axis from which to draw the line. `0 = x_axis`, `1 = y_axis` point The point to which the line will be drawn. line_func The function of the :class:`~.Line` mobject used to construct the line. color The color of the line. stroke_width The stroke width of the line. Returns ------- :class:`~.Line` The line from an axis to a point. See Also -------- :class:`get_vertical_line` :class:`get_horizontal_line` """ axis = self.get_axis(index) line = line_func(axis.get_projection(point), point) line.set_stroke(color, stroke_width) return line def get_vertical_line(self, point: Sequence[float], **kwargs) -> Line: """A vertical line from the x-axis to a given point in the scene. Parameters ---------- point The point to which the vertical line will be drawn. kwargs Additional parameters to be passed to :class:`get_line_from_axis_to_point` Returns ------- :class:`Line` A vertical line from the x-axis to the point. """ return self.get_line_from_axis_to_point(0, point, **kwargs) def get_horizontal_line(self, point: Sequence[float], **kwargs) -> Line: """A horizontal line from the y-axis to a given point in the scene. Parameters ---------- point The point to which the horizontal line will be drawn. kwargs Additional parameters to be passed to :class:`get_line_from_axis_to_point` Returns ------- :class:`Line` A horizontal line from the y-axis to the point. """ return self.get_line_from_axis_to_point(1, point, **kwargs) # graphing def get_graph( self, function: Callable[[float], float], x_range: Optional[Sequence[float]] = None, **kwargs, ): """Generates a curve based on a function. Parameters ---------- function The function used to construct the :class:`~.ParametricFunction`. x_range The range of the curve along the axes. ``x_range = [x_min, x_max]``. kwargs Additional parameters to be passed to :class:`~.ParametricFunction`. Returns ------- :class:`~.ParametricFunction` The plotted curve. """ t_range = np.array(self.x_range, dtype=float) if x_range is not None: t_range[: len(x_range)] = x_range if x_range is None or len(x_range) < 3: # if t_range has a defined step size, increase the number of sample points per tick t_range[2] /= self.num_sampled_graph_points_per_tick # For axes, the third coordinate of x_range indicates # tick frequency. But for functions, it indicates a # sample frequency graph = ParametricFunction( lambda t: self.coords_to_point(t, function(t)), t_range=t_range, **kwargs ) graph.underlying_function = function return graph def get_parametric_curve(self, function, **kwargs): dim = self.dimension graph = ParametricFunction( lambda t: self.coords_to_point(*function(t)[:dim]), **kwargs ) graph.underlying_function = function return graph def input_to_graph_point(self, x: float, graph: "ParametricFunction") -> np.ndarray: """Returns the coordinates of the point on the ``graph`` corresponding to the input ``x`` value. Parameters ---------- x The x-value for which the coordinates of corresponding point on the :attr:`graph` are to be found. graph The :class:`~.ParametricFunction` on which the x-value and y-value lie. Returns ------- :class:`np.ndarray` The coordinates of the point on the :attr:`graph` corresponding to the :attr:`x` value. """ if hasattr(graph, "underlying_function"): return graph.function(x) else: alpha = binary_search( function=lambda a: self.point_to_coords(graph.point_from_proportion(a))[ 0 ], target=x, lower_bound=self.x_range[0], upper_bound=self.x_range[1], ) if alpha is not None: return graph.point_from_proportion(alpha) else: return None def i2gp(self, x, graph): """ Alias for :meth:`input_to_graph_point`. """ return self.input_to_graph_point(x, graph) def get_graph_label( self, graph: "ParametricFunction", label: Union[float, str, "Mobject"] = "f(x)", x_val: Optional[float] = None, direction: Sequence[float] = RIGHT, buff: float = MED_SMALL_BUFF, color: Optional[Color] = None, dot: bool = False, dot_config: Optional[dict] = None, ) -> Mobject: """Creates a properly positioned label for the passed graph, styled with parameters and an optional dot. Parameters ---------- graph The curve of the function plotted. label The label for the function's curve. Written with :class:`MathTex` if not specified otherwise. x_val The x_value with which the label should be aligned. direction The cartesian position, relative to the curve that the label will be at --> ``LEFT``, ``RIGHT`` buff The buffer space between the curve and the label. color The color of the label. dot Adds a dot at the given point on the graph. dot_config Additional parameters to be passed to :class:`~.Dot`. Returns ------- :class:`Mobject` The positioned label and :class:`~.Dot`, if applicable. """ if dot_config is None: dot_config = {} label = self.create_label_tex(label) color = color or graph.get_color() label.set_color(color) if x_val is None: # Search from right to left for x in np.linspace(self.x_range[1], self.x_range[0], 100): point = self.input_to_graph_point(x, graph) if point[1] < config["frame_y_radius"]: break else: point = self.input_to_graph_point(x_val, graph) label.next_to(point, direction, buff=buff) label.shift_onto_screen() if dot: label.add(Dot(point=point, **dot_config)) return label # calculus def get_riemann_rectangles( self, graph: "ParametricFunction", x_range: Optional[Sequence[float]] = None, dx: Optional[float] = 0.1, input_sample_type: str = "left", stroke_width: float = 1, stroke_color: Color = BLACK, fill_opacity: float = 1, color: Union[Iterable[Color], Color] = np.array((BLUE, GREEN)), show_signed_area: bool = True, bounded_graph: "ParametricFunction" = None, blend: bool = False, width_scale_factor: float = 1.001, ) -> VGroup: """This method returns the :class:`~.VGroup` of the Riemann Rectangles for a particular curve. Parameters ---------- graph The graph whose area will be approximated by Riemann rectangles. x_range The minimum and maximum x-values of the rectangles. ``x_range = [x_min, x_max]``. dx The change in x-value that separates each rectangle. input_sample_type Can be any of ``"left"``, ``"right"`` or ``"center"``. Refers to where the sample point for the height of each Riemann Rectangle will be inside the segments of the partition. stroke_width The stroke_width of the border of the rectangles. stroke_color The color of the border of the rectangle. fill_opacity The opacity of the rectangles. color The colors of the rectangles. Creates a balanced gradient if multiple colors are passed. show_signed_area Indicates negative area when the curve dips below the x-axis by inverting its color. blend Sets the :attr:`stroke_color` to :attr:`fill_color`, blending the rectangles without clear separation. bounded_graph If a secondary graph is specified, encloses the area between the two curves. width_scale_factor The factor by which the width of the rectangles is scaled. Returns ------- :class:`~.VGroup` A :class:`~.VGroup` containing the Riemann Rectangles. """ # setting up x_range, overwrite user's third input if x_range is None: if bounded_graph is None: x_range = [graph.t_min, graph.t_max] else: x_min = max(graph.t_min, bounded_graph.t_min) x_max = min(graph.t_max, bounded_graph.t_max) x_range = [x_min, x_max] x_range = [*x_range[:2], dx] rectangles = VGroup() x_range = np.arange(*x_range) # allows passing a string to color the graph if type(color) is str: colors = [color] * len(x_range) else: colors = color_gradient(color, len(x_range)) for x, color in zip(x_range, colors): if input_sample_type == "left": sample_input = x elif input_sample_type == "right": sample_input = x + dx elif input_sample_type == "center": sample_input = x + 0.5 * dx else: raise ValueError("Invalid input sample type") graph_point = self.input_to_graph_point(sample_input, graph) if bounded_graph is None: y_point = self.origin_shift(self.y_range) else: y_point = bounded_graph.underlying_function(x) points = VGroup( *list( map( VectorizedPoint, [ self.coords_to_point(x, y_point), self.coords_to_point(x + width_scale_factor * dx, y_point), graph_point, ], ) ) ) rect = Rectangle().replace(points, stretch=True) rectangles.add(rect) # checks if the rectangle is under the x-axis if self.p2c(graph_point)[1] < y_point and show_signed_area: color = invert_color(color) # blends rectangles smoothly if blend: stroke_color = color rect.set_style( fill_color=color, fill_opacity=fill_opacity, stroke_color=stroke_color, stroke_width=stroke_width, ) return rectangles def get_area( self, graph: "ParametricFunction", x_range: Optional[Sequence[float]] = None, color: Union[Color, Iterable[Color]] = [BLUE, GREEN], opacity: float = 0.3, dx_scaling: float = 1, bounded: "ParametricFunction" = None, ): """Returns a :class:`~.VGroup` of Riemann rectangles sufficiently small enough to visually approximate the area under the graph passed. Parameters ---------- graph The graph/curve for which the area needs to be gotten. x_range The range of the minimum and maximum x-values of the area. ``x_range = [x_min, x_max]``. color The color of the area. Creates a gradient if a list of colors is provided. opacity The opacity of the area. bounded If a secondary :attr:`graph` is specified, encloses the area between the two curves. dx_scaling The factor by which the :attr:`dx` value is scaled. Returns ------- :class:`~.VGroup` The :class:`~.VGroup` containing the Riemann Rectangles. """ dx = self.x_range[2] / 500 return self.get_riemann_rectangles( graph, x_range=x_range, dx=dx * dx_scaling, bounded_graph=bounded, blend=True, color=color, show_signed_area=False, ).set_opacity(opacity=opacity) def angle_of_tangent( self, x: float, graph: "ParametricFunction", dx: float = 1e-8 ) -> float: """Returns the angle to the x-axis of the tangent to the plotted curve at a particular x-value. Parameters ---------- x The x-value at which the tangent must touch the curve. graph The :class:`~.ParametricFunction` for which to calculate the tangent. dx The small change in `x` with which a small change in `y` will be compared in order to obtain the tangent. Returns ------- :class:`float` The angle of the tangent with the x axis. """ p0 = self.input_to_graph_point(x, graph) p1 = self.input_to_graph_point(x + dx, graph) return angle_of_vector(p1 - p0) def slope_of_tangent( self, x: float, graph: "ParametricFunction", **kwargs ) -> float: """Returns the slope of the tangent to the plotted curve at a particular x-value. Parameters ---------- x The x-value at which the tangent must touch the curve. graph The :class:`~.ParametricFunction` for which to calculate the tangent. Returns ------- :class:`float` The slope of the tangent with the x axis. """ return np.tan(self.angle_of_tangent(x, graph, **kwargs)) def get_derivative_graph( self, graph: "ParametricFunction", color: Color = GREEN, **kwargs ) -> ParametricFunction: """Returns the curve of the derivative of the passed graph. Parameters ---------- graph The graph for which the derivative will be found. color The color of the derivative curve. **kwargs Any valid keyword argument of :class:`~.ParametricFunction` Returns ------- :class:`~.ParametricFunction` The curve of the derivative. """ def deriv(x): return self.slope_of_tangent(x, graph) return self.get_graph(deriv, color=color, **kwargs) def get_secant_slope_group( self, x: float, graph: ParametricFunction, dx: Optional[float] = None, dx_line_color: Color = YELLOW, dy_line_color: Optional[Color] = None, dx_label: Optional[Union[float, str]] = None, dy_label: Optional[Union[float, str]] = None, include_secant_line: bool = True, secant_line_color: Color = GREEN, secant_line_length: float = 10, ) -> VGroup: """Creates two lines representing `dx` and `df`, the labels for `dx` and `df`, and the secant to the curve at a particular x-value. Parameters ---------- x The x-value at which the secant intersects the graph for the first time. graph The curve for which the secant will be found. dx The change in `x` after which the secant exits. dx_line_color The color of the line that indicates the change in `x`. dy_line_color The color of the line that indicates the change in `y`. Defaults to the color of :attr:`graph`. dx_label The label for the `dx` line. dy_label The label for the `dy` line. include_secant_line Whether or not to include the secant line in the graph, or just have the df and dx lines and labels. secant_line_color The color of the secant line. secant_line_length The length of the secant line. Returns ------- :class:`~.VGroup` A group containing the elements: `dx_line`, `df_line`, and if applicable also :attr:`dx_label`, :attr:`df_label`, `secant_line`. """ group = VGroup() dx = dx or float(self.x_range[1] - self.x_range[0]) / 10 dx_line_color = dx_line_color dy_line_color = dy_line_color or graph.get_color() p1 = self.input_to_graph_point(x, graph) p2 = self.input_to_graph_point(x + dx, graph) interim_point = p2[0] * RIGHT + p1[1] * UP group.dx_line = Line(p1, interim_point, color=dx_line_color) group.df_line = Line(interim_point, p2, color=dy_line_color) group.add(group.dx_line, group.df_line) labels = VGroup() if dx_label is not None: group.dx_label = self.create_label_tex(dx_label) labels.add(group.dx_label) group.add(group.dx_label) if dy_label is not None: group.df_label = self.create_label_tex(dy_label) labels.add(group.df_label) group.add(group.df_label) if len(labels) > 0: max_width = 0.8 * group.dx_line.width max_height = 0.8 * group.df_line.height if labels.width > max_width: labels.width = max_width if labels.height > max_height: labels.height = max_height if dx_label is not None: group.dx_label.next_to( group.dx_line, np.sign(dx) * DOWN, buff=group.dx_label.height / 2 ) group.dx_label.set_color(group.dx_line.get_color()) if dy_label is not None: group.df_label.next_to( group.df_line, np.sign(dx) * RIGHT, buff=group.df_label.height / 2 ) group.df_label.set_color(group.df_line.get_color()) if include_secant_line: secant_line_color = secant_line_color group.secant_line = Line(p1, p2, color=secant_line_color) group.secant_line.scale_in_place( secant_line_length / group.secant_line.get_length() ) group.add(group.secant_line) return group def get_vertical_lines_to_graph( self, graph: ParametricFunction, x_range: Optional[Sequence[float]] = None, num_lines: int = 20, **kwargs, ) -> VGroup: """Obtains multiple lines from the x-axis to the curve. Parameters ---------- graph The graph on which the line should extend to. x_range A list containing the lower and and upper bounds of the lines -> ``x_range = [x_min, x_max]``. num_lines The number of evenly spaced lines. Returns ------- :class:`~.VGroup` The :class:`~.VGroup` of the evenly spaced lines. """ x_range = x_range if x_range is not None else self.x_range return VGroup( *[ self.get_vertical_line(self.i2gp(x, graph), **kwargs) for x in np.linspace(x_range[0], x_range[1], num_lines) ] ) def get_T_label( self, x_val: float, graph: "ParametricFunction", label: Optional[Union[float, str, "Mobject"]] = None, label_color: Color = WHITE, triangle_size: float = MED_SMALL_BUFF, triangle_color: Color = WHITE, line_func: "Line" = Line, line_color: Color = YELLOW, ) -> VGroup: """Creates a labelled triangle marker with a vertical line from the x-axis to a curve at a given x-value. Parameters ---------- x_val The position along the curve at which the label, line and triangle will be constructed. graph The :class:`~.ParametricFunction` for which to construct the label. label The label of the vertical line and triangle. label_color The color of the label. triangle_size The size of the triangle. triangle_color The color of the triangle. line_func The function used to construct the vertical line. line_color The color of the vertical line. Examples ------- .. manim:: T_labelExample :save_last_frame: class T_labelExample(Scene): def construct(self): # defines the axes and linear function axes = Axes(x_range=[-1, 10], y_range=[-1, 10], x_length=9, y_length=6) func = axes.get_graph(lambda x: x, color=BLUE) # creates the T_label t_label = axes.get_T_label(x_val=4, graph=func, label=Tex("x-value")) self.add(axes, func, t_label) Returns ------- :class:`~.VGroup` A :class:`~.VGroup` of the label, triangle and vertical line mobjects. """ T_label_group = VGroup() triangle = RegularPolygon(n=3, start_angle=np.pi / 2, stroke_width=0).set_fill( color=triangle_color, opacity=1 ) triangle.height = triangle_size triangle.move_to(self.coords_to_point(x_val, 0), UP) if label is not None: t_label = self.create_label_tex(label).set_color(label_color) t_label.next_to(triangle, DOWN) T_label_group.add(t_label) v_line = self.get_vertical_line( self.i2gp(x_val, graph), color=line_color, line_func=line_func ) T_label_group.add(triangle, v_line) return T_label_group class Axes(VGroup, CoordinateSystem, metaclass=ConvertToOpenGL): """Creates a set of axes. Parameters ---------- x_range The :code:`[x_min, x_max, x_step]` values of the x-axis. y_range The :code:`[y_min, y_max, y_step]` values of the y-axis. x_length The length of the x-axis. y_length The length of the y-axis. axis_config Arguments to be passed to :class:`~.NumberLine` that influences both axes. x_axis_config Arguments to be passed to :class:`~.NumberLine` that influence the x-axis. y_axis_config Arguments to be passed to :class:`~.NumberLine` that influence the y-axis. tips Whether or not to include the tips on both axes. kwargs : Any Additional arguments to be passed to :class:`CoordinateSystem` and :class:`~.VGroup`. """ def __init__( self, x_range: Optional[Sequence[float]] = None, y_range: Optional[Sequence[float]] = None, x_length: Optional[float] = round(config.frame_width) - 2, y_length: Optional[float] = round(config.frame_height) - 2, axis_config: Optional[dict] = None, x_axis_config: Optional[dict] = None, y_axis_config: Optional[dict] = None, tips: bool = True, **kwargs, ): VGroup.__init__(self, **kwargs) CoordinateSystem.__init__(self, x_range, y_range, x_length, y_length) self.axis_config = { "include_tip": tips, "numbers_to_exclude": [0], "exclude_origin_tick": True, } self.x_axis_config = {} self.y_axis_config = {"rotation": 90 * DEGREES, "label_direction": LEFT} self.update_default_configs( (self.axis_config, self.x_axis_config, self.y_axis_config), (axis_config, x_axis_config, y_axis_config), ) self.x_axis_config = merge_dicts_recursively( self.axis_config, self.x_axis_config ) self.y_axis_config = merge_dicts_recursively( self.axis_config, self.y_axis_config ) self.x_axis = self.create_axis(self.x_range, self.x_axis_config, self.x_length) self.y_axis = self.create_axis(self.y_range, self.y_axis_config, self.y_length) # Add as a separate group in case various other # mobjects are added to self, as for example in # NumberPlane below self.axes = VGroup(self.x_axis, self.y_axis) self.add(*self.axes) # finds the middle-point on each axis lines_center_point = [((axis.x_max + axis.x_min) / 2) for axis in self.axes] self.shift(-self.coords_to_point(*lines_center_point)) @staticmethod def update_default_configs(default_configs, passed_configs): for default_config, passed_config in zip(default_configs, passed_configs): if passed_config is not None: update_dict_recursively(default_config, passed_config) def create_axis( self, range_terms: Sequence[float], axis_config: dict, length: float, ) -> NumberLine: """Creates an axis and dynamically adjusts its position depending on where 0 is located on the line. Parameters ---------- range_terms The range of the the axis : `(x_min, x_max, x_step)`. axis_config Additional parameters that are passed to :class:`NumberLine`. length The length of the axis. Returns ------- :class:`NumberLine` Returns a number line with the provided x and y axis range. """ axis_config["length"] = length axis = NumberLine(range_terms, **axis_config) # without the call to origin_shift, graph does not exist when min > 0 or max < 0 # shifts the axis so that 0 is centered axis.shift(-axis.number_to_point(self.origin_shift(range_terms))) return axis def coords_to_point(self, *coords: Sequence[float]) -> np.ndarray: """Transforms the vector formed from ``coords`` formed by the :class:`Axes` into the corresponding vector with respect to the default basis. Returns ------- np.ndarray A point that results from a change of basis from the coordinate system defined by the :class:`Axes` to that of ``manim``'s default coordinate system """ origin = self.x_axis.number_to_point(self.origin_shift(self.x_range)) result = np.array(origin) for axis, coord in zip(self.get_axes(), coords): result += axis.number_to_point(coord) - origin return result def point_to_coords(self, point: float) -> Tuple: """Transforms the coordinates of the point which are with respect to ``manim``'s default basis into the coordinates of that point with respect to the basis defined by :class:`Axes`. Parameters ---------- point The point whose coordinates will be found. Returns ------- Tuple Coordinates of the point with respect to :class:`Axes`'s basis """ return tuple([axis.point_to_number(point) for axis in self.get_axes()]) def get_axes(self) -> VGroup: """Gets the axes. Returns ------- :class:`~.VGroup` A pair of axes. """ return self.axes def get_line_graph( self, x_values: Iterable[float], y_values: Iterable[float], z_values: Optional[Iterable[float]] = None, line_color: Color = YELLOW, add_vertex_dots: bool = True, vertex_dot_radius: float = DEFAULT_DOT_RADIUS, vertex_dot_style: Optional[dict] = None, **kwargs, ) -> VDict: """Draws a line graph. The graph connects the vertices formed from zipping ``x_values``, ``y_values`` and ``z_values``. Also adds :class:`Dots <.Dot>` at the vertices if ``add_vertex_dots`` is set to ``True``. Parameters ---------- x_values Iterable of values along the x-axis. y_values Iterable of values along the y-axis. z_values Iterable of values (zeros if z_values is None) along the z-axis. line_color Color for the line graph. add_vertex_dots Whether or not to add :class:`~.Dot` at each vertex. vertex_dot_radius Radius for the :class:`~.Dot` at each vertex. vertex_dot_style Style arguments to be passed into :class:`~.Dot` at each vertex. kwargs Additional arguments to be passed into :class:`~.VMobject`. Examples -------- .. manim:: LineGraphExample :save_last_frame: class LineGraphExample(Scene): def construct(self): plane = NumberPlane( x_range = (0, 7), y_range = (0, 5), x_length = 7, axis_config={"include_numbers": True}, ) plane.center() line_graph = plane.get_line_graph( x_values = [0, 1.5, 2, 2.8, 4, 6.25], y_values = [1, 3, 2.25, 4, 2.5, 1.75], line_color=GOLD_E, vertex_dot_style=dict(stroke_width=3, fill_color=PURPLE), stroke_width = 4, ) self.add(plane, line_graph) """ x_values, y_values = map(np.array, (x_values, y_values)) if z_values is None: z_values = np.zeros(x_values.shape) line_graph = VDict() graph = VGroup(color=line_color, **kwargs) vertices = [ self.coords_to_point(x, y, z) for x, y, z in zip(x_values, y_values, z_values) ] graph.set_points_as_corners(vertices) graph.z_index = -1 line_graph["line_graph"] = graph if add_vertex_dots: vertex_dot_style = vertex_dot_style or {} vertex_dots = VGroup( *[ Dot(point=vertex, radius=vertex_dot_radius, **vertex_dot_style) for vertex in vertices ] ) line_graph["vertex_dots"] = vertex_dots return line_graph @staticmethod def origin_shift(axis_range: Sequence[float]) -> float: """Determines how to shift graph mobjects to compensate when 0 is not on the axis. Parameters ---------- axis_range The range of the axis : ``(x_min, x_max, x_step)``. """ if axis_range[0] > 0: return axis_range[0] if axis_range[1] < 0: return axis_range[1] else: return 0 class ThreeDAxes(Axes): """A 3-dimensional set of axes. Parameters ---------- x_range The :code:`[x_min, x_max, x_step]` values of the x-axis. y_range The :code:`[y_min, y_max, y_step]` values of the y-axis. z_range The :code:`[z_min, z_max, z_step]` values of the z-axis. x_length The length of the x-axis. y_length The length of the y-axis. z_length The length of the z-axis. z_axis_config Arguments to be passed to :class:`~.NumberLine` that influence the z-axis. z_normal The direction of the normal. num_axis_pieces The number of pieces used to construct the axes. light_source The direction of the light source. depth Currently non-functional. gloss Currently non-functional. kwargs : Any Additional arguments to be passed to :class:`Axes`. """ def __init__( self, x_range: Optional[Sequence[float]] = (-6, 6, 1), y_range: Optional[Sequence[float]] = (-5, 5, 1), z_range: Optional[Sequence[float]] = (-4, 4, 1), x_length: Optional[float] = config.frame_height + 2.5, y_length: Optional[float] = config.frame_height + 2.5, z_length: Optional[float] = config.frame_height - 1.5, z_axis_config: Optional[dict] = None, z_normal: Sequence[float] = DOWN, num_axis_pieces: int = 20, light_source: Sequence[float] = 9 * DOWN + 7 * LEFT + 10 * OUT, # opengl stuff (?) depth=None, gloss=0.5, **kwargs, ): Axes.__init__( self, x_range=x_range, x_length=x_length, y_range=y_range, y_length=y_length, **kwargs, ) self.z_range = z_range self.z_length = z_length self.z_axis_config = {} self.update_default_configs((self.z_axis_config,), (z_axis_config,)) self.z_axis_config = merge_dicts_recursively( self.axis_config, self.z_axis_config ) self.z_normal = z_normal self.num_axis_pieces = num_axis_pieces self.light_source = light_source self.dimension = 3 z_axis = self.create_axis(self.z_range, self.z_axis_config, self.z_length) z_axis.rotate_about_zero(-PI / 2, UP) z_axis.rotate_about_zero(angle_of_vector(self.z_normal)) z_axis.shift(self.x_axis.number_to_point(self.origin_shift(x_range))) self.axes.add(z_axis) self.add(z_axis) self.z_axis = z_axis if not config.renderer == "opengl": self.add_3d_pieces() self.set_axis_shading() def add_3d_pieces(self): for axis in self.axes: axis.pieces = VGroup(*axis.get_pieces(self.num_axis_pieces)) axis.add(axis.pieces) axis.set_stroke(width=0, family=False) axis.set_shade_in_3d(True) def set_axis_shading(self): def make_func(axis): vect = self.light_source return lambda: ( axis.get_edge_center(-vect), axis.get_edge_center(vect), ) for axis in self: for submob in axis.family_members_with_points(): submob.get_gradient_start_and_end_points = make_func(axis) submob.get_unit_normal = lambda a: np.ones(3) submob.set_sheen(0.2) class NumberPlane(Axes): """Creates a cartesian plane with background lines. Parameters ---------- x_range The :code:`[x_min, x_max, x_step]` values of the plane in the horizontal direction. y_range The :code:`[y_min, y_max, y_step]` values of the plane in the vertical direction. x_length The width of the plane. y_length The height of the plane. background_line_style Arguments that influence the construction of the background lines of the plane. faded_line_style Similar to :attr:`background_line_style`, affects the construction of the scene's background lines. faded_line_ratio Determines the number of boxes within the background lines: :code:`2` = 4 boxes, :code:`3` = 9 boxes. make_smooth_after_applying_functions Currently non-functional. kwargs : Any Additional arguments to be passed to :class:`Axes`. .. note:: If :attr:`x_length` or :attr:`y_length` are not defined, the plane automatically adjusts its lengths based on the :attr:`x_range` and :attr:`y_range` values to set the unit_size to 1. Examples -------- .. manim:: NumberPlaneExample :save_last_frame: class NumberPlaneExample(Scene): def construct(self): number_plane = NumberPlane( x_range=[-10, 10, 1], y_range=[-10, 10, 1], background_line_style={ "stroke_color": TEAL, "stroke_width": 4, "stroke_opacity": 0.6 } ) self.add(number_plane) """ def __init__( self, x_range: Optional[Sequence[float]] = ( -config["frame_x_radius"], config["frame_x_radius"], 1, ), y_range: Optional[Sequence[float]] = ( -config["frame_y_radius"], config["frame_y_radius"], 1, ), x_length: Optional[float] = None, y_length: Optional[float] = None, background_line_style: Optional[dict] = None, faded_line_style: Optional[dict] = None, faded_line_ratio: int = 1, make_smooth_after_applying_functions=True, **kwargs, ): # configs self.axis_config = { "stroke_color": WHITE, "stroke_width": 2, "include_ticks": False, "include_tip": False, "line_to_number_buff": SMALL_BUFF, "label_direction": DR, "number_scale_value": 0.5, } self.y_axis_config = {"label_direction": DR} self.background_line_style = { "stroke_color": BLUE_D, "stroke_width": 2, "stroke_opacity": 1, } self.update_default_configs( (self.axis_config, self.y_axis_config, self.background_line_style), ( kwargs.pop("axis_config", None), kwargs.pop("y_axis_config", None), background_line_style, ), ) # Defaults to a faded version of line_config self.faded_line_style = faded_line_style self.faded_line_ratio = faded_line_ratio self.make_smooth_after_applying_functions = make_smooth_after_applying_functions # init super().__init__( x_range=x_range, y_range=y_range, x_length=x_length, y_length=y_length, axis_config=self.axis_config, y_axis_config=self.y_axis_config, **kwargs, ) # dynamically adjusts x_length and y_length so that the unit_size is one by default if x_length is None: x_length = self.x_range[1] - self.x_range[0] if y_length is None: y_length = self.y_range[1] - self.y_range[0] self.init_background_lines() def init_background_lines(self): """Will init all the lines of NumberPlanes (faded or not)""" if self.faded_line_style is None: style = dict(self.background_line_style) # For anything numerical, like stroke_width # and stroke_opacity, chop it in half for key in style: if isinstance(style[key], numbers.Number): style[key] *= 0.5 self.faded_line_style = style self.background_lines, self.faded_lines = self.get_lines() self.background_lines.set_style( **self.background_line_style, ) self.faded_lines.set_style( **self.faded_line_style, ) self.add_to_back( self.faded_lines, self.background_lines, ) def get_lines(self) -> Tuple[VGroup, VGroup]: """Generate all the lines, faded and not faded. Two sets of lines are generated: one parallel to the X-axis, and parallel to the Y-axis. Returns ------- Tuple[:class:`~.VGroup`, :class:`~.VGroup`] The first (i.e the non faded lines) and second (i.e the faded lines) sets of lines, respectively. """ x_axis = self.get_x_axis() y_axis = self.get_y_axis() x_lines1, x_lines2 = self.get_lines_parallel_to_axis( x_axis, y_axis, self.x_axis.x_step, self.faded_line_ratio, ) y_lines1, y_lines2 = self.get_lines_parallel_to_axis( y_axis, x_axis, self.y_axis.x_step, self.faded_line_ratio, ) # TODO this was added so that we can run tests on NumberPlane # In the future these attributes will be tacked onto self.background_lines self.x_lines = x_lines1 self.y_lines = y_lines1 lines1 = VGroup(*x_lines1, *y_lines1) lines2 = VGroup(*x_lines2, *y_lines2) return lines1, lines2 def get_lines_parallel_to_axis( self, axis_parallel_to: NumberLine, axis_perpendicular_to: NumberLine, freq: float, ratio_faded_lines: int, ) -> Tuple[VGroup, VGroup]: """Generate a set of lines parallel to an axis. Parameters ---------- axis_parallel_to The axis with which the lines will be parallel. axis_perpendicular_to The axis with which the lines will be perpendicular. ratio_faded_lines The ratio between the space between faded lines and the space between non-faded lines. freq Frequency of non-faded lines (number of non-faded lines per graph unit). Returns ------- Tuple[:class:`~.VGroup`, :class:`~.VGroup`] The first (i.e the non-faded lines parallel to `axis_parallel_to`) and second (i.e the faded lines parallel to `axis_parallel_to`) sets of lines, respectively. """ line = Line(axis_parallel_to.get_start(), axis_parallel_to.get_end()) if ratio_faded_lines == 0: # don't show faded lines ratio_faded_lines = 1 # i.e. set ratio to 1 step = (1 / ratio_faded_lines) * freq lines1 = VGroup() lines2 = VGroup() unit_vector_axis_perp_to = axis_perpendicular_to.get_unit_vector() # min/max used in case range does not include 0. i.e. if (2,6): # the range becomes (0,4), not (0,6), to produce the correct number of lines ranges = ( np.arange( 0, min( axis_perpendicular_to.x_max - axis_perpendicular_to.x_min, axis_perpendicular_to.x_max, ), step, ), np.arange( 0, max( axis_perpendicular_to.x_min - axis_perpendicular_to.x_max, axis_perpendicular_to.x_min, ), -step, ), ) for inputs in ranges: for k, x in enumerate(inputs): new_line = line.copy() new_line.shift(unit_vector_axis_perp_to * x) if k % ratio_faded_lines == 0: lines1.add(new_line) else: lines2.add(new_line) return lines1, lines2 def get_center_point(self) -> np.ndarray: """Gets the origin of :class:`NumberPlane`. Returns ------- np.ndarray The center point. """ return self.coords_to_point(0, 0) def get_x_unit_size(self): return self.get_x_axis().get_unit_size() def get_y_unit_size(self): return self.get_x_axis().get_unit_size() def get_axes(self) -> VGroup: # Method Already defined at Axes.get_axes so we could remove this a later PR. """Gets the pair of axes. Returns ------- :class:`~.VGroup` Axes """ return self.axes def get_vector(self, coords, **kwargs): kwargs["buff"] = 0 return Arrow( self.coords_to_point(0, 0), self.coords_to_point(*coords), **kwargs ) def prepare_for_nonlinear_transform(self, num_inserted_curves=50): for mob in self.family_members_with_points(): num_curves = mob.get_num_curves() if num_inserted_curves > num_curves: mob.insert_n_curves(num_inserted_curves - num_curves) return self class PolarPlane(Axes): r"""Creates a polar plane with background lines. Parameters ---------- azimuth_step The number of divisions in the azimuth (also known as the `angular coordinate` or `polar angle`). If ``None`` is specified then it will use the default specified by ``azimuth_units``: - ``"PI radians"`` or ``"TAU radians"``: 20 - ``"degrees"``: 36 - ``"gradians"``: 40 - ``None``: 1 A non-integer value will result in a partial division at the end of the circle. size The diameter of the plane. radius_step The distance between faded radius lines. radius_max The maximum value of the radius. azimuth_units Specifies a default labelling system for the azimuth. Choices are: - ``"PI radians"``: Fractional labels in the interval :math:`\left[0, 2\pi\right]` with :math:`\pi` as a constant. - ``"TAU radians"``: Fractional labels in the interval :math:`\left[0, \tau\right]` (where :math:`\tau = 2\pi`) with :math:`\tau` as a constant. - ``"degrees"``: Decimal labels in the interval :math:`\left[0, 360\right]` with a degree (:math:`^{\circ}`) symbol. - ``"gradians"``: Decimal labels in the interval :math:`\left[0, 400\right]` with a superscript "g" (:math:`^{g}`). - ``None``: Decimal labels in the interval :math:`\left[0, 1\right]`. azimuth_compact_fraction If the ``azimuth_units`` choice has fractional labels, choose whether to combine the constant in a compact form :math:`\tfrac{xu}{y}` as opposed to :math:`\tfrac{x}{y}u`, where :math:`u` is the constant. azimuth_offset The angle offset of the azimuth, expressed in radians. azimuth_direction The direction of the azimuth. - ``"CW"``: Clockwise. - ``"CCW"``: Anti-clockwise. azimuth_label_buff The buffer for the azimuth labels. azimuth_label_scale The scale of the azimuth labels. radius_config The axis config for the radius. Examples -------- .. manim:: PolarPlaneExample :ref_classes: PolarPlane :save_last_frame: class PolarPlaneExample(Scene): def construct(self): polarplane_pi = PolarPlane( azimuth_units="PI radians", size=6, azimuth_label_scale=0.7, radius_config={"number_scale_value": 0.7}, ).add_coordinates() self.add(polarplane_pi) """ def __init__( self, radius_max: float = config["frame_y_radius"], size: Optional[float] = None, radius_step: float = 1, azimuth_step: Optional[float] = None, azimuth_units: Optional[str] = "PI radians", azimuth_compact_fraction: bool = True, azimuth_offset: float = 0, azimuth_direction: str = "CCW", azimuth_label_buff: float = SMALL_BUFF, azimuth_label_scale: float = 0.5, radius_config: Optional[dict] = None, background_line_style: Optional[dict] = None, faded_line_style: Optional[dict] = None, faded_line_ratio: int = 1, make_smooth_after_applying_functions: bool = True, **kwargs, ): # error catching if azimuth_units in ["PI radians", "TAU radians", "degrees", "gradians", None]: self.azimuth_units = azimuth_units else: raise ValueError( "Invalid azimuth units. Expected one of: PI radians, TAU radians, degrees, gradians or None." ) if azimuth_direction in ["CW", "CCW"]: self.azimuth_direction = azimuth_direction else: raise ValueError("Invalid azimuth units. Expected one of: CW, CCW.") # configs self.radius_config = { "stroke_color": WHITE, "stroke_width": 2, "include_ticks": False, "include_tip": False, "line_to_number_buff": SMALL_BUFF, "label_direction": DL, "number_scale_value": 0.5, } self.background_line_style = { "stroke_color": BLUE_D, "stroke_width": 2, "stroke_opacity": 1, } self.azimuth_step = ( ( { "PI radians": 20, "TAU radians": 20, "degrees": 36, "gradians": 40, None: 1, }[azimuth_units] ) if azimuth_step is None else azimuth_step ) self.update_default_configs( (self.radius_config, self.background_line_style), (radius_config, background_line_style), ) # Defaults to a faded version of line_config self.faded_line_style = faded_line_style self.faded_line_ratio = faded_line_ratio self.make_smooth_after_applying_functions = make_smooth_after_applying_functions self.azimuth_offset = azimuth_offset self.azimuth_label_buff = azimuth_label_buff self.azimuth_label_scale = azimuth_label_scale self.azimuth_compact_fraction = azimuth_compact_fraction # init super().__init__( x_range=np.array((-radius_max, radius_max, radius_step)), y_range=np.array((-radius_max, radius_max, radius_step)), x_length=size, y_length=size, axis_config=self.radius_config, **kwargs, ) # dynamically adjusts size so that the unit_size is one by default if size is None: size = 0 self.init_background_lines() def init_background_lines(self): """Will init all the lines of NumberPlanes (faded or not)""" if self.faded_line_style is None: style = dict(self.background_line_style) # For anything numerical, like stroke_width # and stroke_opacity, chop it in half for key in style: if isinstance(style[key], numbers.Number): style[key] *= 0.5 self.faded_line_style = style self.background_lines, self.faded_lines = self.get_lines() self.background_lines.set_style( **self.background_line_style, ) self.faded_lines.set_style( **self.faded_line_style, ) self.add_to_back( self.faded_lines, self.background_lines, ) def get_lines(self) -> Tuple[VGroup, VGroup]: """Generate all the lines and circles, faded and not faded. Returns ------- Tuple[:class:`~.VGroup`, :class:`~.VGroup`] The first (i.e the non faded lines and circles) and second (i.e the faded lines and circles) sets of lines and circles, respectively. """ center = self.get_center_point() ratio_faded_lines = self.faded_line_ratio offset = self.azimuth_offset if ratio_faded_lines == 0: # don't show faded lines ratio_faded_lines = 1 # i.e. set ratio to 1 rstep = (1 / ratio_faded_lines) * self.x_axis.x_step astep = (1 / ratio_faded_lines) * (TAU * (1 / self.azimuth_step)) rlines1 = VGroup() rlines2 = VGroup() alines1 = VGroup() alines2 = VGroup() rinput =
np.arange(0, self.x_axis.x_max + rstep, rstep)
numpy.arange
import io import os import pickle import numpy as np import torch from PIL import Image from learn2learn.vision.datasets import TieredImagenet class TieredImageNet(TieredImagenet): def __init__(self, root, partition="train", mode='coarse', transform=None, target_transform=None, download=False): self.root = root self.transform = transform self.target_transform = target_transform self.mode = mode tiered_imaganet_path = os.path.join(self.root, 'tiered-imagenet') short_partition = 'val' if partition == 'validation' else partition labels_path = os.path.join(tiered_imaganet_path, short_partition + '_labels.pkl') images_path = os.path.join(tiered_imaganet_path, short_partition + '_images_png.pkl') with open(images_path, 'rb') as images_file: self.images = pickle.load(images_file) with open(labels_path, 'rb') as labels_file: self.labels = pickle.load(labels_file) self.coarse2fine = {} for c, f in zip(self.labels['label_general'], self.labels['label_specific']): if c in self.coarse2fine: if f not in self.coarse2fine[c]: self.coarse2fine[c].append(f) else: self.coarse2fine[c] = [f] if self.mode == 'coarse': self.labels = self.labels['label_general'] elif self.mode == 'fine': self.labels = self.labels['label_specific'] else: raise NotImplementedError @property def num_classes(self): return len(np.unique(self.labels)) class MetaTieredImageNet(TieredImageNet): def __init__(self, args, partition='train', train_transform=None, test_transform=None, fix_seed=True): super(MetaTieredImageNet, self).__init__( root=args.data_root, partition=partition, mode=args.mode) self.fix_seed = fix_seed self.n_ways = args.n_ways self.n_shots = args.n_shots self.n_queries = args.n_queries self.n_test_runs = args.n_test_runs self.n_aug_support_samples = args.n_aug_support_samples self.train_transform = train_transform self.test_transform = test_transform self.data = {} for idx in range(len(self.images)): if self.labels[idx] not in self.data: self.data[self.labels[idx]] = [] self.data[self.labels[idx]].append(self.images[idx]) self.classes = list(self.data.keys()) def __getitem__(self, item): if self.fix_seed: np.random.seed(item) if len(self.classes) > self.n_ways: cls_sampled = np.random.choice(self.classes, self.n_ways, False) else: cls_sampled =
np.array(self.classes)
numpy.array
from SimpleITK import sitkNearestNeighbor, ResampleImageFilter, SmoothingRecursiveGaussianImageFilter, \ GetArrayFromImage, GetImageFromArray, sitkLinear from skimage import morphology, measure, segmentation, filters from scipy.ndimage.morphology import binary_erosion, binary_dilation import numpy as np trash_threshold = .2 def normalize(img_arr): max_hu = 400. min_hu = -1000. img_arr[img_arr > max_hu] = max_hu img_arr[img_arr < min_hu] = min_hu img_arr_normalized = (img_arr - min_hu) / (max_hu - min_hu) return img_arr_normalized def resample_image(sitk_img, new_spacing, new_size, method='Linear'): origin = sitk_img.GetOrigin() direction = sitk_img.GetDirection() resampler = ResampleImageFilter() resampler.SetOutputDirection(direction) resampler.SetOutputOrigin(origin) resampler.SetSize(new_size) if method == 'Linear': resampler.SetInterpolator(sitkLinear) else: resampler.SetInterpolator(sitkNearestNeighbor) resampler.SetOutputSpacing(new_spacing) return resampler.Execute(sitk_img) def gaussian_smooth(sitk_img, sigma=1.5): img_filter = SmoothingRecursiveGaussianImageFilter() img_filter.SetSigma(float(sigma)) return img_filter.Execute(sitk_img) def lung_segmentation(sitk_img, lower_bound, upper_bound): new_spacing = np.asarray([2.5, 2.5, 5]) orig_size = sitk_img.GetSize() orig_spacing = sitk_img.GetSpacing() new_size = [int(np.ceil(orig_size[0] / new_spacing[0] * orig_spacing[0])), int(np.ceil(orig_size[1] / new_spacing[1] * orig_spacing[1])), int(np.ceil(orig_size[2] / new_spacing[2] * orig_spacing[2]))] new_sitk_img = resample_image(sitk_img, new_spacing, new_size) new_sitk_img = gaussian_smooth(new_sitk_img) imgs_to_process = GetArrayFromImage(new_sitk_img) imgs_to_process[imgs_to_process < lower_bound] = lower_bound binary_threshold = filters.threshold_otsu(imgs_to_process) img = imgs_to_process < binary_threshold old_bbox = imgs_to_process.shape del imgs_to_process temp = np.zeros(old_bbox) for c in range(old_bbox[0]): labels = ~img[c, :, :] if np.sum(labels): labels = measure.label(labels, neighbors=4) regions = measure.regionprops(labels) labels = [r.area for r in regions] index = labels.index(max(labels)) bbox = regions[index].bbox dist = 1 temp[c, bbox[0] + dist:bbox[2] - dist, bbox[1] + dist:bbox[3] - dist] = segmentation.clear_border( img[c, bbox[0] + dist:bbox[2] - dist, bbox[1] + dist:bbox[3] - dist]) img = temp > 0 del temp otsu_img = img.copy() img = morphology.binary_closing(img, selem=np.ones((1, 2, 2))) labels = measure.label(img, neighbors=4) regions = measure.regionprops(labels) labels = [(r.area, r.bbox) for r in regions] labels.sort(reverse=True) max_bbox = labels[0][1] max_bbox_zmin = max_bbox[0] max_bbox_zmax = max_bbox[3]-1 for i in range(int(max_bbox_zmax - (max_bbox_zmax - max_bbox_zmin) / 3), max_bbox_zmax): _slice = img[i, :, :] slice_labels, num = measure.label(_slice, return_num=True) regions = measure.regionprops(slice_labels) slice_labels = [[r.area, r.label] for r in regions] if len(slice_labels) > 2: slice_labels.sort(reverse=True) max_area = slice_labels[0][0] _slice = _slice.astype(np.bool) thresh = int(max_area) / 4 _slice = morphology.remove_small_objects(_slice, thresh) img[i, :, :] = _slice img = img.astype(np.bool) labels = measure.label(img, neighbors=4) regions = measure.regionprops(labels) labels = [(r.area, r.bbox, r.coords) for r in regions] labels.sort(reverse=True) max_area = labels[0][0] max_bbox = labels[0][1] max_bbox_zmin = max_bbox[0] max_bbox_zmax = max_bbox[3] - 1 for area, bbox, coords in labels: region_center_z = (bbox[0]+bbox[3])/2 if area > max_area / 2: continue if region_center_z > max_bbox_zmax or region_center_z < max_bbox_zmin: img[coords[:, 0], coords[:, 1], coords[:, 2]] = 0 _slice = np.sum(img, axis=0) > 0 slice_labels, num = measure.label(_slice, return_num=True) if num > 1: regions = measure.regionprops(slice_labels) slice_labels = [r.area for r in regions] slice_labels.sort(reverse=True) max_area = slice_labels[0] _slice = _slice.astype(np.bool) thresh = int(max_area) / 4 _slice = morphology.remove_small_objects(_slice, thresh) bbox = np.where(_slice) x_min = np.min(bbox[1]) x_max = np.max(bbox[1]) y_min =
np.min(bbox[0])
numpy.min
# coding=utf-8 # Copyright (C) 2019 ATHENA AUTHORS; <NAME>; <NAME>; # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # Only support eager mode # pylint: disable=no-member, invalid-name, relative-beyond-top-level # pylint: disable=too-many-locals, too-many-statements, too-many-arguments, too-many-instance-attributes """ Implementation of GriffinLim vocoder """ import os import numpy as np import librosa from scipy.io.wavfile import write as write_wav class GriffinLim: """python implementation of griffinlim algorithm""" def __init__(self, data_descriptions): """Reference: to paper "Multiband Excitation Vocoder" """ assert data_descriptions.audio_featurizer is not None assert data_descriptions.audio_featurizer.feat is not None assert data_descriptions.hparams.audio_config is not None params_func = data_descriptions.audio_featurizer.feat.params params = params_func(data_descriptions.hparams.audio_config) self.channels = params.filterbank_channel_count self.sample_rate = params.sample_rate self.window_length = int(params.window_length * self.sample_rate) self.hop_length = int(params.frame_length * self.sample_rate) self.n_fft = self._get_nfft(self.window_length) self.lower_frequency_limit = params.lower_frequency_limit self.upper_frequency_limit = params.upper_frequency_limit self.window_type = params.window_type self.EPS = 1e-10 def _get_nfft(self, window_length): """n_fft is an exponential power of 2 closest to and larger than win_length""" nfft = 2 while nfft < window_length: nfft *= 2 return nfft def __call__(self, feats, hparams, name=None): linear_feats = self._logmel_to_linear(feats) samples = self._griffin_lim(linear_feats, hparams.gl_iters) samples = samples / 32768 if not os.path.exists(hparams.output_directory): os.makedirs(hparams.output_directory) output_path = os.path.join(hparams.output_directory, '%s.wav' % str(name)) write_wav(output_path, self.sample_rate, (samples * np.iinfo(np.int16).max).astype(np.int16)) seconds = float(samples.shape[0]) / self.sample_rate return seconds def _logmel_to_linear(self, feats): """Convert FBANK to linear spectrogram. Args: feats: FBANK feats, shape: [length, channels] Returns: linear_feats: Linear spectrogram """ assert feats.shape[1] == self.channels linear_feats =
np.power(10.0, feats)
numpy.power
import numpy as np import os import glob from PIL import Image from scipy import misc def instr(str,substr,pos): t=[] counter=0 for s in str: if s==substr: t.append(counter) counter += 1 return t[pos-1] def power_plant_data_regression(do_normalize): FILE="C:\\MLDatabases\\data\\uci\\power_plant\\CCPP\\Folds5x2_pp.csv" data=np.loadtxt(FILE,dtype=np.float,delimiter=",",skiprows=1) x=data[:,0:4] y=data[:,4] if do_normalize: x=x-np.mean(x,axis=1,keepdims=True) x=x/np.std(x,axis=1,keepdims=True) x_train=x[0:8000,:] y_train=y[0:8000] x_test=x[8000:None,:] y_test=y[8000:None] print(x_train.shape,y_train.shape,x_test.shape,y_test.shape) return (x_train,y_train,x_test,y_test) def epileptic_EEG_classification(do_normalize): """ https://archive.ics.uci.edu/ml/datasets/Epileptic+Seizure+Recognition """ FILE="C:\\MLDatabases\\data\\uci\\epileptic\\data.csv" data=np.loadtxt(FILE,dtype=">U",delimiter=",",skiprows=1) data=np.asarray(data[:,1:None],dtype=np.float) x=data[:,0:178] y=data[:,178] y[y>1]=0 if do_normalize: x=x-np.mean(x,axis=1,keepdims=True) x=x/np.std(x,axis=1,keepdims=True) x_train=x[0:10000,:] y_train=y[0:10000] x_test=x[10000:None,:] y_test=y[10000:None] print(x_train.shape,np.unique(y_train),x_test.shape,y_test.shape) return (x_train,y_train,x_test,y_test) def energy_efficiency_regression_y1(do_normalize): """ https://archive.ics.uci.edu/ml/datasets/Energy+efficiency """ FILE="C:\\MLDatabases\\data\\uci\\energy efficiency\\ENB2012_data.csv" data=np.loadtxt(FILE,dtype=np.float,delimiter=",",skiprows=1) x=data[:,0:8] y=data[:,8] if do_normalize: x=x-np.mean(x,axis=1,keepdims=True) x=x/np.std(x,axis=1,keepdims=True) x_train=x[0:668,:] y_train=y[0:668] x_test=x[668:None,:] y_test=y[668:None] print(x_train.shape,y_train.shape,x_test.shape,y_test.shape) return (x_train,y_train,x_test,y_test) def energy_efficiency_regression_y2(do_normalize): """ https://archive.ics.uci.edu/ml/datasets/Energy+efficiency """ FILE="C:\\MLDatabases\\data\\uci\\energy efficiency\\ENB2012_data.csv" data=np.loadtxt(FILE,dtype=np.float,delimiter=",",skiprows=1) x=data[:,0:8] y=data[:,9] if do_normalize: x=x-np.mean(x,axis=1,keepdims=True) x=x/np.std(x,axis=1,keepdims=True) x_train=x[0:668,:] y_train=y[0:668] x_test=x[668:None,:] y_test=y[668:None] print(x_train.shape,y_train.shape,x_test.shape,y_test.shape) return (x_train,y_train,x_test,y_test) def spam_notspam_youtube_rnn_classification(x_onehot_encode): """ https://archive.ics.uci.edu/ml/datasets/YouTube+Spam+Collection """ x=[] y=[] unique_chars=set() max_len=0 char_to_idx=dict() idx_to_chr=dict() FILE="C:\\MLDatabases\\data\\uci\\spamNotspam\\Youtube01-Psy.csv" with open(FILE,"r", encoding="utf8") as f: line=f.readline() for line in f: l=line[instr(line,",",3):len(line)-2].strip(",\"").strip("\",") if x_onehot_encode: if len(l)>max_len: max_len=len(l) unique_chars=set(''.join(unique_chars)+l) x.append(l) y.append(int(line[-2])) FILE="C:\\MLDatabases\\data\\uci\\spamNotspam\\Youtube02-KatyPerry.csv" with open(FILE,"r", encoding="utf8") as f: line=f.readline() for line in f: l=line[instr(line,",",3):len(line)-2].strip(",\"").strip("\",") if x_onehot_encode: if len(l)>max_len: max_len=len(l) unique_chars=set(''.join(unique_chars)+l) x.append(l) y.append(int(line[-2])) FILE="C:\\MLDatabases\\data\\uci\\spamNotspam\\Youtube03-LMFAO.csv" with open(FILE,"r", encoding="utf8") as f: line=f.readline() for line in f: l=line[instr(line,",",3):len(line)-2].strip(",\"").strip("\",") if x_onehot_encode: if len(l)>max_len: max_len=len(l) unique_chars=set(''.join(unique_chars)+l) x.append(l) y.append(int(line[-2])) FILE="C:\\MLDatabases\\data\\uci\\spamNotspam\\Youtube04-Eminem.csv" with open(FILE,"r", encoding="utf8") as f: line=f.readline() for line in f: l=line[instr(line,",",3):len(line)-2].strip(",\"").strip("\",") if x_onehot_encode: if len(l)>max_len: max_len=len(l) unique_chars=set(''.join(unique_chars)+l) x.append(l) y.append(int(line[-2])) FILE="C:\\MLDatabases\\data\\uci\\spamNotspam\\Youtube05-Shakira.csv" with open(FILE,"r", encoding="utf8") as f: line=f.readline() for line in f: l=line[instr(line,",",3):len(line)-2].strip(",\"").strip("\",") if x_onehot_encode: if len(l)>max_len: max_len=len(l) unique_chars=set(''.join(unique_chars)+l) x.append(l) y.append(int(line[-2])) FILE="C:\\MLDatabases\\data\\uci\\spamNotspam\\SMSSpamCollection" with open(FILE,"r", encoding="utf8") as f: for line in f: if line.startswith("ham"): if x_onehot_encode: if len(line[3:None].strip())>max_len: max_len=len(line[3:None].strip()) unique_chars=set(''.join(unique_chars)+line[3:None].strip()) x.append(line[3:None].strip()) y.append(1) else: if x_onehot_encode: if len(line[5:None].strip())>max_len: max_len=len(line[5:None].strip()) unique_chars=set(''.join(unique_chars)+line[5:None].strip()) x.append(line[5:None].strip()) y.append(0) if x_onehot_encode: char_to_idx={chr:idx for idx,chr in enumerate(unique_chars)} idx_to_chr={idx:chr for idx,chr in enumerate(unique_chars)} for i,sen in enumerate(x): t=[] for chars in sen: t.append(char_to_idx[chars]) x[i]=t x_train=x[0:6000] y_train=y[0:6000] x_test=x[6000:None] y_test=y[6000:None] print(x_train[100]) print( ''.join([idx_to_chr[i] for i in x_train[100]] )) return (x_train,y_train,x_test,y_test),(unique_chars,char_to_idx,idx_to_chr,max_len) def plant_leaf_image_classification(do_clip): """ https://archive.ics.uci.edu/ml/datasets/One-hundred+plant+species+leaves+data+set """ PATH="C:\\MLDatabases\\data\\uci\\100 leaves plant\\100 leaves plant species\\data" dir_list=os.listdir(PATH) plantname_to_idx={name:idx for (idx,name) in enumerate(dir_list)} idx_to_plantname={idx:name for (idx,name) in enumerate(dir_list)} np.random.seed(10) labels=[] images=np.zeros((1600,50,50)) start_ix=0 for subfolder in dir_list: imagePaths = glob.glob(PATH + '\\' + subfolder +'\\*.jpg') im_array = np.array( [misc.imresize(np.array(Image.open(imagePath), 'f'),(50,50)) for imagePath in imagePaths] ) images[start_ix:start_ix+len(im_array)] = im_array start_ix += len(im_array) for imagePath in imagePaths: labels.append(plantname_to_idx[subfolder]) if do_clip[0]: np.clip(images,do_clip[1],do_clip[2]) y=np.array(labels) idx=np.linspace(0,1599,1600,dtype=np.int) np.random.shuffle(idx) np.random.shuffle(idx) np.random.shuffle(idx) idx_train=idx[0:1500] idx_test=idx[1500:None] x_train=images[idx_train] y_train=y[idx_train] x_test=images[idx_test] y_test=y[idx_test] print(x_train.shape,y_train.shape,x_test.shape,y_test.shape) return (x_train,y_train,x_test,y_test),(plantname_to_idx,idx_to_plantname) def plant_leat_classification_shape(do_normalize): """ https://archive.ics.uci.edu/ml/datasets/One-hundred+plant+species+leaves+data+set """ FILE="C:\\MLDatabases\\data\\uci\\100 leaves plant\\100 leaves plant species\\data_Sha_64.txt" data=np.loadtxt(FILE,dtype=">U",delimiter=",",skiprows=1,usecols=(0,)) plantname_to_idx={name:idx for (idx,name) in enumerate(np.unique(data))} idx_to_plantname={idx:name for (idx,name) in enumerate(np.unique(data))} del data def class_converter(s): return plantname_to_idx[s.decode("utf-8")] data=np.loadtxt(FILE,delimiter=",",skiprows=1,converters={0:class_converter}) if do_normalize: data=data-np.mean(data,axis=1,keepdims=True) data=data/np.std(data,axis=1,keepdims=True) x_train=data[0:1500,1:None] y_train=data[0:1500,0] x_test=data[1500:None,1:None] y_test=data[1500:None,0] print(x_train.shape,y_train.shape,x_test.shape,y_test.shape) return (x_train,y_train,x_test,y_test),(plantname_to_idx,idx_to_plantname) def plant_leat_classification_texture(do_normalize): FILE="C:\\MLDatabases\\data\\uci\\100 leaves plant\\100 leaves plant species\\data_Tex_64.txt" data=np.loadtxt(FILE,dtype=">U",delimiter=",",skiprows=1,usecols=(0,)) plantname_to_idx={name:idx for (idx,name) in enumerate(np.unique(data))} idx_to_plantname={idx:name for (idx,name) in enumerate(np.unique(data))} del data def class_converter(s): return plantname_to_idx[s.decode("utf-8")] data=np.loadtxt(FILE,delimiter=",",skiprows=1,converters={0:class_converter}) if do_normalize: data=data-np.mean(data,axis=1,keepdims=True) data=data/np.std(data,axis=1,keepdims=True) x_train=data[0:1500,1:None] y_train=data[0:1500,0] x_test=data[1500:None,1:None] y_test=data[1500:None,0] print(x_train.shape,y_train.shape,x_test.shape,y_test.shape) return (x_train,y_train,x_test,y_test),(plantname_to_idx,idx_to_plantname) def plant_leat_classification_margin(do_normalize): FILE="C:\\MLDatabases\\data\\uci\\100 leaves plant\\100 leaves plant species\\data_Mar_64.txt" data=np.loadtxt(FILE,dtype=">U",delimiter=",",skiprows=1,usecols=(0,)) plantname_to_idx={name:idx for (idx,name) in enumerate(np.unique(data))} idx_to_plantname={idx:name for (idx,name) in enumerate(np.unique(data))} del data def class_converter(s): return plantname_to_idx[s.decode("utf-8")] data=np.loadtxt(FILE,delimiter=",",skiprows=1,converters={0:class_converter}) if do_normalize: data=data-np.mean(data,axis=1,keepdims=True) data=data/np.std(data,axis=1,keepdims=True) x_train=data[0:1500,1:None] y_train=data[0:1500,0] x_test=data[1500:None,1:None] y_test=data[1500:None,0] print(x_train.shape,y_train.shape,x_test.shape,y_test.shape) return (x_train,y_train,x_test,y_test),(plantname_to_idx,idx_to_plantname) def truck_failure_anomaly_detection_clf(do_normalize): """ https://archive.ics.uci.edu/ml/datasets/IDA2016Challenge """ FILE="C:\\MLDatabases\\data\\uci\\truck\\to_uci\\aps_failure_training_set.csv" def class_converter(s): if s==b"neg": return 0 else: return 1 data=np.loadtxt(FILE,dtype=">U",delimiter=",",skiprows=1,converters={0:class_converter}) data[data=="na"]=-1 data=np.asarray(data,dtype=np.float32) x_train=np.copy(data[:,1:None]) y_train=np.copy(data[:,0]) if do_normalize: x_train=x_train-np.mean(x_train,axis=1,keepdims=True) x_train=x_train/np.std(x_train,axis=1,keepdims=True) del data FILE="C:\\MLDatabases\\data\\uci\\truck\\to_uci\\aps_failure_test_set.csv" data=np.loadtxt(FILE,dtype=">U",delimiter=",",skiprows=1,converters={0:class_converter}) data[data=="na"]=-1 data=np.asarray(data,dtype=np.float32) x_test=data[:,1:None] y_test=data[:,0] if do_normalize: x_test=x_test-np.mean(x_test,axis=1,keepdims=True) x_test=x_test/
np.std(x_test,axis=1,keepdims=True)
numpy.std
import numpy as np from skimage.io import imread from transforms3d.euler import mat2euler, euler2mat def rectify_symmetric_rotation(R, rotation_groups): ''' rectify pose according to https://arxiv.org/pdf/1908.07640.pdf Proposition 1 :param R: [3,3] :param rotation_groups: [n,3,3] :return: ''' rg_inv = np.transpose(rotation_groups, [0, 2, 1]) # [n,3,3] rg_diff = R[None, :, :] @ rg_inv -
np.identity(3)
numpy.identity
""" Implementations of the IPFP algorithm to solve for equilibrium and do comparative statics in several variants of the `Choo and Siow 2006 <https://www.jstor.org/stable/10.1086/498585?seq=1>`_ model: * homoskedastic with singles (as in CS 2006) * homoskedastic without singles * gender-heteroskedastic: with a scale parameter on the error term for women * gender- and type-heteroskedastic: with a scale parameter on the error term for women each solver, when fed the joint surplus and margins, returns the equilibrium matching patterns, the adding-up errors on the margins, and if requested (gr=True) the derivatives of the matching patterns in all primitives. """ import numpy as np from math import sqrt import sys import scipy.linalg as spla from ipfp_utils import print_stars, npexp, der_npexp, npmaxabs, \ nplog, nppow, der_nppow, nprepeat_col, nprepeat_row, describe_array def ipfp_homo_nosingles_solver(Phi, men_margins, women_margins, tol=1e-9, gr=False, verbose=False, maxiter=1000): """ solve for equilibrium in a Choo and Siow market without singles given systematic surplus and margins :param np.array Phi: matrix of systematic surplus, shape (ncat_men, ncat_women) :param np.array men_margins: vector of men margins, shape (ncat_men) :param np.array women_margins: vector of women margins, shape (ncat_women) :param float tol: tolerance on change in solution :param boolean gr: if True, also evaluate derivatives of muxy wrt Phi :param boolean verbose: prints stuff :param int maxiter: maximum number of iterations :return: * muxy the matching patterns, shape (ncat_men, ncat_women) * marg_err_x, marg_err_y the errors on the margins * and the gradients of muxy wrt Phi if gr=True """ ncat_men = men_margins.shape[0] ncat_women = women_margins.shape[0] n_couples = np.sum(men_margins) # check that there are as many men as women if np.abs(np.sum(women_margins) - n_couples) > n_couples * tol: print_stars( f"{ipfp_homo_nosingles_solver}: there should be as many men as women") if Phi.shape != (ncat_men, ncat_women): print_stars( f"ipfp_hetero_solver: the shape of Phi should be ({ncat_men}, {ncat_women}") sys.exit(1) ephi2 = npexp(Phi / 2.0) ephi2T = ephi2.T ############################################################################# # we solve the equilibrium equations muxy = ephi2 * tx * ty # starting with a reasonable initial point for tx and ty: : tx = ty = bigc # it is important that it fit the number of individuals ############################################################################# bigc = sqrt(n_couples / np.sum(ephi2)) txi = np.full(ncat_men, bigc) tyi = np.full(ncat_women, bigc) err_diff = bigc tol_diff = tol * err_diff niter = 0 while (err_diff > tol_diff) and (niter < maxiter): sx = ephi2 @ tyi tx = men_margins / sx sy = ephi2T @ tx ty = women_margins / sy err_x = npmaxabs(tx - txi) err_y = npmaxabs(ty - tyi) err_diff = err_x + err_y txi, tyi = tx, ty niter += 1 muxy = ephi2 * np.outer(txi, tyi) marg_err_x = np.sum(muxy, 1) - men_margins marg_err_y = np.sum(muxy, 0) - women_margins if verbose: print(f"After {niter} iterations:") print(f"\tMargin error on x: {npmaxabs(marg_err_x)}") print(f"\tMargin error on y: {npmaxabs(marg_err_y)}") if not gr: return muxy, marg_err_x, marg_err_y else: sxi = ephi2 @ tyi syi = ephi2T @ txi n_sum_categories = ncat_men + ncat_women n_prod_categories = ncat_men * ncat_women # start with the LHS of the linear system lhs = np.zeros((n_sum_categories, n_sum_categories)) lhs[:ncat_men, :ncat_men] = np.diag(sxi) lhs[:ncat_men, ncat_men:] = ephi2 * txi.reshape((-1, 1)) lhs[ncat_men:, ncat_men:] = np.diag(syi) lhs[ncat_men:, :ncat_men] = ephi2T * tyi.reshape((-1, 1)) # now fill the RHS n_cols_rhs = n_prod_categories rhs = np.zeros((n_sum_categories, n_cols_rhs)) # to compute derivatives of (txi, tyi) wrt Phi der_ephi2 = der_npexp(Phi / 2.0) / \ (2.0 * ephi2) # 1/2 with safeguards ivar = 0 for iman in range(ncat_men): rhs[iman, ivar:(ivar + ncat_women)] = - \ muxy[iman, :] * der_ephi2[iman, :] ivar += ncat_women ivar1 = ncat_men ivar2 = 0 for iwoman in range(ncat_women): rhs[ivar1, ivar2:n_cols_rhs:ncat_women] = - \ muxy[:, iwoman] * der_ephi2[:, iwoman] ivar1 += 1 ivar2 += 1 # solve for the derivatives of txi and tyi dt_dT = spla.solve(lhs, rhs) dt = dt_dT[:ncat_men, :] dT = dt_dT[ncat_men:, :] # now construct the derivatives of muxy dmuxy = np.zeros((n_prod_categories, n_cols_rhs)) ivar = 0 for iman in range(ncat_men): dt_man = dt[iman, :] dmuxy[ivar:(ivar + ncat_women), :] = np.outer((ephi2[iman, :] * tyi), dt_man) ivar += ncat_women for iwoman in range(ncat_women): dT_woman = dT[iwoman, :] dmuxy[iwoman:n_prod_categories:ncat_women, :] += np.outer((ephi2[:, iwoman] * txi), dT_woman) # add the term that comes from differentiating ephi2 muxy_vec2 = (muxy * der_ephi2).reshape(n_prod_categories) dmuxy += np.diag(muxy_vec2) return muxy, marg_err_x, marg_err_y, dmuxy def ipfp_homo_solver(Phi, men_margins, women_margins, tol=1e-9, gr=False, verbose=False, maxiter=1000): """ solve for equilibrium in a Choo and Siow market given systematic surplus and margins :param np.array Phi: matrix of systematic surplus, shape (ncat_men, ncat_women) :param np.array men_margins: vector of men margins, shape (ncat_men) :param np.array women_margins: vector of women margins, shape (ncat_women) :param float tol: tolerance on change in solution :param boolean gr: if True, also evaluate derivatives of muxy wrt Phi :param boolean verbose: prints stuff :param int maxiter: maximum number of iterations :return: * (muxy, mux0, mu0y) the matching patterns * marg_err_x, marg_err_y the errors on the margins * and the gradients of (muxy, mux0, mu0y) wrt (men_margins, women_margins, Phi) if gr=True """ ncat_men = men_margins.size ncat_women = women_margins.size if Phi.shape != (ncat_men, ncat_women): print_stars( f"ipfp_homo_solver: the shape of Phi should be ({ncat_men}, {ncat_women}") sys.exit(1) ephi2 = npexp(Phi / 2.0) ############################################################################# # we solve the equilibrium equations muxy = ephi2 * tx * ty # where mux0=tx**2 and mu0y=ty**2 # starting with a reasonable initial point for tx and ty: tx = ty = bigc # it is important that it fit the number of individuals ############################################################################# ephi2T = ephi2.T nindivs =
np.sum(men_margins)
numpy.sum
from __future__ import absolute_import, division, print_function import sys import os.path import warnings import datetime, time import numpy as np import astropy.table # See pixsim.py import astropy.time from astropy.io import fits import fitsio import desitarget import desitarget.targetmask from desitarget.targets import main_cmx_or_sv import desispec.io import desispec.io.util import desimodel.io from desimodel.focalplane import fiber_area_arcsec2 import desiutil.depend from desiutil.iers import freeze_iers import desispec.interpolation import desisim.io import desisim.specsim #- Reference observing conditions for each of dark, gray, bright reference_conditions = dict(DARK=dict(), GRAY=dict(), BRIGHT=dict()) reference_conditions['DARK']['SEEING'] = 1.1 reference_conditions['DARK']['EXPTIME'] = 1000 reference_conditions['DARK']['AIRMASS'] = 1.0 reference_conditions['DARK']['MOONFRAC'] = 0.0 reference_conditions['DARK']['MOONALT'] = -60 reference_conditions['DARK']['MOONSEP'] = 180 reference_conditions['GRAY']['SEEING'] = 1.1 reference_conditions['GRAY']['EXPTIME'] = 1000 reference_conditions['GRAY']['AIRMASS'] = 1.0 reference_conditions['GRAY']['MOONFRAC'] = 0.1 reference_conditions['GRAY']['MOONALT'] = 10 reference_conditions['GRAY']['MOONSEP'] = 60 reference_conditions['BRIGHT']['SEEING'] = 1.1 reference_conditions['BRIGHT']['EXPTIME'] = 300 reference_conditions['BRIGHT']['AIRMASS'] = 1.0 reference_conditions['BRIGHT']['MOONFRAC'] = 0.7 reference_conditions['BRIGHT']['MOONALT'] = 60 reference_conditions['BRIGHT']['MOONSEP'] = 50 for objtype in ('LRG', 'QSO', 'ELG'): reference_conditions[objtype] = reference_conditions['DARK'] for objtype in ('MWS', 'BGS'): reference_conditions[objtype] = reference_conditions['BRIGHT'] def simarc(arcdata, nspec=5000, nonuniform=False, testslit=False): ''' Simulates an arc lamp exposure Args: arcdata (Table): Table with columns VACUUM_WAVE and ELECTRONS nspec (int, optional) number of spectra to simulate nonuniform (bool, optional): include calibration screen non-uniformity testslit (bool, optional): this argument is undocumented. Returns: (wave, phot, fibermap) wave: 1D[nwave] wavelengths in Angstroms phot: 2D[nspec,nwave] photons observed by CCD (i.e. electrons) fibermap: fibermap Table Note: this bypasses specsim since we don't have an arclamp model in surface brightness units; we only have electrons on the CCD. But it does include the effect of varying fiber sizes. TODO: * add exptime support * update inputs to surface brightness and DESI lamp lines (DESI-2674) * add psfconvolve option ''' wave = arcdata['VACUUM_WAVE'] phot = arcdata['ELECTRONS'] if testslit: fibermap = astropy.table.Table(testslit_fibermap()[0:nspec]) else: fibermap = astropy.table.Table(desispec.io.empty_fibermap(nspec)) fibermap.meta['FLAVOR'] = 'arc' fibermap['OBJTYPE'] = 'ARC' x = fibermap['FIBERASSIGN_X'] y = fibermap['FIBERASSIGN_Y'] r = np.sqrt(x**2 + y**2) #----- #- Determine ratio of fiber sizes relative to larges fiber fiber_area = fiber_area_arcsec2(x, y) size_ratio = fiber_area / np.max(fiber_area) #- Correct photons for fiber size phot = np.tile(phot, nspec).reshape(nspec, len(wave)) phot = (phot.T * size_ratio).T #- Apply calibration screen non-uniformity if nonuniform: ratio = _calib_screen_uniformity(radius=r) assert np.all(ratio <= 1) and np.all(ratio > 0.99) phot = (phot.T * ratio).T return wave, phot, fibermap def simflat(flatfile, nspec=5000, nonuniform=False, exptime=10, testslit=False, psfconvolve=True, specsim_config_file="desi"): ''' Simulates a flat lamp calibration exposure Args: flatfile (str): filename with flat lamp spectrum data nspec (int, optional): number of spectra to simulate nonuniform (bool, optional): include calibration screen non-uniformity exptime (float, optional): exposure time in seconds psfconvolve (bool, optional): passed to simspec.simulator.Simulator camera_output. if True, convolve with PSF and include per-camera outputs specsim_config_file (str, optional): path to DESI instrument config file. default is desi config in specsim package. Returns: (sim, fibermap) sim: specsim Simulator object fibermap: fibermap Table ''' import astropy.units as u import specsim.simulator from desiutil.log import get_logger log = get_logger() freeze_iers() log.info('Reading flat lamp spectrum from {}'.format(flatfile)) sbflux, hdr = fits.getdata(flatfile, header=True) wave = desispec.io.util.header2wave(hdr) assert len(wave) == len(sbflux) #- Trim to DESI wavelength ranges #- TODO: is there an easier way to get these parameters? try: params = desimodel.io.load_desiparams() wavemin = params['ccd']['b']['wavemin'] wavemax = params['ccd']['z']['wavemax'] except KeyError: wavemin = desimodel.io.load_throughput('b').wavemin wavemax = desimodel.io.load_throughput('z').wavemax ii = (wavemin <= wave) & (wave <= wavemax) wave = wave[ii] sbflux = sbflux[ii] #- Downsample to 0.2A grid to not blow up memory ww = np.arange(wave[0], wave[-1]+0.1, 0.2) sbflux = desispec.interpolation.resample_flux(ww, wave, sbflux) wave = ww if testslit: fibermap = astropy.table.Table(testslit_fibermap()[0:nspec]) else: fibermap = astropy.table.Table(desispec.io.empty_fibermap(nspec)) fibermap.meta['FLAVOR'] = 'flat' fibermap['OBJTYPE'] = 'FLT' x = fibermap['FIBERASSIGN_X'] y = fibermap['FIBERASSIGN_Y'] r =
np.sqrt(x**2 + y**2)
numpy.sqrt
#============================================================================= # Author: <NAME> #----------------------------------------------------------------------------- # OHT Analysis Geometry #----------------------------------------------------------------------------- # Creating OHT geometry using gmsh api. The first layer is created using gmsh # api. The subsequent plies and cohesive layers are created using python loops. # The cohesive elements are zero thickness elements with 8 nodes. 4-nodes from # bottom and top are shared with plies respectively #============================================================================= # Geometry and Mesh controls| #---------------------------- # <numMainbodyXElem> <numMainbodyXElem> # <numClampXElem> ←---------→ ←---------→ # ---------------------------------------------------------------------- # ↑ | | |\ /| | | # | | | | \ / | | | # | | | | \____/--|-→ <numCSElem> | # | | | | / \ | | | # Ly | | | \____/ | | | # | | | | / | \ | | | # | | | | / ↓ \ | | | # | | | |<numCurveElem> | | # ↓ ---------------------------------------------------------------------- # ←-------clp-------→ ←-------clp-------→ # ←----------------------------- Lx ----------------------------------→ # #============================================================================= def create_geo(Rx=0.0024,file_dst="D:\\",filename='sample_temp', onlypreview=0, save_mesh=0,meshname='mymesh', preview_geom_mesh=0,log_flag=0, numCurveElem=25, numClampXElem =4, numMainbodyXElem= 10, numCSElem = 15): """ Args: Rx (float, optional): Longitudinal radius of elliptical hole. Defaults to 0.0024. file_dst (str, optional): Destination path of generated geometry file. Defaults to "D:\". filename (str, optional): Filename of generated geometry file. Defaults to 'sample_temp'. onlypreview (int, optional): Only previews the geometry in GMSH application no saving. Defaults to 0. save_mesh (int, optional): Flag to save the mesh (different from the LS-Dyna geometry and mesh). Defaults to 0. meshname (str, optional): Mesh name. Defaults to 'mymesh'. preview_geom_mesh (int, optional): Previews the gemetry (and mesh) then saves it. User needs to close preview window manually to proceed. Defaults to 0. log_flag (int, optional): Whethre to generate GMSH log or not. Defaults to 0. numCurveElem (int, optional): Mesh control- Number of elements on the hole circumference (in each of the 4 sectors). Defaults to 25. numClampXElem (int, optional): Mesh control- Number of element on clamping area in x-direction. Defaults to 4. numMainbodyXElem (int, optional): Mesh control- Number of element on mainbody area in x-direction. Defaults to 10. numCSElem (int, optional): Mesh control- Number of elements in cross sectional part of notch mesh. Defaults to 15. """ # Importing utilities import gmsh # install the api using => "pip install gmsh" import numpy as np np.set_printoptions(precision=20) from time import process_time try:from mt_x_mainKeywordString import mainFile except:from utilities.mt_x_mainKeywordString import mainFile import subprocess import os import time start = process_time() # Model geometry details Lx = 0.240 # Length of geometry in x-direction Ly = 0.0288 # Width of geometry in y-direction Lz = 0.0019 # Thickness of geometry in z-direction clp = 0.05 # Claming distance numPly=12 # Number of composite material layers(plies) LzPly = Lz/numPly # Thickness of each ply numCohElem = numPly-1 # Number of cohesive element layers (numPly-1) Rx=Rx # Radius of elliptical notch in x-direction Ry=0.0024 # Radius of elliptical notch in y-direction MeshSizeFactor = 1 # Resulatant = MeshSize * meshSizeFactor os.makedirs(file_dst, exist_ok=True) # lsprepost application location (if not in path) lspp_loc = "C:\Program Files\LSTC\LS-PrePost 4.8\lsprepost4.8_x64.exe" # starting gmsh gmsh.initialize() # logging gmsh geometry and mesh creation process if log_flag: gmsh.logger.start() gmsh.model.add("mymodel") gmsh.option.setNumber('Geometry.CopyMeshingMethod',1); #===================================================================== # Geometry creation #===================================================================== # Finding intersection point of a line passing through ellipse center and # ellipse a = Rx b = Ry if Rx>Ry: m = Ry/Rx*(0.8) # slope of the line if Rx==Ry: m = 1 else: # m = 1 m = Ry/Rx*2 # slope of the line c = Ly/2 - (m * Lx/2) h = Lx/2 k = Ly/2 phi = c - k e1x1 = (((b*b*h)-a*a*m*phi+ a*b*np.sqrt((b*b)+(a*a*m*m)-(2*m*phi*h)-(phi*phi)-(m*m*h*h)))/ (a*a*m*m + b*b)) e1y1 = m*e1x1 + c e1x2 = (((b*b*h) - a*a*m*phi - a*b*np.sqrt(b*b + a*a*m*m - 2*m*phi*h - phi*phi - m*m*h*h))/ (a*a*m*m + b*b)) e1y2 = m*e1x2 + c e2x1 = 0 + (Lx/2-Ly/2) e2y1 = 0 e2x2 = Ly+(Lx/2-Ly/2) e2y2 = Ly # Creating points in the space gmsh.model.occ.addPoint(0, 0, 0, 1.0) #1 gmsh.model.occ.addPoint(clp, 0, 0, 1.0) #2 gmsh.model.occ.addPoint(Lx-clp, 0, 0, 1.0) #3 gmsh.model.occ.addPoint(Lx, 0, 0, 1.0) #4 gmsh.model.occ.addPoint(0, Ly, 0, 1.0) #5 gmsh.model.occ.addPoint(clp, Ly, 0, 1.0) #6 gmsh.model.occ.addPoint(Lx-clp, Ly, 0, 1.0) #7 gmsh.model.occ.addPoint(Lx, Ly, 0, 1.0) #8 gmsh.model.occ.addPoint(e1x2, e1y2, 0, 1.0) #9 gmsh.model.occ.addPoint(e1x1, e1y2, 0, 1.0) #10 gmsh.model.occ.addPoint(e1x1, e1y1, 0, 1.0) #11 gmsh.model.occ.addPoint(e1x2, e1y1, 0, 1.0) #12 gmsh.model.occ.addPoint(e2x2, e2y2, 0, 1.0) #13 gmsh.model.occ.addPoint(e2x1, e2y2, 0, 1.0) #14 gmsh.model.occ.addPoint(e2x1, e2y1, 0, 1.0) #15 gmsh.model.occ.addPoint(e2x2, e2y1, 0, 1.0) #16 if Rx>=Ry: gmsh.model.occ.addPoint(Lx/2, Ly, 0, 1.0) #17 else: gmsh.model.occ.addPoint(0, Ly/2, 0, 1.0) #18 gmsh.model.occ.addPoint(clp, Ly/2, 0, 1.0) #19 gmsh.model.occ.addPoint(e2x1, Ly/2, 0, 1.0) #20 ClampXElem = [] MainbodyXElem = [] CSElem = [] CurveElem = [] Curve2 = [] # Creating lines by joining points if Rx>=Ry: CurveElem.append(gmsh.model.occ.addLine(1,5)) CurveElem.append(gmsh.model.occ.addLine(2,6)) CurveElem.append(gmsh.model.occ.addLine(3,7)) CurveElem.append(gmsh.model.occ.addLine(4,8)) CurveElem.append(gmsh.model.occ.addLine(14,15)) CurveElem.append(gmsh.model.occ.addLine(13,16)) CurveElem.append(gmsh.model.occ.addLine(15,16)) ClampXElem.append(gmsh.model.occ.addLine(1,2)) ClampXElem.append(gmsh.model.occ.addLine(3,4)) ClampXElem.append(gmsh.model.occ.addLine(5,6)) ClampXElem.append(gmsh.model.occ.addLine(7,8)) MainbodyXElem.append(gmsh.model.occ.addLine(2,15)) MainbodyXElem.append(gmsh.model.occ.addLine(16,3)) MainbodyXElem.append(gmsh.model.occ.addLine(6,14)) MainbodyXElem.append(gmsh.model.occ.addLine(13,7)) CSElem.append(gmsh.model.occ.addLine(12,14)) CSElem.append(gmsh.model.occ.addLine(9,15)) CSElem.append(gmsh.model.occ.addLine(10,16)) CSElem.append(gmsh.model.occ.addLine(11,13)) Curve2.append(gmsh.model.occ.addLine(14,17)) Curve2.append(gmsh.model.occ.addLine(17,13)) if Rx<Ry: ClampXElem.append(gmsh.model.occ.addLine(1,2)) ClampXElem.append(gmsh.model.occ.addLine(3,4)) ClampXElem.append(gmsh.model.occ.addLine(5,6)) ClampXElem.append(gmsh.model.occ.addLine(7,8)) MainbodyXElem.append(gmsh.model.occ.addLine(2,15)) MainbodyXElem.append(gmsh.model.occ.addLine(16,3)) MainbodyXElem.append(gmsh.model.occ.addLine(6,14)) MainbodyXElem.append(gmsh.model.occ.addLine(13,7)) CSElem.append(gmsh.model.occ.addLine(12,14)) CSElem.append(gmsh.model.occ.addLine(9,15)) CSElem.append(gmsh.model.occ.addLine(10,16)) CSElem.append(gmsh.model.occ.addLine(11,13)) CurveElem.append(gmsh.model.occ.addLine(3,7)) CurveElem.append(gmsh.model.occ.addLine(4,8)) CurveElem.append(gmsh.model.occ.addLine(13,16)) CurveElem.append(gmsh.model.occ.addLine(13,14)) CurveElem.append(gmsh.model.occ.addLine(15,16)) Curve2.append(gmsh.model.occ.addLine(1,17)) Curve2.append(gmsh.model.occ.addLine(17,5)) Curve2.append(gmsh.model.occ.addLine(2,18)) Curve2.append(gmsh.model.occ.addLine(18,6)) Curve2.append(gmsh.model.occ.addLine(15,19)) Curve2.append(gmsh.model.occ.addLine(19,14)) gmsh.model.occ.synchronize() # Creating ellipse mellipse = np.pi/2 if Rx>=Ry: ellipse = gmsh.model.occ.addEllipse(Lx/2,Ly/2,0,Rx,Ry,angle1=mellipse, angle2=2*np.pi+mellipse) else: ellipse = gmsh.model.occ.addEllipse(Lx/2,Ly/2,0,Ry,Rx,angle1=mellipse, angle2=2*np.pi+mellipse) gmsh.model.occ.rotate([(1,ellipse)], Lx/2, Ly/2, 0, 0, 0, 1, np.pi/2) gmsh.model.occ.synchronize() # Splitting ellipse using lines across ellipse cutOut = gmsh.model.occ.cut([(1,ellipse)], [(1,CSElem[0]),(1,CSElem[1]),(1,CSElem[2]), (1,CSElem[3])],removeTool=(False)) for i in range(1,len(cutOut[0])-1): CurveElem.append(cutOut[0][i][1]) Curve2.append(cutOut[0][0][1]) Curve2.append(cutOut[0][-1][1]) gmsh.model.occ.synchronize() # Surface groups : Grouping different lines to form closed surface # boundaries. sTag_list = [] if Rx>=Ry: linegroup = [ [1,8,2,10],[14,2,12,5],[6,13,3,15],[3,9,4,11], [17,7,18,24],[25,18,6,19],[16,5,17,23] ] else: linegroup = [ [6,13,8,15],[13,2,14,4], [17,11,25,10],[11,15,12,26],[12,16,9,27] ] for surface in linegroup: lTag = gmsh.model.occ.add_wire(surface) sTag = gmsh.model.occ.add_plane_surface([lTag]) sTag_list.append(sTag) gmsh.model.occ.synchronize() # Setting transfinite curves for structured mesh for i in ClampXElem: gmsh.model.mesh.setTransfiniteCurve(i,numClampXElem) gmsh.model.occ.synchronize() for i in MainbodyXElem: gmsh.model.mesh.setTransfiniteCurve(i,numMainbodyXElem) gmsh.model.occ.synchronize() for i in CSElem: gmsh.model.mesh.setTransfiniteCurve(i,numCSElem) gmsh.model.occ.synchronize() for i in CurveElem: gmsh.model.mesh.setTransfiniteCurve(i,numCurveElem) gmsh.model.occ.synchronize() for i in Curve2: gmsh.model.mesh.setTransfiniteCurve(i,int(numCurveElem/2)) gmsh.model.occ.synchronize() # Setting tranfinite surfaces for structured mesh for i in sTag_list: gmsh.model.mesh.setTransfiniteSurface(i) gmsh.model.occ.synchronize() # surface groups : Grouping different lines to form closed surface # boundaries (with more than 4 points/lines) if Rx>=Ry: lTag = gmsh.model.occ.add_wire([19,21,20,16,22,26]) gmsh.model.occ.synchronize() sTag = gmsh.model.occ.add_plane_surface([lTag]) gmsh.model.occ.synchronize() gmsh.model.mesh.setTransfiniteSurface(tag=sTag,cornerTags=[13,14,12,11]) gmsh.model.occ.synchronize() elif Rx<Ry: lTag = gmsh.model.occ.add_wire([1,20,21,3,19,18]) sTag = gmsh.model.occ.add_plane_surface([lTag]) gmsh.model.occ.synchronize() gmsh.model.mesh.setTransfiniteSurface(tag=sTag,cornerTags=[1,2,6,5]) gmsh.model.occ.synchronize() lTag = gmsh.model.occ.add_wire([5,22,23,7,21,20]) sTag = gmsh.model.occ.add_plane_surface([lTag]) gmsh.model.occ.synchronize() gmsh.model.mesh.setTransfiniteSurface(tag=sTag,cornerTags=[2,15,14,6]) gmsh.model.occ.synchronize() lTag = gmsh.model.occ.add_wire([9,23,22,10,24,28]) sTag = gmsh.model.occ.add_plane_surface([lTag]) gmsh.model.occ.synchronize() gmsh.model.mesh.setTransfiniteSurface(tag=sTag,cornerTags=[15,9,12,14]) gmsh.model.occ.synchronize() gmsh.model.mesh.recombine() # Extrude: Adding thickness to create a singly ply. # Number of elements in thickness direction numElemThickness = 3 model_ = gmsh.model.getEntities(2) gmsh.model.occ.synchronize() gmsh.model.occ.extrude(model_,0,0,LzPly,numElements=[numElemThickness], heights=[1],recombine=True) gmsh.model.occ.synchronize() #===================================================================== # Meshing #===================================================================== # Mesh options gmsh.option.setNumber("Mesh.Smoothing", 100) # 2D mesh algorithm (1: MeshAdapt, 2: Automatic, 3: Initial mesh only, # 5: Delaunay, 6: Frontal-Delaunay, 7: BAMG, 8: Frontal-Delaunay for Quads, # 9: Packing of Parallelograms) meshalgo2d = 8 gmsh.option.setNumber("Mesh.Algorithm",meshalgo2d) # Recombine all triangular meshes? (yes:1, no:0) RecombineTriMesh = 1 gmsh.option.setNumber("Mesh.RecombineAll",RecombineTriMesh) gmsh.option.setNumber("Mesh.MeshSizeFactor",MeshSizeFactor) # Generating mesh gmsh.model.mesh.clear() # Meshing 2D gmsh.model.mesh.generate(2) # Meshing 3D gmsh.model.mesh.generate(3) # gmsh mesh name without extension # save mesh (yes-1,no-0) if save_mesh: gmsh.write(f"{meshname}.msh") if onlypreview==0: # Get nodes and their coordinates nodeTags, nodeCoords, _ = gmsh.model.mesh.getNodes() # Type,number of elements, elementTypes, elementTags, elementNodeTags = gmsh.model.mesh.getElements(3) elementTypes = elementTypes[0] elementTags = elementTags[0] elementNodeTags = elementNodeTags[0] # Launch the GUI to to preview geometry and mesh using gmsh applications. # Script pauses untill gmsh application is closed manually if preview_geom_mesh: gmsh.fltk.run() if log_flag: log = gmsh.logger.get() gmsh.logger.stop() # close gmsh gmsh.finalize() if onlypreview == 0: #===================================================================== # Data Extraction: processing data collected from gmsh #===================================================================== numElem = len(elementTags) if meshalgo2d==8 or RecombineTriMesh==1: # processing based on shape of solid elements in mesh elemtonodes = np.reshape(elementNodeTags,(-1,8)) # quad/hex elements -> 8 unique coordinates else: elemtonodes = np.reshape(elementNodeTags,(-1,4)) # tetra hedral elements -> 4 unique coordinates last4nodes = np.transpose(np.asarray([elemtonodes[:,3]])) # when represented in terms of hexahedral coordinates, the last node is repeated 4 times -> resulting in 8 nodes last4nodes = np.repeat(last4nodes,4,axis=1) elemtonodes = np.concatenate([elemtonodes,last4nodes],axis=1) node_coord = np.round(np.transpose(np.vstack([nodeCoords[0::3],nodeCoords[1::3],nodeCoords[2::3]])),16) numNode = len(node_coord) assert(len(node_coord) == len(nodeTags)) assert(len(elemtonodes) == numElem) print('Total number of elements in 1st ply:\t',numElem) print('Total number of nodes in 1st ply:\t',numNode) print('Mesh generation of 1st ply complete...') #===================================================================== # Building full model #===================================================================== # Add 1st layer mesh data to the database dictionary 'mesh_data' #--------------------------------------------------------------------- mesh_data = {} mesh_data[1]={} mesh_data[1]['nodeCoord'] = np.copy(node_coord) mesh_data[1]['elemNode'] = np.copy(elemtonodes) mesh_data[1]['elemidx'] = np.array(list(range(1,numElem+1))).astype('int64') mesh_data[1]['nodeidx'] = np.copy(nodeTags.astype('int64')) # To assert that there no duplicate elements sharing same nodes assert(len(mesh_data[1]['elemNode']) == len(np.unique(mesh_data[1]['elemNode'],axis=0))) # Adding other layer mesh data to the database dictionary 'mesh_data' #--------------------------------------------------------------------- for ply in range(2,numPly+1): mesh_data[ply]={} # Adding thickness to all z coordinates new_z = mesh_data[ply-1]['nodeCoord'][:,2] + LzPly mesh_data[ply]['nodeCoord'] = np.transpose(np.vstack([mesh_data[ply-1]['nodeCoord'][:,0],mesh_data[ply-1]['nodeCoord'][:,1],new_z])) mesh_data[ply]['nodeCoord'] = np.round(mesh_data[ply]['nodeCoord'],16) mesh_data[ply]['elemidx'] = np.arange( max(mesh_data[ply-1]['elemidx'])+1, max(mesh_data[ply-1]['elemidx'])+1+numElem ) mesh_data[ply]['nodeidx'] = np.arange( max(mesh_data[ply-1]['nodeidx'])+1, max(mesh_data[ply-1]['nodeidx'])+1+numNode ) mesh_data[ply]['elemNode'] =
np.copy(mesh_data[ply-1]['elemNode'] + numNode)
numpy.copy
import pandas as pd import matplotlib.pyplot as plt import numpy as np import seaborn as sns import random from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler df_wine = pd.read_csv('https://archive.ics.uci.edu/ml/' 'machine-learning-databases/wine/wine.data', header=None) # if the Wine dataset is temporarily unavailable from the # UCI machine learning repository, un-comment the following line # of code to load the dataset from a local path: # df_wine = pd.read_csv('wine.data', header=None) # df_wine.columns = ['Class label', 'Alcohol', 'Malic acid', 'Ash', # 'Alcalinity of ash', 'Magnesium', 'Total phenols', # 'Flavanoids', 'Nonflavanoid phenols', 'Proanthocyanins', # 'Color intensity', 'Hue', # 'OD280/OD315 of diluted wines', 'Proline'] # print(df_wine.head()) # # print(df_wine.tail()) # X, y = df_wine.iloc[:, 1:].values, df_wine.iloc[:, 0].values # X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, stratify=y, random_state=0) # # sc = StandardScaler() # X_train_std = sc.fit_transform(X_train) # X_test_std = sc.transform(X_test) print(df_wine.shape) from sklearn.preprocessing import LabelEncoder X = df_wine.loc[:, 1:].values y = df_wine.loc[:, 0].values le = LabelEncoder() y = le.fit_transform(y) print(le.classes_) # 1) Split dataset into ratio 7:3 for training and test sets, respectively. # Then use pipeline with StandardScaler(), PCA (n=3), and SVM with RBF kernel to fit the # training set and predict the test set. Report the accuracy score. X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, stratify=y, random_state=0) from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA from sklearn.linear_model import LogisticRegression from sklearn.pipeline import make_pipeline # pipe_lr = make_pipeline(StandardScaler(),PCA(n_components=2), LogisticRegression(random_state=1)) # pipe_lr.fit(X_train, y_train) # y_pred = pipe_lr.predict(X_test) # print('Test Accuracy: %.3f' % pipe_lr.score(X_test, y_test)) from sklearn.svm import SVC pipe_lr = make_pipeline(StandardScaler(),PCA(n_components=3), SVC(random_state=1)) pipe_lr.fit(X_train, y_train) y_pred = pipe_lr.predict(X_test) print('Test Accuracy: %.3f' % pipe_lr.score(X_test, y_test)) # 2) Use StratifiedKFold cross-validation to report the accuracy score (mean with std). # What are differences between standard k-fold and StratifiedKFold? # What are differences between StratifiedKFold and cross_val_score (in [12] and [13] of this notebook)? # KFold will divide your data set into prespecified number of folds, and every sample must be in one and only one fold. # A fold is a subset of your dataset. # # ShuffleSplit will randomly sample your entire dataset during each iteration to generate a training set and a test set. # The test_size and train_size parameters control how large the test and training test set should be for each iteration. # Since you are sampling from the entire dataset during each iteration, values selected during one iteration, could be selected again during another iteration. # # Summary: ShuffleSplit works iteratively, KFold just divides the dataset into k folds. # # Difference when doing validation # # In KFold, during each round you will use one fold as the test set and all the remaining folds as your training set. # However, in ShuffleSplit, during each round n you should only use the training and test set from iteration n. # As your data set grows, cross validation time increases, making shufflesplits a more attractive alternate. # If you can train your algorithm, with a certain percentage of your data as opposed to using all k-1 folds, ShuffleSplit is an attractive option. from sklearn.model_selection import KFold from sklearn import svm svc = svm.SVC(C=1, kernel='linear') kf = KFold(n_splits=10) kf.get_n_splits(X) # print(kf) KF_scores = list() for train_index, test_index in kf.split(X): # print("TRAIN:", train_index, "TEST:", test_index) X_train, X_test = X[train_index], X[test_index] y_train, y_test = y[train_index], y[test_index] KF_scores.append(svc.fit(X_train, y_train).score(X_test, y_test)) print('\nKF_scores: %s' % KF_scores) print('KF accuracy: %.3f +/- %.3f' % (
np.mean(KF_scores)
numpy.mean
import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from sklearn.metrics import multilabel_confusion_matrix import json import os import numpy as np import pandas as pd import wandb from wandb.keras import WandbCallback wandb.login() # Read in image and label arrays X = np.load('x_punk.npy') Y = np.load('y_punk.npy', allow_pickle=True) # Split into train validation and test. # No need to shuffle as Punks are randomly generated. x_train = X[:8000] y_train = Y[:8000].astype('float32') x_val = X[8000:9000] y_val = Y[8000:9000].astype('float32') x_test = X[9000:] y_test = Y[9000:].astype('float32') # Form a baseline prediction for prediction punk type & accessory baseline_prediction = np.array([[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0] for i in range(1000)]).astype('float32') accuracy = 0 for i in range(1000): accuracy += 92-abs(y_test[i]-baseline_prediction[i]).sum()/92 baseline_acc = accuracy/1000 # Define train and test steps def train_step(x, y, model, optimizer, loss_fn, train_acc_metric): with tf.GradientTape() as tape: logits = model(x, training=True) loss_value = loss_fn(y, logits) grads = tape.gradient(loss_value, model.trainable_weights) optimizer.apply_gradients(zip(grads, model.trainable_weights)) train_acc_metric.update_state(y, logits) return loss_value def test_step(x, y, model, loss_fn, val_acc_metric): val_logits = model(x, training=False) loss_value = loss_fn(y, val_logits) val_acc_metric.update_state(y, val_logits) return loss_value def train(train_dataset, val_dataset, model, optimizer, loss_fn, train_acc_metric, val_acc_metric, epochs=10, log_step=200, val_log_step=50): for epoch in range(epochs): print("\nStart of epoch %d" % (epoch,)) train_loss = [] val_loss = [] # Iterate over the batches of the dataset for step, (x_batch_train, y_batch_train) in enumerate(train_dataset): loss_value = train_step(x_batch_train, y_batch_train, model, optimizer, loss_fn, train_acc_metric) train_loss.append(float(loss_value)) # Run a validation loop at the end of each epoch for step, (x_batch_val, y_batch_val) in enumerate(val_dataset): val_loss_value = test_step(x_batch_val, y_batch_val, model, loss_fn, val_acc_metric) val_loss.append(float(val_loss_value)) # Display metrics at the end of each epoch train_acc = train_acc_metric.result() print("Training acc over epoch: %.4f" % (float(train_acc),)) val_acc = val_acc_metric.result() print("Validation acc: %.4f" % (float(val_acc),)) # Reset metrics at the end of each epoch train_acc_metric.reset_states() val_acc_metric.reset_states() # Log metrics using wandb.log wandb.log({'epochs': epoch, 'loss': np.mean(train_loss), 'acc': float(train_acc), 'val_loss':
np.mean(val_loss)
numpy.mean
#!/usr/bin/env python # ------------------------------------------------------------------------------------------------------% # Created by "<NAME>" at 07:03, 18/03/2020 % # % # Email: <EMAIL> % # Homepage: https://www.researchgate.net/profile/Thieu_Nguyen6 % # Github: https://github.com/thieu1995 % #-------------------------------------------------------------------------------------------------------% from numpy import exp, sign, ones, mean, multiply from numpy.random import uniform, randint, normal, random, choice from copy import deepcopy from mealpy.root import Root class BaseEO(Root): """ The original version of: Equilibrium Optimizer (EO) (Equilibrium Optimizer: A Novel Optimization Algorithm) Link: https://doi.org/10.1016/j.knosys.2019.105190 https://www.mathworks.com/matlabcentral/fileexchange/73352-equilibrium-optimizer-eo """ def __init__(self, obj_func=None, lb=None, ub=None, problem_size=50, batch_size=10, verbose=True, epoch=750, pop_size=100): Root.__init__(self, obj_func, lb, ub, problem_size, batch_size, verbose) self.epoch = epoch self.pop_size = pop_size self.V = 1 self.a1 = 2 self.a2 = 1 self.GP = 0.5 def train(self): #c_eq1 = [None, float("inf")] # it is global best position c_eq2 = [None, float("inf")] c_eq3 = [None, float("inf")] c_eq4 = [None, float("inf")] # ---------------- Memory saving------------------- pop = [self.create_solution() for _ in range(self.pop_size)] g_best = self.get_global_best_solution(pop, self.ID_FIT, self.ID_MIN_PROB) c_eq1 = deepcopy(g_best) for epoch in range(0, self.epoch): for i in range(0, self.pop_size): if pop[i][self.ID_FIT] < c_eq1[self.ID_FIT]: c_eq1 = deepcopy(pop[i]) elif c_eq1[self.ID_FIT] < pop[i][self.ID_FIT] < c_eq2[self.ID_FIT]: c_eq2 = deepcopy(pop[i]) elif c_eq1[self.ID_FIT] < pop[i][self.ID_FIT] and c_eq2[self.ID_FIT] < pop[i][self.ID_FIT] < c_eq3[self.ID_FIT]: c_eq3 = deepcopy(pop[i]) elif c_eq1[self.ID_FIT] < pop[i][self.ID_FIT] and c_eq2[self.ID_FIT] < pop[i][self.ID_FIT] and c_eq3[self.ID_FIT] < pop[i][self.ID_FIT] < c_eq4[self.ID_FIT]: c_eq4 = deepcopy(pop[i]) # make equilibrium pool c_eq_ave = (c_eq1[self.ID_POS] + c_eq2[self.ID_POS] + c_eq3[self.ID_POS] + c_eq4[self.ID_POS]) / 4 fit_ave = self.get_fitness_position(c_eq_ave) c_pool = [c_eq1, c_eq2, c_eq3, c_eq4, [c_eq_ave, fit_ave]] # Eq. 9 t = (1 - epoch/self.epoch) ** (self.a2 * epoch / self.epoch) for i in range(0, self.pop_size): lamda = uniform(0, 1, self.problem_size) # lambda in Eq. 11 r = uniform(0, 1, self.problem_size) # r in Eq. 11 c_eq = c_pool[randint(0, len(c_pool))][self.ID_POS] # random selection 1 of candidate from the pool f = self.a1 * sign(r - 0.5) * (exp(-lamda * t) - 1.0) # Eq. 11 r1 = uniform() r2 = uniform() # r1, r2 in Eq. 15 gcp = 0.5 * r1 * ones(self.problem_size) * (r2 >= self.GP) # Eq. 15 g0 = gcp * (c_eq - lamda * pop[i][self.ID_POS]) # Eq. 14 g = g0 * f # Eq. 13 temp = c_eq + (pop[i][self.ID_POS] - c_eq) * f + (g * self.V / lamda) * (1.0 - f) # Eq. 16 fit = self.get_fitness_position(temp) pop[i] = [temp, fit] g_best = self.update_global_best_solution(pop, self.ID_MIN_PROB, g_best) self.loss_train.append(g_best[self.ID_FIT]) if self.verbose: print(">Epoch: {}, Best fit: {}".format(epoch + 1, g_best[self.ID_FIT])) self.solution = g_best return g_best[self.ID_POS], g_best[self.ID_FIT], self.loss_train class ModifiedEO(BaseEO): """ Original version of: Modified Equilibrium Optimizer (MEO) (An efficient equilibrium optimizer with mutation strategy for numerical optimization) Link: https://doi.org/10.1016/j.asoc.2020.106542 """ def __init__(self, obj_func=None, lb=None, ub=None, problem_size=50, batch_size=10, verbose=True, epoch=750, pop_size=100): BaseEO.__init__(self, obj_func, lb, ub, problem_size, batch_size, verbose, epoch, pop_size) def _make_equilibrium_pool__(self, list_equilibrium=None): pos_list = [item[self.ID_POS] for item in list_equilibrium] pos_mean = mean(pos_list, axis=0) fit = self.get_fitness_position(pos_mean) list_equilibrium.append([pos_mean, fit]) return list_equilibrium def train(self): # Initialization pop_len = int(self.pop_size/3) pop = [self.create_solution() for _ in range(self.pop_size)] # ---------------- Memory saving------------------- # make equilibrium pool pop_sorted = sorted(pop, key=lambda item: item[self.ID_FIT]) c_eq_list = deepcopy(pop_sorted[:4]) g_best = deepcopy(c_eq_list[0]) c_pool = self._make_equilibrium_pool__(c_eq_list) for epoch in range(0, self.epoch): # Eq. 5 t = (1 - epoch / self.epoch) ** (self.a2 * epoch / self.epoch) for i in range(0, self.pop_size): lamda =
uniform(0, 1, self.problem_size)
numpy.random.uniform
''' Created on Dec 13, 2013 @author: benni ''' import numpy as np import constants # import modleon as md import tsaiwu as md from error_functions import OuterNewtonError, OuterNewtonConvergenceError import umat_driver import time # mixed stress/strain driven def strain_stress_update(sigma_old, delta_sigma, epsilon_old, delta_epsilon, delta_sigma_def, delta_epsilon_def, state_vars_old, umat_aux_vars, rot_angles): # performs outer newton iteration # i.e. computes strain vector at the end of a load/stress increment # # input values: # ------------ # sigma_old stress vector at the beginning of the load increment # delta_sigma stress increment # epsilon_old strain vector at the beginning of the load increment # delta_epsilon strain increment # delta_sigma_def boolean list with active components of stress increment vector (active/defined means True, inactive/undefined means False) # delta_epsilon_def boolean list with active components of strain increment vector (active/defined means True, inactive/undefined means False) # state_vars_old state variables array at the beginning of the step # umat_aux_vars dictionary with auxiliary unimportant variables needed by umat # rot_angles tuple with rotation angles which define the directions of the material axes of the rock within the global coordinate system # alpha: rotation angle, around z-axis, eastwards positive (zyz convention) # beta: rotation angle, around rotated y-axis, downwards positive (zyz convention) # gamma: third rotation angle, around rotated z-axis, eastwards positive (zyz convention) # # return values: # -------------- # epsilon strain vector at the end of the load increment # state_vars state variables array at the end of the load increment # ----------------------------------------------------- # DATA CHECK # ----------------------------------------------------- # list for number of inner iterations performed within each outer iteration no_inner_it = [-1 for i in range(constants.max_it)] # unpacking of rotation angles alpha, beta, gamma = rot_angles # rotate old stress and old strain vector into material direction sigma_old_rot = md.stress_routines.rotate_sigma(sigma_old, alpha, beta, gamma) # rotated old stress vector of last step epsilon_old_rot = md.stress_routines.rotate_epsilon(epsilon_old, alpha, beta, gamma) # rotated old strain vector of last step # check delta_sigma_def and delta_epsilon_def for i in range(6): # check if ith entry of delta_sigma_def equals ith entry of delta_epsilon_def if delta_sigma_def[i] == delta_epsilon_def[i]: # entries are the same, raise exception raise OuterNewtonError # ----------------------------------------------------- # DATA PREPARATION # ----------------------------------------------------- # number of unknown stress components n_sigma_undef = sum(delta_sigma_def == False ) #print "number of unknown stress components: ", n_sigma_undef # number of unknown strain components #n_epsilon_undef = 6-n_sigma_undef #print "number of unknown strain components: ", n_epsilon_undef, "\n" # create list with indices of known delta sigma components # and unknown delta sigma components ind_dsig_def = [i for i in range(6) if delta_sigma_def[i]==True] ind_dsig_undef = [i for i in range(6) if delta_sigma_def[i]==False] #print "indices of defined stress components: ", ind_dsig_def #print "indices of undefined stress components: ", ind_dsig_undef, "\n" # create list with indices of known delta epsilon components # and unknown delta epsilon components ind_deps_def = ind_dsig_undef ind_deps_undef = ind_dsig_def #print "indices of defined strain components: ", ind_deps_def #print "indices of undefined strain components: ", ind_deps_undef, "\n" # ----------------------------------------------------- # INITIAL COMPUTATIONS # ----------------------------------------------------- # define vector of unknown quantities and initialize it with converged values from the last step y = np.empty((6,)) y[ind_dsig_undef] = sigma_old[ind_dsig_undef] y[ind_deps_undef] = epsilon_old[ind_deps_undef] # define vector for increment of unknown quantities (are computed in newton iteration) delta_y = np.zeros_like(y) # define first approximation of updated strain vector # undefined components are set to converged values of last step # defined components are set to defined value eps_tmp = np.array(epsilon_old) eps_tmp[ind_deps_def] = eps_tmp[ind_deps_def] + delta_epsilon[ind_deps_def] #print "first approximation of updated strain vector: ", eps_tmp, "\n" # define first approximation of updated stess vector # undefined components are set to converged values of last step # defined components are set to defined value sigma_tmp = np.array(sigma_old) sigma_tmp[ind_dsig_def] = sigma_tmp[ind_dsig_def] + delta_sigma[ind_dsig_def] #print "first approximation of updated stress vector: ", sigma_tmp, "\n" # initialize temporary elastoplastic tangent as empty array C_ep_tmp = np.empty((6,6), order='F') # initialize jacobian as empty array jac = np.empty_like(C_ep_tmp) # ----------------------------------------------------- # BEGIN NEWTON ITERATION # ----------------------------------------------------- # define temporary variables sig_umat =np.empty_like(sigma_old) # temporary stress vector from umat statev_tmp = np.empty_like(state_vars_old) # temporary state variables from umat delta_eps_tmp = np.empty_like(epsilon_old) # temporary strain increment vector as input to umat sig_umat_rot =
np.empty_like(sig_umat)
numpy.empty_like
''' ------------------------------------------------------------------------ Functions for generating demographic objects necessary for the OG-USA model This module defines the following function(s): get_fert() get_mort() pop_rebin() get_imm_resid() immsolve() get_pop_objs() ------------------------------------------------------------------------ ''' import os import pickle import numpy as np import pandas as pd import scipy.optimize as opt import scipy.interpolate as si import matplotlib.pyplot as plt from matplotlib.ticker import MultipleLocator import parameter_plots as pp # create output directory for figures CUR_PATH = os.path.split(os.path.abspath(__file__))[0] OUTPUT_DIR = os.path.join(CUR_PATH, 'OUTPUT', 'Demographics') if os.access(OUTPUT_DIR, os.F_OK) is False: os.makedirs(OUTPUT_DIR) ''' ------------------------------------------------------------------------ Define functions ------------------------------------------------------------------------ ''' def get_true_demog_data(min_age, max_age): ''' Return the true demographic data for a country. Args: min_age (int): age in years at which agents are born, >= 0 max_age (int): age in years at which agents die with certainty, >= 4 Returns: fert_data (Numpy array): fertility rates for each model period of life mort_data (Numpy array): mortality rates for each model period of life imm_data (Numpy array): immigration rates for each model period of life pop_data (Numpy array): population for each model period of life ''' # Filepaths fert_filepath = os.path.join(CUR_PATH, 'data', 'demographic', 'clean', 'fert.p') mort_filepath = os.path.join(CUR_PATH, 'data', 'demographic', 'clean', 'mort.p') pop_filepath = os.path.join(CUR_PATH, 'data', 'demographic', 'clean', 'pop.p') imm_filepath = os.path.join(CUR_PATH, 'data', 'demographic', 'clean', 'imm.p') # Load data fert_data = pickle.load(open(fert_filepath, 'rb')) mort_data = pickle.load(open(mort_filepath, 'rb')) pop_data = pickle.load(open(pop_filepath, 'rb')) imm_data = pickle.load(open(imm_filepath, 'rb')) # Take most recent population pop_2014 = pop_data[2014][max(min_age, 0): min(max_age + 1, len(pop_data[2014]))] pop_2015 = pop_data[2015][max(min_age, 0): min(max_age + 1, len(pop_data[2015]))] # Take immigration as average over last 3 years drop_immyears = sorted(imm_data.columns)[:- 3] imm_data = imm_data.drop(drop_immyears, axis=1) imm_data = imm_data.mean(axis=1) return pop_2014, pop_2015, fert_data[2014], mort_data[2014], imm_data def select_fert_data(fert, set_zeroes=False): new_fert = fert[fert['AgeDef'] == 'ARDY'] new_fert = new_fert[new_fert['Collection'] == 'HFD'] new_fert = new_fert[(new_fert['RefCode'] == 'JPN_11')] new_fert.drop(['AgeDef', 'Collection', 'RefCode'], axis=1, inplace=True) new_fert.columns = ['Year', 'Age', 'Values'] if set_zeroes: new_fert['Values'][new_fert['Age'] == 14] = 0 new_fert['Values'][new_fert['Age'] == 15] = 0 new_fert['Values'][new_fert['Age'] == 49] = 0 new_fert['Values'][new_fert['Age'] == 50] = 0 return new_fert.astype(float) # a = get_fert(100, 0, 99, 'jpn', 'dynamic_partial') def get_fert(totpers, min_age, max_age, graph=False, demog_files=[False, False, False]): ''' Generate a vector of fertility rates by model period age that corresponds to the fertility rate data by age in years. Args: totpers (int): total number of agent life periods (E+S), >= 3 min_age (int): age in years at which agents are born, >= 0 max_age (int): age in years at which agents die with certainty, >= 4 graph (bool): =True if want graphical output demog_files (Pandas dataframe): alternate demographic forecasts Returns: fert_rates (Numpy array): fertility rates for each model period of life ''' fert_all, mort_all, imm_all = demog_files # Get data curr_pop, _, curr_fert, _, _ = get_true_demog_data(min_age, max_age) # Birth ages birth_ages = np.arange(14, 51) # Population Distribution curr_pop_pct = curr_pop / curr_pop.sum() if (min_age == 1) and (max_age == 100) and (totpers == 100) and (not graph): fert_rates = np.zeros(totpers) # Births from 14-50, but age start at 0 fert_rates[15:52] = curr_fert return fert_rates ### VARIABLE PREPARATION num_bins = max_age - min_age + 1 binsize = num_bins / totpers num_sub_bins = float(10000) len_subbins = (np.float64(num_bins * num_sub_bins)) / totpers ### POPULATION CREATION ages = np.linspace(max(min_age, 0), min(max_age, 99), curr_pop_pct.shape[0]) pop_func = si.splrep(ages, curr_pop_pct) new_bins = np.linspace(max(min_age, 0), min(max_age, 99), int(num_sub_bins * (num_bins - 1)), dtype=float) curr_pop_sub = si.splev(new_bins, pop_func) curr_pop_sub = curr_pop_sub / curr_pop_sub.sum() #### AGE BIN CREATION # Calculate implied fertility rates in sub-bins of curr_fert fert_func = si.splrep(birth_ages, curr_fert) fert_rates_sub = np.zeros(curr_pop_sub.shape) age_sub = (np.linspace(np.float64(binsize) / num_sub_bins + np.float64(min_age), np.float64(max_age), int(num_sub_bins * (num_bins - 1))) - 0.5 * np.float64(binsize) / num_sub_bins) # Fill in fertility rates pred_ind = (age_sub >= birth_ages[0]) * (age_sub <= birth_ages[-1]) # Makes sure it is inside valid range age_pred = age_sub[pred_ind] # Gets age_sub in the valid range by applying pred_ind fert_rates_sub[pred_ind] = np.float64(si.splev(age_pred, fert_func)) fert_rates_sub[fert_rates_sub < 0] = 0 fert_rates = np.zeros(totpers) for i in range(totpers): beg_sub_bin = int(np.rint(i * len_subbins)) end_sub_bin = int(np.rint((i + 1) * len_subbins)) if i == totpers - 1: end_sub_bin += 1 fert_rates[i] = (( curr_pop_sub[beg_sub_bin:end_sub_bin] * fert_rates_sub[beg_sub_bin:end_sub_bin]).sum() / curr_pop_sub[beg_sub_bin:end_sub_bin].sum()) fert_rates = np.nan_to_num(fert_rates) if graph: pp.plot_fert_rates(fert_func, birth_ages, totpers, min_age, max_age, curr_fert, fert_rates, output_dir=OUTPUT_DIR) if (min_age == 1) and (max_age == 100) and (totpers == 100): fert_rates = np.zeros(totpers) # Births from 14-50, but age start at 0 fert_rates[15:52] = curr_fert return fert_rates def get_mort(totpers, min_age, max_age, graph=False, mort_file=False): ''' This function generates a vector of mortality rates by model period age. Args: totpers (int): total number of agent life periods (E+S), >= 3 min_age (int): age in years at which agents are born, >= 0 max_age (int): age in years at which agents die with certainty, >= 4 graph (bool): =True if want graphical output demog_files (Pandas dataframe): alternate demographic forecasts Returns: mort_rates (Numpy array): mortality rates that correspond to each period of life infmort_rate (scalar): infant mortality rate ''' # Get data _, _, _, curr_mort, _ = get_true_demog_data(min_age, max_age) # Mortality ages mort_ages = np.linspace(0, 99, 100).astype(int) # Infant Mortality Rate infmort_rate = curr_mort[0] if (min_age == 1) and (max_age == 100) and (totpers == 100) and (not graph): return curr_mort, 0 # infmort_rate ### VARIABLE PREPARATION num_bins = max_age - min_age + 1 binsize = num_bins / totpers num_sub_bins = int(100) len_subbins = ((np.float64(num_bins * num_sub_bins)) / totpers) #### AGE BIN CREATION # Calculate implied mortality rates in sub-bins of curr_mort mort_func = si.splrep(mort_ages, curr_mort) mort_sub = (np.linspace(np.float64(binsize) / num_sub_bins + np.float64(min_age), np.float64(max_age), int(num_sub_bins * (num_bins - 1))) - 0.5 * np.float64(binsize) / num_sub_bins) # CORRECT TO NUM_BINS NOT -1 # Fill in mortality rates mort_rates_sub_orig = 1 - si.splev(mort_sub, mort_func) mort_rates_sub_orig[mort_rates_sub_orig > 1] = 1 mort_rates_sub_orig[mort_rates_sub_orig < 0] = 0 mort_rates_sub = np.zeros(mort_rates_sub_orig.shape, dtype=float) for i in range(totpers): beg_sub_bin = int(np.rint(i * num_sub_bins)) end_sub_bin = int(np.rint((i + 1) * num_sub_bins)) if i == totpers - 1: end_sub_bin += 1 tot_period_surv = (np.log(mort_rates_sub_orig[beg_sub_bin:end_sub_bin]) ).sum() end_surv = np.log(1 - curr_mort[min_age:][i]) if tot_period_surv != 0: power = end_surv / tot_period_surv else: power = 0 mort_rates_sub[beg_sub_bin:end_sub_bin] = mort_rates_sub_orig[beg_sub_bin:end_sub_bin] ** power mort_rates = np.zeros(totpers) for i in range(totpers): beg_sub_bin = int(np.rint(i * len_subbins)) end_sub_bin = int(np.rint((i + 1) * len_subbins)) if i == totpers - 1: end_sub_bin += 1 mort_rates[i] = 1 - mort_rates_sub[beg_sub_bin:end_sub_bin].prod() mort_rates[-1] = 1 # Mortality rate in last period is set to 1 if graph: pp.plot_mort_rates_data(totpers, min_age, max_age, mort_ages[max(min_age, 0):min(max_age + 1, 100)], curr_mort[max(min_age, 0):min(max_age + 1, 100)], infmort_rate, mort_rates, output_dir=OUTPUT_DIR) if (min_age == 1) and (max_age == 100) and (totpers == 100): mort_rates = curr_mort return mort_rates, 0 # infmort_rate def pop_rebin(curr_pop_dist, totpers_new): ''' For cases in which totpers (E+S) is less than the number of periods in the population distribution data, this function calculates a new population distribution vector with totpers (E+S) elements. Args: curr_pop_dist (Numpy array): population distribution over N periods totpers_new (int): number of periods to which we are transforming the population distribution, >= 3 Returns: curr_pop_new (Numpy array): new population distribution over totpers (E+S) periods that approximates curr_pop_dist ''' # Number of periods in original data assert totpers_new >= 3 totpers_orig = len(curr_pop_dist) if int(totpers_new) == totpers_orig: curr_pop_new = curr_pop_dist elif int(totpers_new) < totpers_orig: num_sub_bins = float(10000) ages = np.linspace(0, totpers_orig - 1, totpers_orig) pop_func = si.splrep(ages, curr_pop_dist) new_bins = np.linspace(0, totpers_orig - 1,\ int(num_sub_bins * totpers_orig)) pop_ests = si.splev(new_bins, pop_func) len_subbins = ((np.float64(totpers_orig * num_sub_bins)) / totpers_new) curr_pop_new = np.zeros(totpers_new, dtype=np.float64) for i in range(totpers_new): beg_sub_bin = int(np.rint(i * len_subbins)) end_sub_bin = int(np.rint((i + 1) * len_subbins)) curr_pop_new[i] = \ np.average(pop_ests[beg_sub_bin:end_sub_bin]) # Return curr_pop_new to single precision float (float32) # datatype curr_pop_new = np.float32(curr_pop_new) * np.sum(curr_pop_dist) / np.sum(curr_pop_new) # Adjust sum return curr_pop_new def predict_population(fert_rate, mort_rate, imm_rate, pop_data): ''' Predict population as pop_{s+1,t+1} = pop_{s,t}(1 - mort_{t-1})) + pop_{s+1,t}(imm_{t-1}), and setting pop_{0,t+1} = pop_t * fert_t ''' # First, calculate births if len(fert_rate) == 100: births = fert_rate * pop_data / 2 else: # Births from 14-50, but age start at 0 births = fert_rate * pop_data[15:52] / 2 births = np.sum(births) # Second, calculate survivors survivors = (1 - mort_rate) * pop_data survivors = np.roll(survivors, 1) # Third, correct births survivors[0] = births # Third, calculate immigration imm = imm_rate * pop_data # Fourth, calculate predicted population pred_pop = survivors + imm return pred_pop def immsolve(imm_rates, *args): ''' This function generates a vector of errors representing the difference in two consecutive periods stationary population distributions. This vector of differences is the zero-function objective used to solve for the immigration rates vector, similar to the original immigration rates vector from util.calc_imm_resid(), that sets the steady-state population distribution by age equal to the population distribution in period int(1.5*S) Args: imm_rates (Numpy array):immigration rates that correspond to each period of life, length E+S args (tuple): (fert_rates, mort_rates, infmort_rate, omega_cur, g_n_SS) Returns: omega_errs (Numpy array): difference between omega_new and omega_cur_pct, length E+S ''' fert_rates, mort_rates, infmort_rate, omega_cur_lev, g_n_SS = args omega_cur_pct = omega_cur_lev / omega_cur_lev.sum() new_pop = predict_population(fert_rates, mort_rates, imm_rates, omega_cur_lev) omega_new = new_pop / new_pop.sum() omega_errs = omega_new - omega_cur_pct return omega_errs def calc_imm_resid(fert_t_minus_1, mort_t_minus_1, pop_t_minus_1, pop_t): ''' Calculate immigration rate in year t as (pop_t - pop_{t-1}(1 - mort_{t-1})) / (pop_{t-1}), and setting pop_t_0 = pop_{t-1} * fert_{t-1} ''' # First, calculate births if len(fert_t_minus_1) == 100: births = fert_t_minus_1 * pop_t_minus_1 / 2 else: # Births from 14-50, but age start at 0 births = fert_t_minus_1 * pop_t_minus_1[15:52] / 2 births = np.sum(births) # Second, calculate deaths deaths = mort_t_minus_1 * pop_t_minus_1 deaths = np.roll(deaths, 1) # Third, calculate predicted population pred_pop = np.roll(pop_t_minus_1, 1) - deaths pred_pop[0] = births # Fourth, calculate immigration rate imm = (pop_t - pred_pop) / (pop_t_minus_1) return imm def get_pop_objs(E, S, T, min_age, max_age, curr_year, GraphDiag=True): ''' This function produces the demographics objects to be used in the OG-USA model package. Args: E (int): number of model periods in which agent is not economically active, >= 1 S (int): number of model periods in which agent is economically active, >= 3 T (int): number of periods to be simulated in TPI, > 2*S min_age (int): age in years at which agents are born, >= 0 max_age (int): age in years at which agents die with certainty, >= 4 curr_year (int): current year for which analysis will begin, >= 2020 GraphDiag (bool): =True if want graphical output and printed diagnostics Returns: omega_path_S (Numpy array), time path of the population distribution from the current state to the steady-state, size T+S x S g_n_SS (scalar): steady-state population growth rate omega_SS (Numpy array): normalized steady-state population distribution, length S surv_rates (Numpy array): survival rates that correspond to each model period of life, lenght S mort_rates (Numpy array): mortality rates that correspond to each model period of life, length S g_n_path (Numpy array): population growth rates over the time path, length T + S ''' # Prepare demographics for data_year data_year = 2015 pop_prev_data, pop_yr_data, _, _, imm_rates_orig = get_true_demog_data(min_age, max_age) pop_prev_rebin = pop_rebin(pop_prev_data, E + S) pop_yr_rebin = pop_rebin(pop_yr_data, E + S) fert_rates = get_fert(E + S, min_age, max_age, graph=False) mort_rates, infmort_rate = get_mort(E + S, min_age, max_age, graph=False) mort_rates_S = mort_rates[-S:] mort_rates_S = np.expand_dims(mort_rates_S, 1) if not ((min_age == 1) and (max_age == 100) and (E + S == 100)): imm_rates_orig = calc_imm_resid(fert_rates, mort_rates, pop_prev_rebin, pop_yr_rebin) ages = np.arange(min_age, max_age + 1) pop_yr_pct = pop_yr_rebin / np.sum(pop_yr_rebin) OMEGA_orig = np.zeros((E + S, E + S)) OMEGA_orig[0, :] = fert_rates / 2 OMEGA_orig[1:, :-1] += np.diag(1 - mort_rates[:-1]) OMEGA_orig += np.diag(imm_rates_orig) # Solve for steady-state population growth rate and steady-state # population distribution by age using eigenvalue and eigenvector # decomposition eigvalues, eigvectors = np.linalg.eig(OMEGA_orig) g_n_SS = (eigvalues[np.isreal(eigvalues)].real).max() - 1 eigvec_raw = eigvectors[:, (eigvalues[np.isreal(eigvalues)].real).argmax()].real omega_SS_orig = eigvec_raw / eigvec_raw.sum() # Age most recent population data to the current year of analysis pop_past = pop_yr_rebin pop_curr = np.dot(OMEGA_orig, pop_yr_rebin) # Age the data to the current year for per in range(curr_year - data_year - 1): pop_past = pop_curr.copy() pop_curr = np.dot(OMEGA_orig, pop_curr) g_n_curr = ((pop_curr[-S:].sum() - pop_past[-S:].sum()) / pop_past[-S:].sum()) omega_S_preTP = pop_curr[-S:] / pop_curr[-S:].sum() omega_S_preTP = np.expand_dims(omega_S_preTP, 1) # Generate time path of nonstationary population omega_path_lev = np.zeros((E + S, T + S)) omega_path_lev[:, 0] = pop_curr.copy() for per in range(1, T + S): pop_curr = np.dot(OMEGA_orig, pop_curr) omega_path_lev[:, per] = pop_curr.copy() # Force the population distribution after 1.5*S periods to be the # steady-state distribution by adjusting immigration rates, holding # constant mortality, fertility, and SS growth rates imm_tol = 1e-14 fixper = int(1.5 * S) omega_SSfx = (omega_path_lev[:, fixper] / omega_path_lev[:, fixper].sum()) imm_objs = (fert_rates, mort_rates, infmort_rate, omega_path_lev[:, fixper], g_n_SS) imm_fulloutput = opt.fsolve(immsolve, imm_rates_orig, args=(imm_objs), full_output=True, xtol=imm_tol) imm_rates_adj = imm_fulloutput[0] imm_diagdict = imm_fulloutput[1] omega_path_S = (omega_path_lev[-S:, :] / np.tile(omega_path_lev[-S:, :].sum(axis=0), (S, 1))) omega_path_S[:, fixper:] = np.tile(omega_path_S[:, fixper].reshape((S, 1)), (1, T + S - fixper)) # Population growth rate g_n_path = np.zeros(T + S) g_n_path[0] = g_n_curr.copy() g_n_path[1:] = ((omega_path_lev[-S:, 1:].sum(axis=0) - omega_path_lev[-S:, :-1].sum(axis=0)) / omega_path_lev[-S:, :-1].sum(axis=0)) g_n_path[fixper + 1:] = g_n_SS # Generate time path of immigration rates imm_rates_mat = np.zeros((S, T + S)) for per in range(T + S): if per <= fixper: imm_rates_mat[:, per] = imm_rates_orig[E:].copy() else: imm_rates_mat[:, per] = imm_rates_adj[E:].copy() # imm_rates_mat = np.hstack((np.tile(np.reshape(np.array(imm_rates_orig)[E:], (S, 1)), (1, fixper)), np.tile(np.reshape(imm_rates_adj[E:], (S, 1)), (1, T + S - fixper)))) # Generate time path of mortality rates rho_path_lev = np.zeros((S, T + S + S)) for per in range(T + S + S): rho_path_lev[:, per] = mort_rates[-S:].copy() if GraphDiag: # Check whether original SS population distribution is close to # the period-T population distribution omegaSSmaxdif = np.absolute(omega_SS_orig - (omega_path_lev[:, T] / omega_path_lev[:, T].sum())).max() if omegaSSmaxdif > 0.0003: print('POP. WARNING: Max. abs. dist. between original SS ' + "pop. dist'n and period-T pop. dist'n is greater than" + ' 0.0003. It is ' + str(omegaSSmaxdif) + '.') else: print('POP. SUCCESS: orig. SS pop. dist is very close to ' + "period-T pop. dist'n. The maximum absolute " + 'difference is ' + str(omegaSSmaxdif) + '.') # Plot the adjusted steady-state population distribution versus # the original population distribution. The difference should be # small omegaSSvTmaxdiff = np.absolute(omega_SS_orig - omega_SSfx).max() if omegaSSvTmaxdiff > 0.0003: print('POP. WARNING: The maximimum absolute difference ' + 'between any two corresponding points in the ' + 'original and adjusted steady-state population ' + 'distributions is' + str(omegaSSvTmaxdiff) + ', ' + 'which is greater than 0.0003.') else: print('POP. SUCCESS: The maximum absolute difference ' + 'between any two corresponding points in the ' + 'original and adjusted steady-state population ' + 'distributions is ' + str(omegaSSvTmaxdiff)) # Print whether or not the adjusted immigration rates solved the # zero condition immtol_solved = np.absolute(imm_diagdict['fvec'].max()) < imm_tol if immtol_solved: print('POP. SUCCESS: Adjusted immigration rates solved ' + 'with maximum absolute error of ' + str(np.absolute(imm_diagdict['fvec'].max())) + ', which is less than the tolerance of ' + str(imm_tol)) else: print('POP. WARNING: Adjusted immigration rates did not ' + 'solve. Maximum absolute error of ' + str(np.absolute(imm_diagdict['fvec'].max())) + ' is greater than the tolerance of ' + str(imm_tol)) # Test whether the steady-state growth rates implied by the # adjusted OMEGA matrix equals the steady-state growth rate of # the original OMEGA matrix OMEGA2 = np.zeros((E + S, E + S)) OMEGA2[0, :] = fert_rates / 2 OMEGA2[1:, :-1] += np.diag(1 - mort_rates[:-1]) OMEGA2 += np.diag(imm_rates_adj) eigvalues2, eigvectors2 = np.linalg.eig(OMEGA2) g_n_SS_adj = (eigvalues[
np.isreal(eigvalues2)
numpy.isreal
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # code was heavily based on https://github.com/open-mmlab/mmediting from paddle.io import Dataset import numpy as np import cv2 import os from .preprocess import build_preprocess from .builder import DATASETS class MaskSynther(object): def __init__(self, mask_mode="brush_stroke_mask", **mask_config): self.mask_mode = mask_mode self.mask_config = mask_config preprocess = self.mask_config.get("preprocess", [{ "name": "Transforms", "input_keys": ["mask"], "pipeline": {"name": "Transpose"} }]) self.preprocess = build_preprocess(preprocess) if self.mask_mode == "file_mask": file_root = mask_config.get("mask_root", None) assert file_root is not None, "Please set mask_root for file_mode" mask_list_file = mask_config.get("mask_list_file", None) assert mask_list_file is not None, "Please set mask_list_file for file_mode" with open(mask_list_file, "r") as f: label_list = f.read().split("\n")[:-1] self.mask_list = [label.split("\t")[1] for label in label_list] def __getitem__(self, args): index, img = args return getattr(self, self.mask_mode)(index, img) def file_mask(self, index, img): mask_file = self.mask_list[index] mask = cv2.imread(mask_file, cv2.IMREAD_GRAYSCALE) c, h, w = img.shape mask = cv2.resize(mask, (w, h), cv2.INTER_NEAREST) if self.preprocess is not None: mask = self.preprocess({"mask": mask})["mask"] return mask def brush_stroke_mask(self, index, img): c, h, w = img.shape mask = np.zeros((h, w)) vert_num_range = self.mask_config.get("num_vertexes", (4, 12)) assert isinstance(vert_num_range, tuple), \ "The type of vert_num_range should be tuple, but got {}".format(type(vert_num_range)) vert_num = np.random.randint(vert_num_range[0], vert_num_range[1]) brush_width_range = self.mask_config.get("brush_width_range", (12, 40)) assert isinstance(brush_width_range, tuple), \ "The type of brush_width_range should be tuple, but got {}".format(type(brush_width_range)) direction_num_range = self.mask_config.get("direction_num_range", (1, 6)) assert isinstance(direction_num_range, tuple), \ "The type of direction_num_range should be tuple, but got {}".format(type(direction_num_range)) angle_mean = self.mask_config.get('angle_mean', np.pi * 2 / 5) assert isinstance(angle_mean, float), \ "The type of angle_mean should be float, but got {}".format(type(angle_mean)) length_mean_ratio = self.mask_config.get('length_mean_ratio', 1 / 8) assert isinstance(length_mean_ratio, float) and length_mean_ratio < 1, \ "Length_mean_ratio should be <1, and it's type should be float, " \ "but got {} with type {}".format(length_mean_ratio, type(length_mean_ratio)) length_bias_ratio = self.mask_config.get('length_bias_ratio', 1 / 16) assert isinstance(length_bias_ratio, float) and length_bias_ratio < 1, \ "Length_bias_ratio should be <1, and it's type should be float, " \ "but got {} with type {}".format(length_bias_ratio, type(length_bias_ratio)) angle_max_bias = self.mask_config.get('angle_max_bias', np.pi * 2 / 15) assert isinstance(angle_mean, float), \ "The type of angle_mean should be float, but got {}".format(type(angle_mean)) for vert_i in range(vert_num): start_x = np.random.randint(w) start_y =
np.random.randint(h)
numpy.random.randint
import numpy as np import matplotlib.pyplot as plt import urllib.request import os import time def download(root_path,filename): if not os.path.exists(root_path): os.mkdir(root_path) if not os.path.exists(os.path.join(root_path,filename)): url = "http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/"+filename urllib.request.urlretrieve(url,os.path.join(root_path,filename)) print("The data set: %s downloaded!"%os.path.join(root_path,filename)) else: print("The data set: %s already has downloaded!"%os.path.join(root_path,filename)) def get_data(filename): data_list = [] with open(filename,mode="r") as f: flag = False while True: line = f.readline() if "EOF" in line: break elif "NODE_COORD_SECTION" in line: flag = True elif flag: tmp = line.strip().split(" ") data_list.append([float(item) for item in tmp]) return np.array(data_list) class ACO: def __init__(self,ant_num,alpha,beta,rho,Q,epoches): self.ant_num = ant_num self.alpha = alpha self.beta = beta self.rho = rho self.Q = Q self.epoches = epoches self.citys_mat = None self.E_best = None self.sol_best = None self.length_list = None self.name = time.strftime("%Y%m%d%H%M", time.localtime(time.time())) def solve(self,citys_mat): self.citys_mat = citys_mat citys_num = citys_mat.shape[0] # 获取邻接矩阵 citys_x = citys_mat[:, 0].reshape(citys_num, 1).dot(np.ones((1, citys_num))) citys_y = citys_mat[:, 1].reshape(citys_num, 1).dot(np.ones((1, citys_num))) citys_distance = np.sqrt(np.square(citys_x - citys_x.T) + np.square(citys_y - citys_y.T)) # 初始化启发函数 Heu_f = 1.0/(citys_distance + np.diag([np.inf] * citys_num)) # 信息素矩阵 Tau_table = np.ones((citys_num,citys_num)) # 每一次迭代过程中每个蚂蚁的路径记录表 Route_table = np.zeros((self.ant_num,citys_num),dtype=np.int) # 每一次迭代过程中的最佳路径 Route_best = np.zeros((self.epoches,citys_num),dtype=np.int) # 每一次迭代过程中最佳路径记录表 Length_best = np.zeros(self.epoches) # 每次迭代过程中蚂蚁的平均路径长度 Length_average = np.zeros(self.epoches) # 每次迭代过程中当前路径长度 Length_current = np.zeros(self.ant_num) iter = 0 while iter <self.epoches: # 产生城市集合表 # 随机产生各个蚂蚁的起点城市 Route_table[:,0]= self.randseed(citys_num) # 更新信息素 Delta_tau = np.zeros((citys_num, citys_num)) for k in range(self.ant_num): # 用于记录蚂蚁下一个访问的城市集合 # 蚂蚁已经访问过的城市 tabu = [Route_table[k,0]] allow_set = list(set(range(citys_num))-set(tabu)) city_index = Route_table[k,0] for i in range(1,citys_num): # 初始化城市之间的转移概率 P_table = np.zeros(len(allow_set)) # 计算城市之间的转移概率 for j in range(len(allow_set)): P_table[j] = np.power(Tau_table[city_index,allow_set[j]],self.alpha)*\ np.power(Heu_f[city_index,allow_set[j]],self.beta) P_table = P_table/np.sum(P_table) # 轮盘赌算法来选择下一个访问的城市 #out_prob = np.cumsum(P_table) while True: r = np.random.rand() index_need = np.where(P_table > r)[0] if len(index_need) >0: city_index2 = allow_set[index_need[0]] break Route_table[k,i] = city_index2 tabu.append(city_index2) allow_set = list(set(range(0,citys_num))-set(tabu)) city_index = city_index2 tabu.append(tabu[0]) # 计算蚂蚁路径的距离信息 for j in range(citys_num): Length_current[k] = Length_current[k] + citys_distance[tabu[j],tabu[j+1]] for j in range(citys_num): Delta_tau[tabu[j],tabu[j+1]] = Delta_tau[tabu[j],tabu[j+1]] + self.Q / Length_current[k] # 计算最短路径、最短路径长度以及平均路径长度 Length_best[iter] = np.min(Length_current) index = np.where(Length_current == np.min(Length_current))[0][0] Route_best[iter] = Route_table[index] Length_average[iter] = np.mean(Length_current) #更新信息素 Tau_table = (1-self.rho)*Tau_table + Delta_tau #Route_table = np.zeros((self.ant_num,citys_num),dtype=np.int) Length_current = np.zeros(self.ant_num) print("epoches:%d,best value every epoches%.4f"%(iter, Length_best[iter])) iter = iter + 1 self.E_best =
np.min(Length_best)
numpy.min
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. """ gridsearch_tuner.py including: class GridSearchTuner """ import copy import logging import numpy as np import nni from nni.tuner import Tuner from nni.utils import convert_dict2tuple TYPE = '_type' CHOICE = 'choice' VALUE = '_value' logger = logging.getLogger('grid_search_AutoML') class GridSearchTuner(Tuner): """ GridSearchTuner will search all the possible configures that the user define in the searchSpace. The only acceptable types of search space are ``choice``, ``quniform``, ``randint`` Type ``choice`` will select one of the options. Note that it can also be nested. Type ``quniform`` will receive three values [``low``, ``high``, ``q``], where [``low``, ``high``] specifies a range and ``q`` specifies the interval. It will be sampled in a way that the first sampled value is ``low``, and each of the following values is 'interval' larger than the value in front of it. Type ``randint`` gives all possible intergers in range[``low``, ``high``). Note that ``high`` is not included. """ def __init__(self): self.count = -1 self.expanded_search_space = [] self.supplement_data = dict() def _json2parameter(self, ss_spec): """ Generate all possible configs for hyperparameters from hyperparameter space. Parameters ---------- ss_spec : dict or list Hyperparameter space or the ``_value`` of a hyperparameter Returns ------- list or dict All the candidate choices of hyperparameters. for a hyperparameter, chosen_params is a list. for multiple hyperparameters (e.g., search space), chosen_params is a dict. """ if isinstance(ss_spec, dict): if '_type' in ss_spec.keys(): _type = ss_spec['_type'] _value = ss_spec['_value'] chosen_params = list() if _type == 'choice': for value in _value: choice = self._json2parameter(value) if isinstance(choice, list): chosen_params.extend(choice) else: chosen_params.append(choice) elif _type == 'quniform': chosen_params = self._parse_quniform(_value) elif _type == 'randint': chosen_params = self._parse_randint(_value) else: raise RuntimeError("Not supported type: %s" % _type) else: chosen_params = dict() for key in ss_spec.keys(): chosen_params[key] = self._json2parameter(ss_spec[key]) return self._expand_parameters(chosen_params) elif isinstance(ss_spec, list): chosen_params = list() for subspec in ss_spec[1:]: choice = self._json2parameter(subspec) if isinstance(choice, list): chosen_params.extend(choice) else: chosen_params.append(choice) chosen_params = list(map(lambda v: {ss_spec[0]: v}, chosen_params)) else: chosen_params = copy.deepcopy(ss_spec) return chosen_params def _parse_quniform(self, param_value): """ Parse type of quniform parameter and return a list """ low, high, q = param_value[0], param_value[1], param_value[2] return np.clip(np.arange(
np.round(low/q)
numpy.round
# Copyright 2019 The TensorNetwork Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tensornetwork as tn import pytest import numpy as np from tensornetwork.backends.abstract_backend import AbstractBackend import tensornetwork.linalg import tensornetwork.linalg.node_linalg def test_replicate_nodes(backend): a = tn.Node(np.random.rand(10, 10), backend=backend) b = tn.Node(np.random.rand(10, 10), backend=backend) c = tn.Node(np.random.rand(10, 10), backend=backend) tn.connect(a[1], b[0]) tn.connect(b[1], c[0]) [a_copy, b_copy] = tn.replicate_nodes([a, b]) assert b_copy in tn.reachable([a_copy]) assert not set([a_copy, b_copy]).issubset(tn.reachable([c])) assert len(b_copy.get_all_dangling()) == 1 def test_split_node_full_svd_names(backend): a = tn.Node(np.random.rand(10, 10), backend=backend) e1 = a[0] e2 = a[1] left, s, right, _, = tn.split_node_full_svd( a, [e1], [e2], left_name='left', middle_name='center', right_name='right', left_edge_name='left_edge', right_edge_name='right_edge') assert left.name == 'left' assert s.name == 'center' assert right.name == 'right' assert left.edges[-1].name == 'left_edge' assert s[0].name == 'left_edge' assert s[1].name == 'right_edge' assert right.edges[0].name == 'right_edge' def test_split_node_relative_tolerance(backend): absolute = tn.Node(np.diag([2.0, 1.0, 0.2, 0.1]), backend=backend) relative = tn.Node(np.diag([2.0, 1.0, 0.2, 0.1]), backend=backend) max_truncation_err = 0.2 _, _, trunc_sv_absolute, = tn.split_node( node=absolute, left_edges=[absolute[0]], right_edges=[absolute[1]], max_truncation_err=max_truncation_err, relative=False) _, _, trunc_sv_relative, = tn.split_node( node=relative, left_edges=[relative[0]], right_edges=[relative[1]], max_truncation_err=max_truncation_err, relative=True) np.testing.assert_almost_equal(trunc_sv_absolute, [0.1]) np.testing.assert_almost_equal(trunc_sv_relative, [0.2, 0.1]) def test_split_node_full_svd_relative_tolerance(backend): absolute = tn.Node(np.diag([2.0, 1.0, 0.2, 0.1]), backend=backend) relative = tn.Node(np.diag([2.0, 1.0, 0.2, 0.1]), backend=backend) max_truncation_err = 0.2 _, _, _, trunc_sv_absolute, = tn.split_node_full_svd( node=absolute, left_edges=[absolute[0]], right_edges=[absolute[1]], max_truncation_err=max_truncation_err, relative=False) _, _, _, trunc_sv_relative, = tn.split_node_full_svd( node=relative, left_edges=[relative[0]], right_edges=[relative[1]], max_truncation_err=max_truncation_err, relative=True) np.testing.assert_almost_equal(trunc_sv_absolute, [0.1]) np.testing.assert_almost_equal(trunc_sv_relative, [0.2, 0.1]) def test_split_node_rq_names(backend): a = tn.Node(np.zeros((2, 3, 4, 5, 6)), backend=backend) left_edges = [] for i in range(3): left_edges.append(a[i]) right_edges = [] for i in range(3, 5): right_edges.append(a[i]) left, right = tn.split_node_rq( a, left_edges, right_edges, left_name='left', right_name='right', edge_name='edge') assert left.name == 'left' assert right.name == 'right' assert left.edges[-1].name == 'edge' assert right.edges[0].name == 'edge' def test_split_node_qr_names(backend): a = tn.Node(np.zeros((2, 3, 4, 5, 6)), backend=backend) left_edges = [] for i in range(3): left_edges.append(a[i]) right_edges = [] for i in range(3, 5): right_edges.append(a[i]) left, right = tn.split_node_qr( a, left_edges, right_edges, left_name='left', right_name='right', edge_name='edge') assert left.name == 'left' assert right.name == 'right' assert left.edges[-1].name == 'edge' assert right.edges[0].name == 'edge' def test_split_node_names(backend): a = tn.Node(np.zeros((2, 3, 4, 5, 6)), backend=backend) left_edges = [] for i in range(3): left_edges.append(a[i]) right_edges = [] for i in range(3, 5): right_edges.append(a[i]) left, right, _ = tn.split_node( a, left_edges, right_edges, left_name='left', right_name='right', edge_name='edge') assert left.name == 'left' assert right.name == 'right' assert left.edges[-1].name == 'edge' assert right.edges[0].name == 'edge' def test_split_node_rq_unitarity_complex(backend): if backend == "pytorch": pytest.skip("Complex numbers currently not supported in PyTorch") if backend == "jax": pytest.skip("Complex QR crashes jax") a = tn.Node(np.random.rand(3, 3) + 1j * np.random.rand(3, 3), backend=backend) r, q = tn.split_node_rq(a, [a[0]], [a[1]]) r[1] | q[0] qbar = tn.linalg.node_linalg.conj(q) q[1] ^ qbar[1] u1 = q @ qbar qbar[0] ^ q[0] u2 = qbar @ q np.testing.assert_almost_equal(u1.tensor, np.eye(3)) np.testing.assert_almost_equal(u2.tensor, np.eye(3)) def test_split_node_rq_unitarity_float(backend): a = tn.Node(np.random.rand(3, 3), backend=backend) r, q = tn.split_node_rq(a, [a[0]], [a[1]]) r[1] | q[0] qbar = tn.linalg.node_linalg.conj(q) q[1] ^ qbar[1] u1 = q @ qbar qbar[0] ^ q[0] u2 = qbar @ q np.testing.assert_almost_equal(u1.tensor, np.eye(3)) np.testing.assert_almost_equal(u2.tensor, np.eye(3)) def test_split_node_rq(backend): a = tn.Node(np.random.rand(2, 3, 4, 5, 6), backend=backend) left_edges = [] for i in range(3): left_edges.append(a[i]) right_edges = [] for i in range(3, 5): right_edges.append(a[i]) left, right = tn.split_node_rq(a, left_edges, right_edges) tn.check_correct([left, right]) np.testing.assert_allclose(a.tensor, tn.contract(left[3]).tensor) def test_split_node_qr_unitarity_complex(backend): if backend == "pytorch": pytest.skip("Complex numbers currently not supported in PyTorch") if backend == "jax": pytest.skip("Complex QR crashes jax") a = tn.Node(np.random.rand(3, 3) + 1j * np.random.rand(3, 3), backend=backend) q, r = tn.split_node_qr(a, [a[0]], [a[1]]) q[1] | r[0] qbar = tn.linalg.node_linalg.conj(q) q[1] ^ qbar[1] u1 = q @ qbar qbar[0] ^ q[0] u2 = qbar @ q np.testing.assert_almost_equal(u1.tensor, np.eye(3)) np.testing.assert_almost_equal(u2.tensor, np.eye(3)) def test_split_node_qr_unitarity_float(backend): a = tn.Node(np.random.rand(3, 3), backend=backend) q, r = tn.split_node_qr(a, [a[0]], [a[1]]) q[1] | r[0] qbar = tn.linalg.node_linalg.conj(q) q[1] ^ qbar[1] u1 = q @ qbar qbar[0] ^ q[0] u2 = qbar @ q np.testing.assert_almost_equal(u1.tensor, np.eye(3)) np.testing.assert_almost_equal(u2.tensor, np.eye(3)) def test_split_node_qr(backend): a = tn.Node(np.random.rand(2, 3, 4, 5, 6), backend=backend) left_edges = [] for i in range(3): left_edges.append(a[i]) right_edges = [] for i in range(3, 5): right_edges.append(a[i]) left, right = tn.split_node_qr(a, left_edges, right_edges) tn.check_correct([left, right]) np.testing.assert_allclose(a.tensor, tn.contract(left[3]).tensor) def test_reachable(backend): nodes = [tn.Node(np.random.rand(2, 2, 2), backend=backend) for _ in range(10)] _ = [nodes[n][0] ^ nodes[n + 1][1] for n in range(len(nodes) - 1)] assert set(nodes) == tn.reachable(nodes[0]) def test_reachable_2(backend): a = tn.Node(np.zeros((3, 5)), backend=backend) b = tn.Node(np.zeros((3, 4, 5)), backend=backend) e1 = tn.connect(a[0], b[0]) e2 = tn.connect(a[1], b[2]) nodes = [a, b] edges = [e1, e2] assert set(nodes) == tn.reachable(edges[0]) assert set(nodes) == tn.reachable(edges) def test_reachable_disconnected_1(backend): nodes = [tn.Node(np.random.rand(2, 2, 2), backend=backend) for _ in range(4)] nodes[0][1] ^ nodes[1][0] nodes[2][1] ^ nodes[3][0] assert set(tn.reachable([nodes[0], nodes[2]])) == set(nodes) assert set(tn.reachable([nodes[0]])) == {nodes[0], nodes[1]} assert set(tn.reachable([nodes[1]])) == {nodes[0], nodes[1]} assert set(tn.reachable([nodes[0], nodes[1]])) == {nodes[0], nodes[1]} assert set(tn.reachable([nodes[2]])) == {nodes[2], nodes[3]} assert set(tn.reachable([nodes[3]])) == {nodes[2], nodes[3]} assert set(tn.reachable([nodes[2], nodes[3]])) == {nodes[2], nodes[3]} assert set(tn.reachable([nodes[0], nodes[1], nodes[2]])) == set(nodes) assert set(tn.reachable([nodes[0], nodes[1], nodes[3]])) == set(nodes) assert set(tn.reachable([nodes[0], nodes[2], nodes[3]])) == set(nodes) assert set(tn.reachable([nodes[1], nodes[2], nodes[3]])) == set(nodes) def test_reachable_disconnected_2(backend): nodes = [tn.Node(np.random.rand(2, 2, 2), backend=backend) for _ in range(4)] nodes[1][1] ^ nodes[2][0] # connect 2nd and third node assert set(tn.reachable([nodes[0], nodes[1]])) == {nodes[0], nodes[1], nodes[2]} nodes[2][1] ^ nodes[3][0] # connect third and fourth node assert set(tn.reachable([nodes[0], nodes[1]])) == set(nodes) def test_reachable_raises(backend): nodes = [tn.Node(np.random.rand(2, 2, 2), backend=backend), 5] with pytest.raises(TypeError): tn.reachable(nodes) def test_subgraph_sanity(backend): a = tn.Node(np.eye(2), backend=backend) b = tn.Node(np.eye(2), backend=backend) a[0] ^ b[0] edges = tn.get_subgraph_dangling({a}) assert edges == {a[0], a[1]} def test_subgraph_disconnected_nodes(backend): a = tn.Node(np.eye(2), backend=backend) b = tn.Node(np.eye(2), backend=backend) c = tn.Node(np.eye(2), backend=backend) a[0] ^ b[0] b[1] ^ c[1] edges = tn.get_subgraph_dangling({a, c}) assert edges == {a[0], a[1], c[0], c[1]} def test_full_graph_subgraph_dangling(backend): a = tn.Node(np.eye(2), backend=backend) b = tn.Node(np.eye(2), backend=backend) c = tn.Node(np.eye(2), backend=backend) a[0] ^ b[0] b[1] ^ c[1] edges = tn.get_subgraph_dangling({a, b, c}) assert edges == {a[1], c[0]} def test_reduced_density(backend): a = tn.Node(np.random.rand(3, 3, 3), name="A", backend=backend) b = tn.Node(np.random.rand(3, 3, 3), name="B", backend=backend) c = tn.Node(np.random.rand(3, 3, 3), name="C", backend=backend) edges = tn.get_all_edges({a, b, c}) node_dict, edge_dict = tn.reduced_density([a[0], b[1], c[2]]) assert not a[0].is_dangling() assert not b[1].is_dangling() assert not c[2].is_dangling() assert a[1].is_dangling() & a[2].is_dangling() assert b[0].is_dangling() & b[2].is_dangling() assert c[0].is_dangling() & c[1].is_dangling() for node in {a, b, c}: assert node_dict[node].name == node.name for edge in edges: assert edge_dict[edge].name == edge.name def test_reduced_density_nondangling(backend): a = tn.Node(np.random.rand(3, 3, 3), name="A", backend=backend) b = tn.Node(np.random.rand(3, 3, 3), name="B", backend=backend) c = tn.Node(np.random.rand(3, 3, 3), name="C", backend=backend) a[0] ^ b[1] b[2] ^ c[1] err_msg = "traced_out_edges must only include dangling edges!" with pytest.raises(ValueError, match=err_msg): tn.reduced_density([a[0], b[1], c[1]]) def test_reduced_density_contraction(backend): if backend == "pytorch": pytest.skip("pytorch doesn't support complex numbers") a = tn.Node( np.array([[0.0, 1.0j], [-1.0j, 0.0]], dtype=np.complex64), backend=backend) tn.reduced_density([a[0]]) result = tn.contractors.greedy(tn.reachable(a), ignore_edge_order=True) np.testing.assert_allclose(result.tensor, np.eye(2)) def test_switch_backend(backend): a = tn.Node(np.random.rand(3, 3, 3), name="A", backend="numpy") b = tn.Node(np.random.rand(3, 3, 3), name="B", backend="numpy") c = tn.Node(np.random.rand(3, 3, 3), name="C", backend="numpy") nodes = [a, b, c] tn.switch_backend(nodes, backend) assert nodes[0].backend.name == backend def test_split_node_of_node_without_backend_raises_error(): node = np.random.rand(3, 3, 3) with pytest.raises(AttributeError): tn.split_node(node, left_edges=[], right_edges=[]) def test_split_node_qr_of_node_without_backend_raises_error(): node = np.random.rand(3, 3, 3) with pytest.raises(AttributeError): tn.split_node_qr(node, left_edges=[], right_edges=[]) def test_split_node_rq_of_node_without_backend_raises_error(): node = np.random.rand(3, 3, 3) with pytest.raises(AttributeError): tn.split_node_rq(node, left_edges=[], right_edges=[]) def test_split_node_full_svd_of_node_without_backend_raises_error(): node = np.random.rand(3, 3, 3) with pytest.raises(AttributeError): tn.split_node_full_svd(node, left_edges=[], right_edges=[]) def test_reachable_raises_value_error(): with pytest.raises(ValueError): tn.reachable({}) def test_check_correct_raises_value_error_1(backend): a = tn.Node(np.random.rand(3, 3, 3), backend=backend) b = tn.Node(np.random.rand(3, 3, 3), backend=backend) edge = a.edges[0] edge.node1 = b edge.node2 = b with pytest.raises(ValueError): tn.check_correct({a, b}) def test_check_correct_raises_value_error_2(backend): a = tn.Node(np.random.rand(3, 3, 3), backend=backend) b = tn.Node(np.random.rand(3, 3, 3), backend=backend) edge = a.edges[0] edge.axis1 = -1 with pytest.raises(ValueError): tn.check_correct({a, b}) def test_get_all_nodes(backend): a = tn.Node(np.random.rand(3, 3, 3), backend=backend) b = tn.Node(np.random.rand(3, 3, 3), backend=backend) edge = tn.connect(a[0], b[0]) assert tn.get_all_nodes({edge}) == {a, b} def test_switch_backend_raises_error(backend): a = tn.Node(np.random.rand(3, 3, 3)) a.backend = AbstractBackend() with pytest.raises(NotImplementedError): tn.switch_backend({a}, backend) def test_split_node_orig_shape(backend): n1 = tn.Node(np.random.rand(3, 4, 5), backend=backend) tn.split_node(n1, [n1[0], n1[2]], [n1[1]]) np.testing.assert_allclose(n1.shape, (3, 4, 5)) def test_split_node_full_svd_orig_shape(backend): n1 = tn.Node(np.random.rand(3, 4, 5), backend=backend) tn.split_node_full_svd(n1, [n1[0], n1[2]], [n1[1]]) np.testing.assert_allclose(n1.shape, (3, 4, 5)) def test_split_node_rq_orig_shape(backend): n1 = tn.Node(np.random.rand(3, 4, 5), backend=backend) tn.split_node_rq(n1, [n1[0], n1[2]], [n1[1]]) np.testing.assert_allclose(n1.shape, (3, 4, 5)) def test_split_node_qr_orig_shape(backend): n1 = tn.Node(np.random.rand(3, 4, 5), backend=backend) tn.split_node_qr(n1, [n1[0], n1[2]], [n1[1]]) np.testing.assert_allclose(n1.shape, (3, 4, 5)) def test_get_neighbors(backend): with tn.DefaultBackend(backend): a = tn.Node(np.ones((2, 2))) b = tn.Node(np.ones((2, 2, 2, 2))) c = tn.Node(np.ones((2, 2, 2))) d = tn.Node(np.ones((2, 2))) b[0] ^ a[1] b[3] ^ c[2] a[0] ^ d[1] b[1] ^ b[2] result = tn.get_neighbors(b) assert result == [a, c] def test_get_neighbors_no_duplicates(backend): with tn.DefaultBackend(backend): a = tn.Node(np.ones((2, 2, 2))) b = tn.Node(np.ones((2, 2, 2, 2, 2))) c = tn.Node(np.ones((2, 2, 2))) d = tn.Node(np.ones((2, 2))) b[0] ^ a[0] b[1] ^ a[1] b[2] ^ c[0] a[2] ^ d[1] b[3] ^ b[4] result = tn.get_neighbors(b) assert result == [a, c] def test_redirect(backend): n1 = tn.Node(np.random.rand(2, 2, 2), backend=backend) n2 = tn.Node(
np.random.rand(2, 2, 2)
numpy.random.rand
#!/usr/bin/python ################################################# # Basic Classifier # # Constructing a simple data set # # Linear classifier # # Nearest neighbors classification # # Sk. <NAME> # ################################################# import numpy as np import matplotlib.pyplot as plt from scipy.spatial import cKDTree # from prob_1 import KDTree # Global data set for problem 2, 3, 4 N = 5000 mean_0 = [3, 2] covariance_0 = [[5, 1], [1, 1]] mean_1 = [8, 5] covariance_1 = [[5, 0], [0, 2]] X = np.concatenate((np.random.multivariate_normal(mean_0, covariance_0, N), np.random.multivariate_normal(mean_1, covariance_1, N)), axis=0) y = np.concatenate((np.zeros((N, 1), 'int64'), np.ones((N, 1), 'int64')), axis=0) mask = np.random.random(2*N) < 0.8 X_training = X[mask] y_training = y[mask] mask = np.logical_not(mask) X_test = X[mask] y_test = y[mask] def prob_2(): plt.figure(figsize=(16, 12)) plt.plot(X[:N, 0], X[:N, 1], 'o', markerfacecolor='none', color='#75bbfd', label="class 0") plt.plot(X[N:, 0], X[N:, 1], 'o', markerfacecolor='none', color='#f97306', label="class 1") plt.xlabel('x1', fontsize=22) plt.ylabel('x2', fontsize=22) plt.suptitle("10000 random data points from a multivariate normal/Gaussian distributions.", fontsize=24) plt.legend(fontsize='22') plt.savefig('10000 random data points from a multivariate Gaussian distributions.png') plt.show() def prob_3(): beta = np.linalg.inv(X_training.T.dot(X_training)).dot(X_training.T).dot(y_training) y_hat = X_test.dot(beta) mask = X_test.dot(beta) < 0.5 y_hat[mask] = 0 mask = np.logical_not(mask) y_hat[mask] = 1 c = np.count_nonzero(y_hat == y_test) # count the number of true elements in Boolean array print('The classification accuracy of the algorithm is:', float(c / len(y_test))*100., '%') y_training_new = y_training.reshape(-1) # To form an 1D array y_test_new = y_test.reshape(-1) y_hat_new = y_hat.reshape(-1) training0 = X_training[y_training_new == 0] training1 = X_training[y_training_new == 1] correct0 = X_test[np.logical_and(y_test_new == 0, y_hat_new == 0)] correct1 = X_test[np.logical_and(y_test_new == 1, y_hat_new == 1)] incorrect0 = X_test[np.logical_and(y_test_new == 0, y_hat_new == 1)] incorrect1 = X_test[np.logical_and(y_test_new == 1, y_hat_new == 0)] plt.figure(figsize=(16, 12)) plt.plot(training0[:, 0], training0[:, 1], 's', markerfacecolor='none', color='#75bbfd', label='Training set elements from class 0') plt.plot(training1[:, 0], training1[:, 1], 'x', color='#f97306', label='Training set elements from class 1') plt.plot(correct0[:, 0], correct0[:, 1], 'o', markerfacecolor='none', color='#00FF00', label='Correctly classified test set elements from class 0') plt.plot(correct1[:, 0], correct1[:, 1], '.', color='#800080', label='Correctly classified test set elements from class 1') plt.plot(incorrect0[:, 0], incorrect0[:, 1], '*', color='#EE82EE', label='Incorrectly classified test set elements from class 0') plt.plot(incorrect1[:, 0], incorrect1[:, 1], '+', color='k', label='Incorrectly classified test set elements from class 1') plt.xlabel('x1', fontsize=22) plt.ylabel('x2', fontsize=22) plt.suptitle("Linear Classifier performance map", fontsize=24) plt.legend() plt.savefig('Linear Classifier performance map.png') plt.show() def prob_4(): KDT = cKDTree(X_training).query(X_test, k=1) # KDT1 = KDTree(X_training).find_nearest(X_test) y_hat = y_training[KDT [1]] # Ignoring the location of the neighbors (the second output array) # y_hat1 = y_training[KDT1 [1]] c = np.count_nonzero(y_hat == y_test) # count the number of true elements in Boolean array # c1 = np.count_nonzero(y_hat1 == y_test) print('The classification accuracy of the KD tree classifier is:', float(c / len(y_test))*100., '%') # print('The classification accuracy of my own KD tree classifier is:', float(c1 / len(y_test))*100., '%') y_training_new = y_training.reshape(-1) y_test_new = y_test.reshape(-1) y_hat_new = y_hat.reshape(-1) training0 = X_training[y_training_new == 0] training1 = X_training[y_training_new == 1] correct0 = X_test[np.logical_and(y_test_new == 0, y_hat_new == 0)] correct1 = X_test[np.logical_and(y_test_new == 1, y_hat_new == 1)] incorrect0 = X_test[np.logical_and(y_test_new == 0, y_hat_new == 1)] incorrect1 = X_test[
np.logical_and(y_test_new == 1, y_hat_new == 0)
numpy.logical_and
#!/usr/bin/env python import os import subprocess import shutil import unittest import logging import numpy as np from test.test_helper import TestHelper, Poller, MessageInFileProbe,\ ExecutionProbe from plico.utils.configuration import Configuration from plico.rpc.zmq_remote_procedure_call import ZmqRemoteProcedureCall from plico.utils.logger import Logger from plico.rpc.sockets import Sockets from plico.rpc.zmq_ports import ZmqPorts from tipico.client.abstract_instrument_client import SnapshotEntry from tipico_server.utils.constants import Constants from tipico_server.utils.starter_script_creator import StarterScriptCreator from tipico_server.utils.process_startup_helper import ProcessStartUpHelper from tipico_server.instrument_controller.runner import Runner from tipico_server.process_monitor.runner import Runner as ProcessMonitorRunner from tipico.client.instrument_client import \ InstrumentClient import sys class IntegrationTest(unittest.TestCase): TEST_DIR= os.path.join(os.path.abspath(os.path.dirname(__file__)), "./tmp/") LOG_DIR= os.path.join(TEST_DIR, "log") CONF_FILE= 'test/integration/conffiles/tipico_server.conf' CALIB_FOLDER= 'test/integration/calib' CONF_SECTION= Constants.PROCESS_MONITOR_CONFIG_SECTION SERVER_LOG_PATH= os.path.join(LOG_DIR, "%s.log" % CONF_SECTION) BIN_DIR= os.path.join(TEST_DIR, "apps", "bin") SOURCE_DIR= os.path.join(os.path.abspath(os.path.dirname(__file__)), "../..") def setUp(self): self._setUpBasicLogging() self.server= None self._wasSuccessful= False self._removeTestFolderIfItExists() self._makeTestDir() self.configuration= Configuration() self.configuration.load(self.CONF_FILE) self.rpc= ZmqRemoteProcedureCall() calibrationRootDir= self.configuration.calibrationRootDir() self._setUpCalibrationTempFolder(calibrationRootDir) def _setUpBasicLogging(self): logging.basicConfig(level=logging.DEBUG) self._logger= Logger.of('Integration Test') def _makeTestDir(self): os.makedirs(self.TEST_DIR) os.makedirs(self.LOG_DIR) os.makedirs(self.BIN_DIR) def _setUpCalibrationTempFolder(self, calibTempFolder): shutil.copytree(self.CALIB_FOLDER, calibTempFolder) def _removeTestFolderIfItExists(self): if os.path.exists(self.TEST_DIR): shutil.rmtree(self.TEST_DIR) def tearDown(self): TestHelper.dumpFileToStdout(self.SERVER_LOG_PATH) if self.server is not None: TestHelper.terminateSubprocess(self.server) if self._wasSuccessful: self._removeTestFolderIfItExists() def _createStarterScripts(self): ssc= StarterScriptCreator() ssc.setInstallationBinDir(self.BIN_DIR) ssc.setPythonPath(self.SOURCE_DIR) ssc.setConfigFileDestination(self.CONF_FILE) ssc.installExecutables() def _startProcesses(self): psh= ProcessStartUpHelper() serverLog= open(os.path.join(self.LOG_DIR, "server.out"), "wb") self.server= subprocess.Popen( [sys.executable, psh.processProcessMonitorStartUpScriptPath(), self.CONF_FILE, self.CONF_SECTION], stdout=serverLog, stderr=serverLog) Poller(5).check(MessageInFileProbe( ProcessMonitorRunner.RUNNING_MESSAGE, self.SERVER_LOG_PATH)) def _testProcessesActuallyStarted(self): controllerLogFile= os.path.join( self.LOG_DIR, '%s.log' % Constants.SERVER_1_CONFIG_SECTION) Poller(5).check(MessageInFileProbe( Runner.RUNNING_MESSAGE, controllerLogFile)) controller2LogFile= os.path.join( self.LOG_DIR, '%s.log' % Constants.SERVER_2_CONFIG_SECTION) Poller(5).check(MessageInFileProbe( Runner.RUNNING_MESSAGE, controller2LogFile)) def _buildClients(self): ports1= ZmqPorts.fromConfiguration( self.configuration, Constants.SERVER_1_CONFIG_SECTION) self.instrumentClient1= InstrumentClient( self.rpc, Sockets(ports1, self.rpc)) ports2= ZmqPorts.fromConfiguration( self.configuration, Constants.SERVER_2_CONFIG_SECTION) self.instrumentClient2= InstrumentClient( self.rpc, Sockets(ports2, self.rpc)) def _testMoveTo(self): actuatorPosition= np.arange(10) self.instrumentClient1.moveTo(actuatorPosition) Poller(3).check(ExecutionProbe( lambda: self.assertTrue( np.allclose( actuatorPosition, self.instrumentClient1.getPosition())))) def _checkBackdoor(self): self.instrumentClient1.execute( "import numpy as np; " "self._myarray= np.array([1, 2])") self.assertEqual( repr(np.array([1, 2])), self.instrumentClient1.eval("self._myarray")) self.instrumentClient1.execute("self._foobar= 42") self.assertEqual( "42", self.instrumentClient1.eval("self._foobar")) def _testGetStatus(self): status= self.instrumentClient1.getStatus() cmdCounter= status.commandCounter() self.instrumentClient1.moveTo(
np.arange(4)
numpy.arange
import pandas as pd import numpy as np import xgboost as xgb from tqdm import tqdm import keras from sklearn.svm import SVC from sklearn import preprocessing, decomposition, metrics, pipeline from sklearn.model_selection import GridSearchCV from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer from sklearn.decomposition import TruncatedSVD from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.naive_bayes import MultinomialNB from nltk import word_tokenize from nltk.corpus import stopwords import warnings from lib import BaseTrain from lib import Net1, Net2, Net3, Net4 warnings.filterwarnings('ignore') def multiclass_logloss(actual, predicted, eps=1e-15): """Multi class version of Logarithmic Loss metric. :param actual: Array containing the actual target classes :param predicted: Matrix with class predictions, one probability per class """ # Convert 'actual' to a binary array if it's not already: if len(actual.shape) == 1: actual2 = np.zeros((actual.shape[0], predicted.shape[1])) for i, val in enumerate(actual): actual2[i, val] = 1 actual = actual2 clip =
np.clip(predicted, eps, 1 - eps)
numpy.clip
from pathlib import Path import numpy as np import gym from gym import spaces, logger from gym.utils import seeding import matplotlib.pyplot as plt from pycel import ExcelCompiler class Parameters: # (Avoid sampling random variables here: they would not be resampled upon reset()) # problem-specific parameters techs = 3 # number of technologies (Offshore wind power, blue hydrogen, green hydrogen) # fmt: off reward_types = 6 # capital expenditure (capex), operating expenditure (opex), revenue, carbon emissions, total jobs supported, total economic impact steps_per_episode = 20 # number of years in the planning horizon (2031 -> 2050 = 20) # fmt: on # This 'Pathways to Net Zero' environment manipulates a spreadsheet loaded in memory. The following 20 columns correspond to years 2031 to 2050 in tabs named 'Outputs' and 'CCUS': # fmt: off pathways2Net0ColumnInds = np.array(['P','Q','R','S','T','U','V','W','X','Y','Z','AA','AB','AC','AD','AE','AF','AG','AH','AI']) # fmt: on # The following 20 rows correspond to years 2031 to 2050 in tabs named 'BREEZE', 'GALE', and 'STORM': pathways2Net0RowInds = np.arange(36, 36 + steps_per_episode) # pathways2Net0ColumnInds[state.step_count] and pathways2Net0RowInds[state.step_count] will locate the current year's column / row respectively # Multiplicative noise is applied to all costs. The parameters of this randomisation are: noise_mu = 1.0 noise_sigma = 0.1 noise_clipping = 0.5 # (i.e., costs are reduced by 50% at the most) noise_sigma_factor = np.sqrt(0.1) # this factor is applied to make CCUS capex & opex less volatile than other costs # The costs in the Carbon capture utilisation and storage (CCUS) tab to be randomised are capex, opex, and carbon price, with these row numbers: pathways2Net0RandomRowInds_CCUS = np.array([23, 24, 26]) # The costs in the 'Outputs' tab to be randomised are Offshore wind - Devex, Capex, and Opex, Green Hydrogen - Capex, Fixed Opex, and Variable Opex, Blue Hydrogen - price, Gas feedstock price, Capex, Fixed opex, Variable opex, and Natural gas cost, with these row numbers: # fmt: off pathways2Net0RandomRowInds_Outputs = np.array([148, 149, 150, 153, 154, 155, 158, 159, 163, 164, 165, 166]) # fmt: on # multiplicative noise's mu and sigma, and clipping point: noise_mu = 1.0 noise_sigma = 0.1 # or try 0.1, 0.0, np.sqrt(0.001), 0.02, np.sqrt(0.0003), 0.015, 0.01, np.sqrt(0.00001), 0.001 noise_clipping = 0.5 # or try 0.001, 0.1, 0.5 (i.e., original costs are reduced by 50% at the most) noise_sigma_factor = np.sqrt(0.1) # as in https://github.com/rangl-labs/netzerotc/issues/36, CCUS capex & opex (CCUS row 23 and 24) should have smaller standard deviations stochastic_sigma = False # set to False to use one single noise_sigma; set to True to randomly switch between two different std: # noise_sigma_low = 0.001 # noise_sigma_high = np.sqrt(0.00001) # OR, sample a sigma from a uniform distribution centered at noise_sigma with total 2-side range of noise_sigma_range: noise_sigma_range = 0.002 noise_observability = False # set to True to make the observation_space contain randomized costs/prices; set to False to restrict the observation_space to contain only the state.step_count class State: def __init__(self, seed=None, param=Parameters()): np.random.seed(seed=seed) self.initialise_state(param) def initialise_state(self, param): # create local copy of spreadsheet model to be manipulated self.pathways2Net0 = param.pathways2Net0 # create an array of costs for the current year and populate with 2030 costs (column 'O' in 'CCUS' and 'Outputs' tabs): self.randomized_costs = np.ones( len(param.pathways2Net0RandomRowInds_CCUS) + len(param.pathways2Net0RandomRowInds_Outputs) ) for costRowID in np.arange(len(param.pathways2Net0RandomRowInds_CCUS)): self.randomized_costs[costRowID] = param.pathways2Net0.evaluate( "CCUS!O" + str(param.pathways2Net0RandomRowInds_CCUS[costRowID]) ) for costRowID in np.arange(len(param.pathways2Net0RandomRowInds_Outputs)): self.randomized_costs[ len(param.pathways2Net0RandomRowInds_CCUS) + costRowID ] = param.pathways2Net0.evaluate( "Outputs!O" + str(param.pathways2Net0RandomRowInds_Outputs[costRowID]) ) self.noise_observability = param.noise_observability # time variables # NOTE: our convention is to update step_count at the beginning of the gym step() function self.step_count = -1 self.steps_per_episode = param.steps_per_episode # initial jobs supported in 2030 self.jobs = np.float32( 110484 ) # variable to record jobs created each year self.jobs_increment =
np.zeros(1, dtype=np.float32)
numpy.zeros
import numpy as np import gym import torch from utils.others import NormalizedActions device = torch.device("cuda" if torch.cuda.is_available() else "cpu") class Q_estimator: def __init__(self, config, agent, best_uncertain): self.config = config self.agent = agent self.best_uncertain = torch.FloatTensor(best_uncertain.reshape(1, -1)).to(device) self.eval_env = gym.make(self.config['env']) self.eval_env._max_episode_steps = 20000 self.eval_env = NormalizedActions(self.eval_env) self.eval_env.seed(self.config['seed'] + 100) self.eval_env.action_space.seed(self.config['seed']) self.all_action = [] num = int(100 / self.config['state_action_pairs']) for x in range(num, 100 + num, num): action_list = self.get_action_list(x, self.eval_env) self.all_action.append(action_list) def get_action_list(self, random_step, eval_env): action_list = [] eval_env.seed(self.config['seed'] + 100) state, done = eval_env.reset(), False for x in range(random_step): action = self.agent.select_action(np.array(state), uncertain=self.best_uncertain) state, reward, done, _ = eval_env.step(action) action_list.append(action) return action_list def cal_Q_bias(self, action_list, MC_samples, max_mc_steps, eval_env): Q_mc = [] for x in range(MC_samples): eval_env.seed(self.config['seed'] + 100) state, done = eval_env.reset(), False for action in action_list: last_state = state last_state_action = action state, reward, done, _ = eval_env.step(action) Q_mean, _ = self.agent.get_mean_std(torch.FloatTensor(last_state.reshape(1, -1)).to(device), torch.FloatTensor(last_state_action.reshape(1, -1)).to(device), self.best_uncertain) total_reward = reward for y in range(max_mc_steps): state_ = torch.FloatTensor(state.reshape(1, -1)).to(device) action, log_prob, _, _, _ = self.agent.get_action_log_prob(state_, self.best_uncertain) state, reward, done, _ = eval_env.step(action.cpu().data.numpy().flatten()) logprob = float(log_prob) temperature = float(self.agent.temperature(self.best_uncertain)) total_reward += (reward - logprob * temperature) * self.agent.discount ** (y + 1) if done: break Q_mc.append(total_reward) bias = float(Q_mean) - float(
np.mean(Q_mc)
numpy.mean
import os import time import h5py import numpy as np import pytest import torch from torch.utils.data import DataLoader import torchvision.transforms as trsf from continuum.scenarios import ContinualScenario, ClassIncremental, Permutations from continuum.datasets import H5Dataset, CIFAR100, MNIST from continuum.tasks.h5_task_set import H5TaskSet from continuum.tasks import split_train_val from continuum.scenarios import create_subscenario DATA_PATH = os.environ.get("CONTINUUM_DATA_PATH") @pytest.fixture def data(): x_ = np.random.randint(0, 255, size=(20, 32, 32, 3)) y_ = [] for i in range(10): y_.append(np.ones(2) * i) y_ = np.concatenate(y_) t_ = np.copy(y_) // 5 return x_, y_.astype(int), t_.astype(int) # yapf: disable def test_creation_h5dataset(data, tmpdir): filename_h5 = os.path.join(tmpdir, "test_h5.hdf5") x_, y_, t_ = data h5dataset = H5Dataset(x_, y_, t_, data_path=filename_h5) x_0, y_0, t_0 = h5dataset.get_data() assert isinstance(x_0, str) # x is only the path to the file assert len(y_0) == len(y_) assert len(t_0) == len(t_) def test_concatenate_h5dataset(data, tmpdir): filename_h5 = os.path.join(tmpdir, "test_h5.hdf5") x_, y_, t_ = data h5dataset = H5Dataset(x_, y_, t_, data_path=filename_h5) h5dataset.add_data(x_, y_, t_) assert len(h5dataset.get_class_vector()) == 2 * len(y_) def test_create_subscenario_h5dataset(data, tmpdir): from continuum.scenarios import create_subscenario filename_h5 = os.path.join(tmpdir, "test_h5.hdf5") x_, y_, t_ = data h5dataset = H5Dataset(x_, y_, t_, data_path=filename_h5) nb_task = len(np.unique(t_)) scenario = ContinualScenario(h5dataset) sub_scenario = create_subscenario(scenario, np.arange(nb_task - 1)) for task_set in sub_scenario: loader = DataLoader(task_set) for _ in loader: pass assert sub_scenario.nb_tasks == nb_task - 1 def test_create_subscenario_suffle_h5dataset(data, tmpdir): filename_h5 = os.path.join(tmpdir, "test_h5.hdf5") x_, y_, t_ = data h5dataset = H5Dataset(x_, y_, t_, data_path=filename_h5) nb_task = len(np.unique(t_)) scenario = ContinualScenario(h5dataset) task_order = np.arange(nb_task) np.random.shuffle(task_order) sub_scenario = create_subscenario(scenario, task_order) for task_set in sub_scenario: loader = DataLoader(task_set) for _ in loader: pass assert sub_scenario.nb_tasks == nb_task def test_h5dataset_ContinualScenario(data, tmpdir): filename_h5 = os.path.join(tmpdir, "test_h5.hdf5") x_, y_, t_ = data h5dataset = H5Dataset(x_, y_, t_, data_path=filename_h5) nb_task = len(
np.unique(t_)
numpy.unique
# coding: utf-8 import numpy import pandas as pd import numpy as np from sklearn.metrics import confusion_matrix from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt from sklearn.ensemble import ExtraTreesClassifier from sklearn.preprocessing import LabelEncoder from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten, BatchNormalization, Activation from keras.layers.convolutional import Conv2D, MaxPooling2D from keras.callbacks import EarlyStopping,Callback from time import time from sklearn import metrics def Feature_Selection(X_Data, Y_Data): print("Feature Selection") model = ExtraTreesClassifier(n_estimators=500, random_state=0, n_jobs=1, max_depth=25) model.fit(X_Data, Y_Data.values.ravel()) importances = model.feature_importances_ std = np.std([tree.feature_importances_ for tree in model.estimators_], axis=0) indices = np.argsort(importances)[::-1] # Print the feature ranking print("Feature ranking:") Best = [] important = [] for f in range(X_Data.shape[1]): if (importances[indices[f]] > 0.000001): Best.append(indices[f]) print("%d. Feature %d (%f)" % (f + 1, indices[f], importances[indices[f]])) important.append(importances[indices[f]]) print(len(Best), Best) X_Data_Best = pd.DataFrame(columns=Best) print(X_Data_Best.shape) X_Data_Best_copy = pd.DataFrame(columns=Best[:22]) print(X_Data_Best_copy.shape) for i in Best: X_Data_Best[i] = X_Data[i] print(X_Data_Best.shape) # Plot the feature importances of the forest plt.figure() plt.title("Feature importances") plt.bar(range(X_Data_Best_copy.shape[1]), important[:22], color="r", yerr=std[Best[:22]], align="center") plt.xticks(range(X_Data_Best_copy.shape[1]), Best[:22]) plt.xlim([-1, X_Data_Best_copy.shape[1]]) plt.ylabel('Percent') plt.xlabel('Feature index') plt.show() return X_Data_Best def main(): print("python main function") SIZE_IMG = 64 #9*9 Train = pd.read_csv("Layer2.csv",header=None) #Test = pd.read_csv("Testing20percent.csv",header=None) Y_Data = Train.iloc[:, -1] #Y_Test = Test.iloc[:, -1:] X_Data = Train.iloc[:, :-1] #X_Test = Test.iloc[:, :-1] #X_Data = pd.concat([X_Train, X_Test], axis=0) #Y_Data = pd.concat([Y_Train, Y_Test], axis=0) print("Printing Y-data") print("Printing X-data") X_Data_Best = Feature_Selection(X_Data, Y_Data) X_Data_Final = Image_Creation(X_Data_Best, SIZE_IMG) Y_Data_Final = Label_Encoding(Y_Data) MyModel(X_Data_Final, Y_Data_Final) def Image_Creation(X_Data_Best, SIZE_IMG): print("Image Creation") i = 0 X_Data_Final = [] while i < len(X_Data_Best): X = X_Data_Best.iloc[i] X = np.concatenate([X, np.zeros(SIZE_IMG - len(X))]) X = X.reshape(8, 8).astype(np.uint8) X_Data_Final.append(X) i = i + 1 return X_Data_Final def Label_Encoding(Y_Data): print("Label Encoding") Y_Data_Final = Y_Data le = LabelEncoder() le.fit(Y_Data_Final) list(le.classes_) Y_Data_Final = le.transform(Y_Data_Final) Y_Data_Final = np.reshape(Y_Data_Final, (-1, 1)) return Y_Data_Final def MyModel(X_Data_Final, Y_Data_Final): print("Model") start = time() epochs = 1500 optimizer = 'adam' numpy.random.seed(9) X_tr, X_te, Y_tr, Y_te = train_test_split(X_Data_Final, Y_Data_Final, test_size=0.20, random_state=42) X_tr = np.array(X_tr).reshape(-1, 8, 8, 1) X_te = np.array(X_te).reshape(-1, 8, 8, 1) early_stopping_monitor = EarlyStopping(patience=3) print(X_tr.shape, X_te.shape,Y_tr.shape,Y_te.shape) model_2 = Sequential() model_2.add(Conv2D(32, (3, 3), activation='relu', input_shape=X_tr.shape[1:])) #model_2.add(MaxPooling2D(pool_size=(2, 2))) #model_2.add(Dropout(0.015)) model_2.add(Conv2D(64, (3, 3), activation='relu')) model_2.add(MaxPooling2D(pool_size=(2, 2))) #model_2.add(Dropout(0.015)) #model_2.add(Conv2D(128, (2, 2), activation='relu')) #model_2.add(MaxPooling2D(pool_size=(2, 2))) #model_2.add(Dropout(0.005)) model_2.add(Flatten()) model_2.add(Dense(256, activation='relu')) #Please replace the number of neurons in dense layer below with number of labels in the dataset model_2.add(Dense(12, activation='softmax')) #model_2.add(Dropout(0.015)) #model_2.summary() model_2.compile(loss='sparse_categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']) history = model_2.fit(X_tr, Y_tr, validation_data=(X_te, Y_te), epochs=epochs, callbacks=[early_stopping_monitor], batch_size=32, verbose=0) print(time()-start) # list all data in history print(history.history.keys()) # summarize history for accuracy plt.plot(history.history['accuracy']) plt.plot(history.history['val_accuracy']) plt.title('Model Accuracy') plt.ylabel('Accuracy') plt.xlabel('Epoch') plt.legend(['Train', 'Test'], loc='upper left') plt.show() # summarize history for loss plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('Model Loss') plt.ylabel('Loss') plt.xlabel('Epoch') plt.legend(['Train', 'Test'], loc='upper left') plt.show() Y_Predict = model_2.predict_proba(X_te) ######Predicting Category i = 0 y_pred = [] while i < len(Y_Predict): maxi = Y_Predict[i].argmax() y_pred.append(maxi) i = i + 1 #######Predicting Category over print(metrics.classification_report(Y_te, y_pred, digits=2)) #Please replace the classes in line below with labels in the dataset plot_confusion_matrix(Y_te, y_pred, classes = ['Adware','Backdoor','FileInfector','PUA','Ransomware','Riskware','Scareware','Trojan','Trojan_Banker','Trojan_Dropper','Trojan_SMS','Trojan_Spy'], title='Confusion matrix, without normalization') #plot_confusion_matrix(Y_te, y_pred, classes = ['BENIGN','DNS','LDAP','MSSQL','NTP','NetBIOS','SNMP','SSDP','Syn','TFTP','UDP','UDPLag'], # normalize=True, title='Normalized Confusion matrix') plt.show() def plot_confusion_matrix(y_true, y_pred, classes, normalize=False, title=None, cmap=plt.cm.Blues): if not title: if normalize: title = 'Normalized confusion matrix' else: title = 'Confusion matrix, without normalization' # Compute confusion matrix cm = confusion_matrix(y_true, y_pred) # Only use the labels that appear in the data classes = ['Audio-Streaming','Browsing','Chat','Email','File-Transfer','P2P','Video-Streaming','VOIP'] if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] print("Normalized confusion matrix") else: print('Confusion matrix, without normalization') print(cm) fig, ax = plt.subplots() fig.set_size_inches(14, 14) im = ax.imshow(cm, interpolation='nearest', cmap=cmap) ax.figure.colorbar(im, ax=ax) # We want to show all ticks... ax.set(xticks=
np.arange(cm.shape[1])
numpy.arange
# -*- coding: utf-8 -*- """ Created on Tue Apr 2 11:52:51 2019 @author: sdenaro """ from __future__ import division from datetime import datetime from sklearn import linear_model import pandas as pd import numpy as np #import scipy.stats as st ######################################################################### # This purpose of this script is to use historical temperature and streamflow data # to calculate synthetic time series of daily flows at each of the stream gages # used in the hydropower production models. # Regression and vector-autoregressive errors are used to simulate total annual # streamflows, and these are then paired with daily streamflow fractions tied # to daily temperature dynamics ######################################################################### # Import historical tmeperature data df_temp = pd.read_excel('Synthetic_streamflows/hist_temps_1953_2007.xlsx') df_temp.columns=['Time','SALEM_T','EUGENE_T','SEATTLE_T','BOISE_T','PORTLAND_T','SPOKANE_T','FRESNO_T','LOS ANGELES_T','SAN DIEGO_T','SACRAMENTO_T','SAN JOSE_T','SAN FRANCISCO_T','TUCSON_T','PHOENIX_T','LAS VEGAS_T'] his_temp_matrix = df_temp.values ############################### # Synthetic HDD CDD calculation # Simulation data #sim_weather=pd.read_csv('Synthetic_weather/synthetic_weather_data.csv',header=0) sim_temperature=df_temp sim_temperature=sim_temperature.drop(['Time'], axis=1) sim_temperature=sim_temperature.values cities = ['SALEM_T','EUGENE_T','SEATTLE_T','BOISE_T','PORTLAND_T','SPOKANE_T','FRESNO_T','LOS ANGELES_T','SAN DIEGO_T','SACRAMENTO_T','SAN JOSE_T','SAN FRANCISCO_T','TUCSON_T','PHOENIX_T','LAS VEGAS_T'] num_cities = len(cities) num_sim_days = len(sim_temperature) HDD_sim = np.zeros((num_sim_days,num_cities)) CDD_sim = np.zeros((num_sim_days,num_cities)) # calculate daily records of heating (HDD) and cooling (CDD) degree days for i in range(0,num_sim_days): for j in range(0,num_cities): HDD_sim[i,j] = np.max((0,65-sim_temperature[i,j])) CDD_sim[i,j] = np.max((0,sim_temperature[i,j] - 65)) # calculate annual totals of heating and cooling degree days for each city annual_HDD_sim=np.zeros((int(len(HDD_sim)/365),num_cities)) annual_CDD_sim=np.zeros((int(len(CDD_sim)/365),num_cities)) for i in range(0,int(len(HDD_sim)/365)): for j in range(0,num_cities): annual_HDD_sim[i,j]=np.sum(HDD_sim[0+(i*365):365+(i*365),j]) annual_CDD_sim[i,j]=np.sum(CDD_sim[0+(i*365):365+(i*365),j]) ######################################################################## #Calculate HDD and CDD for historical temperature data num_days = len(his_temp_matrix) # daily records HDD = np.zeros((num_days,num_cities)) CDD = np.zeros((num_days,num_cities)) for i in range(0,num_days): for j in range(0,num_cities): HDD[i,j] = np.max((0,65-his_temp_matrix[i,j+1])) CDD[i,j] = np.max((0,his_temp_matrix[i,j+1] - 65)) # annual sums annual_HDD=np.zeros((int(len(HDD)/365),num_cities)) annual_CDD=np.zeros((int(len(CDD)/365),num_cities)) for i in range(0,int(len(HDD)/365)): for j in range(0,num_cities): annual_HDD[i,j]=np.sum(HDD[0+(i*365):365+(i*365),j]) annual_CDD[i,j]=np.sum(CDD[0+(i*365):365+(i*365),j]) ########################################################################################### #This section is used for calculating total hydro # Load relevant streamflow data (1953-2007) BPA_streamflow=pd.read_excel('Synthetic_streamflows/BPA_hist_streamflow.xlsx',sheetname='Inflows',header=0) Hoover_streamflow=pd.read_csv('Synthetic_streamflows/Hoover_hist_streamflow.csv',header=0) CA_streamflow=pd.read_excel('Synthetic_streamflows/CA_hist_streamflow.xlsx',header=0) Willamette_streamflow=pd.read_csv('Synthetic_streamflows/Willamette_hist_streamflow.csv',header=0) # headings name_Will=list(Willamette_streamflow.loc[:,'Albany':]) name_CA = list(CA_streamflow.loc[:,'ORO_fnf':]) name_BPA = list(BPA_streamflow.loc[:,'1M':]) # number of streamflow gages considered num_BPA = len(name_BPA) num_CA = len(name_CA) num_Will = len(name_Will) num_gages= num_BPA + num_CA + num_Will + 1 # Calculate historical totals for 1953-2007 years = range(1953,2008) for y in years: y_index = years.index(y) BPA = BPA_streamflow.loc[BPA_streamflow['year'] ==y,'1M':] CA = CA_streamflow.loc[CA_streamflow['year'] == y,'ORO_fnf':] WB = Willamette_streamflow.loc[Willamette_streamflow['year'] == y,'Albany':] HO = Hoover_streamflow.loc[Hoover_streamflow['year'] == y,'Discharge'] BPA_sums = np.reshape(np.sum(BPA,axis= 0).values,(1,num_BPA)) CA_sums = np.reshape(np.sum(CA,axis=0).values,(1,num_CA)) WB_sums = np.reshape(np.sum(WB,axis=0).values,(1,num_Will)) HO_sums = np.reshape(np.sum(HO,axis=0),(1,1)) # matrix of annual flows for each stream gage joined = np.column_stack((BPA_sums,CA_sums,WB_sums,HO_sums)) if y_index < 1: hist_totals = joined else: hist_totals = np.vstack((hist_totals,joined)) BPA_headers = np.reshape(list(BPA_streamflow.loc[:,'1M':]),(1,num_BPA)) CA_headers = np.reshape(list(CA_streamflow.loc[:,'ORO_fnf':]),(1,num_CA)) WB_headers = np.reshape(list(Willamette_streamflow.loc[:,'Albany':]),(1,num_Will)) HO_headers = np.reshape(['Hoover'],(1,1)) headers = np.column_stack((BPA_headers,CA_headers,WB_headers,HO_headers)) # annual streamflow totals for 1953-2007 df_hist_totals = pd.DataFrame(hist_totals) df_hist_totals.columns = headers[0,:] df_hist_totals.loc[38,'83L']=df_hist_totals.loc[36,'83L'] added_value=abs(np.min((df_hist_totals)))+5 log_hist_total=np.log(df_hist_totals+abs(added_value)) ######################################### # annual flow regression - predicts annual flows at each site as a function # of total annual HDD and CDD across every weather station #train on historical data M =
np.column_stack((annual_CDD,annual_HDD))
numpy.column_stack
# Copyright (c) 2020, <NAME>, Honda Research Institute Europe GmbH, and # Technical University of Darmstadt. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the name of <NAME>, Honda Research Institute Europe GmbH, # or Technical University of Darmstadt, nor the names of its contributors may # be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL <NAME>, HONDA RESEARCH INSTITUTE EUROPE GMBH, # OR TECHNICAL UNIVERSITY OF DARMSTADT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; # OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER # IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. from typing import Optional import numpy as np import torch as to from init_args_serializer import Serializable import pyrado from pyrado.environments.quanser import MAX_ACT_QQ from pyrado.environments.quanser.base import QuanserReal from pyrado.policies.special.environment_specific import QQubeGoToLimCtrl, QQubePDCtrl from pyrado.spaces.box import BoxSpace from pyrado.tasks.base import Task from pyrado.tasks.desired_state import RadiallySymmDesStateTask from pyrado.tasks.reward_functions import ExpQuadrErrRewFcn from pyrado.utils.input_output import completion_context, print_cbt class QQubeSwingUpReal(QuanserReal, Serializable): """Class for the real Quanser Qube a.k.a. Furuta pendulum""" name: str = "qq-su" def __init__( self, dt: float = 1 / 500.0, max_steps: int = pyrado.inf, task_args: Optional[dict] = None, ip: str = "192.168.2.17", ): """ Constructor :param dt: sampling frequency on the Quanser device [Hz] :param max_steps: maximum number of steps executed on the device [-] :param task_args: arguments for the task construction :param ip: IP address of the Qube platform """ Serializable._init(self, locals()) # Initialize spaces, dt, max_step, and communication super().__init__(ip, rcv_dim=4, snd_dim=1, dt=dt, max_steps=max_steps, task_args=task_args) self._curr_act = np.zeros(self.act_space.shape) # just for usage in render function self._sens_offset = np.zeros(4) # last two entries are never calibrated but useful for broadcasting def _create_task(self, task_args: dict) -> Task: # Define the task including the reward function state_des = task_args.get("state_des", np.array([0.0, np.pi, 0.0, 0.0])) Q = task_args.get("Q", np.diag([3e-1, 1.0, 2e-2, 5e-3])) R = task_args.get("R", np.diag([4e-3])) return RadiallySymmDesStateTask(self.spec, state_des, ExpQuadrErrRewFcn(Q, R), idcs=[1]) def _create_spaces(self): # Define the spaces max_state = np.array([120.0 / 180 * np.pi, 4 * np.pi, 20 * np.pi, 20 * np.pi]) # [rad, rad, rad/s, rad/s] max_obs = np.array([1.0, 1.0, 1.0, 1.0, pyrado.inf, pyrado.inf]) # [-, -, -, -, rad/s, rad/s] self._state_space = BoxSpace(-max_state, max_state, labels=["theta", "alpha", "theta_dot", "alpha_dot"]) self._obs_space = BoxSpace( -max_obs, max_obs, labels=["sin_theta", "cos_theta", "sin_alpha", "cos_alpha", "theta_dot", "alpha_dot"] ) self._act_space = BoxSpace(-MAX_ACT_QQ, MAX_ACT_QQ, labels=["V"]) @property def task(self) -> Task: return self._task def observe(self, state) -> np.ndarray: return np.array([np.sin(state[0]), np.cos(state[0]), np.sin(state[1]), np.cos(state[1]), state[2], state[3]]) def reset(self, *args, **kwargs) -> np.ndarray: # Reset socket and task super().reset() # Run calibration routine to start in the center self.calibrate() # Start with a zero action and get the first sensor measurements meas = self._qsoc.snd_rcv(np.zeros(self.act_space.shape)) # Correct for offset, and construct the state from the measurements self.state = self._correct_sensor_offset(meas) # Reset time counter self._curr_step = 0 return self.observe(self.state) def _correct_sensor_offset(self, meas: np.ndarray) -> np.ndarray: return meas - self._sens_offset def _wait_for_pole_at_rest(self, thold_ang_vel: float = 0.1 / 180.0 * np.pi): """Wait until the Qube's rotating pole is at rest""" cnt = 0 while cnt < 1.5 / self._dt: # Get next measurement meas = self._qsoc.snd_rcv(np.zeros(self.act_space.shape)) if np.abs(meas[2]) < thold_ang_vel and np.abs(meas[3]) < thold_ang_vel: cnt += 1 else: cnt = 0 def calibrate(self): """Calibration routine to move to the init position and determine the sensor offset""" with completion_context("Estimating sensor offset", color="c", bright=True): # Reset calibration self._sens_offset = np.zeros(4) # last two entries are never calibrated but useful for broadcasting self._wait_for_pole_at_rest() # Create parts of the calibration controller go_right = QQubeGoToLimCtrl(positive=True, cnt_done=int(1.5 / self._dt)) go_left = QQubeGoToLimCtrl(positive=False, cnt_done=int(1.5 / self._dt)) go_center = QQubePDCtrl(self.spec) # Estimate alpha offset. Go to both limits for theta calibration. meas = self._qsoc.snd_rcv(
np.zeros(self.act_space.shape)
numpy.zeros
import numpy as np import math from basic_import import * Sparse_degree = [2, 3, 5, 7, 10, 20, 30, 50, 100, 300, 1000] # OMP algorithm representation def omp(diction_with_error, b): residual = b index_matrix = [] index_matrix_whole = [] index_set = [] last_residual = 0 L = math.floor(Sparse_degree[6]) # L = math.floor(diction_with_error[0].shape[0]*3/4) # iterate the omp process cnt = 0 cnt_repre = 0 for i in range(L): c_k = np.fabs(np.dot(diction_with_error.T, residual)) # dot choose the kth index # print(c_k) k = np.where(c_k == np.max(c_k))[0][0] # position of the largest projection while k in index_set: c_k[k] = 0 k = np.where(c_k == np.max(c_k))[0][0] index_set.append(k) # update index set index_matrix.append(diction_with_error.T[k].tolist()) # update index_matrix set # index_matrix_whole.append(diction_with_error.T[k]) A_k = np.array(index_matrix).T # transform the index_matrix to numpy form x_k = np.linalg.pinv(A_k.T.dot(A_k)).dot(A_k.T).dot(b) #least squares method residual = b - A_k.dot(x_k) # compute the residual if abs(np.linalg.norm(residual)-np.linalg.norm(last_residual)) < 1e-8: cnt += 1 if cnt >= 10: break # print(np.linalg.norm(residual), " ", i, "/", L)# show the residual last_residual = residual if i+1 >= diction_with_error[0].shape[0]: break A_k = np.array(index_matrix).T # final support-dictionary matrix x_k = np.linalg.pinv(A_k.T.dot(A_k)).dot(A_k.T).dot(b) # final support-presentation vector(include x and error) # A_whole_k = np.array(index_matrix_whole).T # x_whole_k = np.linalg.inv(A_whole_k.T.dot(A_whole_k)).dot(A_whole_k.T).dot(b_whole) x_hat = [] # final representation vector for t in range(diction_with_error[0].shape[0]): x_hat.append(0) for t in range(len(x_k)): x_hat[index_set[t]] = x_k[t] # construct complete x = np.array(x_hat) return x def x_select(x, diction_with_error, b, gender): ######################### # Method 1 # ######################### delta_x = [] # delta_x[i] means the vector only for i in range(50): # contains the parameters of the ith class delta_x_i = [] for j in range(700): if i*14 <= j <= i*14+13: delta_x_i.append(x[j]) else: delta_x_i.append(0) delta_x.append(np.array(delta_x_i)) delta_x = np.array(delta_x) r_set = [] # calculate the residual of every delta_x[i] for delta_x_i in delta_x: # select the vector with least residual r = b - diction_with_error.dot(delta_x_i) r_set.append(np.linalg.norm(r)) r_set = np.array(r_set) k = np.where(r_set ==
np.min(r_set)
numpy.min
import sys import json import os import numpy as np import pickle import cv2 from PIL import Image, ImageOps import matplotlib.pyplot as plt import matplotlib matplotlib.use('TkAgg') from mpl_toolkits.mplot3d import Axes3D from tabulate import tabulate from torchvision.transforms import ToTensor import torchvision.transforms.functional as F from copy import deepcopy from scipy.interpolate import interp1d import imgaug.augmenters as iaa from imgaug.augmenters import Resize from imgaug.augmentables.lines import LineString, LineStringsOnImage from db.detection import DETECTION from config import system_configs from db.tools import eval_3D_lane RED = (0, 0, 255) GREEN = (0, 255, 0) BLUE = (255, 0, 0) DARK_GREEN = (115, 181, 34) YELLOW = (0, 255, 255) ORANGE = (0, 165, 255) PURPLE = (255, 0, 255) PINK = (180, 105, 255) CYAN = (255, 128, 0) CHOCOLATE = (30, 105, 210) PEACHPUFF = (185, 218, 255) STATEGRAY = (255, 226, 198) GT_COLOR = [PINK, CYAN, ORANGE, YELLOW, BLUE] PRED_COLOR = [RED, GREEN, DARK_GREEN, PURPLE, CHOCOLATE, PEACHPUFF, STATEGRAY] PRED_HIT_COLOR = GREEN PRED_MISS_COLOR = RED IMAGENET_MEAN = np.array([0.485, 0.456, 0.406]) IMAGENET_STD = np.array([0.229, 0.224, 0.225]) class APOLLOSIM(DETECTION): def __init__(self, db_config, split, is_eval=False, is_resample=True, is_predcam=False): super(APOLLOSIM, self).__init__(db_config) data_dir = system_configs.data_dir # result_dir = system_configs.result_dir cache_dir = system_configs.cache_dir max_lanes = system_configs.max_lanes self.metric = 'default' self.is_resample = is_resample print('is_resample: {}'.format(is_resample)) print('is_predcam: {}'.format(is_predcam)) inp_h, inp_w = db_config['input_size'] # define image pre-processor # self.totensor = transforms.ToTensor() # self.normalize = transforms.Normalize(args.vgg_mean, args.vgg_std) # self.data_aug = data_aug # False # dataset parameters # dataset_name = 'standard' # illus_chg/rare_subset/standard self.dataset_name = system_configs.dataset_name # illus_chg self.no_3d = False self.no_centerline = True self.h_org = 1080 self.w_org = 1920 self.org_h = 1080 self.org_w = 1920 self.h_crop = 0 self.crop_y = 0 # parameters related to service network self.h_net = inp_h self.w_net = inp_w self.resize_h = inp_h self.resize_w = inp_w self.ipm_h = 208 self.ipm_w = 128 self.top_view_region = np.array([[-10, 103], [10, 103], [-10, 3], [10, 3]]) self.K = np.array([[2015., 0., 960.], [0., 2015., 540.], [0., 0., 1.]]) self.H_crop_ipm = self.homography_crop_resize([self.h_org, self.w_org], self.h_crop, [self.h_net, self.w_net]) self.H_crop_im = self.homography_crop_resize([self.h_org, self.w_org], self.h_crop, [self.h_org, self.w_org]) # org2resized+cropped self.H_ipm2g = cv2.getPerspectiveTransform( np.float32([[0, 0], [self.ipm_w - 1, 0], [0, self.ipm_h - 1], [self.ipm_w - 1, self.ipm_h - 1]]), np.float32(self.top_view_region)) self.fix_cam = False x_min = self.top_view_region[0, 0] # -10 x_max = self.top_view_region[1, 0] # 10 self.x_min = x_min # -10 self.x_max = x_max # 10 self.anchor_y_steps = [ 5, 10, 15, 20, 30, 40, 50, 60, 80, 100] self.y_min = self.top_view_region[2, 1] self.y_max = self.top_view_region[0, 1] if self.is_resample: self.gflatYnorm = self.anchor_y_steps[-1] self.gflatZnorm = 10 self.gflatXnorm = 30 else: self.gflatYnorm = 200 self.gflatZnorm = 16 self.gflatXnorm = 30 self.pitch = 3 # pitch angle of camera to ground in centi degree self.cam_height = 1.55 # height of camera in meters self.batch_size = system_configs.batch_size if self.no_centerline: # False self.num_types = 1 else: self.num_types = 3 if self.is_resample: self.sample_hz = 1 else: self.sample_hz = 4 self._split = split self._dataset = { "train": ['train'], "test": ['test'], "sub_train": ['sub_train'], "validation": ['validation'], }[self._split] self.root = os.path.join(data_dir, 'Apollo_Sim_3D_Lane_Release') data_dir = os.path.join(self.root, 'data_splits', self.dataset_name) if self.root is None: raise Exception('Please specify the root directory') self.img_w, self.img_h = self.h_org, self.w_org # apollo sim original image resolution self.max_2dlanes = 0 self.max_gflatlanes = 0 self.max_3dlanes = 0 self.max_2dpoints = 0 self.max_gflatpoints = 0 self.max_3dpoints = 0 self.X3d, self.Y3d, self.Z3d = [0, 0], [0, 0], [0, 0] self.Xgflat, self.Ygflat = [0, 0], [0, 0] self.normalize = True self.to_tensor = ToTensor() self.aug_chance = 0.9090909090909091 self._image_file = [] self.augmentations = [{'name': 'Affine', 'parameters': {'rotate': (-10, 10)}}, {'name': 'HorizontalFlip', 'parameters': {'p': 0.5}}, {'name': 'CropToFixedSize', 'parameters': {'height': 972, 'width': 1728}}] # Force max_lanes, used when evaluating testing with models trained on other datasets # if max_lanes is not None: # self.max_lanes = max_lanes self.anno_files = [os.path.join(data_dir, path + '.json') for path in self._dataset] self._data = "apollosim_t" self._mean = np.array([0.40789654, 0.44719302, 0.47026115], dtype=np.float32) self._std = np.array([0.28863828, 0.27408164, 0.27809835], dtype=np.float32) self._eig_val = np.array([0.2141788, 0.01817699, 0.00341571], dtype=np.float32) self._eig_vec = np.array([ [-0.58752847, -0.69563484, 0.41340352], [-0.5832747, 0.00994535, -0.81221408], [-0.56089297, 0.71832671, 0.41158938] ], dtype=np.float32) self._cat_ids = [ 0 ] # 0 car self._classes = { ind + 1: cat_id for ind, cat_id in enumerate(self._cat_ids) } self._coco_to_class_map = { value: key for key, value in self._classes.items() } self._cache_file = os.path.join(cache_dir, "apollosim_{}.pkl".format(self._dataset)) if self.augmentations is not None: augmentations = [getattr(iaa, aug['name'])(**aug['parameters']) for aug in self.augmentations] # add augmentation transformations = iaa.Sequential([Resize({'height': inp_h, 'width': inp_w})]) self.transform = iaa.Sequential([iaa.Sometimes(then_list=augmentations, p=self.aug_chance), transformations]) if self.dataset_name == 'standard': # Balanced: Below camera poses are got with geometry constraints learning result_path = "../3DLSCPTRZoos/Pv_standard/results/Pv-stage_standard/500000/testing/apollosim_standard_test_predictions_apollosim.json" elif self.dataset_name == 'rare_subset': # Rare observed: Below camera poses are got with geometry constraints learning result_path = "../3DLSCPTRZoos/Pv_standard/results/Pv-stage_rare_subset/500000/testing/apollosim_rare_subset_test_predictions_apollosim.json" elif self.dataset_name == 'illus_chg': # Illus change: Below camera poses are got with geometry constraints learning result_path = "../3DLSCPTRZoos/Pv_illus_chg/results/Pv-stage_illus_chg/500000/testing/apollosim_illus_chg_test_predictions_apollosim.json" else: raise ValueError('invalid dataset_name: {}'.format(self.dataset_name)) if is_eval: if is_predcam: self._load_predcam_data(result_path=result_path) else: self._load_eval_data() else: self._load_data() self._db_inds = np.arange(len(self._image_ids)) def _load_data(self, debug_lane=False): print("loading from cache file: {}".format(self._cache_file)) if not os.path.exists(self._cache_file): print("No cache file found...") self._extract_data() self._transform_annotations() if debug_lane: pass else: with open(self._cache_file, "wb") as f: pickle.dump([self._annotations, self._image_ids, self._image_file, self.max_2dlanes, self.max_3dlanes, self.max_gflatlanes, self.max_2dpoints, self.max_3dpoints, self.max_gflatpoints, self.X3d, self.Y3d, self.Z3d, self.Xgflat, self.Ygflat], f) else: with open(self._cache_file, "rb") as f: (self._annotations, self._image_ids, self._image_file, self.max_2dlanes, self.max_3dlanes, self.max_gflatlanes, self.max_2dpoints, self.max_3dpoints, self.max_gflatpoints, self.X3d, self.Y3d, self.Z3d, self.Xgflat, self.Ygflat) = pickle.load(f) assert self.max_2dlanes == self.max_3dlanes assert self.max_3dlanes == self.max_gflatlanes assert self.max_2dpoints == self.max_3dpoints assert self.max_3dpoints == self.max_gflatpoints print('{}.max_2dlanes: {}\n' '{}.max_3dlanes: {}\n' '{}.max_gflatlanes: {}\n' '{}.max_2dpoints: {}\n' '{}.max_3dpoints: {}\n' '{}.max_gflatpoints: {}\n' '{}.X3d: {}\n' '{}.Y3d: {}\n' '{}.Z3d: {}\n' '{}.Xgflat: {}\n' '{}.Ygflat: {}'.format(self.dataset_name, self.max_2dlanes, self.dataset_name, self.max_3dlanes, self.dataset_name, self.max_gflatlanes, self.dataset_name, self.max_2dpoints, self.dataset_name, self.max_3dpoints, self.dataset_name, self.max_gflatpoints, self.dataset_name, self.X3d, self.dataset_name, self.Y3d, self.dataset_name, self.Z3d, self.dataset_name, self.Xgflat, self.dataset_name, self.Ygflat)) def _extract_data(self): image_id = 0 max_2dlanes, max_3dlanes, max_gflatlanes = 0, 0, 0 self._old_annotations = {} for anno_file in self.anno_files: with open(anno_file, 'r') as anno_obj: for line in anno_obj: info_dict = json.loads(line) # dict_keys(['raw_file', 'cam_height', 'cam_pitch', # 'centerLines', 'laneLines', 'centerLines_visibility', 'laneLines_visibility']) gt_lane_pts = info_dict['laneLines'] if len(gt_lane_pts) < 1: continue gt_lane_visibility = info_dict['laneLines_visibility'] image_path = os.path.join(self.root, info_dict['raw_file']) assert os.path.exists(image_path), '{:s} not exist'.format(image_path) # if not self.fix_cam: gt_cam_height = info_dict['cam_height'] gt_cam_pitch = info_dict['cam_pitch'] P_g2im = self.projection_g2im(gt_cam_pitch, gt_cam_height, self.K) # used for x=PX (3D to 2D) H_g2im = self.homograpthy_g2im(gt_cam_pitch, gt_cam_height, self.K) H_im2g = np.linalg.inv(H_g2im) P_g2gflat = np.matmul(H_im2g, P_g2im) aug_mat = np.identity(3, dtype=np.float) gt_lanes = [] # org_gt_lanes = [] for i, lane in enumerate(gt_lane_pts): # A GT lane can be either 2D or 3D # if a GT lane is 3D, the height is intact from 3D GT, so keep it intact here too closest_point = lane[0] remotest_point = lane[-1] sampled_points = lane[1:-1:self.sample_hz] sampled_points.insert(0, closest_point) sampled_points.append(remotest_point) lane = np.array(sampled_points) # lane = np.array(lane[::self.sample_hz]) closest_viz = gt_lane_visibility[i][0] remotest_viz = gt_lane_visibility[i][-1] sampled_viz = gt_lane_visibility[i][1:-1:self.sample_hz] sampled_viz.insert(0, closest_viz) sampled_viz.append(remotest_viz) lane_visibility = np.array(sampled_viz) # lane_visibility = np.array(gt_lane_visibility[i][::self.sample_hz]) # prune gt lanes by visibility labels pruned_lane = self.prune_3d_lane_by_visibility(lane, lane_visibility) # prune out-of-range points are necessary before transformation -30~30 pruned_lane = self.prune_3d_lane_by_range(pruned_lane, 3*self.x_min, 3*self.x_max) # Resample if self.is_resample: if pruned_lane.shape[0] < 2: continue # Above code resample 3D points # print(pruned_lane.shape) pruned_lane = self.make_lane_y_mono_inc(pruned_lane) # print(pruned_lane.shape) if pruned_lane.shape[0] < 2: continue x_values, z_values, visibility_vec = self.resample_laneline_in_y(pruned_lane, self.anchor_y_steps, out_vis=True) x_values = x_values[visibility_vec] z_values = z_values[visibility_vec] y_values = np.array(self.anchor_y_steps)[visibility_vec] pruned_lane = np.stack([x_values, y_values, z_values], axis=-1) # print(pruned_lane.shape);exit() if pruned_lane.shape[0] > 1: gt_lanes.append(pruned_lane) # save the gt 3d lanes gt_3dlanes = deepcopy(gt_lanes) # convert 3d lanes to flat ground space x_bar y_bar Z (meter i think) self.convert_lanes_3d_to_gflat(gt_lanes, P_g2gflat) gflatlanes = [] real_gt_3dlanes = [] for i in range(len(gt_lanes)): gflatlane = gt_lanes[i] gt_3dlane = gt_3dlanes[i] valid_indices = np.logical_and(np.logical_and(gflatlane[:, 1] > 0, gflatlane[:, 1] < 200), np.logical_and(gflatlane[:, 0] > 3 * self.x_min, gflatlane[:, 0] < 3 * self.x_max)) gflatlane = gflatlane[valid_indices, ...] gt_3dlane = gt_3dlane[valid_indices, ...] if gflatlane.shape[0] < 2 or np.sum(np.logical_and(gflatlane[:, 0] > self.x_min, gflatlane[:, 0] < self.x_max)) < 2: continue gflatlanes.append(gflatlane) real_gt_3dlanes.append(gt_3dlane) P_gt = np.matmul(self.H_crop_im, H_g2im) P_gt = np.matmul(aug_mat, P_gt) lanes = [] for i in range(len(gflatlanes)): gflatlane = gflatlanes[i] x_2d, y_2d = self.homographic_transformation(P_gt, gflatlane[:, 0], gflatlane[:, 1]) assert gflatlane.shape[0] == x_2d.shape[0] assert x_2d.shape[0] == y_2d.shape[0] # lanes.append([(x, y) for (x, y) in zip(x_2d, y_2d) if x >= 0]) lanes.append([(x, y) for (x, y) in zip(x_2d, y_2d)]) lanes = [lane for lane in lanes if len(lane) > 0] if not len(lanes): continue self._image_file.append(image_path) self._image_ids.append(image_id) max_2dlanes = max(max_2dlanes, len(lanes)) self.max_2dlanes = max_2dlanes max_gflatlanes = max(max_gflatlanes, len(gflatlanes)) self.max_gflatlanes = max_gflatlanes max_3dlanes = max(max_3dlanes, len(real_gt_3dlanes)) self.max_3dlanes = max_3dlanes self.max_2dpoints = max(self.max_2dpoints, max([len(l) for l in lanes])) self.max_gflatpoints = max(self.max_gflatpoints, max([len(l) for l in gflatlanes])) self.max_3dpoints = max(self.max_3dpoints, max([len(l) for l in real_gt_3dlanes])) self.X3d[1] = max(self.X3d[1], max([np.max(l[:, 0]) for l in real_gt_3dlanes])) self.X3d[0] = min(self.X3d[0], min([np.min(l[:, 0]) for l in real_gt_3dlanes])) self.Y3d[1] = max(self.Y3d[1], max([np.max(l[:, 1]) for l in real_gt_3dlanes])) self.Y3d[0] = min(self.Y3d[0], min([np.min(l[:, 1]) for l in real_gt_3dlanes])) self.Z3d[1] = max(self.Z3d[1], max([np.max(l[:, 2]) for l in real_gt_3dlanes])) self.Z3d[0] = min(self.Z3d[0], min([np.min(l[:, 2]) for l in real_gt_3dlanes])) self.Xgflat[1] = max(self.Xgflat[1], max([np.max(l[:, 0]) for l in gflatlanes])) self.Xgflat[0] = min(self.Xgflat[0], min([np.min(l[:, 0]) for l in gflatlanes])) self.Ygflat[1] = max(self.Ygflat[1], max([
np.max(l[:, 1])
numpy.max
"""Test root level functions in metarl.""" import csv import math import tempfile import akro import dowel from dowel import logger, tabular import numpy as np import pytest import tensorflow as tf import torch from metarl import _Default, make_optimizer from metarl import log_multitask_performance, log_performance, TrajectoryBatch from metarl.envs import EnvSpec from tests.fixtures import TfGraphTestCase @pytest.mark.serial def test_log_performance(): lengths = np.array([10, 5, 1, 1]) batch = TrajectoryBatch( EnvSpec(akro.Box(np.array([0., 0., 0.]), np.array([1., 1., 1.])), akro.Box(np.array([-1., -1.]), np.array([0., 0.]))), observations=np.ones((sum(lengths), 3), dtype=np.float32), last_observations=np.ones((len(lengths), 3), dtype=np.float32), actions=np.zeros((sum(lengths), 2), dtype=np.float32), rewards=np.array([ 0.34026529, 0.58263177, 0.84307509, 0.97651095, 0.81723901, 0.22631398, 0.03421301, 0.97515046, 0.64311832, 0.65068933, 0.17657714, 0.04783857, 0.73904013, 0.41364329, 0.52235551, 0.24203526, 0.43328910 ]), terminals=np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1], dtype=bool), env_infos={ 'success': np.array([0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1], dtype=bool) }, agent_infos={}, lengths=lengths) log_file = tempfile.NamedTemporaryFile() csv_output = dowel.CsvOutput(log_file.name) logger.add_output(csv_output) log_performance(7, batch, 0.8, prefix='test_log_performance') logger.log(tabular) logger.dump_output_type(dowel.CsvOutput) with open(log_file.name, 'r') as file: rows = list(csv.DictReader(file)) res = {k: float(r) for (k, r) in rows[0].items()} assert res['test_log_performance/Iteration'] == 7 assert res['test_log_performance/NumTrajs'] == 4 assert math.isclose(res['test_log_performance/SuccessRate'], 0.75) assert math.isclose(res['test_log_performance/CompletionRate'], 0.5) assert math.isclose(res['test_log_performance/AverageDiscountedReturn'], 1.1131040640673113) assert math.isclose(res['test_log_performance/AverageReturn'], 2.1659965525) assert math.isclose(res['test_log_performance/StdReturn'], 2.354067152038576) @pytest.mark.serial def test_log_multitask_performance_task_name(): lengths = np.array([10, 5, 1, 1]) batch = TrajectoryBatch( EnvSpec(akro.Box(
np.array([0., 0., 0.])
numpy.array
from __future__ import print_function, division import os import sys root = os.path.join(os.getcwd().split('src')[0], 'src') if root not in sys.path: sys.path.append(root) from oracle.models import rf_model from utils import * from metrics.abcd import abcd from mklaren.kernel.kinterface import Kinterface from mklaren.kernel.kernel import * from mklaren.projection.icd import ICD from pdb import set_trace import numpy as np from scipy.spatial.distance import pdist, squareform import pandas from tabulate import tabulate from datasets.handler import get_all_datasets def get_kernel_matrix(dframe, n_dim=15): """ This returns a Kernel Transformation Matrix $\Theta$ It uses kernel approximation offered by the MKlaren package For the sake of completeness (and for my peace of mind, I use the best possible approx.) :param dframe: input data as a pandas dataframe. :param n_dim: Number of dimensions for the kernel matrix (default=15) :return: $\Theta$ matrix """ ker = Kinterface(data=dframe.values, kernel=linear_kernel) model = ICD(rank=n_dim) model.fit(ker) g_nystrom = model.G return g_nystrom def map_transform(src, tgt, n_components=2): """ Run a map and transform x and y onto a new space using TCA :param src: IID samples :param tgt: IID samples :return: Mapped x and y """ s_col = [col for col in src.columns[:-1] if '?' not in col] t_col = [col for col in tgt.columns[:-1] if '?' not in col] S = src[s_col] T = tgt[t_col] col_name = ["Col_" + str(i) for i in xrange(n_components)] x0 = pd.DataFrame(get_kernel_matrix(S, n_components), columns=col_name) y0 = pd.DataFrame(get_kernel_matrix(T, n_components), columns=col_name) x0.loc[:, src.columns[-1]] = pd.Series(src[src.columns[-1]], index=x0.index) y0.loc[:, tgt.columns[-1]] = pd.Series(tgt[tgt.columns[-1]], index=y0.index) return x0, y0 def get_dcv(src, tgt): """Get dataset characteristic vector.""" s_col = [col for col in src.columns[:-1] if '?' not in col] t_col = [col for col in tgt.columns[:-1] if '?' not in col] S = src[s_col] T = tgt[t_col] def self_dist_mtx(arr): dist_arr = pdist(arr) return squareform(dist_arr) dist_src = self_dist_mtx(S.values) dist_tgt = self_dist_mtx(T.values) dcv_src = [np.mean(dist_src), np.median(dist_src), np.min(dist_src), np.max(dist_src), np.std(dist_src), len(S.values)] dcv_tgt = [np.mean(dist_tgt), np.median(dist_tgt), np.min(dist_tgt), np.max(dist_tgt),
np.std(dist_tgt)
numpy.std
import random from abc import ABC, abstractmethod import numpy as np from tqdm import tqdm from cellular_algorithm import Grid class Evolution(ABC): def __init__( self, crossover, mutation, selection, succession, boundaries, function, maximize=True, mutation_probability=1, iterations=100, parents_num=2, population_shape=(1, 100), population=None, ): """ Arguments: crossover: crossover that will be used to create new individuals mutation: type of mutation that will be used to modify new individuals selection: type of mutation succession: type of succession boundaries: describes range of possible solutions eg. ((0, 10), (100, 200), (3, 15)) => 0 < x < 10, 100 < y < 200, 3 < z < 15 function: function that will be optimized maximize: if function should be maximized (if not, it will be minimized) mutation_probability: probability of mutation iterations: number of iterations parents_num: number of parents that will be used to create new individual population_shape: shape of the grid - (1, population_num) - for classic evolution - (n_1, ..., n_x) - for cellular evolution population - population """ self.crossover = crossover self.selection = selection self.succession = succession self.mutation = mutation self.boundaries = boundaries self.function = function self.maximize = maximize self.mutation_probability = mutation_probability self.iterations = iterations self.parents_num = parents_num if not population and not population_shape: raise ValueError("You need to specify `grid` or `shape` to create it.") if not population: population = Grid(population_shape) population.generate_individuals(self.boundaries, self.function) self.population = population self.population_shape = self.population.grid.shape # Create tmp grid that will be used in each iteration self.offsprings = Grid(self.population_shape) self.best_solution = None self.best_solution_position = None def get_best(self, individuals): if self.maximize: return max(*individuals, key=lambda x: x.fitness) else: return min(*individuals, key=lambda x: x.fitness) def update_best_solution(self, individual, position): if ( not self.best_solution or self.get_best([self.best_solution, individual]) is individual ): self.best_solution = individual self.best_solution_position = position def select_parents(self, individuals): """Selection. Arguments: individuals: population or part of the population that we want to select parents from. """ return self.selection.select(individuals, self.maximize, num=self.parents_num) def recombine(self, parents): """Crossover. Recombine selected parents to create new individual. Arguments: parents: list of parents to recombine. There should be exactly 2 parents Return: newly created individual """ return self.crossover.recombine(*parents) def normalize_coordinates(self, individual): """Make sure that individual's coordinates meet boundaries.""" result = [] for boundary, coordinate in zip(self.boundaries, individual.coordinates): low, high = boundary coordinate = coordinate if coordinate >= low else float(low) coordinate = coordinate if coordinate <= high else float(high) result.append(coordinate) individual.coordinates = np.array(result) return individual def mutate(self, new_individual): """Mutation.""" return self.mutation.mutate(new_individual) def get_population_coordinates(self): return [ (*individual.coordinates, individual.fitness) for _, individual in self.population.iterate_individuals() ] @abstractmethod def choose_next_population(self): """Succession.""" ... @abstractmethod def run_single_iteration(self): ... def run(self, save_trace=False): """Run evolution.""" population_trace = None if save_trace: population_trace = [self.get_population_coordinates()] for iteration in tqdm(range(self.iterations)): self.run_single_iteration() if save_trace: population_trace.append(self.get_population_coordinates()) return population_trace class EvolutionaryAlgorithm(Evolution): def __init__(self, crossover_probability=1, *args, **kwargs): """ Arguments: crossover_probability: probability of the crossover """ super(EvolutionaryAlgorithm, self).__init__(*args, **kwargs) self.crossover_probability = crossover_probability def choose_next_population(self): """Succession.""" current_population = self.population.get_all_individuals() next_population = self.succession.select( current_population, self.offsprings.get_all_individuals(), self.maximize, len(current_population), ) self.population.grid = np.reshape(next_population, self.population_shape) def run_single_iteration(self): for grid_position, individual in self.population.iterate_individuals(): # Selection and crossover if random.uniform(0, 1) < self.crossover_probability: parents = self.select_parents(self.population.get_all_individuals()) new_individual = self.recombine(parents) else: new_individual = self.population.get_random_individual() # Mutation if random.uniform(0, 1) < self.mutation_probability: new_individual = self.mutate(new_individual) # Normalization and fitness computation new_individual = self.normalize_coordinates(new_individual) new_individual.fitness = self.function(new_individual.coordinates) self.offsprings.set_individual(new_individual, grid_position) self.update_best_solution(new_individual, grid_position) # Succession self.choose_next_population() class CellularEvolutionaryAlgorithm(Evolution): def __init__(self, neighbourhood, *args, **kwargs): """ Arguments: neighbourhood: describes type of neighbourhood """ super(CellularEvolutionaryAlgorithm, self).__init__(*args, **kwargs) self.neighbourhood = neighbourhood def select_parents(self, grid_position): """Selection. Select individual's neighbours that will be used to create new individual. Arguments: grid_position: individual's position on the grid. Return: List of neighbours that will be used to create new individual. """ positions = self.neighbourhood.get_neighbours( self.population_shape, grid_position ) neighbours = self.population.get_individuals(positions) return super().select_parents(neighbours) def choose_next_population(self): """Succession. For each cell choose better individual. Arguments: offsprings: grid with newly create individuals """ for individual_info, offspring_info in zip( self.population.iterate_individuals(), self.offsprings.iterate_individuals(), ): position, individual = individual_info _, offspring = offspring_info result = self.succession.select( np.array([individual]),
np.array([offspring])
numpy.array
""" Copyright 2018 Johns Hopkins University (Author: <NAME>) Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) """ from __future__ import absolute_import from __future__ import print_function from __future__ import division from six.moves import xrange import pytest import os import copy import numpy as np from numpy.testing import assert_allclose from hyperion.utils import Utt2Info from hyperion.io import H5DataWriter from hyperion.generators.sequence_batch_generator_v1 import SequenceBatchGeneratorV1 as SBG output_dir = './tests/data_out/generators' if not os.path.exists(output_dir): os.makedirs(output_dir) h5_file = output_dir + '/seqbg.h5' key_file = output_dir + '/seqbg.scp' num_seqs = 10 dim = 2 min_seq_length = 100 delta = 10 max_seq_length = min_seq_length + (num_seqs-1)*delta seq_lengths = np.arange(100, max_seq_length+1, delta) def create_dataset(): file_path = [str(k) for k in xrange(num_seqs)] key=[] i = 0 j = 0 while i < num_seqs: key_i = (j+1)*str(j) i += (i+1) j += 1 key += key_i key = key[:num_seqs] u2c = Utt2Info.create(file_path, key) if os.path.exists(h5_file): return u2c u2c.save(key_file, sep=' ') h = H5DataWriter(h5_file) rng = np.random.RandomState(seed=0) for i in xrange(num_seqs): x_i = rng.randn(seq_lengths[i], dim) h.write(file_path[i], x_i) return u2c def test_num_seqs(): create_dataset() sr = SBG(h5_file, key_file) assert sr.num_seqs == num_seqs def test_seq_lengths(): create_dataset() sr = SBG(h5_file, key_file, shuffle_seqs=False) assert np.all(sr.seq_lengths == seq_lengths) assert sr.total_length==np.sum(seq_lengths) assert sr.min_seq_length == min_seq_length assert sr.max_seq_length == max_seq_length def test_num_total_subseqs(): create_dataset() sr = SBG(h5_file, key_file, gen_method='full_seqs', batch_size=5) sr.num_total_subseqs == num_seqs def test_prune_min_length(): create_dataset() sr = SBG(h5_file, key_file, batch_size=5, shuffle_seqs=False, prune_min_length=min_seq_length+5) assert sr.num_seqs==num_seqs - 1 assert np.all(sr.seq_lengths==seq_lengths[1:]) assert sr.total_length==
np.sum(seq_lengths[1:])
numpy.sum
import numpy as np from scipy.linalg import block_diag from scipy import optimize import cvxopt # Actions: # 0: insert tail wing in body # 1: screw tail wing to body # 2: insert main wing in body # 3: screw main wing to body # 4: insert wing tip in main wing # 5: screw propeller to base # 6: screw propeller cap to base # 7: screw base to body # 8: attach bombs to wingtip act = [0, 1, 2, 3, 4, 5, 6, 7, 8] # Feature matrices (rewards): phi_p = np.array([[1.0, 1.0, 1.0, 1.0, 0.9, 0.0, 0.0, 1.0, 0.9], [1.0, 1.0, 1.0, 1.0, 0.9, 0.0, 0.0, 1.0, 0.9], [1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.9], [1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.9], [0.9, 0.9, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 1.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0], [1.0, 1.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0, 0.0], [0.9, 0.9, 0.9, 0.9, 1.0, 0.0, 0.0, 0.0, 1.0]]) # part phi_t = np.array([[1, 0, 1, 0, 1, 0, 0, 1, 1], [0, 1, 0, 1, 0, 1, 1, 0, 0], [1, 0, 1, 0, 1, 0, 0, 1, 1], [0, 1, 0, 1, 0, 1, 1, 0, 0], [1, 0, 1, 0, 1, 0, 0, 1, 1], [0, 1, 0, 1, 0, 1, 1, 0, 0], [0, 1, 0, 1, 0, 1, 1, 0, 0], [1, 0, 1, 0, 1, 0, 0, 1, 1], [1, 0, 1, 0, 1, 0, 0, 1, 1]]) # tool phi_m = np.array([[1, 0, 1, 0, 1, 0, 0, 0, 0], [0, 1, 0, 1, 0, 1, 1, 1, 0], [1, 0, 1, 0, 1, 0, 0, 0, 0], [0, 1, 0, 1, 0, 1, 1, 1, 0], [1, 0, 1, 0, 1, 0, 0, 0, 0], [0, 1, 0, 1, 0, 1, 1, 1, 0], [0, 1, 0, 1, 0, 1, 1, 1, 0], [0, 1, 0, 1, 0, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1]]) # motion phi_l = np.array([[1.0, 1.0, 0.8, 0.8, 0.8, 0.5, 0.5, 0.5, 0.8], [1.0, 1.0, 0.8, 0.8, 0.8, 0.5, 0.5, 0.5, 0.8], [0.8, 0.8, 1.0, 1.0, 1.0, 0.3, 0.3, 0.3, 1.0], [0.8, 0.8, 1.0, 1.0, 1.0, 0.3, 0.3, 0.3, 1.0], [0.8, 0.8, 1.0, 1.0, 1.0, 0.3, 0.3, 0.3, 1.0], [0.5, 0.5, 0.3, 0.3, 0.3, 1.0, 1.0, 1.0, 0.3], [0.5, 0.5, 0.3, 0.3, 0.3, 1.0, 1.0, 1.0, 0.3], [0.5, 0.5, 0.3, 0.3, 0.3, 1.0, 1.0, 1.0, 0.3], [0.8, 0.8, 1.0, 1.0, 1.0, 0.3, 0.3, 0.3, 1.0]]) # location phi_e = np.array([[1.0, 0.8, 1.0, 0.8, 1.0, 0.2, 0.8, 1.0, 1.0], [0.8, 1.0, 0.8, 1.0, 0.8, 0.4, 1.0, 0.8, 0.8], [1.0, 0.8, 1.0, 0.8, 1.0, 0.2, 0.8, 1.0, 1.0], [0.8, 1.0, 0.8, 1.0, 0.8, 0.4, 1.0, 0.8, 0.8], [1.0, 0.8, 1.0, 0.8, 1.0, 0.2, 0.8, 1.0, 1.0], [0.2, 0.4, 0.2, 0.4, 0.2, 1.0, 0.4, 0.2, 0.2], [0.8, 1.0, 0.8, 1.0, 0.8, 0.4, 1.0, 0.8, 0.8], [1.0, 0.8, 1.0, 0.8, 1.0, 0.2, 0.8, 1.0, 1.0], [1.0, 0.8, 1.0, 0.8, 1.0, 0.2, 0.8, 1.0, 1.0]]) # effort # Preconditions (transitions) # T = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0], # [1, 0, 0, 0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0, 0, 0, 0], # [1, 0, 0, 0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 1, 0, 0, 0], # [0, 0, 0, 0, 0, 1, 0, 0, 0], # [0, 0, 0, 0, 0, 0, 0, 0, 0]]) T = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0]]) # Demonstration demo = [0, 2, 4, 1, 3, 5, 6, 7, 8] # demo = [1, 2, 3, 4, 5, 9, 6, 7, 8] num_d = len(demo) - 1 # Max margin A = [] S = [] for i in range(num_d): prev = demo[i] next = demo[i+1] candidates = demo[i+2:] for other in candidates: t = np.argwhere(T[other,:]) if t.size == 0 or t in demo[:i+1]: a = [-phi_p[prev,next]+phi_p[prev,other], -phi_t[prev,next]+phi_t[prev,other], -phi_m[prev,next]+phi_m[prev,other], -phi_l[prev,next]+phi_l[prev,other], -phi_e[prev,next]+phi_e[prev,other]] s = np.zeros(num_d-1) s[i] = -1 A.append(a) S.append(s) A = np.array(A) S = np.array(S) _, n_w = A.shape _, n_b = S.shape W = np.hstack((-1*np.eye(n_w), np.zeros((n_w, n_b)))) A = np.hstack((A, S)) # MATLAB % [A_new, ia, ic] = unique(A, 'rows', 'stable'); # MATLAB % S_new = S(ia, :); # MATLAB % A = [A_new, S_new]; n_con, n_x = A.shape C = 3.5 H = np.eye(5) Hs = 2*C*np.eye(num_d-1) H = block_diag(H, Hs) f = np.zeros((1, n_x)) b = -1*np.ones((n_con, 1)) b_W = np.zeros((n_w, 1)) # MATLAB % x = quadprog(H,f,A,b) # MATLAB x = quadprog(H,f,[A; W],[b; b_W]) % uses 'interior-point-convex' algorithm by default (https://www.mathworks.com/help/optim/ug/quadprog.html) b_stack = np.vstack((b, b_W)) A_stack = np.vstack((A, W)) # # Doesn't work, gives all zero result # x0 = np.random.randn(n_x,1) # def fun(x): # return 0.5 * np.dot(x.T, np.dot(H, x)) + np.dot(f, x) # cons = [{'type':'ineq', 'fun':lambda x: b_stack[i] - np.dot(A_stack[i], x)} # for i in range(b_stack.shape[0])] # result = optimize.minimize(fun, x0, constraints=cons) # x = result['x'] # Using interior-point algorithms (http://cvxopt.org/documentation/index.html#technical-documentation) cvxopt.solvers.options['show_progress'] = False x = cvxopt.solvers.qp(cvxopt.matrix(H), cvxopt.matrix(f.T), cvxopt.matrix(A_stack), cvxopt.matrix(b_stack))['x'] x = np.array(x) print(x) # Predict w = x[:5] candidates = set(act) pred = [] prev = 0 candidates.remove(prev) while not len(candidates)==0: pred.append(prev) r_max = -100 for other in candidates: t =
np.argwhere(T[other,:])
numpy.argwhere
import os import sys import numpy as np from time import sleep from tqdm import tqdm import json BASE_DIR = os.path.abspath('') sys.path.append(BASE_DIR) # ROOT_DIR = BASE_DIR ROOT_DIR = os.path.join(BASE_DIR, os.pardir) DATA_DIR = os.path.join(ROOT_DIR, 'data/modelnet40_normal_resampled') def pc_normalize(pc): l = pc.shape[0] centroid = np.mean(pc, axis=0) pc = pc - centroid m = np.max(np.sqrt(np.sum(pc**2, axis=1))) pc = pc / m return pc class data_handler(object): """ This class helps to load .txt files and save them as .npy files (much faster to load). ~~~~~~~~~~~~~~~~ CURRENTLY ONLY TESTED WITH THE MODELNET40 DATASET ~~~~~~~~~~~~~~~~~~~~~~~~~ """ def __init__(self, load, save, limit=100): """ load - string: file to load save - string: file save name limit - int: how many files to load per set """ self.load = load self.save = save self.limit = limit cat_file = os.path.join(DATA_DIR, 'modelnet40_shape_names.txt') cat = [line.rstrip() for line in open(cat_file)] self.classes = dict(zip(cat, range(len(cat)))) self.point_set = np.array([]) self.class_set = np.array([]) def load_file(self): load_file = os.path.join(DATA_DIR, self.load) shape_ids = [line.rstrip() for line in open(load_file)] shape_names = ['_'.join(x.split('_')[0:-1]) for x in shape_ids] # this gets the objects names datapath = [(shape_names[i], os.path.join(DATA_DIR, shape_names[i], shape_ids[i])+'.txt') for i in range(len(shape_ids))] d_size = len(datapath) curr_limit = min(d_size, self.limit) fn1 = datapath[0] # print(fn1) point_set = np.loadtxt(fn1[1], delimiter=',').astype(np.float32) class_set = self.classes[fn1[0]] class_set = np.array([class_set]).astype(np.int32) class_set = np.full([point_set.shape[0], 1], class_set) print(point_set.shape) for i in tqdm(range(1, curr_limit)): fn = datapath[i] cls = self.classes[datapath[i][0]] cls = np.array([cls]).astype(np.int32) curr_file_data = np.loadtxt(fn[1], delimiter=',').astype(np.float32) class_set = np.append(class_set, np.full([curr_file_data.shape[0],1], cls), axis=0) point_set =
np.append(point_set, curr_file_data, axis=0)
numpy.append
from __future__ import absolute_import, division import numpy as np import cv2 from glob import glob import os import pickle from torch.utils.data import Dataset class Got10kCropped(Dataset): def __init__(self, dataset_path, transforms=None, pair_per_seq=1): super(Got10kCropped, self).__init__() self.transforms = transforms self.pairs_per_seq = pair_per_seq # 读取数据集所包含的视频序列,元数据,噪声标签,目标在搜索图像中的长宽比例 with open(os.path.join(dataset_path, 'list.txt')) as f: seqs = f.readlines() seqs = [os.path.join(dataset_path, x.replace('\n','')) for x in seqs] self.seqs = seqs # 加载视频序列的元数据 # meta_data = [] # meta_data_names = [os.path.join(x, 'meta_data.txt') for x in self.seqs] # for meta_data_name in meta_data_names: # with open(meta_data_name, 'rb') as f: # meta_data.append( pickle.load(f) ) # self.meta_data = meta_data # # 加载视频序列的标签 # noisy_label = [] # noisy_label_names = [os.path.join(x, 'noisy_label.txt') for x in self.seqs] # for noisy_label_name in noisy_label_names: # with open(noisy_label_name, 'rb') as f: # noisy_label.append(pickle.load(f)) # self.noisy_label = noisy_label # # # 加载目标在搜索图像中的长宽比例 # target_wh = [] # target_wh_names = [os.path.join(x, 'target_wh.txt') for x in self.seqs] # for target_wh_name in target_wh_names: # with open(target_wh_name, 'rb') as f: # target_wh.append(pickle.load(f)) # self.target_wh = target_wh print('loading metadata from:'+os.path.join(dataset_path, 'got10k_meta.pckl')+'\n') with open(os.path.join(dataset_path, 'got10k_meta.pckl'), 'rb') as f: got10k_meta = pickle.load(f) self.meta_data = got10k_meta['meta_data'] self.noisy_label = got10k_meta['noisy_label'] self.target_wh = got10k_meta['target_wh'] self.indices = np.random.permutation(len(self.seqs)) def __getitem__(self, index): index = self.indices[index % len(self.indices)] # 获得传入视频索引 img_files = glob(os.path.join(self.seqs[index], '*.jpg')) noisy_label = self.noisy_label[index] meta = self.meta_data[index] target_wh = self.target_wh[index] # 获得滤除噪声序列后的视频序列标签。 # with open(noisy_label, 'rb') as f: # noisy_label = pickle.load(f) val_indices =
np.logical_and.reduce(noisy_label)
numpy.logical_and.reduce
"""Script for multi-gpu training.""" import json import os import copy import numpy as np import torch import torch.nn as nn import torch.utils.data from tensorboardX import SummaryWriter from tqdm import tqdm from alphapose.models import builder from alphapose.opt import cfg, logger, opt from alphapose.utils.logger import board_writing, debug_writing from alphapose.utils.metrics import DataLogger, calc_accuracy, calc_integral_accuracy, evaluate_mAP from alphapose.utils.transforms import get_func_heatmap_to_coord, _integral_tensor,get_box_for_align,integral_op,get_affine_transform,affine_transform,transform_preds from alphapose.models.criterion import IngetralCoordinate num_gpu = torch.cuda.device_count() valid_batch = 1 * num_gpu if opt.sync: norm_layer = nn.SyncBatchNorm else: norm_layer = nn.BatchNorm2d def train(opt, train_loader, m, criterion, optimizer, writer): loss_logger = DataLogger() acc_logger = DataLogger() m.train() norm_type = cfg.LOSS.get('NORM_TYPE', None) num_joints = cfg.DATA_PRESET.get('NUM_JOINTS',133) train_branch = cfg.OTHERS.get('TRAIN_BRANCH',True) train_loader = tqdm(train_loader, dynamic_ncols=True) for i, (inps, labels, label_masks, _, bboxes) in enumerate(train_loader): if isinstance(inps, list): inps = [inp.cuda().requires_grad_() for inp in inps] else: inps = inps.cuda().requires_grad_() out, feature = m(inps) # train for finer hands if train_branch: out = m.module.forward_branch(out,feature,bboxes[:,1,:],bboxes[:,2,:]) labels = labels[:,:-68*2].cuda() label_masks = label_masks[:,:-68*2].cuda() else: labels = labels[:,:133*2].cuda() label_masks = label_masks[:,:133*2].cuda() loss = criterion(out, labels, label_masks) acc = calc_integral_accuracy(out, labels, label_masks, output_3d=False, norm_type=norm_type) if isinstance(inps, list): batch_size = inps[0].size(0) else: batch_size = inps.size(0) loss_logger.update(loss.item(), batch_size) acc_logger.update(acc, batch_size) optimizer.zero_grad() loss.backward() optimizer.step() opt.trainIters += 1 # Tensorboard if opt.board: board_writing(writer, loss_logger.avg, acc_logger.avg, opt.trainIters, 'Train') # Debug if opt.debug and not i % 10: debug_writing(writer, output, labels, inps, opt.trainIters) # TQDM train_loader.set_description( 'loss: {loss:.8f} | acc: {acc:.4f}'.format( loss=loss_logger.avg, acc=acc_logger.avg) ) train_loader.close() return loss_logger.avg, acc_logger.avg def validate(m, opt, heatmap_to_coord, batch_size=20): det_dataset = builder.build_dataset(cfg.DATASET.TEST, preset_cfg=cfg.DATA_PRESET, train=False, opt=opt) det_loader = torch.utils.data.DataLoader( det_dataset, batch_size=batch_size, shuffle=False, num_workers=20, drop_last=False) kpt_json = [] eval_joints = det_dataset.EVAL_JOINTS test_branch = cfg.OTHERS.get('TEST_BRANCH',True) m.eval() norm_type = cfg.LOSS.get('NORM_TYPE', None) hm_size = cfg.DATA_PRESET.HEATMAP_SIZE for inps, crop_bboxes, bboxes, img_ids, scores, imghts, imgwds in tqdm(det_loader, dynamic_ncols=True): if isinstance(inps, list): inps = [inp.cuda() for inp in inps] else: inps = inps.cuda() output,_ = m(inps,crop_bboxes[:,1,:],crop_bboxes[:,2,:],crop_bboxes[:,3,:]) pred = output assert pred.dim() == 4 pred = pred[:, eval_joints, :, :] for i in range(output.shape[0]): bbox = crop_bboxes[i][0].tolist() pose_coords, pose_scores = heatmap_to_coord( pred[i][det_dataset.EVAL_JOINTS], bbox, hm_shape=hm_size, norm_type=norm_type) keypoints = np.concatenate((pose_coords, pose_scores), axis=1) keypoints = keypoints.reshape(-1).tolist() data = dict() #data['bbox'] = bboxes[i, 0].tolist() data['bbox'] = bbox data['image_id'] = int(img_ids[i]) data['score'] = float(scores[i] + np.mean(pose_scores) + np.max(pose_scores)) data['category_id'] = 1 data['keypoints'] = keypoints kpt_json.append(data) with open(os.path.join(opt.work_dir, 'test_kpt.json'), 'w') as fid: json.dump(kpt_json, fid) res = evaluate_mAP(os.path.join(opt.work_dir, 'test_kpt.json'), ann_type='keypoints', ann_file='/ssd3/Benchmark/coco/annotations/coco_wholebody_val_133.json')#ann_file=os.path.join(cfg.DATASET.VAL.ROOT, cfg.DATASET.VAL.ANN)) return res def validate_gt(m, opt, cfg, heatmap_to_coord, batch_size=20): gt_val_dataset = builder.build_dataset(cfg.DATASET.VAL, preset_cfg=cfg.DATA_PRESET, train=False) eval_joints = gt_val_dataset.EVAL_JOINTS test_branch = cfg.OTHERS.get('TEST_BRANCH',True) gt_val_loader = torch.utils.data.DataLoader( gt_val_dataset, batch_size=batch_size, shuffle=False, num_workers=20, drop_last=False) kpt_json = [] kpt_json_branch = [] m.eval() norm_type = cfg.LOSS.get('NORM_TYPE', None) hm_size = cfg.DATA_PRESET.HEATMAP_SIZE for inps, labels, label_masks, img_ids, bboxes in tqdm(gt_val_loader, dynamic_ncols=True): if isinstance(inps, list): inps = [inp.cuda() for inp in inps] else: inps = inps.cuda() output,feature = m(inps) pred = copy.deepcopy(output) assert pred.dim() == 4 pred = pred[:, eval_joints, :, :] for i in range(output.shape[0]): bbox = bboxes[i][0].tolist() pose_coords, pose_scores = heatmap_to_coord( pred[i][gt_val_dataset.EVAL_JOINTS], bbox, hm_shape=hm_size, norm_type=norm_type) keypoints = np.concatenate((pose_coords, pose_scores), axis=1) keypoints = keypoints.reshape(-1).tolist() data = dict() #data['bbox'] = bboxes[i, 0].tolist() data['bbox'] = bbox data['image_id'] = int(img_ids[i]) data['score'] = float(np.mean(pose_scores) + np.max(pose_scores)) data['category_id'] = 1 data['keypoints'] = keypoints kpt_json.append(data) if test_branch: hm_height, hm_width = hm_size # regression the joints of wholeboy in stage1 pred_jts, pred_score = _integral_tensor( pred, 133, False, hm_width, hm_height, 1, integral_operation=integral_op, norm_type='sigmoid') pred_jts = pred_jts.reshape(pred_jts.shape[0], 133, 2) # get the coords with the size of heatmap coords_x = (pred_jts[:, :, 0] + 0.5) * hm_width coords_y = (pred_jts[:, :, 1] + 0.5) * hm_height # get the box of hands for roi align lefthand_boxes = get_box_for_align(coords_x[:,-42:-21],coords_y[:,-42:-21]) righthand_boxes = get_box_for_align(coords_x[:,-21:],coords_y[:,-21:]) # stage2 testing fine_out = m.forward_branch(output, feature, lefthand_boxes, righthand_boxes) # output contains the finer and amplified hands kpts, need to apply aff fine_pred_jts, fine_pred_score = _integral_tensor( fine_out[:,-42:,:,:], 42, False, hm_width, hm_height, 1, integral_operation=integral_op, norm_type='sigmoid') fine_pred_jts = fine_pred_jts.reshape(fine_pred_jts.shape[0], 42, 2) lefthand_jts = fine_pred_jts[:,:21,:] righthand_jts = fine_pred_jts[:,21:,:] lefthand_jts[:,:,0] = (lefthand_jts[:,:,0]+0.5)*hm_width lefthand_jts[:,:,1] = (lefthand_jts[:,:,1]+0.5)*hm_height righthand_jts[:,:,0] = (righthand_jts[:,:,0]+0.5)*hm_width righthand_jts[:,:,1] = (righthand_jts[:,:,1]+0.5)*hm_height center_hm = np.array([hm_width/2.0,hm_height/2.0]) scale_hm = np.array([hm_size[1],hm_size[0]]) lefthand_kpts = copy.deepcopy(lefthand_jts.cpu().numpy().astype(np.float32)) righthand_kpts = copy.deepcopy(righthand_jts.cpu().numpy().astype(np.float32)) # apply affine trans to lefthand and add offset for j in range(lefthand_jts.shape[0]): box = lefthand_boxes[j].tolist() width = np.array(box[2] - box[0]) height = np.array(box[3] - box[1]) output_size = [box[2]-box[0],box[3]-box[1]] offset = np.array([box[0],box[1]]) trans = get_affine_transform(center_hm,scale_hm,0,output_size) for k in range(21): lefthand_kpts[j ,k, 0:2] = affine_transform(lefthand_kpts[j ,k, 0:2], trans) lefthand_kpts[j,:,0] = (lefthand_kpts[j,:,0]) + offset[0] lefthand_kpts[j,:,1] = (lefthand_kpts[j,:,1])+ offset[1] #-------------------------------------------------- # apply affine trans to righthand and add offset for j in range(righthand_jts.shape[0]): box = righthand_boxes[j].tolist() width = np.array(box[2] - box[0]) height = np.array(box[3] - box[1]) output_size = [box[2]-box[0],box[3]-box[1]] offset = np.array([box[0],box[1]]) trans = get_affine_transform(center_hm,scale_hm,0,output_size) for k in range(21): righthand_kpts[j,k, 0:2] = affine_transform(righthand_kpts[j ,k, 0:2], trans) righthand_kpts[j,:,0] = (righthand_kpts[j,:,0]) + offset[0] righthand_kpts[j,:,1] = (righthand_kpts[j,:,1]) + offset[1] #-------------------------------------------------- bodyface_kpts = copy.deepcopy(pred_jts[:,:-42,:].cpu().numpy().astype(np.float32)) bodyface_kpts[:,:,0] = (bodyface_kpts[:,:,0]+0.5)*hm_width bodyface_kpts[:,:,1] = (bodyface_kpts[:,:,1]+0.5)*hm_height fine_kpts = np.concatenate((bodyface_kpts,lefthand_kpts,righthand_kpts), axis=1) fine_socre = np.concatenate((pred_score[:,:-42,:].cpu().numpy(),fine_pred_score.cpu().numpy()), axis=1) for n in range(output.shape[0]): bbox = bboxes[n][0].tolist() xmin, ymin, xmax, ymax = bbox w = xmax - xmin h = ymax - ymin center = np.array([xmin + w * 0.5, ymin + h * 0.5]) scale =
np.array([w, h])
numpy.array
# SPDX-License-Identifier: Apache-2.0 from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np # type: ignore import onnx from ..base import Base from . import expect class Slice(Base): @staticmethod def export_slice(): # type: () -> None node = onnx.helper.make_node( 'Slice', inputs=['x', 'starts', 'ends', 'axes', 'steps'], outputs=['y'], ) x = np.random.randn(20, 10, 5).astype(np.float32) y = x[0:3, 0:10] starts = np.array([0, 0], dtype=np.int64) ends = np.array([3, 10], dtype=np.int64) axes = np.array([0, 1], dtype=np.int64) steps = np.array([1, 1], dtype=np.int64) expect(node, inputs=[x, starts, ends, axes, steps], outputs=[y], name='test_slice') @staticmethod def export_slice_neg(): # type: () -> None node = onnx.helper.make_node( 'Slice', inputs=['x', 'starts', 'ends', 'axes', 'steps'], outputs=['y'], ) x = np.random.randn(20, 10, 5).astype(np.float32) starts = np.array([0], dtype=np.int64) ends = np.array([-1], dtype=np.int64) axes = np.array([1], dtype=np.int64) steps = np.array([1], dtype=np.int64) y = x[:, 0:-1] expect(node, inputs=[x, starts, ends, axes, steps], outputs=[y], name='test_slice_neg') @staticmethod def export_slice_start_out_of_bounds(): # type: () -> None node = onnx.helper.make_node( 'Slice', inputs=['x', 'starts', 'ends', 'axes', 'steps'], outputs=['y'], ) x = np.random.randn(20, 10, 5).astype(np.float32) starts = np.array([1000], dtype=np.int64) ends = np.array([1000], dtype=np.int64) axes = np.array([1], dtype=np.int64) steps = np.array([1], dtype=np.int64) y = x[:, 1000:1000] expect(node, inputs=[x, starts, ends, axes, steps], outputs=[y], name='test_slice_start_out_of_bounds') @staticmethod def export_slice_end_out_of_bounds(): # type: () -> None node = onnx.helper.make_node( 'Slice', inputs=['x', 'starts', 'ends', 'axes', 'steps'], outputs=['y'], ) x = np.random.randn(20, 10, 5).astype(np.float32) starts = np.array([1], dtype=np.int64) ends = np.array([1000], dtype=np.int64) axes = np.array([1], dtype=np.int64) steps = np.array([1], dtype=np.int64) y = x[:, 1:1000] expect(node, inputs=[x, starts, ends, axes, steps], outputs=[y], name='test_slice_end_out_of_bounds') @staticmethod def export_slice_default_axes(): # type: () -> None node = onnx.helper.make_node( 'Slice', inputs=['x', 'starts', 'ends'], outputs=['y'], ) x = np.random.randn(20, 10, 5).astype(np.float32) starts = np.array([0, 0, 3], dtype=np.int64) ends = np.array([20, 10, 4], dtype=np.int64) y = x[:, :, 3:4] expect(node, inputs=[x, starts, ends], outputs=[y], name='test_slice_default_axes') @staticmethod def export_slice_default_steps(): # type: () -> None node = onnx.helper.make_node( 'Slice', inputs=['x', 'starts', 'ends', 'axes'], outputs=['y'], ) x = np.random.randn(20, 10, 5).astype(np.float32) starts = np.array([0, 0, 3], dtype=np.int64) ends = np.array([20, 10, 4], dtype=np.int64) axes = np.array([0, 1, 2], dtype=np.int64) y = x[:, :, 3:4] expect(node, inputs=[x, starts, ends, axes], outputs=[y], name='test_slice_default_steps') @staticmethod def export_slice_neg_steps(): # type: () -> None node = onnx.helper.make_node( 'Slice', inputs=['x', 'starts', 'ends', 'axes', 'steps'], outputs=['y'], ) x = np.random.randn(20, 10, 5).astype(np.float32) starts = np.array([20, 10, 4], dtype=np.int64) ends = np.array([0, 0, 1], dtype=np.int64) axes =
np.array([0, 1, 2], dtype=np.int64)
numpy.array
#!/usr/bin/python #-*- coding: utf-8 -*- # >.>.>.>.>.>.>.>.>.>.>.>.>.>.>.>. # Licensed under the Apache License, Version 2.0 (the "License") # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # --- File Name: edit_image.py # --- Creation Date: 16-05-2021 # --- Last Modified: Fri 28 May 2021 00:08:35 AEST # --- Author: <NAME> # .<.<.<.<.<.<.<.<.<.<.<.<.<.<.<.< """ Edit an existing image. """ import copy import os from tqdm import tqdm from time import perf_counter import click import re import imageio import pickle import numpy as np import PIL.Image import torch import torch.nn.functional as F import dnnlib import legacy from typing import List, Optional # from projector import project def softmax_last_dim_fn(x): return F.softmax(x, dim=-1) # def double_softmax_last_dim_fn(x): # return F.softmax(F.softmax(x, dim=-1), dim=-1) # def sigmoid_fn(x): # return torch.sigmoid(x) * 0.2 # rescale to balance with softmax # def get_heat_fn(self, heat_fn_name): # if heat_fn_name == 'softmax': # heat_fn = softmax_last_dim_fn # elif heat_fn_name == 'sigmoid': # heat_fn = sigmoid_fn # elif heat_fn_name == 'double_softmax': # heat_fn = double_softmax_last_dim_fn # else: # raise ValueError('Unknown M.heat_fn:', heat_fn_name) # return heat_fn def project( G, target: torch.Tensor, # [C,H,W] and dynamic range [0,255], W & H must match G output resolution *, num_steps = 1000, w_avg_samples = 10000, initial_learning_rate = 0.1, initial_noise_factor = 0.05, lr_rampdown_length = 0.25, lr_rampup_length = 0.05, noise_ramp_length = 0.75, regularize_noise_weight = 1e5, verbose = False, device: torch.device ): assert target.shape == (G.img_channels, G.img_resolution, G.img_resolution) def logprint(*args): if verbose: print(*args) G = copy.deepcopy(G).eval().requires_grad_(False).to(device) # type: ignore # Compute w stats. logprint(f'Computing W midpoint and stddev using {w_avg_samples} samples...') z_samples = np.random.RandomState(123).randn(w_avg_samples, G.z_dim) w_samples = G.mapping(torch.from_numpy(z_samples).to(device), None) # [N, L, C] # w_samples = w_samples[:, :1, :].cpu().numpy().astype(np.float32) # [N, 1, C] w_samples = w_samples.cpu().numpy().astype(np.float32) # [N, L, C] w_avg = np.mean(w_samples, axis=0, keepdims=True) # [1, L, C] w_std = (np.sum((w_samples - w_avg) ** 2) / w_avg_samples) ** 0.5 # Setup noise inputs. noise_bufs = { name: buf for (name, buf) in G.synthesis.named_buffers() if 'noise_const' in name } # Load VGG16 feature detector. url = 'https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/metrics/vgg16.pt' with dnnlib.util.open_url(url) as f: vgg16 = torch.jit.load(f).eval().to(device) # Features for target image. target_images = target.unsqueeze(0).to(device).to(torch.float32) if target_images.shape[2] > 256: target_images = F.interpolate(target_images, size=(256, 256), mode='area') target_features = vgg16(target_images, resize_images=False, return_lpips=True) w_opt = torch.tensor(w_avg, dtype=torch.float32, device=device, requires_grad=True) # pylint: disable=not-callable w_out = torch.zeros([num_steps] + list(w_opt.shape[1:]), dtype=torch.float32, device=device) optimizer = torch.optim.Adam([w_opt] + list(noise_bufs.values()), betas=(0.9, 0.999), lr=initial_learning_rate) # Init noise. for buf in noise_bufs.values(): buf[:] = torch.randn_like(buf) buf.requires_grad = True for step in range(num_steps): # Learning rate schedule. t = step / num_steps w_noise_scale = w_std * initial_noise_factor * max(0.0, 1.0 - t / noise_ramp_length) ** 2 lr_ramp = min(1.0, (1.0 - t) / lr_rampdown_length) lr_ramp = 0.5 - 0.5 * np.cos(lr_ramp * np.pi) lr_ramp = lr_ramp * min(1.0, t / lr_rampup_length) lr = initial_learning_rate * lr_ramp for param_group in optimizer.param_groups: param_group['lr'] = lr # Synth images from opt_w. w_noise = torch.randn_like(w_opt) * w_noise_scale # ws = (w_opt + w_noise).repeat([1, G.mapping.num_ws, 1]) ws = w_opt # ws = w_opt + w_noise synth_images = G.synthesis(ws, noise_mode='const') # Downsample image to 256x256 if it's larger than that. VGG was built for 224x224 images. synth_images = (synth_images + 1) * (255/2) if synth_images.shape[2] > 256: synth_images = F.interpolate(synth_images, size=(256, 256), mode='area') # Features for synth images. synth_features = vgg16(synth_images, resize_images=False, return_lpips=True) dist = (target_features - synth_features).square().sum() # dist_pixel = (target_images - synth_images).square().sum() * 0.001 # Noise regularization. reg_loss = 0.0 for v in noise_bufs.values(): noise = v[None,None,:,:] # must be [1,1,H,W] for F.avg_pool2d() while True: reg_loss += (noise*torch.roll(noise, shifts=1, dims=3)).mean()**2 reg_loss += (noise*torch.roll(noise, shifts=1, dims=2)).mean()**2 if noise.shape[2] <= 8: break noise = F.avg_pool2d(noise, kernel_size=2) # ws_avg = ws.mean(1, keepdim=True) # [1, 1, C] # ws_var = (((ws - ws_avg) ** 2).sum() / ws.size(1)) # loss = dist loss = dist + reg_loss * regularize_noise_weight # loss = dist + reg_loss * regularize_noise_weight + ws_var * 0.1 # loss = dist + reg_loss * regularize_noise_weight + dist_pixel # Step optimizer.zero_grad(set_to_none=True) loss.backward() optimizer.step() logprint(f'step {step+1:>4d}/{num_steps}: dist {dist:<4.2f} loss {float(loss):<5.2f}') # Save projected W for each optimization step. w_out[step] = w_opt.detach()[0] # Normalize noise. with torch.no_grad(): for buf in noise_bufs.values(): buf -= buf.mean() buf *= buf.square().mean().rsqrt() # return w_out.repeat([1, G.mapping.num_ws, 1]) return w_out #---------------------------------------------------------------------------- class CommaSeparatedIntList(click.ParamType): name = 'int_list' def convert(self, value, param, ctx): _ = param, ctx if value is None or value.lower() == 'none' or value == '': return [] return [int(x.strip()) for x in value[1:-1].split(',')] class CommaSeparatedFloatList(click.ParamType): name = 'float_list' def convert(self, value, param, ctx): _ = param, ctx if value is None or value.lower() == 'none' or value == '': return [] return [float(x.strip()) for x in value[1:-1].split(',')] def num_range(s: str) -> List[int]: '''Accept either a comma separated list of numbers 'a,b,c' or a range 'a-c' and return as a list of ints.''' range_re = re.compile(r'^(\d+)-(\d+)$') m = range_re.match(s) if m: return list(range(int(m.group(1)), int(m.group(2))+1)) vals = s.split(',') return [int(x) for x in vals] #---------------------------------------------------------------------------- @click.command() @click.option('--gan_network', help='Network pickle filename', required=True) @click.option('--m_network', help='M Network pickle filename', required=True) @click.option('--target', help='Target image file to project to', required=True, metavar='FILE') @click.option('--num-steps', help='Number of optimization steps', type=int, default=1000, show_default=True) @click.option('--seed', help='Random seed', type=int, default=303, show_default=True) @click.option('--save-video', help='Save an mp4 video of optimization progress', type=bool, default=True, show_default=True) @click.option('--outdir', help='Where to save the output images', required=True, metavar='DIR') @click.option('--edit_dims', help='The latent dim to edit', required=True, type=num_range) @click.option('--edit_scale', help='The scale to edit', required=True, type=CommaSeparatedFloatList()) @click.option('--impact_w_layers', help='Optionally limit the impact on certain W space', default=None, type=CommaSeparatedIntList()) @click.option('--train_project', help='If training projection', type=bool, default=False, show_default=True) @click.option('--gen_rand_image', help='If generate rand images', type=bool, default=False, show_default=True) @click.option('--truncation_psi', help='Truncation psi in mapping net', default=0.7, type=float, show_default=True) @click.option('--n_samples', help='Samples to show', default=5, type=int, show_default=True) @click.option('--use_heat_max', help='If use max of heat', type=bool, default=False, show_default=True) def run_edit( gan_network: str, m_network: str, target: str, outdir: str, save_video: bool, seed: int, num_steps: int, edit_dims: int, edit_scale: list, impact_w_layers: list, train_project: bool, gen_rand_image: bool, truncation_psi: float, n_samples: int, use_heat_max: bool, ): """ Edit an existing image by first projecting it into latent space W and then modify it by M network with specified dimension. """ np.random.seed(seed) torch.manual_seed(seed) # Load networks. print('Loading networks from "%s"...' % gan_network) device = torch.device('cuda') with dnnlib.util.open_url(gan_network) as fp: # G = legacy.load_network_pkl(fp)['G_ema'].requires_grad_(False).to(device) # type: ignore network_dict = legacy.load_network_pkl(fp) G = network_dict['G_ema'].requires_grad_(False).to(device) # subclass of torch.nn.Module D = network_dict['D'].requires_grad_(False).to(device) # Load M network. with open(m_network, 'rb') as f: M = pickle.load(f)['M'].requires_grad_(False).to(device) os.makedirs(outdir, exist_ok=True) if train_project: # Load target image. target_pil = PIL.Image.open(target).convert('RGB') w, h = target_pil.size s = min(w, h) target_pil = target_pil.crop(((w - s) // 2, (h - s) // 2, (w + s) // 2, (h + s) // 2)) target_pil = target_pil.resize((G.img_resolution, G.img_resolution), PIL.Image.LANCZOS) target_uint8 = np.array(target_pil, dtype=np.uint8) # Optimize projection. start_time = perf_counter() projected_w_steps = project( G, target=torch.tensor(target_uint8.transpose([2, 0, 1]), device=device), # pylint: disable=not-callable num_steps=num_steps, device=device, verbose=True ) print (f'Elapsed: {(perf_counter()-start_time):.1f} s') # Render debug output: optional video and projected image and W vector. if save_video: video = imageio.get_writer(f'{outdir}/proj.mp4', mode='I', fps=10, codec='libx264', bitrate='16M') print (f'Saving optimization progress video "{outdir}/proj.mp4"') for projected_w in projected_w_steps: synth_image = G.synthesis(projected_w.unsqueeze(0), noise_mode='const') synth_image = (synth_image + 1) * (255/2) synth_image = synth_image.permute(0, 2, 3, 1).clamp(0, 255).to(torch.uint8)[0].cpu().numpy() video.append_data(np.concatenate([target_uint8, synth_image], axis=1)) video.close() # Save final projected frame and W vector. target_pil.save(f'{outdir}/target.png') projected_w = projected_w_steps[-1] # (num_ws, w_dim) synth_image = G.synthesis(projected_w.unsqueeze(0), noise_mode='const') synth_image = (synth_image + 1) * (255/2) synth_image = synth_image.permute(0, 2, 3, 1).clamp(0, 255).to(torch.uint8)[0].cpu().numpy() PIL.Image.fromarray(synth_image, 'RGB').save(f'{outdir}/proj.png') np.savez(f'{outdir}/projected_w.npz', w=projected_w.unsqueeze(0).cpu().numpy()) elif gen_rand_image: z_samples = torch.randn(n_samples, G.z_dim, device=device) projected_w = G.mapping(z_samples, None, truncation_psi=truncation_psi) # [b, num_ws, w_dim] else: projected_w =
np.load(f'{outdir}/projected_w.npz')
numpy.load
import numpy as np import datetime from pychunkedgraph.backend import chunkedgraph from pychunkedgraph.backend.utils import column_keys from multiwrapper import multiprocessing_utils as mu from typing import Optional, Sequence def _read_delta_root_rows_thread(args) -> list: start_seg_id, end_seg_id, serialized_cg_info, time_stamp_start, time_stamp_end = args cg = chunkedgraph.ChunkedGraph(**serialized_cg_info) start_id = cg.get_node_id(segment_id=start_seg_id, chunk_id=cg.root_chunk_id) end_id = cg.get_node_id(segment_id=end_seg_id, chunk_id=cg.root_chunk_id) # apply column filters to avoid Lock columns rows = cg.read_node_id_rows( start_id=start_id, start_time=time_stamp_start, end_id=end_id, end_id_inclusive=False, columns=[column_keys.Hierarchy.FormerParent, column_keys.Hierarchy.NewParent], end_time=time_stamp_end, end_time_inclusive=True) # new roots are those that have no NewParent in this time window new_root_ids = [k for (k, v) in rows.items() if column_keys.Hierarchy.NewParent not in v] # expired roots are the IDs of FormerParent's # whose timestamp is before the start_time expired_root_ids = [] for k, v in rows.items(): if column_keys.Hierarchy.FormerParent in v: fp = v[column_keys.Hierarchy.FormerParent] for cell_entry in fp: expired_root_ids.extend(cell_entry.value) return new_root_ids, expired_root_ids def _read_root_rows_thread(args) -> list: start_seg_id, end_seg_id, serialized_cg_info, time_stamp = args cg = chunkedgraph.ChunkedGraph(**serialized_cg_info) start_id = cg.get_node_id(segment_id=start_seg_id, chunk_id=cg.root_chunk_id) end_id = cg.get_node_id(segment_id=end_seg_id, chunk_id=cg.root_chunk_id) rows = cg.read_node_id_rows( start_id=start_id, end_id=end_id, end_id_inclusive=False, end_time=time_stamp, end_time_inclusive=True) root_ids = [k for (k, v) in rows.items() if column_keys.Hierarchy.NewParent not in v] return root_ids def get_latest_roots(cg, time_stamp: Optional[datetime.datetime] = None, n_threads: int = 1) -> Sequence[np.uint64]: # Create filters: time and id range max_seg_id = cg.get_max_seg_id(cg.root_chunk_id) + 1 n_blocks = np.min([n_threads * 3 + 1, max_seg_id]) seg_id_blocks = np.linspace(1, max_seg_id, n_blocks, dtype=np.uint64) cg_serialized_info = cg.get_serialized_info() if n_threads > 1: del cg_serialized_info["credentials"] multi_args = [] for i_id_block in range(0, len(seg_id_blocks) - 1): multi_args.append([seg_id_blocks[i_id_block], seg_id_blocks[i_id_block + 1], cg_serialized_info, time_stamp]) # Run parallelizing if n_threads == 1: results = mu.multiprocess_func(_read_root_rows_thread, multi_args, n_threads=n_threads, verbose=False, debug=n_threads == 1) else: results = mu.multisubprocess_func(_read_root_rows_thread, multi_args, n_threads=n_threads) root_ids = [] for result in results: root_ids.extend(result) return np.array(root_ids, dtype=np.uint64) def get_delta_roots(cg, time_stamp_start: datetime.datetime, time_stamp_end: Optional[datetime.datetime] = None, min_seg_id: int = 1, n_threads: int = 1) -> Sequence[np.uint64]: # Create filters: time and id range max_seg_id = cg.get_max_seg_id(cg.root_chunk_id) + 1 n_blocks = np.min([n_threads + 1, max_seg_id-min_seg_id+1]) seg_id_blocks = np.linspace(min_seg_id, max_seg_id, n_blocks, dtype=np.uint64) cg_serialized_info = cg.get_serialized_info() if n_threads > 1: del cg_serialized_info["credentials"] multi_args = [] for i_id_block in range(0, len(seg_id_blocks) - 1): multi_args.append([seg_id_blocks[i_id_block], seg_id_blocks[i_id_block + 1], cg_serialized_info, time_stamp_start, time_stamp_end]) # Run parallelizing if n_threads == 1: results = mu.multiprocess_func(_read_delta_root_rows_thread, multi_args, n_threads=n_threads, verbose=False, debug=n_threads == 1) else: results = mu.multisubprocess_func(_read_delta_root_rows_thread, multi_args, n_threads=n_threads) # aggregate all the results together new_root_ids = [] expired_root_id_candidates = [] for r1, r2 in results: new_root_ids.extend(r1) expired_root_id_candidates.extend(r2) expired_root_id_candidates =
np.array(expired_root_id_candidates, dtype=np.uint64)
numpy.array
""" Test for file IO """ import pytest import numpy as np from bioptim import OdeSolver from .utils import TestUtils @pytest.mark.parametrize("ode_solver", [OdeSolver.RK4, OdeSolver.RK8, OdeSolver.IRK]) def test_muscle_driven_ocp(ode_solver): bioptim_folder = TestUtils.bioptim_folder() static_arm = TestUtils.load_module(bioptim_folder + "/examples/muscle_driven_ocp/static_arm.py") ode_solver = ode_solver() ocp = static_arm.prepare_ocp( bioptim_folder + "/examples/muscle_driven_ocp/arm26.bioMod", final_time=2, n_shooting=10, weight=1, ode_solver=ode_solver, ) sol = ocp.solve() # Check constraints g = np.array(sol.constraints) np.testing.assert_equal(g.shape, (40, 1)) np.testing.assert_almost_equal(g, np.zeros((40, 1)), decimal=6) # Check some of the results q, qdot, tau, mus = sol.states["q"], sol.states["qdot"], sol.controls["tau"], sol.controls["muscles"] if isinstance(ode_solver, OdeSolver.IRK): # Check objective function value f = np.array(sol.cost) np.testing.assert_equal(f.shape, (1, 1)) np.testing.assert_almost_equal(f[0, 0], 0.14351611580879933) # initial and final position np.testing.assert_almost_equal(q[:, 0], np.array([0.07, 1.4])) np.testing.assert_almost_equal(q[:, -1], np.array([-0.94511299, 3.07048865])) # initial and final velocities np.testing.assert_almost_equal(qdot[:, 0], np.array([0.0, 0.0])) np.testing.assert_almost_equal(qdot[:, -1], np.array([0.41149114, -0.55863385])) # initial and final controls np.testing.assert_almost_equal(tau[:, 0], np.array([0.00147561, 0.00520749])) np.testing.assert_almost_equal(tau[:, -1], np.array([-0.00027953, 0.00069257])) np.testing.assert_almost_equal( mus[:, 0], np.array([2.29029533e-06, 1.64976642e-01, 1.00004898e-01, 4.01974257e-06, 4.13014984e-06, 1.03945583e-01]), ) np.testing.assert_almost_equal( mus[:, -1], np.array([4.25940361e-03, 3.21754460e-05, 3.12984790e-05, 2.00725054e-03, 1.99993619e-03, 1.81725854e-03]), ) elif isinstance(ode_solver, OdeSolver.RK8): # Check objective function value f = np.array(sol.cost) np.testing.assert_equal(f.shape, (1, 1)) np.testing.assert_almost_equal(f[0, 0], 0.14350914060136277) # initial and final position np.testing.assert_almost_equal(q[:, 0], np.array([0.07, 1.4])) np.testing.assert_almost_equal(q[:, -1], np.array([-0.94510844, 3.07048231])) # initial and final velocities np.testing.assert_almost_equal(qdot[:, 0], np.array([0.0, 0.0])) np.testing.assert_almost_equal(qdot[:, -1], np.array([0.41151235, -0.55866253])) # initial and final controls np.testing.assert_almost_equal(tau[:, 0], np.array([0.00147777, 0.00520795])) np.testing.assert_almost_equal(tau[:, -1], np.array([-0.00027953, 0.00069258])) np.testing.assert_almost_equal( mus[:, 0], np.array([2.28863414e-06, 1.65011897e-01, 1.00017224e-01, 4.01934660e-06, 4.12974244e-06, 1.03954780e-01]), ) np.testing.assert_almost_equal( mus[:, -1], np.array([4.25990460e-03, 3.21893307e-05, 3.13077447e-05, 2.01209936e-03, 2.00481801e-03, 1.82353344e-03]), ) else: # Check objective function value f = np.array(sol.cost) np.testing.assert_equal(f.shape, (1, 1)) np.testing.assert_almost_equal(f[0, 0], 0.14350464848810182) # initial and final position np.testing.assert_almost_equal(q[:, 0], np.array([0.07, 1.4])) np.testing.assert_almost_equal(q[:, -1], np.array([-0.9451058, 3.0704789])) # initial and final velocities np.testing.assert_almost_equal(qdot[:, 0], np.array([0.0, 0.0])) np.testing.assert_almost_equal(qdot[:, -1], np.array([0.4115254, -0.5586797])) # initial and final controls np.testing.assert_almost_equal(tau[:, 0], np.array([0.0014793, 0.0052082])) np.testing.assert_almost_equal(tau[:, -1], np.array([-0.0002795, 0.0006926])) np.testing.assert_almost_equal( mus[:, 0], np.array([2.2869218e-06, 1.6503522e-01, 1.0002514e-01, 4.0190181e-06, 4.1294041e-06, 1.0396051e-01]), ) np.testing.assert_almost_equal( mus[:, -1], np.array([4.2599283e-03, 3.2188697e-05, 3.1307377e-05, 2.0121186e-03, 2.0048373e-03, 1.8235679e-03]), ) # save and load TestUtils.save_and_load(sol, ocp, False) # simulate TestUtils.simulate(sol) @pytest.mark.parametrize("ode_solver", [OdeSolver.RK4]) # Only one solver since it is very long def test_muscle_activations_with_contact_driven_ocp(ode_solver): # TODO: This test should be removed when DynamicsFcn.MUSCLE_ACTIVATIONS_AND_TORQUE_DRIVEN_WITH_CONTACT is # unitary tested # Load static_arm_with_contact bioptim_folder = TestUtils.bioptim_folder() static_arm = TestUtils.load_module(bioptim_folder + "/examples/muscle_driven_ocp/static_arm_with_contact.py") ode_solver = ode_solver() ocp = static_arm.prepare_ocp( bioptim_folder + "/examples/muscle_driven_ocp/arm26_with_contact.bioMod", final_time=2, n_shooting=10, weight=1, ode_solver=ode_solver, ) sol = ocp.solve() if isinstance(ode_solver, OdeSolver.IRK): # Check objective function value f = np.array(sol.cost) np.testing.assert_equal(f.shape, (1, 1)) np.testing.assert_almost_equal(f[0, 0], 0.14351397970185203) # Check constraints g = np.array(sol.constraints) np.testing.assert_equal(g.shape, (60, 1)) np.testing.assert_almost_equal(g, np.zeros((60, 1)), decimal=6) # Check some of the results q, qdot, tau, mus = sol.states["q"], sol.states["qdot"], sol.controls["tau"], sol.controls["muscles"] # initial and final position np.testing.assert_almost_equal(q[:, 0], np.array([0, 0.07, 1.4])) np.testing.assert_almost_equal(q[:, -1], np.array([0.0081671, -0.94509584, 3.07047323])) # initial and final velocities np.testing.assert_almost_equal(qdot[:, 0], np.array([0, 0.0, 0.0])) np.testing.assert_almost_equal(qdot[:, -1], np.array([0.00093981, 0.41157421, -0.55870943])) # initial and final controls np.testing.assert_almost_equal(tau[:, 0], np.array([-3.49332839e-07, 1.47494809e-03, 5.20721575e-03])) np.testing.assert_almost_equal(tau[:, -1], np.array([-2.72476211e-06, -2.79524486e-04, 6.92600551e-04])) np.testing.assert_almost_equal( mus[:, 0], np.array([2.29081617e-06, 1.64961906e-01, 9.99986809e-02, 4.01995665e-06, 4.13036938e-06, 1.03940164e-01]), ) np.testing.assert_almost_equal( mus[:, -1], np.array([4.25988708e-03, 3.21882769e-05, 3.13076618e-05, 2.01160287e-03, 2.00431774e-03, 1.82289866e-03]), ) elif isinstance(ode_solver, OdeSolver.RK8): # Check objective function value f = np.array(sol.cost) np.testing.assert_equal(f.shape, (1, 1)) np.testing.assert_almost_equal(f[0, 0], 0.14350699571954104) # Check constraints g = np.array(sol.constraints) np.testing.assert_equal(g.shape, (60, 1)) np.testing.assert_almost_equal(g, np.zeros((60, 1)), decimal=6) # Check some of the results q, qdot, tau, mus = sol.states["q"], sol.states["qdot"], sol.controls["tau"], sol.controls["muscles"] # initial and final position np.testing.assert_almost_equal(q[:, 0], np.array([0, 0.07, 1.4])) np.testing.assert_almost_equal(q[:, -1], np.array([0.00816709, -0.94509077, 3.07046606])) # initial and final velocities np.testing.assert_almost_equal(qdot[:, 0], np.array([0, 0.0, 0.0])) np.testing.assert_almost_equal(qdot[:, -1], np.array([0.00093983, 0.411599, -0.55874465])) # initial and final controls np.testing.assert_almost_equal(tau[:, 0], np.array([-3.77284867e-07, 1.47710422e-03, 5.20766354e-03])) np.testing.assert_almost_equal(tau[:, -1], np.array([-2.72484502e-06, -2.79525145e-04, 6.92616311e-04])) np.testing.assert_almost_equal( mus[:, 0], np.array([2.28911678e-06, 1.64996819e-01, 1.00010798e-01, 4.01956674e-06, 4.12996816e-06, 1.03949142e-01]), ) np.testing.assert_almost_equal( mus[:, -1], np.array([4.25994595e-03, 3.21879960e-05, 3.13075455e-05, 2.01165125e-03, 2.00436616e-03, 1.82298538e-03]), ) else: # Check objective function value f = np.array(sol.cost) np.testing.assert_equal(f.shape, (1, 1)) np.testing.assert_almost_equal(f[0, 0], 0.1435025030068162) # Check constraints g = np.array(sol.constraints) np.testing.assert_equal(g.shape, (60, 1)) np.testing.assert_almost_equal(g, np.zeros((60, 1)), decimal=6) # Check some of the results q, qdot, tau, mus = sol.states["q"], sol.states["qdot"], sol.controls["tau"], sol.controls["muscles"] # initial and final position np.testing.assert_almost_equal(q[:, 0], np.array([0, 0.07, 1.4])) np.testing.assert_almost_equal(q[:, -1], np.array([0.0081671, -0.9450881, 3.0704626])) # initial and final velocities np.testing.assert_almost_equal(qdot[:, 0], np.array([0, 0.0, 0.0])) np.testing.assert_almost_equal(qdot[:, -1], np.array([0.0009398, 0.4116121, -0.5587618])) # initial and final controls np.testing.assert_almost_equal(tau[:, 0], np.array([-3.9652660e-07, 1.4785825e-03, 5.2079505e-03])) np.testing.assert_almost_equal(tau[:, -1], np.array([-2.7248808e-06, -2.7952503e-04, 6.9262306e-04])) np.testing.assert_almost_equal( mus[:, 0], np.array([2.2873915e-06, 1.6502014e-01, 1.0001872e-01, 4.0192359e-06, 4.1296273e-06, 1.0395487e-01]), ) np.testing.assert_almost_equal( mus[:, -1], np.array([4.2599697e-03, 3.2187363e-05, 3.1307175e-05, 2.0116712e-03, 2.0043861e-03, 1.8230214e-03]), ) # save and load TestUtils.save_and_load(sol, ocp, False) # simulate TestUtils.simulate(sol) @pytest.mark.parametrize("ode_solver", [OdeSolver.RK4]) # Only one solver since it is very long def test_muscle_excitation_with_contact_driven_ocp(ode_solver): # Load contact_forces_inequality_constraint_muscle_excitations bioptim_folder = TestUtils.bioptim_folder() contact = TestUtils.load_module( bioptim_folder + "/examples/muscle_driven_with_contact/contact_forces_inequality_constraint_muscle_excitations.py" ) boundary = 50 ode_solver = ode_solver() ocp = contact.prepare_ocp( bioptim_folder + "/examples/muscle_driven_with_contact/2segments_4dof_2contacts_1muscle.bioMod", phase_time=0.3, n_shooting=10, min_bound=boundary, ode_solver=ode_solver, ) sol = ocp.solve() # Check objective function value f = np.array(sol.cost) np.testing.assert_equal(f.shape, (1, 1)) np.testing.assert_almost_equal(f[0, 0], 0.14525619) # Check some of the results q, qdot, mus_states, tau, mus_controls = ( sol.states["q"], sol.states["qdot"], sol.states["muscles"], sol.controls["tau"], sol.controls["muscles"], ) if isinstance(ode_solver, OdeSolver.IRK): # Check constraints g = np.array(sol.constraints) np.testing.assert_equal(g.shape, (110, 1)) np.testing.assert_almost_equal(g[:90], np.zeros((90, 1)), decimal=6) np.testing.assert_array_less(-g[90:], -boundary) expected_pos_g = np.array( [ [51.5414325], [52.77742181], [57.57780262], [62.62940016], [65.1683722], [66.33551167], [65.82614885], [63.06016376], [57.23683342], [50.47124118], [156.35594176], [136.1362431], [89.86994764], [63.41325331], [57.493027], [55.09716611], [53.77813649], [52.90987628], [52.19502561], [50.56093511], ] ) np.testing.assert_almost_equal(g[90:], expected_pos_g) # initial and final position np.testing.assert_almost_equal(q[:, 0], np.array([0.0, 0.0, -0.75, 0.75])) np.testing.assert_almost_equal( q[:, -1], np.array([-3.40708085e-01, 1.34155553e-01, -2.22589697e-04, 2.22589697e-04]) ) # initial and final velocities np.testing.assert_almost_equal(qdot[:, 0], np.array([0.0, 0.0, 0.0, 0.0])) np.testing.assert_almost_equal( qdot[:, -1], np.array([-2.01858700e00, 4.49316671e-04, 4.03717411e00, -4.03717411e00]) ) # initial and final muscle state np.testing.assert_almost_equal(mus_states[:, 0], np.array([0.5])) np.testing.assert_almost_equal(mus_states[:, -1], np.array([0.52946019])) # initial and final controls np.testing.assert_almost_equal(tau[:, 0], np.array([-54.08860398])) np.testing.assert_almost_equal(tau[:, -1], np.array([-26.70209712])) np.testing.assert_almost_equal(mus_controls[:, 0], np.array([0.48071638])) np.testing.assert_almost_equal(mus_controls[:, -1], np.array([0.40159522])) elif isinstance(ode_solver, OdeSolver.RK8): # Check constraints g = np.array(sol.constraints) np.testing.assert_equal(g.shape, (110, 1)) np.testing.assert_almost_equal(g[:90], np.zeros((90, 1)), decimal=6) np.testing.assert_array_less(-g[90:], -boundary) expected_pos_g = np.array( [ [51.54108548], [52.77720093], [57.5776414], [62.62966321], [65.16873337], [66.33594321], [65.82669791], [63.06102595], [57.23848183], [50.47112677], [156.35763657], [136.13688244], [89.86990489], [63.41179686], [57.49195628], [55.09640086], [53.77757475], [52.9094631], [52.19492485], [50.56081268], ] ) np.testing.assert_almost_equal(g[90:], expected_pos_g) # initial and final position np.testing.assert_almost_equal(q[:, 0], np.array([0.0, 0.0, -0.75, 0.75])) np.testing.assert_almost_equal( q[:, -1], np.array([-3.40708085e-01, 1.34155553e-01, -2.22589697e-04, 2.22589697e-04]) ) # initial and final velocities np.testing.assert_almost_equal(qdot[:, 0], np.array([0.0, 0.0, 0.0, 0.0])) np.testing.assert_almost_equal( qdot[:, -1], np.array([-2.01866580e00, 4.49415846e-04, 4.03733171e00, -4.03733171e00]) ) # initial and final muscle state np.testing.assert_almost_equal(mus_states[:, 0], np.array([0.5])) np.testing.assert_almost_equal(mus_states[:, -1], np.array([0.5289569])) # initial and final controls np.testing.assert_almost_equal(tau[:, 0], np.array([-54.0891972])) np.testing.assert_almost_equal(tau[:, -1], np.array([-26.7018241])) np.testing.assert_almost_equal(mus_controls[:, 0], np.array([0.4808524])) np.testing.assert_almost_equal(mus_controls[:, -1], np.array([0.4007721])) else: # Check constraints g = np.array(sol.constraints) np.testing.assert_equal(g.shape, (110, 1)) np.testing.assert_almost_equal(g[:90], np.zeros((90, 1))) np.testing.assert_array_less(-g[90:], -boundary) expected_pos_g = np.array( [ [51.5673555], [52.82179693], [57.5896514], [62.60246484], [65.13414631], [66.29498636], [65.77592127], [62.98288508], [57.0934291], [50.47918162], [156.22933663], [135.96633458], [89.93755291], [63.57705684], [57.59613028], [55.17020948], [53.83337907], [52.95213608], [52.20317604], [50.57048159], ] ) np.testing.assert_almost_equal(g[90:], expected_pos_g, decimal=6) # initial and final position np.testing.assert_almost_equal(q[:, 0], np.array([0.0, 0.0, -0.75, 0.75])) np.testing.assert_almost_equal( q[:, -1], np.array([-3.40710032e-01, 1.34155565e-01, -2.18684502e-04, 2.18684502e-04]) ) # initial and final velocities np.testing.assert_almost_equal(qdot[:, 0], np.array([0.0, 0.0, 0.0, 0.0])) np.testing.assert_almost_equal( qdot[:, -1], np.array([-2.01607708e00, 4.40761528e-04, 4.03215433e00, -4.03215433e00]) ) # initial and final muscle state np.testing.assert_almost_equal(mus_states[:, 0], np.array([0.5])) np.testing.assert_almost_equal(mus_states[:, -1], np.array([0.54388439])) # initial and final controls np.testing.assert_almost_equal(tau[:, 0],
np.array([-54.04429218])
numpy.array
import sparse from sparse._settings import NEP18_ENABLED from sparse._utils import assert_eq import numpy as np import pytest from hypothesis import settings, given, strategies as st from _utils import gen_sparse_random if not NEP18_ENABLED: pytest.skip("NEP18 is not enabled", allow_module_level=True) @settings(deadline=None) @given( func=st.sampled_from( [ np.mean, np.std, np.var, np.sum, lambda x: np.sum(x, axis=0), lambda x: np.transpose(x), ] ), y=gen_sparse_random((50, 50), density=0.25), ) def test_unary(func, y): x = y.todense() xx = func(x) yy = func(y) assert_eq(xx, yy) @settings(deadline=None) @given( arg_order=st.sampled_from([(0, 1), (1, 0), (1, 1)]), func=st.sampled_from([np.dot, np.result_type, np.tensordot, np.matmul]), y=gen_sparse_random((50, 50), density=0.25), ) def test_binary(func, arg_order, y): x = y.todense() xx = func(x, x) args = [(x, y)[i] for i in arg_order] yy = func(*args) if isinstance(xx, np.ndarray): assert_eq(xx, yy) else: # result_type returns a dtype assert xx == yy @given(y=gen_sparse_random((50, 50), density=0.25)) def test_stack(y): """stack(), by design, does not allow for mixed type inputs""" x = y.todense() xx =
np.stack([x, x])
numpy.stack
# packages import os import sys import json import time import requests import datetime import argparse import sseclient import numpy as np import multiprocessing as mpr # plotting import matplotlib.pyplot as plt import matplotlib from matplotlib import cm from matplotlib.colors import Normalize # set matplotlib backend matplotlib.use('TkAgg') # project import heatmap.helpers as hlp import heatmap.miniclasses as mcl class Director(): """ Handles all API interfacing, including fetching sensors list and updating them. Imports room layout and calculates euclidean distance maps during initialisation. When new event data arrives in stream, delegate to the correct sensor for update. """ def __init__(self, username='', password='', project_id='', api_url_base='', t_range=[0, 40], resolution=5, cache_dir='/tmp/', pickle_id='hmap_'): """ Initialise Director class. Parameters ---------- username : str DT Studio service account key. password : str DT Studio service account secret. project_id : str DT Studio project identifier. api_url_base : str Endpoint for API. t_range : [float, float] Temperature range [min, max] used in visualization. resolution : int Number of points per meter in heatmap grid. cache_dir : str Absolute path to directory used for caching distance maps. pickle_id : str Identifier used for files cached in cache_dir. """ # give to self self.username = username self.password = password self.project_id = project_id self.api_url_base = api_url_base self.t_range = t_range self.resolution = resolution self.cache_dir = cache_dir self.pickle_id = pickle_id # variables self.last_update = -1 self.sample = False self.cc = 0 # set stream endpoint self.stream_endpoint = "{}/projects/{}/devices:stream".format(self.api_url_base, self.project_id) # parse system arguments self.__parse_sysargs() # set history- and streaming filters self.__set_filters() # inherit rooms layout self.__decode_json_layout() # get limits for x- and y- axes self.__generate_bounding_box() # generate distance map for each sensor if self.args['debug']: self.__euclidean_map_debug() else: self.__euclidean_map_threaded() # spawn heatmap self.heatmap = np.zeros(shape=self.X.shape) # check if sample is set if self.sample: print('\nUsing sample layout. No historic- of streaming data will be used.') print('For this, provide a layout using the --layout argument.') self.update_heatmap() self.plot_heatmap(update_time='Sample Layout', show=True) sys.exit() def __parse_sysargs(self): """ Parse for command line arguments. """ # create parser object parser = argparse.ArgumentParser(description='Heatmap generation on Stream and Event History.') # get UTC time now now = (datetime.datetime.utcnow().replace(microsecond=0)).isoformat() + 'Z' # general arguments parser.add_argument('--layout', metavar='', help='Json file with room layout.', required=False) parser.add_argument('--starttime', metavar='', help='Event history UTC starttime [YYYY-MM-DDTHH:MM:SSZ].', required=False, default=now) parser.add_argument('--endtime', metavar='', help='Event history UTC endtime [YYYY-MM-DDTHH:MM:SSZ].', required=False, default=now) parser.add_argument('--timestep', metavar='', help='Heatmap update period.', required=False, default=3600, type=int) # boolean flags parser.add_argument('--no-plot', action='store_true', help='Suppress plots in stream.') parser.add_argument('--debug', action='store_true', help='Disables multithreading for debug visualization.') parser.add_argument('--read', action='store_true', help='Import cached distance maps.') # convert to dictionary self.args = vars(parser.parse_args()) # set history flag if now == self.args['starttime']: self.fetch_history = False else: self.fetch_history = True def __new_event_data(self, event_data, cout=True): """ Receive new event_data json and pass it along to the correct room instance. Parameters ---------- event_data : dictionary Data json containing new event data. cout : bool Will print event information to console if True. """ # get id of source sensor source_id = os.path.basename(event_data['targetName']) # verify temperature event if 'temperature' in event_data['data'].keys(): # check if sensor is in this room for sensor in self.sensors + self.oofs: if source_id == sensor.sensor_id: # give data to room sensor.new_event_data(event_data) if cout: print('-- New temperature {} for {} at [{}, {}].'.format(event_data['data']['temperature']['value'], source_id, sensor.x, sensor.y)) return True elif 'objectPresent' in event_data['data']: # find correct door for door in self.doors: if source_id == door.sensor_id: # give state to door door.new_event_data(event_data) if cout: print('-- New door state {} for {} at [{}, {}].'.format(event_data['data']['objectPresent']['state'], source_id, door.x, door.y)) return True return False def __check_timestep(self, unixtime): """ Check if more time than --timestep has passed since last heatmap update. Parameters ---------- unixtime : int Seconds since 01-Jan 1970. Returns ------- return : bool True if time to update heatmap. False if we're still waiting. """ # check time since last update if self.last_update < 0: # update time to this event time self.last_update = unixtime return False elif unixtime - self.last_update > self.args['timestep']: # update timer to this event time self.last_update = unixtime return True def __decode_json_layout(self): """ Parse json layout file and spawn related class objects. """ # import json to dictionary if self.args['layout'] != None: path = self.args['layout'] else: path = os.path.join(os.path.join(os.path.dirname(__file__), '..'), 'config', 'sample_layout.json') self.sample = True jdict = hlp.import_json(path) # count rooms and doors n_rooms = len(jdict['rooms']) n_doors = len(jdict['doors']) # initialise object lists self.rooms = [mcl.Room() for i in range(n_rooms)] self.doors = [mcl.Door() for i in range(n_doors)] # get rooms in dict for ri in range(n_rooms): # isolate room jdict_room = jdict['rooms'][ri] # count corners and sensors n_corners = len(jdict_room['corners']) n_sensors = len(jdict_room['sensors']) # adopt name self.rooms[ri].name = jdict_room['name'] # give room list of corner and sensor objects self.rooms[ri].corners = [mcl.Corner(x=None, y=None) for i in range(n_corners)] self.rooms[ri].sensors = [mcl.Sensor(x=None, y=None) for i in range(n_sensors)] # update corners for ci in range(n_corners): # isolate json corner and give to room corner jdict_corner = jdict_room['corners'][ci] self.rooms[ri].corners[ci].set_coordinates(x=jdict_corner['x'], y=jdict_corner['y']) # update sensors for si in range(n_sensors): # isolate json sensor and give to room sensor jdict_sensor = jdict_room['sensors'][si] self.rooms[ri].sensors[si].post_initialise(jdict_sensor['x'], jdict_sensor['y'], jdict_sensor['sensor_id'], room_number=ri) # give t0 if exists if 't0' in jdict_sensor: self.rooms[ri].sensors[si].t = jdict_sensor['t0'] # get doors in dict for di in range(n_doors): # isolate doors jdict_door = jdict['doors'][di] # find rooms which door connects r1 = None r2 = None for room in self.rooms: if room.name == jdict_door['room1']: r1 = room if room.name == jdict_door['room2']: r2 = room # exit if rooms not found. Error in layout. if r1 == None or r2 == None: hlp.print_error('Error in layout. Door [{}] not connected to [{}] and [{}].'.format(jdict_door['name'], jdict_door['room1'], jdict_door['room2']), terminate=True) # reformat for easier updating p1 = [jdict_door['p1']['x'], jdict_door['p1']['y']] p2 = [jdict_door['p2']['x'], jdict_door['p2']['y']] # give variables to door object self.doors[di].post_initialise(p1, p2, r1, r2, jdict_door['sensor_id'], di) # give state if it exists if 'closed' in jdict_door: self.doors[di].closed = jdict_door['closed'] # adopt all sensors to self self.sensors = [] for room in self.rooms: for sensor in room.sensors: self.sensors.append(sensor) self.n_sensors = len(self.sensors) # get objects of interest in dict n_oofs = len(jdict['oofs']) self.oofs = [mcl.Sensor(x=None, y=None) for i in range(n_oofs)] for i, oof in enumerate(jdict['oofs']): self.oofs[i].post_initialise(x=oof['x'], y=oof['y'], sensor_id=oof['sensor_id'], room_number=None) # give t0 if exists if 't0' in oof: self.oofs[i].t = oof['t0'] def __generate_bounding_box(self): """ Set grid dimension limits based on layout corners. """ # find limits for x- and y-axis self.xlim = [0, 0] self.ylim = [0, 0] # iterate rooms for room in self.rooms: # iterate corners in room: for c in room.corners: if c.x < self.xlim[0]: self.xlim[0] = c.x if c.x > self.xlim[1]: self.xlim[1] = c.x if c.y < self.ylim[0]: self.ylim[0] = c.y if c.y > self.ylim[1]: self.ylim[1] = c.y # rounding self.xlim = [int(np.floor(self.xlim[0])), int(np.ceil(self.xlim[1]))] self.ylim = [int(np.floor(self.ylim[0])), int(np.ceil(self.ylim[1]))] # set maximum dimension for any axis self.maxdim = max(self.xlim[1]-self.xlim[0], self.ylim[1]-self.ylim[0]) # generate interpolation axes self.x_interp = np.linspace(self.xlim[0], self.xlim[1], int(self.resolution*(self.xlim[1]-self.xlim[0])+0.5)) self.y_interp = np.linspace(self.ylim[0], self.ylim[1], int(self.resolution*(self.ylim[1]-self.ylim[0])+0.5)) # convert to compatible grid self.X, self.Y = np.meshgrid(self.x_interp, self.y_interp) def __populate_grid(self, D, N, M, corner, room): """ Scan matrix and populate with euclidean distance for cells in line of sight of corner. Parameters ---------- D : 2d ndarray Matrix to be populated. corner : object Corner Point object for which we check line of sight. Returns ------- D : 2d ndarray Populated matrix. """ # iterate x- and y-axis axis for x, gx in enumerate(self.x_interp): for y, gy in enumerate(self.y_interp): # set active node node = mcl.Point(self.x_interp[x], self.y_interp[y]) # get distance from corner to node if in line of sight if not self.__has_direct_los(mcl.Point(corner.x+corner.dx, corner.y+corner.dy), node, room): continue d = hlp.euclidean_distance(corner.x, corner.y, node.x, node.y) # update map if d is a valid value if d != None: # add distance from sensor to corner d += corner.dmin # update map if less than existing value if D[y, x] == 0 or d < D[y, x]: D[y, x] = d N[y, x] = len(corner.visited_doors) M[y][x] = [door.number for door in corner.visited_doors] return D, N, M def __reset_pathfinding_variables(self): """ Reset room, corner and door variables to their initial state. """ for room in self.rooms: for corner in room.corners: corner.dmin = None corner.shortest_path = [] corner.visited_doors = [] corner.unused = True for door in self.doors: door.unused = True for of in [door.o1, door.o2]: of.dmin = None of.shortest_path = [] of.visited_doors = [] def __euclidean_map_debug(self): """ Debug version of the euclidean distance mapping routine. Does the same as __euclidean_map_threaded(), but without multithreading. """ # iterate sensors for i, sensor in enumerate(self.sensors): # initialise sensor distance map sensor.emap = np.zeros(shape=self.X.shape) # reset room corner distances self.__reset_pathfinding_variables() # recursively find shortest distance to all valid corners path = [] doors = [] _, _ = self.__find_shortest_paths(sensor, self.rooms[sensor.room_number], path, doors, dr=0) # initialise grids sensor.D = np.zeros(shape=self.X.shape) sensor.N = np.zeros(shape=self.X.shape) sensor.M = [[[] for y in range(self.X.shape[1])] for x in range(self.X.shape[0])] # populate map from sensor poitn of view sensor.D, sensor.N, sensor.M = self.__populate_grid(sensor.D, sensor.N, sensor.M, sensor, self.rooms[sensor.room_number]) if 1: self.plot_debug(start=sensor, grid=[sensor.D]) # populate grid with distances from each corner for ri, room in enumerate(self.rooms): # fill from doors for di, door in enumerate(self.doors): print('Sensor {}, Room {}, Door {}'.format(i, ri, di)) if door.outbound_room == room: offset_node = door.outbound_offset if len(offset_node.shortest_path) > 0: sensor.D, sensor.N, sensor.M = self.__populate_grid(sensor.D, sensor.N, sensor.M, offset_node, room) # plot population process if 1: self.plot_debug(start=sensor, grid=[sensor.D], paths=offset_node.shortest_path) # fill from corners for ci, corner in enumerate(room.corners): print('Sensor {}, Room {}, Corner {}'.format(i, ri, ci)) if len(corner.shortest_path) > 0: sensor.D, sensor.N, sensor.M = self.__populate_grid(sensor.D, sensor.N, sensor.M, corner, room) # plot population process if 1: self.plot_debug(start=sensor, grid=[sensor.D], paths=corner.shortest_path) # plot population result if 1: self.plot_debug(start=sensor, grid=[sensor.D]) def __euclidean_map_threaded(self): """ Generate euclidean distance map for each sensor. Applies multiprocessing for a significant reduction in execution time. """ def map_process(sensor, i): """ Same as __euclidean_map_threaded() but must be isolated in a function for multiprocessing. Writes populated distance maps to cache_dir so that we only have to do this once. It's slow. Parameters ---------- sensor : object Sensor object with coordinates and temperature information. i : int Sensor number in list. """ self.__reset_pathfinding_variables() # recursively find shortest path from sensor to all corners path = [] doors = [] _, _ = self.__find_shortest_paths(sensor, self.rooms[sensor.room_number], path, doors, dr=0) # initialise grids sensor.D = np.zeros(shape=self.X.shape) sensor.N = np.zeros(shape=self.X.shape) sensor.M = [[[] for y in range(self.X.shape[1])] for x in range(self.X.shape[0])] # populate map from sensor poitn of view sensor.D, sensor.N, sensor.M = self.__populate_grid(sensor.D, sensor.N, sensor.M, sensor, self.rooms[sensor.room_number]) # populate grid with distances from each corner for ri, room in enumerate(self.rooms): # fill from doors for di, door in enumerate(self.doors): print('Populating distance map: sensor {:>3}, room {:>3}, door {:>3}'.format(i, ri, di)) if door.outbound_room == room: offset_node = door.outbound_offset if len(offset_node.shortest_path) > 0: sensor.D, sensor.N, sensor.M = self.__populate_grid(sensor.D, sensor.N, sensor.M, offset_node, room) # fill from corners for ci, corner in enumerate(room.corners): print('Populating distance map: sensor {:>3}, room {:>3}, corner {:>3}'.format(i, ri, ci)) if len(corner.shortest_path) > 0: sensor.D, sensor.N, sensor.M = self.__populate_grid(sensor.D, sensor.N, sensor.M, corner, room) # write sensor object to pickle hlp.write_pickle(sensor, os.path.join(self.cache_dir, self.pickle_id + '{}.pkl'.format(i)), cout=True) # just skip everything and read from cache if so desired if self.args['read']: self.__get_cached_sensors() return # initialise variables needed for process procs = [] nth_proc = 0 # iterate sensors for i, sensor in enumerate(self.sensors): # spawn a thread per sensor proc = mpr.Process(target=map_process, args=(sensor, i)) procs.append(proc) proc.start() print('-- Process #{} spawned.'.format(nth_proc)) nth_proc = nth_proc + 1 # wait for each individual process to finish nth_proc = 0 for proc in procs: proc.join() print('-- Process #{} completed.'.format(nth_proc)) nth_proc = nth_proc + 1 # fetch sensors from cache self.__get_cached_sensors() def __get_cached_sensors(self): """ Exchange self.sensors with sensors cached in cache_dir. Usually called to recover previously calculated distance maps. """ # get files in cache cache_files = os.listdir(self.cache_dir) # iterate sensors for i in range(self.n_sensors): # keep track of if we found the pickle found = False # iterate files in cache for f in cache_files: # look for correct pickle if self.pickle_id + '{}.pkl'.format(i) in f and not found: # read pickle pickle_path = os.path.join(self.cache_dir, self.pickle_id + '{}.pkl'.format(i)) pickle_sensor = hlp.read_pickle(pickle_path, cout=True) # exchange self.sensors[i].D = pickle_sensor.D self.sensors[i].N = pickle_sensor.N self.sensors[i].M = pickle_sensor.M # found it found = True # shouldn't happen, but just in case if not found: hlp.print_error('Pickle at [{}] does not exist. Try running without --read.'.format(pickle_path), terminate=True) def __find_shortest_paths(self, start, room, path, doors, dr): """ Recursively find the shortest path from sensor to every corner in layout. Parameters ---------- start : object Point object of were we currently have point of view. room : object Room object of which room we are currently in. path : list List of previously visited points in the current recursive branch. doors : list List of doors which have been passed through in the current recursive branch. dr : float Total distance traveled from initial sensor start location. Returns ------- path : list List of visited points in the current recursive branch, including current. doors : list List of doors which have been passed through in the current recursive branch. """ # append path with active node path.append(start) # stop if we've been here before on a shorter path if start.dmin != None and dr > start.dmin: return path, doors # as this is currently the sortest path from sensor to active, copy it to active start.dmin = dr start.shortest_path = [p for p in path] start.visited_doors = [d for d in doors] # find candidate corners for path expansion corner_candidates = self.__get_corner_candidates(start, room) door_candidates = self.__get_door_candidates(start, room) # plot candidates if 0: self.plot_debug(start=start, goals=corner_candidates + door_candidates, show=False) # recursively iterate candidates for c in corner_candidates: # calculate distance to candidate ddr = hlp.euclidean_distance(start.x, start.y, c.x, c.y) # recursive path, doors = self.__find_shortest_paths(c, room, path, doors, dr+ddr) path.pop() for c in corner_candidates: c.unused = True for d in door_candidates: # calculate distance to candidate ddr = hlp.euclidean_distance(start.x, start.y, d.inbound_offset.x, d.inbound_offset.y) # fix offset d.outbound_offset.dx = 0 d.outbound_offset.dy = 0 # append to doors list doors.append(d) # recursive path, doors = self.__find_shortest_paths(d.outbound_offset, d.outbound_room, path, doors, dr+ddr) # pop lists as we're back to current depth path.pop() doors.pop() for d in door_candidates: d.unused = True return path, doors def __get_corner_candidates(self, start, room): """ Return a list of corners which can be used as next step in recursive __find_shortest_paths(). Parameters ---------- start : object Point object of were we currently have point of view. room : object Room object of which room we are currently in. Returns ------- candidates : list List of corners in room which can be used for next recursive step. """ # initialise list candidates = [] # iterate corners in room for i, corner in enumerate(room.corners): # skip visisted if not corner.unused: continue # get offset dx, dy = self.__corner_offset(room.corners, i) # check if corner is candidate material if self.__has_direct_los(mcl.Point(start.x+start.dx, start.y+start.dy), mcl.Point(corner.x+dx, corner.y+dy), room): corner.dx = dx corner.dy = dy candidates.append(corner) corner.unused = False return candidates def __get_door_candidates(self, start, room): """ Return a list of doors which can be passed through as next step in recursive __find_shortest_paths(). Parameters ---------- start : object Point object of were we currently have point of view. room : object Room object of which room we are currently in. Returns ------- candidates : list List of doors in room which can be passed through. """ # initialise list candidates = [] # iterate corners in room for door in self.doors: # skip visisted if not door.unused: continue # check if we have LOS to either offset offset_start = mcl.Point(start.x+start.dx, start.y+start.dy) if self.__has_direct_los(offset_start, door.o1, room): if room == door.room1: door.outbound_room = door.room2 else: door.outbound_room = door.room1 door.inbound_offset = door.o1 door.outbound_offset = door.o2 candidates.append(door) door.unused = False elif self.__has_direct_los(offset_start, door.o2, room): if room == door.room1: door.outbound_room = door.room2 else: door.outbound_room = door.room1 door.inbound_offset = door.o2 door.outbound_offset = door.o1 candidates.append(door) door.unused = False return candidates def __has_direct_los(self, start, goal, room): """ Check if start has line of sight (LOS) to goal. Parameters ---------- start : object Point object used as point of view. goal : object Point object we check if we have LOS to. Returns ------- return : float Returns euclidean distance from start to goal if LOS is True. Returns None if no LOS. """ # check if los for i in range(len(room.corners)): # two corners define a wall which can be intersected ir = i + 1 if ir > len(room.corners)-1: ir = 0 if self.__line_intersects(start, goal, room.corners[i], room.corners[ir]): return False return True def __line_intersects(self, p1, q1, p2, q2): """ Determine if two lines intersect in 2-D space. Parameters ---------- p1 : float x-coordinate of first line. q1 : float y-coordinate of first line. p2 : float x-coordinate of second line. q2 : float y-coordinate of second line. Returns ------- return : bool True if lines intersect. False if no intersect. """ # find the 4 orientations required for the general and special cases o1 = self.__orientation(p1, q1, p2) o2 = self.__orientation(p1, q1, q2) o3 = self.__orientation(p2, q2, p1) o4 = self.__orientation(p2, q2, q1) # General case if ((o1 != o2) and (o3 != o4)): return True # special Cases # p1 , q1 and p2 are colinear and p2 lies on segment p1q1 if ((o1 == 0) and self.__on_segment(p1, p2, q1)): return True # p1 , q1 and q2 are colinear and q2 lies on segment p1q1 if ((o2 == 0) and self.__on_segment(p1, q2, q1)): return True # p2 , q2 and p1 are colinear and p1 lies on segment p2q2 if ((o3 == 0) and self.__on_segment(p2, p1, q2)): return True # p2 , q2 and q1 are colinear and q1 lies on segment p2q2 if ((o4 == 0) and self.__on_segment(p2, q1, q2)): return True # if none of the cases return False def __orientation(self, p, q, r): """ Find the orientation of an ordered triplet (p,q,r) function. See https://www.geeksforgeeks.org/orientation-3-ordered-points/amp/ for details. Parameters ---------- p : float First triplet index. q : float Second triplet index. r : float Third triplet index. Returns ------- return : int 0 if colinear points 1 if clockwise points 2 if counterclockwise """ val = (float(q.y - p.y) * (r.x - q.x)) - (float(q.x - p.x) * (r.y - q.y)) if (val > 0): # Clockwise orientation return 1 elif (val < 0): # Counterclockwise orientation return 2 else: # Colinear orientation return 0 def __on_segment(self, p, q, r): """ Determine if q is on the segment p-r. Parameters ---------- p : float First triplet index. q : float Second triplet index. r : float Third triplet index. Returns ------- return : bool True if on segment. False if not on segment. """ if ( (q.x <= max(p.x, r.x)) and (q.x >= min(p.x, r.x)) and (q.y <= max(p.y, r.y)) and (q.y >= min(p.y, r.y))): return True return False def __corner_offset(self, corners, i, eps=1/1e3): """ Generate a tiny offset in corner convex direction. Parameters ---------- corners : list List of corner objects in a room. i : int Index of current corner of interest in corner list. eps : float Distance of offset. Should be small. Returns ------- x_offset : float Offset in the x-direction. y_offset : float Offset in the y-direction. """ # circular buffer behavior for list edges il = i - 1 if il < 0: il = -1 ir = i + 1 if ir > len(corners) - 1: ir = 0 # isolate corner triplet around corner of interest pl = corners[il] pc = corners[i] pr = corners[ir] # get complex direction of corner triplet mx = np.sign(((pc.x - pl.x) + (pc.x - pr.x)) / 2) my = np.sign(((pc.y - pl.y) + (pc.y - pr.y)) / 2) # plot for debugging purposes if 0: plt.cla() for room in self.rooms: xx, yy = room.get_outline() plt.plot(xx, yy, '-k', linewidth=3) plt.plot(pl.x, pl.y, 'or') plt.plot(pr.x, pr.y, 'og') plt.plot(pc.x, pc.y, 'ok') plt.plot([pc.x, pl.x], [pc.y, pl.y], 'o-r', linewidth=3) plt.plot([pc.x, pr.x], [pc.y, pr.y], 'o-g', linewidth=3) plt.plot([pc.x, pc.x+mx], [pc.y, pc.y+my], 'o--k') plt.waitforbuttonpress() # multiply by epsilon x_offset = mx * eps y_offset = my * eps return x_offset, y_offset def update_heatmap(self): """ Using calculated distance- and door maps, update heatmap with temperature data. """ # iterate x- and y-axis axis for x, gx in enumerate(self.x_interp): for y, gy in enumerate(self.y_interp): # reset lists temperatures = [] distances = [] weights = [] # iterate sensors for room in self.rooms: for sensor in room.sensors: los = True # check if doors in path are closed if len(sensor.M[y][x]) > 0: for door in self.doors: if door.closed and door.number in sensor.M[y][x]: los = False # check if distance grid is valid here if los and sensor.D[y, x] > 0 and sensor.t != None: temperatures.append(sensor.t) distances.append(sensor.D[y, x]) # do nothing if no valid distances if len(distances) == 0: self.heatmap[y, x] = None elif len(distances) == 1: self.heatmap[y, x] = temperatures[0] else: # calculate weighted average weights = (1/(np.array(distances)))**2 temperatures =
np.array(temperatures)
numpy.array
import gettext import unittest import numpy import scipy.ndimage # local libraries from nion.swift import Facade from nion.data import DataAndMetadata from nion.swift.test import TestContext from nion.ui import TestUI from nion.swift import Application from nion.swift.model import DocumentModel from nionswift_plugin.nion_experimental_tools import MultiDimensionalProcessing _ = gettext.gettext Facade.initialize() def create_memory_profile_context() -> TestContext.MemoryProfileContext: return TestContext.MemoryProfileContext() class TestMultiDimensionalProcessing(unittest.TestCase): def setUp(self): self.app = Application.Application(TestUI.UserInterface(), set_global=True) self.app.workspace_dir = str() def tearDown(self): pass def test_function_apply_multi_dimensional_shifts_4d(self): with self.subTest("Test for a sequence of SIs, shift collection dimensions along sequence axis"): shape = (5, 2, 3, 4) data = numpy.arange(numpy.prod(shape)).reshape(shape) xdata = DataAndMetadata.new_data_and_metadata(data, data_descriptor=DataAndMetadata.DataDescriptor(True, 2, 1)) shifts = numpy.array([(0., 1.), (0., 2.), (0., 3.), (0., 4.), (0., 5.)]) result = MultiDimensionalProcessing.function_apply_multi_dimensional_shifts(xdata, shifts, "collection") shifted = numpy.empty_like(data) for i in range(shape[0]): shifted[i] = scipy.ndimage.shift(data[i], [shifts[i, 0], shifts[i, 1], 0.0], order=1) self.assertTrue(numpy.allclose(result.data, shifted)) with self.subTest("Test for a sequence of 1D collections of 2D data, shift data dimensions along sequence axis"): shape = (5, 2, 3, 4) data = numpy.arange(numpy.prod(shape)).reshape(shape) xdata = DataAndMetadata.new_data_and_metadata(data, data_descriptor=DataAndMetadata.DataDescriptor(True, 1, 2)) shifts = numpy.array([(0., 1.), (0., 2.), (0., 3.), (0., 4.), (0., 5.)]) result = MultiDimensionalProcessing.function_apply_multi_dimensional_shifts(xdata, shifts, "data") shifted = numpy.empty_like(data) for i in range(shape[0]): shifted[i] = scipy.ndimage.shift(data[i], [0.0, shifts[i, 0], shifts[i, 1]], order=1) self.assertTrue(numpy.allclose(result.data, shifted)) with self.subTest("Test for a sequence of SIs, shift data dimensions along collection and sequence axis"): shape = (5, 2, 3, 4) data = numpy.arange(numpy.prod(shape)).reshape(shape) xdata = DataAndMetadata.new_data_and_metadata(data, data_descriptor=DataAndMetadata.DataDescriptor(True, 2, 1)) shifts = numpy.linspace(0, 3, num=numpy.prod(shape[:-1])).reshape(shape[:-1]) result = MultiDimensionalProcessing.function_apply_multi_dimensional_shifts(xdata, shifts, "data") shifted = numpy.empty_like(data) for k in range(shape[0]): for i in range(shape[1]): for j in range(shape[2]): shifted[k, i, j] = scipy.ndimage.shift(data[k, i, j], [shifts[k, i, j]], order=1) self.assertTrue(numpy.allclose(result.data, shifted)) def test_function_apply_multi_dimensional_shifts_5d(self): with self.subTest("Test for a sequence of 4D images, shift collection dimensions along sequence axis"): shape = (5, 2, 3, 4, 6) data = numpy.arange(numpy.prod(shape)).reshape(shape) xdata = DataAndMetadata.new_data_and_metadata(data, data_descriptor=DataAndMetadata.DataDescriptor(True, 2, 2)) shifts = numpy.array([(0., 1.), (0., 2.), (0., 3.), (0., 4.), (0., 5.)]) result = MultiDimensionalProcessing.function_apply_multi_dimensional_shifts(xdata, shifts, "collection") shifted = numpy.empty_like(data) for i in range(shape[0]): shifted[i] = scipy.ndimage.shift(data[i], [shifts[i, 0], shifts[i, 1], 0.0, 0.0], order=1) self.assertTrue(numpy.allclose(result.data, shifted)) with self.subTest("Test for a sequence of 4D images, shift data dimensions along sequence axis"): shape = (5, 2, 3, 4, 6) data = numpy.arange(numpy.prod(shape)).reshape(shape) xdata = DataAndMetadata.new_data_and_metadata(data, data_descriptor=DataAndMetadata.DataDescriptor(True, 2, 2)) shifts = numpy.array([(0., 1.), (0., 2.), (0., 3.), (0., 4.), (0., 5.)]) result = MultiDimensionalProcessing.function_apply_multi_dimensional_shifts(xdata, shifts, "data") shifted = numpy.empty_like(data) for i in range(shape[0]): shifted[i] = scipy.ndimage.shift(data[i], [0.0, 0.0, shifts[i, 0], shifts[i, 1]], order=1) self.assertTrue(numpy.allclose(result.data, shifted)) with self.subTest("Test for a sequence of 4D images, shift sequence dimension along collection axis"): shape = (5, 2, 3, 4, 6) data = numpy.arange(numpy.prod(shape)).reshape(shape) xdata = DataAndMetadata.new_data_and_metadata(data, data_descriptor=DataAndMetadata.DataDescriptor(True, 2, 2)) shifts = numpy.array([(1., 1.5, 2.), (2.5, 3., 3.5)]) result = MultiDimensionalProcessing.function_apply_multi_dimensional_shifts(xdata, shifts, "sequence") shifted = numpy.empty_like(data) for k in range(shape[1]): for i in range(shape[2]): shifted[:, k, i] = scipy.ndimage.shift(data[:, k, i], [shifts[k, i], 0., 0.], order=1) self.assertTrue(numpy.allclose(result.data, shifted)) def test_function_measure_multi_dimensional_shifts_3d(self): with self.subTest("Test for a sequence of 2D data, measure shift of data dimensions along sequence axis"): shape = (5, 100, 100) reference_index = 0 data = numpy.random.rand(*shape[1:]) data = scipy.ndimage.gaussian_filter(data, 3.0) data = numpy.repeat(data[numpy.newaxis, ...], shape[0], axis=0) shifts = numpy.array([(0., 2.), (0., 5.), (0., 10.), (0., 2.5), (0., 3.)]) shifted = numpy.empty_like(data) for i in range(shape[0]): shifted[i] = scipy.ndimage.shift(data[i], [shifts[i, 0], shifts[i, 1]], order=1, cval=numpy.mean(data)) shifted_xdata = DataAndMetadata.new_data_and_metadata(shifted, data_descriptor=DataAndMetadata.DataDescriptor(True, 0, 2)) result = MultiDimensionalProcessing.function_measure_multi_dimensional_shifts(shifted_xdata, "data", reference_index=reference_index) self.assertTrue(numpy.allclose(result.data, -1.0 * (shifts - shifts[reference_index]), atol=0.5)) with self.subTest("Test for a 2D collection of 1D data, measure shift of data dimensions along collection axis"): shape = (5, 5, 100) reference_index = 0 data = numpy.random.rand(*shape[2:]) data = scipy.ndimage.gaussian_filter(data, 3.0) data = numpy.repeat(numpy.repeat(data[numpy.newaxis, ...], shape[1], axis=0)[numpy.newaxis, ...], shape[0], axis=0) shifts = numpy.random.rand(*shape[:2]) * 10.0 shifted = numpy.empty_like(data) for i in range(shape[0]): for j in range(shape[1]): shifted[i, j] = scipy.ndimage.shift(data[i, j], [shifts[i, j]], order=1, cval=numpy.mean(data)) shifted_xdata = DataAndMetadata.new_data_and_metadata(shifted, data_descriptor=DataAndMetadata.DataDescriptor(False, 2, 1)) result = MultiDimensionalProcessing.function_measure_multi_dimensional_shifts(shifted_xdata, "data", reference_index=reference_index) self.assertTrue(numpy.allclose(result.data, -1.0 * (shifts - shifts[numpy.unravel_index(reference_index, shifts.shape)]), atol=0.5)) with self.subTest("Test for a sequence of 2D data, measure shift of data dimensions along sequence axis relative to previous slice"): shape = (5, 100, 100) data = numpy.random.rand(*shape[1:]) data = scipy.ndimage.gaussian_filter(data, 3.0) data =
numpy.repeat(data[numpy.newaxis, ...], shape[0], axis=0)
numpy.repeat
""" Shared and general data handling functionality. """ import json import os import pickle import numpy as np from sklearn.utils import shuffle def index_make_random_shuffle(x): """ Shuffle indexarray. Args: x (np.array): Index to shuffle. Returns: np.array: Shuffled index. """ return shuffle(x) def make_random_shuffle(datalist, shuffle_ind=None): """ Shuffle a list od data. Args: datalist (list): List of numpy arrays of same length (axis=0). shuffle_ind (np.array): Array of shuffled index Returns: outlist (list): List of the shuffled data. """ datalen = len(datalist[0]) # this should be x data for x in datalist: if len(x) != datalen: print("Error: Data has inconsisten length") if shuffle_ind is None: allind = shuffle(np.arange(datalen)) else: allind = shuffle_ind if len(allind) != datalen: print("Warning: Datalength and shuffle index does not match") outlist = [] for x in datalist: outlist.append(x[allind]) return allind, outlist def save_data_to_folder(x, y, target_model, mod_dir, random_shuffle): """ Save all training data for model mlp_eg to folder. Args: x (np.array): Coordinates as x-data. y (list): A possible list of np.arrays for y-values. Energy, Gradients, NAC etc. target_model (str): Name of the Model to save data for. mod_dir (str): Path of model directory. random_shuffle (bool, optional): Whether to shuffle data before save. The default is False. Returns: None. """ # Save data: if not random_shuffle: with open(os.path.join(mod_dir, 'data_x'), 'wb') as f: pickle.dump(x, f) with open(os.path.join(mod_dir, 'data_y'), 'wb') as f: pickle.dump(y, f) else: if isinstance(y, list): shuffle_list = [x] + y else: shuffle_list = [x] + [y] # Make random shuffle ind_shuffle, datalist = make_random_shuffle(shuffle_list) x_out = datalist[0] if len(datalist) > 2: y_out = datalist[1:] else: y_out = datalist[1] np.save(os.path.join(mod_dir, 'shuffle_index.npy'), ind_shuffle) with open(os.path.join(mod_dir, 'data_x'), 'wb') as f: pickle.dump(x_out, f) with open(os.path.join(mod_dir, 'data_y'), 'wb') as f: pickle.dump(y_out, f) def split_validation_training_index(allind, splitsize, do_offset, offset_steps): """ Make a train-validation split for indexarray. Validation set is taken from beginning with possible offset. Args: allind (np.array): Indexlist for full dataset of same length. splitsize (int): Total number of validation samples to take. do_offset (bool): Whether to take validation set not from beginnig but with offset. offset_steps (int): Number of validation sizes offseted from the beginning to start to take validation set. Returns: i_train (np.array): Training indices i_val (np.array): Validation indices. """ i = offset_steps lval = splitsize if not do_offset: i_val = allind[:lval] i_train = allind[lval:] else: i_val = allind[i * lval:(i + 1) * lval] i_train =
np.concatenate([allind[0:i * lval], allind[(i + 1) * lval:]], axis=0)
numpy.concatenate
import numpy as np import matplotlib.pyplot as plt import os import shutil import subprocess points = [ # define the shape [ 0.8,-np.sqrt(6**2 - .8**2) + 1e-14, -1], [ 0.8, 0.0, 1], [ 3.5, 0.0, 1], [ 3.5, 3.0, 1], [-3.0, 3.0, 1], [-5.0, 0.0, 1], [-0.8, 0.0, 1], [-0.8,-np.sqrt(6**2 - .8**2) + 1e-14, -1], ] for i in range(len(points), 0, -1): # populate edges p0, p1 = points[i-1], points[i%len(points)] for c in np.linspace(0, 1, int(36*np.hypot(p1[0] - p0[0], p1[1] - p0[1])))[1:-1]: points.insert(i, [c*p0[0] + (1-c)*p1[0], c*p0[1] + (1-c)*p1[1], max(p0[2], p1[2])]) points = np.array(points)/6 # convert to numpy array and rescale for i in range(points.shape[0]): # rotate points[i,:2] = np.matmul([[np.sqrt(3)/2, 1/2], [-1/2, np.sqrt(3)/2]], points[i,:2]) coords = np.vstack([np.arcsin(points[:,1]), np.arcsin(points[:,0]/np.sqrt(1 - points[:,1]**2))]).T # project coords[points[:,2] < 0, 1] = -np.pi - coords[points[:,2] < 0, 1] try: os.mkdir('../res/frames') except FileExistsError: pass fig = plt.figure() fig.set_size_inches((1, 1)) ax = plt.Axes(fig, [0, 0, 1, 1]) ax.set_axis_off() fig.add_axes(ax) for i, t in enumerate(range(180, 540, 6)): # draw it ax.clear() # ax.fill(np.cos(np.linspace(0, 2*np.pi)), np.sin(np.linspace(0, 2*np.pi)), color='#8393bf') θ = np.radians(t) y = np.sin(coords[:,0]) x = np.sqrt(1 - y**2)*np.sin(coords[:,1] + θ) z = np.sqrt(1 - y**2)*np.cos(coords[:,1] + θ) if np.any(z > 0): # reproject with longitudinal rotation side = np.copysign(1, x[np.argmax(np.where(z >= 0,
np.abs(x)
numpy.abs
import numpy as np def color_libs(index=0): clibs = [(255,0,0),(0,255,0),(0,0,255),(255,255,0),(0,255,255),(255,0,255)] index = index%5 return clibs[index] def xyxy2xywh(bbox): _bbox = bbox.tolist() return [ _bbox[0], _bbox[1], _bbox[2] - _bbox[0] + 1, _bbox[3] - _bbox[1] + 1, ] def py_cpu_nms(dets,scores, thresh): """Pure Python NMS baseline.""" x1 = dets[:, 0] y1 = dets[:, 1] x2 = dets[:, 2] y2 = dets[:, 3] #scores = dets[:, 4] #bbox打分 areas = (x2 - x1 + 1) * (y2 - y1 + 1) #打分从大到小排列,取index order = scores.argsort()[::-1] #keep为最后保留的边框 keep = [] while order.size > 0: #order[0]是当前分数最大的窗口,肯定保留 i = order[0] keep.append(i) #计算窗口i与其他所有窗口的交叠部分的面积 xx1 = np.maximum(x1[i], x1[order[1:]]) yy1 = np.maximum(y1[i], y1[order[1:]]) xx2 = np.minimum(x2[i], x2[order[1:]]) yy2 = np.minimum(y2[i], y2[order[1:]]) w = np.maximum(0.0, xx2 - xx1 + 1) h = np.maximum(0.0, yy2 - yy1 + 1) inter = w * h #交/并得到iou值 ovr = inter / (areas[i] + areas[order[1:]] - inter) #inds为所有与窗口i的iou值小于threshold值的窗口的index,其他窗口此次都被窗口i吸收 inds = np.where(ovr <= thresh)[0] #order里面只保留与窗口i交叠面积小于threshold的那些窗口,由于ovr长度比order长度少1(不包含i),所以inds+1对应到保留的窗口 order = order[inds + 1] return keep def py_cpu_softnms(dets, sc, Nt=0.3, sigma=0.5, thresh=0.001, method=2): """ py_cpu_softnms :param dets: boexs 坐标矩阵 format [y1, x1, y2, x2] :param sc: 每个 boxes 对应的分数 :param Nt: iou 交叠门限 :param sigma: 使用 gaussian 函数的方差 :param thresh: 最后的分数门限 :param method: 使用的方法 :return: 留下的 boxes 的 index """ # indexes concatenate boxes with the last column N = dets.shape[0] indexes = np.array([np.arange(N)]) dets = np.concatenate((dets, indexes.T), axis=1) # the order of boxes coordinate is [y1,x1,y2,x2] y1 = dets[:, 0] x1 = dets[:, 1] y2 = dets[:, 2] x2 = dets[:, 3] scores = sc areas = (x2 - x1 + 1) * (y2 - y1 + 1) for i in range(N): # intermediate parameters for later parameters exchange tBD = dets[i, :].copy() tscore = scores[i].copy() tarea = areas[i].copy() pos = i + 1 # if i != N-1: maxscore = np.max(scores[pos:], axis=0) maxpos = np.argmax(scores[pos:], axis=0) else: maxscore = scores[-1] maxpos = 0 if tscore < maxscore: dets[i, :] = dets[maxpos + i + 1, :] dets[maxpos + i + 1, :] = tBD tBD = dets[i, :] scores[i] = scores[maxpos + i + 1] scores[maxpos + i + 1] = tscore tscore = scores[i] areas[i] = areas[maxpos + i + 1] areas[maxpos + i + 1] = tarea tarea = areas[i] # IoU calculate xx1 = np.maximum(dets[i, 1], dets[pos:, 1]) yy1 = np.maximum(dets[i, 0], dets[pos:, 0]) xx2 = np.minimum(dets[i, 3], dets[pos:, 3]) yy2 = np.minimum(dets[i, 2], dets[pos:, 2]) w = np.maximum(0.0, xx2 - xx1 + 1) h = np.maximum(0.0, yy2 - yy1 + 1) inter = w * h ovr = inter / (areas[i] + areas[pos:] - inter) # Three methods: 1.linear 2.gaussian 3.original NMS if method == 1: # linear weight = np.ones(ovr.shape) weight[ovr > Nt] = weight[ovr > Nt] - ovr[ovr > Nt] elif method == 2: # gaussian weight =
np.exp(-(ovr * ovr) / sigma)
numpy.exp
import numpy as np def calculate_reverse_indices(incount, full_index, sparse=False): """Calculates the indices that go into each bin in a histogram and returns an array of values where ri[index] is list of indices of bins in the source data that are part of the [index] bin in the histogram. Called from within grid_data only. """ #Two arrays to consider here #The count in each bin, regardless of data validity (missing data, masks, etc.) #called count_full, and the full_index that places every element into the output array #We define two arrays, rii contains arrays of each for each output bin, where each #array is the list of indices that go into that bin. rjj contains array_length = incount.size shp = incount.shape #create the storage arrays rii = np.empty(array_length, dtype=np.ndarray) rjj = np.zeros(array_length, dtype=np.int) #flatten the incount array c = np.reshape(incount, incount.size) #calculate the unique values and their indices, and an array that can #be used to reconstruct the full_index (fi_value, fi_index, fi_inverse) = \ np.unique(full_index, return_index=True, return_inverse=True) #count the elements that go into each bin bc_fi_inverse = np.bincount(fi_inverse) #IF we're in sparse mode, then we should index into a counter array, instead of the real fi_value array if sparse: locations = np.arange(fi_value.size) else: locations= fi_value #new inversion code temp = np.argsort(fi_inverse) counter=0 for count,elem in enumerate(locations): rjj[elem] = bc_fi_inverse[count] rii[elem] = np.sort(temp[counter:counter+rjj[elem]])# np.where(fi_inverse==count)[0] counter=counter+rjj[elem] #The commented-out code should be the equivalent code, but it's slower than the where method above #If there are problems, change the code back to calculate the full arrays as below. # #For each pair of value and its count, define an array # #of the appropriate (count) size # for loc, val in zip(locations, bc_fi_inverse): # if val > 0: # rii[loc] = np.zeros(val, dtype=int) # #no that we've allocated enough room # #loop through the inverse array, find its location in the main array outside # #using the fi_value lookup (we could have just used full_index, but not in sparse mode) # # # for count, val in enumerate(fi_inverse): # #I think this can be replaced by index=locations[val] after the definition above # if sparse is False: # index = fi_value[val] # else: # index = val # #rjj'th element of the riith element is set the location (count) of the value in fi_inverse, # #which is equivalent to the location in the input array # rii[index][rjj[index]] = count # #a counter, to know which element we should write to next. # rjj[index] = rjj[index] + 1 #finally, reshape, and output rii = np.reshape(rii, shp) rjj = np.reshape(rjj, shp) return rii, rjj def calculate_statistics(full_index, weights, bs, square=None, sparse=False, missing_data=None): """ Calculates the mean, variance,and count of each bin indexed in full_index with data coming from weights """ #we have two data arrays here. The first is the 'full_index' that identifies #the bin into which each element goes, and the un-normalized weight of that element #in weights. In reality, 'weights' is the data we want to grid. The function we call #later (bincount) happens to consider them as weights to a different array #but in doing so calculates the statistics appropriately. #calculate the product of bin sizes to get the largest possible array size sz = 1 for d in bs: sz = sz * d #now call numpy.unique asking for the #fi_value = values that give a unique array #fi_index = the indices of the values in fi_value #fi_inverse = the location of each element in full_index in fi_value #can be used to reconstruct the full_index value OR used to bin properly later (fi_value, fi_index, fi_inverse) =\ np.unique(full_index, return_index=True, return_inverse=True) #now deal with missing data if present. #If we find no real data (len(w[0])==0) #then our answer is pretty simple as the result is also all zeros (for variance and count), #or missing for mean. if missing_data: w = np.where(weights != missing_data) if len(w[0]): index = w[0] else: if sparse is False: m = np.zeros(bs) return (m + missing_data, m.copy(), m.copy()) else: s = np.zeros(len(fi_value)) return (s + missing_data, s.copy(), s.copy()) #OR if the arrays are masked numpy arrays, then we perform the same analysis #but ask whether the mask is #just a single bool, then perform the same test as above #an array of bools, then invert it to get the data selection array #(mask==true -> bad data), (index=true -> good_data) elif isinstance(weights, np.ma.core.MaskedArray): if isinstance(weights.mask, np.bool_): if not weights.mask: index = slice(None, None, None) else: if sparse is False: m = np.zeros(bs) return (m + missing_data, m.copy(), m.copy()) else: s = np.zeros(len(fi_value)) return (s + missing_data, s.copy(), s.copy()) elif isinstance(weights.mask, np.ndarray): index = ~weights.mask #OR there's no missing data, select all the data else: index = slice(None, None, None) #for convenient later, we perform a count on all of the data, regardless of #it's validity count_full = np.bincount(fi_inverse[slice(None, None, None)]) #No calculate the count (unweighted bincount) of the valid data #and the sum of the data in each bin (weighted by data) #and the sum of squares (weighted by data**2) try: count = np.bincount(fi_inverse[index]) su = np.bincount(fi_inverse[index], weights=weights[index]) var = np.bincount(fi_inverse[index], weights=weights[index] ** 2) #not sure what exception I'm expecting here, anymore. except: count = 0. * count_full su = 0. * count_full var = 0. * count_full #if we DONT want sparse data then the array_length is product of all dimensions #and the shape is given in the binsize array bs #if we DO want sparse data, the array_length is the largest number in the unique inverse #array fi_inverse, which seems like it should eqyal the length of fi_value if sparse is False: array_length = sz shp = bs else: array_length = np.max(fi_inverse) + 1 shp = np.max(fi_inverse) + 1 #construct the output arrays m = np.zeros(array_length) c = np.zeros(array_length) cf = np.zeros(array_length) v = np.zeros(array_length) w = np.where(count != 0)[0] #for count_full we can't look for the number of valid elements, because there don't #have to be any, so we copy the data immediately if sparse is False: cf[fi_value] = count_full else: cf = count_full #no indexing -> straight copy #if there is data (w.size>0) then save the data in the output, otherwise #the initialization to 0 is good enough. #If NOT sparse, then the indexing is stored in fi_value (where its count is #nonzero #if YES sparse, then the indexing is just the locations of nonzero elements #which I think is every element in w. forward_index = None forward_index = fi_value if w.size: if sparse is False: index = fi_value[w] else: index = w #divide the sums by the counts to get means, m[index] = su[w] / count[w] v[index] = var[w] / count[w] c[index] = count[w] # cf[index] = count_full[w] #if square is set, return the mean of the square, not the variance. if square is None: v = v - m * m else: pass #in NON sparse mode, we need to reshape the output to N dimensional arrays #otherwise shp is just the array length and nothing happens here. m = np.reshape(m, shp) v = np.reshape(v, shp) c = np.reshape(c, shp) cf = np.reshape(cf, shp) return (m, v, c, cf, forward_index) def grid_data(data, bins, mn=None, mx=None, reverse_indices=None, square=None, sparse=False, missing_data=None): """Grids data into regular grid of bins data is an N*M numpy array, where: N is the number of data points, A<M is the number of dimensions we are binning over and D=M-A is the number of dimensions of data we bin. Bins can be a list of arrays of bin edges, or a list of bin sizes (integers). If bin edges are given, they are assumed to be monotonic and used as in bincount. If they are bin sizes, optional maximum (mx) and minimum (mn) values for all dimensions can be given. In this case, the edge bins (above mx, or below mn) contain the overflow data. By default, the function returns the mean value, the variance, and the counts of each bin. If reverse_indices is set to True, the indices in the data array (along the N dimension) of each element that contributes to every bin is stored in a variable length array in that bin. :param data: 2-dimensional(N,M) array of data to grid. The first A columns are used as axes and require corresponding entries in the bins list. The remaining D columns are data to be binned :type data: numpy array :param bins: list of bin edges (upper edge) or bin lengths for each axis in A :type bins: list :param mn: list of bin minima if the bins list contains integer number of bins :type mn: list :param mx: list of bin maxima if the bins list contains integer number of bins :type mx: list :param reverse_indices: logical to determine if the indices that are used in each grid box are calculated :type reverse_indices: bool :param square: logical to determine if the mean of the square data mean(X**2) is returned instead of variance (mean(X**2)-mean(X)**2) :type square: bool :param sparse: logical to determine if the sparse method is used instead and a 1D gridded dataset is created :type sparse: bool :param missing_data: list of missing data entries for each data array in D(better to mask arrays instead) :type missing_data: list :return: Mean, calculated mean value of each grid box :return: Variance, calculated variance of each grid box (or mean of square) :return: Count, number of elements in each grid box With reverse_indices=true :return: ri, array containing a list for each gridpoint containing the index back into D of each datapoint :return: rj, the length of each list in ri Types :rtype: tuple of (numpy (D+1)d, numpy (D+1)d, numpy (D+1)d) (no reverse_indices, no sparse) :rtype: tuple of (numpy 1d, numpy 1d, numpy 1d) (no reverse_indices, sparse) :rtype: tuple of (numpy (D+1)d, numpy (D+1)d, numpy (D+1)d,numpy (D+1)d,numpy (D+1)d) (reverse_indices, no sparse) :rtype: tuple of (numpy 1d, numpy 1d, numpy 1d,numpy 1d,numpy 1d) (reverse_indices, sparse) """ #glossary #axis/axes = The first M rows of data that are used to filter the data into a grid #bins = The values of the axes that are used to group elements #data = The non-filterable part of the input data that is grouped by axes into bins import numpy as np #get the shape of the incoming data, create a bin size array read for bin data s = data.shape bs = np.zeros(len(bins), dtype=np.int) #if the first element is a numpy array, they should all be #then I assume that each element in bins contains the upper bin edges #of each dimension. if type(bins[0]) == np.ndarray: #if arrays are given in 'bins', assume they are bin edges use_bins = bins for i in range(len(bs)): bs[i] = len(use_bins[i]) pass pass else: #if non-lists (int,long,float) are given, assume they are nbins #convert them to longs bs = [int(b) for b in bins] #if min or max are not given, calculate them if mn is None: mn = np.min(data, 0) if mx is None: mx =
np.max(data, 0)
numpy.max
import numpy as np from scipy.stats import describe def moments(data,goodbad=False,robust=None,silent=True): ''' (Robustly) computes various statistics Input Parameters ---------------- data : numpy.ndarray goodbad : numpy.ndarray, optional An array with the same shape as `data` that identifies good and bad data points. 0=bad, 1=good, 2=NaN robust : float, optional If given, outliers are identified before computing the stats. See notes for details. silent : {True, False}, optional If False, the result will be written to the command line. Returns -------- dict A dict where with the following entries: ndat : int The numger of data points used in the calculation. mean : float The mean of the (non-NaN, good) data points. variance : float Estimate of the variance of the (non-NaN, good) data points. That is, the denominator is 1/(ndat-1). stddev : float Estimate of the standard deviation of the (non-NaN, good) data points. That is, the denominator is 1/(ndat-1). stderr : float The standard error of the (non-NaN, good) data points. `stddev`/sqrt(ndat) skewness : float The skewness of the (non-NaN, good) data points. kurtosis : float The kurtosis of the (non-NaN, good) data points. goodbad : numpy.ndarray of int An array with the same shape as `data` that identifies good and bad data points. 0=bad, 1=good, 2=NaN Notes ----- If goodbad is passed, only points with values of 1 are used. If robust is passed, the median and median absolute deviation and points are idetentified as an outlier if: |x_i - MED|/(1.4826*MAD) > robust where MAD = median(|x_i - MED|) and 1.4826*MAD is a robust estimate of the standard deviation for a gaussian distribution. Outliers are labelled `bad` in the goodbad array. Finally, the statistics are computed using scipy.stats.describe. NOTE: The variance and standard deviations are *estimates* of the variance and standard deviation of the parent population and so have 1/(ndat-1) in the denominator. Examples -------- > import numpy as np > data = np.array([[np.nan,1.2,20],[2.,1.2,2.5]]) > m = moments(data,robust=4,silent=False) Moments results: Total number of input points = 6 Number of good points = 4 Number of NaNs = 1 Mean = 1.725 Variance = 0.4091666666666667 Standar Deviation = 0.6396613687465162 Standard Error = 0.3198306843732581 Skewness = 0.28952649685958215 Kurtosis = -1.6237779003737334 [[2 1 0] [1 1 1]] Modification History -------------------- 2022-05-24 - Written by <NAME>, University of Toledo. Based on Spextool IDL program mc_moments.pro. ''' # Set up goodbad array if need be if goodbad is False: goodbad = np.full_like(data,1,dtype=int) # Check for NaNs and update goodbad array nanbool =
np.isnan(data)
numpy.isnan
#!/usr/bin/env python # # ====================================================================== # # <NAME>, U.S. Geological Survey # <NAME>, GNS Science # <NAME>, University of Chicago # # This code was developed as part of the Computational Infrastructure # for Geodynamics (http://geodynamics.org). # # Copyright (c) 2010-2017 University of California, Davis # # See COPYING for license information. # # ====================================================================== # ## @file unittests/pytests/feassemble/TestFIATSimplex.py ## @brief Unit testing of FIATSimplex object. import unittest import numpy from pylith.feassemble.FIATSimplex import FIATSimplex from pylith.utils.testarray import test_scalararray # ---------------------------------------------------------------------- class Tri3(object): def __init__(self): """ Setup tri33 cell. """ vertices = numpy.array([[-1.0, -1.0], [+1.0, -1.0], [-1.0, +1.0]]) quadPts = numpy.array([ [-1.0/3.0, -1.0/3.0] ]) quadWts = numpy.array( [2.0]) # Compute basis fns and derivatives at quadrature points basis = numpy.zeros( (1, 3), dtype=numpy.float64) basisDeriv = numpy.zeros( (1, 3, 2), dtype=numpy.float64) iQuad = 0 for q in quadPts: basis[iQuad] = numpy.array([self.N0(q), self.N1(q), self.N2(q)], dtype=numpy.float64).reshape( (3,) ) deriv = numpy.array([[self.N0p(q), self.N0q(q)], [self.N1p(q), self.N1q(q)], [self.N2p(q), self.N2q(q)]]) basisDeriv[iQuad] = deriv.reshape((3, 2)) iQuad += 1 self.cellDim = 2 self.numCorners = len(vertices) self.numQuadPts = len(quadPts) self.vertices = vertices self.quadPts = quadPts self.quadWts = quadWts self.basis = basis self.basisDeriv = basisDeriv return def N0(self, p): return 0.5*(-p[0]-p[1]) def N0p(self, p): return -0.5 def N0q(self, p): return -0.5 def N1(self, p): return 0.5*(1.0+p[0]) def N1p(self, p): return 0.5 def N1q(self, p): return 0.0 def N2(self, p): return 0.5*(1.0+p[1]) def N2p(self, p): return 0.0 def N2q(self, p): return 0.5 # ---------------------------------------------------------------------- class Tri3Collocated(Tri3): def __init__(self): """ Setup tri33 cell. """ vertices = numpy.array([[-1.0, -1.0], [+1.0, -1.0], [-1.0, +1.0]]) quadPts = vertices[:] quadWts = numpy.array( [2.0/3.0, 2.0/3.0, 2.0/3.0]) # Compute basis fns and derivatives at quadrature points basis = numpy.zeros( (3, 3), dtype=numpy.float64) basisDeriv = numpy.zeros( (3, 3, 2), dtype=numpy.float64) iQuad = 0 for q in quadPts: basis[iQuad] = numpy.array([self.N0(q), self.N1(q), self.N2(q)], dtype=numpy.float64).reshape( (3,) ) deriv = numpy.array([[self.N0p(q), self.N0q(q)], [self.N1p(q), self.N1q(q)], [self.N2p(q), self.N2q(q)]]) basisDeriv[iQuad] = deriv.reshape((3, 2)) iQuad += 1 self.cellDim = 2 self.numCorners = len(vertices) self.numQuadPts = len(quadPts) self.vertices = vertices self.quadPts = quadPts self.quadWts = quadWts self.basis = basis self.basisDeriv = basisDeriv return # ---------------------------------------------------------------------- class Tri6(object): def __init__(self): """ Setup tri33 cell. """ vertices = numpy.array([[-1.0, -1.0], [+1.0, -1.0], [-1.0, +1.0], [ 0.0, -1.0], [ 0.0, 0.0], [-1.0, 0.0]]) quadPts = numpy.array([ [-0.64288254, -0.68989795], [-0.84993778, 0.28989795], [ 0.33278049, -0.68989795], [-0.43996017, 0.28989795]]) quadWts = numpy.array( [0.63608276, 0.36391724, 0.63608276, 0.36391724]) # Compute basis fns and derivatives at quadrature points basis = numpy.zeros( (4, 6), dtype=numpy.float64) basisDeriv = numpy.zeros( (4, 6, 2), dtype=numpy.float64) iQuad = 0 for q in quadPts: basis[iQuad] = numpy.array([self.N0(q), self.N1(q), self.N2(q), self.N3(q), self.N4(q), self.N5(q)], dtype=numpy.float64).reshape( (6,) ) deriv = numpy.array([[self.N0p(q), self.N0q(q)], [self.N1p(q), self.N1q(q)], [self.N2p(q), self.N2q(q)], [self.N3p(q), self.N3q(q)], [self.N4p(q), self.N4q(q)], [self.N5p(q), self.N5q(q)]]) basisDeriv[iQuad] = deriv.reshape((6, 2)) iQuad += 1 self.cellDim = 2 self.numCorners = len(vertices) self.numQuadPts = len(quadPts) self.vertices = vertices self.quadPts = quadPts self.quadWts = quadWts self.basis = basis self.basisDeriv = basisDeriv return def N0(self, p): return 0.5*(-p[0]-p[1])*(-1.0-p[0]-p[1]) def N0p(self, p): return 0.5+p[0]+p[1] def N0q(self, p): return 0.5+p[0]+p[1] def N1(self, p): return 0.5*(1.0+p[0])*(p[0]) def N1p(self, p): return 0.5+p[0] def N1q(self, p): return 0 def N2(self, p): return 0.5*(1.0+p[1])*(p[1]) def N2p(self, p): return 0 def N2q(self, p): return 0.5+p[1] def N3(self, p): return (-p[0]-p[1])*(1+p[0]) def N3p(self, p): return -1.0-2*p[0]-p[1] def N3q(self, p): return -(1+p[0]) def N4(self, p): return (1.0+p[0])*(1+p[1]) def N4p(self, p): return (1+p[1]) def N4q(self, p): return (1.0+p[0]) def N5(self, p): return (-p[0]-p[1])*(1+p[1]) def N5p(self, p): return -(1+p[1]) def N5q(self, p): return -1.0-p[0]-2*p[1] # ---------------------------------------------------------------------- class Tet4(object): def __init__(self): """ Setup tri33 cell. """ vertices = numpy.array([[+1.0, -1.0, -1.0], [-1.0, -1.0, -1.0], [-1.0, +1.0, -1.0], [-1.0, -1.0, +1.0]]) quadPts =
numpy.array([ [-1.0/2.0, -1.0/2.0, -1.0/2.0] ])
numpy.array
import numpy as np import h5py as h5 from converters import convgeo2ply def extract_geometry(data_file, output_dir, nth_coord): """ Extracts the geometry of the body used in Abhiram's simulations of flow around an axisymmetric ramp body. In his simulations, the geometry is located at [k,j,i]=[1,:,:] (non-cartesian coordinate system) Geometry is saved to a .ply file. :param data_file: File to extract geometry from :param output_dir: Output directory within which to save geometry file (just directory, no filename). :param nth_coord: Save geometry with every nth coordinate (i.e. skip n-1 coords before saving the nth one). This helps reduce unnecessary mesh complexity. Higher is less detailed. """ # Open file data = h5.File(data_file, "r") # Extract mesh coords xpt2f =
np.ndarray.flatten(data["Base"]["Zone1"]["GridCoordinates"]["CoordinateX"][" data"][1, ::nth_coord, ::nth_coord], order="C")
numpy.ndarray.flatten
#!/usr/bin/env python # -*- coding: utf-8 -*- ############################################################################### # # # RMG - Reaction Mechanism Generator # # # # Copyright (c) 2002-2018 Prof. <NAME> (<EMAIL>), # # Prof. <NAME> (<EMAIL>) and the RMG Team (<EMAIL>) # # # # Permission is hereby granted, free of charge, to any person obtaining a # # copy of this software and associated documentation files (the 'Software'), # # to deal in the Software without restriction, including without limitation # # the rights to use, copy, modify, merge, publish, distribute, sublicense, # # and/or sell copies of the Software, and to permit persons to whom the # # Software is furnished to do so, subject to the following conditions: # # # # The above copyright notice and this permission notice shall be included in # # all copies or substantial portions of the Software. # # # # THE SOFTWARE IS PROVIDED 'AS IS', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # # DEALINGS IN THE SOFTWARE. # # # ############################################################################### """ This script contains unit tests of the :mod:`rmgpy.statmech.vibration` module. """ import unittest import math import numpy from rmgpy.statmech.vibration import HarmonicOscillator import rmgpy.constants as constants ################################################################################ class TestHarmonicOscillator(unittest.TestCase): """ Contains unit tests of the HarmonicOscillator class. """ def setUp(self): """ A function run before each unit test in this class. """ self.frequencies = numpy.array([500, 1000, 2000]) self.quantum = True self.mode = HarmonicOscillator( frequencies = (self.frequencies,"cm^-1"), quantum = self.quantum, ) def test_getPartitionFunction_classical(self): """ Test the HarmonicOscillator.getPartitionFunction() method for a set of classical oscillators. """ self.mode.quantum = False Tlist = numpy.array([300,500,1000,1500,2000]) Qexplist = numpy.array([0.00906536, 0.04196925, 0.335754, 1.13316978, 2.68603]) for T, Qexp in zip(Tlist, Qexplist): Qact = self.mode.getPartitionFunction(T) self.assertAlmostEqual(Qexp, Qact, delta=1e-4*Qexp) def test_getPartitionFunction_quantum(self): """ Test the HarmonicOscillator.getPartitionFunction() method for a set of quantum oscillators. """ self.mode.quantum = True Tlist = numpy.array([300,500,1000,1500,2000]) Qexplist = numpy.array([1.10923, 1.39358, 2.70819, 4.98825, 8.459780]) for T, Qexp in zip(Tlist, Qexplist): Qact = self.mode.getPartitionFunction(T) self.assertAlmostEqual(Qexp, Qact, delta=1e-4*Qexp) def test_getHeatCapacity_classical(self): """ Test the HarmonicOscillator.getHeatCapacity() method using a set of classical oscillators. """ self.mode.quantum = False Tlist = numpy.array([300,500,1000,1500,2000]) Cvexplist = numpy.array([3, 3, 3, 3, 3]) * constants.R for T, Cvexp in zip(Tlist, Cvexplist): Cvact = self.mode.getHeatCapacity(T) self.assertAlmostEqual(Cvexp, Cvact, delta=1e-4*Cvexp) def test_getHeatCapacity_quantum(self): """ Test the HarmonicOscillator.getHeatCapacity() method using a set of quantum oscillators. """ self.mode.quantum = True Tlist = numpy.array([300,500,1000,1500,2000]) Cvexplist = numpy.array([0.832004, 1.47271, 2.32513, 2.65024, 2.79124]) * constants.R for T, Cvexp in zip(Tlist, Cvexplist): Cvact = self.mode.getHeatCapacity(T) self.assertAlmostEqual(Cvexp, Cvact, delta=1e-4*Cvexp) def test_getEnthalpy_classical(self): """ Test the HarmonicOscillator.getEnthalpy() method using a set of classical oscillators. """ self.mode.quantum = False Tlist = numpy.array([300,500,1000,1500,2000]) Hexplist = numpy.array([3, 3, 3, 3, 3]) * constants.R * Tlist for T, Hexp in zip(Tlist, Hexplist): Hact = self.mode.getEnthalpy(T) self.assertAlmostEqual(Hexp, Hact, delta=1e-4*Hexp) def test_getEnthalpy_quantum(self): """ Test the HarmonicOscillator.getEnthalpy() method using a set of quantum oscillators. """ self.mode.quantum = True Tlist = numpy.array([300,500,1000,1500,2000]) Hexplist = numpy.array([0.280395, 0.637310, 1.30209, 1.70542, 1.96142]) * constants.R * Tlist for T, Hexp in zip(Tlist, Hexplist): Hact = self.mode.getEnthalpy(T) self.assertAlmostEqual(Hexp, Hact, delta=1e-4*Hexp) def test_getEntropy_classical(self): """ Test the HarmonicOscillator.getEntropy() method using a set of classical oscillators. """ self.mode.quantum = False Tlist = numpy.array([300,500,1000,1500,2000]) Sexplist = numpy.array([-1.70329, -0.170818, 1.90862, 3.12502, 3.98807]) * constants.R for T, Sexp in zip(Tlist, Sexplist): Sact = self.mode.getEntropy(T) self.assertAlmostEqual(Sexp, Sact, delta=1e-4*abs(Sexp)) def test_getEntropy_quantum(self): """ Test the HarmonicOscillator.getEntropy() method using a set of quantum oscillators. """ self.mode.quantum = True Tlist = numpy.array([300,500,1000,1500,2000]) Sexplist = numpy.array([0.384065, 0.969182, 2.29837, 3.31251, 4.09675]) * constants.R for T, Sexp in zip(Tlist, Sexplist): Sact = self.mode.getEntropy(T) self.assertAlmostEqual(Sexp, Sact, delta=1e-4*Sexp) def test_getSumOfStates_classical(self): """ Test the HarmonicOscillator.getSumOfStates() method using a set of classical oscillators. """ self.mode.quantum = False self.mode.frequencies = ([500, 1000],"cm^-1") Elist = numpy.arange(0, 10000*11.96, 1*11.96) sumStates = self.mode.getSumOfStates(Elist) densStates = self.mode.getDensityOfStates(Elist) for n in range(10, len(Elist)): self.assertTrue(0.8 < numpy.sum(densStates[0:n]) / sumStates[n] < 1.25, '{0} != {1}'.format(numpy.sum(densStates[0:n]), sumStates[n])) def test_getSumOfStates_quantum(self): """ Test the HarmonicOscillator.getSumOfStates() method using a set of quantum oscillators. """ self.mode.quantum = True Elist = numpy.arange(0, 10000*11.96, 1*11.96) sumStates = self.mode.getSumOfStates(Elist) densStates = self.mode.getDensityOfStates(Elist) for n in range(1, len(Elist)): if sumStates[n-1] == 0: self.assertTrue(numpy.sum(densStates[0:n]) == 0, '{0} != {1}'.format(numpy.sum(densStates[0:n]), 0)) else: self.assertTrue(0.8 < numpy.sum(densStates[0:n]) / sumStates[n-1] < 1.25, '{0} != {1}'.format(numpy.sum(densStates[0:n]), sumStates[n])) def test_getDensityOfStates_classical(self): """ Test the HarmonicOscillator.getDensityOfStates() method using a set of classical oscillators. """ self.mode.quantum = False factor = constants.h * constants.c * 100. * constants.Na # cm^-1 to J/mol Elist = numpy.arange(0, 10000*factor, 1*factor) densStates = self.mode.getDensityOfStates(Elist) T = 100 Qact = numpy.sum(densStates * numpy.exp(-Elist / constants.R / T)) Qexp = self.mode.getPartitionFunction(T) self.assertAlmostEqual(Qexp, Qact, delta=1e-4*Qexp) def test_getDensityOfStates_quantum(self): """ Test the HarmonicOscillator.getDensityOfStates() method using a set of quantum oscillators. """ self.mode.quantum = True factor = constants.h * constants.c * 100. * constants.Na # cm^-1 to J/mol Elist =
numpy.arange(0, 10000*factor, 1*factor)
numpy.arange
#!/usr/bin/env python import sys import os file_dir = os.path.dirname(os.path.realpath(__file__)) sys.path.append(file_dir+'/../neural_networks') import numpy as np import numpy.matlib import pickle from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm import matplotlib.pyplot as plt import copy import time import neural_network_regr_multi as nn import nn_navigation_value_multi as nn_nav import pedData_processing_multi as pedData import global_var as gb import gen_rand_testcases as gen_tc # setting up global variables COLLISION_COST = gb.COLLISION_COST DIST_2_GOAL_THRES = gb.DIST_2_GOAL_THRES GETTING_CLOSE_PENALTY = gb.GETTING_CLOSE_PENALTY GETTING_CLOSE_RANGE = gb.GETTING_CLOSE_RANGE EPS = gb.EPS # terminal states NON_TERMINAL=gb.NON_TERMINAL COLLIDED=gb.COLLIDED REACHED_GOAL=gb.REACHED_GOAL # plotting colors plt_colors = gb.plt_colors GAMMA = gb.RL_gamma DT_NORMAL = gb.RL_dt_normal TRAINING_DT = gb.TRAINING_DT def compute_plot_stats(traj_raw_multi): time_to_reach_goal, traj_lengths, min_sepDist, if_completed_vec \ = pedData.computeStats(traj_raw_multi) num_agents = len(traj_raw_multi) - 1 agents_speed = np.zeros((num_agents,)) for i in xrange(num_agents): agents_speed[i] = traj_raw_multi[i+1][0,5] agents_time = time_to_reach_goal agents_len = traj_lengths min_dist = min_sepDist return agents_speed, agents_time, agents_len, min_dist class NN_rl_training_param: # sgd_step_size: initial eta (should decay as a function of time) # reg_lambda: regularization parameter # nb_iter: number of training iterations # sgd_batch_size: batch size of each stochastic gradient descent step # w_scale: parameter for initializing the neural network def __init__(self, num_episodes, numpts_per_eps, expr_size, \ gamma, sgd_batch_size, greedy_epsilon): self.num_episodes = num_episodes self.numpts_per_eps = numpts_per_eps self.expr_size = expr_size self.gamma = gamma self.sgd_batch_size = sgd_batch_size self.greedy_epsilon = greedy_epsilon def writeToFile(filename): np_array = [] np_array.append(self.num_episodes) np_array.append(self.numpts_per_eps) np_array.append(self.expr_size) np_array.append(self.gamma) np_array.append(self.sgd_batch_size) np_array.append(self.greedy_epsilon) pickle.dump(np_array, open(filename, "wb")) return def loadFromFile(filename): np_array = pickle.load(open(filename, "rb")) self.num_episodes = np_array[0] self.numpts_per_eps = np_array[1] self.expr_size = np_array[2] self.gamma = np_array[3] self.sgd_batch_size = np_array[4] self.greedy_epsilon = np_array[5] return class NN_rl: def __init__(self, nn_rl_training_param, nn_training_param, value_net, ifSave): self.nn_rl_training_param = nn_rl_training_param self.nn_training_param = nn_training_param self.training_score = [] self.bad_testcases = []; self.bad_testcases_tmp = []; self.bad_testcases_update_iter = [] self.eval_epsd_stride = 5 self.test_cases = preset_testCases() self.value_net = value_net self.value_net_copy = copy.deepcopy(value_net) self.old_value_net = copy.deepcopy(value_net) self.best_value_net = copy.deepcopy(value_net) self.ifSave = ifSave self.passing_side = 'none' self.mode = self.value_net.mode+'_' self.epsilon_use_other_net = 0.3 self.value_net_other = None self.num_agents = value_net.num_agents pass def writeToFile(self, file_dir, iteration): v_net_fname = file_dir+"/../../pickle_files/multi/" + self.value_net.mode \ + '_' + self.passing_side \ + "/RL_selfplay/%d_agents_policy_iter_"%self.num_agents + str(iteration) + ".p" score_fname = file_dir+"/../../pickle_files/multi/" + self.value_net.mode \ + '_' + self.passing_side \ + "/%d_agents_RL_training_score.p"%self.num_agents if self.ifSave: self.value_net.nn.save_neural_network(v_net_fname) pickle.dump(self.training_score, open(score_fname, "wb")) pass def loadFromFile(self, file_dir, v_net_filename): filename_nn = file_dir+"/../../pickle_files/multi/" + self.value_net.mode \ + '_' + self.passing_side \ + "/RL_selfplay/" + v_net_filename self.value_net.nn.load_neural_network(filename_nn) self.value_net_copy.nn.load_neural_network(filename_nn) score_fname = file_dir+"/../../pickle_files/multi/" + self.value_net.mode \ + '_' + self.passing_side + "/%d_agents_RL_training_score.p"%self.num_agents try: self.scores = pickle.load(open(score_fname,"rb")) except: print('no score file exists') pass def loadOldNet(self, file_dir, iteration): v_net_fname = file_dir+"/../../pickle_files/multi/" + self.value_net.mode \ + '_' + self.passing_side \ + "/RL_selfplay/%d_agents_policy_iter_"%self.num_agents + str(max(0,iteration-100)) + ".p" self.old_value_net.nn.load_neural_network(v_net_fname) self.value_net.old_value_net = self.old_value_net def deep_RL_train(self, file_dir): t_start = time.time() self.training_score = [] param = self.nn_rl_training_param self.value_net.nn.initialize_derivatives() self.value_net.old_value_net = self.old_value_net # initialize experience num_states = 7 + 8 * (self.num_agents - 1) self.X = np.zeros((param.expr_size,num_states)) self.Y = np.zeros((param.expr_size,1)) self.values_diff = np.zeros((param.expr_size,)) self.current_expr_ind = 0 self.total_training_pts = 0 path_times = None collisions = None best_iter_time = np.inf best_iter = 0 # for each episode for kk in xrange(self.nn_rl_training_param.num_episodes): numpts_cur_eps = 0 epsilon = 0.3 - np.amin((0.25, kk / 2500.0)) self.value_net.dt_forward = 1.0 #- np.amin((0.7, kk / 150.0)) self.value_net_copy.dt_forward = 1.0 #- np.amin((0.7, kk / 150.0)) self.value_net.radius_buffer = 0.0 self.value_net_copy.radius_buffer = 0.0 # self.value_net.passing_side_training_weight = 0.2 + np.amin((0.5, kk / 500.0)) # side_length = np.amin((6, 1.0 + kk / 50.0)) # if kk > 300: # if kk % 2 == 0: side_length = np.random.rand() * 4.0 + 3.0 # else: # side_length = np.random.rand() * 2.0 + 1.0 # evaluate network if kk % self.eval_epsd_stride == 0: self.value_net.radius_buffer = 0.0 self.value_net_copy.radius_buffer = 0.0 path_times, collisions, values = \ self.evaluate_current_network(path_times, collisions, iteration=kk, plot_mode='one') # score = np.array([np.sum(path_times), np.sum(collisions)]) score = np.hstack((path_times, collisions, values)) self.training_score.append(score) num_cases = len(self.test_cases) print('time: %.2f, epsd: %d, time: %.3f, value: %.3f, num_bad_cases: %.2f, best_iter %d' % (time.time()-t_start, kk, \ np.sum(score[0:num_cases]), np.sum(score[2*num_cases:3*num_cases]), len(self.bad_testcases), best_iter)) # plot a test case if kk > 0 and self.current_expr_ind > 0: ind = np.random.randint(0, np.max((1,self.current_expr_ind))) x_plot = self.X[ind,:] y_plot = self.Y[ind,:] title_string = 'epsd: %d, time: %.1f, value: %.3f' % \ (kk, np.sum(score[0:num_cases]), np.sum(score[2*num_cases:3*num_cases])) self.value_net.plot_ped_testCase(x_plot, y_plot, title_string, \ 'test_case in RL self play') # plot a training traj agents_speed, agents_time, agents_len, min_dist = compute_plot_stats(traj_raw_multi) title_string = 'a%d, t %.2f, sp %.2f, len %.2f \n %s; min_dist %.2f a%d t %.2f, sp %.2f, len %.2f' % \ (0, agents_time[0], agents_speed[0], agents_len[0], \ self.passing_side, min_dist, 1, agents_time[1], agents_speed[1], agents_len[1]) num_agents = len(traj_raw_multi) - 1 if num_agents > 2: for tt in xrange(2, num_agents): agent_string = '\n a%d, t %.2f, sp %.2f, len %.2f' % \ (tt, agents_time[tt], agents_speed[tt], agents_len[tt]) title_string += agent_string pedData.plot_traj_raw_multi(traj_raw_multi, title_string, figure_name=self.mode+'training_traj' ) # reset value_net_copy to value_net if kk % 5 == 0: # cur_iter_time = np.sum(score[0:num_cases]) # # print best_iter_time, best_iter_time # if best_iter_time > cur_iter_time: # self.best_value_net = copy.deepcopy(self.value_net) # best_iter_time = cur_iter_time # best_iter = kk # print 'recorded change at iteration', kk self.value_net_copy = copy.deepcopy(self.value_net) # if kk % 50 == 0: # self.value_net = copy.deepcopy(self.best_value_net) # raw_input() # save if kk % 50 == 0: self.writeToFile(file_dir, kk) # self.loadOldNet(file_dir, kk) self.plot_training_score(file_dir) # for stats strt_line_training_pts = 0 nn_training_pts = 0 if kk < 200: step_size = 1.0 / max(40+kk, kk) else: step_size = 1.0 / (2000+int(kk/1000)*1000) while (numpts_cur_eps < param.numpts_per_eps): is_permit_straight = np.random.binomial(1, 0.0) is_overtake = np.random.binomial(1, 0.2) # is_permit_straight = False num_agents = self.num_agents if_static = np.random.rand() < 0.2 # if kk < 200: # if_static = True if_end_near_bnd = np.random.rand() < 0.2 # train on bad cases if_trained_on_badcases = False if np.random.rand() < 0.5 and len(self.bad_testcases) > 0: bad_case_ind = np.random.randint(len(self.bad_testcases)) if self.bad_testcases_update_iter[bad_case_ind] < kk - 1: # if True: if_trained_on_badcases = True self.bad_testcases_update_iter[bad_case_ind] = kk agents_state = self.bad_testcases[bad_case_ind] num_repeat = 2 traj_raw_multi, x, y, values_diff, \ if_resolved = self.trainTestCase(agents_state, num_repeat) if if_resolved == True or np.random.rand() > 0.8: self.bad_testcases.pop(bad_case_ind) self.bad_testcases_update_iter.pop(bad_case_ind) self.bad_testcases_tmp = [] # print 'bad test case with %d /%d pts' % (len(x), len(x) + numpts_cur_eps) if len(x) > 0: x_train = self.value_net.nn.xRaw_2_x(x) y_train = self.value_net.nn.yRaw_2_y(y) # step_size = 1.0 / max(2000+kk, kk) self.value_net.nn.set_training_stepsize('rmsprop') self.value_net.nn.backprop(x_train, y_train, step_size, kk) # print 'after len(self.bad_testcases)', len(self.bad_testcases) # train on random cases if if_trained_on_badcases == False: test_case = gen_tc.generate_rand_test_case_multi(num_agents, side_length, \ np.array([0.1,1.2]), np.array([0.3, 0.5]), \ is_end_near_bnd=if_end_near_bnd, is_static = if_static) # debugging # if np.random.rand() > 0.0: #0.5: # test_case = self.test_cases[np.random.randint(4)] # test_case = self.test_cases[1] # print 'self.value_net.dt_forward', self.value_net.dt_forward x = []; y = []; if len(x) == 0: ifRandHeading = np.random.binomial(1, 0.3) # ifRandHeading = False traj_raw_multi, time_to_complete = \ self.value_net.generate_traj(test_case, rl_epsilon=epsilon, \ figure_name='no_plot', stopOnCollision=True, ifRandHeading=ifRandHeading,\ ifNonCoop=True) num_pts = len(traj_raw_multi[0]) if num_pts < 2: continue # print 'generate traj test case' # pedData.plot_traj_raw_multi(traj_raw, 'what is wrong', figure_name='tmp_traj' ) x, y, values_diff = self.rawTraj_2_trainingData(traj_raw_multi, param.gamma, kk) nn_training_pts += len(x) if np.random.rand() > 0.9: traj_raw = pedData.reflectTraj(traj_raw_multi) agents_speed, agents_time, agents_len, min_dist = compute_plot_stats(traj_raw_multi) if len(self.bad_testcases_tmp) > 0: if len(self.bad_testcases) < 50: self.bad_testcases += self.bad_testcases_tmp self.bad_testcases_update_iter += [kk-1] * len(self.bad_testcases_tmp) self.bad_testcases_tmp = [] # print 'rand test case with %d /%d pts' % (len(x), len(x) + numpts_cur_eps) if len(x) > 0: self.append_to_experience(x, y, values_diff, param.expr_size) numpts_cur_eps += len(x) # print 'numpts_cur_eps', numpts_cur_eps # train the value network for tt in xrange(2): # sample a random minibatch nb_examples = min(self.total_training_pts, param.expr_size) # half good and half bad if np.random.rand() > 1.1: minibatch = np.random.permutation(np.arange(nb_examples))[0:param.sgd_batch_size*2] # bad_inds = np.where(self.values_diff>0.05)[0] # half_num = param.sgd_batch_size/2 # if len(bad_inds) > half_num: # minibatch_bad = np.argpartition(self.values_diff, -half_num)[-half_num:] # minibatch_rand = np.random.permutation(np.arange(nb_examples))[0:half_num:] # minibatch = np.union1d(minibatch_bad, minibatch_rand) # else: # minibatch = bad_inds # print 'here' values_raw = np.squeeze(self.value_net_copy.nn.make_prediction_raw(self.X[:nb_examples,:])) values_diff = abs((values_raw - np.squeeze(self.Y[:nb_examples]))\ /np.squeeze(self.Y[:nb_examples])) half_num = param.sgd_batch_size / 2.0 minibatch_bad = np.argpartition(values_diff, -half_num)[-half_num:] # np.set_printoptions(edgeitems=4, precision=4,formatter={'float': '{: 0.4f}'.format}) # print 'max', values_diff[minibatch_bad] # print 'dist', self.X[minibatch_bad,0:7] # raw_input() # print 'rand', values_diff[0:nb_examples] # raw_input() minibatch = minibatch_bad minibatch_rand = np.random.permutation(np.arange(nb_examples))[0:half_num:] # print minibatch_bad.shape # print minibatch_rand.shape minibatch = np.union1d(minibatch_bad, minibatch_rand) else: minibatch = np.random.permutation(np.arange(nb_examples))[0:param.sgd_batch_size] # max_dist_inds = np.argpartition(self.X[:,0], int(nb_examples/10))[-int(nb_examples/5):] # minibatch = np.union1d(minibatch, max_dist_inds) # print minibatch # scale using nn coordinate x_train_raw = self.X[minibatch,:] y_train_raw = self.Y[minibatch] # if self.total_training_pts > param.expr_size and kk > 0: #30: # print 'median', np.median(x_train_raw, axis=0) # print 'mean', np.mean(x_train_raw, axis=0) # print 'std', np.std(x_train_raw, axis=0) # print 'rel_median', (np.median(x_train_raw, axis=0) - self.value_net.nn.avg_vec) / self.value_net.nn.std_vec # print 'rel_std', np.std(x_train_raw, axis=0) / self.value_net.nn.std_vec # print 'min', np.amin(x_train_raw, axis=0) # print 'max', np.amax(x_train_raw, axis=0) # print 'iter', kk # raw_input() x_train = self.value_net.nn.xRaw_2_x(x_train_raw) y_train = self.value_net.nn.yRaw_2_y(y_train_raw) # check # try: # assert(np.all(np.squeeze(y_train_raw) <= (0.97**(x_train_raw[:,0]/0.2)+0.01))) # except AssertionError: # num_pts = len(y_train_raw) # print 'num_pts', num_pts # for i in xrange(num_pts): # if True: #y_train_raw[i] > 0.97**(x_train_raw[i,0]/0.2) + 0.01: # # print '---' # # print 'x_train[i,:]', x_train_raw[i,:] # print 'y_train[i] - bnd', y_train_raw[i] - 0.97**(x_train_raw[i,0]/0.2) # assert(0) # update value network # print step_size # step_size = 0.0 # self.value_net.nn.set_training_stepsize('fixed_decay') # self.value_net.nn.set_training_stepsize('momentum') self.value_net.nn.set_training_stepsize('rmsprop') self.value_net.nn.backprop(x_train, y_train, step_size, kk) # print ' added %d strt_line pts, %d nn_pts' % (strt_line_training_pts, nn_training_pts) # plot at end of training self.plot_training_score(file_dir) self.evaluate_current_network() def plot_training_score(self, file_dir): if len(self.training_score) > 0: fig = plt.figure('training score', figsize=(10,8)) plt.clf() ax1 = fig.add_subplot(1,1,1) ax2 = ax1.twinx() episodes = self.eval_epsd_stride * np.arange(len(self.training_score)) num_cases = self.training_score[0].shape[0] / 3 scores_np = np.asarray(self.training_score) total_time_vec = np.sum(scores_np[:,0:num_cases], axis=1) collision_vec = np.sum(scores_np[:,num_cases:2*num_cases], axis=1) value_vec = np.sum(scores_np[:,2*num_cases:3*num_cases], axis=1) ax1.plot(episodes, total_time_vec, 'b') ax2.plot(episodes, value_vec, 'r') ax1.set_xlabel('episode') ax1.set_ylabel('time (s)') ax2.set_ylabel('value') plt.draw() plt.pause(0.0001) if self.ifSave: plt.savefig(file_dir+"/../../pickle_files/multi/"+ self.value_net.mode +\ '_' + self.passing_side + "/%d_agents_training_score.png"%self.num_agents,bbox_inches='tight') else: print('no training score') def append_to_experience(self, x, y, values_diff, expr_size): num_pts = len(x) assert(num_pts == len(y)) assert(num_pts < expr_size) gamma = GAMMA dt_normal = DT_NORMAL for i in xrange(num_pts): try: assert(y[i] <= gamma ** (x[i,0]/dt_normal)+0.0001) assert(x[i,1] > 0.1 - EPS) except: print('x', x[i,:]) print('y', y[i]) print('bnd', gamma ** (x[i,0]/dt_normal)) assert 0, 'not valid training point' if self.current_expr_ind + num_pts < expr_size: end_ind = self.current_expr_ind + num_pts self.X[self.current_expr_ind:end_ind,:] = x self.Y[self.current_expr_ind:end_ind,:] = y self.values_diff[self.current_expr_ind:end_ind] = values_diff self.current_expr_ind = end_ind else: y_num_pts = expr_size - self.current_expr_ind self.X[self.current_expr_ind:expr_size,:] = x[0:y_num_pts,:] self.Y[self.current_expr_ind:expr_size,:] = y[0:y_num_pts,:] self.values_diff[self.current_expr_ind:expr_size] = values_diff[0:y_num_pts] self.X[0:num_pts-y_num_pts,:] = x[y_num_pts:num_pts,:] self.Y[0:num_pts-y_num_pts,:] = y[y_num_pts:num_pts,:] self.values_diff[0:num_pts-y_num_pts] = values_diff[y_num_pts:num_pts] self.current_expr_ind = num_pts - y_num_pts self.total_training_pts += num_pts # print 'self.current_expr_ind', self.current_expr_ind # print 'self.total_training_pts', self.total_training_pts # try: # if y[0] < 0: # print x # print y # t = raw_input('press any key to continue: ') # except: # print x # print y # assert(0) return def evaluate_current_network(self, prev_path_times=None, prev_collisions=None, iteration=0, plot_mode='all'): num_test_cases = len(self.test_cases) path_times = np.zeros((num_test_cases,), dtype=float) collisions = np.zeros((num_test_cases,), dtype=bool) plot_number = np.random.randint(len(self.test_cases)) values = np.zeros((num_test_cases,), dtype=float) for i, test_case in enumerate(self.test_cases): traj_raw_multi, time_to_complete = \ self.value_net.generate_traj(test_case, figure_name='no_plot', stopOnCollision=False) # plotting (debugging) agents_speed, agents_time, agents_len, min_dist = compute_plot_stats(traj_raw_multi) title_string = 'case: %d; a%d, t %.2f, sp %.2f, len %.2f \n %s; min_dist %.2f a%d t %.2f, sp %.2f, len %.2f' % \ (i, 0, agents_time[0], agents_speed[0], agents_len[0], \ self.passing_side, min_dist, 1, agents_time[1], agents_speed[1], agents_len[1]) num_agents = len(traj_raw_multi) - 1 if num_agents > 2: for tt in xrange(2, num_agents): agent_string = '\n a%d, t %.2f, sp %.2f, len %.2f' % \ (tt, agents_time[tt], agents_speed[tt], agents_len[tt]) title_string += agent_string if_collided = min_dist < 0.0 collisions[i] = if_collided path_times[i] = np.sum(agents_time) if plot_mode == 'all': # plot every time case pedData.plot_traj_raw_multi(traj_raw_multi, title_string) # % (i, agent_1_time, agent_2_time, total_time) elif plot_mode == 'one' and i == plot_number: # only plot one test case pedData.plot_traj_raw_multi(traj_raw_multi, title_string, figure_name=self.mode+'evaluate') else: pass # plot bad trajectories if iteration > 200 and prev_path_times!=None and \ (collisions[i] == True or (path_times[i] - prev_path_times[i]) > 3.0): figure_name_str = 'bad_traj_tc_%d' % (i) title_string = ('iter %d ;' % iteration) + title_string pedData.plot_traj_raw_multi(traj_raw_multi, title_string, figure_name=self.mode+figure_name_str) agent_state = traj_raw_multi[1][0,:] other_agents_state = [] num_agents = len(traj_raw_multi) - 1 for tt in xrange(1, num_agents): other_agents_state.append(traj_raw_multi[tt+1][0,:]) values[i] = self.value_net.find_states_values(agent_state, other_agents_state) # np.set_printoptions(precision=4) value_str = ' tc(0-%d)' % num_test_cases path_times_str = ' tc(0-%d)' % num_test_cases for tt in xrange(num_test_cases): value_str += ', %.3f' % values[tt] path_times_str += ', %.3f' % path_times[tt] print(value_str) print(path_times_str) return path_times, collisions, values # for plotting purposes def plot_test_cases(self, folder_dir, filename_str, format_str): for i, test_case in enumerate(self.test_cases): traj_raw_multi, time_to_complete = \ self.value_net.generate_traj(test_case, figure_name='no_plot') # file name (iteration # and test case #) filename = folder_dir + '/tc' + str(i) + '_' + filename_str + format_str # trajectory stats # a1_speed = traj_raw[0,6] # a2_speed = traj_raw[0,15] # a1_len = np.sum(np.linalg.norm(traj_raw[0:-1, 1:3] - traj_raw[1:, 1:3], axis=1)) + \ # np.linalg.norm(traj_raw[-1, 1:3] - traj_raw[-1, 7:9]) # a2_len = np.sum(np.linalg.norm(traj_raw[0:-1, 10:12] - traj_raw[1:, 10:12], axis=1)) + \ # np.linalg.norm(traj_raw[-1, 10:12] - traj_raw[-1, 16:18]) # min_dist = np.amin(np.linalg.norm(traj_raw[:,1:3]-traj_raw[:,10:12], axis=1)) - \ # traj_raw[0,9] - traj_raw[0,18] agents_speed, agents_time, agents_len, min_dist = compute_plot_stats(traj_raw_multi) title_string = 'case: %d; a%d, t %.2f, sp %.2f, len %.2f \n %s; min_dist %.2f a%d t %.2f, sp %.2f, len %.2f' % \ (i, 0, agents_time[0], agents_speed[0], agents_len[0], \ self.passing_side, min_dist, 1, agents_time[1], agents_speed[1], agents_len[1]) num_agents = len(traj_raw_multi) - 1 if num_agents > 2: for tt in xrange(2, num_agents): agent_string = '\n a%d, t %.2f, sp %.2f, len %.2f' % \ (tt, agents_time[tt], agents_speed[tt], agents_len[tt]) title_string += agent_string pedData.plot_traj_raw_multi(traj_raw_multi, title_string, 'plot_test_cases') if self.ifSave: plt.savefig(filename, bbox_inches='tight') # find intended next states(traj_raw_multi) # def find_intended_future_state_value(self, agent_state, agent_action_xy, other_agents_state, dt_forward): # num_states = 7 + 8 * (self.num_agents - 1) # agent_action_theta = np.array([np.linalg.norm(agent_action_xy), \ # np.arctan2(agent_action_xy[1], agent_action_xy[0])]) # # forward propagate to next states # dt = dt_forward # num_other_agents = len(other_agents_state) # agent_next_state = self.value_net_copy.update_state(agent_state, agent_action_theta, dt) # others_action_xy = [other_agents_state[tt][2:4] for tt in xrange(num_other_agents)] # others_next_state = [] # for tt in xrange(num_other_agents): # # print np.linalg.norm(others_action_xy[tt]) # # print np.arctan2(others_action_xy[tt][1], others_action_xy[tt][0]) # action_theta = np.array([np.linalg.norm(others_action_xy[tt]), \ # np.arctan2(others_action_xy[tt][1], others_action_xy[tt][0]) ]) # others_next_state.append(self.value_net_copy.update_state(other_agents_state[tt], \ # action_theta, dt)) # # value of next state # # dt_backup = 1.0 # ref_prll_vec, ref_orth_vec, state_nn = \ # pedData.rawState_2_agentCentricState(\ # agent_next_state, others_next_state, self.num_agents) # value = self.value_net_copy.find_states_values(agent_next_state, others_next_state) # return state_nn, value # find intended next states(traj_raw_multi) def find_deviation_cases(self, traj_raw_multi): time_to_reach_goal, traj_lengths, min_sepDist, if_completed_vec \ = pedData.computeStats(traj_raw_multi) num_agents = len(traj_raw_multi) - 1 time_vec = traj_raw_multi[0] num_pts = len(time_vec) max_deviation = 0.0 max_deviation_ind = 0.0 max_ind_dt_forward = 0.0 future_time_ind = 0 for j in xrange(1,num_pts-1): deviation_vec = np.zeros((num_agents,)) while time_vec[future_time_ind] - time_vec[j] < 1.0 \ and future_time_ind<num_pts-1: future_time_ind += 1 if future_time_ind >= num_pts: break dt_forward = time_vec[future_time_ind] - time_vec[j] for i in xrange(num_agents): if time_to_reach_goal[i] > future_time_ind: continue agent_state_pos = traj_raw_multi[i+1][j,0:2] agent_action_xy_chosen = traj_raw_multi[i+1][j+1,2:4] agent_intended_pos = agent_state_pos + \ agent_action_xy_chosen * dt_forward agent_future_pos = traj_raw_multi[i+1][future_time_ind ,0:2] deviation_vec[i] = np.linalg.norm(agent_intended_pos - \ agent_future_pos) / traj_raw_multi[i+1][0,5] max_deviation_tmp = np.max(deviation_vec) if max_deviation_tmp > max_deviation: max_deviation = max_deviation_tmp max_deviation_ind = j max_ind_dt_forward = dt_forward # build test case test_case = np.zeros((num_agents, 6)) j = max_deviation_ind dt_forward = max_ind_dt_forward for i in xrange(num_agents): test_case[i,0:2] = traj_raw_multi[i+1][j,0:2] + \ dt_forward * traj_raw_multi[i+1][j+1,2:4] test_case[i,2:4] = traj_raw_multi[i+1][j,6:8] test_case[i,4] = traj_raw_multi[i+1][j,5] test_case[i,5] = traj_raw_multi[i+1][j,8] # print dt_forward # print test_case # raw_input() return test_case # returns # time_2_goal_vec, time_2_goal_bnd, agent_centric_states, values, action_rewards def rawTraj_2_trainingStats(self, time_vec, traj_raw_multi, agent_num, iteration=0): num_pts = len(time_vec) # compute stats # print time_vec.shape, agent_states.shape, other_agent_states.shape agent_states = traj_raw_multi[agent_num+1] other_agents_states = [traj_raw_multi[tt] for tt in \ xrange(1, len(traj_raw_multi)) if tt!=agent_num+1] # print 'agent_number+1', agent_num+1 # print 'other', [tt for tt in \ # xrange(1, len(traj_raw_multi)) if tt!=agent_num+1] time_to_reach_goal, traj_lengths, min_sepDist, if_completed_vec \ = pedData.computeStats(traj_raw_multi) agent_speed = agent_states[0,5] # initialize return values time_2_goal_vec = np.empty((num_pts,)); time_2_goal_vec[:] = np.nan time_2_goal_bnd = np.empty((num_pts,)); time_2_goal_bnd[:] = np.nan num_states = 7 + 8 * (self.num_agents -1) agent_centric_states = np.zeros((num_pts, num_states)) values = np.zeros((num_pts,)) action_rewards = np.zeros((num_pts,)) gamma = GAMMA dt_normal = DT_NORMAL agent_desired_speed = agent_speed counter = 0 time_bnd = np.linalg.norm(agent_states[0,0:2]-agent_states[0,6:8])/agent_states[0,5] ifReachedGoal = False # filter speeds num_other_agents = len(other_agents_states) other_agents_filtered_vel = np.zeros((num_pts, num_other_agents * 2)) dt_vec = time_vec.copy(); dt_vec[1:] = time_vec[1:] - time_vec[:-1]; dt_vec[0] = dt_vec[1] time_past_one_ind = 0 for i in xrange(num_pts): while time_vec[i] - time_vec[time_past_one_ind] > 0.45: time_past_one_ind += 1 agent_pos = agent_states[i,0:2] dt_past_vec = dt_vec[time_past_one_ind:i+1] for j in xrange(num_other_agents): past_vel = other_agents_states[j][time_past_one_ind:i+1,2:5] if np.linalg.norm(agent_pos - other_agents_states[j][i,0:2]) < 0.5: other_agents_filtered_vel[i,j*2:(j+1)*2] = \ nn_nav.filter_vel(dt_past_vec, past_vel, ifClose=True) else: other_agents_filtered_vel[i,j*2:(j+1)*2] = \ nn_nav.filter_vel(dt_past_vec, past_vel, ifClose=False) for i in xrange(num_pts): counter += 1 agent_state = agent_states[i,:] other_agents_state = [other_agents_states[tt][i,:].copy() for tt in xrange(len(other_agents_states))] # for j in xrange(num_other_agents): # # print i,j, 'before', other_agents_state[j][2:4] # other_speed = other_agents_filtered_vel[i,j*2] # other_angle = other_agents_filtered_vel[i,j*2+1] # other_agents_state[j][2] = other_speed * np.cos(other_angle) # other_agents_state[j][3] = other_speed * np.sin(other_angle) # # print 'after', other_agents_state[j][2:4] # raw_input() # print 'd_2_goal', np.linalg.norm(agent_state[0:2] - agent_state[6:8]) # print 'time %.3f, time_to_reach_goal %.3f' %(time_vec[i], time_to_reach_goal[agent_num]) # print '---- ifReachedGoal ---', ifReachedGoal # time 2 goal if ifReachedGoal: time_2_goal_vec[i] = 0.0 elif if_completed_vec[agent_num]: time_2_goal_vec[i] = time_to_reach_goal[agent_num] - time_vec[i] try: assert(time_2_goal_vec[i] > -EPS) except AssertionError: print(time_to_reach_goal[agent_num]) print(time_vec[i]) assert(0) # # agent_centric_state # agent_speed = agent_state[5] # assert(agent_speed > 0.1 - EPS) # dt_backward_max = max(self.value_net.dt_forward, 0.5/agent_speed) # # dt_forward_max = self.dt_forward # dist_to_goal = np.linalg.norm(agent_state[6:8]- agent_state[0:2]) # time_to_goal = dist_to_goal / agent_speed # dt_backward= min(dt_backward_max, time_to_goal) #1.0 # ii = i # while ii > 0: # if time_vec[i] - time_vec[ii] > dt_backward: # ii = ii - 1 # other_agents_past_state = [other_agents_states[tt][ii,:].copy() for tt in xrange(len(other_agents_states))] # ref_prll, ref_orth, state_nn = \ # pedData.rawState_2_agentCentricState( \ # agent_state, other_agents_past_state, self.num_agents) # agent_centric_states[i,:] = state_nn.copy() ref_prll, ref_orth, state_nn = \ pedData.rawState_2_agentCentricState( \ agent_state, other_agents_state, self.num_agents) agent_centric_states[i,:] = state_nn.copy() # time_2_goal_bnd time_2_goal_bnd[i] = state_nn[0] / agent_speed # time_2_goal_bnd[i] = time_bnd - time_vec[i] # action_rewards and values if i == 0: values[0] = self.value_net_copy.find_states_values(agent_state, other_agents_state) if i < num_pts - 1: # note i+1 agent_next_state = agent_states[i+1,:] other_agents_next_state = [other_agents_states[tt][i+1,:] for tt in xrange(len(other_agents_states))] dt_forward = time_vec[i+1] - time_vec[i] state_value, action_reward = \ self.value_net_copy.find_next_state_pair_value_and_action_reward(agent_state, \ agent_next_state, other_agents_state, \ other_agents_next_state, dt_forward) # print 'method 1: state_value, ', state_value1 cur_dist_vec = [np.linalg.norm(agent_state[0:2] - other_agent_state[0:2])-\ agent_state[8]-other_agent_state[8] for \ other_agent_state in other_agents_state] cur_dist = min(cur_dist_vec) # min_dists = [np.linalg.norm(agent_next_state[0:2] - other_agent_next_state[0:2])-\ # agent_next_state[8]-other_agent_next_state[8] for \ # other_agent_next_state in other_agents_next_state] # # print 'i, cur_dist, next_dist', i, cur_dist, min(min_dists) # # min_dist = np.array([min(min_dists)]) #- np.random.rand() * 0.05 # min_dist = np.array([cur_dist]) + 1.0 action_reward = self.value_net_copy.find_action_rewards_train(agent_state, \ cur_dist, dt_forward) # action_reward_min = min(action_reward, action_reward_2) # if action_reward_min < -EPS: # print action_reward, action_reward_2, action_reward < action_reward_2 # raw_input() # action_reward = action_reward_min if abs(state_value) < EPS: state_value = 0.01 # state_value = self.value_net_copy.find_states_values(agent_next_state, other_agents_next_state) # # print 'method 2: state_value, ', state_value # if abs(state_value1 - state_value) > 0.01: # print 'method 1: state_value, ', state_value1 # print 'method 2: state_value, ', state_value # print 'num_agents', len(other_agents_state) # print ' --- 111 ---' # state_value1, action_reward = \ # self.value_net_copy.find_next_state_pair_value_and_action_reward(agent_state, \ # agent_next_state, other_agents_state, \ # other_agents_next_state, dt_forward) # print ' --- 222 ---' # state_value = self.value_net_copy.find_states_values(agent_next_state, other_agents_next_state) # raw_input() action_rewards[i] = action_reward values[i+1] = state_value if i == num_pts - 1: cur_dist_vec = [np.linalg.norm(agent_state[0:2] - other_agent_state[0:2])-\ agent_state[8]-other_agent_state[8] for \ other_agent_state in other_agents_state] cur_dist = min(cur_dist_vec) min_dists = np.array(cur_dist_vec) + 1.0 dt_forward = 1.0 action_rewards[i] = self.value_net_copy.find_action_rewards(agent_state, \ cur_dist, min_dists, dt_forward)[0] # terminal states is_terminal_state = self.value_net_copy.if_terminal_state(agent_state, other_agents_state) if is_terminal_state == COLLIDED: values[i] = COLLISION_COST action_rewards[i] = 0.0 break elif is_terminal_state == REACHED_GOAL: Dt_bnd = state_nn[0] / state_nn[1] values[i] = (gamma ** (Dt_bnd * state_nn[1] / dt_normal)) action_rewards[i] = 0.0 ifReachedGoal = True break # sufficiently close to goal but also close to the other agent elif np.linalg.norm(agent_state[0:2]-agent_state[6:8]) < DIST_2_GOAL_THRES: Dt_bnd = state_nn[0] / state_nn[1] values[i] = (gamma ** (Dt_bnd * state_nn[1] / dt_normal)) ifReachedGoal = True break # debug # print 'time, dist_to_goal, pref_speed', time_vec[i], \ # np.linalg.norm(agent_state[0:2]-agent_state[6:8]), agent_state[5] # if np.linalg.norm(agent_state[0:2]-agent_state[6:8])<DIST_2_GOAL_THRES: # print 'here' # print agent_state # print other_agent_state # print np.linalg.norm(agent_state[0:2]-other_agent_state[0:2])- \ # agent_state[8]-other_agent_state[8] eff_pts = min(num_pts, counter) # print 'num_pts, counter, eff_pts', num_pts, counter, eff_pts try: assert(num_pts>0) except: for i in xrange(1,len(traj_raw_multi)): print(traj_raw_multi[i][0,:]) assert(0) return time_2_goal_vec[0:eff_pts], time_2_goal_bnd[0:eff_pts], \ agent_centric_states[0:eff_pts,:], values[0:eff_pts], action_rewards[0:eff_pts] def rawTraj_2_trainingData(self, traj_raw_multi, gamma, iteration, ifOnlyFirstAgent=False): time_vec = traj_raw_multi[0] num_agents = len(traj_raw_multi) - 1 agents_time_2_goal_vec_list = [] agents_time_2_goal_bnd_list = [] agents_centric_states_list = [] agents_values_list = [] agents_action_reward_list = [] agents_extra_time_list = [] X = []; Y = []; values_diff = [] for tt in xrange(num_agents): time_2_goal_vec, time_2_goal_bnd, agent_centric_states, \ values, action_rewards = self.rawTraj_2_trainingStats( \ time_vec, traj_raw_multi, tt, iteration=iteration) extra_time = self.computeExtraTime(time_2_goal_vec,time_2_goal_bnd, \ time_vec[0:len(time_2_goal_bnd)]) agents_time_2_goal_vec_list.append(time_2_goal_vec) agents_time_2_goal_bnd_list.append(time_2_goal_bnd) agents_centric_states_list.append(agent_centric_states) agents_values_list.append(values) agents_action_reward_list.append(action_rewards) agents_extra_time_list.append(extra_time) dt = TRAINING_DT for tt in xrange(num_agents): if ifOnlyFirstAgent and tt > 0: break # skip straight line trajectories # if abs(agents_time_2_goal_vec_list[tt][0] - np.linalg.norm(traj_raw_multi[tt+1][0,0:2]-\ # traj_raw_multi[tt+1][0,6:8])/traj_raw_multi[tt+1][0,5]) < EPS: path_length = np.linalg.norm(traj_raw_multi[tt+1][0,0:2]-\ traj_raw_multi[tt+1][0,6:8]) exp_min_time = path_length /traj_raw_multi[tt+1][0,5] if_completed = np.isnan(agents_time_2_goal_vec_list[tt][0]) == False if path_length < EPS or (if_completed and (agents_time_2_goal_vec_list[tt][0] / exp_min_time < 1.05)): continue agent_num_pts = len(agents_time_2_goal_bnd_list[tt]) # don't include stationary agents # if agent_num_pts < 2: # continue other_agents_extra_time = [agents_extra_time_list[i] for i in xrange(num_agents) if i!=tt] other_agents_states = [traj_raw_multi[i+1] for i in xrange(num_agents) if i!=tt] agent_states = traj_raw_multi[tt+1] X1, Y1, values_diff1 = self.trainingStats_2_trainingData(time_vec[0:agent_num_pts], dt, \ agents_time_2_goal_vec_list[tt], agents_time_2_goal_bnd_list[tt], agents_centric_states_list[tt], \ agents_values_list[tt], agents_action_reward_list[tt], other_agents_extra_time, \ agent_states, other_agents_states, iteration, traj_raw_multi=traj_raw_multi) # print X1[1,:] # print Y1[1,:] # raw_input() if len(X) == 0: X = X1.copy() Y = Y1.copy() values_diff = values_diff1 else: X = np.vstack((X, X1.copy())) Y = np.vstack((Y, Y1.copy())) values_diff = np.hstack((values_diff, values_diff1)) # X_future, Y_future = self.find_intended_future_states(traj_raw_multi) # X = np.vstack((X, X_future.copy())) # Y = np.vstack((Y, Y_future.copy())) # num_pts = len(X) # num_pts_thres = 300 # if num_pts > num_pts_thres: # minibatch = np.random.permutation(np.arange(num_pts))[0:num_pts_thres] # X = X[minibatch,:] # Y = Y[minibatch,:] return X, Y, values_diff # def debug_rawTraj_2_trajStats(self): # for i, test_case in enumerate(self.test_cases): # if i != 2: # continue # traj_raw, agent_1_time, agent_2_time, if_collided = \ # self.value_net.generate_traj(test_case, figure_name='no_plot') # traj_raw_multi = pedData.traj_raw_2_traj_raw_multi(traj_raw) # time_vec = traj_raw_multi[0] # agent_states = traj_raw_multi[1] # other_agent_states = traj_raw_multi[2] # time_vec = traj_raw[:,0] # agent_1_states = traj_raw[:,1:10] # agent_2_states = traj_raw[:,10:19] # a1_time_2_goal_vec, a1_time_2_goal_bnd, a1_agent_centric_states, \ # a1_values, a1_action_rewards = self.rawTraj_2_trainingStats( \ # time_vec, agent_states, other_agent_states) # # np.set_printoptions(precision=4,formatter={'float': '{: 0.3f}'.format}) # # zero_inds = np.where(a1_action_rewards<EPS)[0] # # a1_action_rewards[zero_inds] = 0 # # print a1_action_rewards[zero_inds] # a2_time_2_goal_vec, a2_time_2_goal_bnd, a2_agent_centric_states, \ # a2_values, a2_action_rewards = self.rawTraj_2_trainingStats( \ # time_vec, other_agent_states, agent_states) # # zero_inds = np.where(a2_action_rewards<EPS)[0] # # a2_action_rewards[zero_inds] = 0 # # print a2_action_rewards[zero_inds] # print '--- test_case %d --- ' % i # self.rawTraj_2_trajStats(time_vec, agent_1_states, agent_2_states, \ # a1_time_2_goal_vec, a1_agent_centric_states, ifPlot=True) # self.rawTraj_2_trajStats(time_vec, agent_2_states, agent_1_states, \ # a2_time_2_goal_vec, a2_agent_centric_states, ifPlot=True) # gamma = 0.97 # X, Y = self.rawTraj_2_trainingData(traj_raw, gamma, 0) # compute trajectory properties, such as passing on the left of the other vehicle def rawTraj_2_trajStats(self, time_vec, agent_states, other_agent_states, \ time_2_goal_vec, agent_centric_states, iteration=0, ifPlot=False): num_pts = len(time_vec) - 1 if np.isnan(time_2_goal_vec[0]): return np.ones((num_pts,)) bad_inds_oppo, bad_inds_same, bad_inds_tangent = \ self.value_net.find_bad_inds(agent_centric_states) #scaling factor d = np.linalg.norm(agent_states[:-1,0:2] - agent_states[:-1,6:8], axis=1) v = agent_states[0,5] getting_close_penalty = GAMMA ** (d/DT_NORMAL) * (1.0 - GAMMA ** (-v/DT_NORMAL)) penalty = np.zeros((num_pts,)) penalty[bad_inds_oppo] = 0.7 * getting_close_penalty[bad_inds_oppo] penalty[bad_inds_same] = 0.7 * getting_close_penalty[bad_inds_same] penalty[bad_inds_tangent] = 0.7 * getting_close_penalty[bad_inds_tangent] time_2_goal_upper_bnd = np.zeros((num_pts,)) time_2_goal_upper_bnd[bad_inds_oppo] = time_2_goal_vec[bad_inds_oppo] + 1.0 time_2_goal_upper_bnd[bad_inds_same] = time_2_goal_vec[bad_inds_same] + 1.0 time_2_goal_upper_bnd[bad_inds_tangent] = time_2_goal_vec[bad_inds_tangent] + 1.0 dt_normal = DT_NORMAL value_upper_bnd = GAMMA ** (time_2_goal_upper_bnd * agent_states[0,5] / dt_normal) # print dt_normal # print value_upper_bnd # raw_input() # penalty[bad_inds_same] += -0.2 # penalty = np.clip(penalty, -0.1, 0.0) if ifPlot: #len(bad_inds_oppo) > 3 or len(bad_inds_same) or len(bad_inds_tangent) : # print 'heading_diff[bad_inds_oppo]', heading_diff[bad_inds_oppo] # print 'tangent_inds', tangent_inds # print 'stationary_inds', stationary_inds traj_raw = np.hstack((time_vec[:,np.newaxis], agent_states, other_agent_states)) pedData.plot_traj_raw_multi(traj_raw, 'from rawTraj_2_trajStats', figure_name="raw_traj") if len(bad_inds_oppo) > 0: print('bad_inds_oppo', bad_inds_oppo) traj_raw_bad = np.hstack((time_vec[bad_inds_oppo,np.newaxis], agent_states[bad_inds_oppo,:], \ other_agent_states[bad_inds_oppo,:])) # print('traj_raw_bad', traj_raw_bad) pedData.plot_traj_raw_multi(traj_raw_bad, 'from rawTraj_2_trajStats, bad inds oppo', figure_name="bad_inds_oppo") # raw_input() if len(bad_inds_same) > 0: print('bad_inds_same', bad_inds_same) traj_raw_bad = np.hstack((time_vec[bad_inds_same,np.newaxis], agent_states[bad_inds_same,:], \ other_agent_states[bad_inds_same,:])) # print('traj_raw_bad', traj_raw_bad) pedData.plot_traj_raw_multi(traj_raw_bad, 'from rawTraj_2_trajStats, bad inds same', figure_name="bad_inds_same") # raw_input() if len(bad_inds_tangent) > 0: print('bad_inds_tangent', bad_inds_tangent) traj_raw_bad = np.hstack((time_vec[bad_inds_tangent,np.newaxis], agent_states[bad_inds_tangent,:], \ other_agent_states[bad_inds_tangent,:])) # print('traj_raw_bad', traj_raw_bad) pedData.plot_traj_raw_multi(traj_raw_bad, 'from rawTraj_2_trajStats, bad inds tangent', figure_name="bad_inds_tangent") # raw_input() print(penalty) raw_input() # if iteration < 200: # penalty[bad_inds_same] = 3.0 * getting_close_penalty[bad_inds_same] # return penalty return value_upper_bnd def computeExtraTime(self, time_2_goal_vec, time_bnd, time_vec): # method 1 # if np.isnan(time_2_goal_vec[0]): # extra_time = np.zeros((len(time_2_goal_vec),)) # extra_time[:] = np.inf # else: # extra_time = np.clip(time_2_goal_vec - time_bnd, 0, 100) # try: # assert(np.all(extra_time>-EPS)) # except AssertionError: # print 'extra_time', extra_time # print 'time_2_goal_vec', time_2_goal_vec # print 'time_bnd', time_bnd # assert(0) # return extra_time # print 'time_bnd', time_bnd # print 'time_2_goal_vec',time_2_goal_vec # print np.clip(time_2_goal_vec - time_bnd, 0, 100) # method 2 if np.isnan(time_2_goal_vec[0]): extra_time_individual = np.zeros((len(time_2_goal_vec),)) extra_time_individual[:] = np.inf elif len(time_vec) < 2: extra_time_individual = np.zeros((len(time_2_goal_vec),)) extra_time_individual[:] = 0 else: dt_time_vec = time_vec.copy() dt_time_vec[:-1] = time_vec[1:]-time_vec[:-1]; dt_time_vec[-1] = dt_time_vec[-2] dt_2_goal = time_bnd.copy() dt_2_goal[:-1] = time_bnd[:-1]-time_bnd[1:]; dt_2_goal[-1] = dt_2_goal[-2] extra_time_individual_raw = dt_time_vec - dt_2_goal try: assert(np.all(extra_time_individual_raw>-EPS)) except AssertionError: print('extra_time_individual_raw', extra_time_individual_raw) print('dt_time_vec', dt_time_vec) print('dt_2_goal', dt_2_goal) assert(0) # print 'extra_time_individual', extra_time_individual width = 5 num_pts = len(extra_time_individual_raw) extra_time_individual = extra_time_individual_raw.copy() for i in xrange(num_pts): extra_time_individual[i] = \ np.sum(extra_time_individual_raw[max(0,i-width):min(i+width, num_pts)]) return extra_time_individual def minFutureRewards(self, action_rewards): num_pts = len(action_rewards) future_min_rewards = action_rewards.copy() for i in xrange(num_pts): future_min_rewards[i] = np.min(action_rewards[i:]) return future_min_rewards def trainingStats_2_trainingData(self, time_vec, dt, time_2_goal_vec, \ time_2_goal_bnd, agent_centric_states, values, \ action_rewards, other_agents_extra_time, agent_states, other_agents_states, iteration, traj_raw_multi=None): num_pts = len(time_vec) num_states = 7 + 8 * (self.num_agents - 1) X = np.zeros((num_pts,num_states)); X_future = np.zeros((num_pts,num_states)); X_stuck = np.zeros((0,num_states)) Y = np.zeros((num_pts,1)); Y_future = np.zeros((num_pts,1)); Y_stuck = np.zeros((0,1)) future_value_inds = [] extra_time = self.computeExtraTime(time_2_goal_vec,time_2_goal_bnd, time_vec) dist_travelled_vec = np.linalg.norm(agent_states[1:,0:2]-agent_states[0:-1,0:2], axis=1) dist_travelled_vec = np.append(dist_travelled_vec,[0]) # if len(other_extra_time) > num_pts: # other_extra_time = other_extra_time[0:num_pts] # else: # other_extra_time_tmp = np.zeros((num_pts,)) # other_extra_time_tmp[0:len(other_extra_time)] = other_extra_time # other_extra_time = other_extra_time_tmp # if other agents have collided if_other_collided = False num_other_agents = len(other_agents_states) for i in xrange(num_other_agents): for j in xrange(i+1, num_other_agents): dist = np.linalg.norm(other_agents_states[i][-1, 0:2] - other_agents_states[j][-1, 0:2]) - \ other_agents_states[i][-1,8] - other_agents_states[j][-1,8] if dist < 0: if_other_collided = True # if agent has collided with others if_agent_collided = False for i in xrange(num_other_agents): dist = np.linalg.norm(agent_states[-1, 0:2] - other_agents_states[i][-1, 0:2]) - \ agent_states[-1,8] - other_agents_states[i][-1,8] if dist < 0.0: if_agent_collided = True break # dist_2_others (see README.txt) others_columns_inds = [7 + 6 + 8*(tt) for tt in xrange(num_other_agents)] min_dist_2_others = np.min(agent_centric_states[:,others_columns_inds], axis = 1) gamma = GAMMA dt_normal = DT_NORMAL agent_desired_speed = agent_centric_states[0,1] j = 0 dt_forward_vec = np.zeros((len(time_2_goal_bnd),)) if_extra = False if_stuck = False if_stuck_counter = 0 counter = 0 for i in xrange(num_pts-1): while time_vec[j] - time_vec[i] < dt and j < num_pts-1: if min_dist_2_others[j+1] > 0 or j<=i: j += 1 # elif min_dist_2_others[j] < GETTING_CLOSE_RANGE: # break else: break if i == num_pts - 1: j = i # skip points # if time_2_goal_vec[i] < time_2_goal_bnd[i] * 1.01: # # print 'time_2_goal_vec[i], time_2_goal_bnd[i]', time_2_goal_vec[i], time_2_goal_bnd[i] # # raw_input() # if np.random.rand() > 0.2: # continue # else: # break X[counter,:] = agent_centric_states[i,:] # compute value using q-learning update # print 'j, num_pts', j, num_pts # print len(time_2_goal_vec), len(time_2_goal_bnd), \ # len(agent_centric_states), len(agent_centric_states), \ # len(values), len(action_rewards), len(other_extra_time) # neural net output is non-sensible (negative value and zero reward) value_bnd = (gamma ** (agent_centric_states[i,0] / dt_normal)) # if values[j] < 0 and agent_centric_states[j,13] > 0.1: # state_value = max(0, value_bnd - 0.2) # action_reward = action_rewards[i] #np.min(action_rewards[i:max(i+1,j)]) action_reward = np.min(action_rewards[i:max(i+1,j)]) ############################################################################ # use one point # print 'i %d, j %d' %(i, j) dt_forward = time_vec[j] - time_vec[i] # dist_travelled = np.linalg.norm(agent_states[j,0:2]-agent_states[i,0:2]) dist_travelled = np.sum(dist_travelled_vec[i:j]) dt_forward_scaled = dist_travelled / agent_desired_speed assert(np.isnan(dt_forward_scaled)==0) # dt_forward_adj = 1.0 * dt_forward + 0.0 * dt_forward_scaled dt_forward_adj = 0.5 * dt_forward + 0.5 * dt_forward_scaled # dt_forward_adj = 1.0 * dt_forward # print dt_forward, dt_forward_scaled # raw_input() # try: # assert(dt_forward +EPS >= dt_forward_adj) # except: # print 'dt_forward', dt_forward # print 'dt_forward_scaled',dt_forward_scaled # print 'dt_forward_adj', dt_forward_adj # print 'dist_travalled', dist_travelled # print 'dist_travelled / agent_desired_speed', dist_travelled / agent_desired_speed # assert(0) state_value = values[j] value_q_learning = action_reward + gamma ** (dt_forward_adj * \ agent_desired_speed / dt_normal) * state_value dt_forward_vec[i] = dt_forward ########################################################################### # use all points upto 1 seconds into the future # print 'i %d, j %d' %(i, j) # upper_ind = j+1 # j+1 # lower_ind = min(j, i+5) # i+1 # dt_forward = time_vec[lower_ind:upper_ind] - time_vec[i] # state_values = values[lower_ind:upper_ind] # agent_speeds = agent_centric_states[lower_ind:upper_ind,2] # # dt_forward_post = dt_forward.copy() # # dt_forward_tmp = time_vec[i+1:j+1] - time_vec[i:j] # # for tt in xrange(1,j-i): # # dt_forward_post[tt-1] = dt_forward[tt-1] * 0.2 + 0.8 * np.sum(agent_speeds[0:tt] / agent_desired_speed \ # # * dt_forward_tmp[0:tt]) # dist_travelled = dist_travelled_vec[lower_ind:upper_ind].copy() # dist_travelled[0] += np.sum(dist_travelled_vec[i:lower_ind]) # for tt in xrange(1, len(dist_travelled)): # dist_travelled[tt] += dist_travelled[tt-1] # # dist_travelled = np.linalg.norm(agent_states[lower_ind:upper_ind,0:2]-agent_states[i,0:2], axis=1) # dt_forward_post = 0.5 * dt_forward + 0.5 * dist_travelled / agent_desired_speed # value_q_learning = action_reward + np.mean(gamma ** (dt_forward_post * \ # agent_desired_speed / dt_normal) * state_values) # dt_forward_vec[i] = time_vec[j] - time_vec[i] # try: # assert(np.isnan(value_q_learning) == False) # except: # print value_q_learning # print action_reward # print dt_forward_post # print dt_forward_post * agent_desired_speed / dt_normal # assert(0) ############################################################################ if value_q_learning > value_bnd: value_q_learning = value_bnd # compute value using actual time to reach goal if (not if_other_collided) and min_dist_2_others[-1] > 0 and \ np.isnan(time_2_goal_vec[i]) and \ (abs(agent_centric_states[i,0] - agent_centric_states[-1,0]) < 1.0) \ and (abs(agent_centric_states[i,0] - agent_centric_states[-1,0]) < \ 1.0 * agent_centric_states[0,1]): # stuck # print 'min_dist_2_others[-1] > 0', min_dist_2_others[-1] > 0 # value_q_learning = value_q_learning * 0.8 * (agent_centric_states[i,2] / agent_centric_states[i,1]) value_q_learning = 0.01 # value_q_learning = max(0.01, value_q_learning - 0.2) if_stuck = True if_stuck_counter += 1 # if trajectory is bad # vehicle thinks it can reach goal faster than it actually did # if not np.isnan(time_2_goal_vec[i]) and value_q_learning > EPS: # agent_desired_speed = agent_centric_states[0,1] # time_2_goal_value = np.log(value_q_learning) / np.log(gamma) * dt_normal / max(EPS, agent_desired_speed) # if time_2_goal_value < time_2_goal_vec[i] - 1.0 or time_2_goal_value < time_2_goal_vec[i] * 0.8: # value_q_learning *= 0.9 # print 'time_2_goal_value', time_2_goal_value # print 'i', i # print 'time_2_goal_vec[i]', time_2_goal_vec[i] # raw_input() # if np.min(action_rewards[i:]) > -EPS: # value = max(value_q_learning, value_reach_goal) # else: value = value_q_learning # value = max(value_q_learning, value_reach_goal) # penalize if the other agent took a lot more time # num_other_agents = len(other_agents_extra_time) # for tt, other_agent_states in enumerate(other_agents_states): # offset = 7 + 2 + tt * 8 # dist_2_other = np.linalg.norm(agent_centric_states[i, offset:offset+2]) # other_dist_2_goal = np.linalg.norm(other_agent_states[-1, 0:2]-other_agent_states[-1, 6:8]) # agent_speed = agent_centric_states[0, 1] # other_agent_speed = other_agent_states[0, 5] # other_extra_time = other_agents_extra_time[tt] # if len(other_extra_time) <= i: # continue # if np.isnan(time_2_goal_vec[i]) == False and other_dist_2_goal <= DIST_2_GOAL_THRES and \ # other_extra_time[i] - extra_time[i] > 0.5 \ # and time_2_goal_vec[i] > 1.0 and dist_2_other < 2.5 \ # and agent_speed > other_agent_speed - 0.2: # # and np.linalg.norm(other_agent_states[i,2:4]) > 0.5*other_agent_speed: # # print other_extra_time[i], extra_time[i], dist_2_other, \ # # est, other_extra_time[i]-est - extra_time[i] # penalty = gamma ** (min((other_extra_time[i] - extra_time[i]), 2.0) \ # * agent_desired_speed / dt_normal) # value *= penalty # break # if_extra = True # # print 'here' # # print 'other_extra_time[i]', other_extra_time[i] # # print 'extra_time[i]', extra_time[i] # # print penalty # # raw_input() # # to speed up convergence # # if iteration < 200 and time_2_goal_vec[i] < dt and dist_2_other > 2.5: # # value = value_bnd Y[counter,0] = max(value, -0.25) # if value_q_learning == 0.01: # X_stuck_pt, Y_stuck_pt = self.createStateSample(X[counter-1,:]) # # print X_stuck.shape, Y_stuck.shape # X_stack = np.vstack((X_stuck, X_stuck_pt)) # Y_stack = np.vstack((Y_stuck, Y_stuck_pt)) # # print X_stuck_pt, Y_stuck_pt # print counter # if if_stuck_counter > 20: # break # future values # agent_state = agent_states[i,:].copy() # other_agents_state = [other_agents_states[tt][i,:].copy() for tt in xrange(len(other_agents_states))] # state_nn_future, value_future = \ # self.find_intended_future_state_value(agent_state, agent_states[i+1,2:4], other_agents_state, dt_forward_vec[i]) # X_future[counter,:] = state_nn_future.copy() # Y_future[counter,:] = value_future # future_value_inds.append(j) # # print 'value_future, values[j], dt_forward_vec[i]', value_future, values[j], dt_forward_vec[i] # Y_future[i,0] = min(value_future, values[j]) counter += 1 # if counter < num_pts: # print counter # print num_pts # raw_input() # print counter # debug # min_dist_2_others = np.min(agent_centric_states[:,[13,21,29]], axis = 1) # if np.any(Y[:,0]<EPS) and iteration > 0: # if iteration > 0: # np.set_printoptions(precision=4,formatter={'float': '{: 0.3f}'.format}) # print 'time_2_goal_vec, time_2_goal_bnd, dist_2_other, values, action_rewards, dt_forward, value_bnd, value_train' # value_bnd = GAMMA ** (agent_centric_states[:,0] / DT_NORMAL) # print np.vstack((time_2_goal_vec, time_2_goal_bnd, min_dist_2_others, values, action_rewards, \ # dt_forward_vec, value_bnd, X[:,0], Y[:,0])).transpose() # print min_dist_2_others[-1] # raw_input() # if traj is too long if False and counter > 100: stride = int(counter / 100) + 1 X = X[0:counter:stride,] Y = Y[0:counter:stride,] agent_centric_states = agent_centric_states[0:counter:stride,:] time_vec = time_vec[0:counter:stride] values = values[0:counter:stride] action_rewards = action_rewards[0:counter:stride] else: X = X[0:counter,:] Y = Y[0:counter,:] # print 'counter', counter # X_future = X_future[0:counter] # Y_future = Y_future[0:counter] # Y_min_value = Y[np.clip(np.array(future_value_inds), 0, counter-1)] # # print Y_min_value.shape, Y_future.shape # Y_future = np.minimum(Y_future, Y_min_value) # # print Y_future.shape # # print np.hstack((Y_future, Y[np.clip(np.array(future_value_inds), 0, counter-1)])) # # raw_input() # X = np.vstack((X,X_future)) # Y = np.vstack((Y,Y_future)) values_raw = np.squeeze(self.value_net_copy.nn.make_prediction_raw(X)) # if if_stuck: # print 'X, Y' # print np.hstack((X, Y, values_raw[:,np.newaxis])) # raw_input() # print values_raw.shape # print values.shape min_dist_2_others = np.min(agent_centric_states[:,[13,21,29]], axis = 1) values_diff = abs((Y[:,0]-values_raw) / Y[:,0]) # zero_inds = np.where(abs(Y[:,0])<EPS)[0] # if len(zero_inds) > 0: # print 'wrong', zero_inds, counter # print X[zero_inds,:] # print Y[zero_inds,0] # print values_raw[zero_inds] # raw_input() # values_diff = abs((Y[:,0]-values[:-1]) / Y[:,0]) # print Y[:,0].shape # print values_diff.shape ################################################################### # # method 1 num_selected_inds = int(len(X)/5) inds = np.argpartition(values_diff, -num_selected_inds)[-num_selected_inds:] bad_inds = np.where(values_diff>0.1)[0] inds = np.union1d(bad_inds, inds) rand_inds = np.random.permutation(np.arange(len(X)))[0:num_selected_inds] inds = np.union1d(inds, rand_inds) # good_inds = np.argpartition(values_diff, num_selected_inds)[:num_selected_inds] # inds = np.union1d(inds, good_inds) inds = np.arange(len(X)) ################################################################### # # method 2 # all_inds = np.arange(len(X)) # toward_goal_inds = np.where(abs(X[:,3]) < 0.2)[0] # # print 'toward_goal_inds %d' \ # # %(len(toward_goal_inds)) # far_inds = np.where(min_dist_2_others < 0.3)[0] # toward_goal_inds = np.setdiff1d(toward_goal_inds,far_inds) # # print 'toward_goal_inds %d, not toward_goal_inds %d, total %d' \ # # %(len(toward_goal_inds), len(X) - len(toward_goal_inds), len(X)) # # raw_input() # bad_inds = np.setdiff1d(all_inds, toward_goal_inds) # inds = bad_inds # if len(bad_inds) == 0: # bad_inds = [0] # toward_goal_inds_sample = \ # np.random.permutation(toward_goal_inds)[0:len(bad_inds)] # inds = np.union1d(bad_inds, toward_goal_inds_sample) # # bad_inds_2 = np.where(Y[:,0]<0.6)[0] # # inds = np.union1d(inds, bad_inds_2) ################################################################### X = X[inds,:] Y = Y[inds,:] values_diff = values_diff[inds] # debug # if counter > 300 or if_agent_collided: # values_bnd = GAMMA ** (X[:,0]/DT_NORMAL) # values = values[inds] # print agent_desired_speed # print values.shape # np.set_printoptions(edgeitems=4, precision=4,formatter={'float': '{: 0.4f}'.format}) # print 'dist_2_goal, min_dist_2_others, dt, value_bnd, training_value, raw_values, action_rewardsvalues_diff' # print np.vstack((X[:,0], min_dist_2_others[inds], time_vec[inds], values_bnd, Y[:,0], values, action_rewards[inds], values_diff)).transpose() # raw_input() values_diff = values_diff[:] # bellman backup X1 = X.copy() Y1 = Y.copy() values_diff1 = values_diff.copy() speed_factors = np.random.rand(len(X1)) angles_factors = (np.random.rand(len(X1)) - 0.5 ) * 0.1 X1[:,2] *= speed_factors; X1[:,3] = (X1[:,3] + angles_factors + np.pi) % (np.pi * 2) - np.pi X1[:,4] = X1[:,2] * np.cos(X1[:,3]) X1[:,5] = X1[:,2] * np.sin(X1[:,3]) X =
np.vstack((X,X1))
numpy.vstack
import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.datasets import make_blobs from sklearn.mixture import BayesianGaussianMixture from matplotlib.patches import Ellipse # For reproducibility np.random.seed(1000) nb_samples = 500 nb_centers = 5 if __name__ == '__main__': # Create the dataset X, Y = make_blobs(n_samples=nb_samples, n_features=2, center_box=[-5, 5], centers=nb_centers, random_state=1000) # Train the model with concentration 1000 and 0.1 for c in (1000.0, 0.1): gm = BayesianGaussianMixture(n_components=5, weight_concentration_prior=c, max_iter=10000, random_state=1000) gm.fit(X) print('Weights: {}'.format(gm.weights_)) Y_pred = gm.fit_predict(X) print((Y_pred == 0).sum()) print((Y_pred == 1).sum()) print((Y_pred == 2).sum()) print((Y_pred == 3).sum()) print((Y_pred == 4).sum()) # Compute the parameters of the Gaussian mixture m1 = gm.means_[0] m2 = gm.means_[1] m3 = gm.means_[2] m4 = gm.means_[3] m5 = gm.means_[4] c1 = gm.covariances_[0] c2 = gm.covariances_[1] c3 = gm.covariances_[2] c4 = gm.covariances_[3] c5 = gm.covariances_[4] we1 = 1 + gm.weights_[0] we2 = 1 + gm.weights_[1] we3 = 1 + gm.weights_[2] we4 = 1 + gm.weights_[3] we5 = 1 + gm.weights_[4] w1, v1 = np.linalg.eigh(c1) w2, v2 = np.linalg.eigh(c2) w3, v3 = np.linalg.eigh(c3) w4, v4 = np.linalg.eigh(c4) w5, v5 = np.linalg.eigh(c5) nv1 = v1 / np.linalg.norm(v1) nv2 = v2 /
np.linalg.norm(v2)
numpy.linalg.norm