prompt
stringlengths 19
879k
| completion
stringlengths 3
53.8k
| api
stringlengths 8
59
|
---|---|---|
"""GNSS utility functions, mostly based on satellite ephemerides.
Author: <NAME>
"""
try:
import autograd.numpy as np
except(ImportError):
print("""Package 'autograd' not found. 'autograd.numpy' is necessary for
coarse-time navigation via maximum-likelihood estimation. Falling
back to 'numpy'.""")
import numpy as np
import pymap3d as pm
try:
import mkl_fft as fft_lib
except(ImportError):
print("""Package 'mkl_fft' not found. Consider installing 'mkl_fft' with
'conda install -c intel mkl_fft' for faster FFT and IFFT. Falling
back to 'numpy.fft'.""")
import numpy.fft as fft_lib
def get_sat_pos_vel_acc(t, eph):
"""Calculate positions, velocities, and accelerations of satellites.
Accepts arrays for t / eph, i.e., can calculate multiple points in time
/ multiple satellites at once.
Does not interpolate GLONASS.
Implemented according to
<NAME>., et al. “Computing GPS Satellite Velocity and
Acceleration from the Broadcast Navigation Message.” Annual of
Navigation, vol. 66, no. 4, 2019, pp. 769–779.
https://www.gps.gov/technical/icwg/meetings/2019/09/GPS-SV-velocity-and-acceleration.pdf
Inputs:
t - GPS time(s) [s] (ignored for SBAS)
eph - Ephemeris as array(s)
Outputs:
positions - Satellite position(s) in ECEF XYZ as array(s) [m]
velocities - Satellite velocity/ies in ECEF XYZ as array(s) [m/s]
accelerations - Sat. acceleration(s) in ECEF XYZ as array(s) [m/s^2]
Author: <NAME>
"""
if not np.isnan(eph[2]).any(): # No SBAS / GLONASS
t = np.mod(t, 7 * 24 * 60 * 60)
cic = eph[13] # "cic"]
crs = eph[10] # "crs"]
Omega0 = eph[15] # "Omega0"]
Deltan = eph[4] # "Deltan"]
cis = eph[14] # "cis"]
M0 = eph[2] # "M0"]
i0 = eph[11] # "i0"]
cuc = eph[7] # "cuc"]
crc = eph[9] # "crc"]
e = eph[5] # "e"]
Omega = eph[6] # "Omega"]
cus = eph[8] # "cus"]
OmegaDot = eph[16] # "OmegaDot"]
sqrtA = eph[3] # "sqrtA"]
IDOT = eph[12] # "IDOT"]
toe = eph[20] # "toe"]
# Broadcast Navigation User Equations
# WGS 84 value of the earth’s gravitational constant for GPS user [m^3/s^2]
mu = 3.986005e14
# WGS 84 value of the earth’s rotation rate [rad/s]
OmegaeDot = 7.2921151467e-5
# Semi-major axis
A = sqrtA ** 2
# Computed mean motion [rad/s]
n0 = np.sqrt(mu / A ** 3)
# Time from ephemeris reference epoch
tk = np.array(t - toe)
# t is GPS system time at time of transmission, i.e., GPS time corrected
# for transit time (range/speed of light). Furthermore, tk shall be the
# actual total time difference between the time t and the epoch time toe,
# and must account for beginning or end of week crossovers. That is, if tk
# is greater than 302,400 seconds, subtract 604,800 seconds from tk. If tk
# is less than -302,400 seconds, add 604,800 seconds to tk.
with np.nditer(tk, op_flags=["readwrite"]) as it:
for tk_i in it:
if tk_i > 302400:
tk_i[...] = tk_i - 604800
elif tk_i < -302400:
tk_i[...] = tk_i + 604800
# Corrected mean motion
n = n0 + Deltan
# Mean anomaly
Mk = M0 + n * tk
# Kepler’s equation (Mk = Ek - e*np.sin(Ek)) solved for eccentric anomaly
# (Ek) by iteration:
# Initial value [rad]
Ek = Mk
# Refined value, three iterations, (j = 0,1,2)
for j in range(3):
Ek = Ek + (Mk - Ek + e * np.sin(Ek)) / (1 - e * np.cos(Ek))
# True anomaly (unambiguous quadrant)
nuk = 2 * np.arctan(np.sqrt((1 + e) / (1 - e)) * np.tan(Ek / 2))
# Argument of Latitude
Phik = nuk + Omega
# Argument of Latitude Correction
deltauk = cus * np.sin(2 * Phik) + cuc * np.cos(2 * Phik)
# Radius Correction
deltark = crs * np.sin(2 * Phik) + crc * np.cos(2 * Phik)
# Inclination Correction
deltaik = cis * np.sin(2 * Phik) + cic * np.cos(2 * Phik)
# Corrected Argument of Latitude
uk = Phik + deltauk
# Corrected Radius
rk = A * (1 - e * np.cos(Ek)) + deltark
# Corrected Inclination
ik = i0 + deltaik + IDOT * tk
# Positions in Orbital Plane
xkDash = rk * np.cos(uk)
ykDash = rk * np.sin(uk)
# Corrected longitude of ascending node
Omegak = Omega0 + (OmegaDot - OmegaeDot) * tk - OmegaeDot * toe
# Earth-fixed coordinates
xk = xkDash * np.cos(Omegak) - ykDash * np.cos(ik) * np.sin(Omegak)
yk = xkDash * np.sin(Omegak) + ykDash * np.cos(ik) * np.cos(Omegak)
zk = ykDash * np.sin(ik)
# SV Velocity
# Eccentric anomaly rate
EkDot = n / (1 - e * np.cos(Ek))
# True anomaly rate
nukDot = EkDot * np.sqrt(1 - e ** 2) / (1 - e * np.cos(Ek))
# Corrected Inclination rate
dik_dt = IDOT + 2 * nukDot * (
cis * np.cos(2 * Phik) - cic * np.sin(2 * Phik)
)
# Corrected Argument of Latitude rate
ukDot = nukDot + 2 * nukDot * (
cus * np.cos(2 * Phik) - cuc * np.sin(2 * Phik)
)
# Corrected Radius rate
rkDot = e * A * EkDot * np.sin(Ek) + 2 * nukDot * (
crs * np.cos(2 * Phik) - crc * np.sin(2 * Phik)
)
# Longitude of ascending node rate
OmegakDot = OmegaDot - OmegaeDot
# In-plane x velocity
xkDashDot = rkDot * np.cos(uk) - rk * ukDot * np.sin(uk)
# In-plane y velocity
ykDashDot = rkDot * np.sin(uk) + rk * ukDot * np.cos(uk)
# Earth-fixed x velocity [m/s]
xkDot = (
-xkDash * OmegakDot * np.sin(Omegak)
+ xkDashDot * np.cos(Omegak)
- ykDashDot * np.sin(Omegak) * np.cos(ik)
- ykDash
* (
OmegakDot * np.cos(Omegak) * np.cos(ik)
- dik_dt * np.sin(Omegak) * np.sin(ik)
)
)
# Earth-fixed y velocity [m/s]
ykDot = (
xkDash * OmegakDot * np.cos(Omegak)
+ xkDashDot * np.sin(Omegak)
+ ykDashDot * np.cos(Omegak) * np.cos(ik)
- ykDash
* (
OmegakDot * np.sin(Omegak) * np.cos(ik)
+ dik_dt * np.cos(Omegak) * np.sin(ik)
)
)
# Earth-fixed z velocity [m/s]
zkDot = ykDash * dik_dt * np.cos(ik) + ykDashDot * np.sin(ik)
# SV Acceleration
# WGS 84 Earth equatorial radius [m]
RE = 6378137.0
# Oblate Earth gravity coefficient
J2 = 0.0010826262
# Oblate Earth acceleration factor
F = -3 / 2 * J2 * mu / rk ** 2 * (RE / rk) ** 2
# Earth-fixed x acceleration [m/s^2]
xkDotDot = (
-mu * xk / rk ** 3
+ F * ((1 - 5 * (zk / rk) ** 2) * xk / rk)
+ 2 * ykDot * OmegaeDot
+ xk * OmegaeDot ** 2
)
# Earth-fixed y acceleration [m/s^2]
ykDotDot = (
-mu * yk / rk ** 3
+ F * ((1 - 5 * (zk / rk) ** 2) * yk / rk)
- 2 * xkDot * OmegaeDot
+ yk * OmegaeDot ** 2
)
# Earth-fixed z acceleration [m/s^2]
zkDotDot = -mu * zk / rk ** 3 + F * ((3 - 5 * (zk / rk) ** 2) * zk / rk)
positions = np.array([xk, yk, zk]).T
velocities = np.array([xkDot, ykDot, zkDot]).T
accelerations = np.array([xkDotDot, ykDotDot, zkDotDot]).T
else: # SBAS
positions = 1.0e3 * np.array([eph[3], eph[6], eph[9]]).T
velocities = 1.0e3 * np.array([eph[4], eph[7], eph[10]]).T
accelerations = 1.0e3 * np.array([eph[5], eph[8], eph[11]]).T
if isinstance(t, np.ndarray) and len(eph.shape) == 1:
n_times = t.shape[0]
positions = np.tile(positions, (n_times, 1))
velocities = np.tile(velocities, (n_times, 1))
accelerations = np.tile(accelerations, (n_times, 1))
return positions, velocities, accelerations
def get_sat_pos_vel(t, eph):
"""Calculate positions and velocities of satellites.
Accepts arrays for t / eph, i.e., can calculate multiple points in time
/ multiple satellites at once.
Does not interpolate GLONASS.
Implemented according to
Thompson, <NAME>., et al. “Computing GPS Satellite Velocity and
Acceleration from the Broadcast Navigation Message.” Annual of
Navigation, vol. 66, no. 4, 2019, pp. 769–779.
https://www.gps.gov/technical/icwg/meetings/2019/09/GPS-SV-velocity-and-acceleration.pdf
Inputs:
t - GPS time(s) [s] (ignored for SBAS)
eph - Ephemeris as array(s)
Outputs:
positions - Satellite position(s) in ECEF XYZ as array(s) [m]
velocities - Satellite velocity/ies in ECEF XYZ as array(s) [m/s]
Author: <NAME>
"""
if not np.isnan(eph[2]).any(): # No SBAS / GLONASS
t = np.mod(t, 7 * 24 * 60 * 60)
cic = eph[13] # "cic"]
crs = eph[10] # "crs"]
Omega0 = eph[15] # "Omega0"]
Deltan = eph[4] # "Deltan"]
cis = eph[14] # "cis"]
M0 = eph[2] # "M0"]
i0 = eph[11] # "i0"]
cuc = eph[7] # "cuc"]
crc = eph[9] # "crc"]
e = eph[5] # "e"]
Omega = eph[6] # "Omega"]
cus = eph[8] # "cus"]
OmegaDot = eph[16] # "OmegaDot"]
sqrtA = eph[3] # "sqrtA"]
IDOT = eph[12] # "IDOT"]
toe = eph[20] # "toe"]
# Broadcast Navigation User Equations
# WGS 84 value of the earth’s gravitational constant for GPS user [m^3/s^2]
mu = 3.986005e14
# WGS 84 value of the earth’s rotation rate [rad/s]
OmegaeDot = 7.2921151467e-5
# Semi-major axis
A = sqrtA ** 2
# Computed mean motion [rad/s]
n0 = np.sqrt(mu / A ** 3)
# Time from ephemeris reference epoch
tk = np.array(t - toe)
# t is GPS system time at time of transmission, i.e., GPS time corrected
# for transit time (range/speed of light). Furthermore, tk shall be the
# actual total time difference between the time t and the epoch time toe,
# and must account for beginning or end of week crossovers. That is, if tk
# is greater than 302,400 seconds, subtract 604,800 seconds from tk. If tk
# is less than -302,400 seconds, add 604,800 seconds to tk.
with np.nditer(tk, op_flags=["readwrite"]) as it:
for tk_i in it:
if tk_i > 302400:
tk_i[...] = tk_i - 604800
elif tk_i < -302400:
tk_i[...] = tk_i + 604800
# Corrected mean motion
n = n0 + Deltan
# Mean anomaly
Mk = M0 + n * tk
# Kepler’s equation (Mk = Ek - e*np.sin(Ek)) solved for eccentric anomaly
# (Ek) by iteration:
# Initial value [rad]
Ek = Mk
# Refined value, three iterations, (j = 0,1,2)
for j in range(3):
Ek = Ek + (Mk - Ek + e * np.sin(Ek)) / (1 - e * np.cos(Ek))
# True anomaly (unambiguous quadrant)
nuk = 2 * np.arctan(np.sqrt((1 + e) / (1 - e)) * np.tan(Ek / 2))
# Argument of Latitude
Phik = nuk + Omega
# Argument of Latitude Correction
deltauk = cus * np.sin(2 * Phik) + cuc * np.cos(2 * Phik)
# Radius Correction
deltark = crs * np.sin(2 * Phik) + crc * np.cos(2 * Phik)
# Inclination Correction
deltaik = cis * np.sin(2 * Phik) + cic * np.cos(2 * Phik)
# Corrected Argument of Latitude
uk = Phik + deltauk
# Corrected Radius
rk = A * (1 - e * np.cos(Ek)) + deltark
# Corrected Inclination
ik = i0 + deltaik + IDOT * tk
# Positions in Orbital Plane
xkDash = rk * np.cos(uk)
ykDash = rk * np.sin(uk)
# Corrected longitude of ascending node
Omegak = Omega0 + (OmegaDot - OmegaeDot) * tk - OmegaeDot * toe
# Earth-fixed coordinates
xk = xkDash * np.cos(Omegak) - ykDash * np.cos(ik) * np.sin(Omegak)
yk = xkDash * np.sin(Omegak) + ykDash * np.cos(ik) * np.cos(Omegak)
zk = ykDash * np.sin(ik)
# SV Velocity
# Eccentric anomaly rate
EkDot = n / (1 - e * np.cos(Ek))
# True anomaly rate
nukDot = EkDot * np.sqrt(1 - e ** 2) / (1 - e * np.cos(Ek))
# Corrected Inclination rate
dik_dt = IDOT + 2 * nukDot * (
cis * np.cos(2 * Phik) - cic * np.sin(2 * Phik)
)
# Corrected Argument of Latitude rate
ukDot = nukDot + 2 * nukDot * (
cus * np.cos(2 * Phik) - cuc * np.sin(2 * Phik)
)
# Corrected Radius rate
rkDot = e * A * EkDot * np.sin(Ek) + 2 * nukDot * (
crs * np.cos(2 * Phik) - crc * np.sin(2 * Phik)
)
# Longitude of ascending node rate
OmegakDot = OmegaDot - OmegaeDot
# In-plane x velocity
xkDashDot = rkDot * np.cos(uk) - rk * ukDot * np.sin(uk)
# In-plane y velocity
ykDashDot = rkDot * np.sin(uk) + rk * ukDot * np.cos(uk)
# Earth-fixed x velocity [m/s]
xkDot = (
-xkDash * OmegakDot * np.sin(Omegak)
+ xkDashDot * np.cos(Omegak)
- ykDashDot * np.sin(Omegak) * np.cos(ik)
- ykDash
* (
OmegakDot * np.cos(Omegak) * np.cos(ik)
- dik_dt * np.sin(Omegak) * np.sin(ik)
)
)
# Earth-fixed y velocity [m/s]
ykDot = (
xkDash * OmegakDot * np.cos(Omegak)
+ xkDashDot * np.sin(Omegak)
+ ykDashDot * np.cos(Omegak) * np.cos(ik)
- ykDash
* (
OmegakDot * np.sin(Omegak) * np.cos(ik)
+ dik_dt * np.cos(Omegak) * np.sin(ik)
)
)
# Earth-fixed z velocity [m/s]
zkDot = ykDash * dik_dt * np.cos(ik) + ykDashDot * np.sin(ik)
positions = np.array([xk, yk, zk]).T
velocities = np.array([xkDot, ykDot, zkDot]).T
else: # SBAS
positions = 1.0e3 * np.array([eph[3], eph[6], eph[9]]).T
velocities = 1.0e3 * np.array([eph[4], eph[7], eph[10]]).T
if isinstance(t, np.ndarray) and len(eph.shape) == 1:
n_times = t.shape[0]
positions = np.tile(positions, (n_times, 1))
velocities = np.tile(velocities, (n_times, 1))
return positions, velocities
def get_sat_pos(t, eph):
"""Calculate positions of satellites.
Accepts arrays for t / eph, i.e., can calculate multiple points in time
/ multiple satellites at once.
Does not interpolate GLONASS.
Implemented according to
Thompson, <NAME>., et al. “Computing GPS Satellite Velocity and
Acceleration from the Broadcast Navigation Message.” Annual of
Navigation, vol. 66, no. 4, 2019, pp. 769–779.
https://www.gps.gov/technical/icwg/meetings/2019/09/GPS-SV-velocity-and-acceleration.pdf
Inputs:
t - GPS time(s) [s] (ignored for SBAS)
eph - Ephemeris as array(s)
Outputs:
positions - Satellite position(s) in ECEF XYZ as array(s) [m]
Author: <NAME>
"""
if not np.isnan(eph[2]).any(): # No SBAS / GLONASS
t = np.mod(t, 7 * 24 * 60 * 60)
cic = eph[13] # "cic"]
crs = eph[10] # "crs"]
Omega0 = eph[15] # "Omega0"]
Deltan = eph[4] # "Deltan"]
cis = eph[14] # "cis"]
M0 = eph[2] # "M0"]
i0 = eph[11] # "i0"]
cuc = eph[7] # "cuc"]
crc = eph[9] # "crc"]
e = eph[5] # "e"]
Omega = eph[6] # "Omega"]
cus = eph[8] # "cus"]
OmegaDot = eph[16] # "OmegaDot"]
sqrtA = eph[3] # "sqrtA"]
IDOT = eph[12] # "IDOT"]
toe = eph[20] # "toe"]
# Broadcast Navigation User Equations
# WGS 84 value of the earth’s gravitational constant for GPS user [m^3/s^2]
mu = 3.986005e14
# WGS 84 value of the earth’s rotation rate [rad/s]
OmegaeDot = 7.2921151467e-5
# Semi-major axis
A = sqrtA ** 2
# Computed mean motion [rad/s]
n0 = np.sqrt(mu / A ** 3)
# Time from ephemeris reference epoch
tk = np.array(t - toe)
# t is GPS system time at time of transmission, i.e., GPS time corrected
# for transit time (range/speed of light). Furthermore, tk shall be the
# actual total time difference between the time t and the epoch time toe,
# and must account for beginning or end of week crossovers. That is, if tk
# is greater than 302,400 seconds, subtract 604,800 seconds from tk. If tk
# is less than -302,400 seconds, add 604,800 seconds to tk.
try:
with np.nditer(tk, op_flags=["readwrite"]) as it:
for tk_i in it:
if tk_i > 302400:
tk_i[...] = tk_i - 604800
elif tk_i < -302400:
tk_i[...] = tk_i + 604800
except TypeError:
for idx in np.arange(tk.shape[0]):
if tk[idx] > 302400:
tk[idx] = tk[idx] - 604800
elif tk[idx] < -302400:
tk[idx] = tk[idx] + 604800
# Corrected mean motion
n = n0 + Deltan
# Mean anomaly
Mk = M0 + n * tk
# Kepler’s equation (Mk = Ek - e*np.sin(Ek)) solved for eccentric anomaly
# (Ek) by iteration:
# Initial value [rad]
Ek = Mk
# Refined value, three iterations, (j = 0,1,2)
for j in range(3):
Ek = Ek + (Mk - Ek + e * np.sin(Ek)) / (1 - e * np.cos(Ek))
# True anomaly (unambiguous quadrant)
nuk = 2 * np.arctan(np.sqrt((1 + e) / (1 - e)) * np.tan(Ek / 2))
# Argument of Latitude
Phik = nuk + Omega
# Argument of Latitude Correction
deltauk = cus * np.sin(2 * Phik) + cuc * np.cos(2 * Phik)
# Radius Correction
deltark = crs * np.sin(2 * Phik) + crc * np.cos(2 * Phik)
# Inclination Correction
deltaik = cis * np.sin(2 * Phik) + cic * np.cos(2 * Phik)
# Corrected Argument of Latitude
uk = Phik + deltauk
# Corrected Radius
rk = A * (1 - e * np.cos(Ek)) + deltark
# Corrected Inclination
ik = i0 + deltaik + IDOT * tk
# Positions in Orbital Plane
xkDash = rk * np.cos(uk)
ykDash = rk * np.sin(uk)
# Corrected longitude of ascending node
Omegak = Omega0 + (OmegaDot - OmegaeDot) * tk - OmegaeDot * toe
# Earth-fixed coordinates
xk = xkDash * np.cos(Omegak) - ykDash * np.cos(ik) * np.sin(Omegak)
yk = xkDash * np.sin(Omegak) + ykDash * np.cos(ik) * np.cos(Omegak)
zk = ykDash * np.sin(ik)
positions = np.array([xk, yk, zk]).T
else: # SBAS
positions = 1.0e3 * np.array([eph[3], eph[6], eph[9]]).T
if isinstance(t, np.ndarray) and len(eph.shape) == 1:
n_times = t.shape[0]
positions = np.tile(positions, (n_times, 1))
return positions
def get_sat_pos_sp3(gps_time, sp3, sv_list, system=None):
"""Calculate positions of satellites from precise orbits (SP3 file).
Inputs:
gps_time - GPS times [s] as numpy array
sp3 - Precise orbit supporting points as pandas.DataFrame from read_sp3
sv_list - Satellite indices (PRNs)
system - Character representing satellite navigation system:
'G' - GPS
'S' - SBAS
'R' - GLONASS
'E' - Galileo
'C' - BeiDou
'J' - QZSS
'I' - NavIC
None - Use character of 1st SP3 entry (default)
Output:
position - Satellite positions in ECEF XYZ as Nx3 array [m]
Author: <NAME>
Based on https://github.com/GNSSpy-Project/gnsspy/blob/fce079af37d585dc757c56539a98cc0dfe66f9de/gnsspy/position/interpolation.py
"""
def coord_interp(parameter):
"""
Interpolation of SP3 coordinates.
Fit polynomial to 4 hours (14400 seconds) period of SP3 Cartesian
coordinates and return to the interpolated coordinates.
Input:
parameter - Polynomial coefficients from numpy polyfit function
(numpy array)
Output:
interp_coord - Interpolated coordinates (numpy array)
"""
epoch = 0.0
time = np.array([
epoch**deg for deg in range(len(parameter)-1, -1, -1)
])
return np.matmul(parameter, time)
import pandas as pd
# Degree of polynomial interpolation, lower than 11 not recommended, above
# 16 not applicable for 15 minute intervals
poly_degree = 16
# Convert time
referenceDate = np.datetime64('1980-01-06') # GPS reference date
utc = np.timedelta64(int((gps_time[0]) * 1e9), 'ns') + referenceDate
# Check if numpy array has been passed for sv_list
if isinstance(sv_list, np.ndarray):
# Convert numpy array to list
sv_list = sv_list.astype(int).tolist()
# Check if system character must be read from SP3
if system is None:
# Use system character of 1st entry
system = sp3.index[0][1][0]
# Convert sv_list to strings
sv_list = [system + "{:02d}".format(sv) for sv in sv_list]
# Get time stamps
epoch_values = sp3.index.get_level_values("Epoch").unique()
# Difference between 2 time stamps
deltaT = epoch_values[1]-epoch_values[0]
# Get 17 data points
epoch_start = utc - np.timedelta64(2, 'h')
epoch_stop = utc + np.timedelta64(2, 'h') + deltaT
sp3_temp = sp3.loc[(slice(epoch_start, epoch_stop))].copy()
sp3_temp = sp3_temp.reorder_levels(["SV", "Epoch"])
# Initialize result
epoch_interp_List = np.zeros(shape=(len(sv_list), 3))
# Iterate over all satellites
for svIndex, sv in enumerate(sv_list):
fitTime = np.array([
(np.datetime64(t) - referenceDate) / np.timedelta64(1, 's')
- gps_time[svIndex]
for t in sp3_temp.loc[sv_list[0]].index.get_level_values("Epoch")
])
epoch_number = len(sp3_temp.loc[sv])
if epoch_number <= poly_degree:
print("Warning: Not enough epochs to predict for satellite",
sv, "| Epoch Count:", epoch_number, " - Polynomial Degree:",
poly_degree)
epoch_interp_List[svIndex, :] = np.full(shape=3, fill_value=None)
continue
# if epoch_number != 17:
# fitTime = [(sp3_temp.loc[sv].index[t]
# - sp3_temp.loc[sv].index[0]).seconds
# for t in range(epoch_number)]
# Fit sp3 coordinates to 16 deg polynomial
fitX = np.polyfit(fitTime, sp3_temp.loc[sv].X.copy(), deg=poly_degree)
fitY = np.polyfit(fitTime, sp3_temp.loc[sv].Y.copy(), deg=poly_degree)
fitZ = np.polyfit(fitTime, sp3_temp.loc[sv].Z.copy(), deg=poly_degree)
# sidereal_day = 0.99726956634
# period = sidereal_day
# P0 = 2.0*np.pi / period
# gps_day_sec = np.mod(gps_time, 24*60*60)
# gps_rel_time = gps_day_sec / 86400.0
# Timei = fitTime + gps_day_sec
# Timei = Timei / 86400.0
# Xi = sp3_temp.loc[sv].X.copy()
# Yi = sp3_temp.loc[sv].Y.copy()
# Zi = sp3_temp.loc[sv].Z.copy()
# A = np.zeros((poly_degree+1, poly_degree+1))
# A[:, 0] = np.ones(poly_degree+1)
# B = np.zeros(poly_degree+1)
# B[0] = 1.0
# ND = np.int((poly_degree) / 2)
# for i in np.arange(ND):
# kk = 1 + i*2
# P = P0 * (i+1)
# A[:, kk] = np.sin(P*Timei)
# A[:, kk+1] = np.cos(P*Timei)
# B[kk] = np.sin(P*gps_rel_time)
# B[kk+1] = np.cos(P*gps_rel_time)
# XCoeffs = np.linalg.lstsq(A, Xi, rcond=None)[0]
# YCoeffs = np.linalg.lstsq(A, Yi, rcond=None)[0]
# ZCoeffs = np.linalg.lstsq(A, Zi, rcond=None)[0]
# epoch_interp_List[svIndex, :] = 1000.0*np.array(
# [B@XCoeffs, B@YCoeffs, B@ZCoeffs]
# )
# Interpolate coordinates
x_interp = coord_interp(fitX) * 1000 # km to m
# x_velocity = _np.array([(x_interp[i+1]-x_interp[i])/interval if (i+1)<len(x_interp) else 0 for i in range(len(x_interp))])
y_interp = coord_interp(fitY) * 1000 # km to m
# y_velocity = _np.array([(y_interp[i+1]-y_interp[i])/interval if (i+1)<len(y_interp) else 0 for i in range(len(y_interp))])
z_interp = coord_interp(fitZ) * 1000 # km to m
# z_velocity = _np.array([(z_interp[i+1]-z_interp[i])/interval if (i+1)<len(z_interp) else 0 for i in range(len(z_interp))])
sv_interp = np.vstack((x_interp, y_interp, z_interp))
epoch_interp_List[svIndex, :] = sv_interp[:, 0]
# Restore original fitTime in case it has changed
# fitTime = np.linspace(0.0, deltaT.seconds*16.0, 17)
return epoch_interp_List
def find_eph(eph, sv, time):
"""Find the proper column in ephemeris array.
Inputs:
eph - Ephemeris array
sv - Satellite index (PRNs)
time - GPS time of week [s]
Output:
icol - Column index, NaN if ephemeris does not contain satellite
"""
icol = 0
isat = np.where(eph[0] == sv)[0]
n = isat.size
if n == 0:
return np.NaN
icol = isat[0]
dtmin = eph[20, icol] - time
for t in isat:
dt = eph[20, t] - time
if dt < 0:
if abs(dt) < abs(dtmin):
icol = t
dtmin = dt
return icol
def check_t(time):
"""Account for beginning or end of week crossover.
Input:
time - Time [s]
Output:
corrTime - Corrected time [s]
"""
half_week = 302400 # [s]
corrTime = time
if time > half_week:
corrTime = time - 2 * half_week
elif time < -half_week:
corrTime = time + 2 * half_week
return corrTime
def check_t_vectorized(time):
"""Account for beginning or end of week crossover.
Input:
time - Time [s], numpy.ndarray
Output:
corrTime - Corrected time [s]
"""
half_week = 302400 # [s]
corrTime = time
corrTime[time > half_week] = time[time > half_week] - 2 * half_week
corrTime[time < -half_week] = corrTime[time < -half_week] + 2 * half_week
return corrTime
def get_sat_clk_corr(transmit_time, prn, eph):
"""Compute satellite clock correction time.
Without relativistic correction.
Ephemeris provided as array.
Inputs:
transmit_time - Actual time when signal was transmitted [s]
prn - Satellite's PRN index (array)
eph - Ephemeris array
Output:
satClockCorr - Satellite clock corrections [s]
Author: <NAME>
"""
# GPS time with respect to 1980 to time of week (TOW)
transmit_time = np.mod(transmit_time, 7 * 24 * 60 * 60)
# Get ephemerides (find column of ephemeris matrix that matches satellite
# index and time)
if eph.ndim > 1 and eph.shape[1] != prn.shape[0]:
col = np.array([find_eph(eph, prn_i, transmit_time) for prn_i in prn])
eph = eph[:, col] # Extract column
# Find initial satellite clock correction
# Find time difference
dt = np.array([check_t(transmit_time - eph_20) for eph_20 in eph[20]])
# Calculate clock correction
satClkCorr = (eph[1] * dt + eph[19]) * dt + eph[19] # - eph.T_GD
# Apply correction
time = transmit_time - satClkCorr
# Find time difference
dt = np.array([check_t(t_eph_20) for t_eph_20 in time - eph[20]])
# Calculate clock correction
return (eph[1] * dt + eph[19]) * dt + eph[18]
# - eph.T_GD
def get_sat_clk_corr_vectorized(transmit_time, prn, eph):
"""Compute satellite clock correction time.
Without relativistic correction.
Navigation data provided as 2D NumPy array; transmission time and PRNs
provided as 1D NumPy array.
Inputs:
transmit_time - Actual times when signals were transmitted [s] (Nx1 array)
prn - Satellite's PRN indices (Nx1 array)
eph - Matching navigation data (21xN array)
Output:
sat_clock_corr - Satellite clock corrections [s] (Nx1 array)
Author: <NAME>
"""
# GPS time with respect to 1980 to time of week (TOW)
transmit_time = np.mod(transmit_time, 7 * 24 * 60 * 60)
# Get ephemerides (find column of ephemeris matrix that matches satellite
# index and time)
if eph.shape[1] != prn.shape[0]:
col = np.array([find_eph(eph, prn_i, transmit_time) for prn_i in prn])
eph = eph[:, col] # Extract column
# Find initial satellite clock correction
# Find time difference
dt = check_t_vectorized(transmit_time - eph[20])
# Calculate clock correction
satClkCorr = (eph[1] * dt + eph[19]) * dt + eph[19] # - eph.T_GD
# Apply correction
time = transmit_time - satClkCorr
# Find time difference
dt = check_t_vectorized(time - eph[20])
# Calculate clock correction
return (eph[1] * dt + eph[19]) * dt + eph[18]
# - eph.T_GD
def get_visible_sats(ht, p, eph, elev_mask=0, prn_list=range(1, 33)):
"""Estimate set of visible satellites.
Ephemeris provided as array.
Inputs:
ht - Receiver time hypothesis [s]
p - Receiver position hypothesis (latitude, longitude, elevation)
eph - Ephemeris as matrix
elev_mask - [Optional] Elevation mask: minimum elevation for satellite
to be considered to be visible [degrees], default 0
prn_list - [Optional] PRNs of satellites to search for, default 1-32
Output:
visSat - Indices of visible satellites
Author: <NAME>
"""
ht = np.mod(ht, 7 * 24 * 60 * 60)
# Crude transmit time estimate [s]
t = ht - 76.5e-3
# Empty array for result
visSat = np.array([], dtype=int)
# Loop over all satellite indices
for prn in prn_list:
col = find_eph(eph, prn, t)
if not np.isnan(col):
ephSat = eph[:, col]
# Get satellite position at estimated transmit time
satPos = get_sat_pos(t, ephSat)
if not np.isnan(satPos).any():
az, elev, slantRange = pm.ecef2aer(
satPos[0], satPos[1], satPos[2], p[0], p[1], p[2]
)
# Satellites with elevation larger than threshold
if elev > elev_mask:
# Add satellite index to result
visSat = np.append(visSat, prn)
return visSat
def get_doppler(ht, R, k, eph):
"""Calculate expected Doppler [Hz] for given time and position hypothesis.
Inputs:
ht - Time hypothesis (receiver) [s]
R - Receiver position (ECEF) [m,m,m]
k - Satellite index (PRN)
eph - Ephemeris
Output:
D - Doppler shift frequency [Hz]
Author: <NAME>
"""
# Speed of light [m/s]
c = 299792458
# Crude transmit time estimate [s]
t = ht - 76.5e-3
# GPS time with respect to 1980 to time of week (TOW)
tow = np.mod(t, 7 * 24 * 60 * 60)
# Find column of ephemeris matrix that matches satellite index and time
col = find_eph(eph, k, tow)
if np.isnan(col):
return np.NaN
else:
# Extract column
eph = eph[:, col]
for it in range(2): # 2 iterations to refine transmit time estimate
p = get_sat_pos(t, eph) # Satellite position estimate [m,m,m]
d = np.linalg.norm(R - p) / c # Propagation delay estimate [s]
t = ht - d # Transmit time estimate [s]
L1 = 1575.42e6 # GPS signal frequency [Hz]
P, V = get_sat_pos_vel(t, eph) # Satellite velocity [m/s,m/s,m/s]
lambd = c / L1 # Wave length of transmitted signal
# Doppler shift (cf. 'Cycle slip detection in single frequency GPS carrier
# phase observations using expected Doppler shift')
return (np.dot((R - P) / np.linalg.norm(R - P), V) / lambd)
def generate_ca_code(PRN):
"""Generate one of the GPS, EGNOS, or WAAS satellite C/A codes.
Input:
PRN - PRN number of the sequence
Output:
CAcode - Array containing the desired C/A code sequence (chips)
Author: <NAME>
"""
# Make the code shift array; the shift depends on the PRN number
# The g2s vector holds the appropriate shift of the g2 code to generate
# the C/A code (ex. for SV#19 - use a G2 shift of g2s(19) = 471)
g2s = [
5,
6,
7,
8,
17,
18,
139,
140,
141,
251,
252,
254,
255,
256,
257,
258,
469,
470,
471,
472,
473,
474,
509,
512,
513,
514,
515,
516,
859,
860,
861,
862, # End of shifts for GPS satellites
145, 175, 52, 21, 237, 235, 886, 657, 634, 762, 355, 1012, 176, 603,
130, 359, 595, 68, 386 # End of shifts for EGNOS and WAAS satellites
] # For EGNOS and WAAS, subtract 87 from the PRN
# Adjust EGNOS and WAAS PRNs
if PRN >= 120:
PRN = PRN - 87
if PRN > len(g2s):
raise Exception(
"Provided PRN out of range. Only 1-32 and 120-139 supported.")
# Pick right shift for the given PRN number
g2shift = g2s[PRN - 1]
# Generate G1 code
# Initialize g1 output to speed up the function
g1 = np.zeros(1023)
# Load shift register
reg = -1 * np.ones(10)
# Generate all G1 signal chips based on the G1 feedback polynomial -----
for i in range(1023):
g1[i] = reg[9]
saveBit = reg[2] * reg[9]
reg[1:10] = reg[0:9]
reg[0] = saveBit
# Generate G2 code
# Initialize g2 output to speed up the function
g2 = np.zeros(1023)
# Load shift register
reg = -1 * np.ones(10)
# Generate all G2 signal chips based on the G2 feedback polynomial
for i in range(1023):
g2[i] = reg[9]
saveBit = reg[1] * reg[2] * reg[5] * reg[7] * reg[8] * reg[9]
reg[1:10] = reg[0:9]
reg[0] = saveBit
# Shift G2 code
# The idea: g2 = concatenate[ g2_right_part, g2_left_part ]
g2 = np.concatenate((g2[1023 - g2shift: 1023], g2[0: 1023 - g2shift]))
# Form single sample C/A code by multiplying G1 and G2
return -(g1 * g2)
def generate_e1_code(prn, fs, pilot=False):
"""Generate and sample Galileo signal that is transmitted in E1 band.
Inputs:
prn - Index of satellite (1-50)
fs - Sampling rate [Hz]
pilot - Flag if data component E1B (pilot=False) or primary pilot
component E1C (pilot=True) is returned, default=False.
Output:
replica - Binary sampled E1 Open Service data signal
Author: <NAME>
"""
# chip_rate = 1023000
# Number of samples per code sequence
n = fs * 4e-3
# Number of chips per code sequence
code_length = 4092.0
# Distance in chips between two samples (increment)
incr = code_length / n
if not pilot:
# Obtain E1B (data) code
c = e1b(prn)
else:
# Obtain primary E1C (pilot) code
c = e1c(prn)
# Find indices of samples in E1-B / E1-C code
idx = incr * np.arange(int(n))
idx = np.floor(idx)
idx = np.mod(idx, code_length).astype('int')
# Sample E1-B code
x = c[idx]
e1_code = - 1.0 + 2.0 * x
# Obtain sampled BOC(1,1)
boc = boc11(incr, int(n))
# Multiply both signals
return e1_code * boc
def boc11(incr, n):
"""Generate and sample binary offset carrier (BOC) of Galileo satellite.
Inputs:
incr - Increment; difference in chips between two consecutive samples
n - Number of samples per code sequence
Output:
boc - Sampled binary offset carrier
Adapted by <NAME> from
https://github.com/pmonta/GNSS-DSP-tools/blob/master/gnsstools/nco.py
written by <NAME>.
"""
c = np.array([-1, 1])
boc11_length = 2
idx = incr * np.arange(n)
idx = idx * 2
idx = np.floor(idx).astype('int')
idx = np.mod(idx, boc11_length)
return c[idx]
e1b_codes = {}
def e1b(prn):
"""Generate unsampled E1B code of Galileo satellite.
Input:
prn - Index of satellite
Output:
y - E1B code
Adapted by <NAME> from
https://github.com/pmonta/GNSS-DSP-tools/blob/master/gnsstools/galileo/e1b.py
written by <NAME>.
"""
import e1_strings as es
if prn not in e1b_codes:
s = es.e1b_strings[prn]
n = 4092
y = np.zeros(n)
for i in range(n):
nib = i // 4
bit = 3 - (i % 4)
y[i] = (int(s[nib], 16) >> bit) & 1
e1b_codes[prn] = y
return e1b_codes[prn]
e1c_codes = {}
def e1c(prn):
"""Generate unsampled E1C code of Galileo satellite.
Neglect secondary code.
Input:
prn - Index of satellite
Output:
y - E1C code
Adapted by <NAME> from
https://github.com/pmonta/GNSS-DSP-tools/blob/master/gnsstools/galileo/e1c.py
written by <NAME>.
"""
# secondary_code = np.array([0,0,1,1,1,0,0,0,0,0,0,0,1,0,1,0,1,1,0,1,1,0,0,1,0])
# secondary_code = 1.0 - 2.0*secondary_code
import e1_strings as es
if prn not in e1c_codes:
s = es.e1c_strings[prn]
n = 4092
y = np.zeros(n)
for i in range(n):
nib = i // 4
bit = 3 - (i % 4)
y[i] = (int(s[nib], 16) >> bit) & 1
e1c_codes[prn] = y
return e1c_codes[prn]
def generate_b1c_code(prn, fs, pilot=False):
"""Generate and sample BeiDou signal that is transmitted in B1C band.
Inputs:
prn - Index of satellite (1-63)
fs - Sampling rate [Hz]
pilot - Flag if data component (pilot=False) or primary pilot component
(pilot=True) is returned, default=False.
Output:
s_b1c - B1C signal, length of 10230 chips at 1.023 MHz chip rate
Author: <NAME>
"""
# Number of samples per code sequence
n = fs * 10.0e-3
# Number of chips per code sequence
code_length = 10230.0
# Distance in chips between two samples (increment)
incr = code_length / n
if not pilot:
# Obtain B1C_data code
c = b1c_data(prn)
else:
# Obtain primary B1C_pilot code
c = b1c_pilot(prn)
# Find indices of samples in B1C_data code
idx = incr * np.arange(int(n))
idx = np.floor(idx)
idx = np.mod(idx, code_length).astype('int')
# Sample B1C_data code
x = c[idx]
b1c_code = - 1.0 + 2.0 * x
# Obtain sampled BOC
boc = boc11(incr, int(n))
# Multiply both signals
return b1c_code * boc
b1cd_codes = {}
def b1c_data(prn):
"""Generate unsampled BeiDou B1C_data signal.
Input:
prn - Index of satellite (1-63)
Output:
y - B1C_data, length of 10230 chips at 1.023 MHz chip rate
Adapted by <NAME> from
https://github.com/pmonta/GNSS-DSP-tools/blob/master/gnsstools/beidou/b1cd.py
written by <NAME>.
"""
from sympy.ntheory import legendre_symbol
if prn not in b1cd_codes:
# chip_rate = 1023000
code_length = 10230
b1cd_params = {
1: (2678,699), 2: (4802,694), 3: (958,7318), 4: (859,2127),
5: (3843,715), 6: (2232,6682), 7: (124,7850), 8: (4352,5495),
9: (1816,1162), 10: (1126,7682), 11: (1860,6792), 12: (4800,9973),
13: (2267,6596), 14: (424,2092), 15: (4192,19), 16: (4333,10151),
17: (2656,6297), 18: (4148,5766), 19: (243,2359), 20: (1330,7136),
21: (1593,1706), 22: (1470,2128), 23: (882,6827), 24: (3202,693),
25: (5095,9729), 26: (2546,1620), 27: (1733,6805), 28: (4795,534),
29: (4577,712), 30: (1627,1929), 31: (3638,5355), 32: (2553,6139),
33: (3646,6339), 34: (1087,1470), 35: (1843,6867), 36: (216,7851),
37: (2245,1162), 38: (726,7659), 39: (1966,1156), 40: (670,2672),
41: (4130,6043), 42: (53,2862), 43: (4830,180), 44: (182,2663),
45: (2181,6940), 46: (2006,1645), 47: (1080,1582), 48: (2288,951),
49: (2027,6878), 50: (271,7701), 51: (915,1823), 52: (497,2391),
53: (139,2606), 54: (3693,822), 55: (2054,6403), 56: (4342,239),
57: (3342,442), 58: (2592,6769), 59: (1007,2560), 60: (310,2502),
61: (4203,5072), 62: (455,7268), 63: (4318,341),
}
N = 10243
L = np.array([legendre_symbol(i, N) for i in range(N)])
L[L == -1] = 0
L[0] = 0
w, p = b1cd_params[prn]
W = np.array([L[k] ^ L[(k+w) % N] for k in range(N)])
c = np.array([W[(n+p-1) % N] for n in range(code_length)])
b1cd_codes[prn] = c
return b1cd_codes[prn]
b1cp_codes = {}
b1cp_secondary_codes = {}
def b1c_pilot(prn, secondary=False):
"""Generate unsampled BeiDou B1C_pilot signal.
Input:
prn - Index of satellite (1-63)
secondary - Flag if primary code (secondary=False) or secondary code
(secondary=True) is returned, default=False
Output:
y - Primary or secondary B1C_pilot, length of 10230 chips at
1.023 MHz chip rate and length of 1800 at xxx chip rate,
respectively.
Adapted by <NAME> from
https://github.com/pmonta/GNSS-DSP-tools/blob/master/gnsstools/beidou/b1cp.py
written by <NAME>.
"""
from sympy.ntheory import legendre_symbol
if not secondary:
if prn not in b1cp_codes:
# chip_rate = 1023000
code_length = 10230
b1cp_params = {
1: (796,7575), 2: (156,2369), 3: (4198,5688), 4: (3941,539),
5: (1374,2270), 6: (1338,7306), 7: (1833,6457), 8: (2521,6254),
9: (3175,5644), 10: (168,7119), 11: (2715,1402), 12: (4408,5557),
13: (3160,5764), 14: (2796,1073), 15: (459,7001), 16: (3594,5910),
17: (4813,10060), 18: (586,2710), 19: (1428,1546), 20: (2371,6887),
21: (2285,1883), 22: (3377,5613), 23: (4965,5062), 24: (3779,1038),
25: (4547,10170), 26: (1646,6484), 27: (1430,1718), 28: (607,2535),
29: (2118,1158), 30: (4709,526), 31: (1149,7331), 32: (3283,5844),
33: (2473,6423), 34: (1006,6968), 35: (3670,1280), 36: (1817,1838),
37: (771,1989), 38: (2173,6468), 39: (740,2091), 40: (1433,1581),
41: (2458,1453), 42: (3459,6252), 43: (2155,7122), 44: (1205,7711),
45: (413,7216), 46: (874,2113), 47: (2463,1095), 48: (1106,1628),
49: (1590,1713), 50: (3873,6102), 51: (4026,6123), 52: (4272,6070),
53: (3556,1115), 54: (128,8047), 55: (1200,6795), 56: (130,2575),
57: (4494,53), 58: (1871,1729), 59: (3073,6388), 60: (4386,682),
61: (4098,5565), 62: (1923,7160), 63: (1176,2277),
}
N = 10243
L = np.array([legendre_symbol(i, N) for i in range(N)])
L[L == -1] = 0
L[0] = 0
w, p = b1cp_params[prn]
W = np.array([L[k] ^ L[(k+w) % N] for k in range(N)])
c = np.array([W[(n+p-1) % N] for n in range(code_length)])
b1cp_codes[prn] = c
return b1cp_codes[prn]
else:
if prn not in b1cp_secondary_codes:
b1cp_secondary_params = {
1: (269,1889), 2: (1448,1268), 3: (1028,1593), 4: (1324,1186),
5: (822,1239), 6: (5,1930), 7: (155,176), 8: (458,1696),
9: (310,26), 10: (959,1344), 11: (1238,1271), 12: (1180,1182),
13: (1288,1381), 14: (334,1604), 15: (885,1333), 16: (1362,1185),
17: (181,31), 18: (1648,704), 19: (838,1190), 20: (313,1646),
21: (750,1385), 22: (225,113), 23: (1477,860), 24: (309,1656),
25: (108,1921), 26: (1457,1173), 27: (149,1928), 28: (322,57),
29: (271,150), 30: (576,1214), 31: (1103,1148), 32: (450,1458),
33: (399,1519), 34: (241,1635), 35: (1045,1257), 36: (164,1687),
37: (513,1382), 38: (687,1514), 39: (422,1), 40: (303,1583),
41: (324,1806), 42: (495,1664), 43: (725,1338), 44: (780,1111),
45: (367,1706), 46: (882,1543), 47: (631,1813), 48: (37,228),
49: (647,2871), 50: (1043,2884), 51: (24,1823), 52: (120,75),
53: (134,11), 54: (136,63), 55: (158,1937), 56: (214,22),
57: (335,1768), 58: (340,1526), 59: (661,1402), 60: (889,1445),
61: (929,1680), 62: (1002,1290), 63: (1149,1245),
}
sec_N = 3607
sec_L = np.array([legendre_symbol(i, sec_N) for i in range(sec_N)])
sec_L[sec_L == -1] = 0
sec_L[0] = 0
sec_code_length = 1800
w, p = b1cp_secondary_params[prn]
W = np.array([sec_L[k] ^ sec_L[(k+w) % sec_N] for k in range(sec_N)])
c = np.array([W[(n+p-1) % sec_N] for n in range(sec_code_length)])
b1cp_secondary_codes[prn] = c
return b1cp_secondary_codes[prn]
def generate_l1c_code(prn, fs, pilot=False):
"""Generate and sample GPS signal that is transmitted in L1C band.
Inputs:
prn - Index of satellite (1-210)
fs - Sampling rate [Hz]
pilot - Flag if data component (pilot=False) or primary pilot component
(pilot=True) is returned, default=False.
Output:
s_l1c - L1C signal, length of 10230 chips at 1.023 MHz chip rate
Author: <NAME>
"""
# Number of samples per code sequence
n = fs * 10.0e-3
# Number of chips per code sequence
code_length = 10230.0
# Distance in chips between two samples (increment)
incr = code_length / n
if not pilot:
# Obtain L1C_data code
c = l1c_data(prn)
else:
# Obtain L1C_pilot code
c = l1c_pilot(prn)
# Find indices of samples in L1C_data code
idx = incr * np.arange(int(n))
idx = np.floor(idx)
idx = np.mod(idx, code_length).astype('int')
# Sample L1C_data code
x = c[idx]
l1c_code = - 1.0 + 2.0 * x
# Obtain sampled BOC
boc = boc11(incr, int(n))
# Multiply both signals
return l1c_code * boc
l1cd_codes = {}
def l1c_data(prn):
"""Generate unsampled GPS L1C_data signal.
Input:
prn - Index of satellite (1-210)
Output:
y - L1C_data, length of 10230 chips at 1.023 MHz chip rate
Adapted by <NAME> from
https://github.com/pmonta/GNSS-DSP-tools/blob/master/gnsstools/gps/l1cd.py
written by <NAME>.
"""
from sympy.ntheory import legendre_symbol
if prn not in l1cd_codes:
# chip_rate = 1023000
# code_length = 10230
l1cd_params = {
1: (5097,181), 2: (5110,359), 3: (5079,72), 4: (4403,1110),
5: (4121,1480), 6: (5043,5034), 7: (5042,4622), 8: (5104,1),
9: (4940,4547), 10: (5035,826), 11: (4372,6284), 12: (5064,4195),
13: (5084,368), 14: (5048,1), 15: (4950,4796), 16: (5019,523),
17: (5076,151), 18: (3736,713), 19: (4993,9850), 20: (5060,5734),
21: (5061,34), 22: (5096,6142), 23: (4983,190), 24: (4783,644),
25: (4991,467), 26: (4815,5384), 27: (4443,801), 28: (4769,594),
29: (4879,4450), 30: (4894,9437), 31: (4985,4307), 32: (5056,5906),
33: (4921,378), 34: (5036,9448), 35: (4812,9432), 36: (4838,5849),
37: (4855,5547), 38: (4904,9546), 39: (4753,9132), 40: (4483,403),
41: (4942,3766), 42: (4813,3), 43: (4957,684), 44: (4618,9711),
45: (4669,333), 46: (4969,6124), 47: (5031,10216), 48: (5038,4251),
49: (4740,9893), 50: (4073,9884), 51: (4843,4627), 52: (4979,4449),
53: (4867,9798), 54: (4964,985), 55: (5025,4272), 56: (4579,126),
57: (4390,10024), 58: (4763,434), 59: (4612,1029), 60: (4784,561),
61: (3716,289), 62: (4703,638), 63: (4851,4353),
64: (4955,9899), 65: (5018,4629), 66: (4642,669), 67: (4840,4378),
68: (4961,4528), 69: (4263,9718), 70: (5011,5485), 71: (4922,6222),
72: (4317,672), 73: (3636,1275), 74: (4884,6083), 75: (5041,5264),
76: (4912,10167), 77: (4504,1085), 78: (4617,194), 79: (4633,5012),
80: (4566,4938), 81: (4702,9356), 82: (4758,5057), 83: (4860,866),
84: (3962,2), 85: (4882,204), 86: (4467,9808), 87: (4730,4365),
88: (4910,162), 89: (4684,367), 90: (4908,201), 91: (4759,18),
92: (4880,251), 93: (4095,10167), 94: (4971,21), 95: (4873,685),
96: (4561,92), 97: (4588,1057), 98: (4773,3), 99: (4997,5756),
100: (4583,14), 101: (4900,9979), 102: (4574,9569), 103: (4629,515),
104: (4676,753), 105: (4181,1181), 106: (5057,9442), 107: (4944,669),
108: (4401,4834), 109: (4586,541), 110: (4699,9933), 111: (3676,6683),
112: (4387,4828), 113: (4866,9710), 114: (4926,10170), 115: (4657,9629),
116: (4477,260), 117: (4359,86), 118: (4673,5544), 119: (4258,923),
120: (4447,257), 121: (4570,507), 122: (4486,4572), 123: (4362,4491),
124: (4481,341), 125: (4322,130), 126: (4668,79), 127: (3967,1142),
128: (4374,448), 129: (4553,875), 130: (4641,555), 131: (4215,1272),
132: (3853,5198), 133: (4787,9529), 134: (4266,4459), 135: (4199,10019),
136: (4545,9353), 137: (4208,9780), 138: (4485,375), 139: (3714,503),
140: (4407,4507), 141: (4182,875), 142: (4203,1246), 143: (3788,1),
144: (4471,4534), 145: (4691,8), 146: (4281,9549), 147: (4410,6240),
148: (3953,22), 149: (3465,5652), 150: (4801,10069), 151: (4278,4796),
152: (4546,4980), 153: (3779,27), 154: (4115,90), 155: (4193,9788),
156: (3372,715), 157: (3786,9720), 158: (3491,301), 159: (3812,5450),
160: (3594,5215), 161: (4028,13), 162: (3652,1147), 163: (4224,4855),
164: (4334,1190), 165: (3245,1267), 166: (3921,1302), 167: (3840,1),
168: (3514,5007), 169: (2922,549), 170: (4227,368), 171: (3376,6300),
172: (3560,5658), 173: (4989,4302), 174: (4756,851), 175: (4624,4353),
176: (4446,9618), 177: (4174,9652), 178: (4551,1232), 179: (3972,109),
180: (4399,10174), 181: (4562,6178), 182: (3133,1851), 183: (4157,1299),
184: (5053,325), 185: (4536,10206),186: (5067,9968), 187: (3905,10191),
188: (3721,5438), 189: (3787,10080),190: (4674,219), 191: (3436,758),
192: (2673,2140), 193: (4834,9753), 194: (4456,4799), 195: (4056,10126),
196: (3804,241), 197: (3672,1245), 198: (4205,1274), 199: (3348,1456),
200: (4152,9967), 201: (3883,235), 202: (3473,512), 203: (3669,1078),
204: (3455,1078), 205: (2318,953), 206: (2945,5647), 207: (2947,669),
208: (3220,1311), 209: (4052,5827), 210: (2953,15),
}
N = 10243
L = np.array([legendre_symbol(i, N) for i in range(N)])
L[L == -1] = 0
L[0] = 0
w, p = l1cd_params[prn]
W = np.array([L[k] ^ L[(k+w) % N] for k in range(N)])
expansion = np.array([0, 1, 1, 0, 1, 0, 0])
c = np.concatenate((W[0:p-1], expansion, W[p-1:N]))
l1cd_codes[prn] = c
return l1cd_codes[prn]
l1cp_codes = {}
l1cp_secondary_codes = {}
def l1c_pilot(prn, secondary=False):
"""Generate unsampled GPS L1C_pilot signal.
Input:
prn - Index of satellite (1-210)
secondary - Flag if primary code (secondary=False) or secondary code
(secondary=True) is returned, default=False
Output:
y - Primary or secondary B1C_pilot, length of 10230 chips at
1.023 MHz chip rate and length of 1800 at xxx chip rate,
respectively.
Adapted by <NAME> from
https://github.com/pmonta/GNSS-DSP-tools/blob/master/gnsstools/gps/l1cp.py
written by <NAME>.
"""
from sympy.ntheory import legendre_symbol
if not secondary:
if prn not in l1cp_codes:
# chip_rate = 1023000
# code_length = 10230
l1cp_params = {
1: (5111,412), 2: (5109,161), 3: (5108,1), 4: (5106,303),
5: (5103,207), 6: (5101,4971), 7: (5100,4496), 8: (5098,5),
9: (5095,4557), 10: (5094,485), 11: (5093,253), 12: (5091,4676),
13: (5090,1), 14: (5081,66), 15: (5080,4485), 16: (5069,282),
17: (5068,193), 18: (5054,5211), 19: (5044,729), 20: (5027,4848),
21: (5026,982), 22: (5014,5955), 23: (5004,9805), 24: (4980,670),
25: (4915,464), 26: (4909,29), 27: (4893,429), 28: (4885,394),
29: (4832,616), 30: (4824,9457), 31: (4591,4429), 32: (3706,4771),
33: (5092,365), 34: (4986,9705), 35: (4965,9489), 36: (4920,4193),
37: (4917,9947), 38: (4858,824), 39: (4847,864), 40: (4790,347),
41: (4770,677), 42: (4318,6544), 43: (4126,6312), 44: (3961,9804),
45: (3790,278), 46: (4911,9461), 47: (4881,444), 48: (4827,4839),
49: (4795,4144), 50: (4789,9875), 51: (4725,197), 52: (4675,1156),
53: (4539,4674), 54: (4535,10035), 55: (4458,4504), 56: (4197,5),
57: (4096,9937), 58: (3484,430), 59: (3481,5), 60: (3393,355),
61: (3175,909), 62: (2360,1622), 63: (1852,6284),
64: (5065,9429), 65: (5063,77), 66: (5055,932), 67: (5012,5973),
68: (4981,377), 69: (4952,10000), 70: (4934,951), 71: (4932,6212),
72: (4786,686), 73: (4762,9352), 74: (4640,5999), 75: (4601,9912),
76: (4563,9620), 77: (4388,635), 78: (3820,4951), 79: (3687,5453),
80: (5052,4658), 81: (5051,4800), 82: (5047,59), 83: (5039,318),
84: (5015,571), 85: (5005,565), 86: (4984,9947), 87: (4975,4654),
88: (4974,148), 89: (4972,3929), 90: (4962,293), 91: (4913,178),
92: (4907,10142), 93: (4903,9683), 94: (4833,137), 95: (4778,565),
96: (4721,35), 97: (4661,5949), 98: (4660,2), 99: (4655,5982),
100: (4623,825), 101: (4590,9614), 102: (4548,9790), 103: (4461,5613),
104: (4442,764), 105: (4347,660), 106: (4259,4870), 107: (4256,4950),
108: (4166,4881), 109: (4155,1151), 110: (4109,9977), 111: (4100,5122),
112: (4023,10074),113: (3998,4832), 114: (3979,77), 115: (3903,4698),
116: (3568,1002), 117: (5088,5549), 118: (5050,9606), 119: (5020,9228),
120: (4990,604), 121: (4982,4678), 122: (4966,4854), 123: (4949,4122),
124: (4947,9471), 125: (4937,5026), 126: (4935,272), 127: (4906,1027),
128: (4901,317), 129: (4872,691), 130: (4865,509), 131: (4863,9708),
132: (4818,5033), 133: (4785,9938), 134: (4781,4314), 135: (4776,10140),
136: (4775,4790), 137: (4754,9823), 138: (4696,6093), 139: (4690,469),
140: (4658,1215), 141: (4607,799), 142: (4599,756), 143: (4596,9994),
144: (4530,4843), 145: (4524,5271), 146: (4451,9661), 147: (4441,6255),
148: (4396,5203), 149: (4340,203), 150: (4335,10070),151: (4296,30),
152: (4267,103), 153: (4168,5692), 154: (4149,32), 155: (4097,9826),
156: (4061,76), 157: (3989,59), 158: (3966,6831), 159: (3789,958),
160: (3775,1471), 161: (3622,10070), 162: (3523,553), 163: (3515,5487),
164: (3492,55), 165: (3345,208), 166: (3235,645), 167: (3169,5268),
168: (3157,1873), 169: (3082,427), 170: (3072,367), 171: (3032,1404),
172: (3030,5652), 173: (4582,5), 174: (4595,368), 175: (4068,451),
176: (4871,9595), 177: (4514,1030), 178: (4439,1324), 179: (4122,692),
180: (4948,9819), 181: (4774,4520), 182: (3923,9911), 183: (3411,278),
184: (4745,642), 185: (4195,6330), 186: (4897,5508), 187: (3047,1872),
188: (4185,5445), 189: (4354,10131), 190: (5077,422), 191: (4042,4918),
192: (2111,787), 193: (4311,9864), 194: (5024,9753), 195: (4352,9859),
196: (4678,328), 197: (5034,1), 198: (5085,4733), 199: (3646,164),
200: (4868,135), 201: (3668,174), 202: (4211,132), 203: (2883,538),
204: (2850,176), 205: (2815,198), 206: (2542,595), 207: (2492,574),
208: (2376,321), 209: (2036,596), 210: (1920,491),
}
N = 10223
L = np.array([legendre_symbol(i, N) for i in range(N)])
L[L == -1] = 0
L[0] = 0
w, p = l1cp_params[prn]
W = np.array([L[k] ^ L[(k+w) % N] for k in range(N)])
expansion = np.array([0, 1, 1, 0, 1, 0, 0])
c = np.concatenate((W[0:p-1], expansion, W[p-1:N]))
l1cp_codes[prn] = c
return l1cp_codes[prn]
else:
if prn not in l1cp_secondary_codes:
l1cp_secondary_params = {
1: (0o5111,0o3266), 2: (0o5421,0o2040), 3: (0o5501,0o1527), 4: (0o5403,0o3307),
5: (0o6417,0o3756), 6: (0o6141,0o3026), 7: (0o6351,0o0562), 8: (0o6501,0o0420),
9: (0o6205,0o3415), 10: (0o6235,0o0337), 11: (0o7751,0o0265), 12: (0o6623,0o1230),
13: (0o6733,0o2204), 14: (0o7627,0o1440), 15: (0o5667,0o2412), 16: (0o5051,0o3516),
17: (0o7665,0o2761), 18: (0o6325,0o3750), 19: (0o4365,0o2701), 20: (0o4745,0o1206),
21: (0o7633,0o1544), 22: (0o6747,0o1774), 23: (0o4475,0o0546), 24: (0o4225,0o2213),
25: (0o7063,0o3707), 26: (0o4423,0o2051), 27: (0o6651,0o3650), 28: (0o4161,0o1777),
29: (0o7237,0o3203), 30: (0o4473,0o1762), 31: (0o5477,0o2100), 32: (0o6163,0o0571),
33: (0o7223,0o3710), 34: (0o6323,0o3535), 35: (0o7125,0o3110), 36: (0o7035,0o1426),
37: (0o4341,0o0255), 38: (0o4353,0o0321), 39: (0o4107,0o3124), 40: (0o5735,0o0572),
41: (0o6741,0o1736), 42: (0o7071,0o3306), 43: (0o4563,0o1307), 44: (0o5755,0o3763),
45: (0o6127,0o1604), 46: (0o4671,0o1021), 47: (0o4511,0o2624), 48: (0o4533,0o0406),
49: (0o5357,0o0114), 50: (0o5607,0o0077), 51: (0o6673,0o3477), 52: (0o6153,0o1000),
53: (0o7565,0o3460), 54: (0o7107,0o2607), 55: (0o6211,0o2057), 56: (0o4321,0o3467),
57: (0o7201,0o0706), 58: (0o4451,0o2032), 59: (0o5411,0o1464), 60: (0o5141,0o0520),
61: (0o7041,0o1766), 62: (0o6637,0o3270), 63: (0o4577,0o0341),
64: (0o5111,0o1740,0o3035), 65: (0o5111,0o3664,0o1557), 66: (0o5111,0o1427,0o0237), 67: (0o5111,0o2627,0o2527),
68: (0o5111,0o0701,0o3307), 69: (0o5111,0o3460,0o1402), 70: (0o5111,0o1373,0o1225), 71: (0o5111,0o2540,0o0607),
72: (0o5111,0o2004,0o0351), 73: (0o5111,0o2274,0o3724), 74: (0o5111,0o1340,0o1675), 75: (0o5111,0o0602,0o2625),
76: (0o5111,0o2502,0o1030), 77: (0o5111,0o0327,0o1443), 78: (0o5111,0o2600,0o3277), 79: (0o5111,0o0464,0o1132),
80: (0o5111,0o3674,0o0572), 81: (0o5111,0o3040,0o1241), 82: (0o5111,0o1153,0o0535), 83: (0o5111,0o0747,0o1366),
84: (0o5111,0o1770,0o0041), 85: (0o5111,0o3772,0o0561), 86: (0o5111,0o1731,0o0122), 87: (0o5111,0o1672,0o1205),
88: (0o5111,0o1333,0o3753), 89: (0o5111,0o2705,0o2543), 90: (0o5111,0o2713,0o3031), 91: (0o5111,0o3562,0o2260),
92: (0o5111,0o3245,0o3773), 93: (0o5111,0o3770,0o3156), 94: (0o5111,0o3202,0o2215), 95: (0o5111,0o3521,0o0146),
96: (0o5111,0o3250,0o2413), 97: (0o5111,0o2117,0o2564), 98: (0o5111,0o0530,0o3310), 99: (0o5111,0o3021,0o2267),
100: (0o5421,0o2511,0o3120), 101: (0o5421,0o1562,0o0064), 102: (0o5421,0o1067,0o1042), 103: (0o5421,0o0424,0o0476),
104: (0o5421,0o3402,0o1020), 105: (0o5421,0o1326,0o0431), 106: (0o5421,0o2142,0o0216), 107: (0o5421,0o0733,0o2736),
108: (0o5421,0o0504,0o2527), 109: (0o5421,0o1611,0o2431), 110: (0o5421,0o2724,0o1013), 111: (0o5421,0o0753,0o0524),
112: (0o5421,0o3724,0o0726), 113: (0o5421,0o2652,0o1042), 114: (0o5421,0o1743,0o3362), 115: (0o5421,0o0013,0o1364),
116: (0o5421,0o3464,0o3354), 117: (0o5421,0o2300,0o0623), 118: (0o5421,0o1334,0o0145), 119: (0o5421,0o2175,0o0214),
120: (0o5421,0o2564,0o0223), 121: (0o5421,0o3075,0o0151), 122: (0o5421,0o3455,0o2405), 123: (0o5421,0o3627,0o2522),
124: (0o5421,0o0617,0o3235), 125: (0o5421,0o1324,0o0452), 126: (0o5421,0o3506,0o2617), 127: (0o5421,0o2231,0o1300),
128: (0o5421,0o1110,0o1430), 129: (0o5421,0o1271,0o0773), 130: (0o5421,0o3740,0o0772), 131: (0o5421,0o3652,0o3561),
132: (0o5421,0o1644,0o0607), 133: (0o5421,0o3635,0o0420), 134: (0o5421,0o3436,0o0527), 135: (0o5421,0o3076,0o3770),
136: (0o5421,0o0434,0o2536), 137: (0o5421,0o3340,0o2233), 138: (0o5421,0o0054,0o3366), 139: (0o5403,0o2446,0o3766),
140: (0o5403,0o0025,0o3554), 141: (0o5403,0o0150,0o2060), 142: (0o5403,0o2746,0o2070), 143: (0o5403,0o2723,0o0713),
144: (0o5403,0o2601,0o3366), 145: (0o5403,0o3440,0o3247), 146: (0o5403,0o1312,0o2776), 147: (0o5403,0o0544,0o1244),
148: (0o5403,0o2062,0o2102), 149: (0o5403,0o0176,0o1712), 150: (0o5403,0o3616,0o1245), 151: (0o5403,0o1740,0o3344),
152: (0o5403,0o3777,0o1277), 153: (0o5403,0o0432,0o0165), 154: (0o5403,0o2466,0o2131), 155: (0o5403,0o1667,0o3623),
156: (0o5403,0o3601,0o0141), 157: (0o5403,0o2706,0o0421), 158: (0o5403,0o2022,0o3032), 159: (0o5403,0o1363,0o2065),
160: (0o5403,0o2331,0o3024), 161: (0o5403,0o3556,0o2663), 162: (0o5403,0o2205,0o2274), 163: (0o5403,0o3734,0o2114),
164: (0o5403,0o2115,0o1664), 165: (0o5403,0o0010,0o0413), 166: (0o5403,0o2140,0o1512), 167: (0o5403,0o3136,0o0135),
168: (0o5403,0o0272,0o2737), 169: (0o5403,0o3264,0o1015), 170: (0o5403,0o2017,0o1075), 171: (0o5403,0o2505,0o1255),
172: (0o5403,0o3532,0o3473), 173: (0o5403,0o0647,0o2716), 174: (0o5403,0o1542,0o0101), 175: (0o5403,0o2154,0o1105),
176: (0o5403,0o3734,0o1407), 177: (0o5403,0o2621,0o3407), 178: (0o5403,0o2711,0o1046), 179: (0o5403,0o0217,0o3237),
180: (0o5403,0o3503,0o0154), 181: (0o5403,0o3457,0o3010), 182: (0o5403,0o3750,0o2245), 183: (0o5403,0o2525,0o2051),
184: (0o5403,0o0113,0o2144), 185: (0o5403,0o0265,0o1743), 186: (0o5403,0o1711,0o2511), 187: (0o5403,0o0552,0o3410),
188: (0o5403,0o0675,0o1414), 189: (0o5403,0o1706,0o1275), 190: (0o5403,0o3513,0o2257), 191: (0o5403,0o1135,0o2331),
192: (0o5403,0o0566,0o0276), 193: (0o5403,0o0500,0o3261), 194: (0o5403,0o0254,0o1760), 195: (0o5403,0o3445,0o0430),
196: (0o5403,0o2542,0o3477), 197: (0o5403,0o1257,0o1676), 198: (0o6501,0o0211,0o1636), 199: (0o6501,0o0534,0o2411),
200: (0o6501,0o1420,0o1473), 201: (0o6501,0o3401,0o2266), 202: (0o6501,0o0714,0o2104), 203: (0o6501,0o0613,0o2070),
204: (0o6501,0o2475,0o1766), 205: (0o6501,0o2572,0o0711), 206: (0o6501,0o3265,0o2533), 207: (0o6501,0o1250,0o0353),
208: (0o6501,0o1711,0o1744), 209: (0o6501,0o2704,0o0053), 210: (0o6501,0o0135,0o2222),
}
sec_code_length = 1800
def int2list(x, n):
y = []
for i in range(n):
y.append((x >> i) & 1)
return y
def xorprod(a, b):
t = 0
for x, y in zip(a, b):
t = t ^ (x*y)
return t
def s_shift(x, p):
return [xorprod(x, p)] + x[0:-1]
p, init = l1cp_secondary_params[prn]
p = int2list(p//2, 11)
x = int2list(init, 11)
c = np.zeros(sec_code_length)
for i in range(sec_code_length):
c[i] = x[10]
x = s_shift(x, p)
l1cp_secondary_codes[prn] = c
return l1cp_secondary_codes[prn]
glonass_l1_code = {}
def generate_ca_code_glonass():
"""Generate GLONASS signal that is transmitted in L1 band.
Inputs:
prn - Index of satellite (1-210)
fs - Sampling rate [Hz]
pilot - Flag if data component (pilot=False) or primary pilot component
(pilot=True) is returned, default=False.
Output:
glonass_l1_code - L1 C/A code, length of 511 chips at 0.511 MHz chip rate
Adapted by <NAME> from
https://github.com/pmonta/GNSS-DSP-tools/blob/master/gnsstools/glonass/ca.py
written by <NAME>.
"""
global glonass_l1_code
# Check if C/A code must be generated
if len(glonass_l1_code) == 0:
# chip_rate = 511000
code_length = 511
x = [1, 1, 1, 1, 1, 1, 1, 1, 1]
glonass_l1_code = np.zeros(code_length)
for i in range(code_length):
glonass_l1_code[i] = x[6]
x = [x[8] ^ x[4]] + x[0:8]
return glonass_l1_code
def rinexe(ephemerisfile, system=None):
"""Read a RINEX Navigation Message file and reformat the data.
Reformat the data into a 2D NumPy array with 21 rows and a column for each
satellite.
Units are either seconds, meters, or radians
Typical calls: rinexe("brdc1310.20n")
rinexe("BRDC00IGS_R_20203410000_01D_MN.rnx", system='S')
Inputs:
ephemerisfile - Path to RINEX Navigation Message file
system - Character of system to consider, only in RINEX version 3.
'G' - GPS
'S' - SBAS
'R' - GLONASS
'E' - Galileo
'C' - BeiDou
'J' - QZSS
'I' - NavIC
None - Only one GNSS is assumed to be present (default)
Author: <NAME>
"""
with open(ephemerisfile, "r") as fide:
try:
line = fide.readline()
version = int(line[5])
except ValueError:
raise ValueError('Could not find RINEX version in first line of file.')
head_lines = 1
answer = -1
leap_seconds = 18 # Use default leap seconds if they are not in header
while answer < 0: # Skip header
head_lines = head_lines + 1
line = fide.readline()
if line.find("LEAP SECONDS") >= 0 and (system == 'S' or system == 'R'):
# Read leap seconds for SBAS or GLONASS
leap_seconds = int(line[4:6])
leap_seconds = np.timedelta64(leap_seconds, 's')
answer = line.find("END OF HEADER")
line = "init"
if version == 2:
noeph = -1
while not line == "":
noeph = noeph + 1
line = fide.readline()
# if not sbas:
noeph = int(noeph / 8)
# else:
# noeph = int(noeph / 4)
elif version == 3:
noeph = 0
while not line == "":
line = fide.readline()
if not line == "" and not line[0] == " " and (
system is None or line[0] == system):
noeph = noeph + 1
else:
raise ValueError("Found unsupported RINEX version, use 2 or 3.xx.")
fide.seek(0)
for i in range(head_lines):
line = fide.readline()
# Set aside memory for the input
svprn = np.zeros(noeph)
# weekno = np.zeros(noeph)
# t0c = np.zeros(noeph)
# tgd = np.zeros(noeph)
# aodc = np.zeros(noeph)
toe = np.zeros(noeph)
af2 = np.zeros(noeph)
af1 = np.zeros(noeph)
af0 = np.zeros(noeph)
# aode = np.zeros(noeph)
deltan = np.zeros(noeph)
M0 = np.zeros(noeph)
ecc = | np.zeros(noeph) | numpy.zeros |
"""
List of functions intended to support the Jupyter Notebooks, encapsulating code that the user
don't need to access in a normal view.
Set of functions invoked in OpenSignals Tools Notebooks to present some graphical results.
These function are only designed for a single end, but we made them available to the user if he
want to explore graphical functionalities with practical examples.
Bokeh is the base package of this module, ensuring an interactive and attractive data plotting
integrable in web pages and applications like our Jupyter Notebooks.
Available Functions
-------------------
[Public]
css_style_apply
Function that apply the css configurations to the Jupyter Notebook pages.
plot_compare_act_config
With this function is generated a gridplot showing the differences in muscular activation
detection results when the input arguments of detect_emg_activations function are changed.
plot_median_freq_evol
Representation of a plot that shows the median power frequency evolution time series of
an acquired EMG signal.
plot_sample_rate_compare
Gridplot showing differences in ECG signal morphology as a consequence of changing the
acquisition sampling rate.
acquire_subsamples_gp1 [Old Version]
Graphical function that shows the differences in ECG signals accordingly to the chosen
sampling rate.
plot_resp_slow
Function invoked in order to present the RIP signal together the rectangular signal that
identifies the inhalation and exhalation stages.
plot_resp_diff
Similar do plot_resp_slow but in this particular case is presented the 1st derivative of RIP
signal instead of the orignal acquired data.
Available Functions
-------------------
[Private]
_inhal_exhal_segments
Auxiliary function for determination of the RIP sensor samples where inhalation and exhalation
periods start and end.
Observations/Comments
---------------------
None
/\
"""
from os.path import exists as pathexist
import numpy
import requests
import os
# import novainstrumentation as ni
from .process import smooth, plotfft, lowpass
from .visualise import plot, opensignals_kwargs, opensignals_color_pallet, opensignals_style
from .detect import detect_emg_activations
from .aux_functions import _generate_bokeh_file
from IPython.core.display import HTML
from bokeh.plotting import figure, show, save
from bokeh.models.annotations import Title
from bokeh.io import output_notebook
from bokeh.layouts import gridplot
from bokeh.models import BoxAnnotation, Arrow, VeeHead, Range1d, LinearAxis
output_notebook(hide_banner=True)
def css_style_apply():
"""
-----
Brief
-----
Function that apply the css configurations to the Jupyter Notebook pages.
-----------
Description
-----------
Taking into consideration that, ultimately, biosignalsnotebooks Jupyter Notebooks are web pages,
then a CSS file with the style options for customization of biosignalsnotebooks environment become
particularly important.
With CSS, the Jupyter Notebook template can be adapted in order to acquire the opensignals
format, by changing background color, color pallet, font style...
This function simply injects an HTML statement containing the style configurations.
Returns
-------
out : IPython.core.display.HTML
An IPython object that contains style information to be applied in the web page.
"""
path = "styles/theme_style.css"
if pathexist(path):
style = open(path, "r").read()
else:
style = open("../../" + path, "r").read()
print(".................... CSS Style Applied to Jupyter Notebook .........................")
return HTML("<div id='style_import'>" + style + "</div>")
# /////////////////////////////////////////////////////////////////////////////////////////////////
# ///////////////////////////////// Plotting Auxiliary Functions //////////////////////////////////
# /////////////////////////////////////////////////////////////////////////////////////////////////
# =================================================================================================
# =================================== Acquire Category ============================================
# =================================================================================================
# %%%%%%%%%%%%%%%%%%%%%%%%%% sampling_rate_and_aliasing.ipynb %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
def plot_sample_rate_compare(data_dict, file_name=None):
"""
-----
Brief
-----
Is a plotting function that shows a sequence of ECG plots, demonstrating the relevance of
choosing a wright sampling rate.
-----------
Description
-----------
Function intended to generate a Bokeh figure with Nx2 format, being N the number of keys of
'data_dict' - one for each sampling rate (10, 100, 1000 Hz).
At the first column is plotted a 10 seconds segment of the ECG signal at a specific
sampling rate, while in the second column it will be presented a zoomed section of the ECG
signal with 1 second, in order to the see the effect of choosing a specific sampling rate.
Applied in the Notebook titled "Problems of a smaller sampling rate (aliasing)".
----------
Parameters
----------
data_dict : dict
Dictionary that contains the data to be plotted
({"<sampling_rate_1>": {"time": <time_axis_1>, "data": <data_1>},
"<sampling_rate_2>": {"time": <time_axis_2>, "data": <data_2>},
...})
file_name : str
Path containing the destination folder where the Bokeh figure will be stored.
"""
# Generation of the HTML file where the plot will be stored.
#file_name = _generate_bokeh_file(file_name)
nbr_rows = len(list(data_dict.keys()))
# List that store the figure handler.
list_figures = plot([[]] * nbr_rows * 2, [[]] * nbr_rows * 2, y_axis_label="Raw Data",
x_axis_label="Time (s)", grid_lines=nbr_rows, grid_columns=2,
grid_plot=True, get_fig_list=True, show_plot=False)
# Generation of Bokeh Figures.
grid_list = []
for iter, sample_rate in enumerate(list(data_dict.keys())):
# List of figures in a valid gridplot format (each entry will define a row and each
# subentry a column of the gridplot)
grid_list += [[]]
# Plotting of 10 seconds segment.
# [Figure tile]
title_unzoom = Title()
title_unzoom.text = 'Sampling Rate: ' + sample_rate + " Hz"
list_figures[2 * iter].title = title_unzoom
# [Plot generation]
list_figures[2 * iter].line(data_dict[sample_rate]["time"][:10 * int(sample_rate)],
data_dict[sample_rate]["data"][:10 * int(sample_rate)],
**opensignals_kwargs("line"))
# Storage of customized figure.
grid_list[-1] += [list_figures[2 * iter]]
# Plotting of a zoomed section with 1 second.
# [Figure tile]
title_zoom = Title()
title_zoom.text = 'Zoomed section @ ' + sample_rate + " Hz"
list_figures[2 * iter + 1].title = title_zoom
# [Plot generation]
list_figures[2 * iter + 1].line(data_dict[sample_rate]["time"][:int(sample_rate)],
data_dict[sample_rate]["data"][:int(sample_rate)],
**opensignals_kwargs("line"))
# Storage of customized figure.
grid_list[-1] += [list_figures[2 * iter + 1]]
# Organisation of figures in a gridplot.
grid_plot_1 = gridplot(grid_list, **opensignals_kwargs("gridplot"))
# Show representations.
show(grid_plot_1)
#HTML('<iframe width=100% height=350 src="generated_plots/' + file_name + '"></iframe>')
# [Old Version to be removed]
def acquire_subsamples_gp1(input_data, file_name=None):
"""
Function invoked for plotting a grid-plot with 3x2 format, showing the differences in ECG
signals accordingly to the chosen sampling frequency.
Applied in the cell with tag "subsampling_grid_plot_1".
----------
Parameters
----------
input_data : dict
Dictionary with ECG signal to present.
file_name : str
Path containing the destination folder where the Bokeh figure will be stored.
"""
# Generation of the HTML file where the plot will be stored.
#file_name = _generate_bokeh_file(file_name)
# Number of acquired samples (Original sample_rate = 4000 Hz)
fs_orig = 4000
nbr_samples_orig = len(input_data)
data_interp = {"4000": {}}
data_interp["4000"]["data"] = input_data
data_interp["4000"]["time"] = numpy.linspace(0, nbr_samples_orig / fs_orig, nbr_samples_orig)
# Constants
time_orig = data_interp["4000"]["time"]
data_orig = data_interp["4000"]["data"]
# ============ Interpolation of data accordingly to the desired sampling frequency ============
# sample_rate in [3000, 1000, 500, 200, 100] - Some of the available sample frequencies at Plux
# acquisition systems
# sample_rate in [50, 20] - Non-functional sampling frequencies (Not available at Plux devices
# because of their limited application)
for sample_rate in [3000, 1000, 500, 200, 100, 50, 20]:
fs_str = str(sample_rate)
nbr_samples_interp = int((nbr_samples_orig * sample_rate) / fs_orig)
data_interp[fs_str] = {}
data_interp[fs_str]["time"] = numpy.linspace(0, nbr_samples_orig / fs_orig,
nbr_samples_interp)
data_interp[fs_str]["data"] = numpy.interp(data_interp[fs_str]["time"], time_orig,
data_orig)
# List that store the figure handler.
list_figures = []
# Generation of Bokeh Figures.
for iter_nbr, sample_rate in enumerate(["4000", "3000", "1000", "500", "200", "100"]):
# If figure number is a multiple of 3 or if we are generating the first figure...
if iter_nbr == 0 or iter_nbr % 2 == 0:
list_figures.append([])
# Plotting phase.
list_figures[-1].append(figure(x_axis_label='Time (s)', y_axis_label='Raw Data',
title="Sampling Frequency: " + sample_rate + " Hz",
**opensignals_kwargs("figure")))
list_figures[-1][-1].line(data_interp[sample_rate]["time"][:int(sample_rate)],
data_interp[sample_rate]["data"][:int(sample_rate)],
**opensignals_kwargs("line"))
# =================================================================================================
# ==================================== Detect Category ============================================
# =================================================================================================
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% r_peaks.ipynb %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
def plot_ecg_pan_tompkins_steps(time, orig_ecg, pre_process_ecg, sampling_rate, titles):
"""
-----
Brief
-----
With this plotting function it will be possible to plot simultaneously (in pairs) "Original"/
"Filtered"/"Differentiated"/"Rectified"/"Integrated" ECG signals used at "Pan-Tompkins R Peaks
Detection Algorithm".
-----------
Description
-----------
Function intended to generate a Bokeh figure with 1x2 format, being 1 the of rows and 2 the number
of columns.
At the first column is plotted the ECG signal resulting from pre-process step i while in the second
column it is presented the ECG signal resulting from pre-process step i+1.
Applied in the Notebook titled "Event Detection - R Peaks (ECG)".
----------
Parameters
----------
time : list
List containing the time-axis sequence of values.
orig_ecg : list
Sequence of sampled values (Original ECG).
pre_process_ecg : list
Sequence of sampled values (Pre-Processed ECG).
sampling_rate : int
Acquisition sampling rate (Hz)
titles : list
List containing the title of each subplot.
"""
if len(titles) == 2:
# Representation of the output of Step 1 of Pan-Tompkins R-Peak Detection Algorithm.
# List that store the figure handler
list_figures_1 = [[]]
# Plotting of Original Signal
list_figures_1[-1].append(figure(x_axis_label='Time (s)', y_axis_label='Raw Data',
title=titles[0], **opensignals_kwargs("figure")))
list_figures_1[-1][-1].line(time[:sampling_rate], orig_ecg[:sampling_rate], **opensignals_kwargs("line"))
# Plotting of Filtered Signal
list_figures_1[-1].append(figure(x_axis_label='Time (s)', y_axis_label='Raw Data',
title=titles[1], **opensignals_kwargs("figure")))
list_figures_1[-1][-1].line(time[:sampling_rate], pre_process_ecg[:sampling_rate], **opensignals_kwargs("line"))
# Grid-Plot.
opensignals_style([item for sublist in list_figures_1 for item in sublist])
grid_plot_1 = gridplot(list_figures_1, **opensignals_kwargs("gridplot"))
show(grid_plot_1)
else:
raise RuntimeError("The field 'title' must be a list of strings with size 2 !")
def plot_ecg_pan_tompkins_peaks(time, orig_ecg, integrated_ecg, sampling_rate, possible_peaks,
probable_peaks, definitive_peaks):
"""
-----
Brief
-----
With this plotting function it will be possible to demonstrate which "peaks" are being
detected in each stage of Pan-Tompkins Algorithm (possible, probable, definitive).
-----------
Description
-----------
Function intended to generate a Bokeh figure containing all peaks detected in a temporal
segment (of ECG integrated signal) with 2 seconds.
"Possible Peaks" are marked with the smallest circle while "Probable Peaks" and "Definitive
Peaks" are highlighted with medium and large size circles.
Applied in the Notebook titled "Event Detection - R Peaks (ECG)".
----------
Parameters
----------
time : list
List containing the time-axis sequence of values.
orig_ecg : list
Sequence of sampled values (Original ECG).
integrated_ecg : list
Sequence of sampled values (Integrated ECG).
sampling_rate : int
Acquisition sampling rate (Hz)
possible_peaks : list
List containing all "Possible Peaks" detected from Pan-Tompkins R Peak Detection
Algorithm.
probable_peaks : list
List containing all "Probable Peaks" detected from Pan-Tompkins R Peak Detection
Algorithm.
definitive_peaks : list
List containing all "Definitive Peaks" detected from Pan-Tompkins R Peak Detection
Algorithm.
"""
# List that store the figure handler
list_figures = []
# Plotting of a signal segment with 2 seconds
segment_data = numpy.array(orig_ecg[:2 * sampling_rate])
segment_int = numpy.array(integrated_ecg[:2 * sampling_rate])
segment_time = numpy.array(time[:2 * sampling_rate])
# Peaks list for the 2 seconds window
possible_peaks_wind = numpy.array(possible_peaks)[numpy.array(possible_peaks) < len(segment_int)]
probable_peaks_wind = numpy.array(probable_peaks)[numpy.array(probable_peaks) < len(segment_int)]
definitive_peaks_wind = numpy.array(definitive_peaks)[numpy.array(definitive_peaks) < len(segment_int)]
list_figures.append(figure(x_axis_label='Time (s)', y_axis_label='Raw Data', **opensignals_kwargs("figure")))
list_figures[-1].line(segment_time, segment_int, **opensignals_kwargs("line"))
list_figures[-1].circle(segment_time[definitive_peaks_wind], segment_int[definitive_peaks_wind], size=30, color="#00893E", legend="Definitive Peaks")
list_figures[-1].circle(segment_time[probable_peaks_wind], segment_int[probable_peaks_wind], size=20, color="#009EE3", legend="Probable Peaks")
list_figures[-1].circle(segment_time[possible_peaks_wind], segment_int[possible_peaks_wind], size=10, color="#302683", legend="Possible Peaks")
# Show figure.
opensignals_style(list_figures)
show(list_figures[-1])
# =================================================================================================
# ==================================== Extract Category ===========================================
# =================================================================================================
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% emg_parameters.ipynb %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
def plot_emg_graphical_durations(max_time, min_time, avg_time, std_time):
"""
-----
Brief
-----
This plotting function ensures a graphical representation of maximum, minimum and average time
durations of the muscular activation periods.
-----------
Description
-----------
Function intended to generate a single Bokeh figure graphically describing and identifying
some statistical parameters related with the time duration of the muscular activation periods
that compose the input EMG signal.
Applied in the Notebook titled "EMG Analysis - Time and Frequency Parameters".
----------
Parameters
----------
max_time : float
Time duration of the longest EMG muscular activation.
min_time : float
Time duration of the shortest EMG muscular activation.
avg_time : float
Average time duration of the EMG muscular activation set.
std_time : int
Standard deviation of the muscular activation time duration relatively to avg_time.
"""
# List that store the figure handler
list_figures_1 = []
color_1 = "#009EE3"
color_2 = "#00893E"
color_3 = "#E84D0E"
color_4 = "#CF0272"
# Plotting of Burst duration distribution
list_figures_1.append(figure(x_axis_label='Time (s)', **opensignals_kwargs("figure"), x_range=[0, max_time], y_range=[0, 1]))
box_annotation_max = BoxAnnotation(left=0, right=max_time, top=0.33, bottom=0, fill_color=color_1, fill_alpha=0.5)
list_figures_1[-1].rect(0, 0, width=0, height=0, fill_color=color_1, fill_alpha=0.5, legend="Maximum Burst Time")
list_figures_1[-1].add_layout(box_annotation_max)
box_annotation_avg = BoxAnnotation(left=0, right=avg_time, top=0.66, bottom=0.33, fill_color=color_2, fill_alpha=0.5)
list_figures_1[-1].rect(0, 0, width=0, height=0, fill_color=color_2, fill_alpha=0.5, legend="Average Burst Time")
list_figures_1[-1].add_layout(box_annotation_avg)
box_annotation_min = BoxAnnotation(left=0, right=min_time, top=1, bottom=0.66, fill_color=color_3, fill_alpha=0.5)
list_figures_1[-1].rect(0, 0, width=0, height=0, fill_color=color_3, fill_alpha=0.5, legend="Minimum Burst Time")
list_figures_1[-1].add_layout(box_annotation_min)
box_annotation_std = BoxAnnotation(left=avg_time, right=avg_time + std_time, top=0.55, bottom=0.44, fill_color=color_4, fill_alpha=0.5)
list_figures_1[-1].rect(0, 0, width=0, height=0, fill_color=color_4, fill_alpha=0.5, legend="Average + Standard Deviation Time")
list_figures_1[-1].add_layout(box_annotation_std)
# Show figure.
opensignals_style(list_figures_1)
show(list_figures_1[-1])
def plot_emg_graphical_statistical(time, signal, max_sample_value, min_sample_value, avg_sample_value,
std_sample_value):
"""
-----
Brief
-----
This plotting function ensures a graphical representation of maximum, minimum and average sample
values registered on the entire EMG acquisition.
-----------
Description
-----------
Function intended to generate a single Bokeh figure with graphically describing and identifying
some statistical parameters extracted from the analysis of the entire electromyographic (EMG) signal.
Applied in the Notebook titled "EMG Analysis - Time and Frequency Parameters".
----------
Parameters
----------
time : list
Time-axis linked to the acquired EMG signal samples.
signal : list
Acquired EMG signal samples.
max_sample_value : float
Maximum value registered in the acquired EMG samples.
min_sample_value: float
Minimum value registered in the acquired EMG samples.
avg_sample_value : float
Average value registered in the acquired EMG samples.
std_sample_value : int
Standard deviation of the acquired EMG sample values relatively to avg_sample_value.
"""
# List that store the figure handler
list_figures = []
# Plotting of EMG.
list_figures.append(figure(x_axis_label='Time (s)', y_axis_label='Electric Tension (mV)', x_range=(0, time[-1] + 0.50 * time[-1]), y_range=[-1.10, 1], **opensignals_kwargs("figure")))
list_figures[-1].line(time, signal, legend="EMG Signal", **opensignals_kwargs("line"))
# Representation of EMG and the determined parameters
parameter_list = ["Maximum", "Minimum", "Average", "Standard Deviation"]
for parameter in parameter_list:
find_time_max = numpy.array(time)[numpy.where(numpy.array(signal) == max_sample_value)]
find_time_min = numpy.array(time)[numpy.where(numpy.array(signal) == min_sample_value)]
if parameter == "Maximum":
list_figures[-1].circle(find_time_max, max_sample_value, radius = 0.5, fill_color=opensignals_color_pallet(),
legend=parameter + " EMG")
elif parameter == "Minimum":
list_figures[-1].circle(find_time_min, min_sample_value, radius=0.5, fill_color=opensignals_color_pallet(),
legend=parameter + " EMG")
elif parameter == "Average":
list_figures[-1].line([0, time[-1]], [avg_sample_value, avg_sample_value],
legend=parameter + " EMG Sample", **opensignals_kwargs("line"))
elif parameter == "Standard Deviation":
box_annotation = BoxAnnotation(left=0, right=time[-1], top=avg_sample_value + std_sample_value,
bottom=avg_sample_value - std_sample_value, fill_color="black",
fill_alpha=0.3)
list_figures[-1].rect(find_time_min, std_sample_value, width=0, height=0, fill_color="black", fill_alpha=0.3,
legend="Average + Standard Deviation Zone")
list_figures[-1].add_layout(box_annotation)
# Show figure.
opensignals_style(list_figures)
show(list_figures[-1])
def plot_emg_rms_area(time, signal, rms, area):
"""
-----
Brief
-----
With the current function it will be plotted the EMG signals together with RMS line and the time-series that
describes the evolution of the cumulative area.
-----------
Description
-----------
Function intended to generate a single Bokeh figure graphically describing and identifying
Root Mean Square and Area parameters extracted from the analysis of the entire electromyographic (EMG) signal.
Applied in the Notebook titled "EMG Analysis - Time and Frequency Parameters".
----------
Parameters
----------
time : list
Time-axis linked to the acquired EMG signal samples.
signal : list
Acquired EMG signal samples.
rms : float
Root Mean Square value (amplitude estimator for the EMG signal under analysis).
area : list
List containing the sequential cumulative values of the area under the EMG signal curve.
"""
# List that store the figure handler
list_figures = []
# Plotting of EMG area and RMS line
list_figures.append(
figure(x_axis_label='Frequency (Hz)', y_axis_label='Electric Tension (mV)', x_range=[0, time[-1]],
y_range=[-1, 1], **opensignals_kwargs("figure")))
list_figures[-1].line(time, signal, **opensignals_kwargs("line"))
list_figures[-1].line([time[0], time[-1]], [rms, rms], legend="RMS Value", **opensignals_kwargs("line"))
# Setting the second y axis range name and range
list_figures[-1].extra_y_ranges = {"Area": Range1d(start=0, end=area[-1])}
# Adding the second axis to the plot
list_figures[-1].add_layout(LinearAxis(y_range_name="Area", axis_label='Area (mV.s)'), 'right')
list_figures[-1].line(time[1:], area, legend="Area along time (cumulative)", y_range_name="Area",
**opensignals_kwargs("line"))
# Show figure.
opensignals_style(list_figures)
show(list_figures[-1])
def plot_emg_spect_freq(freq_axis, power_axis, max_freq, median_freq):
"""
-----
Brief
-----
A plot with frequency power spectrum of the input EMG signal is presented graphically, highlighting maximum and
median power frequency.
-----------
Description
-----------
Function intended to generate a single Bokeh figure graphically describing and identifying maximum and median
power frequency on Power Spectrum.
Applied in the Notebook titled "EMG Analysis - Time and Frequency Parameters".
----------
Parameters
----------
freq_axis : list
List with the values of power spectrum frequency axis.
power_axis : list
List with the values of power spectrum y axis (relative weight of the frequency component on signal
reconstruction.
max_freq : float
Frequency value registered when the maximum power is reached on the spectrum.
median_freq : float
Frequency value registered when the half of the total power is reached on the cumulative power spectrum.
"""
# List that store the figure handler
list_figures = []
# Plotting of EMG Power Spectrum
list_figures.append(
figure(x_axis_label='Frequency (Hz)', y_axis_label='Relative Power (a.u.)', **opensignals_kwargs("figure")))
list_figures[-1].line(freq_axis, power_axis, legend="Power Spectrum", **opensignals_kwargs("line"))
list_figures[-1].patch(list(freq_axis) + list(freq_axis)[::-1], list(power_axis) + list(numpy.zeros(len(power_axis))),
fill_color=opensignals_color_pallet(), fill_alpha=0.5, line_alpha=0,
legend="Area Under Curve")
list_figures[-1].line([median_freq, median_freq], [0, power_axis[numpy.where(freq_axis == median_freq)[0][0]]],
legend="Median Frequency", **opensignals_kwargs("line"))
list_figures[-1].line([max_freq, max_freq], [0, power_axis[numpy.where(freq_axis == max_freq)[0][0]]],
legend="Maximum Power Frequency", **opensignals_kwargs("line"))
# Show figure.
opensignals_style(list_figures)
show(list_figures[-1])
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% eeg_extract_alphaband.ipynb %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
def plot_eeg_signal_wind(time, signal, time_range, time_windows_evt_1, time_windows_evt_2,
y_axis_label="Electric Voltage", legend=["Eyes Opened", "Eyes Closed"]):
"""
-----
Brief
-----
Function intended to generate a single Bokeh figure that presents a graphical representation of an EEG
signal, highlighting a set of time-windows (segments).
-----------
Description
-----------
The current function was mainly created to support "eeg_extract_alphaband" Jupyter Notebook, ensuring
a graphical representation of an EEG signal segmented into time windows (of two types: eyes opened and
eyes closed).
Applied in the Notebook titled "EEG - Alpha Band Extraction".
----------
Parameters
----------
time : list
List containing the time-axis linked to the acquired EEG data samples.
signal : list
List containing the acquired data samples.
time_range : list
A tuple containing the start and ending times of the visualisation window (start, end).
time_windows_evt_1 : list tuples
Each entry of this list will contain a tuple (start, end) identifying the start and ending points
of the temporal segment under analysis [Event 1 - Eyes Opened].
time_windows_evt_2 : list tuples
Each entry of this list will contain a tuple (start, end) identifying the start and ending points
of the temporal segment under analysis [Event 2 - Eyes Closed].
y_axis_label : str
A string where it is specified the label of the y axis.
"""
# Range of the visualisation window.
x_range = (time_range[0], time_range[1])
# Get the list of beginning and ending points of the time windows [Eyes Opened]
eyes_open_begin = []
eyes_open_end = []
for tuple in time_windows_evt_1:
eyes_open_begin.append(tuple[0])
eyes_open_end.append(tuple[1])
# Get the list of beginning and ending points of the time windows [Eyes Closed]
eyes_closed_begin = []
eyes_closed_end = []
for tuple in time_windows_evt_2:
eyes_closed_begin.append(tuple[0])
eyes_closed_end.append(tuple[1])
list_figures = plot(time, signal, y_axis_label=y_axis_label, get_fig_list=True, show_plot=False, x_range=x_range)
# Highlighting "Eyes Opened" and "Eyes Closed" bands.
color_open_eyes = opensignals_color_pallet()
color_closed_eyes = opensignals_color_pallet()
# ["Eyes Opened"]
box_annotations = []
for i in range(0, len(eyes_open_begin)):
box_annotations.append(BoxAnnotation(left=eyes_open_begin[i], right=eyes_open_end[i],
fill_color=color_open_eyes, fill_alpha=0.1))
list_figures[-1].add_layout(box_annotations[-1])
list_figures[-1].circle([-100], [0], fill_color=color_open_eyes, fill_alpha=0.1, legend=legend[0])
if len(time_windows_evt_2) != 0:
# ["Eyes Closed"]
for i in range(0, len(eyes_closed_begin)):
box_annotations.append(
BoxAnnotation(left=eyes_closed_begin[i], right=eyes_closed_end[i], fill_color=color_closed_eyes,
fill_alpha=0.1))
list_figures[-1].add_layout(box_annotations[-1])
list_figures[-1].circle([-100], [0], fill_color=color_closed_eyes, fill_alpha=0.1, legend=legend[1])
# Show figure.
show(list_figures[-1])
def plot_eeg_alpha_band(freq_axis_evt1, power_axis_evt1, freq_axis_evt2, power_axis_evt2, freq_range):
"""
-----
Brief
-----
Function intended to generate a single Bokeh figure graphically describing and identifying
the alpha band linked with EEG researches and studies.
-----------
Description
-----------
The current function was mainly created to support "eeg_extract_alphaband" Jupyter Notebook, ensuring
a graphical representation of an EEG signal segmented into time windows (of two types) and also the
generation of the power spectrum where the alpha bands are highlighted.
Applied in the Notebook titled "EEG - Alpha Band Extraction".
----------
Parameters
----------
freq_axis_evt1 : list
Frequency axis of the power spectrum belonging to a "Eyes Opened" time window.
power_axis_evt1 : list
Power axis of the power spectrum belonging to a "Eyes Opened" time window.
freq_axis_evt2 : list
Frequency axis of the power spectrum belonging to a "Eyes Closed" time window.
power_axis_evt2 : list
Power axis of the power spectrum belonging to a "Eyes Closed" time window.
freq_range : list
List defining the range of frequencies to be presented on the visualisation window of our spectrum.
"""
# Rename variables.
freq_axis_eyes_closed = freq_axis_evt2
freq_axis_eyes_opened = freq_axis_evt1
power_spect_eyes_closed = power_axis_evt2
power_spect_eyes_opened = power_axis_evt1
# List that store the figure handler
list_figures = plot([freq_axis_eyes_closed, freq_axis_eyes_opened],
[power_spect_eyes_closed, power_spect_eyes_opened],
title=["Estimated Power Spectral Density - Closed Eyes",
"Estimated Power Spectral Density - Opened Eyes"],
legend=["Bandpass Filtered Freq. Band", "Bandpass Filtered Freq. Band"],
x_axis_label="Frequency (Hz)", y_axis_label="PSD (uV^2/Hz)", grid_plot=True, grid_lines=1,
grid_columns=2, x_range=freq_range, show_plot=False, get_fig_list=True)
# Indexes of Alpha Band.
alpha_band_indexes_eyes_closed = numpy.where((numpy.array(freq_axis_eyes_closed) >= 8) &
(numpy.array(freq_axis_eyes_closed) <= 12))[0]
alpha_band_indexes_eyes_opened = numpy.where((numpy.array(freq_axis_eyes_opened) >= 8) &
(numpy.array(freq_axis_eyes_opened) <= 12))[0]
# Maximum Spectrum value.
maxPower = numpy.max((numpy.max(power_spect_eyes_closed), numpy.max(power_spect_eyes_opened)))
# Plotting of Alpha Band [Eyes Closed]
list_figures[0].y_range = Range1d(0, 1.2 * maxPower)
list_figures[0].patch(list(freq_axis_eyes_closed[alpha_band_indexes_eyes_closed]) + list(
freq_axis_eyes_closed[alpha_band_indexes_eyes_closed])[::-1],
list(power_spect_eyes_closed[alpha_band_indexes_eyes_closed]) + list(
numpy.zeros(len(power_spect_eyes_closed[alpha_band_indexes_eyes_closed]))),
fill_color=opensignals_color_pallet(), fill_alpha=0.5, line_alpha=0,
legend="Alpha Band 8-12 Hz")
# Plotting of Alpha Band [Eyes Opened]
list_figures[1].y_range = Range1d(0, 1.2 * maxPower)
list_figures[1].patch(list(freq_axis_eyes_opened[alpha_band_indexes_eyes_opened]) + list(
freq_axis_eyes_opened[alpha_band_indexes_eyes_opened])[::-1],
list(power_spect_eyes_opened[alpha_band_indexes_eyes_opened]) + list(
numpy.zeros(len(power_spect_eyes_opened[alpha_band_indexes_eyes_opened]))),
fill_color=opensignals_color_pallet(), fill_alpha=0.5, line_alpha=0,
legend="Alpha Band 8-12 Hz")
# Show figure.
grid_plot_ref = gridplot([[list_figures[0], list_figures[1]]], **opensignals_kwargs("gridplot"))
show(grid_plot_ref)
# =================================================================================================
# ================================ Pre-Process Category ===========================================
# =================================================================================================
# %%%%%%%%%%%%%%%%%%%%%%% emg_fatigue_evaluation_median_freq.ipynb %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
def plot_compare_act_config(signal, sample_rate, file_name=None):
"""
-----
Brief
-----
By invoking this function, a gridplot will be presented, in order to show the effect in muscular
activation detection, when some input parameters of the algorithm are changed.
-----------
Description
-----------
It will be generated a Bokeh figure with 3x2 format, comparing the results of muscular
activation algorithm when his input parameters are changed.
At the first column are presented three plot zones, each plot zone is formed by an EMG signal,
the smoothed signal and the muscular activation detection threshold.
The smoothing level (SL) and threshold (TH) are customizable parameters, so, between these three
figures, at least one of the parameters changed (each row of the gridplot shows graphical
results obtained through the use of a specific set of algorithm parameter values [SL, TH] =
[20, 10]% or [20, 50]% or [70, 10]%).
At the second column is shown the result of applying muscular activation detection algorithm
with the original EMG signal and a rectangular signal defining the start and end of each
muscular activation period.
Applied in the Notebook "Fatigue Evaluation - Evolution of Median Power Frequency".
----------
Parameters
----------
signal : list
List with EMG signal to present.
sample_rate : int
Acquisitions sampling rate.
file_name : str
Path containing the destination folder where the Bokeh figure will be stored.
"""
# Generation of the HTML file where the plot will be stored.
#file_name = _generate_bokeh_file(file_name)
time = numpy.linspace(0, len(signal) / sample_rate, len(signal))[0:14000]
signal = numpy.array(signal[0:14000]) - numpy.average(signal[0:14000])
# Muscular Activation Detection.
muscular_activation_begin_20_10, muscular_activation_end_20_10, smooth_signal_20_10, \
threshold_level_20_10 = detect_emg_activations(list(signal), sample_rate, smooth_level=20,
threshold_level=10)
threshold_level_20_10 = (numpy.max(signal) * threshold_level_20_10) / \
numpy.max(smooth_signal_20_10)
smooth_signal_20_10 = (numpy.max(signal) * numpy.array(smooth_signal_20_10)) / \
numpy.max(smooth_signal_20_10)
activation_20_10 = numpy.zeros(len(time))
for activation in range(0, len(muscular_activation_begin_20_10)):
activation_20_10[muscular_activation_begin_20_10[activation]:
muscular_activation_end_20_10[activation]] = numpy.max(signal)
muscular_activation_begin_20_50, muscular_activation_end_20_50, smooth_signal_20_50, \
threshold_level_20_50 = detect_emg_activations(list(signal), sample_rate, smooth_level=20,
threshold_level=50)
threshold_level_20_50 = (numpy.max(signal) * threshold_level_20_50) / \
numpy.max(smooth_signal_20_50)
smooth_signal_20_50 = (numpy.max(signal) * numpy.array(smooth_signal_20_50)) / \
numpy.max(smooth_signal_20_50)
activation_20_50 = numpy.zeros(len(time))
for activation in range(0, len(muscular_activation_begin_20_50)):
activation_20_50[muscular_activation_begin_20_50[activation]:
muscular_activation_end_20_50[activation]] = numpy.max(signal)
muscular_activation_begin_70_10, muscular_activation_end_70_10, smooth_signal_70_10, \
threshold_level_70_10 = detect_emg_activations(list(signal), sample_rate, smooth_level=70,
threshold_level=10)
threshold_level_70_10 = (numpy.max(signal) * threshold_level_70_10) / \
numpy.max(smooth_signal_70_10)
smooth_signal_70_10 = (numpy.max(signal) * numpy.array(smooth_signal_70_10)) / \
numpy.max(smooth_signal_70_10)
activation_70_10 = numpy.zeros(len(time))
for activation in range(0, len(muscular_activation_begin_70_10)):
activation_70_10[muscular_activation_begin_70_10[activation]:
muscular_activation_end_70_10[activation]] = numpy.max(signal)
# Plotting of data in a 3x2 gridplot format.
plot_list = plot([list([]), list([]), list([]), list([]), list([]), list([])],
[list([]), list([]), list([]), list([]), list([]), list([])],
grid_lines=3, grid_columns=2, grid_plot=True, get_fig_list=True,
show_plot=False)
combination = ["Smooth Level: 20 % Threshold Level: 10 %", "Smooth Level: 20 % "
"Threshold Level: 50 %",
"Smooth Level: 70 % Threshold Level: 10 %"]
detect_dict = {"Smooth Level: 20 % Threshold Level: 10 %": [smooth_signal_20_10,
threshold_level_20_10,
activation_20_10],
"Smooth Level: 20 % Threshold Level: 50 %": [smooth_signal_20_50,
threshold_level_20_50,
activation_20_50],
"Smooth Level: 70 % Threshold Level: 10 %": [smooth_signal_70_10,
threshold_level_70_10,
activation_70_10]}
for plot_aux in range(0, len(plot_list)):
title = Title()
combination_temp = combination[int(plot_aux / 2)]
plot_list[plot_aux].line(time, signal, **opensignals_kwargs("line"))
if plot_aux % 2 == 0:
title.text = combination_temp
plot_list[plot_aux].line(time, detect_dict[combination_temp][0],
**opensignals_kwargs("line"))
plot_list[plot_aux].line(time, detect_dict[combination_temp][1],
**opensignals_kwargs("line"))
plot_list[plot_aux].yaxis.axis_label = "Raw Data"
else:
title.text = "Result for " + combination_temp
plot_list[plot_aux].line(time, detect_dict[combination_temp][2],
**opensignals_kwargs("line"))
# x axis labels.
if plot_aux in [4, 5]:
plot_list[plot_aux].xaxis.axis_label = "Time (s)"
plot_list[plot_aux].title = title
grid_plot_ref = gridplot([[plot_list[0], plot_list[1]], [plot_list[2], plot_list[3]],
[plot_list[4], plot_list[5]]], **opensignals_kwargs("gridplot"))
show(grid_plot_ref)
#HTML('<iframe width=100% height=350 src="generated_plots/' + file_name + '"></iframe>')
def plot_median_freq_evol(time_signal, signal, time_median_freq, median_freq, activations_begin,
activations_end, sample_rate, file_name=None):
"""
-----
Brief
-----
Graphical representation of the EMG median power frequency evolution time series.
-----------
Description
-----------
Function intended to generate a Bokeh figure with 2x1 format, where each muscular activation
period is identified through a colored box and the plot that shows the median frequency
evolution is also presented.
In the first cell is presented the EMG signal, highlighting each muscular activation.
The second cell has the same time scale as the first one (the two plots are synchronized), being
plotted the evolution time series of EMG median frequency.
Per muscular activation period is extracted a Median Power Frequency value (sample), so, our
window is a muscular activation period.
Median power frequency is a commonly used parameter for evaluating muscular fatigue.
It is widely accepted that this parameter decreases as fatigue sets in.
Applied in the Notebook "Fatigue Evaluation - Evolution of Median Power Frequency".
----------
Parameters
----------
time_signal : list
List with the time axis samples of EMG signal.
signal : list
List with EMG signal to present.
time_median_freq : list
List with the time axis samples of the median frequency evolution time-series.
median_freq : list
List with the Median Frequency samples.
activations_begin : list
List with the samples where each muscular activation period starts.
activations_end : list
List with the samples where each muscular activation period ends.
sample_rate : int
Sampling rate of acquisition.
file_name : str
Path containing the destination folder where the Bokeh figure will be stored.
"""
# Generation of the HTML file where the plot will be stored.
#file_name = _generate_bokeh_file(file_name)
list_figures_1 = plot([list(time_signal), list(time_median_freq)],
[list(signal), list(median_freq)],
title=["EMG Acquisition highlighting muscular activations",
"Median Frequency Evolution"], grid_plot=True,
grid_lines=2, grid_columns=1, open_signals_style=True,
x_axis_label="Time (s)",
yAxisLabel=["Raw Data", "Median Frequency (Hz)"],
x_range=[0, 125], get_fig_list=True, show_plot=False)
# Highlighting of each processing window
for activation in range(0, len(activations_begin)):
color = opensignals_color_pallet()
box_annotation = BoxAnnotation(left=activations_begin[activation] / sample_rate,
right=activations_end[activation] / sample_rate,
fill_color=color, fill_alpha=0.1)
box_annotation_copy = BoxAnnotation(left=activations_begin[activation] / sample_rate,
right=activations_end[activation] / sample_rate,
fill_color=color, fill_alpha=0.1)
list_figures_1[0].add_layout(box_annotation)
list_figures_1[1].add_layout(box_annotation_copy)
gridplot_1 = gridplot([[list_figures_1[0]], [list_figures_1[1]]],
**opensignals_kwargs("gridplot"))
show(gridplot_1)
#HTML('<iframe width=100% height=350 src="generated_plots/' + file_name + '"></iframe>')
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% digital_filtering.ipynb %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
def plot_informational_band(freqs, power, signal, sr, band_begin, band_end,
legend="Signal Power Spectrum", x_lim=[], y_lim=[],
show_plot=False, file_name=None):
"""
-----
Brief
-----
With this function it is possible to present a plot containing the FFT Power Spectrum of an ECG
signal, highlighting the informative frequency band.
-----------
Description
-----------
The FFT Power Spectrum, of an input signal, can be generated through plotfft function of
novainstrumentation package (or periogram function of scipy package).
The x axis (freqs) represents the frequency components of the signal, after decomposition was
achieved by applying the Fourier Transform. The y axis (power) defines the relative weight of
each frequency component (sinusoidal function) in the process of reconstructing the signal by
re-summing of decomposition components.
Additionally, it is also graphically presented a rectangular box showing which are the frequency
components with relevant information for studying our input physiological signal.
Note that each physiological signal has its own "informational band", whose limits should be
specified in the input arguments "band_begin" and "band_end".
Applied in the Notebook "Digital Filtering - A Fundamental Pre-Processing Step".
----------
Parameters
----------
freqs : list
Frequency axis of power spectrum, defining which frequency components were used during the
Fourier decomposition.
power : list
Power axis of power spectrum, defining the relative weight that each frequency component,
inside "freqs", will have during the signal reconstruction.
signal : list
List containing the acquired signal samples.
sr : int
Sampling rate.
band_begin : float
Lower frequency inside the signal informational band.
band_end : float
Higher frequency inside the signal informational band.
legend : str
A string containing the legend that defines the power spectrum, for example: "ECG Power
Spectrum".
x_lim : list
A list with length equal to 2, defining the first and last x value that should be presented.
y_lim : list
A list with length equal to 2, defining the first and last y value that should be presented.
show_plot : bool
If True then the generated figure/plot will be shown to the user.
file_name : str
Path containing the destination folder where the Bokeh figure will be stored.
Returns
-------
out : bokeh figure
Bokeh figure presenting the signal power spectrum and highlighting the informational band.
"""
# Generation of the HTML file where the plot will be stored.
#file_name = _generate_bokeh_file(file_name)
# ----------------------------- Verification procedure -----------------------------------------
# Check if list is the type of input arguments x_lim and y_lim.
if type(x_lim) is list and type(y_lim) is list:
if len(x_lim) == 2 and len(y_lim) == 2:
if len(x_lim) == 0:
x_lim = [freqs[0], freqs[-1]]
if len(y_lim) == 0:
y_lim = [power[0], power[-1]]
else:
raise RuntimeError("The inputs arguments 'x_lim' and 'y_lim', when explicitly specified, "
"must be formed by two elements (defining the lower and upper limits "
"of the x and y axis).")
else:
raise RuntimeError("At least one of the input arguments (x_lim or y_lim) does not have a valid"
" type. The inputs must be lists.")
# List that store the figure handler
list_figures = []
# Plotting of power spectrum
list_figures.append(figure(x_axis_label='Frequency (Hz)', y_axis_label='Relative Weight', x_range=(x_lim[0], x_lim[-1]),
y_range=(y_lim[0], y_lim[1]), **opensignals_kwargs("figure")))
list_figures[-1].line(freqs, power, legend=legend,
**opensignals_kwargs("line"))
# Highlighting of informational band
color = opensignals_color_pallet()
box_annotation = BoxAnnotation(left=band_begin, right=band_end, fill_color=color,
fill_alpha=0.1)
list_figures[-1].circle([-100], [0], fill_color=color, fill_alpha=0.1,
legend="Informational Band")
list_figures[-1].add_layout(box_annotation)
# # Determination of the maximum frequency
# max_freq = max_frequency(signal, sr)
#
# # Rejection band(above maximum frequency)
# color = "black"
# box_annotations = BoxAnnotation(left=max_freq, right=max_freq + 5, fill_color=color,
# fill_alpha=0.1)
#
# # Show of the plots with the rejection band
# list_figures[-1].circle([-100], [0], fill_color=color, fill_alpha=0.1, legend="Rejected Band")
# list_figures[-1].add_layout(box_annotations)
# list_figures[-1].add_layout(Arrow(end=VeeHead(size=15, line_color=color, fill_color=color,
# fill_alpha=0.1), line_color=color,
# x_start=max_freq + 5, y_start=y_lim[1]/2,
# x_end=max_freq + 15, y_end=y_lim[1]/2))
# Apply opensignals style.
if len(numpy.shape(list_figures)) != 1:
flat_list = [item for sublist in list_figures for item in sublist]
opensignals_style(flat_list)
else:
opensignals_style(list_figures)
# Present the generated plots.
if show_plot is True:
show(list_figures[-1])
#HTML('<iframe width=100% height=350 src="generated_plots/' + file_name + '"></iframe>')
return list_figures[-1]
def plot_before_after_filter(signal, sr, band_begin, band_end, order=1, x_lim=[], y_lim=[],
orientation="hor", show_plot=False, file_name=None):
"""
-----
Brief
-----
The use of the current function is very useful for comparing two power spectrum's (before and
after filtering the signal).
This function invokes "plot_informational_band" in order to get the power spectrum before
applying the signal to the lowpass filter.
-----------
Description
-----------
The FFT Power Spectrum, of an input signal, can be generated through plotfft function of
novainstrumentation package (or periogram function of scipy package).
The x axis (freqs) represents the frequency components of the signal, after decomposition was
achieved by applying the Fourier Transform. The y axis (power) defines the relative weight of
each frequency component (sinusoidal function) in the process of reconstructing the signal by
re-summing of decomposition components.
It is presented a 1x2 gridplot for compaing the differences in frequency composition of the
signal under analysis (before and after filtering).
Additionally, it is also graphically presented a rectangular box showing which are the frequency
components with relevant information for studying our input physiological signal.
Applied in the Notebook "Digital Filtering - A Fundamental Pre-Processing Step".
----------
Parameters
----------
signal : list
List containing the acquired signal samples.
sr : int
Sampling rate.
band_begin : float
Lower frequency inside the signal informational band.
band_end : float
Higher frequency inside the signal informational band.
order : int
Filter order.
x_lim : list
A list with length equal to 2, defining the first and last x value that should be presented.
y_lim : list
A list with length equal to 2, defining the first and last y value that should be presented.
orientation : str
If "hor" then the generated figures will be joined together in an horizontal gridplot.
When "vert" the gridplot will be a vertical grid and when "same" the plots are generated at
the same figure.
show_plot : bool
If True then the generated figure/plot will be shown to the user.
file_name : str
Path containing the destination folder where the Bokeh figure will be stored.
Returns
-------
out : list
List of Bokeh figures that compose the generated gridplot.
"""
# Generation of the HTML file where the plot will be stored.
#file_name = _generate_bokeh_file(file_name)
# Generation of FFT power spectrum accordingly to the filter order.
for i in range(0, order + 1):
# Initialisation and appending of data to the figures list.
if i == 0:
# Power spectrum
freqs_after, power_after = plotfft(signal, sr)
figure_after = plot_informational_band(freqs_after, power_after, signal, sr,
band_begin, band_end,
legend="Signal Power Spectrum", x_lim=x_lim,
y_lim=y_lim)
# List that store the figure handler
list_figures = [[figure_after]]
else:
filter_signal = lowpass(signal, f=band_end, order=i, fs=sr)
# Power spectrum
freqs_after, power_after = plotfft(filter_signal, sr)
if orientation != "same":
figure_after = plot_informational_band(freqs_after, power_after, filter_signal, sr,
band_begin, band_end,
legend="Filtered FFT (Order " + str(i) + ")",
x_lim=x_lim, y_lim=y_lim)
# Append data accordingly to the desired direction of representation.
if orientation == "hor":
# Append to the figure list the power spectrum of the signal after filtering.
list_figures[-1].append(figure_after)
elif orientation == "vert":
list_figures.append([figure_after])
else:
list_figures[-1][0].line(freqs_after, power_after, legend="Filtered FFT (Order " + str(i) + ")",
**opensignals_kwargs("line"))
# Show gridplot.
grid_plot_1 = gridplot(list_figures, **opensignals_kwargs("gridplot"))
if show_plot is True:
show(grid_plot_1)
return list_figures
def plot_low_pass_filter_response(show_plot=False, file_name=None):
"""
-----
Brief
-----
Taking into consideration the generic transfer function that defines the frequency response of
a low-pass filter (|H|=1/(sqrt(1+(f/fc)^2n), where fc is the corner frequency and n is the
filter order), the current function will generate a figure for comparing the frequency response
accordingly to the filter order.
-----------
Description
-----------
In digital and analogical systems, a filter defines a system capable of attenuating specific
frequency components of the signal that is applied to it.
The filter behaviour can be mathematically defined through a transfer function, showing
precisely the stop- and pass-bands.
In the case of a low-pass filter, a structural parameter is the corner frequency (where the
attenuation begins). Like the name suggests, all signal components with frequency below the
corner frequency will be outputted without changes (they "pass" the filter), while components
with frequency above the corner frequency suffers an attenuation (the bigger the difference
between the frequency of the component and the corner frequency the bigger the attenuation).
It is shown (in the same figure) the low-pass filter response for different order (1, 2, 3, 4,
5, 6).
Applied in the Notebook "Digital Filtering - A Fundamental Pre-Processing Step".
----------
Parameters
----------
show_plot : bool
If True then the generated figure/plot will be shown to the user.
file_name : str
Path containing the destination folder where the Bokeh figure will be stored.
Returns
-------
out : list
List of Bokeh figures that compose the generated gridplot.
"""
# Generation of the HTML file where the plot will be stored.
#file_name = _generate_bokeh_file(file_name)
# Frequency list.
freqs = numpy.linspace(1, 1200, 100000)
cutoff_freq = 40
# Generation of filter response.
gain_functions = []
legend_strs = []
for order in range(1, 7):
gain = 20*numpy.log10(1 / (numpy.sqrt(1 + (freqs / cutoff_freq)**(2*order))))
# Storage of the determined gain values.
gain_functions.append(gain)
if order == 1:
legend_strs.append("1st order filter")
elif order == 2:
legend_strs.append("2nd order filter")
elif order == 3:
legend_strs.append("3rd order filter")
else:
legend_strs.append(str(order) + "th order filter")
# Generation of a Bokeh figure with the opensignals style.
fig_list = plot([freqs / cutoff_freq]*len(gain_functions), gain_functions, legend=legend_strs,
title="Filter Response", x_axis_label="Normalized Frequency",
y_axis_label="Gain (dB)", x_axis_type="log", x_range=(0.1, 40),
y_range=(-120, 5), show_plot=True, get_fig_list=True)
# Inclusion of a colored region showing the ideal behaviour.
color=opensignals_color_pallet()
box_annotation = BoxAnnotation(left=0.1, right=1, top=0, bottom=-120,
fill_color=color,
fill_alpha=0.3)
fig_list[0].circle([-100], [0], fill_color=color, fill_alpha=0.3, legend="Ideal Filter Response")
fig_list[0].add_layout(box_annotation)
# Show figure.
if show_plot is True:
show(fig_list[0])
#HTML('<iframe width=100% height=350 src="generated_plots/' + file_name + '"></iframe>')
# =================================================================================================
# ===================================== Record Category ===========================================
# =================================================================================================
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% resolution.ipynb %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
def plot_compare_resolutions(time, signal_res_1, signal_res_2, sampling_rate):
"""
-----
Brief
-----
With the current function it will be presented a gridplot with 2 rows, where three plots are graphically
represented
-----------
Description
-----------
Acquiring data with a right resolution ensures that posterior conclusions will be more reliable and effective.
The current function is intended to generate a Bokeh figure with 2 rows. In the first row is shown a plot
containing two synchronized signals acquired with different resolutions.
The second gridplot row is divided into 2 cells, showing each one the previously presented multi resolution
signals but in separate subfigures and in a zoomed format.
Applied in the Notebook titled "Resolution - The difference between smooth and abrupt variations".
----------
Parameters
----------
time : list
Time-axis linked to the acquired signal samples.
signal_res_1 : list
Acquired signal samples for the smallest resolution.
signal_res_2 : list
Acquired signal samples for the biggest resolution.
sampling_rate : int
Sampling rate of the acquisition.
"""
# Figure with the two plots
figure_8_16 = figure(x_axis_label='Time (s)', y_axis_label="Temperature (ºC)", **opensignals_kwargs("figure"))
figure_8_16.line(time, signal_res_1, legend="8 Bits Acquisition", **opensignals_kwargs("line"))
figure_8_16.line(time, signal_res_2, legend="16 Bits Acquisition", **opensignals_kwargs("line"))
# Zoom window
wind_start = sampling_rate * 110 # 110 seconds
wind_end = sampling_rate * 150 # 150 seconds
# Figure with 8 bits zoom
figure_8 = figure(x_axis_label='Time (s)', y_axis_label="Temperature (ºC)", title="8 Bits Acquisition",
y_range=[38, 40.5], **opensignals_kwargs("figure"))
figure_8.line(time[wind_start:wind_end], signal_res_1[wind_start:wind_end], **opensignals_kwargs("line"))
# Figure with 16 bits zoom
figure_16 = figure(x_axis_label='Time (s)', y_axis_label="Temperature (ºC)", title="16 Bits Acquisition",
y_range=[38, 40.5], **opensignals_kwargs("figure"))
figure_16.line(time[wind_start:wind_end], signal_res_2[wind_start:wind_end],
**opensignals_kwargs("line"))
# Show gridplot.
opensignals_style([figure_8, figure_16, figure_8_16])
grid_plot = gridplot([[figure_8_16], [figure_8, figure_16]], **opensignals_kwargs("gridplot"))
show(grid_plot)
# =================================================================================================
# =================================== Explain Category ============================================
# =================================================================================================
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% respiration_slow.ipynb %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# We stop here at 13h51m of 2nd October of 2018 :)
def plot_resp_slow(signal, rect_signal, sample_rate):
"""
-----
Brief
-----
Figure intended to represent the acquired RIP signal together with a rectangular signal defining
inhalation and exhalation periods.
-----------
Description
-----------
Function design to generate a Bokeh figure containing the evolution of RIP signal, when
slow respiration cycles occur, and the rectangular signal that defines the stages of
inhalation and exhalation.
Applied in the Notebook "Particularities of Inductive Respiration (RIP) Sensor ".
----------
Parameters
----------
signal : list
List with the acquired RIP signal.
rect_signal : list
Data samples of the rectangular signal that identifies inhalation and exhalation
segments.
sample_rate : int
Sampling rate of acquisition.
"""
signal = numpy.array(signal) - numpy.average(signal)
rect_signal = numpy.array(rect_signal)
time = numpy.linspace(0, len(signal) / sample_rate, len(signal))
# Inhalation and Exhalation time segments.
# [Signal Binarisation]
rect_signal_rev = rect_signal - numpy.average(rect_signal)
inhal_segments = numpy.where(rect_signal_rev >= 0)[0]
exhal_segments = numpy.where(rect_signal_rev < 0)[0]
rect_signal_rev[inhal_segments] = | numpy.max(rect_signal_rev) | numpy.max |
__author__ = "<NAME>"
"""
The aim of this class is to produce an implementation of Boson Sampling algorithm
as in [2], but for uniform losses. This would allow us to apply the losses to the
k non-approximated particles and, by that, use generalized Cliffords strategy on
the non-lossy interferometer. We won't need to expand the matrix into 2m x 2m!
"""
from .simulation_strategy_interface import SimulationStrategyInterface
from .generalized_cliffords_b_simulation_strategy import (
GeneralizedCliffordsBSimulationStrategy,
BSPermanentCalculatorInterface,
)
from numpy import (
ndarray,
hstack,
zeros_like,
complex128,
eye,
pi,
ones,
exp,
diag,
arange,
)
from numpy.random import choice, rand, shuffle
from typing import List
from scipy.special import binom
from ..boson_sampling_utilities.boson_sampling_utilities import generate_lossy_inputs
from multiprocessing import cpu_count
import multiprocessing
from concurrent.futures import ProcessPoolExecutor as Pool
from copy import deepcopy
from ..quantum_computations_utilities import compute_qft_matrix
class LossyStateApproximationSimulationStrategy(SimulationStrategyInterface):
def __init__(
self,
bs_permanent_calculator: BSPermanentCalculatorInterface,
uniform_transmissivity: float,
hierarchy_level: int,
threads_number: int = -1,
):
# Required for lossy approximated state preparation
self._approximated_input_state_part_possibilities = None
self._approximated_input_state_part_possibilities_weights = None
self._not_approximated_lossy_mixed_state_parts = None
self._not_approximated_lossy_mixed_state_parts_weights = None
# Required for general simulation
self._hierarchy_level = hierarchy_level
self._uniform_transmissivity = uniform_transmissivity
self._threads_number = self._get_proper_threads_number(threads_number)
self._permanent_calculator = (
bs_permanent_calculator # Should contain an UNITARY (no losses here!)
)
self._qft_matrix = self._get_qft_matrix()
@staticmethod
def _get_proper_threads_number(threads_number: int) -> int:
if threads_number < 1 or threads_number > cpu_count():
return cpu_count()
else:
return threads_number
def simulate(self, input_state: ndarray, samples_number: int = 1) -> List[ndarray]:
if samples_number < 1:
return []
self._prepare_not_approximated_lossy_mixed_state(
input_state[: self._hierarchy_level] # Not approximated state part
)
self._prepare_approximated_input_state(
input_state[self._hierarchy_level :] # Approximated state part
)
number_of_samples_for_each_thread = self._compute_number_of_samples_for_each_thread(
samples_number
)
# Context is required on Linux systems, as the default (fork) produces undesired results! Spawn is default
# on osX and Windows and works as expected.
multiprocessing_context = multiprocessing.get_context("spawn")
with Pool(mp_context=multiprocessing_context) as p:
samples_lists = p.map(
self._simulate_in_parallel, number_of_samples_for_each_thread
)
samples = [sample for samples_list in samples_lists for sample in samples_list]
return samples
def _prepare_not_approximated_lossy_mixed_state(
self, not_approximated_input_state_part: ndarray
) -> None:
self._prepare_not_approximated_lossy_mixed_state_parts(
not_approximated_input_state_part
)
self._prepare_not_approximated_lossy_mixed_state_parts_weights()
def _prepare_not_approximated_lossy_mixed_state_parts(
self, not_approximated_input_state_part: ndarray
) -> None:
self._not_approximated_lossy_mixed_state_parts = []
for number_of_particles_left in range(
sum(not_approximated_input_state_part) + 1
):
self._not_approximated_lossy_mixed_state_parts.extend(
generate_lossy_inputs(
not_approximated_input_state_part, number_of_particles_left
)
)
def _prepare_not_approximated_lossy_mixed_state_parts_weights(self) -> None:
# Do note that this method HAS TO be called after lossy mixed state parts are
# computed.
possible_weights = self._get_possible_lossy_inputs_weights(
# Last part is always whole (not approximated) input state part
self._not_approximated_lossy_mixed_state_parts[-1]
)
self._not_approximated_lossy_mixed_state_parts_weights = []
n = sum(self._not_approximated_lossy_mixed_state_parts[-1])
for state_part in self._not_approximated_lossy_mixed_state_parts:
self._not_approximated_lossy_mixed_state_parts_weights.append(
possible_weights[int(sum(state_part))] / binom(n, sum(state_part))
)
def _get_possible_lossy_inputs_weights(self, input_state: ndarray) -> List[float]:
weights = []
# I'll use the same notation as in [1], for readability.
n = int(sum(input_state)) # Initial number of particles.
eta = self._uniform_transmissivity
for l in range(n + 1):
# l denotes number of particles left in the state
weights.append(binom(n, l) * eta ** l * (1 - eta) ** (n - l))
return weights
def _prepare_approximated_input_state(
self, approximated_input_state_part: ndarray
) -> None:
# Assume exact simulation if hierarchy level is not specified.
if not 0 <= self._hierarchy_level < self._permanent_calculator.matrix.shape[0]:
self._approximated_input_state_part_possibilities = [[]]
self._approximated_input_state_part_possibilities_weights = [1]
return
self._prepare_approximated_input_state_parts(approximated_input_state_part)
self._prepare_approximated_input_state_parts_weights()
def _prepare_approximated_input_state_parts(
self, approximated_input_state_part: ndarray
) -> None:
self._approximated_input_state_part_possibilities = []
for number_of_particles_left in range(
int(sum(approximated_input_state_part)) + 1
):
state_part_possibility = zeros_like(approximated_input_state_part)
state_part_possibility[0] = number_of_particles_left
self._approximated_input_state_part_possibilities.append(
state_part_possibility
)
def _prepare_approximated_input_state_parts_weights(self):
self._approximated_input_state_part_possibilities_weights = self._get_possible_lossy_inputs_weights(
# Last part contains all possible particles.
self._approximated_input_state_part_possibilities[-1]
)
@staticmethod
def _distribute_uniformly(val: int, bins: int) -> List[int]:
# TODO TR: Might be but in a more general file.
distributed_values = []
for v in range(bins):
distributed_values.append(val // bins)
for i in range(val % bins):
distributed_values[i] += 1
return distributed_values
def _compute_number_of_samples_for_each_thread(
self, samples_number: int
) -> List[int]:
return self._distribute_uniformly(samples_number, self._threads_number)
def _simulate_in_parallel(self, samples_number: int = 1) -> List[ndarray]:
""" This method produces given number of samples from lossy approximated
(separable) state. It's meant to be run in parallel.
"""
samples = []
helper_strategy = GeneralizedCliffordsBSimulationStrategy(
deepcopy(self._permanent_calculator)
)
for _ in range(samples_number):
lossy_input = self._get_input_state_for_sampling()
approximate_sampling_matrix = self._get_matrix_for_approximate_sampling()
helper_strategy.set_new_matrix(approximate_sampling_matrix)
samples.append(helper_strategy.simulate(lossy_input)[0])
return samples
def _get_input_state_for_sampling(self):
approximated_part = self._approximated_input_state_part_possibilities[
choice(
range(len(self._approximated_input_state_part_possibilities)),
p=self._approximated_input_state_part_possibilities_weights,
)
]
not_approximated_part = self._not_approximated_lossy_mixed_state_parts[
choice(
range(len(self._not_approximated_lossy_mixed_state_parts)),
p=self._not_approximated_lossy_mixed_state_parts_weights,
)
]
return | hstack([not_approximated_part, approximated_part]) | numpy.hstack |
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard, core
from paddle.fluid.tests.unittests.op_test import OpTest
class TestSplitSectionsOneDNNOp(OpTest):
def init_data(self):
self.x = np.random.random((4, 5, 6)).astype("float32")
self.axis = 1
self.sections = [2, 1, 2]
indices_or_sections = [2, 3] # sections
np_sections = [2, 3]
self.out = np.split(self.x, np_sections, self.axis)
def setUp(self):
self.op_type = "split"
self.axis_tensor = None
self.sections_tensor_list = None
self.num = 0
self.init_data()
self.inputs = {'X': self.x}
self.attrs = {'use_mkldnn': True, 'num': self.num}
if self.axis is not None:
self.attrs['axis'] = self.axis
if self.sections is not None:
self.attrs['sections'] = self.sections
if self.axis_tensor is not None:
self.inputs['AxisTensor'] = self.axis_tensor
if self.sections_tensor_list is not None:
self.inputs['SectionsTensorList'] = self.sections_tensor_list
self.outputs = {'Out': [('out%d' % i, self.out[i]) \
for i in range(len(self.out))]}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], ['out0', 'out1', 'out2'])
# test with attr(num)
class TestSplitNumOneDNNOp(TestSplitSectionsOneDNNOp):
def init_data(self):
self.x = np.random.random((4, 8, 5, 3)).astype("float32")
self.axis = 1
self.sections = []
self.num = 4
indices_or_sections = 4 #indices
self.out = np.split(self.x, indices_or_sections, self.axis)
def test_check_grad(self):
self.check_grad(['X'], ['out0', 'out1', 'out2', 'out3'])
class TestSplitNumAxisTensorOneDNNOp(TestSplitSectionsOneDNNOp):
def init_data(self):
self.x = np.random.random((4, 5, 6)).astype("float32")
self.axis = None
self.sections = []
self.num = 3
indices_or_sections = 3 #indices
self.axis_tensor = np.array([2]).astype("int32")
self.out = | np.split(self.x, indices_or_sections, 2) | numpy.split |
# Copyright (c) 2014, <NAME>.
# Licensed under the BSD 3-clause license (see LICENSE.txt)
import numpy as np
from scipy.special import wofz
from .kern import Kern
from ...core.parameterization import Param
from ...core.parameterization.transformations import Logexp
from ...util.caching import Cache_this
class EQ_ODE2(Kern):
"""
Covariance function for second order differential equation driven by an exponentiated quadratic covariance.
This outputs of this kernel have the form
.. math::
\frac{\text{d}^2y_j(t)}{\text{d}^2t} + C_j\frac{\text{d}y_j(t)}{\text{d}t} + B_jy_j(t) = \sum_{i=1}^R w_{j,i} u_i(t)
where :math:`R` is the rank of the system, :math:`w_{j,i}` is the sensitivity of the :math:`j`th output to the :math:`i`th latent function, :math:`d_j` is the decay rate of the :math:`j`th output and :math:`f_i(t)` and :math:`g_i(t)` are independent latent Gaussian processes goverened by an exponentiated quadratic covariance.
:param output_dim: number of outputs driven by latent function.
:type output_dim: int
:param W: sensitivities of each output to the latent driving function.
:type W: ndarray (output_dim x rank).
:param rank: If rank is greater than 1 then there are assumed to be a total of rank latent forces independently driving the system, each with identical covariance.
:type rank: int
:param C: damper constant for the second order system.
:type C: array of length output_dim.
:param B: spring constant for the second order system.
:type B: array of length output_dim.
"""
#This code will only work for the sparseGP model, due to limitations in models for this kernel
def __init__(self, input_dim=2, output_dim=1, rank=1, W=None, lengthscale=None, C=None, B=None, active_dims=None, name='eq_ode2'):
#input_dim should be 1, but kern._slice_X is not returning index information required to evaluate kernels
assert input_dim == 2, "only defined for 1 input dims"
super(EQ_ODE2, self).__init__(input_dim=input_dim, active_dims=active_dims, name=name)
self.rank = rank
self.output_dim = output_dim
if lengthscale is None:
lengthscale = .5+np.random.rand(self.rank)
else:
lengthscale = np.asarray(lengthscale)
assert lengthscale.size in [1, self.rank], "Bad number of lengthscales"
if lengthscale.size != self.rank:
lengthscale = np.ones(self.input_dim)*lengthscale
if W is None:
#W = 0.5*np.random.randn(self.output_dim, self.rank)/np.sqrt(self.rank)
W = np.ones((self.output_dim, self.rank))
else:
assert W.shape == (self.output_dim, self.rank)
if C is None:
C = np.ones(self.output_dim)
if B is None:
B = np.ones(self.output_dim)
self.C = Param('C', C, Logexp())
self.B = Param('B', B, Logexp())
self.lengthscale = Param('lengthscale', lengthscale, Logexp())
self.W = Param('W', W)
self.link_parameters(self.lengthscale, self.C, self.B, self.W)
@Cache_this(limit=2)
def K(self, X, X2=None):
#This way is not working, indexes are lost after using k._slice_X
#index = np.asarray(X, dtype=np.int)
#index = index.reshape(index.size,)
if hasattr(X, 'values'):
X = X.values
index = np.int_(X[:, 1])
index = index.reshape(index.size,)
X_flag = index[0] >= self.output_dim
if X2 is None:
if X_flag:
#Calculate covariance function for the latent functions
index -= self.output_dim
return self._Kuu(X, index)
else:
raise NotImplementedError
else:
#This way is not working, indexes are lost after using k._slice_X
#index2 = np.asarray(X2, dtype=np.int)
#index2 = index2.reshape(index2.size,)
if hasattr(X2, 'values'):
X2 = X2.values
index2 = np.int_(X2[:, 1])
index2 = index2.reshape(index2.size,)
X2_flag = index2[0] >= self.output_dim
#Calculate cross-covariance function
if not X_flag and X2_flag:
index2 -= self.output_dim
return self._Kfu(X, index, X2, index2) #Kfu
else:
index -= self.output_dim
return self._Kfu(X2, index2, X, index).T #Kuf
#Calculate the covariance function for diag(Kff(X,X))
def Kdiag(self, X):
#This way is not working, indexes are lost after using k._slice_X
#index = np.asarray(X, dtype=np.int)
#index = index.reshape(index.size,)
if hasattr(X, 'values'):
X = X.values
index = np.int_(X[:, 1])
index = index.reshape(index.size,)
#terms that move along t
t = X[:, 0].reshape(X.shape[0], 1)
d = np.unique(index) #Output Indexes
B = self.B.values[d]
C = self.C.values[d]
S = self.W.values[d, :]
#Index transformation
indd = np.arange(self.output_dim)
indd[d] = np.arange(d.size)
index = indd[index]
#Check where wd becomes complex
wbool = C*C >= 4.*B
B = B.reshape(B.size, 1)
C = C.reshape(C.size, 1)
alpha = .5*C
C2 = C*C
wbool2 = wbool[index]
ind2t = np.where(wbool2)
ind3t = np.where(np.logical_not(wbool2))
#Terms that move along q
lq = self.lengthscale.values.reshape(1, self.lengthscale.size)
S2 = S*S
kdiag = np.empty((t.size, ))
indD = np.arange(B.size)
#(1) When wd is real
if np.any(np.logical_not(wbool)):
#Indexes of index and t related to (2)
t1 = t[ind3t]
ind = index[ind3t]
d = np.asarray(np.where(np.logical_not(wbool))[0]) #Selection of outputs
indd = indD.copy()
indd[d] = np.arange(d.size)
ind = indd[ind]
#Dx1 terms
S2lq = S2[d]*(.5*lq)
c0 = S2lq*np.sqrt(np.pi)
w = .5*np.sqrt(4.*B[d] - C2[d])
alphad = alpha[d]
w2 = w*w
gam = alphad + 1j*w
gamc = alphad - 1j*w
c1 = .5/(alphad*w2)
c2 = .5/(gam*w2)
c = c1 - c2
#DxQ terms
nu = lq*(gam*.5)
K01 = c0*c
#Nx1 terms
gamt = -gam[ind]*t1
gamct = -gamc[ind]*t1
egamt = np.exp(gamt)
ec = egamt*c2[ind] - np.exp(gamct)*c1[ind]
#NxQ terms
t_lq = t1/lq
# Upsilon Calculations
# Using wofz
wnu = wofz(1j*nu)
lwnu = np.log(wnu)
t2_lq2 = -t_lq*t_lq
upm = wnu[ind] - np.exp(t2_lq2 + gamt + np.log(wofz(1j*(t_lq + nu[ind]))))
upm[t1[:, 0] == 0, :] = 0.
nu2 = nu*nu
z1 = nu[ind] - t_lq
indv1 = np.where(z1.real >= 0.)
indv2 = np.where(z1.real < 0.)
upv = -np.exp(lwnu[ind] + gamt)
if indv1[0].shape > 0:
upv[indv1] += np.exp(t2_lq2[indv1] + np.log(wofz(1j*z1[indv1])))
if indv2[0].shape > 0:
upv[indv2] += np.exp(nu2[ind[indv2[0]], indv2[1]] + gamt[indv2[0], 0] + np.log(2.))\
- np.exp(t2_lq2[indv2] + np.log(wofz(-1j*z1[indv2])))
upv[t1[:, 0] == 0, :] = 0.
#Covariance calculation
kdiag[ind3t] = np.sum(np.real(K01[ind]*upm), axis=1)
kdiag[ind3t] += np.sum(np.real((c0[ind]*ec)*upv), axis=1)
#(2) When w_d is complex
if np.any(wbool):
t1 = t[ind2t]
ind = index[ind2t]
#Index transformation
d = np.asarray(np.where(wbool)[0])
indd = indD.copy()
indd[d] = np.arange(d.size)
ind = indd[ind]
#Dx1 terms
S2lq = S2[d]*(lq*.25)
c0 = S2lq*np.sqrt(np.pi)
w = .5*np.sqrt(C2[d] - 4.*B[d])
alphad = alpha[d]
gam = alphad - w
gamc = alphad + w
w2 = -w*w
c1 = .5/(alphad*w2)
c21 = .5/(gam*w2)
c22 = .5/(gamc*w2)
c = c1 - c21
c2 = c1 - c22
#DxQ terms
K011 = c0*c
K012 = c0*c2
nu = lq*(.5*gam)
nuc = lq*(.5*gamc)
#Nx1 terms
gamt = -gam[ind]*t1
gamct = -gamc[ind]*t1
egamt = np.exp(gamt)
egamct = np.exp(gamct)
ec = egamt*c21[ind] - egamct*c1[ind]
ec2 = egamct*c22[ind] - egamt*c1[ind]
#NxQ terms
t_lq = t1/lq
#Upsilon Calculations using wofz
t2_lq2 = -t_lq*t_lq #Required when using wofz
wnu = wofz(1j*nu).real
lwnu = np.log(wnu)
upm = wnu[ind] - np.exp(t2_lq2 + gamt + np.log(wofz(1j*(t_lq + nu[ind])).real))
upm[t1[:, 0] == 0., :] = 0.
nu2 = nu*nu
z1 = nu[ind] - t_lq
indv1 = np.where(z1 >= 0.)
indv2 = np.where(z1 < 0.)
upv = -np.exp(lwnu[ind] + gamt)
if indv1[0].shape > 0:
upv[indv1] += np.exp(t2_lq2[indv1] + np.log(wofz(1j*z1[indv1]).real))
if indv2[0].shape > 0:
upv[indv2] += np.exp(nu2[ind[indv2[0]], indv2[1]] + gamt[indv2[0], 0] + np.log(2.))\
- np.exp(t2_lq2[indv2] + np.log(wofz(-1j*z1[indv2]).real))
upv[t1[:, 0] == 0, :] = 0.
wnuc = wofz(1j*nuc).real
lwnuc = np.log(wnuc)
upmc = wnuc[ind] - np.exp(t2_lq2 + gamct + np.log(wofz(1j*(t_lq + nuc[ind])).real))
upmc[t1[:, 0] == 0., :] = 0.
nuc2 = nuc*nuc
z1 = nuc[ind] - t_lq
indv1 = np.where(z1 >= 0.)
indv2 = np.where(z1 < 0.)
upvc = - np.exp(lwnuc[ind] + gamct)
if indv1[0].shape > 0:
upvc[indv1] += np.exp(t2_lq2[indv1] + np.log(wofz(1j*z1[indv1]).real))
if indv2[0].shape > 0:
upvc[indv2] += np.exp(nuc2[ind[indv2[0]], indv2[1]] + gamct[indv2[0], 0] + np.log(2.))\
- np.exp(t2_lq2[indv2] + np.log(wofz(-1j*z1[indv2]).real))
upvc[t1[:, 0] == 0, :] = 0.
#Covariance calculation
kdiag[ind2t] = np.sum(K011[ind]*upm + K012[ind]*upmc + (c0[ind]*ec)*upv + (c0[ind]*ec2)*upvc, axis=1)
return kdiag
def update_gradients_full(self, dL_dK, X, X2 = None):
#index = np.asarray(X, dtype=np.int)
#index = index.reshape(index.size,)
if hasattr(X, 'values'):
X = X.values
self.B.gradient = np.zeros(self.B.shape)
self.C.gradient = np.zeros(self.C.shape)
self.W.gradient = np.zeros(self.W.shape)
self.lengthscale.gradient = np.zeros(self.lengthscale.shape)
index = np.int_(X[:, 1])
index = index.reshape(index.size,)
X_flag = index[0] >= self.output_dim
if X2 is None:
if X_flag: #Kuu or Kmm
index -= self.output_dim
tmp = dL_dK*self._gkuu_lq(X, index)
for q in np.unique(index):
ind = np.where(index == q)
self.lengthscale.gradient[q] = tmp[np.ix_(ind[0], ind[0])].sum()
else:
raise NotImplementedError
else: #Kfu or Knm
#index2 = np.asarray(X2, dtype=np.int)
#index2 = index2.reshape(index2.size,)
if hasattr(X2, 'values'):
X2 = X2.values
index2 = np.int_(X2[:, 1])
index2 = index2.reshape(index2.size,)
X2_flag = index2[0] >= self.output_dim
if not X_flag and X2_flag:
index2 -= self.output_dim
else:
dL_dK = dL_dK.T #so we obtaing dL_Kfu
indtemp = index - self.output_dim
Xtemp = X
X = X2
X2 = Xtemp
index = index2
index2 = indtemp
glq, gSdq, gB, gC = self._gkfu(X, index, X2, index2)
tmp = dL_dK*glq
for q in np.unique(index2):
ind = np.where(index2 == q)
self.lengthscale.gradient[q] = tmp[:, ind].sum()
tmpB = dL_dK*gB
tmpC = dL_dK*gC
tmp = dL_dK*gSdq
for d in np.unique(index):
ind = np.where(index == d)
self.B.gradient[d] = tmpB[ind, :].sum()
self.C.gradient[d] = tmpC[ind, :].sum()
for q in np.unique(index2):
ind2 = np.where(index2 == q)
self.W.gradient[d, q] = tmp[np.ix_(ind[0], ind2[0])].sum()
def update_gradients_diag(self, dL_dKdiag, X):
#index = np.asarray(X, dtype=np.int)
#index = index.reshape(index.size,)
if hasattr(X, 'values'):
X = X.values
self.B.gradient = np.zeros(self.B.shape)
self.C.gradient = np.zeros(self.C.shape)
self.W.gradient = np.zeros(self.W.shape)
self.lengthscale.gradient = np.zeros(self.lengthscale.shape)
index = np.int_(X[:, 1])
index = index.reshape(index.size,)
glq, gS, gB, gC = self._gkdiag(X, index)
tmp = dL_dKdiag.reshape(index.size, 1)*glq
self.lengthscale.gradient = tmp.sum(0)
#TODO: Avoid the reshape by a priori knowing the shape of dL_dKdiag
tmpB = dL_dKdiag*gB.reshape(dL_dKdiag.shape)
tmpC = dL_dKdiag*gC.reshape(dL_dKdiag.shape)
tmp = dL_dKdiag.reshape(index.size, 1)*gS
for d in np.unique(index):
ind = np.where(index == d)
self.B.gradient[d] = tmpB[ind].sum()
self.C.gradient[d] = tmpC[ind].sum()
self.W.gradient[d, :] = tmp[ind].sum(0)
def gradients_X(self, dL_dK, X, X2=None):
#index = np.asarray(X, dtype=np.int)
#index = index.reshape(index.size,)
if hasattr(X, 'values'):
X = X.values
index = np.int_(X[:, 1])
index = index.reshape(index.size,)
X_flag = index[0] >= self.output_dim
#If input_dim == 1, use this
#gX = np.zeros((X.shape[0], 1))
#Cheat to allow gradient for input_dim==2
gX = np.zeros(X.shape)
if X2 is None: #Kuu or Kmm
if X_flag:
index -= self.output_dim
gX[:, 0] = 2.*(dL_dK*self._gkuu_X(X, index)).sum(0)
return gX
else:
raise NotImplementedError
else: #Kuf or Kmn
#index2 = np.asarray(X2, dtype=np.int)
#index2 = index2.reshape(index2.size,)
if hasattr(X2, 'values'):
X2 = X2.values
index2 = np.int_(X2[:, 1])
index2 = index2.reshape(index2.size,)
X2_flag = index2[0] >= self.output_dim
if X_flag and not X2_flag: #gradient of Kuf(Z, X) wrt Z
index -= self.output_dim
gX[:, 0] = (dL_dK*self._gkfu_z(X2, index2, X, index).T).sum(1)
return gX
else:
raise NotImplementedError
#---------------------------------------#
# Helper functions #
#---------------------------------------#
#Evaluation of squared exponential for LFM
def _Kuu(self, X, index):
index = index.reshape(index.size,)
t = X[:, 0].reshape(X.shape[0],)
lq = self.lengthscale.values.reshape(self.rank,)
lq2 = lq*lq
#Covariance matrix initialization
kuu = np.zeros((t.size, t.size))
#Assign 1. to diagonal terms
kuu[np.diag_indices(t.size)] = 1.
#Upper triangular indices
indtri1, indtri2 = np.triu_indices(t.size, 1)
#Block Diagonal indices among Upper Triangular indices
ind = np.where(index[indtri1] == index[indtri2])
indr = indtri1[ind]
indc = indtri2[ind]
r = t[indr] - t[indc]
r2 = r*r
#Calculation of covariance function
kuu[indr, indc] = np.exp(-r2/lq2[index[indr]])
#Completation of lower triangular part
kuu[indc, indr] = kuu[indr, indc]
return kuu
#Evaluation of cross-covariance function
def _Kfu(self, X, index, X2, index2):
#terms that move along t
t = X[:, 0].reshape(X.shape[0], 1)
d = np.unique(index) #Output Indexes
B = self.B.values[d]
C = self.C.values[d]
S = self.W.values[d, :]
#Index transformation
indd = np.arange(self.output_dim)
indd[d] = np.arange(d.size)
index = indd[index]
#Check where wd becomes complex
wbool = C*C >= 4.*B
#Output related variables must be column-wise
C = C.reshape(C.size, 1)
B = B.reshape(B.size, 1)
C2 = C*C
#Input related variables must be row-wise
z = X2[:, 0].reshape(1, X2.shape[0])
lq = self.lengthscale.values.reshape((1, self.rank))
#print np.max(z), np.max(z/lq[0, index2])
alpha = .5*C
wbool2 = wbool[index]
ind2t = np.where(wbool2)
ind3t = np.where(np.logical_not(wbool2))
kfu = np.empty((t.size, z.size))
indD = np.arange(B.size)
#(1) when wd is real
if np.any(np.logical_not(wbool)):
#Indexes of index and t related to (2)
t1 = t[ind3t]
ind = index[ind3t]
#Index transformation
d = np.asarray(np.where(np.logical_not(wbool))[0])
indd = indD.copy()
indd[d] = np.arange(d.size)
ind = indd[ind]
#Dx1 terms
w = .5*np.sqrt(4.*B[d] - C2[d])
alphad = alpha[d]
gam = alphad - 1j*w
#DxQ terms
Slq = (S[d]/w)*(.5*lq)
c0 = Slq*np.sqrt(np.pi)
nu = gam*(.5*lq)
#1xM terms
z_lq = z/lq[0, index2]
#NxQ terms
t_lq = t1/lq
#NxM terms
zt_lq = z_lq - t_lq[:, index2]
# Upsilon Calculations
#Using wofz
tz = t1-z
fullind = np.ix_(ind, index2)
zt_lq2 = -zt_lq*zt_lq
z_lq2 = -z_lq*z_lq
gamt = -gam[ind]*t1
upsi = - np.exp(z_lq2 + gamt + np.log(wofz(1j*(z_lq + nu[fullind]))))
z1 = zt_lq + nu[fullind]
indv1 = np.where(z1.real >= 0.)
indv2 = np.where(z1.real < 0.)
if indv1[0].shape > 0:
upsi[indv1] += np.exp(zt_lq2[indv1] + np.log(wofz(1j*z1[indv1])))
if indv2[0].shape > 0:
nua2 = nu[ind[indv2[0]], index2[indv2[1]]]**2
upsi[indv2] += np.exp(nua2 - gam[ind[indv2[0]], 0]*tz[indv2] + np.log(2.))\
- np.exp(zt_lq2[indv2] + np.log(wofz(-1j*z1[indv2])))
upsi[t1[:, 0] == 0., :] = 0.
#Covariance calculation
kfu[ind3t] = c0[fullind]*upsi.imag
#(2) when wd is complex
if np.any(wbool):
#Indexes of index and t related to (2)
t1 = t[ind2t]
ind = index[ind2t]
#Index transformation
d = np.asarray(np.where(wbool)[0])
indd = indD.copy()
indd[d] = np.arange(d.size)
ind = indd[ind]
#Dx1 terms
w = .5*np.sqrt(C2[d] - 4.*B[d])
alphad = alpha[d]
gam = alphad - w
gamc = alphad + w
#DxQ terms
Slq = S[d]*(lq*.25)
c0 = -Slq*(np.sqrt(np.pi)/w)
nu = gam*(lq*.5)
nuc = gamc*(lq*.5)
#1xM terms
z_lq = z/lq[0, index2]
#NxQ terms
t_lq = t1/lq[0, index2]
#NxM terms
zt_lq = z_lq - t_lq
# Upsilon Calculations
tz = t1-z
z_lq2 = -z_lq*z_lq
zt_lq2 = -zt_lq*zt_lq
gamt = -gam[ind]*t1
gamct = -gamc[ind]*t1
fullind = np.ix_(ind, index2)
upsi = np.exp(z_lq2 + gamt + np.log(wofz(1j*(z_lq + nu[fullind])).real))\
- np.exp(z_lq2 + gamct + np.log(wofz(1j*(z_lq + nuc[fullind])).real))
z1 = zt_lq + nu[fullind]
indv1 = np.where(z1 >= 0.)
indv2 = np.where(z1 < 0.)
if indv1[0].shape > 0:
upsi[indv1] -= np.exp(zt_lq2[indv1] + np.log(wofz(1j*z1[indv1]).real))
if indv2[0].shape > 0:
nua2 = nu[ind[indv2[0]], index2[indv2[1]]]**2
upsi[indv2] -= np.exp(nua2 - gam[ind[indv2[0]], 0]*tz[indv2] + np.log(2.))\
- np.exp(zt_lq2[indv2] + np.log(wofz(-1j*z1[indv2]).real))
z1 = zt_lq + nuc[fullind]
indv1 = np.where(z1 >= 0.)
indv2 = np.where(z1 < 0.)
if indv1[0].shape > 0:
upsi[indv1] += np.exp(zt_lq2[indv1] + np.log(wofz(1j*z1[indv1]).real))
if indv2[0].shape > 0:
nuac2 = nuc[ind[indv2[0]], index2[indv2[1]]]**2
upsi[indv2] += np.exp(nuac2 - gamc[ind[indv2[0]], 0]*tz[indv2] + np.log(2.))\
- np.exp(zt_lq2[indv2] + np.log(wofz(-1j*z1[indv2]).real))
upsi[t1[:, 0] == 0., :] = 0.
kfu[ind2t] = c0[np.ix_(ind, index2)]*upsi
return kfu
#Gradient of Kuu wrt lengthscale
def _gkuu_lq(self, X, index):
t = X[:, 0].reshape(X.shape[0],)
index = index.reshape(X.shape[0],)
lq = self.lengthscale.values.reshape(self.rank,)
lq2 = lq*lq
#Covariance matrix initialization
glq = | np.zeros((t.size, t.size)) | numpy.zeros |
# This module has been generated automatically from space group information
# obtained from the Computational Crystallography Toolbox
#
"""
Space groups
This module contains a list of all the 230 space groups that can occur in
a crystal. The variable space_groups contains a dictionary that maps
space group numbers and space group names to the corresponding space
group objects.
.. moduleauthor:: <NAME> <<EMAIL>>
"""
#-----------------------------------------------------------------------------
# Copyright (C) 2013 The Mosaic Development Team
#
# Distributed under the terms of the BSD License. The full license is in
# the file LICENSE.txt, distributed as part of this software.
#-----------------------------------------------------------------------------
import numpy as N
class SpaceGroup(object):
"""
Space group
All possible space group objects are created in this module. Other
modules should access these objects through the dictionary
space_groups rather than create their own space group objects.
"""
def __init__(self, number, symbol, transformations):
"""
:param number: the number assigned to the space group by
international convention
:type number: int
:param symbol: the Hermann-Mauguin space-group symbol as used
in PDB and mmCIF files
:type symbol: str
:param transformations: a list of space group transformations,
each consisting of a tuple of three
integer arrays (rot, tn, td), where
rot is the rotation matrix and tn/td
are the numerator and denominator of the
translation vector. The transformations
are defined in fractional coordinates.
:type transformations: list
"""
self.number = number
self.symbol = symbol
self.transformations = transformations
self.transposed_rotations = N.array([N.transpose(t[0])
for t in transformations])
self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2]
for t in transformations]))
def __repr__(self):
return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol))
def __len__(self):
"""
:return: the number of space group transformations
:rtype: int
"""
return len(self.transformations)
def symmetryEquivalentMillerIndices(self, hkl):
"""
:param hkl: a set of Miller indices
:type hkl: Scientific.N.array_type
:return: a tuple (miller_indices, phase_factor) of two arrays
of length equal to the number of space group
transformations. miller_indices contains the Miller
indices of each reflection equivalent by symmetry to the
reflection hkl (including hkl itself as the first element).
phase_factor contains the phase factors that must be applied
to the structure factor of reflection hkl to obtain the
structure factor of the symmetry equivalent reflection.
:rtype: tuple
"""
hkls = N.dot(self.transposed_rotations, hkl)
p = N.multiply.reduce(self.phase_factors**hkl, -1)
return hkls, p
space_groups = {}
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(1, 'P 1', transformations)
space_groups[1] = sg
space_groups['P 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(2, 'P -1', transformations)
space_groups[2] = sg
space_groups['P -1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(3, 'P 1 2 1', transformations)
space_groups[3] = sg
space_groups['P 1 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(4, 'P 1 21 1', transformations)
space_groups[4] = sg
space_groups['P 1 21 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(5, 'C 1 2 1', transformations)
space_groups[5] = sg
space_groups['C 1 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(6, 'P 1 m 1', transformations)
space_groups[6] = sg
space_groups['P 1 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(7, 'P 1 c 1', transformations)
space_groups[7] = sg
space_groups['P 1 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(8, 'C 1 m 1', transformations)
space_groups[8] = sg
space_groups['C 1 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(9, 'C 1 c 1', transformations)
space_groups[9] = sg
space_groups['C 1 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(10, 'P 1 2/m 1', transformations)
space_groups[10] = sg
space_groups['P 1 2/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(11, 'P 1 21/m 1', transformations)
space_groups[11] = sg
space_groups['P 1 21/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(12, 'C 1 2/m 1', transformations)
space_groups[12] = sg
space_groups['C 1 2/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(13, 'P 1 2/c 1', transformations)
space_groups[13] = sg
space_groups['P 1 2/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(14, 'P 1 21/c 1', transformations)
space_groups[14] = sg
space_groups['P 1 21/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(15, 'C 1 2/c 1', transformations)
space_groups[15] = sg
space_groups['C 1 2/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(16, 'P 2 2 2', transformations)
space_groups[16] = sg
space_groups['P 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(17, 'P 2 2 21', transformations)
space_groups[17] = sg
space_groups['P 2 2 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(18, 'P 21 21 2', transformations)
space_groups[18] = sg
space_groups['P 21 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(19, 'P 21 21 21', transformations)
space_groups[19] = sg
space_groups['P 21 21 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(20, 'C 2 2 21', transformations)
space_groups[20] = sg
space_groups['C 2 2 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(21, 'C 2 2 2', transformations)
space_groups[21] = sg
space_groups['C 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(22, 'F 2 2 2', transformations)
space_groups[22] = sg
space_groups['F 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(23, 'I 2 2 2', transformations)
space_groups[23] = sg
space_groups['I 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(24, 'I 21 21 21', transformations)
space_groups[24] = sg
space_groups['I 21 21 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(25, 'P m m 2', transformations)
space_groups[25] = sg
space_groups['P m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(26, 'P m c 21', transformations)
space_groups[26] = sg
space_groups['P m c 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(27, 'P c c 2', transformations)
space_groups[27] = sg
space_groups['P c c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(28, 'P m a 2', transformations)
space_groups[28] = sg
space_groups['P m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(29, 'P c a 21', transformations)
space_groups[29] = sg
space_groups['P c a 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(30, 'P n c 2', transformations)
space_groups[30] = sg
space_groups['P n c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(31, 'P m n 21', transformations)
space_groups[31] = sg
space_groups['P m n 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(32, 'P b a 2', transformations)
space_groups[32] = sg
space_groups['P b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(33, 'P n a 21', transformations)
space_groups[33] = sg
space_groups['P n a 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(34, 'P n n 2', transformations)
space_groups[34] = sg
space_groups['P n n 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(35, 'C m m 2', transformations)
space_groups[35] = sg
space_groups['C m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(36, 'C m c 21', transformations)
space_groups[36] = sg
space_groups['C m c 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(37, 'C c c 2', transformations)
space_groups[37] = sg
space_groups['C c c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(38, 'A m m 2', transformations)
space_groups[38] = sg
space_groups['A m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(39, 'A b m 2', transformations)
space_groups[39] = sg
space_groups['A b m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(40, 'A m a 2', transformations)
space_groups[40] = sg
space_groups['A m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(41, 'A b a 2', transformations)
space_groups[41] = sg
space_groups['A b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(42, 'F m m 2', transformations)
space_groups[42] = sg
space_groups['F m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(43, 'F d d 2', transformations)
space_groups[43] = sg
space_groups['F d d 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(44, 'I m m 2', transformations)
space_groups[44] = sg
space_groups['I m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(45, 'I b a 2', transformations)
space_groups[45] = sg
space_groups['I b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(46, 'I m a 2', transformations)
space_groups[46] = sg
space_groups['I m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(47, 'P m m m', transformations)
space_groups[47] = sg
space_groups['P m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(48, 'P n n n :2', transformations)
space_groups[48] = sg
space_groups['P n n n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(49, 'P c c m', transformations)
space_groups[49] = sg
space_groups['P c c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(50, 'P b a n :2', transformations)
space_groups[50] = sg
space_groups['P b a n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(51, 'P m m a', transformations)
space_groups[51] = sg
space_groups['P m m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(52, 'P n n a', transformations)
space_groups[52] = sg
space_groups['P n n a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(53, 'P m n a', transformations)
space_groups[53] = sg
space_groups['P m n a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(54, 'P c c a', transformations)
space_groups[54] = sg
space_groups['P c c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(55, 'P b a m', transformations)
space_groups[55] = sg
space_groups['P b a m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(56, 'P c c n', transformations)
space_groups[56] = sg
space_groups['P c c n'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(57, 'P b c m', transformations)
space_groups[57] = sg
space_groups['P b c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(58, 'P n n m', transformations)
space_groups[58] = sg
space_groups['P n n m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(59, 'P m m n :2', transformations)
space_groups[59] = sg
space_groups['P m m n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(60, 'P b c n', transformations)
space_groups[60] = sg
space_groups['P b c n'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(61, 'P b c a', transformations)
space_groups[61] = sg
space_groups['P b c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(62, 'P n m a', transformations)
space_groups[62] = sg
space_groups['P n m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(63, 'C m c m', transformations)
space_groups[63] = sg
space_groups['C m c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(64, 'C m c a', transformations)
space_groups[64] = sg
space_groups['C m c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(65, 'C m m m', transformations)
space_groups[65] = sg
space_groups['C m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(66, 'C c c m', transformations)
space_groups[66] = sg
space_groups['C c c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(67, 'C m m a', transformations)
space_groups[67] = sg
space_groups['C m m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(68, 'C c c a :2', transformations)
space_groups[68] = sg
space_groups['C c c a :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(69, 'F m m m', transformations)
space_groups[69] = sg
space_groups['F m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,3,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(70, 'F d d d :2', transformations)
space_groups[70] = sg
space_groups['F d d d :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(71, 'I m m m', transformations)
space_groups[71] = sg
space_groups['I m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(72, 'I b a m', transformations)
space_groups[72] = sg
space_groups['I b a m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(73, 'I b c a', transformations)
space_groups[73] = sg
space_groups['I b c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(74, 'I m m a', transformations)
space_groups[74] = sg
space_groups['I m m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(75, 'P 4', transformations)
space_groups[75] = sg
space_groups['P 4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(76, 'P 41', transformations)
space_groups[76] = sg
space_groups['P 41'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(77, 'P 42', transformations)
space_groups[77] = sg
space_groups['P 42'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(78, 'P 43', transformations)
space_groups[78] = sg
space_groups['P 43'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(79, 'I 4', transformations)
space_groups[79] = sg
space_groups['I 4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(80, 'I 41', transformations)
space_groups[80] = sg
space_groups['I 41'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(81, 'P -4', transformations)
space_groups[81] = sg
space_groups['P -4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(82, 'I -4', transformations)
space_groups[82] = sg
space_groups['I -4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(83, 'P 4/m', transformations)
space_groups[83] = sg
space_groups['P 4/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(84, 'P 42/m', transformations)
space_groups[84] = sg
space_groups['P 42/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(85, 'P 4/n :2', transformations)
space_groups[85] = sg
space_groups['P 4/n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(86, 'P 42/n :2', transformations)
space_groups[86] = sg
space_groups['P 42/n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(87, 'I 4/m', transformations)
space_groups[87] = sg
space_groups['I 4/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(88, 'I 41/a :2', transformations)
space_groups[88] = sg
space_groups['I 41/a :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(89, 'P 4 2 2', transformations)
space_groups[89] = sg
space_groups['P 4 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(90, 'P 4 21 2', transformations)
space_groups[90] = sg
space_groups['P 4 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(91, 'P 41 2 2', transformations)
space_groups[91] = sg
space_groups['P 41 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(92, 'P 41 21 2', transformations)
space_groups[92] = sg
space_groups['P 41 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(93, 'P 42 2 2', transformations)
space_groups[93] = sg
space_groups['P 42 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(94, 'P 42 21 2', transformations)
space_groups[94] = sg
space_groups['P 42 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(95, 'P 43 2 2', transformations)
space_groups[95] = sg
space_groups['P 43 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(96, 'P 43 21 2', transformations)
space_groups[96] = sg
space_groups['P 43 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(97, 'I 4 2 2', transformations)
space_groups[97] = sg
space_groups['I 4 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(98, 'I 41 2 2', transformations)
space_groups[98] = sg
space_groups['I 41 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(99, 'P 4 m m', transformations)
space_groups[99] = sg
space_groups['P 4 m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(100, 'P 4 b m', transformations)
space_groups[100] = sg
space_groups['P 4 b m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(101, 'P 42 c m', transformations)
space_groups[101] = sg
space_groups['P 42 c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(102, 'P 42 n m', transformations)
space_groups[102] = sg
space_groups['P 42 n m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(103, 'P 4 c c', transformations)
space_groups[103] = sg
space_groups['P 4 c c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(104, 'P 4 n c', transformations)
space_groups[104] = sg
space_groups['P 4 n c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(105, 'P 42 m c', transformations)
space_groups[105] = sg
space_groups['P 42 m c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(106, 'P 42 b c', transformations)
space_groups[106] = sg
space_groups['P 42 b c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(107, 'I 4 m m', transformations)
space_groups[107] = sg
space_groups['I 4 m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(108, 'I 4 c m', transformations)
space_groups[108] = sg
space_groups['I 4 c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(109, 'I 41 m d', transformations)
space_groups[109] = sg
space_groups['I 41 m d'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(110, 'I 41 c d', transformations)
space_groups[110] = sg
space_groups['I 41 c d'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(111, 'P -4 2 m', transformations)
space_groups[111] = sg
space_groups['P -4 2 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(112, 'P -4 2 c', transformations)
space_groups[112] = sg
space_groups['P -4 2 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(113, 'P -4 21 m', transformations)
space_groups[113] = sg
space_groups['P -4 21 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(114, 'P -4 21 c', transformations)
space_groups[114] = sg
space_groups['P -4 21 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(115, 'P -4 m 2', transformations)
space_groups[115] = sg
space_groups['P -4 m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(116, 'P -4 c 2', transformations)
space_groups[116] = sg
space_groups['P -4 c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(117, 'P -4 b 2', transformations)
space_groups[117] = sg
space_groups['P -4 b 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(118, 'P -4 n 2', transformations)
space_groups[118] = sg
space_groups['P -4 n 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(119, 'I -4 m 2', transformations)
space_groups[119] = sg
space_groups['I -4 m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(120, 'I -4 c 2', transformations)
space_groups[120] = sg
space_groups['I -4 c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(121, 'I -4 2 m', transformations)
space_groups[121] = sg
space_groups['I -4 2 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(122, 'I -4 2 d', transformations)
space_groups[122] = sg
space_groups['I -4 2 d'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(123, 'P 4/m m m', transformations)
space_groups[123] = sg
space_groups['P 4/m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(124, 'P 4/m c c', transformations)
space_groups[124] = sg
space_groups['P 4/m c c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(125, 'P 4/n b m :2', transformations)
space_groups[125] = sg
space_groups['P 4/n b m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(126, 'P 4/n n c :2', transformations)
space_groups[126] = sg
space_groups['P 4/n n c :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(127, 'P 4/m b m', transformations)
space_groups[127] = sg
space_groups['P 4/m b m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(128, 'P 4/m n c', transformations)
space_groups[128] = sg
space_groups['P 4/m n c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(129, 'P 4/n m m :2', transformations)
space_groups[129] = sg
space_groups['P 4/n m m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(130, 'P 4/n c c :2', transformations)
space_groups[130] = sg
space_groups['P 4/n c c :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(131, 'P 42/m m c', transformations)
space_groups[131] = sg
space_groups['P 42/m m c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(132, 'P 42/m c m', transformations)
space_groups[132] = sg
space_groups['P 42/m c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(133, 'P 42/n b c :2', transformations)
space_groups[133] = sg
space_groups['P 42/n b c :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(134, 'P 42/n n m :2', transformations)
space_groups[134] = sg
space_groups['P 42/n n m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(135, 'P 42/m b c', transformations)
space_groups[135] = sg
space_groups['P 42/m b c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(136, 'P 42/m n m', transformations)
space_groups[136] = sg
space_groups['P 42/m n m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(137, 'P 42/n m c :2', transformations)
space_groups[137] = sg
space_groups['P 42/n m c :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(138, 'P 42/n c m :2', transformations)
space_groups[138] = sg
space_groups['P 42/n c m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(139, 'I 4/m m m', transformations)
space_groups[139] = sg
space_groups['I 4/m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(140, 'I 4/m c m', transformations)
space_groups[140] = sg
space_groups['I 4/m c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(141, 'I 41/a m d :2', transformations)
space_groups[141] = sg
space_groups['I 41/a m d :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(142, 'I 41/a c d :2', transformations)
space_groups[142] = sg
space_groups['I 41/a c d :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(143, 'P 3', transformations)
space_groups[143] = sg
space_groups['P 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(144, 'P 31', transformations)
space_groups[144] = sg
space_groups['P 31'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(145, 'P 32', transformations)
space_groups[145] = sg
space_groups['P 32'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(146, 'R 3 :H', transformations)
space_groups[146] = sg
space_groups['R 3 :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(147, 'P -3', transformations)
space_groups[147] = sg
space_groups['P -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(148, 'R -3 :H', transformations)
space_groups[148] = sg
space_groups['R -3 :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(149, 'P 3 1 2', transformations)
space_groups[149] = sg
space_groups['P 3 1 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(150, 'P 3 2 1', transformations)
space_groups[150] = sg
space_groups['P 3 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(151, 'P 31 1 2', transformations)
space_groups[151] = sg
space_groups['P 31 1 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(152, 'P 31 2 1', transformations)
space_groups[152] = sg
space_groups['P 31 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(153, 'P 32 1 2', transformations)
space_groups[153] = sg
space_groups['P 32 1 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(154, 'P 32 2 1', transformations)
space_groups[154] = sg
space_groups['P 32 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(155, 'R 3 2 :H', transformations)
space_groups[155] = sg
space_groups['R 3 2 :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(156, 'P 3 m 1', transformations)
space_groups[156] = sg
space_groups['P 3 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(157, 'P 3 1 m', transformations)
space_groups[157] = sg
space_groups['P 3 1 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(158, 'P 3 c 1', transformations)
space_groups[158] = sg
space_groups['P 3 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(159, 'P 3 1 c', transformations)
space_groups[159] = sg
space_groups['P 3 1 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(160, 'R 3 m :H', transformations)
space_groups[160] = sg
space_groups['R 3 m :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(161, 'R 3 c :H', transformations)
space_groups[161] = sg
space_groups['R 3 c :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(162, 'P -3 1 m', transformations)
space_groups[162] = sg
space_groups['P -3 1 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(163, 'P -3 1 c', transformations)
space_groups[163] = sg
space_groups['P -3 1 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(164, 'P -3 m 1', transformations)
space_groups[164] = sg
space_groups['P -3 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(165, 'P -3 c 1', transformations)
space_groups[165] = sg
space_groups['P -3 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(166, 'R -3 m :H', transformations)
space_groups[166] = sg
space_groups['R -3 m :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,-1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,-1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,-1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(167, 'R -3 c :H', transformations)
space_groups[167] = sg
space_groups['R -3 c :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(168, 'P 6', transformations)
space_groups[168] = sg
space_groups['P 6'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(169, 'P 61', transformations)
space_groups[169] = sg
space_groups['P 61'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(170, 'P 65', transformations)
space_groups[170] = sg
space_groups['P 65'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(171, 'P 62', transformations)
space_groups[171] = sg
space_groups['P 62'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(172, 'P 64', transformations)
space_groups[172] = sg
space_groups['P 64'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(173, 'P 63', transformations)
space_groups[173] = sg
space_groups['P 63'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(174, 'P -6', transformations)
space_groups[174] = sg
space_groups['P -6'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(175, 'P 6/m', transformations)
space_groups[175] = sg
space_groups['P 6/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(176, 'P 63/m', transformations)
space_groups[176] = sg
space_groups['P 63/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(177, 'P 6 2 2', transformations)
space_groups[177] = sg
space_groups['P 6 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(178, 'P 61 2 2', transformations)
space_groups[178] = sg
space_groups['P 61 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(179, 'P 65 2 2', transformations)
space_groups[179] = sg
space_groups['P 65 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(180, 'P 62 2 2', transformations)
space_groups[180] = sg
space_groups['P 62 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(181, 'P 64 2 2', transformations)
space_groups[181] = sg
space_groups['P 64 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(182, 'P 63 2 2', transformations)
space_groups[182] = sg
space_groups['P 63 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(183, 'P 6 m m', transformations)
space_groups[183] = sg
space_groups['P 6 m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(184, 'P 6 c c', transformations)
space_groups[184] = sg
space_groups['P 6 c c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(185, 'P 63 c m', transformations)
space_groups[185] = sg
space_groups['P 63 c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(186, 'P 63 m c', transformations)
space_groups[186] = sg
space_groups['P 63 m c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(187, 'P -6 m 2', transformations)
space_groups[187] = sg
space_groups['P -6 m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(188, 'P -6 c 2', transformations)
space_groups[188] = sg
space_groups['P -6 c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(189, 'P -6 2 m', transformations)
space_groups[189] = sg
space_groups['P -6 2 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(190, 'P -6 2 c', transformations)
space_groups[190] = sg
space_groups['P -6 2 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(191, 'P 6/m m m', transformations)
space_groups[191] = sg
space_groups['P 6/m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(192, 'P 6/m c c', transformations)
space_groups[192] = sg
space_groups['P 6/m c c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(193, 'P 63/m c m', transformations)
space_groups[193] = sg
space_groups['P 63/m c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(194, 'P 63/m m c', transformations)
space_groups[194] = sg
space_groups['P 63/m m c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(195, 'P 2 3', transformations)
space_groups[195] = sg
space_groups['P 2 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(196, 'F 2 3', transformations)
space_groups[196] = sg
space_groups['F 2 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(197, 'I 2 3', transformations)
space_groups[197] = sg
space_groups['I 2 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(198, 'P 21 3', transformations)
space_groups[198] = sg
space_groups['P 21 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(199, 'I 21 3', transformations)
space_groups[199] = sg
space_groups['I 21 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(200, 'P m -3', transformations)
space_groups[200] = sg
space_groups['P m -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(201, 'P n -3 :2', transformations)
space_groups[201] = sg
space_groups['P n -3 :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(202, 'F m -3', transformations)
space_groups[202] = sg
space_groups['F m -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,3,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,3,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,3,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(203, 'F d -3 :2', transformations)
space_groups[203] = sg
space_groups['F d -3 :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(204, 'I m -3', transformations)
space_groups[204] = sg
space_groups['I m -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(205, 'P a -3', transformations)
space_groups[205] = sg
space_groups['P a -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(206, 'I a -3', transformations)
space_groups[206] = sg
space_groups['I a -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(207, 'P 4 3 2', transformations)
space_groups[207] = sg
space_groups['P 4 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(208, 'P 42 3 2', transformations)
space_groups[208] = sg
space_groups['P 42 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(209, 'F 4 3 2', transformations)
space_groups[209] = sg
space_groups['F 4 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(210, 'F 41 3 2', transformations)
space_groups[210] = sg
space_groups['F 41 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(211, 'I 4 3 2', transformations)
space_groups[211] = sg
space_groups['I 4 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(212, 'P 43 3 2', transformations)
space_groups[212] = sg
space_groups['P 43 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(213, 'P 41 3 2', transformations)
space_groups[213] = sg
space_groups['P 41 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(214, 'I 41 3 2', transformations)
space_groups[214] = sg
space_groups['I 41 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(215, 'P -4 3 m', transformations)
space_groups[215] = sg
space_groups['P -4 3 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(216, 'F -4 3 m', transformations)
space_groups[216] = sg
space_groups['F -4 3 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(217, 'I -4 3 m', transformations)
space_groups[217] = sg
space_groups['I -4 3 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(218, 'P -4 3 n', transformations)
space_groups[218] = sg
space_groups['P -4 3 n'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(219, 'F -4 3 c', transformations)
space_groups[219] = sg
space_groups['F -4 3 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(220, 'I -4 3 d', transformations)
space_groups[220] = sg
space_groups['I -4 3 d'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(221, 'P m -3 m', transformations)
space_groups[221] = sg
space_groups['P m -3 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(222, 'P n -3 n :2', transformations)
space_groups[222] = sg
space_groups['P n -3 n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(223, 'P m -3 n', transformations)
space_groups[223] = sg
space_groups['P m -3 n'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(224, 'P n -3 m :2', transformations)
space_groups[224] = sg
space_groups['P n -3 m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = | N.array([2,2,1]) | numpy.array |
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
from decorator_helper import prog_scope
import paddle.fluid as fluid
import numpy as np
import six
class TestMathOpPatchesVarBase(unittest.TestCase):
def setUp(self):
self.shape = [10, 10]
self.dtype = np.float32
def test_add(self):
a_np = np.random.random(self.shape).astype(self.dtype)
b_np = np.random.random(self.shape).astype(self.dtype)
with fluid.dygraph.guard():
a = fluid.dygraph.to_variable(a_np)
b = fluid.dygraph.to_variable(b_np)
res = a + b
self.assertTrue(np.array_equal(res.numpy(), a_np + b_np))
def test_sub(self):
a_np = np.random.random(self.shape).astype(self.dtype)
b_np = np.random.random(self.shape).astype(self.dtype)
with fluid.dygraph.guard():
a = fluid.dygraph.to_variable(a_np)
b = fluid.dygraph.to_variable(b_np)
res = a - b
self.assertTrue(np.array_equal(res.numpy(), a_np - b_np))
def test_mul(self):
a_np = np.random.random(self.shape).astype(self.dtype)
b_np = np.random.random(self.shape).astype(self.dtype)
with fluid.dygraph.guard():
a = fluid.dygraph.to_variable(a_np)
b = fluid.dygraph.to_variable(b_np)
res = a * b
self.assertTrue(np.array_equal(res.numpy(), a_np * b_np))
def test_div(self):
a_np = np.random.random(self.shape).astype(self.dtype)
b_np = np.random.random(self.shape).astype(self.dtype)
with fluid.dygraph.guard():
a = fluid.dygraph.to_variable(a_np)
b = fluid.dygraph.to_variable(b_np)
res = a / b
self.assertTrue(np.array_equal(res.numpy(), a_np / b_np))
def test_add_scalar(self):
a_np = np.random.random(self.shape).astype(self.dtype)
with fluid.dygraph.guard():
a = fluid.dygraph.to_variable(a_np)
b = 0.1
res = a + b
self.assertTrue(np.array_equal(res.numpy(), a_np + b))
def test_add_scalar_reverse(self):
a_np = np.random.random(self.shape).astype(self.dtype)
with fluid.dygraph.guard():
a = fluid.dygraph.to_variable(a_np)
b = 0.1
res = b + a
self.assertTrue(np.array_equal(res.numpy(), b + a_np))
def test_sub_scalar(self):
a_np = np.random.random(self.shape).astype(self.dtype)
with fluid.dygraph.guard():
a = fluid.dygraph.to_variable(a_np)
b = 0.1
res = a - b
self.assertTrue(np.array_equal(res.numpy(), a_np - b))
def test_sub_scalar_reverse(self):
a_np = np.random.random(self.shape).astype(self.dtype)
with fluid.dygraph.guard():
a = fluid.dygraph.to_variable(a_np)
b = 0.1
res = b - a
self.assertTrue(np.array_equal(res.numpy(), b - a_np))
def test_mul_scalar(self):
a_np = np.random.random(self.shape).astype(self.dtype)
with fluid.dygraph.guard():
a = fluid.dygraph.to_variable(a_np)
b = 0.1
res = a * b
self.assertTrue(np.array_equal(res.numpy(), a_np * b))
# div_scalar, not equal
def test_div_scalar(self):
a_np = np.random.random(self.shape).astype(self.dtype)
with fluid.dygraph.guard():
a = fluid.dygraph.to_variable(a_np)
b = 0.1
res = a / b
self.assertTrue(np.allclose(res.numpy(), a_np / b))
# pow of float type, not equal
def test_pow(self):
a_np = np.random.random(self.shape).astype(self.dtype)
b_np = np.random.random(self.shape).astype(self.dtype)
with fluid.dygraph.guard():
a = fluid.dygraph.to_variable(a_np)
b = fluid.dygraph.to_variable(b_np)
res = a**b
self.assertTrue(np.allclose(res.numpy(), a_np**b_np))
def test_floor_div(self):
a_np = np.random.randint(1, 100, size=self.shape)
b_np = np.random.randint(1, 100, size=self.shape)
with fluid.dygraph.guard():
a = fluid.dygraph.to_variable(a_np)
b = fluid.dygraph.to_variable(b_np)
res = a // b
self.assertTrue(np.array_equal(res.numpy(), a_np // b_np))
def test_mod(self):
a_np = np.random.randint(1, 100, size=self.shape)
b_np = np.random.randint(1, 100, size=self.shape)
with fluid.dygraph.guard():
a = fluid.dygraph.to_variable(a_np)
b = fluid.dygraph.to_variable(b_np)
res = a % b
self.assertTrue(np.array_equal(res.numpy(), a_np % b_np))
# for logical compare
def test_equal(self):
a_np = np.asarray([1, 2, 3, 4, 5])
b_np = np.asarray([1, 2, 3, 4, 5])
c_np = np.asarray([1, 2, 2, 4, 5])
with fluid.dygraph.guard():
a = fluid.dygraph.to_variable(a_np)
b = fluid.dygraph.to_variable(b_np)
c = fluid.dygraph.to_variable(c_np)
res1 = (a == b)
res2 = (a == c)
self.assertTrue(np.array_equal(res1.numpy(), a_np == b_np))
self.assertTrue(np.array_equal(res2.numpy(), a_np == c_np))
def test_not_equal(self):
a_np = np.asarray([1, 2, 3, 4, 5])
b_np = np.asarray([1, 2, 3, 4, 5])
c_np = np.asarray([1, 2, 2, 4, 5])
with fluid.dygraph.guard():
a = fluid.dygraph.to_variable(a_np)
b = fluid.dygraph.to_variable(b_np)
c = fluid.dygraph.to_variable(c_np)
res1 = (a != b)
res2 = (a != c)
self.assertTrue(np.array_equal(res1.numpy(), a_np != b_np))
self.assertTrue(np.array_equal(res2.numpy(), a_np != c_np))
def test_less_than(self):
a_np = np.random.random(self.shape).astype(self.dtype)
b_np = np.random.random(self.shape).astype(self.dtype)
with fluid.dygraph.guard():
a = fluid.dygraph.to_variable(a_np)
b = fluid.dygraph.to_variable(b_np)
res = (a < b)
self.assertTrue(np.array_equal(res.numpy(), a_np < b_np))
def test_less_equal(self):
a_np = np.random.random(self.shape).astype(self.dtype)
b_np = np.random.random(self.shape).astype(self.dtype)
with fluid.dygraph.guard():
a = fluid.dygraph.to_variable(a_np)
b = fluid.dygraph.to_variable(b_np)
res = (a <= b)
self.assertTrue(np.array_equal(res.numpy(), a_np <= b_np))
def test_greater_than(self):
a_np = np.random.random(self.shape).astype(self.dtype)
b_np = np.random.random(self.shape).astype(self.dtype)
with fluid.dygraph.guard():
a = fluid.dygraph.to_variable(a_np)
b = fluid.dygraph.to_variable(b_np)
res = (a > b)
self.assertTrue(np.array_equal(res.numpy(), a_np > b_np))
def test_greater_equal(self):
a_np = np.random.random(self.shape).astype(self.dtype)
b_np = | np.random.random(self.shape) | numpy.random.random |
# -*- coding: utf-8 -*-
# Copyright 2017, IBM.
#
# This source code is licensed under the Apache License, Version 2.0 found in
# the LICENSE.txt file in the root directory of this source tree.
# pylint: disable=invalid-name,missing-docstring
from test.python.common import QiskitTestCase
import json
import unittest
import numpy as np
from numpy.linalg import norm
import qiskit
import qiskit._compiler
from qiskit import ClassicalRegister
from qiskit import QuantumCircuit
from qiskit import QuantumJob
from qiskit import QuantumRegister
from qiskit.backends.local.qasm_simulator_cpp import (QasmSimulatorCpp,
cx_error_matrix,
x90_error_matrix)
class TestLocalQasmSimulatorCpp(QiskitTestCase):
"""
Test job_processor module.
"""
def setUp(self):
self.seed = 88
self.qasm_filename = self._get_resource_path('qasm/example.qasm')
with open(self.qasm_filename, 'r') as qasm_file:
self.qasm_text = qasm_file.read()
self.qasm_ast = qiskit.qasm.Qasm(data=self.qasm_text).parse()
self.qasm_be = qiskit.unroll.CircuitBackend(['u1', 'u2', 'u3', 'id', 'cx'])
self.qasm_circ = qiskit.unroll.Unroller(self.qasm_ast, self.qasm_be).execute()
qr = QuantumRegister(2, 'q')
cr = ClassicalRegister(2, 'c')
qc = QuantumCircuit(qr, cr)
qc.h(qr[0])
qc.measure(qr[0], cr[0])
self.qc = qc
# create qobj
compiled_circuit1 = qiskit._compiler.compile_circuit(self.qc, format='json')
compiled_circuit2 = qiskit._compiler.compile_circuit(self.qasm_circ, format='json')
self.qobj = {'id': 'test_qobj',
'config': {
'max_credits': 3,
'shots': 2000,
'backend_name': 'local_qasm_simulator_cpp',
'seed': 1111
},
'circuits': [
{
'name': 'test_circuit1',
'compiled_circuit': compiled_circuit1,
'basis_gates': 'u1,u2,u3,cx,id',
'layout': None,
},
{
'name': 'test_circuit2',
'compiled_circuit': compiled_circuit2,
'basis_gates': 'u1,u2,u3,cx,id',
'layout': None,
}
]}
# Simulator backend
try:
self.backend = QasmSimulatorCpp()
except FileNotFoundError as fnferr:
raise unittest.SkipTest(
'cannot find {} in path'.format(fnferr))
self.q_job = QuantumJob(self.qobj,
backend=self.backend,
preformatted=True)
def test_x90_coherent_error_matrix(self):
X90 = np.array([[1, -1j], [-1j, 1]]) / np.sqrt(2)
U = x90_error_matrix(0., 0.).dot(X90)
target = X90
self.assertAlmostEqual(norm(U - target), 0.0, places=10,
msg="identity error matrix")
U = x90_error_matrix(np.pi / 2., 0.).dot(X90)
target = -1j * np.array([[0, 1], [1, 0]])
self.assertAlmostEqual(norm(U - target), 0.0, places=10)
U = x90_error_matrix(0., np.pi / 2.).dot(X90)
target = np.array([[1., -1], [1, 1.]]) / np.sqrt(2.)
self.assertAlmostEqual(norm(U - target), 0.0, places=10)
U = x90_error_matrix(np.pi / 2, np.pi / 2.).dot(X90)
target = np.array([[0., -1], [1, 0.]])
self.assertAlmostEqual(norm(U - target), 0.0, places=10)
U = x90_error_matrix(0.02, -0.03)
self.assertAlmostEqual(norm(U.dot(U.conj().T) - np.eye(2)), 0.0,
places=10, msg="Test error matrix is unitary")
def test_cx_coherent_error_matrix(self):
CX = np.array([[1, 0, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0]])
U = cx_error_matrix(0., 0.).dot(CX)
target = CX
self.assertAlmostEqual(norm(U - target), 0.0, places=10,
msg="identity error matrix")
U = cx_error_matrix(np.pi / 2., 0.).dot(CX)
target = np.array([[1, 0, 1j, 0],
[0, -1j, 0, 1],
[1j, 0, 1, 0],
[0, 1, 0, -1j]]) / np.sqrt(2)
self.assertAlmostEqual(norm(U - target), 0.0, places=10)
U = cx_error_matrix(0.03, -0.04)
self.assertAlmostEqual(norm(U.dot(U.conj().T) - np.eye(4)), 0.0,
places=10, msg="Test error matrix is unitary")
def test_run_qobj(self):
result = self.backend.run(self.q_job).result()
shots = self.qobj['config']['shots']
threshold = 0.04 * shots
counts = result.get_counts('test_circuit2')
target = {'100 100': shots / 8, '011 011': shots / 8,
'101 101': shots / 8, '111 111': shots / 8,
'000 000': shots / 8, '010 010': shots / 8,
'110 110': shots / 8, '001 001': shots / 8}
self.assertDictAlmostEqual(counts, target, threshold)
def test_qobj_measure_opt(self):
filename = self._get_resource_path('qobj/cpp_measure_opt.json')
with open(filename, 'r') as file:
q_job = QuantumJob(json.load(file),
backend=self.backend,
preformatted=True)
result = self.backend.run(q_job).result()
shots = q_job.qobj['config']['shots']
expected_data = {
'measure (opt)': {
'deterministic': True,
'counts': {'00': shots},
'statevector': np.array([1, 0, 0, 0])},
'x0 measure (opt)': {
'deterministic': True,
'counts': {'01': shots},
'statevector': | np.array([0, 1, 0, 0]) | numpy.array |
# This module has been generated automatically from space group information
# obtained from the Computational Crystallography Toolbox
#
"""
Space groups
This module contains a list of all the 230 space groups that can occur in
a crystal. The variable space_groups contains a dictionary that maps
space group numbers and space group names to the corresponding space
group objects.
.. moduleauthor:: <NAME> <<EMAIL>>
"""
#-----------------------------------------------------------------------------
# Copyright (C) 2013 The Mosaic Development Team
#
# Distributed under the terms of the BSD License. The full license is in
# the file LICENSE.txt, distributed as part of this software.
#-----------------------------------------------------------------------------
import numpy as N
class SpaceGroup(object):
"""
Space group
All possible space group objects are created in this module. Other
modules should access these objects through the dictionary
space_groups rather than create their own space group objects.
"""
def __init__(self, number, symbol, transformations):
"""
:param number: the number assigned to the space group by
international convention
:type number: int
:param symbol: the Hermann-Mauguin space-group symbol as used
in PDB and mmCIF files
:type symbol: str
:param transformations: a list of space group transformations,
each consisting of a tuple of three
integer arrays (rot, tn, td), where
rot is the rotation matrix and tn/td
are the numerator and denominator of the
translation vector. The transformations
are defined in fractional coordinates.
:type transformations: list
"""
self.number = number
self.symbol = symbol
self.transformations = transformations
self.transposed_rotations = N.array([N.transpose(t[0])
for t in transformations])
self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2]
for t in transformations]))
def __repr__(self):
return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol))
def __len__(self):
"""
:return: the number of space group transformations
:rtype: int
"""
return len(self.transformations)
def symmetryEquivalentMillerIndices(self, hkl):
"""
:param hkl: a set of Miller indices
:type hkl: Scientific.N.array_type
:return: a tuple (miller_indices, phase_factor) of two arrays
of length equal to the number of space group
transformations. miller_indices contains the Miller
indices of each reflection equivalent by symmetry to the
reflection hkl (including hkl itself as the first element).
phase_factor contains the phase factors that must be applied
to the structure factor of reflection hkl to obtain the
structure factor of the symmetry equivalent reflection.
:rtype: tuple
"""
hkls = N.dot(self.transposed_rotations, hkl)
p = N.multiply.reduce(self.phase_factors**hkl, -1)
return hkls, p
space_groups = {}
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(1, 'P 1', transformations)
space_groups[1] = sg
space_groups['P 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(2, 'P -1', transformations)
space_groups[2] = sg
space_groups['P -1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(3, 'P 1 2 1', transformations)
space_groups[3] = sg
space_groups['P 1 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(4, 'P 1 21 1', transformations)
space_groups[4] = sg
space_groups['P 1 21 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(5, 'C 1 2 1', transformations)
space_groups[5] = sg
space_groups['C 1 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(6, 'P 1 m 1', transformations)
space_groups[6] = sg
space_groups['P 1 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(7, 'P 1 c 1', transformations)
space_groups[7] = sg
space_groups['P 1 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(8, 'C 1 m 1', transformations)
space_groups[8] = sg
space_groups['C 1 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(9, 'C 1 c 1', transformations)
space_groups[9] = sg
space_groups['C 1 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(10, 'P 1 2/m 1', transformations)
space_groups[10] = sg
space_groups['P 1 2/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(11, 'P 1 21/m 1', transformations)
space_groups[11] = sg
space_groups['P 1 21/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(12, 'C 1 2/m 1', transformations)
space_groups[12] = sg
space_groups['C 1 2/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(13, 'P 1 2/c 1', transformations)
space_groups[13] = sg
space_groups['P 1 2/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(14, 'P 1 21/c 1', transformations)
space_groups[14] = sg
space_groups['P 1 21/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(15, 'C 1 2/c 1', transformations)
space_groups[15] = sg
space_groups['C 1 2/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(16, 'P 2 2 2', transformations)
space_groups[16] = sg
space_groups['P 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(17, 'P 2 2 21', transformations)
space_groups[17] = sg
space_groups['P 2 2 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(18, 'P 21 21 2', transformations)
space_groups[18] = sg
space_groups['P 21 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(19, 'P 21 21 21', transformations)
space_groups[19] = sg
space_groups['P 21 21 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(20, 'C 2 2 21', transformations)
space_groups[20] = sg
space_groups['C 2 2 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(21, 'C 2 2 2', transformations)
space_groups[21] = sg
space_groups['C 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(22, 'F 2 2 2', transformations)
space_groups[22] = sg
space_groups['F 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(23, 'I 2 2 2', transformations)
space_groups[23] = sg
space_groups['I 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(24, 'I 21 21 21', transformations)
space_groups[24] = sg
space_groups['I 21 21 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(25, 'P m m 2', transformations)
space_groups[25] = sg
space_groups['P m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(26, 'P m c 21', transformations)
space_groups[26] = sg
space_groups['P m c 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(27, 'P c c 2', transformations)
space_groups[27] = sg
space_groups['P c c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(28, 'P m a 2', transformations)
space_groups[28] = sg
space_groups['P m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(29, 'P c a 21', transformations)
space_groups[29] = sg
space_groups['P c a 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(30, 'P n c 2', transformations)
space_groups[30] = sg
space_groups['P n c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(31, 'P m n 21', transformations)
space_groups[31] = sg
space_groups['P m n 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(32, 'P b a 2', transformations)
space_groups[32] = sg
space_groups['P b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(33, 'P n a 21', transformations)
space_groups[33] = sg
space_groups['P n a 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(34, 'P n n 2', transformations)
space_groups[34] = sg
space_groups['P n n 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(35, 'C m m 2', transformations)
space_groups[35] = sg
space_groups['C m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(36, 'C m c 21', transformations)
space_groups[36] = sg
space_groups['C m c 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(37, 'C c c 2', transformations)
space_groups[37] = sg
space_groups['C c c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(38, 'A m m 2', transformations)
space_groups[38] = sg
space_groups['A m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(39, 'A b m 2', transformations)
space_groups[39] = sg
space_groups['A b m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(40, 'A m a 2', transformations)
space_groups[40] = sg
space_groups['A m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(41, 'A b a 2', transformations)
space_groups[41] = sg
space_groups['A b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(42, 'F m m 2', transformations)
space_groups[42] = sg
space_groups['F m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(43, 'F d d 2', transformations)
space_groups[43] = sg
space_groups['F d d 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(44, 'I m m 2', transformations)
space_groups[44] = sg
space_groups['I m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(45, 'I b a 2', transformations)
space_groups[45] = sg
space_groups['I b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(46, 'I m a 2', transformations)
space_groups[46] = sg
space_groups['I m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(47, 'P m m m', transformations)
space_groups[47] = sg
space_groups['P m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(48, 'P n n n :2', transformations)
space_groups[48] = sg
space_groups['P n n n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(49, 'P c c m', transformations)
space_groups[49] = sg
space_groups['P c c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(50, 'P b a n :2', transformations)
space_groups[50] = sg
space_groups['P b a n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(51, 'P m m a', transformations)
space_groups[51] = sg
space_groups['P m m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(52, 'P n n a', transformations)
space_groups[52] = sg
space_groups['P n n a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(53, 'P m n a', transformations)
space_groups[53] = sg
space_groups['P m n a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(54, 'P c c a', transformations)
space_groups[54] = sg
space_groups['P c c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(55, 'P b a m', transformations)
space_groups[55] = sg
space_groups['P b a m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(56, 'P c c n', transformations)
space_groups[56] = sg
space_groups['P c c n'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(57, 'P b c m', transformations)
space_groups[57] = sg
space_groups['P b c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(58, 'P n n m', transformations)
space_groups[58] = sg
space_groups['P n n m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(59, 'P m m n :2', transformations)
space_groups[59] = sg
space_groups['P m m n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(60, 'P b c n', transformations)
space_groups[60] = sg
space_groups['P b c n'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(61, 'P b c a', transformations)
space_groups[61] = sg
space_groups['P b c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(62, 'P n m a', transformations)
space_groups[62] = sg
space_groups['P n m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(63, 'C m c m', transformations)
space_groups[63] = sg
space_groups['C m c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(64, 'C m c a', transformations)
space_groups[64] = sg
space_groups['C m c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(65, 'C m m m', transformations)
space_groups[65] = sg
space_groups['C m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(66, 'C c c m', transformations)
space_groups[66] = sg
space_groups['C c c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(67, 'C m m a', transformations)
space_groups[67] = sg
space_groups['C m m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(68, 'C c c a :2', transformations)
space_groups[68] = sg
space_groups['C c c a :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(69, 'F m m m', transformations)
space_groups[69] = sg
space_groups['F m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,3,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(70, 'F d d d :2', transformations)
space_groups[70] = sg
space_groups['F d d d :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(71, 'I m m m', transformations)
space_groups[71] = sg
space_groups['I m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(72, 'I b a m', transformations)
space_groups[72] = sg
space_groups['I b a m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(73, 'I b c a', transformations)
space_groups[73] = sg
space_groups['I b c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(74, 'I m m a', transformations)
space_groups[74] = sg
space_groups['I m m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(75, 'P 4', transformations)
space_groups[75] = sg
space_groups['P 4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(76, 'P 41', transformations)
space_groups[76] = sg
space_groups['P 41'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(77, 'P 42', transformations)
space_groups[77] = sg
space_groups['P 42'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(78, 'P 43', transformations)
space_groups[78] = sg
space_groups['P 43'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(79, 'I 4', transformations)
space_groups[79] = sg
space_groups['I 4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(80, 'I 41', transformations)
space_groups[80] = sg
space_groups['I 41'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(81, 'P -4', transformations)
space_groups[81] = sg
space_groups['P -4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(82, 'I -4', transformations)
space_groups[82] = sg
space_groups['I -4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(83, 'P 4/m', transformations)
space_groups[83] = sg
space_groups['P 4/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(84, 'P 42/m', transformations)
space_groups[84] = sg
space_groups['P 42/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(85, 'P 4/n :2', transformations)
space_groups[85] = sg
space_groups['P 4/n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(86, 'P 42/n :2', transformations)
space_groups[86] = sg
space_groups['P 42/n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(87, 'I 4/m', transformations)
space_groups[87] = sg
space_groups['I 4/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(88, 'I 41/a :2', transformations)
space_groups[88] = sg
space_groups['I 41/a :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(89, 'P 4 2 2', transformations)
space_groups[89] = sg
space_groups['P 4 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(90, 'P 4 21 2', transformations)
space_groups[90] = sg
space_groups['P 4 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(91, 'P 41 2 2', transformations)
space_groups[91] = sg
space_groups['P 41 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(92, 'P 41 21 2', transformations)
space_groups[92] = sg
space_groups['P 41 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(93, 'P 42 2 2', transformations)
space_groups[93] = sg
space_groups['P 42 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(94, 'P 42 21 2', transformations)
space_groups[94] = sg
space_groups['P 42 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(95, 'P 43 2 2', transformations)
space_groups[95] = sg
space_groups['P 43 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(96, 'P 43 21 2', transformations)
space_groups[96] = sg
space_groups['P 43 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(97, 'I 4 2 2', transformations)
space_groups[97] = sg
space_groups['I 4 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(98, 'I 41 2 2', transformations)
space_groups[98] = sg
space_groups['I 41 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(99, 'P 4 m m', transformations)
space_groups[99] = sg
space_groups['P 4 m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(100, 'P 4 b m', transformations)
space_groups[100] = sg
space_groups['P 4 b m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(101, 'P 42 c m', transformations)
space_groups[101] = sg
space_groups['P 42 c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(102, 'P 42 n m', transformations)
space_groups[102] = sg
space_groups['P 42 n m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(103, 'P 4 c c', transformations)
space_groups[103] = sg
space_groups['P 4 c c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(104, 'P 4 n c', transformations)
space_groups[104] = sg
space_groups['P 4 n c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(105, 'P 42 m c', transformations)
space_groups[105] = sg
space_groups['P 42 m c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(106, 'P 42 b c', transformations)
space_groups[106] = sg
space_groups['P 42 b c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(107, 'I 4 m m', transformations)
space_groups[107] = sg
space_groups['I 4 m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(108, 'I 4 c m', transformations)
space_groups[108] = sg
space_groups['I 4 c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(109, 'I 41 m d', transformations)
space_groups[109] = sg
space_groups['I 41 m d'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(110, 'I 41 c d', transformations)
space_groups[110] = sg
space_groups['I 41 c d'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(111, 'P -4 2 m', transformations)
space_groups[111] = sg
space_groups['P -4 2 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(112, 'P -4 2 c', transformations)
space_groups[112] = sg
space_groups['P -4 2 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(113, 'P -4 21 m', transformations)
space_groups[113] = sg
space_groups['P -4 21 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(114, 'P -4 21 c', transformations)
space_groups[114] = sg
space_groups['P -4 21 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(115, 'P -4 m 2', transformations)
space_groups[115] = sg
space_groups['P -4 m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(116, 'P -4 c 2', transformations)
space_groups[116] = sg
space_groups['P -4 c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(117, 'P -4 b 2', transformations)
space_groups[117] = sg
space_groups['P -4 b 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(118, 'P -4 n 2', transformations)
space_groups[118] = sg
space_groups['P -4 n 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(119, 'I -4 m 2', transformations)
space_groups[119] = sg
space_groups['I -4 m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(120, 'I -4 c 2', transformations)
space_groups[120] = sg
space_groups['I -4 c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(121, 'I -4 2 m', transformations)
space_groups[121] = sg
space_groups['I -4 2 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(122, 'I -4 2 d', transformations)
space_groups[122] = sg
space_groups['I -4 2 d'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(123, 'P 4/m m m', transformations)
space_groups[123] = sg
space_groups['P 4/m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(124, 'P 4/m c c', transformations)
space_groups[124] = sg
space_groups['P 4/m c c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(125, 'P 4/n b m :2', transformations)
space_groups[125] = sg
space_groups['P 4/n b m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(126, 'P 4/n n c :2', transformations)
space_groups[126] = sg
space_groups['P 4/n n c :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(127, 'P 4/m b m', transformations)
space_groups[127] = sg
space_groups['P 4/m b m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(128, 'P 4/m n c', transformations)
space_groups[128] = sg
space_groups['P 4/m n c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(129, 'P 4/n m m :2', transformations)
space_groups[129] = sg
space_groups['P 4/n m m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(130, 'P 4/n c c :2', transformations)
space_groups[130] = sg
space_groups['P 4/n c c :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(131, 'P 42/m m c', transformations)
space_groups[131] = sg
space_groups['P 42/m m c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(132, 'P 42/m c m', transformations)
space_groups[132] = sg
space_groups['P 42/m c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(133, 'P 42/n b c :2', transformations)
space_groups[133] = sg
space_groups['P 42/n b c :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(134, 'P 42/n n m :2', transformations)
space_groups[134] = sg
space_groups['P 42/n n m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(135, 'P 42/m b c', transformations)
space_groups[135] = sg
space_groups['P 42/m b c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(136, 'P 42/m n m', transformations)
space_groups[136] = sg
space_groups['P 42/m n m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(137, 'P 42/n m c :2', transformations)
space_groups[137] = sg
space_groups['P 42/n m c :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(138, 'P 42/n c m :2', transformations)
space_groups[138] = sg
space_groups['P 42/n c m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(139, 'I 4/m m m', transformations)
space_groups[139] = sg
space_groups['I 4/m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(140, 'I 4/m c m', transformations)
space_groups[140] = sg
space_groups['I 4/m c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(141, 'I 41/a m d :2', transformations)
space_groups[141] = sg
space_groups['I 41/a m d :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(142, 'I 41/a c d :2', transformations)
space_groups[142] = sg
space_groups['I 41/a c d :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(143, 'P 3', transformations)
space_groups[143] = sg
space_groups['P 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(144, 'P 31', transformations)
space_groups[144] = sg
space_groups['P 31'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(145, 'P 32', transformations)
space_groups[145] = sg
space_groups['P 32'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(146, 'R 3 :H', transformations)
space_groups[146] = sg
space_groups['R 3 :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(147, 'P -3', transformations)
space_groups[147] = sg
space_groups['P -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(148, 'R -3 :H', transformations)
space_groups[148] = sg
space_groups['R -3 :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(149, 'P 3 1 2', transformations)
space_groups[149] = sg
space_groups['P 3 1 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(150, 'P 3 2 1', transformations)
space_groups[150] = sg
space_groups['P 3 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(151, 'P 31 1 2', transformations)
space_groups[151] = sg
space_groups['P 31 1 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(152, 'P 31 2 1', transformations)
space_groups[152] = sg
space_groups['P 31 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(153, 'P 32 1 2', transformations)
space_groups[153] = sg
space_groups['P 32 1 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(154, 'P 32 2 1', transformations)
space_groups[154] = sg
space_groups['P 32 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(155, 'R 3 2 :H', transformations)
space_groups[155] = sg
space_groups['R 3 2 :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(156, 'P 3 m 1', transformations)
space_groups[156] = sg
space_groups['P 3 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(157, 'P 3 1 m', transformations)
space_groups[157] = sg
space_groups['P 3 1 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(158, 'P 3 c 1', transformations)
space_groups[158] = sg
space_groups['P 3 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(159, 'P 3 1 c', transformations)
space_groups[159] = sg
space_groups['P 3 1 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(160, 'R 3 m :H', transformations)
space_groups[160] = sg
space_groups['R 3 m :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(161, 'R 3 c :H', transformations)
space_groups[161] = sg
space_groups['R 3 c :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(162, 'P -3 1 m', transformations)
space_groups[162] = sg
space_groups['P -3 1 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(163, 'P -3 1 c', transformations)
space_groups[163] = sg
space_groups['P -3 1 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(164, 'P -3 m 1', transformations)
space_groups[164] = sg
space_groups['P -3 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(165, 'P -3 c 1', transformations)
space_groups[165] = sg
space_groups['P -3 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(166, 'R -3 m :H', transformations)
space_groups[166] = sg
space_groups['R -3 m :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,-1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,-1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,-1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(167, 'R -3 c :H', transformations)
space_groups[167] = sg
space_groups['R -3 c :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(168, 'P 6', transformations)
space_groups[168] = sg
space_groups['P 6'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(169, 'P 61', transformations)
space_groups[169] = sg
space_groups['P 61'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(170, 'P 65', transformations)
space_groups[170] = sg
space_groups['P 65'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(171, 'P 62', transformations)
space_groups[171] = sg
space_groups['P 62'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(172, 'P 64', transformations)
space_groups[172] = sg
space_groups['P 64'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(173, 'P 63', transformations)
space_groups[173] = sg
space_groups['P 63'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(174, 'P -6', transformations)
space_groups[174] = sg
space_groups['P -6'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(175, 'P 6/m', transformations)
space_groups[175] = sg
space_groups['P 6/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(176, 'P 63/m', transformations)
space_groups[176] = sg
space_groups['P 63/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(177, 'P 6 2 2', transformations)
space_groups[177] = sg
space_groups['P 6 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(178, 'P 61 2 2', transformations)
space_groups[178] = sg
space_groups['P 61 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(179, 'P 65 2 2', transformations)
space_groups[179] = sg
space_groups['P 65 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(180, 'P 62 2 2', transformations)
space_groups[180] = sg
space_groups['P 62 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(181, 'P 64 2 2', transformations)
space_groups[181] = sg
space_groups['P 64 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(182, 'P 63 2 2', transformations)
space_groups[182] = sg
space_groups['P 63 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(183, 'P 6 m m', transformations)
space_groups[183] = sg
space_groups['P 6 m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(184, 'P 6 c c', transformations)
space_groups[184] = sg
space_groups['P 6 c c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(185, 'P 63 c m', transformations)
space_groups[185] = sg
space_groups['P 63 c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(186, 'P 63 m c', transformations)
space_groups[186] = sg
space_groups['P 63 m c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(187, 'P -6 m 2', transformations)
space_groups[187] = sg
space_groups['P -6 m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(188, 'P -6 c 2', transformations)
space_groups[188] = sg
space_groups['P -6 c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(189, 'P -6 2 m', transformations)
space_groups[189] = sg
space_groups['P -6 2 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(190, 'P -6 2 c', transformations)
space_groups[190] = sg
space_groups['P -6 2 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(191, 'P 6/m m m', transformations)
space_groups[191] = sg
space_groups['P 6/m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(192, 'P 6/m c c', transformations)
space_groups[192] = sg
space_groups['P 6/m c c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(193, 'P 63/m c m', transformations)
space_groups[193] = sg
space_groups['P 63/m c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(194, 'P 63/m m c', transformations)
space_groups[194] = sg
space_groups['P 63/m m c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(195, 'P 2 3', transformations)
space_groups[195] = sg
space_groups['P 2 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(196, 'F 2 3', transformations)
space_groups[196] = sg
space_groups['F 2 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(197, 'I 2 3', transformations)
space_groups[197] = sg
space_groups['I 2 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(198, 'P 21 3', transformations)
space_groups[198] = sg
space_groups['P 21 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(199, 'I 21 3', transformations)
space_groups[199] = sg
space_groups['I 21 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(200, 'P m -3', transformations)
space_groups[200] = sg
space_groups['P m -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(201, 'P n -3 :2', transformations)
space_groups[201] = sg
space_groups['P n -3 :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(202, 'F m -3', transformations)
space_groups[202] = sg
space_groups['F m -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,3,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,3,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,3,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(203, 'F d -3 :2', transformations)
space_groups[203] = sg
space_groups['F d -3 :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(204, 'I m -3', transformations)
space_groups[204] = sg
space_groups['I m -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(205, 'P a -3', transformations)
space_groups[205] = sg
space_groups['P a -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(206, 'I a -3', transformations)
space_groups[206] = sg
space_groups['I a -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(207, 'P 4 3 2', transformations)
space_groups[207] = sg
space_groups['P 4 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(208, 'P 42 3 2', transformations)
space_groups[208] = sg
space_groups['P 42 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = | N.array([1,0,1]) | numpy.array |
from __future__ import division, absolute_import
__copyright__ = """
Copyright (C) 2013 <NAME>
Copyright (C) 2018 <NAME>
Copyright (C) 2018 <NAME>
"""
__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
__doc__ = """
This module helps predict the running time of each step of FMM
:class:`FMMTranslationCostModel` describes the translation or evaluation cost of a
single operation. For example, *m2p* describes the cost for translating a single
multipole expansion to a single target.
:class:`AbstractFMMCostModel` uses :class:`FMMTranslationCostModel` and calibration
parameter to compute the total cost of each step of FMM in each box. There is an
:class:`AbstractFMMCostModel`, implemented by :class:`FMMCostModel`.
:file:`examples/cost_model.py` demostrates how the calibration and evaluation
are performed.
A similar module in *pytential* extends the functionality of his module to
incorporate QBX-specific operations.
Translation Cost of a Single Operation
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. autoclass:: FMMTranslationCostModel
.. autofunction:: make_pde_aware_translation_cost_model
.. autofunction:: make_taylor_translation_cost_model
Cost Model Classes
^^^^^^^^^^^^^^^^^^
.. autoclass:: AbstractFMMCostModel
.. autoclass:: FMMCostModel
"""
import numpy as np
import pyopencl as cl
import pyopencl.array # noqa: F401
from pyopencl.elementwise import ElementwiseKernel
from pyopencl.tools import dtype_to_ctype
from mako.template import Template
from functools import partial
from pymbolic import var, evaluate
from pytools import memoize_method
import sys
if sys.version_info >= (3, 0):
Template = partial(Template, strict_undefined=True)
else:
Template = partial(Template, strict_undefined=True, disable_unicode=True)
if sys.version_info >= (3, 4):
from abc import ABC, abstractmethod
else:
from abc import ABCMeta, abstractmethod
ABC = ABCMeta("ABC", (), {})
# {{{ FMMTranslationCostModel
class FMMTranslationCostModel(object):
"""Provides modeled costs for individual translations or evaluations.
.. note:: Current implementation assumes the calibration parameters are linear
in the modeled cost. For example,
`var("c_p2l") * self.ncoeffs_fmm_by_level[level]` is valid, but
`var("c_p2l") ** 2 * self.ncoeffs_fmm_by_level[level]` is not.
"""
def __init__(self, ncoeffs_fmm_by_level, uses_point_and_shoot):
self.ncoeffs_fmm_by_level = ncoeffs_fmm_by_level
self.uses_point_and_shoot = uses_point_and_shoot
@staticmethod
def direct():
return var("c_p2p")
def p2l(self, level):
return var("c_p2l") * self.ncoeffs_fmm_by_level[level]
def l2p(self, level):
return var("c_l2p") * self.ncoeffs_fmm_by_level[level]
def p2m(self, level):
return var("c_p2m") * self.ncoeffs_fmm_by_level[level]
def m2p(self, level):
return var("c_m2p") * self.ncoeffs_fmm_by_level[level]
def m2m(self, src_level, tgt_level):
return var("c_m2m") * self.e2e_cost(
self.ncoeffs_fmm_by_level[src_level],
self.ncoeffs_fmm_by_level[tgt_level])
def l2l(self, src_level, tgt_level):
return var("c_l2l") * self.e2e_cost(
self.ncoeffs_fmm_by_level[src_level],
self.ncoeffs_fmm_by_level[tgt_level])
def m2l(self, src_level, tgt_level):
return var("c_m2l") * self.e2e_cost(
self.ncoeffs_fmm_by_level[src_level],
self.ncoeffs_fmm_by_level[tgt_level])
def e2e_cost(self, nsource_coeffs, ntarget_coeffs):
if self.uses_point_and_shoot:
return (
# Rotate the coordinate system to be z axis aligned.
nsource_coeffs ** (3 / 2)
# Translate the expansion along the z axis.
+ nsource_coeffs ** (1 / 2) * ntarget_coeffs
# Rotate the coordinate system back.
+ ntarget_coeffs ** (3 / 2))
return nsource_coeffs * ntarget_coeffs
# }}}
# {{{ translation cost model factories
def make_pde_aware_translation_cost_model(dim, nlevels):
"""Create a cost model for FMM translation operators that make use of the
knowledge that the potential satisfies a PDE.
For example, this factory is used for complex Taylor and Fourier-Bessel
expansions in 2D, and spherical harmonics (with point-and-shoot) in 3D.
"""
p_fmm = np.array([var("p_fmm_lev%d" % i) for i in range(nlevels)])
ncoeffs_fmm = (p_fmm + 1) ** (dim - 1)
if dim == 3:
uses_point_and_shoot = True
else:
uses_point_and_shoot = False
return FMMTranslationCostModel(
ncoeffs_fmm_by_level=ncoeffs_fmm,
uses_point_and_shoot=uses_point_and_shoot
)
def make_taylor_translation_cost_model(dim, nlevels):
"""Create a cost model for FMM translation based on Taylor expansions
in Cartesian coordinates.
"""
p_fmm = np.array([var("p_fmm_lev%d" % i) for i in range(nlevels)])
ncoeffs_fmm = (p_fmm + 1) ** dim
return FMMTranslationCostModel(
ncoeffs_fmm_by_level=ncoeffs_fmm,
uses_point_and_shoot=False
)
# }}}
# {{{ AbstractFMMCostModel
class AbstractFMMCostModel(ABC):
"""An interface to obtain both FMM operation counts and calibrated (e.g. in
seconds) cost estimates.
* To obtain operation counts only, use :meth:`get_unit_calibration_params`
with :meth:`cost_per_stage` or :meth:`cost_per_box`.
* To calibrate the model, pass operation counts together with timing data
to :meth:`estimate_calibration_params`.
* To evaluate the calibrated models, pass the calibration parameters
from :meth:`estimate_calibration_params` to :meth:`cost_per_stage` or
:meth:`cost_per_box`.
.. ------------------------------------------------------------------------
.. rubric:: Evaluation
.. ------------------------------------------------------------------------
.. automethod:: cost_per_box
.. automethod:: cost_per_stage
.. ------------------------------------------------------------------------
.. rubric:: Calibration
.. ------------------------------------------------------------------------
.. automethod:: estimate_calibration_params
.. ------------------------------------------------------------------------
.. rubric:: Utilities
.. ------------------------------------------------------------------------
.. automethod:: aggregate_over_boxes
.. automethod:: get_unit_calibration_params
.. automethod:: get_ndirect_sources_per_target_box
"""
def __init__(
self,
translation_cost_model_factory=make_pde_aware_translation_cost_model):
"""
:arg translation_cost_model_factory: a function, which takes tree dimension
and the number of tree levels as arguments, returns an object of
:class:`FMMTranslationCostModel`.
"""
self.translation_cost_model_factory = translation_cost_model_factory
@abstractmethod
def process_form_multipoles(self, queue, traversal, p2m_cost):
"""Cost for forming multipole expansions of each box.
:arg queue: a :class:`pyopencl.CommandQueue` object.
:arg traversal: a :class:`boxtree.traversal.FMMTraversalInfo` object.
:arg p2m_cost: a :class:`numpy.ndarray` or :class:`pyopencl.array.Array`
of shape (nlevels,) representing the cost of forming the multipole
expansion of one source at each level.
:return: a :class:`numpy.ndarray` or :class:`pyopencl.array.Array` of shape
(nsource_boxes,), with each entry represents the cost of the box.
"""
pass
@abstractmethod
def process_coarsen_multipoles(self, queue, traversal, m2m_cost):
"""Cost for upward propagation.
:arg queue: a :class:`pyopencl.CommandQueue` object.
:arg traversal: a :class:`boxtree.traversal.FMMTraversalInfo` object.
:arg m2m_cost: a :class:`numpy.ndarray` or :class:`pyopencl.array.Array`
of shape (nlevels-1,), where the ith entry represents the
multipole-to-multipole cost from source level i+1 to target level i.
:return: a :class:`float`, the overall cost of upward propagation.
.. note:: This method returns a number instead of an array, because it is not
immediate clear how per-box cost of upward propagation will be useful for
distributed load balancing.
"""
pass
@abstractmethod
def get_ndirect_sources_per_target_box(self, queue, traversal):
"""Collect the number of direct evaluation sources (list 1, list 3 close and
list 4 close) for each target box.
:arg queue: a :class:`pyopencl.CommandQueue` object.
:arg traversal: a :class:`boxtree.traversal.FMMTraversalInfo` object.
:return: a :class:`numpy.ndarray` or :class:`pyopencl.array.Array` of shape
(ntarget_boxes,), with each entry representing the number of direct
evaluation sources for that target box.
"""
pass
@abstractmethod
def process_direct(self, queue, traversal, ndirect_sources_by_itgt_box, p2p_cost,
box_target_counts_nonchild=None):
"""Direct evaluation cost of each target box of *traversal*.
:arg queue: a :class:`pyopencl.CommandQueue` object.
:arg traversal: a :class:`boxtree.traversal.FMMTraversalInfo` object.
:arg ndirect_sources_by_itgt_box: a :class:`numpy.ndarray` or
:class:`pyopencl.array.Array` of shape (ntarget_boxes,), with each entry
representing the number of direct evaluation sources for that target box.
:arg p2p_cost: a constant representing the cost of one point-to-point
evaluation.
:arg box_target_counts_nonchild: a :class:`numpy.ndarray` or
:class:`pyopencl.array.Array` of shape (nboxes,), the number of targets
using direct evaluation in this box. For example, this is useful in QBX
by specifying the number of non-QBX targets. If None, all targets in
boxes are considered.
:return: a :class:`numpy.ndarray` or :class:`pyopencl.array.Array` of shape
(ntarget_boxes,), with each entry represents the cost of the box.
"""
pass
@abstractmethod
def process_list2(self, queue, traversal, m2l_cost):
"""
:arg queue: a :class:`pyopencl.CommandQueue` object.
:arg traversal: a :class:`boxtree.traversal.FMMTraversalInfo` object.
:arg m2l_cost: a :class:`numpy.ndarray` or :class:`pyopencl.array.Array`
of shape (nlevels,) representing the translation cost of each level.
:return: a :class:`numpy.ndarray` or :class:`pyopencl.array.Array` of shape
(ntarget_or_target_parent_boxes,), with each entry representing the cost
of multipole-to-local translations to this box.
"""
pass
@abstractmethod
def process_list3(self, queue, traversal, m2p_cost,
box_target_counts_nonchild=None):
"""
:arg queue: a :class:`pyopencl.CommandQueue` object.
:arg traversal: a :class:`boxtree.traversal.FMMTraversalInfo` object.
:arg m2p_cost: a :class:`numpy.ndarray` or :class:`pyopencl.array.Array`
of shape (nlevels,) where the ith entry represents the evaluation cost
from multipole expansion at level i to a point.
:arg box_target_counts_nonchild: a :class:`numpy.ndarray` or
:class:`pyopencl.array.Array` of shape (nboxes,), the number of targets
using multiple-to-point translations in this box. For example, this is
useful in QBX by specifying the number of non-QBX targets. If None, all
targets in boxes are considered.
:return: a :class:`numpy.ndarray` or :class:`pyopencl.array.Array` of shape
(nboxes,), with each entry representing the cost of evaluating all
targets inside this box from multipole expansions of list-3 boxes.
"""
pass
@abstractmethod
def process_list4(self, queue, traversal, p2l_cost):
"""
:arg queue: a :class:`pyopencl.CommandQueue` object.
:arg traversal: a :class:`boxtree.traversal.FMMTraversalInfo` object.
:arg p2l_cost: a :class:`numpy.ndarray` or :class:`pyopencl.array.Array`
of shape (nlevels,) where the ith entry represents the translation cost
from a point to the local expansion at level i.
:return: a :class:`numpy.ndarray` or :class:`pyopencl.array.Array` of shape
(ntarget_or_target_parent_boxes,), with each entry representing the cost
of point-to-local translations to this box.
"""
pass
@abstractmethod
def process_eval_locals(self, queue, traversal, l2p_cost,
box_target_counts_nonchild=None):
"""
:arg queue: a :class:`pyopencl.CommandQueue` object.
:arg traversal: a :class:`boxtree.traversal.FMMTraversalInfo` object.
:arg l2p_cost: a :class:`numpy.ndarray` or :class:`pyopencl.array.Array`
of shape (nlevels,) where the ith entry represents the cost of evaluating
the potential of a target in a box of level i using the box's local
expansion.
:arg box_target_counts_nonchild: a :class:`numpy.ndarray` or
:class:`pyopencl.array.Array` of shape (nboxes,), the number of targets
which need evaluation. For example, this is useful in QBX by specifying
the number of non-QBX targets. If None, use
traversal.tree.box_target_counts_nonchild.
:return: a :class:`numpy.ndarray` or :class:`pyopencl.array.Array` of shape
(ntarget_boxes,), the cost of evaluating the potentials of all targets
inside this box from its local expansion.
"""
pass
@abstractmethod
def process_refine_locals(self, queue, traversal, l2l_cost):
"""Cost of downward propagation.
:arg queue: a :class:`pyopencl.CommandQueue` object.
:arg traversal: a :class:`boxtree.traversal.FMMTraversalInfo` object.
:arg l2l_cost: a :class:`numpy.ndarray` or :class:`pyopencl.array.Array`
of shape (nlevels-1,), where the ith entry represents the cost of
tranlating local expansion from level i to level i+1.
:return: a :class:`float`, the overall cost of downward propagation.
.. note:: This method returns a number instead of an array, because it is not
immediate clear how per-box cost of downward propagation will be useful
for distributed load balancing.
"""
pass
@abstractmethod
def aggregate_over_boxes(self, per_box_result):
"""Sum all entries of *per_box_result* into a number.
:arg per_box_result: an object of :class:`numpy.ndarray` or
:class:`pyopencl.array.Array`, the result to be sumed.
:return: a :class:`float`, the result of the sum.
"""
pass
@staticmethod
def cost_factors_to_dev(cost_factors, queue):
cost_factors_dev = {}
for name in cost_factors:
if not isinstance(cost_factors[name], np.ndarray):
cost_factors_dev[name] = cost_factors[name]
continue
cost_factors_dev[name] = cl.array.to_device(
queue, cost_factors[name]
).with_queue(None)
return cost_factors_dev
def fmm_cost_factors_for_kernels_from_model(
self, queue, nlevels, xlat_cost, context):
"""Evaluate translation cost factors from symbolic model. The result of this
function can be used for process_* methods in this class.
:arg queue: If not None, the cost factor arrays will be transferred to device
using this queue.
:arg nlevels: the number of tree levels.
:arg xlat_cost: a :class:`FMMTranslationCostModel`.
:arg context: a :class:`dict` of parameters passed as context when
evaluating symbolic expressions in *xlat_cost*.
:return: a :class:`dict`, the translation cost of each step in FMM.
"""
cost_factors = {
"p2m_cost": np.array([
evaluate(xlat_cost.p2m(ilevel), context=context)
for ilevel in range(nlevels)
], dtype=np.float64),
"m2m_cost": np.array([
evaluate(xlat_cost.m2m(ilevel+1, ilevel), context=context)
for ilevel in range(nlevels-1)
], dtype=np.float64),
"c_p2p": evaluate(xlat_cost.direct(), context=context),
"m2l_cost": np.array([
evaluate(xlat_cost.m2l(ilevel, ilevel), context=context)
for ilevel in range(nlevels)
], dtype=np.float64),
"m2p_cost": np.array([
evaluate(xlat_cost.m2p(ilevel), context=context)
for ilevel in range(nlevels)
], dtype=np.float64),
"p2l_cost": np.array([
evaluate(xlat_cost.p2l(ilevel), context=context)
for ilevel in range(nlevels)
], dtype=np.float64),
"l2l_cost": np.array([
evaluate(xlat_cost.l2l(ilevel, ilevel+1), context=context)
for ilevel in range(nlevels-1)
], dtype=np.float64),
"l2p_cost": np.array([
evaluate(xlat_cost.l2p(ilevel), context=context)
for ilevel in range(nlevels)
], dtype=np.float64)
}
if queue:
cost_factors = self.cost_factors_to_dev(cost_factors, queue)
return cost_factors
@abstractmethod
def zero_cost_per_box(self, queue, nboxes):
"""Helper function for returning the per-box cost filled with 0.
:arg queue: a :class:`pyopencl.CommandQueue` object.
:param nboxes: the number of boxes
:return: a :class:`numpy.ndarray` or :class:`pyopencl.array.Array` of shape
(*nboxes*,), representing the zero per-box cost.
"""
pass
def cost_per_box(self, queue, traversal, level_to_order,
calibration_params,
ndirect_sources_per_target_box=None,
box_target_counts_nonchild=None):
"""Predict the per-box costs of a new traversal object.
:arg queue: a :class:`pyopencl.CommandQueue` object.
:arg traversal: a :class:`boxtree.traversal.FMMTraversalInfo` object.
:arg level_to_order: a :class:`numpy.ndarray` of shape
(traversal.tree.nlevels,) representing the expansion orders
of different levels.
:arg calibration_params: a :class:`dict` of calibration parameters. These
parameters can be obtained via :meth:`estimate_calibration_params`
or :meth:`get_unit_calibration_params`.
:arg ndirect_sources_per_target_box: a :class:`numpy.ndarray` or
:class:`pyopencl.array.Array` of shape (ntarget_boxes,), the number of
direct evaluation sources (list 1, list 3 close, list 4 close) for each
target box. You may find :meth:`get_ndirect_sources_per_target_box`
helpful. This argument is useful because the same result can be reused
for p2p, p2qbxl and tsqbx.
:arg box_target_counts_nonchild: a :class:`numpy.ndarray` or
:class:`pyopencl.array.Array` of shape (nboxes,), the number of targets
which need evaluation. For example, this is useful in QBX by specifying
the number of non-QBX targets. If None, all targets are considered,
namely traversal.tree.box_target_counts_nonchild.
:return: a :class:`numpy.ndarray` or :class:`pyopencl.array.Array` of shape
(nboxes,), where the ith entry represents the cost of all stages for box
i.
"""
if ndirect_sources_per_target_box is None:
ndirect_sources_per_target_box = (
self.get_ndirect_sources_per_target_box(queue, traversal)
)
tree = traversal.tree
nboxes = tree.nboxes
source_boxes = traversal.source_boxes
target_boxes = traversal.target_boxes
target_or_target_parent_boxes = traversal.target_or_target_parent_boxes
result = self.zero_cost_per_box(queue, nboxes)
for ilevel in range(tree.nlevels):
calibration_params["p_fmm_lev%d" % ilevel] = level_to_order[ilevel]
xlat_cost = self.translation_cost_model_factory(
tree.dimensions, tree.nlevels
)
translation_cost = self.fmm_cost_factors_for_kernels_from_model(
queue, tree.nlevels, xlat_cost, calibration_params
)
if box_target_counts_nonchild is None:
box_target_counts_nonchild = traversal.tree.box_target_counts_nonchild
result[source_boxes] += self.process_form_multipoles(
queue, traversal, translation_cost["p2m_cost"]
)
result[target_boxes] += self.process_direct(
queue, traversal, ndirect_sources_per_target_box,
translation_cost["c_p2p"],
box_target_counts_nonchild=box_target_counts_nonchild
)
result[target_or_target_parent_boxes] += self.process_list2(
queue, traversal, translation_cost["m2l_cost"]
)
result += self.process_list3(
queue, traversal, translation_cost["m2p_cost"],
box_target_counts_nonchild=box_target_counts_nonchild
)
result[target_or_target_parent_boxes] += self.process_list4(
queue, traversal, translation_cost["p2l_cost"]
)
result[target_boxes] += self.process_eval_locals(
queue, traversal, translation_cost["l2p_cost"],
box_target_counts_nonchild=box_target_counts_nonchild
)
return result
def cost_per_stage(self, queue, traversal, level_to_order,
calibration_params,
ndirect_sources_per_target_box=None,
box_target_counts_nonchild=None):
"""Predict the per-stage costs of a new traversal object.
:arg queue: a :class:`pyopencl.CommandQueue` object.
:arg traversal: a :class:`boxtree.traversal.FMMTraversalInfo` object.
:arg level_to_order: a :class:`numpy.ndarray` of shape
(traversal.tree.nlevels,) representing the expansion orders
of different levels.
:arg calibration_params: a :class:`dict` of calibration parameters. These
parameters can be obtained via :meth:`estimate_calibration_params`
or :meth:`get_unit_calibration_params`.
:arg ndirect_sources_per_target_box: a :class:`numpy.ndarray` or
:class:`pyopencl.array.Array` of shape (ntarget_boxes,), the number of
direct evaluation sources (list 1, list 3 close, list 4 close) for each
target box. You may find :func:`get_ndirect_sources_per_target_box`
helpful. This argument is useful because the same result can be reused
for p2p, p2qbxl and tsqbx.
:arg box_target_counts_nonchild: a :class:`numpy.ndarray` or
:class:`pyopencl.array.Array` of shape (nboxes,), the number of targets
which need evaluation. For example, this is useful in QBX by specifying
the number of non-QBX targets. If None, all targets are considered,
namely traversal.tree.box_target_counts_nonchild.
:return: a :class:`dict`, mapping FMM stage names to cost numbers.
"""
if ndirect_sources_per_target_box is None:
ndirect_sources_per_target_box = (
self.get_ndirect_sources_per_target_box(queue, traversal)
)
tree = traversal.tree
result = {}
for ilevel in range(tree.nlevels):
calibration_params["p_fmm_lev%d" % ilevel] = level_to_order[ilevel]
xlat_cost = self.translation_cost_model_factory(
tree.dimensions, tree.nlevels
)
translation_cost = self.fmm_cost_factors_for_kernels_from_model(
queue, tree.nlevels, xlat_cost, calibration_params
)
if box_target_counts_nonchild is None:
box_target_counts_nonchild = traversal.tree.box_target_counts_nonchild
result["form_multipoles"] = self.aggregate_over_boxes(
self.process_form_multipoles(
queue, traversal, translation_cost["p2m_cost"]
)
)
result["coarsen_multipoles"] = self.process_coarsen_multipoles(
queue, traversal, translation_cost["m2m_cost"]
)
result["eval_direct"] = self.aggregate_over_boxes(
self.process_direct(
queue, traversal, ndirect_sources_per_target_box,
translation_cost["c_p2p"],
box_target_counts_nonchild=box_target_counts_nonchild
)
)
result["multipole_to_local"] = self.aggregate_over_boxes(
self.process_list2(queue, traversal, translation_cost["m2l_cost"])
)
result["eval_multipoles"] = self.aggregate_over_boxes(
self.process_list3(
queue, traversal, translation_cost["m2p_cost"],
box_target_counts_nonchild=box_target_counts_nonchild
)
)
result["form_locals"] = self.aggregate_over_boxes(
self.process_list4(queue, traversal, translation_cost["p2l_cost"])
)
result["refine_locals"] = self.process_refine_locals(
queue, traversal, translation_cost["l2l_cost"]
)
result["eval_locals"] = self.aggregate_over_boxes(
self.process_eval_locals(
queue, traversal, translation_cost["l2p_cost"],
box_target_counts_nonchild=box_target_counts_nonchild
)
)
return result
@staticmethod
def get_unit_calibration_params():
return dict(
c_l2l=1.0,
c_l2p=1.0,
c_m2l=1.0,
c_m2m=1.0,
c_m2p=1.0,
c_p2l=1.0,
c_p2m=1.0,
c_p2p=1.0,
)
_FMM_STAGE_TO_CALIBRATION_PARAMETER = {
"form_multipoles": "c_p2m",
"coarsen_multipoles": "c_m2m",
"eval_direct": "c_p2p",
"multipole_to_local": "c_m2l",
"eval_multipoles": "c_m2p",
"form_locals": "c_p2l",
"refine_locals": "c_l2l",
"eval_locals": "c_l2p"
}
def estimate_calibration_params(self, model_results, timing_results,
time_field_name="wall_elapsed",
additional_stage_to_param_names=()):
"""
:arg model_results: a :class:`list` of the modeled cost for each step of FMM,
returned by :func:`cost_per_stage` with unit calibration parameters
(from :meth:`get_unit_calibration_params`)
:arg timing_results: a :class:`list` of the same length as *model_results*.
Each entry is a :class:`dict` filled with timing data returned by
*boxtree.fmm.drive_fmm*
:arg time_field_name: a :class:`str`, the field name from the timing result.
Usually this can be "wall_elapsed" or "process_elapsed".
:arg additional_stage_to_param_names: a :class:`dict` for mapping stage names
to parameter names. This is useful for supplying additional stages of
QBX.
:return: a :class:`dict` of calibration parameters. If there is no model
result for a particular stage, the estimated calibration parameter for
that stage is NaN.
"""
nresults = len(model_results)
assert len(timing_results) == nresults
stage_to_param_names = self._FMM_STAGE_TO_CALIBRATION_PARAMETER.copy()
stage_to_param_names.update(additional_stage_to_param_names)
params = set(stage_to_param_names.values())
uncalibrated_times = {}
actual_times = {}
for param in params:
uncalibrated_times[param] = np.zeros(nresults)
actual_times[param] = | np.zeros(nresults) | numpy.zeros |
import os
import itertools
#import cv2
import torch
import random
import numpy as np
import matplotlib.pyplot as plt
import torchvision.transforms as transforms
from sklearn.manifold import TSNE
from torch.utils.data import DataLoader
from matplotlib.pyplot import cm
# import model
from resnet18 import resnet18
# import datasets
from datasets import TransformedDataset
from datasets import ADPDataset
from datasets import BCSSDataset
# defined in image_transformed/custom_augmentations.py
transformed_norm_weights = {
'AIDPATH_transformed': {'mean': [0.6032, 0.3963, 0.5897], 'std': [0.1956, 0.2365, 0.1906]},
'AJ-Lymph_transformed': {'mean': [0.4598, 0.3748, 0.4612], 'std': [0.1406, 0.1464, 0.1176]},
'BACH_transformed': {'mean': [0.6880, 0.5881, 0.8209], 'std': [0.1632, 0.1841, 0.1175]},
'CRC_transformed': {'mean': [0.6976, 0.5340, 0.6687], 'std': [0.2272, 0.2697, 0.2247]},
'GlaS_transformed': {'mean': [0.7790, 0.5002, 0.7765], 'std': [0.1638, 0.2418, 0.1281]},
'MHIST_transformed': {'mean': [0.7361, 0.6469, 0.7735], 'std': [0.1812, 0.2303, 0.1530]},
'OSDataset_transformed': {'mean': [0.8414, 0.6492, 0.7377], 'std': [0.1379, 0.2508, 0.1979]},
'PCam_transformed': {'mean': [0.6970, 0.5330, 0.6878], 'std': [0.2168, 0.2603, 0.1933]},
'ADP': {'mean': [0.81233799, 0.64032477, 0.81902153], 'std': [0.18129702, 0.25731668, 0.16800649]},
'BCSS_transformed': {'mean': [0.7107, 0.4878, 0.6726], 'std': [0.1788, 0.2152, 0.1615]},
'ImageNet': {'mean': [0.485, 0.456, 0.406], 'std': [0.229, 0.224, 0.225]}}
def fix_random_seeds():
seed = 10
random.seed(seed)
torch.manual_seed(seed)
np.random.seed(seed)
def get_features(dataset_name, split, path_to_root, path_to_pth):
# move the input and model to GPU for speed if available
if torch.cuda.is_available():
device = 'cuda'
else:
device = 'cpu'
dist = False
# read the dataset and initialize the data loader
transform_train = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(
mean=transformed_norm_weights[dataset_name]["mean"],
std=transformed_norm_weights[dataset_name]["std"])])
train_set = TransformedDataset(transform=transform_train,
root=os.path.join(path_to_root, dataset_name),
split=split)
if len(train_set.samples) > 500:
random.shuffle(train_set.samples)
train_set.samples = train_set.samples[0:500]
train_sampler = torch.utils.data.distributed.DistributedSampler(
train_set) if dist else None
train_loader = torch.utils.data.DataLoader(
train_set,
batch_size=mini_batch_size,
shuffle=(train_sampler is None),
pin_memory=True,
num_workers=num_workers,
sampler=train_sampler)
print("load data successfully")
text_label = train_loader.dataset.class_to_idx
# initialize our implementation of ResNet
num_classes = len(train_loader.dataset.class_to_idx.items())
model = resnet18(path_to_pth, pretrained=True, device=device, num_classes=num_classes)
model.to(device) # moving model to compute device
model.eval()
print("load the model successfully")
# we'll store the features as NumPy array of size num_images x feature_size
features = None
tgts = None
with torch.no_grad():
for i, (X, y) in enumerate(train_loader):
X = X.to(device, non_blocking=True)
y = y.to(device, non_blocking=True)
if dataset_name == "PCam_transformed":
y = y.type(torch.LongTensor)
y = y.flatten()
y = y.to(device, non_blocking=True)
output = model(X)
current_features = output.cpu().numpy()
if features is not None:
features = np.concatenate((features, current_features))
else:
features = current_features
curr_labels = y.detach().cpu().numpy()
if tgts is not None:
tgts = | np.concatenate((tgts, curr_labels)) | numpy.concatenate |
"""
tests functionality
"""
import sliding_window_processor as dp
import numpy as np
import pandas as pd
def load_test_data():
"loads test data of 100 rows"
df = pd.read_csv("./testing_frame.csv", converters={"EventSequence": eval})
return df
def test_windower():
"""
creates test sequence and then windows and tests output
"""
test_sequence = ["E{}".format(str(x)) for x in range(0, 256)]
window_size = 32
output = dp.windower(test_sequence, window_size)
for item in output:
assert len(item) == window_size
assert len(output) == (256 - 32 + 1)
counter = 0
for returned in output:
expected = ["E{}".format(str(x)) for x in range(counter, window_size + counter)]
assert (returned == expected).all()
counter += 1
window_size = 16
output = dp.windower(test_sequence, window_size)
for item in output:
assert len(item) == window_size
assert len(output) == (256 - 16 + 1)
counter = 0
for returned in output:
expected = ["E{}".format(str(x)) for x in range(counter, window_size + counter)]
assert (returned == expected).all()
counter += 1
def test_sequence_padder():
"""
tests function for correct length and correct values
"""
test_data = np.array([1, 1, 2, 3])
required_length = 32
returned = dp.sequence_padder(test_data, required_length)
assert len(returned) == 32
expected = np.concatenate((test_data, np.array([0] * 28)))
assert np.array_equal(returned, expected)
returned = dp.sequence_padder(test_data, 100)
assert len(returned) == 100
expected = np.concatenate((test_data, np.array([0] * 96)))
assert np.array_equal(returned, expected)
returned = dp.sequence_padder(test_data, 2)
assert len(returned) == 4
expected = np.array([1, 1, 2, 3])
assert np.array_equal(returned, expected)
def test_fit_transfom():
"""
tests output of fit_transform
"""
data = load_test_data()
events = data["EventSequence"].values
fe = dp.FeatureExtractor()
X = fe.fit_transform(events, length_percentile=100, window_size=32)
assert X.shape == (100, 218, 14)
X = fe.fit_transform(events, length_percentile=100, window_size=2)
assert X.shape == (100, 248, 14)
X = fe.fit_transform(events, length_percentile=100, window_size=7)
assert X.shape == (100, 249 - 7 + 1, 14)
test_sequence = [["E1", "E2", "E3"] * 10, ["E1", "E3"] * 5]
X = fe.fit_transform(test_sequence, length_percentile=50, window_size=2)
assert X.shape == (2, 20 - 2 + 1, 3)
X = fe.fit_transform(
events, length_percentile=100, window_size=32, term_weighting="tf-idf"
)
assert X.shape == (100, 218, 14)
def test_transform():
"""
tests output of transform
"""
data = load_test_data()
events = data["EventSequence"].values
fe = dp.FeatureExtractor()
# test fit_transform and transform change the same data in the same way
X = fe.fit_transform(events, length_percentile=100, window_size=32)
assert X.shape == (100, 218, 14)
X_t = fe.transform(events)
assert X_t.shape == (100, 218, 14)
assert | np.array_equal(X, X_t) | numpy.array_equal |
# -*- coding: utf-8 -*-
"""
Created on Wed Jul 31 13:41:32 2019
@author: s146959
"""
# ========================================================================== #
# ========================================================================== #
from __future__ import absolute_import, with_statement, absolute_import, \
division, print_function, unicode_literals
# ========================================================================== #
# ========================================================================== #
import numpy as _np
import os as _os
import matplotlib.pyplot as _plt
#import scipy.signal.correlate as xcorr
from scipy import signal as _sig
from FFT.fft_analysis import fftanal, ccf
from pybaseutils.plt_utils import savefig
from FFT.fft_analysis import butter_lowpass
from FFT.notch_filter import iirnotch
_plt.close("all")
datafolder = _os.path.abspath(_os.path.join('..','..','..','..', 'Workshop'))
#datafolder = _os.path.join('/homea','weir','bin')
#print(datafolder)
#data options
minFreq=10e3
intb = [15e3, 25e3] # original
#intb = [50e3, 400e3] # broadband fluctuations
# intb = [400e3, 465e3] # high frequency mode
#window options
Navr=100
windowoverlap=0.5
#input options
df=20e3 #frequency of sine wave
ampRF = 0.10
ampRFN= 1.0
ampIF = 0.10
ampIFN= 1.0
delay_ph=-0.*_np.pi #time delay in phase shift
delay_t=delay_ph/(2.0*_np.pi*(df)) #time delay in seconds
_np.random.seed()
n_s=20001
periods=1000.0
tt=_np.linspace(0,periods/df,n_s)
tb = [tt[0], tt[-1]] #some way or another he does not like tt[-1] in the fftanal
fs=1/(((tt[len(tt)-1]-tt[0])/(len(tt)-1)))
tmpRF = ampRF*_np.sin(2.0*_np.pi*(df)*tt)
#tmpRF += 1.00*ampRF*_np.random.standard_normal( size=(tt.shape[0],) ) # there was an error here
tmpRF += ampRFN*_np.random.uniform( low=-1, high=1, size=(tt.shape[0],) )
tmpIF = ampIF*_np.sin(2.0*_np.pi*(df)*(tt)+delay_ph)
#tmpIF += 1.00*ampIF*_np.random.standard_normal( size=(tt.shape[0],) )
tmpIF += ampIFN*_np.random.uniform( low=-1, high=1, size=(tt.shape[0],) )
_plt.figure()
_plt.plot(tt, tmpRF)
_plt.plot(tt, tmpIF)
_plt.title('raw data')
#calculate window parameters
nsig=len(tmpRF)
nwins=int(_np.floor(nsig*1.0/(Navr-Navr*windowoverlap + windowoverlap)))
noverlap=int(_np.ceil(nwins*windowoverlap))
ist=_np.arange(Navr)*(nwins-noverlap) #Not actually using 1000 windows due to side effects?
#calculate maximum and minimum discernible frequencies
MaxFreq=fs/2.0
MinFreq=2.0*fs/nwins #2*fr
print('Maximal frequency: '+str(MaxFreq)+' Hz')
print('Minimal frequency: '+str(MinFreq)+' Hz')
#create empty matrices to fill up
Pxxd_seg = _np.zeros((Navr, nwins), dtype=_np.complex128)
Pyyd_seg = _np.zeros((Navr, nwins), dtype=_np.complex128)
Pxyd_seg = _np.zeros((Navr, nwins), dtype=_np.complex128)
Xfft = _np.zeros((Navr, nwins), dtype=_np.complex128)
Yfft = _np.zeros((Navr, nwins), dtype=_np.complex128)
for i in range(Navr):
istart=ist[i]
iend=ist[i]+nwins
xtemp=tmpRF[istart:iend+1]
ytemp=tmpIF[istart:iend+1]
win=_np.hanning(len(xtemp))
xtemp=xtemp*win
ytemp=ytemp*win
Xfft[i,:nwins]=_np.fft.fft(xtemp,nwins,axis=0)
Yfft[i,:nwins]=_np.fft.fft(ytemp,nwins,axis=0)
fr=1/(tt[iend]-tt[istart])
#Calculate Power spectral denisty and Cross power spectral density per segment
Pxxd_seg[:Navr,:nwins]=(Xfft*_np.conj(Xfft))
Pyyd_seg[:Navr,:nwins]=(Yfft*_np.conj(Yfft))
Pxyd_seg[:Navr,:nwins]=(Yfft*_np.conj(Xfft))
freq = _np.fft.fftfreq(nwins, 1.0/fs)
Nnyquist = nwins//2
#take one sided frequency band and double the energy as it was split over
#total frequency band
freq = freq[:Nnyquist] # [Hz]
Pxx_seg = Pxxd_seg[:, :Nnyquist]
Pyy_seg = Pyyd_seg[:, :Nnyquist]
Pxy_seg = Pxyd_seg[:, :Nnyquist]
Pxx_seg[:, 1:-1] = 2*Pxx_seg[:, 1:-1] # [V^2/Hz],
Pyy_seg[:, 1:-1] = 2*Pyy_seg[:, 1:-1] # [V^2/Hz],
Pxy_seg[:, 1:-1] = 2*Pxy_seg[:, 1:-1] # [V^2/Hz],
if nwins%2: # Odd
Pxx_seg[:, -1] = 2*Pxx_seg[:, -1]
Pyy_seg[:, -1] = 2*Pyy_seg[:, -1]
Pxy_seg[:, -1] = 2*Pxy_seg[:, -1]
#Normalise to RMS by removing gain
S1=_np.sum(win)
Pxx_seg = Pxx_seg/(S1**2)
Pyy_seg = Pyy_seg/(S1**2)
Pxy_seg = Pxy_seg/(S1**2)
#Normalise to true value
S2=_np.sum(win**2)
Pxx_seg = Pxx_seg/(fs*S2/S1**2)
Pyy_seg = Pyy_seg/(fs*S2/S1**2)
Pxy_seg = Pxy_seg/(fs*S2/S1**2)
#Average the different windows
Pxx=_np.mean(Pxx_seg, axis=0)
Pyy=_np.mean(Pyy_seg, axis=0)
Pxy=_np.mean(Pxy_seg, axis=0)
_plt.figure()
_plt.plot(freq/1000,_np.abs(Pxy))
_plt.xlabel('frequency [kHz]')
_plt.title('Pxy')
f1=max((MinFreq, intb[0]))
f2=min((MaxFreq, intb[1]))
if1 = _np.where(freq>=f1)[0]
if2 = _np.where(freq>=f2)[0]
if1 = 0 if len(if1) == 0 else if1[0]
if2 = len(freq) if len(if2) == 0 else if2[0]
ifreqs = _np.asarray(range(if1, if2), dtype=int)
integralfreqs=freq[_np.where(freq>=f1)[0][0]:_np.where(freq>=f2)[0][0]]
cc2i = (_np.trapz(Pxy[ifreqs],integralfreqs)
/ _np.sqrt(_np.trapz(_np.abs(Pxx[ifreqs]),integralfreqs)*_np.trapz(_np.abs(Pyy[ifreqs]),integralfreqs)))
_plt.figure()
_ax1 = _plt.subplot(3,1,1)
_ax2 = _plt.subplot(3,1,2, sharex=_ax1)
_ax3 = _plt.subplot(3,1,3, sharex=_ax1)
_ax1.plot(1e-3*freq,10*_np.log10(_np.abs(Pxy)))
_ax1.set_ylabel(r'P$_{xy}$ [dB/Hz]')
_ax2.plot(1e-3*freq,10*_np.log10(_np.abs(Pxx)))
_ax2.set_ylabel(r'P$_{xx}$ [dB/Hz]')
_ax3.plot(1e-3*freq,10*_np.log10(_np.abs(Pyy)))
_ax3.set_ylabel(r'P$_{yy}$ [dB/Hz]')
_ax3.set_xlabel('f [KHz]')
_ylims = _ax1.get_ylim()
_ax1.axvline(x=1e-3*freq[ifreqs[0]], ymin=_ylims[0],
ymax=10*_np.log10(_np.abs(Pxy))[ifreqs[0]]/_ylims[1],
linewidth=0.5, linestyle='--', color='black')
_ax1.axvline(x=1e-3*freq[ifreqs[-1]], ymin=_ylims[0],
ymax=10*_np.log10(_np.abs(Pxy))[ifreqs[-1]]/_ylims[1],
linewidth=0.5, linestyle='--', color='black')
#calculate cross coherence, background mean and uncertainty
cc=Pxy/_np.sqrt(Pxx*Pyy)
ccbg=_np.mean(cc[-int(_np.ceil(len(cc)/5)):])
sigmacc=_np.sqrt((1-_np.abs(cc)**2)**2/(2*Navr))
_plt.figure()
_plt.plot(freq/1000,cc)
_plt.plot(freq/1000,_np.real(cc-ccbg))
_plt.plot(freq/1000,2*sigmacc,'--',color='red')
_plt.ylabel(r'Re($\gamma$-$\gamma_{bg}$)')
_plt.xlabel('frequency [kHz]')
_plt.title('Real part of CC and background subtracted CC')
_plt.axvline(MinFreq/1000, color='k')
integrand=(_np.real(cc-ccbg)/(1-_np.real(cc-ccbg)))[_np.where(freq>=f1)[0][0]:_np.where(freq>=f2)[0][0]]
integral=_np.trapz(integrand,integralfreqs)
Bvid=0.5e6
Bif=200e6
sqrtNs = _np.sqrt(2*Bvid*(tb[-1]-tb[0]))
sens = _np.sqrt(2*Bvid/Bif/sqrtNs)
Tfluct=_np.sqrt(2*integral/Bif)
sigmaTfluct=_np.sqrt(_np.sum((sigmacc*fr)**2))/(Bif*Tfluct)
msg = u'Tfluct/T=%2.3f\u00B1%2.3f%%'%(100*Tfluct, 100*sigmaTfluct)
print(msg)
#Perform the same analysis using fftanal
sig_anal = fftanal(tt.copy(), tmpRF.copy(), tmpIF.copy(), windowfunction='hanning',
onesided=True, windowoverlap=windowoverlap, Navr=Navr, plotit=False)
sig_anal.fftpwelch()
_nwins = sig_anal.nwins
_fs = sig_anal.Fs
_fr = fs/float(nwins)
_Navr = sig_anal.Navr
_freq = sig_anal.freq.copy()
_Pxy = sig_anal.Pxy.copy()
_Pxx = sig_anal.Pxx.copy()
_Pyy = sig_anal.Pyy.copy()
_MaxFreq=fs/2.
_MinFreq=2.0*fs/nwins #2*fr
print('Maximal frequency: '+str(_MaxFreq)+' Hz')
print('Minimal frequency: '+str(_MinFreq)+' Hz')
_plt.figure()
_plt.plot(_freq/1000,_Pxy)
_plt.xlabel('frequency [kHz]')
_plt.title('Pxy fftanal')
_siglags = sig_anal.fftinfo.lags.copy()
_sigcorrcoef = sig_anal.fftinfo.corrcoef.copy()
# integration frequencies
_f1=max((_MinFreq, intb[0]))
_f2=min((_MaxFreq, intb[1]))
_if1 = _np.where(_freq>=_f1)[0]
_if2 = _np.where(_freq>=_f2)[0]
_if1 = 0 if len(_if1) == 0 else _if1[0]
_if2 = len(freq) if len(_if2) == 0 else _if2[0]
_ifreqs = _np.asarray(range(_if1, _if2), dtype=int)
_integralfreqs=_freq[_np.where(_freq>=_f1)[0][0]:_np.where(_freq>=_f2)[0][0]]
_cc2i = (_np.trapz(_Pxy[_ifreqs],_integralfreqs)
/ _np.sqrt(_np.trapz(_np.abs(_Pxx[_ifreqs]),_integralfreqs)*_np.trapz(_np.abs(_Pyy[_ifreqs]),_integralfreqs)))
_plt.figure()
_ax1 = _plt.subplot(3,1,1)
_ax2 = _plt.subplot(3,1,2, sharex=_ax1)
_ax3 = _plt.subplot(3,1,3, sharex=_ax1)
_ax1.plot(1e-3*_freq,10*_np.log10(_np.abs(_Pxy)))
_ax1.set_ylabel(r'P$_{xy}$ [dB/Hz]')
_ax2.plot(1e-3*_freq,10*_np.log10(_np.abs(_Pxx)))
_ax2.set_ylabel(r'P$_{xx}$ [dB/Hz]')
_ax3.plot(1e-3*_freq,10*_np.log10(_np.abs(_Pyy)))
_ax3.set_ylabel(r'P$_{yy}$ [dB/Hz]')
_ax3.set_xlabel('f [KHz]')
_ylims = _ax1.get_ylim()
_ax1.axvline(x=1e-3*_freq[_ifreqs[0]], ymin=_ylims[0],
ymax=10*_np.log10(_np.abs(_Pxy))[_ifreqs[0]]/_ylims[1],
linewidth=0.5, linestyle='--', color='black')
_ax1.axvline(x=1e-3*_freq[_ifreqs[-1]], ymin=_ylims[0],
ymax=10*_np.log10(_np.abs(_Pxy))[_ifreqs[-1]]/_ylims[1],
linewidth=0.5, linestyle='--', color='black')
_cc=_Pxy/_np.sqrt(_Pxx*_Pyy)
_ccbg=_np.mean(_cc[-int(_np.ceil(len(_cc)/5)):])
_sigmacc=_np.sqrt((1-_np.abs(_cc)**2)**2/(2*_Navr))
_plt.figure()
_plt.plot(_freq/1000,_cc)
_plt.plot(_freq/1000,_np.real(_cc-_ccbg))
_plt.plot(_freq/1000,2*_sigmacc,'--',color='red')
_plt.ylabel(r'Re($\gamma$-$\gamma_{bg}$)')
_plt.xlabel('frequency [kHz]')
_plt.title('Real part of CC and background subtracted CC fftanal')
_plt.axvline(_MinFreq/1000, color='k')
_integrand=(_np.real(_cc-_ccbg)/(1-_np.real(_cc-_ccbg)))[_np.where(_freq>=_f1)[0][0]:_np.where(_freq>=_f2)[0][0]]
_integral=_np.trapz(_integrand,_integralfreqs)
_Bvid=0.5e6
_Bif=200e6
_sqrtNs = _np.sqrt(2*_Bvid*(tb[-1]-tb[0]))
_sens = _np.sqrt(2*_Bvid/Bif/_sqrtNs)
_Tfluct=_np.sqrt(2*_integral/_Bif)
_sigmaTfluct=_np.sqrt(_np.sum((_sigmacc*_fr)**2))/(_Bif*_Tfluct)
_msg = u'Tfluct/T=%2.3f\u00B1%2.3f%%'%(100*_Tfluct, 100*_sigmaTfluct)
print(_msg)
_plt.figure('RMS Coherence')
_plt.plot(df*1e-3, _np.abs(cc2i), 'o' )
_plt.axhline(y=1.0/_np.sqrt(Navr), linestyle='--')
_plt.xlabel('freq [kHz]')
_plt.ylabel(r'RMS Coherence')
_plt.figure('RMS Coherence')
_plt.plot(df*1e-3, _np.abs(_cc2i), 'o' )
_plt.axhline(1.0/_np.sqrt(_Navr), linestyle='--')
_plt.xlabel('freq [kHz]')
_plt.ylabel(r'RMS Coherence')
_plt.figure('Tfluct')
_plt.errorbar(df*1e-3, Tfluct, yerr=sigmaTfluct, fmt='o-',capsize=5)
_plt.axhline(sens, linestyle='--')
_plt.xlabel('freq [kHz]')
_plt.ylabel(r'$\tilde{T}_e/<T_e>$')
_plt.figure('Tfluct')
_plt.errorbar(df*1e-3, _Tfluct, yerr=_sigmaTfluct, fmt='o',capsize=5)
_plt.axhline(_sens, linestyle='--')
_plt.xlabel('freq [kHz]')
_plt.ylabel(r'$\tilde{T}_e/<T_e>$')
_plt.figure()
_plt.plot(_freq/1000,_np.real(cc-ccbg))
_plt.plot(_freq/1000,_np.real(_cc-_ccbg))
_plt.plot(_freq/1000,2*_sigmacc,'--',color='red')
_plt.ylabel(r'Re($\gamma$-$\gamma_{bg}$)')
_plt.xlabel('frequency [kHz]')
_plt.title('Homemade and fftanal complex coherance')
_plt.axvline(_MinFreq/1000, color='k')
_plt.figure()
_plt.plot(_freq/1000, | _np.real(cc-ccbg) | numpy.real |
import json
import numpy as np
import pkg_resources
import pickle
from excursion.utils import mgrid, mesh2points
import torch
import sklearn.preprocessing
datafile = pkg_resources.resource_filename(
"excursion", "testcases/data/checkmate_dense.json"
)
def modify(zv):
return np.log(zv) - np.log(0.05)
truthX, truthy_obs, truthy_exp = [], [], []
for p, _, result in json.load(open(datafile))["precomputed"]:
if p[0] < p[1] + 200:
continue
truthX.append(p)
truthy_obs.append(
max(float(result[1]["observed_CLs"]), 0.001) if result[1] else 0.001
)
truthy_exp.append(
max(float(result[1]["expected_CLs"]), 0.001) if result[1] else 0.001
)
truthX = | np.array(truthX) | numpy.array |
import numpy as np
from scipy.optimize import minimize
import scipy.stats
import pickle, os, random, time
import matplotlib.pyplot as plt
from pathos.multiprocessing import ProcessingPool as Pool
from sklearn.metrics import mean_squared_error
import logging
def set_cons(a_max_n_boundary=[0.1, 2.5], desired_V_n_boundary=[1, 40], a_comf_n_boundary=[0.1, 5],
S_jam_boundary=[0.1, 10], desired_T_n_boundary=[0.1, 5], beta_boundary=[4, 4]):
# constraints: eq or ineq
a_max_n_boundary = a_max_n_boundary
desired_V_n_boundary = desired_V_n_boundary
a_comf_n_boundary = a_comf_n_boundary
S_jam_boundary = S_jam_boundary
desired_T_n_boundary = desired_T_n_boundary
beta_boundary = beta_boundary
cons = ({'type': 'ineq', 'fun': lambda x: x[0] - a_max_n_boundary[0]}, \
{'type': 'ineq', 'fun': lambda x: -x[0] + a_max_n_boundary[1]}, \
{'type': 'ineq', 'fun': lambda x: x[1] - desired_V_n_boundary[0]}, \
{'type': 'ineq', 'fun': lambda x: -x[1] + desired_V_n_boundary[1]}, \
{'type': 'ineq', 'fun': lambda x: x[2] - a_comf_n_boundary[0]}, \
{'type': 'ineq', 'fun': lambda x: -x[2] + a_comf_n_boundary[1]}, \
{'type': 'ineq', 'fun': lambda x: x[3] - S_jam_boundary[0]}, \
{'type': 'ineq', 'fun': lambda x: -x[3] + S_jam_boundary[1]}, \
{'type': 'ineq', 'fun': lambda x: x[4] - desired_T_n_boundary[0]}, \
{'type': 'ineq', 'fun': lambda x: -x[4] + desired_T_n_boundary[1]}, \
{'type': 'ineq', 'fun': lambda x: x[5] - beta_boundary[0]}, \
{'type': 'ineq', 'fun': lambda x: -x[5] + beta_boundary[1]})
return cons
def initialize(a_max_n_boundary=[0.1, 2.5], desired_V_n_boundary=[1, 40], a_comf_n_boundary=[0.1, 5],
S_jam_boundary=[0.1, 10], \
desired_T_n_boundary=[0.1, 5], beta_boundary=[4, 4]):
# a_max_n, desired_V_n, a_comf_n, S_jam_n, desired_T_n, beta
x0 = (random.uniform(a_max_n_boundary[0], a_max_n_boundary[1]),
random.uniform(desired_V_n_boundary[0], desired_V_n_boundary[1]), \
random.uniform(a_comf_n_boundary[0], a_comf_n_boundary[1]),
random.uniform(S_jam_boundary[0], S_jam_boundary[1]), \
random.uniform(desired_T_n_boundary[0], desired_T_n_boundary[1]), 4)
return x0
def IDM_cf_model(delta_V_n_t, S_n_t, V_n_t, a_max_n, desired_V_n, a_comf_n, S_jam_n, desired_T_n, beta):
def desired_space_hw(S_jam_n, V_n_t, desired_T_n, delta_V_n_t, a_max_n, a_comf_n):
# if a_max_n * a_comf_n <= 0:
# print("a_max_n", a_max_n, "a_comf_n", a_comf_n)
item1 = S_jam_n
item2 = V_n_t * desired_T_n
item3 = (V_n_t * delta_V_n_t) / (2 * np.sqrt(a_max_n * a_comf_n))
# if V_n_t * desired_T_n - (V_n_t * delta_V_n_t) / (2 * np.sqrt(a_max_n * a_comf_n)) > 0:
# item2 = V_n_t * desired_T_n - (V_n_t * delta_V_n_t) / (2 * np.sqrt(a_max_n * a_comf_n))
# else:
# item2 = 0
return item1 + max(0, item2 + item3)
a_n_t = []
for i in range(len(delta_V_n_t)):
desired_S_n = desired_space_hw(S_jam_n, V_n_t[i], desired_T_n, delta_V_n_t[i], a_max_n, a_comf_n)
a_n_t.append(a_max_n * (1 - (V_n_t[i] / desired_V_n) ** beta - (desired_S_n / S_n_t[i]) ** 2))
return np.array(a_n_t)
def tv_IDM_cf_model(delta_V_n_t, S_n_t, V_n_t, a_max_n, desired_V_n, a_comf_n, S_jam_n, desired_T_n, beta):
def desired_space_hw(S_jam_n, V_n_t, desired_T_n, delta_V_n_t, a_max_n, a_comf_n):
# if a_max_n * a_comf_n <= 0:
# print("a_max_n", a_max_n, "a_comf_n", a_comf_n)
item1 = S_jam_n
item2 = V_n_t * desired_T_n
item3 = (V_n_t * delta_V_n_t) / (2 * np.sqrt(a_max_n * a_comf_n))
# if V_n_t * desired_T_n - (V_n_t * delta_V_n_t) / (2 * np.sqrt(a_max_n * a_comf_n)) > 0:
# item2 = V_n_t * desired_T_n - (V_n_t * delta_V_n_t) / (2 * np.sqrt(a_max_n * a_comf_n))
# else:
# item2 = 0
return item1 + max(0, item2 + item3)
a_n_t = []
for i in range(len(delta_V_n_t)):
desired_S_n = desired_space_hw(S_jam_n[i], V_n_t[i], desired_T_n[i], delta_V_n_t[i], a_max_n[i], a_comf_n[i])
a_n_t.append(a_max_n[i] * (1 - (V_n_t[i] / desired_V_n[i]) ** beta - (desired_S_n / S_n_t[i]) ** 2))
return np.array(a_n_t)
def IDM_cf_model_for_p(delta_V_n_t, S_n_t, V_n_t, a_max_n, desired_V_n, a_comf_n, S_jam_n, desired_T_n, beta):
def desired_space_hw(S_jam_n, V_n_t, desired_T_n, delta_V_n_t, a_max_n, a_comf_n):
item1 = S_jam_n
item2 = V_n_t * desired_T_n
item3 = (V_n_t * delta_V_n_t) / (2 * np.sqrt(a_max_n * a_comf_n))
# if V_n_t * desired_T_n - (V_n_t * delta_V_n_t) / (2 * np.sqrt(a_max_n * a_comf_n)) > 0:
# item2 = V_n_t * desired_T_n - (V_n_t * delta_V_n_t) / (2 * np.sqrt(a_max_n * a_comf_n))
# else:
# item2 = 0
return item1 + max(0, item2 + item3)
desired_S_n = desired_space_hw(S_jam_n, V_n_t, desired_T_n, delta_V_n_t, a_max_n, a_comf_n)
a_n_t = a_max_n * (1 - (V_n_t / desired_V_n) ** beta - (desired_S_n / S_n_t) ** 2)
return a_n_t
def obj_func(args):
a, delta_V_n_t, S_n_t, V_n_t = args
# x[0:6]: a_max_n, desired_V_n, a_comf_n, S_jam_n, desired_T_n, beta
# err = lambda x: np.sqrt( np.sum( ( (a - IDM_cf_model(delta_V_n_t, S_n_t, V_n_t, x[0], x[1], x[2], x[3], x[4], x[5])) / a ) ** 2) / len(a) )
# err = lambda x: np.sqrt( np.sum((a - IDM_cf_model(delta_V_n_t, S_n_t, V_n_t, x[0], x[1], x[2], x[3], x[4], x[5])) ** 2) / np.sum(a**2))
err = lambda x: np.sqrt(
np.sum((a - IDM_cf_model(delta_V_n_t, S_n_t, V_n_t, x[0], x[1], x[2], x[3], x[4], x[5])) ** 2) / len(a))
return err
a_max_n_boundary = [0.1, 2.5]
desired_V_n_boundary = [1, 40]
a_comf_n_boundary = [0.1, 5]
S_jam_n_boundary = [0.1, 10]
desired_T_n_boundary = [0.1, 5]
boundary = [a_max_n_boundary, desired_V_n_boundary, a_comf_n_boundary, S_jam_n_boundary, desired_T_n_boundary]
def save_pkl_file(file, var):
pkl_file = open(file, 'wb')
pickle.dump(var, pkl_file)
pkl_file.close()
def read_pkl_file(file):
pkl_file = open(file, 'rb')
var = pickle.load(pkl_file)
pkl_file.close()
return var
def context_target_split(b_x, b_y, num_context, num_extra_target):
"""Given inputs x and their value y, return random subsets of points for
context and target. Note that following conventions from "Empirical
Evaluation of Neural Process Objectives" the context points are chosen as a
subset of the target points.
Parameters
----------
x : torch.Tensor
Shape (batch_size, num_points, x_dim)
y : torch.Tensor
Shape (batch_size, num_points, y_dim)
num_context : int
Number of context points.
num_extra_target : int
Number of additional target points.
"""
x_context = []
y_context = []
x_target = []
y_target = []
for i in range(len(b_x)):
x = np.array(b_x[i])
y = np.array(b_y[i]).reshape(len(b_y[i]), 1)
# print(x.shape, y.shape)
num_points = x.shape[0]
# Sample locations of context and target points
# print(num_points, num_context, num_extra_target, num_context + num_extra_target)
if num_context + num_extra_target < num_points:
locations = np.random.choice(num_points,
size=num_context + num_extra_target,
replace=False)
else:
locations = np.random.choice(num_points,
size=num_context + num_extra_target,
replace=True)
for j in range(len(locations)):
if locations[j] > num_points:
while True:
new_loc = np.random.choice(locations, size=1)
if new_loc < num_points:
locations[j] = new_loc
break
x_context.append(x[locations[:num_context], :])
y_context.append(y[locations[:num_context], :])
x_target.append(x[locations, :])
y_target.append(y[locations, :])
x_context = np.array(x_context)
y_context = np.array(y_context)
x_target = np.array(x_target)
y_target = np.array(y_target)
# print(x_context.shape, y_context.shape, x_target.shape, y_target.shape)
return x_context, y_context, x_target, y_target
import torch
from torch import nn
from torch.nn import functional as F
from torch.distributions import Normal
from random import randint
from torch.distributions.kl import kl_divergence
class DeterministicEncoder(nn.Module):
"""Maps an (x_i, y_i) pair to a representation r_i.
Parameters
----------
x_dim : int
Dimension of x values.
y_dim : int
Dimension of y values.
h_dim : int
Dimension of hidden layer.
r_dim : int
Dimension of output representation r.
"""
def __init__(self, x_dim, y_dim, h_dim, r_dim):
super(DeterministicEncoder, self).__init__()
self.x_dim = x_dim
self.y_dim = y_dim
self.h_dim = h_dim
self.r_dim = r_dim
layers = [nn.Linear(x_dim + y_dim, h_dim),
nn.ReLU(inplace=True),
nn.Linear(h_dim, h_dim),
nn.ReLU(inplace=True),
nn.Linear(h_dim, r_dim)]
self.input_to_hidden = nn.Sequential(*layers)
def forward(self, x, y):
"""
x : torch.Tensor
Shape (batch_size, x_dim)
y : torch.Tensor
Shape (batch_size, y_dim)
"""
input_pairs = torch.cat((x, y), dim=1)
return self.input_to_hidden(input_pairs)
class LatentEncoder(nn.Module):
"""
Maps a representation r to mu and sigma which will define the normal
distribution from which we sample the latent variable z.
Parameters
----------
r_dim : int
Dimension of output representation r.
z_dim : int
Dimension of latent variable z.
"""
def __init__(self, x_dim, y_dim, r_dim, z_dim):
super(LatentEncoder, self).__init__()
self.x_dim = x_dim
self.y_dim = y_dim
self.r_dim = r_dim
self.z_dim = z_dim
self.xy_to_hidden = nn.Linear(x_dim + y_dim, r_dim)
self.hidden_to_mu = nn.Linear(r_dim, z_dim)
self.hidden_to_sigma = nn.Linear(r_dim, z_dim)
def forward(self, x, y, batch_size, num_points):
"""
x : torch.Tensor
Shape (batch_size, x_dim)
y : torch.Tensor
Shape (batch_size, y_dim)
"""
input_pairs = torch.cat((x, y), dim=1)
hidden = torch.relu(self.xy_to_hidden(input_pairs))
hidden = hidden.view(batch_size, num_points, self.r_dim)
hidden = torch.mean(hidden, dim=1)
mu = torch.relu(self.hidden_to_mu(hidden))
# Define sigma following convention in "Empirical Evaluation of Neural
# Process Objectives" and "Attentive Neural Processes"
sigma = 0.1 + 0.9 * torch.sigmoid(self.hidden_to_sigma(hidden))
return mu, sigma
# constrained output
class activation(nn.Module):
def __init__(self, a_max_n_boundary = [-5.0, 5.0]):
super().__init__()
self.a_max_n_boundary = a_max_n_boundary
def forward(self, inputs):
for i in range(len(inputs)):
if inputs[i] < self.a_max_n_boundary[0]:
inputs[i] = self.a_max_n_boundary[0]
elif inputs[i] > self.a_max_n_boundary[1]:
inputs[i] = self.a_max_n_boundary[1]
return inputs
class Decoder(nn.Module):
"""
Maps target input x_target and samples z (encoding information about the
context points) to predictions y_target.
Parameters
----------
x_dim : int
Dimension of x values.
z_dim : int
Dimension of latent variable z.
h_dim : int
Dimension of hidden layer.
y_dim : int
Dimension of y values.
r_dim : int
Dimension of output representation r.
"""
def __init__(self, x_dim, z_dim, h_dim, y_dim, r_dim):
super(Decoder, self).__init__()
self.x_dim = x_dim
self.z_dim = z_dim
self.h_dim = h_dim
self.y_dim = y_dim
self.r_dim = r_dim
layers = [nn.Linear(x_dim + z_dim + r_dim, h_dim),
nn.ReLU(inplace=True),
nn.Linear(h_dim, h_dim),
nn.ReLU(inplace=True),
nn.Linear(h_dim, h_dim),
nn.ReLU(inplace=True)]
self.xz_to_hidden = nn.Sequential(*layers)
self.hidden_to_mu = nn.Linear(h_dim, y_dim)
self.hidden_to_sigma = nn.Linear(h_dim, y_dim)
self.constrain_output = activation()
def forward(self, x, z, r):
"""
x : torch.Tensor
Shape (batch_size, num_points, x_dim)
z : torch.Tensor
Shape (batch_size, z_dim)
r : torch.Tensor
Shape (batch_size, r_dim)
Returns
-------
Returns mu and sigma for output distribution. Both have shape
(batch_size, num_points, y_dim).
"""
batch_size, num_points, _ = x.size()
# Repeat z, so it can be concatenated with every x. This changes shape
# from (batch_size, z_dim) to (batch_size, num_points, z_dim)
z = z.unsqueeze(1).repeat(1, num_points, 1)
r = r.unsqueeze(1).repeat(1, num_points, 1)
# Flatten x, z, and r to fit with linear layer
x_flat = x.view(batch_size * num_points, self.x_dim)
z_flat = z.view(batch_size * num_points, self.z_dim)
r_flat = r.view(batch_size * num_points, self.r_dim)
# print(x_flat.size(), z_flat.size(), r_flat.size())
# Input is concatenation of z with every row of x
input_pairs = torch.cat((x_flat, z_flat, r_flat), dim=1)
hidden = self.xz_to_hidden(input_pairs)
mu = self.hidden_to_mu(hidden)
mu = self.constrain_output(mu)
pre_sigma = self.hidden_to_sigma(hidden)
# Reshape output into expected shape
mu = mu.view(batch_size, num_points, self.y_dim)
pre_sigma = pre_sigma.view(batch_size, num_points, self.y_dim)
# Define sigma following convention in "Empirical Evaluation of Neural
# Process Objectives" and "Attentive Neural Processes"
sigma = 0.1 + 0.9 * F.softplus(pre_sigma)
return mu, sigma
class NeuralProcess(nn.Module):
"""
Implements Neural Process for functions of arbitrary dimensions.
Parameters
----------
x_dim : int
Dimension of x values.
y_dim : int
Dimension of y values.
r_dim : int
Dimension of output representation r.
z_dim : int
Dimension of latent variable z.
h_dim : int
Dimension of hidden layer in encoder and decoder.
"""
def __init__(self, x_dim, y_dim, r_dim, z_dim, h_dim):
super(NeuralProcess, self).__init__()
self.x_dim = x_dim
self.y_dim = y_dim
self.r_dim = r_dim
self.z_dim = z_dim
self.h_dim = h_dim
# self.training = training
# Initialize networks
self.deterministic_encoder = DeterministicEncoder(x_dim, y_dim, h_dim, r_dim)
self.latent_encoder = LatentEncoder(x_dim, y_dim, r_dim, z_dim)
self.decoder = Decoder(x_dim, z_dim, h_dim, y_dim, r_dim)
def aggregate(self, r_i):
"""
Aggregates representations for every (x_i, y_i) pair into a single
representation.
Parameters
----------
r_i : torch.Tensor
Shape (batch_size, num_points, r_dim)
"""
return torch.mean(r_i, dim=1)
def deterministic_rep(self, x, y):
"""
Maps (x, y) pairs into the mu and sigma parameters defining the normal
distribution of the latent variables z.
Parameters
----------
x : torch.Tensor
Shape (batch_size, num_points, x_dim)
y : torch.Tensor
Shape (batch_size, num_points, y_dim)
"""
batch_size, num_points, _ = x.size()
# Flatten tensors, as encoder expects one dimensional inputs
x_flat = x.view(batch_size * num_points, self.x_dim)
y_flat = y.contiguous().view(batch_size * num_points, self.y_dim)
# Encode each point into a representation r_i
r_i_flat = self.deterministic_encoder(x_flat, y_flat)
# Reshape tensors into batches
r_i = r_i_flat.view(batch_size, num_points, self.r_dim)
# print("deterministic encoder r_i size", r_i.size())
# Aggregate representations r_i into a single representation r
r = self.aggregate(r_i)
# Return deterministic representation
return r
def latent_rep(self, x, y):
"""
Maps (x, y) pairs into the mu and sigma parameters defining the normal
distribution of the latent variables z.
Parameters
----------
x : torch.Tensor
Shape (batch_size, num_points, x_dim)
y : torch.Tensor
Shape (batch_size, num_points, y_dim)
"""
batch_size, num_points, _ = x.size()
# Flatten tensors, as encoder expects one dimensional inputs
x_flat = x.view(batch_size * num_points, self.x_dim)
y_flat = y.contiguous().view(batch_size * num_points, self.y_dim)
# Return parameters of latent representation
mu, sigma = self.latent_encoder(x_flat, y_flat, batch_size, num_points)
return mu, sigma
def forward(self, x_context, y_context, x_target, y_target=None, given_r=None):
"""
Given context pairs (x_context, y_context) and target points x_target,
returns a distribution over target points y_target.
Parameters
----------
x_context : torch.Tensor
Shape (batch_size, num_context, x_dim). Note that x_context is a
subset of x_target.
y_context : torch.Tensor
Shape (batch_size, num_context, y_dim)
x_target : torch.Tensor
Shape (batch_size, num_target, x_dim)
y_target : torch.Tensor or None
Shape (batch_size, num_target, y_dim). Only used during training.
Note
----
We follow the convention given in "Empirical Evaluation of Neural
Process Objectives" where context is a subset of target points. This was
shown to work best empirically.
"""
# Infer quantities from tensor dimensions
batch_size, num_context, x_dim = x_context.size()
_, num_target, _ = x_target.size()
_, _, y_dim = y_context.size()
if self.training:
# Encode target and context (context needs to be encoded to
# calculate kl term)
mu_target, sigma_target = self.latent_rep(x_target, y_target)
mu_context, sigma_context = self.latent_rep(x_context, y_context)
# Sample from encoded distribution using reparameterization trick
q_target = Normal(mu_target, sigma_target)
q_context = Normal(mu_context, sigma_context)
z_sample = q_target.rsample()
r = self.deterministic_rep(x_context, y_context)
# Get parameters of output distribution
# print("x_target size", x_target.size())
# print("z_sample size", z_sample.size())
# print("r size", r.size())
y_pred_mu, y_pred_sigma = self.decoder(x_target, z_sample, r)
p_y_pred = Normal(y_pred_mu, y_pred_sigma)
return p_y_pred, q_target, q_context, y_pred_mu
else:
# At testing time, encode only context
mu_context, sigma_context = self.latent_rep(x_context, y_context)
# Sample from distribution based on context
q_context = Normal(mu_context, sigma_context)
z_sample = q_context.rsample()
r = self.deterministic_rep(x_context, y_context)
# Predict target points based on context
if given_r is None:
y_pred_mu, y_pred_sigma = self.decoder(x_target, z_sample, r)
else:
y_pred_mu, y_pred_sigma = self.decoder(x_target, z_sample, given_r)
p_y_pred = Normal(y_pred_mu, y_pred_sigma)
return p_y_pred, y_pred_mu, y_pred_sigma, r, mu_context, sigma_context
class NeuralProcessTrainer():
"""
Class to handle training of Neural Processes for functions and images.
Parameters
----------
device : torch.device
neural_process : neural_process.NeuralProcess or NeuralProcessImg instance
optimizer : one of torch.optim optimizers
num_context_range : tuple of ints
Number of context points will be sampled uniformly in the range given
by num_context_range.
num_extra_target_range : tuple of ints
Number of extra target points (as we always include context points in
target points, i.e. context points are a subset of target points) will
be sampled uniformly in the range given by num_extra_target_range.
print_freq : int
Frequency with which to print loss information during training.
"""
def __init__(self, device, neural_process, optimizer, num_context_range,
num_extra_target_range, print_freq=10):
self.device = device
self.neural_process = neural_process
self.optimizer = optimizer
self.num_context_range = num_context_range
self.num_extra_target_range = num_extra_target_range
self.print_freq = print_freq
self.steps = 0
self.epoch_loss_history = []
def train(self, data_loader, epochs):
"""
Trains Neural Process.
Parameters
----------
dataloader : torch.utils.DataLoader instance
epochs : int
Number of epochs to train for.
"""
for epoch in range(epochs):
epoch_loss = 0.
epoch_loss_n = 0
for i, data in data_loader.items():
for _ in range(1): # try with different number of context points
self.optimizer.zero_grad()
# Sample number of context and target points
num_context = randint(*self.num_context_range)
num_extra_target = randint(*self.num_extra_target_range)
# Create context and target points and apply neural process
x, y = data
# print(np.array(x).shape, np.array(y).shape)
x_context, y_context, x_target, y_target = context_target_split(x, y, num_context, num_extra_target)
x_context = torch.from_numpy(x_context).type(torch.FloatTensor)
y_context = torch.from_numpy(y_context).type(torch.FloatTensor)
x_target = torch.from_numpy(x_target).type(torch.FloatTensor)
y_target = torch.from_numpy(y_target).type(torch.FloatTensor)
p_y_pred, q_target, q_context, y_pred_mu = self.neural_process(x_context, y_context, x_target, y_target)
loss = self._loss(p_y_pred, y_target, q_target, q_context, y_pred_mu)
loss.backward()
self.optimizer.step()
epoch_loss += loss.item()
epoch_loss_n += 1
self.steps += 1
# if self.steps % self.print_freq == 0:
batch_size, num_points, _ = y_pred_mu.size()
y_pred_mu = y_pred_mu.view(batch_size * num_points, )
y_target = y_target.view(batch_size * num_points, )
print(y_pred_mu.size(), y_target.size())
print("iteration {} | loss {:.3f} | train accuracy {:.3f}".format(self.steps, loss.item(),
mean_squared_error(y_pred_mu.detach().numpy(), y_target.detach().numpy())))
logging.info("iteration {} | loss {:.3f} | train accuracy {:.3f}".format(self.steps, loss.item(),
mean_squared_error(y_pred_mu.detach().numpy(), y_target.detach().numpy())))
logging.info("Avg_loss: {}".format(epoch_loss / epoch_loss_n))
self.epoch_loss_history.append(epoch_loss / epoch_loss_n)
print("Epoch: {}, Avg_loss: {}, Min_loss: {}".format(epoch, epoch_loss / epoch_loss_n,
min(self.epoch_loss_history)))
return epoch_loss / epoch_loss_n
def _loss(self, p_y_pred, y_target, q_target, q_context, y_pred_mu):
"""
Computes Neural Process loss.
Parameters
----------
p_y_pred : one of torch.distributions.Distribution
Distribution over y output by Neural Process.
y_target : torch.Tensor
Shape (batch_size, num_target, y_dim)
q_target : one of torch.distributions.Distribution
Latent distribution for target points.
q_context : one of torch.distributions.Distribution
Latent distribution for context points.
"""
# Log likelihood has shape (batch_size, num_target, y_dim). Take mean
# over batch and sum over number of targets and dimensions of y
log_likelihood = p_y_pred.log_prob(y_target).mean(dim=0).mean()
# KL has shape (batch_size, r_dim). Take mean over batch and sum over
# r_dim (since r_dim is dimension of normal distribution)
kl = kl_divergence(q_target, q_context).mean(dim=0).mean()
# reconstruction error
batch_size, num_points, _ = y_pred_mu.size()
y_pred_mu = y_pred_mu.view(batch_size * num_points, )
y_target = y_target.view(batch_size * num_points, )
recon = mean_squared_error(y_pred_mu.detach().numpy(), y_target.detach().numpy(), squared=False) * 10
return -log_likelihood + kl + recon
def get_data_with_pos():
f = open('all_data_for_cf_model_w_t_pre_info_pos_1101.pkl', 'rb')
all_data_for_cf_model = pickle.load(f)
f.close()
next_vs = []
v_ids = []
all_cf_datas = []
next_v = 1
segs_info = []
for v_id, all_cf_data in all_data_for_cf_model.items():
print("-------------------------------------------------------------------------------------------------")
print(str(next_v) + 'th vehicle with id ' + str(v_id))
next_vs.append(next_v)
v_ids.append(v_id)
next_v += 1
# [delta_v_l, space_hw_l, ego_v_l, a_l]
delta_V_n_t = np.array(all_cf_data[0])
S_n_t = np.array(all_cf_data[1])
V_n_t = np.array(all_cf_data[2])
a = np.array(all_cf_data[3])
t = np.array(all_cf_data[4])
pre_v = np.array(all_cf_data[5])
pre_tan_acc = np.array(all_cf_data[6])
pre_lat_acc = np.array(all_cf_data[7])
pre_v_id = np.array(all_cf_data[8])
ego_x = np.array(all_cf_data[9])
ego_y = np.array(all_cf_data[10])
pre_x = np.array(all_cf_data[11])
pre_y = np.array(all_cf_data[12])
print(len(a), np.mean(np.abs(a)))
print(len(pre_v), np.mean(pre_v))
print(len(pre_tan_acc), np.mean(np.abs(pre_tan_acc)))
print(len(pre_lat_acc), np.mean(np.abs(pre_lat_acc)))
data_array = np.array([delta_V_n_t, S_n_t, V_n_t, a, ego_x, ego_y, pre_x, pre_y, pre_v, pre_tan_acc, pre_lat_acc, pre_v_id, t]).T
data_array = data_array[data_array[:, -1].argsort()]
t = np.array(data_array[:, -1])
# data_array = data_array[:, 0:-1]
segs = []
this_seg = []
this_seg_info = []
for i in range(len(data_array) - 1):
current_t = data_array[i][-1]
next_t = data_array[i + 1][-1]
current_pre_v_id = data_array[i][-2]
next_pre_v_id = data_array[i + 1][-2]
if np.abs(next_t - current_t - 0.04) < 0.0001 and np.abs(current_pre_v_id - next_pre_v_id) < 0.0001:
this_seg.append(np.append(data_array[i], i))
if i == len(data_array) - 2:
this_seg.append(np.append(data_array[i + 1], i + 1))
this_seg = np.array(this_seg)
if len(this_seg) > 1:
this_seg_info.append(this_seg.shape)
print(this_seg.shape)
segs.append(this_seg)
break
continue
else:
this_seg.append(np.append(data_array[i], i))
this_seg = np.array(this_seg)
if len(this_seg) > 1:
this_seg_info.append(this_seg.shape)
print(this_seg.shape)
segs.append(this_seg)
this_seg = []
print(len(segs))
segs_info.append(this_seg_info)
new_delta_V_n_t = []
new_S_n_t = []
check_S_n_t = []
new_V_n_t = []
new_S_n_t_y = []
new_ego_x = []
new_ego_y = []
new_next_pre_x = []
new_next_pre_y = []
new_frame_id = []
sim_S_n_t_y = []
new_a = []
new_pre_v = []
new_pre_tan_acc = []
new_pre_lat_acc = []
# clean_a = []
diff_s = []
# diff_a = []
# delta_V_n_t, S_n_t, V_n_t, a, ego_x, ego_y, pre_x, pre_y, pre_v, pre_tan_acc, pre_lat_acc, pre_v_id, t
for seg in segs:
for i in range(len(seg) - 1):
new_delta_V_n_t.append(seg[i][0])
new_S_n_t.append(seg[i][1])
check_S_n_t.append(np.sqrt((seg[i][6] - seg[i][4]) ** 2 + (seg[i][7] - seg[i][5]) ** 2))
new_V_n_t.append(seg[i][2])
new_a.append(seg[i][3])
sim_spacing = sim_new_spacing(seg[i + 1][6], seg[i + 1][7], seg[i][4], seg[i][5], seg[i][2], seg[i][3])
# cal_a = cal_new_a(seg[i + 1][6], seg[i + 1][7], seg[i][4], seg[i][5], seg[i][2], seg[i + 1][1])
sim_S_n_t_y.append(sim_spacing)
# clean_a.append(cal_a)
new_S_n_t_y.append(seg[i + 1][1])
new_ego_x.append(seg[i][4])
new_ego_y.append(seg[i][5])
new_next_pre_x.append(seg[i + 1][6])
new_next_pre_y.append(seg[i + 1][7])
diff_s.append(np.abs(seg[i + 1][1] - sim_spacing))
# diff_a.append(np.abs(seg[i][3] - cal_a))
new_frame_id.append(seg[i][-1])
new_pre_v.append(seg[i][8])
new_pre_tan_acc.append(seg[i][9])
new_pre_lat_acc.append(seg[i][10])
if not data_array.shape[0] - 2 == new_frame_id[-1]:
print("error", data_array.shape, new_frame_id[-1])
time.sleep(5)
data_array = np.array(
[new_delta_V_n_t, new_S_n_t, new_V_n_t, new_a, new_S_n_t_y, new_ego_x, new_ego_y, new_next_pre_x,
new_next_pre_y, new_pre_v, new_pre_tan_acc, new_pre_lat_acc, new_frame_id]).T
# print("spacing", np.mean(new_S_n_t_y), np.mean(new_S_n_t), np.mean(check_S_n_t),
# np.mean(np.array(new_S_n_t_y) - np.array(new_S_n_t)),
# np.mean(diff_s), np.mean(diff_a))
print(data_array.shape)
all_cf_datas.append(data_array)
return next_vs, v_ids, all_cf_datas, segs_info
def cal_ttc(next_v, v_id, all_cf_data):
# S_n_t_1, delta_V_n_t, S_n_t, V_n_t, next_pre_x, next_pre_y, ego_x, ego_y = args
if os.path.exists('0803_mop_space_dist_param/' + str(int(v_id)) + '/using_all_data.txt'):
res_param = np.loadtxt('0803_mop_space_dist_param/' + str(int(v_id)) + '/using_all_data.txt')
else:
return False, False, False
fix_a_max = res_param[0]
fix_desired_V = res_param[1]
fix_a_comf = res_param[2]
fix_S_jam = res_param[3]
fix_desired_T = res_param[4]
tv_params_mean = np.loadtxt('0803_mop_space_dist_param/' + str(int(v_id)) + '/tv_params_mean.txt')
for i in range(1, len(all_cf_data)):
previous_frame = all_cf_data[i - 1]
current_frame = all_cf_data[i]
if current_frame[9] - previous_frame[9] != 1:
p_delta_V_n_t = current_frame[0]
p_S_n_t = current_frame[1]
p_V_n_t = current_frame[2]
p_a_n_t = current_frame[3]
p_next_S_n_t = current_frame[4]
p_ego_x = current_frame[5]
p_ego_y = current_frame[6]
p_next_pre_x = current_frame[7]
p_next_pre_y = current_frame[8]
continue
delta_V_n_t = current_frame[0]
S_n_t = current_frame[1]
V_n_t = current_frame[2]
a_n_t = current_frame[3]
next_S_n_t = current_frame[4]
ego_x = current_frame[5]
ego_y = current_frame[6]
next_pre_x = current_frame[7]
next_pre_y = current_frame[8]
pre_V_n_t = V_n_t - delta_V_n_t
if i == 1:
p_delta_V_n_t = previous_frame[0]
p_S_n_t = previous_frame[1]
p_V_n_t = previous_frame[2]
p_a_n_t = previous_frame[3]
p_next_S_n_t = previous_frame[4]
p_ego_x = previous_frame[5]
p_ego_y = previous_frame[6]
p_next_pre_x = previous_frame[7]
p_next_pre_y = previous_frame[8]
tv_params = tv_params_mean[i]
a_max, desired_V, a_comf, S_jam, desired_T = tv_params[0], tv_params[1], tv_params[2], tv_params[3], tv_params[
4]
a_n_t_hat = IDM_cf_model_for_p(p_delta_V_n_t, p_S_n_t, p_V_n_t, a_max, desired_V, a_comf, S_jam, desired_T, 4)
tv_sim_V_n_t = p_V_n_t + a_n_t_hat * 0.04
fix_a_n_t_hat = IDM_cf_model_for_p(p_delta_V_n_t, p_S_n_t, p_V_n_t, fix_a_max, fix_desired_V, fix_a_comf,
fix_S_jam, fix_desired_T, 4)
fix_sim_V_n_t = p_V_n_t + fix_a_n_t_hat * 0.04
tv_V_n_t_1 = V_n_t
ttc = S_n_t / delta_V_n_t
# fix_ttc =
# tv_ttc =
i += 1
def sim_new_spacing(new_pre_x, new_pre_y, old_ego_x, old_ego_y, V_n_t, a_n_t, delta_t=0.04):
return np.sqrt((new_pre_x - old_ego_x) ** 2 + (new_pre_y - old_ego_y) ** 2) - (2 * V_n_t + a_n_t * delta_t) / 2 * delta_t
train_x = []
train_y = []
test_x = []
test_y = []
all_x = []
all_y = []
train = np.random.choice(range(1, 277), 256, replace=False)
next_v = 1
all_a = []
next_vs, v_ids, all_cf_datas, segs_info = get_data_with_pos()
for i in range(len(v_ids)):
v_id = v_ids[i]
all_cf_data = all_cf_datas[i].T
# print("------------------------------------------------------------------------------------------------------")
# print(str(next_v) + 'th vehicle with id ' + str(v_id))
# delta_V_n_t, S_n_t, V_n_t, a, S_n_t_y, ego_x, ego_y, next_pre_x, next_pre_y, pre_v, pre_tan_acc, pre_lat_acc, frame_id
delta_V_n_t = np.array(all_cf_data[0])
S_n_t = np.array(all_cf_data[1])
V_n_t = np.array(all_cf_data[2])
a = np.array(all_cf_data[3])
S_n_t_y = np.array(all_cf_data[4])
ego_x = np.array(all_cf_data[5])
ego_y = np.array(all_cf_data[6])
next_pre_x = np.array(all_cf_data[7])
next_pre_y = np.array(all_cf_data[8])
pre_v = np.array(all_cf_data[9])
pre_tan_acc = np.array(all_cf_data[10])
pre_lat_acc = np.array(all_cf_data[11])
frame_id = np.array(all_cf_data[12])
v_id = [v_id] * len(a)
data_array = np.array([v_id, delta_V_n_t, S_n_t, V_n_t, pre_v, pre_tan_acc, pre_lat_acc, S_n_t_y, ego_x, ego_y, next_pre_x, next_pre_y, frame_id, a]).T
print(data_array.shape)
if not next_v in train:
test_x.append(data_array[:, 0:-1])
test_y.append(data_array[:, -1])
all_x.append(data_array[:, 0:-1])
all_y.append(data_array[:, -1])
print(test_x[-1].shape, test_y[-1].shape)
else:
train_x.append(data_array[:, 0:-1])
train_y.append(data_array[:, -1])
all_x.append(data_array[:, 0:-1])
all_y.append(data_array[:, -1])
print(train_x[-1].shape, train_y[-1].shape)
next_v += 1
print(len(train_x), len(train_y))
print(len(test_x), len(test_y))
from torch.utils.data import Dataset, DataLoader
from torch.autograd import Variable
from time import strftime
def get_test_dataloader(x, y):
# v_id, delta_V_n_t, S_n_t, V_n_t, pre_v, pre_tan_acc, pre_lat_acc, S_n_t_y, ego_x, ego_y, next_pre_x, next_pre_y, frame_id, a
data_loader = {}
for i in range(len(x)):
v_id = x[i][0][0]
print(v_id)
for_sim_spacing = x[i].T[7::].T
x[i] = x[i].T[1:7].T
data_loader[v_id] = ([x[i]], [for_sim_spacing], [y[i]])
return data_loader
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device = "cpu"
# Create a folder to store experiment results
# timestamp = strftime("%Y-%m-%d")
# directory = "neural_processes_results_{}".format(timestamp)
# if not os.path.exists(directory):
# os.makedirs(directory)
batch_size = 1
x_dim = 6
y_dim = 1
r_dim = 5
h_dim = 128
z_dim = 1
num_context_range = (300, 500)
num_extra_target_range = (100, 200)
epochs = 2000
lr = 0.001
data_loader = get_test_dataloader(all_x, all_y)
print(len(data_loader))
cf_np = NeuralProcess(x_dim, y_dim, r_dim, z_dim, h_dim)
cf_np.load_state_dict(torch.load("NP_model.pt"))
print(cf_np)
cf_np.training = False
print(cf_np.training)
# logging.basicConfig(filename=directory + '/test.log',
# format='%(asctime)s : %(message)s',
# datefmt='%Y-%m-%d %H:%M:%S %p',
# level=10)
def simulate_agg():
all_rmse = []
all_r_c = []
n = 1
sim_ttc = []
sim_spacing = []
sim_speed = []
ttc = []
spacing = []
speed = []
a_err = []
new_seg = False
direction = 0.9712041389105396
non_existed_r_c = np.loadtxt("/root/AAAI2022_neuma/0714_dist_param/new_ds_cf_model/new_ds.txt")
new_con_r = torch.tensor(non_existed_r_c[0]).type(torch.FloatTensor)
new_agg_r = torch.tensor(non_existed_r_c[1]).type(torch.FloatTensor)
response_time = 1.5
safe_decel = -5
for i, data in data_loader.items():
r_l = []
rmse_l = []
n += 1
x, for_sim_spacing, y = data
print(i)
for j in range(1, len(x[0])):
current_frame = x[0][j]
current_for_sim_spacing = for_sim_spacing[0][j]
previous_frame = x[0][j - 1]
previous_for_sim_spacing = for_sim_spacing[0][j - 1]
if current_for_sim_spacing[-1] - previous_for_sim_spacing[-1] != 1:
new_seg = True
break
# Sample number of context and target points
# num_context = randint(*num_context_range)
# num_extra_target = randint(*num_extra_target_range)
# num_points = num_context + num_extra_target
# Create context and target points and apply neural process
num_context = len(x[0])
num_extra_target = 1
num_points = len(x[0])
# x_context, y_context, x_target, y_target = context_target_split(x, y, num_context, num_extra_target)
# x: delta_V_n_t, S_n_t, V_n_t, pre_v, pre_tan_acc, pre_lat_acc
# for sim spacing: S_n_t_y, ego_x, ego_y, next_pre_x, next_pre_y
if j == 1 or new_seg:
previous_delta_V_n_t = previous_frame[0]
previous_S_n_t = previous_frame[1]
previous_V_n_t = previous_frame[2]
previous_pre_v = previous_frame[3]
previous_pre_tan_acc = previous_frame[4]
previous_pre_lat_acc = previous_frame[5]
else:
previous_delta_V_n_t = sim_previous_frame[0]
previous_S_n_t = sim_previous_frame[1]
previous_V_n_t = sim_previous_frame[2]
previous_pre_v = sim_previous_frame[3]
previous_pre_tan_acc = sim_previous_frame[4]
previous_pre_lat_acc = sim_previous_frame[5]
x_target = np.array([[previous_delta_V_n_t, previous_S_n_t, previous_V_n_t, previous_pre_v, previous_pre_tan_acc, previous_pre_lat_acc]])
fix_x_target = np.array([previous_frame])
x_context, y_context = np.array(x), np.array([y])
x_context = torch.from_numpy(x_context).type(torch.FloatTensor)
y_context = torch.from_numpy(y_context).type(torch.FloatTensor)
x_target = torch.from_numpy(x_target).type(torch.FloatTensor).view(1, 1, x_dim)
fix_x_target = torch.from_numpy(fix_x_target).type(torch.FloatTensor).view(1, 1, x_dim)
# predict acceleration
# p_y_pred, y_pred_mu, y_pred_sigma, r, mu_context, sigma_context = cf_np(x_context, y_context, x_target, None)
p_y_pred, y_pred_mu, y_pred_sigma, r, mu_context, sigma_context = cf_np(x_context, y_context, x_target, None, new_agg_r) # new ds cf model
# a_n_t = y_pred_mu.detach().numpy().reshape(batch_size * num_points, 1)[0]
a_n_t = y_pred_mu.detach().numpy().reshape(1,)[0]
p_y_pred, y_pred_mu, y_pred_sigma, r, mu_context, sigma_context = cf_np(x_context, y_context, fix_x_target, None)
fix_a_n_t = y_pred_mu.detach().numpy().reshape(1, )[0]
a_err.append((fix_a_n_t - y[0][j - 1]) ** 2)
# update velocity
safe_distance = previous_V_n_t * response_time
if previous_S_n_t < safe_distance:
a_n_t = safe_decel
print(a_n_t, fix_a_n_t, y[0][j - 1])
V_n_t = previous_V_n_t + a_n_t * 0.04
# calculate heading direction
# previous_ego_x = previous_for_sim_spacing[1]
# previous_ego_y = previous_for_sim_spacing[2]
# ego_x = current_for_sim_spacing[1]
# ego_y = current_for_sim_spacing[2]
# direction = np.arctan((ego_y - previous_ego_y) / (previous_ego_x - ego_x))
# update the ego vehicle's position
if j == 1 or new_seg:
previous_ego_x = previous_for_sim_spacing[1]
previous_ego_y = previous_for_sim_spacing[2]
ego_x = previous_ego_x - np.cos(direction) * V_n_t * 0.04
ego_y = previous_ego_y + np.sin(direction) * V_n_t * 0.04
else:
ego_x = sim_previous_ego_x - np.cos(direction) * V_n_t * 0.04
ego_y = sim_previous_ego_y + np.sin(direction) * V_n_t * 0.04
pre_x = previous_for_sim_spacing[3]
pre_y = previous_for_sim_spacing[4]
print("leading v pos", pre_x, pre_y)
print("sim ego pos", ego_x, ego_y)
print("ego pos", current_for_sim_spacing[1], current_for_sim_spacing[2])
# update the traffic condition
previous_delta_V_n_t = V_n_t - current_frame[3]
previous_S_n_t = np.sqrt((pre_y - ego_y) ** 2 + (pre_x - ego_x) ** 2)
previous_V_n_t = V_n_t
previous_pre_v = current_frame[3]
previous_pre_tan_acc = current_frame[4]
previous_pre_lat_acc = current_frame[5]
sim_previous_frame = np.array([previous_delta_V_n_t, previous_S_n_t, previous_V_n_t, previous_pre_v, previous_pre_tan_acc, previous_pre_lat_acc])
sim_previous_ego_x = ego_x
sim_previous_ego_y = ego_y
print("sim ttc", previous_S_n_t, previous_delta_V_n_t)
print("gt ttc", current_frame[1], current_frame[0])
sim_ttc.append(previous_S_n_t/previous_delta_V_n_t)
sim_spacing.append(previous_S_n_t)
sim_speed.append(previous_V_n_t)
ttc.append(current_frame[1]/current_frame[0])
spacing.append(current_frame[1])
speed.append(current_frame[2])
# print(mu_context, sigma_context, r)
# r_l.append(r.detach().numpy())
# print(n, i, mean_squared_error(y_pred_mu.detach().numpy().reshape(batch_size*num_points, 1),
# y_target.detach().numpy().reshape(batch_size*num_points, 1)))
# rmse_l.append(mean_squared_error(y_pred_mu.detach().numpy().reshape(batch_size*num_points, 1),
# y_target.detach().numpy().reshape(batch_size*num_points, 1)))
# r_l = np.array(r_l).reshape(20, 5)
# print(r_l.shape)
# print(np.mean(r_l, axis=0), np.std(r_l, axis=0))
# all_r_c.append(np.mean(r_l, axis=0))
# all_rmse.append(np.mean(rmse_l))
break
print(len(sim_ttc))
print("ttc:", np.mean(sim_ttc), np.mean(ttc))
print("spacing:", np.mean(sim_spacing), np.mean(spacing))
print("speed:", np.mean(sim_speed), np.mean(speed))
print(np.sqrt(np.mean(a_err)))
np.savetxt("/root/AAAI2022_neuma/0714_dist_param/new_ds_cf_model/agg_index_5_sim_ttc.txt", sim_ttc)
np.savetxt("/root/AAAI2022_neuma/0714_dist_param/new_ds_cf_model/agg_index_5_sim_spacing.txt", sim_spacing)
np.savetxt("/root/AAAI2022_neuma/0714_dist_param/new_ds_cf_model/agg_index_5_sim_speed.txt", sim_speed)
np.savetxt("/root/AAAI2022_neuma/0714_dist_param/new_ds_cf_model/gt_ttc.txt", ttc)
np.savetxt("/root/AAAI2022_neuma/0714_dist_param/new_ds_cf_model/gt_spacing.txt", spacing)
np.savetxt("/root/AAAI2022_neuma/0714_dist_param/new_ds_cf_model/gt_speed.txt", speed)
def simulate_con():
all_rmse = []
all_r_c = []
n = 1
sim_ttc = []
sim_spacing = []
sim_speed = []
ttc = []
spacing = []
speed = []
a_err = []
new_seg = False
direction = 0.9712041389105396
non_existed_r_c = np.loadtxt("/root/AAAI2022_neuma/0714_dist_param/new_ds_cf_model/new_ds.txt")
new_con_r = torch.tensor(non_existed_r_c[0]).type(torch.FloatTensor)
new_agg_r = torch.tensor(non_existed_r_c[1]).type(torch.FloatTensor)
response_time = 2.0
safe_decel = -5
for i, data in data_loader.items():
r_l = []
rmse_l = []
n += 1
x, for_sim_spacing, y = data
print(i)
for j in range(1, len(x[0])):
current_frame = x[0][j]
current_for_sim_spacing = for_sim_spacing[0][j]
previous_frame = x[0][j - 1]
previous_for_sim_spacing = for_sim_spacing[0][j - 1]
if current_for_sim_spacing[-1] - previous_for_sim_spacing[-1] != 1:
new_seg = True
break
# Sample number of context and target points
# num_context = randint(*num_context_range)
# num_extra_target = randint(*num_extra_target_range)
# num_points = num_context + num_extra_target
# Create context and target points and apply neural process
num_context = len(x[0])
num_extra_target = 1
num_points = len(x[0])
# x_context, y_context, x_target, y_target = context_target_split(x, y, num_context, num_extra_target)
# x: delta_V_n_t, S_n_t, V_n_t, pre_v, pre_tan_acc, pre_lat_acc
# for sim spacing: S_n_t_y, ego_x, ego_y, next_pre_x, next_pre_y
if j == 1 or new_seg:
previous_delta_V_n_t = previous_frame[0]
previous_S_n_t = previous_frame[1]
previous_V_n_t = previous_frame[2]
previous_pre_v = previous_frame[3]
previous_pre_tan_acc = previous_frame[4]
previous_pre_lat_acc = previous_frame[5]
else:
previous_delta_V_n_t = sim_previous_frame[0]
previous_S_n_t = sim_previous_frame[1]
previous_V_n_t = sim_previous_frame[2]
previous_pre_v = sim_previous_frame[3]
previous_pre_tan_acc = sim_previous_frame[4]
previous_pre_lat_acc = sim_previous_frame[5]
x_target = np.array([[previous_delta_V_n_t, previous_S_n_t, previous_V_n_t, previous_pre_v,
previous_pre_tan_acc, previous_pre_lat_acc]])
fix_x_target = np.array([previous_frame])
x_context, y_context = np.array(x), np.array([y])
x_context = torch.from_numpy(x_context).type(torch.FloatTensor)
y_context = torch.from_numpy(y_context).type(torch.FloatTensor)
x_target = torch.from_numpy(x_target).type(torch.FloatTensor).view(1, 1, x_dim)
fix_x_target = torch.from_numpy(fix_x_target).type(torch.FloatTensor).view(1, 1, x_dim)
# predict acceleration
# p_y_pred, y_pred_mu, y_pred_sigma, r, mu_context, sigma_context = cf_np(x_context, y_context, x_target, None)
p_y_pred, y_pred_mu, y_pred_sigma, r, mu_context, sigma_context = cf_np(x_context, y_context, x_target,
None, new_con_r) # new ds cf model
# a_n_t = y_pred_mu.detach().numpy().reshape(batch_size * num_points, 1)[0]
a_n_t = y_pred_mu.detach().numpy().reshape(1, )[0]
p_y_pred, y_pred_mu, y_pred_sigma, r, mu_context, sigma_context = cf_np(x_context, y_context, fix_x_target,
None)
fix_a_n_t = y_pred_mu.detach().numpy().reshape(1, )[0]
a_err.append((fix_a_n_t - y[0][j - 1]) ** 2)
# update velocity
safe_distance = previous_V_n_t * response_time
if previous_S_n_t < safe_distance:
a_n_t = safe_decel
print(a_n_t, fix_a_n_t, y[0][j - 1])
V_n_t = previous_V_n_t + a_n_t * 0.04
# calculate heading direction
# previous_ego_x = previous_for_sim_spacing[1]
# previous_ego_y = previous_for_sim_spacing[2]
# ego_x = current_for_sim_spacing[1]
# ego_y = current_for_sim_spacing[2]
# direction = np.arctan((ego_y - previous_ego_y) / (previous_ego_x - ego_x))
# update the ego vehicle's position
if j == 1 or new_seg:
previous_ego_x = previous_for_sim_spacing[1]
previous_ego_y = previous_for_sim_spacing[2]
ego_x = previous_ego_x - np.cos(direction) * V_n_t * 0.04
ego_y = previous_ego_y + np.sin(direction) * V_n_t * 0.04
else:
ego_x = sim_previous_ego_x - np.cos(direction) * V_n_t * 0.04
ego_y = sim_previous_ego_y + np.sin(direction) * V_n_t * 0.04
pre_x = previous_for_sim_spacing[3]
pre_y = previous_for_sim_spacing[4]
print("leading v pos", pre_x, pre_y)
print("sim ego pos", ego_x, ego_y)
print("ego pos", current_for_sim_spacing[1], current_for_sim_spacing[2])
# update the traffic condition
previous_delta_V_n_t = V_n_t - current_frame[3]
previous_S_n_t = np.sqrt((pre_y - ego_y) ** 2 + (pre_x - ego_x) ** 2)
previous_V_n_t = V_n_t
previous_pre_v = current_frame[3]
previous_pre_tan_acc = current_frame[4]
previous_pre_lat_acc = current_frame[5]
sim_previous_frame = np.array(
[previous_delta_V_n_t, previous_S_n_t, previous_V_n_t, previous_pre_v, previous_pre_tan_acc,
previous_pre_lat_acc])
sim_previous_ego_x = ego_x
sim_previous_ego_y = ego_y
print("sim ttc", previous_S_n_t, previous_delta_V_n_t)
print("gt ttc", current_frame[1], current_frame[0])
sim_ttc.append(previous_S_n_t / previous_delta_V_n_t)
sim_spacing.append(previous_S_n_t)
sim_speed.append(previous_V_n_t)
ttc.append(current_frame[1] / current_frame[0])
spacing.append(current_frame[1])
speed.append(current_frame[2])
# print(mu_context, sigma_context, r)
# r_l.append(r.detach().numpy())
# print(n, i, mean_squared_error(y_pred_mu.detach().numpy().reshape(batch_size*num_points, 1),
# y_target.detach().numpy().reshape(batch_size*num_points, 1)))
# rmse_l.append(mean_squared_error(y_pred_mu.detach().numpy().reshape(batch_size*num_points, 1),
# y_target.detach().numpy().reshape(batch_size*num_points, 1)))
# r_l = np.array(r_l).reshape(20, 5)
# print(r_l.shape)
# print(np.mean(r_l, axis=0), np.std(r_l, axis=0))
# all_r_c.append(np.mean(r_l, axis=0))
# all_rmse.append(np.mean(rmse_l))
break
print(len(sim_ttc))
print("ttc:", np.mean(sim_ttc), np.mean(ttc))
print("spacing:", np.mean(sim_spacing), np.mean(spacing))
print("speed:", np.mean(sim_speed), np.mean(speed))
print(np.sqrt(np.mean(a_err)))
np.savetxt("/root/AAAI2022_neuma/0714_dist_param/new_ds_cf_model/con_index_5_sim_ttc.txt", sim_ttc)
np.savetxt("/root/AAAI2022_neuma/0714_dist_param/new_ds_cf_model/con_index_5_sim_spacing.txt", sim_spacing)
np.savetxt("/root/AAAI2022_neuma/0714_dist_param/new_ds_cf_model/con_index_5_sim_speed.txt", sim_speed)
np.savetxt("/root/AAAI2022_neuma/0714_dist_param/new_ds_cf_model/gt_ttc.txt", ttc)
np.savetxt("/root/AAAI2022_neuma/0714_dist_param/new_ds_cf_model/gt_spacing.txt", spacing)
np.savetxt("/root/AAAI2022_neuma/0714_dist_param/new_ds_cf_model/gt_speed.txt", speed)
simulate_agg()
simulate_con()
exit()
plt.figure()
plt.hist(spacing, color="lightcoral")
plt.hist(sim_spacing, alpha=0.6, color="skyblue")
plt.savefig("/root/AAAI2022_neuma/0803_mop_space_dist_param/"+str(int(i))+"/comp_spacing.png")
plt.figure()
plt.hist(ttc, color="lightcoral", range=(-50, 50))
plt.hist(sim_ttc, alpha=0.6, color="skyblue", range=(-50, 50))
plt.savefig("/root/AAAI2022_neuma/0803_mop_space_dist_param/"+str(int(i))+"/comp_ttc.png")
plt.figure()
plt.hist(speed, color="lightcoral")
plt.hist(sim_speed, alpha=0.6, color="skyblue")
plt.savefig("/root/AAAI2022_neuma/0803_mop_space_dist_param/"+str(int(i))+"/comp_speed.png")
exit()
print(np.mean(all_rmse), np.std(all_rmse))
all_r_c = | np.array(all_r_c) | numpy.array |
# Copyright (C) 2021 Members of the Simons Observatory collaboration.
# Please refer to the LICENSE file in the root of this repository.
import os
import ref
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.transforms as mtransforms
import matplotlib.colors as colors
import matplotlib.cm as cm
from scipy.stats import chisquare
from waferscreen.data_io.explore_io import flagged_data, wafer_str_to_num, res_num_to_str, band_num_to_str,\
chip_id_str_to_chip_id_tuple
from waferscreen.data_io.s21_io import read_s21, ri_to_magphase
from waferscreen.analyze.lambfit import f0_of_I
from waferscreen.data_io.explore_io import CalcMetadataAtNeg95dbm, CalcMetadataAtNeg75dbm
report_markers = ["*", "v", "s", "<", "X",
"p", "^", "D", ">", "P"]
report_colors = ["seagreen", "crimson", "darkgoldenrod", "deepskyblue", "mediumblue", "rebeccapurple"]
def criteria_flagged_summary(flag_table_info, criteria_name, res_numbers, too_low=True):
for res_label in res_numbers:
summary_str = F"Criteria Flag: {criteria_name}"
if too_low:
summary_str += " too low."
else:
summary_str += " too high."
# if the resonator was flagged already for another reason we need to add a new line to the summary.
if res_label in flag_table_info:
flag_table_info[res_label] += "\n" + summary_str
else:
flag_table_info[res_label] = summary_str
return flag_table_info
def chi_squared_plot(ax, f_ghz_mean, chi_squared_for_resonators, res_nums_int, color, markersize, alpha,
x_label, y_label, x_ticks_on, max_chi_squared=None):
# calculate when the values are outside of the acceptance range
if max_chi_squared is None:
upper_bound = float("inf")
else:
upper_bound = float(max_chi_squared)
res_nums_too_high_chi_squared = set()
# turn on/off tick marks
if not x_ticks_on:
ax.tick_params(axis="x", labelbottom=False)
# loop to plot data one point at a time (add a identifying marker for each data point)
counter = 0
for f_ghz, chi_squared in zip(f_ghz_mean, chi_squared_for_resonators):
res_num = res_nums_int[counter]
marker = report_markers[res_num % len(report_markers)]
ax.plot(f_ghz, chi_squared.statistic, color=color, ls='None', marker=marker, markersize=markersize, alpha=alpha)
if upper_bound < chi_squared.statistic:
res_nums_too_high_chi_squared.add(res_num_to_str(res_num))
ax.plot(f_ghz, chi_squared.statistic, color="black", ls='None', marker="x", markersize=markersize + 2, alpha=1.0)
counter += 1
# boundary and average lines
if max_chi_squared is not None:
ax.axhline(y=max_chi_squared, xmin=0, xmax=1, color='red', linestyle='dashdot')
# tick marks and axis labels
if x_label is None:
if x_ticks_on:
ax.set_xlabel("Average Resonator Center Frequency (GHz)")
else:
ax.set_xlabel(x_label)
if y_label is not None:
ax.set_ylabel(y_label)
# grid on major tick marks
ax.grid(b=True)
ax.set_yscale("log")
return ax, res_nums_too_high_chi_squared
def error_bar_report_plot(ax, xdata, ydata, yerr, res_nums_int, color="black", ls='None', markersize=10, alpha=0.7,
x_label=None, y_label=None, x_ticks_on=True,
min_y=None, max_y=None, average_y=None):
# calculate when the values are outside of the acceptance range
if min_y is None:
lower_bound = float("-inf")
else:
lower_bound = float(min_y)
if max_y is None:
upper_bound = float("inf")
else:
upper_bound = float(max_y)
res_nums_too_low = set()
res_nums_too_high = set()
# turn on/off tick marks
if not x_ticks_on:
ax.tick_params(axis="x", labelbottom=False)
# loop to plot data one point at a time (add a identifying marker for each data point)
counter = 0
for x_datum, y_datum, y_datum_err in zip(xdata, ydata, yerr):
res_num = res_nums_int[counter]
marker = report_markers[res_num % len(report_markers)]
ax.errorbar(x_datum, y_datum, yerr=y_datum_err,
color=color, ls=ls, marker=marker, markersize=markersize, alpha=alpha)
if y_datum < lower_bound:
res_nums_too_low.add(res_num_to_str(res_num))
ax.plot(x_datum, y_datum, color="black", ls=ls, marker="x", markersize=markersize + 2, alpha=1.0)
elif upper_bound < y_datum:
res_nums_too_high.add(res_num_to_str(res_num))
ax.plot(x_datum, y_datum, color="black", ls=ls, marker="x", markersize=markersize + 2, alpha=1.0)
counter += 1
# boundary and average lines
if min_y is not None:
ax.axhline(y=min_y, xmin=0, xmax=1, color='red', linestyle='dashed')
if average_y is not None:
ax.axhline(y=average_y, xmin=0, xmax=1, color='green', linestyle='dotted')
if max_y is not None:
ax.axhline(y=max_y, xmin=0, xmax=1, color='red', linestyle='dashdot')
# tick marks and axis labels
if x_label is None:
if x_ticks_on:
ax.set_xlabel("Average Resonator Center Frequency (GHz)")
else:
ax.set_xlabel(x_label)
if y_label is not None:
ax.set_ylabel(y_label)
# grid on major tick marks
ax.grid(b=True)
return ax, res_nums_too_low, res_nums_too_high
def hist_report_plot(ax, data, bins=10, color="blue", x_label=None, y_label=None, alpha=0.5):
ax.tick_params(axis="y", labelleft=False)
ax.tick_params(axis="x", labelbottom=False)
ax.hist(data, bins=bins, color=color, orientation='horizontal', alpha=alpha)
if x_label is not None:
ax.set_xlabel(x_label)
if y_label is not None:
ax.set_ylabel(y_label)
ax.tick_params(axis='x', # changes apply to the x-axis
which='both', # both major and minor ticks are affected
bottom=False, # ticks along the bottom edge are off
top=False, # ticks along the top edge are off
labelbottom=False)
return ax
def rug_plot(ax, xdata, y_min, y_max, color="blue",
f_ghz_residuals_for_res_plot_shifted=None, ua_arrays_for_resonators=None):
# Lambda fit Residuals zen plot (the lines are reminiscent of the waves in a zen rock garden)
if f_ghz_residuals_for_res_plot_shifted is not None:
norm = colors.Normalize(vmin=0.0, vmax=0.01)
cmap = plt.get_cmap('gist_ncar_r')
scalar_map = cm.ScalarMappable(norm=norm, cmap=cmap)
y_span = y_max - y_min
# # the background color of the plot is an indicator that this feature is triggered.
# ax.set_facecolor("black")
# get the x axis limits prior to this plot
x_min, x_max = ax.get_xlim()
for f_ghz_plot_residuals, ua_array in zip(f_ghz_residuals_for_res_plot_shifted, ua_arrays_for_resonators):
ua_min = np.min(ua_array)
ua_max = np.max(ua_array)
ua_span = ua_max - ua_min
ua_array_normalized_for_plot = (((ua_array - ua_min) / ua_span) * y_span) + y_min
f_ghz_residuals_span = np.max(f_ghz_plot_residuals) - np.min(f_ghz_plot_residuals)
color_val = scalar_map.to_rgba(f_ghz_residuals_span)
ax.plot(f_ghz_plot_residuals, ua_array_normalized_for_plot, color=color_val, linewidth=0.5)
# reset the x limits, do not let the residuals dictate the x limits of this plot
ax.set_xlim((x_min, x_max))
# 'threads' of the rug plot
ax.tick_params(axis="y", labelleft=False)
for f_centers in xdata:
f_len = len(f_centers)
alpha = min(25.0 / f_len, 1.0)
for f_center in list(f_centers):
ax.plot((f_center, f_center), (y_min, y_max), ls='solid', linewidth=0.1, color=color, alpha=alpha)
ax.set_ylim(bottom=0, top=1)
ax.tick_params(axis='y', # changes apply to the x-axis
which='both', # both major and minor ticks are affected
left=False, # ticks along the bottom edge are off
right=False, # ticks along the top edge are off
labelleft=False)
ax.tick_params(axis='x', # changes apply to the x-axis
which='both', # both major and minor ticks are affected
bottom=False, # ticks along the bottom edge are off
top=True, # ticks along the top edge are off
labelbottom=False,
labeltop=True)
ax.xaxis.tick_top()
ax.set_xlabel('X LABEL')
ax.set_xlabel(F"Frequency (GHz)")
ax.xaxis.set_label_position('top')
return ax
def band_plot(ax, f_ghz, mag_dbm, f_centers_ghz_all, res_nums, band_str):
# data math
mag_dbm_mean = np.mean(mag_dbm)
plot_s21_mag = mag_dbm - mag_dbm_mean
plot_mag_min = np.min(plot_s21_mag)
plot_mag_max = np.max(plot_s21_mag)
ave_f_centers = [np.mean(f_centers) for f_centers in f_centers_ghz_all]
# band boundary calculations
band_dict = ref.band_params[band_str]
trans = mtransforms.blended_transform_factory(ax.transData, ax.transAxes)
in_band = [band_dict['min_GHz'] <= one_f <= band_dict['max_GHz'] for one_f in f_ghz]
left_of_band = [one_f < band_dict['min_GHz'] for one_f in f_ghz]
right_of_band = [band_dict['max_GHz'] < one_f for one_f in f_ghz]
ax.fill_between((band_dict['min_GHz'], band_dict['max_GHz']), 0, 1,
facecolor='cornflowerblue', alpha=0.5, transform=trans)
# the smurf keep out zones
for keepout_min, keepout_max in ref.smurf_keepout_zones_ghz:
ax.fill_between((keepout_min, keepout_max), 0, 1, facecolor='black', alpha=0.5, transform=trans)
# the spectrum part of the plot
ax.plot(f_ghz[in_band], plot_s21_mag[in_band], color="darkorchid", linewidth=1)
ax.plot(f_ghz[left_of_band], plot_s21_mag[left_of_band], color="black", linewidth=1)
ax.plot(f_ghz[right_of_band], plot_s21_mag[right_of_band], color="black", linewidth=1)
# Key markers and labels
res_labels = [res_num.replace("Res", " ") for res_num in res_nums]
res_nums_int = [int(res_num.replace("Res", "")) for res_num in res_nums]
counter_f_ghz = 0
counter_ave_centers = 0
while counter_ave_centers < len(ave_f_centers) and counter_f_ghz < len(f_ghz):
single_f_ghz = f_ghz[counter_f_ghz]
single_f_center = ave_f_centers[counter_ave_centers]
if single_f_center < single_f_ghz:
# the point is trigger to plot the when the above is true
marker = report_markers[res_nums_int[counter_ave_centers] % len(report_markers)]
ax.plot(single_f_center, 0.0, color='black', alpha=0.5, marker=marker, markersize=10)
ax.text(single_f_center, plot_mag_min, res_labels[counter_ave_centers], color='black', rotation=300,
horizontalalignment='center', verticalalignment='bottom', fontsize=8)
counter_ave_centers += 1
else:
counter_f_ghz += 1
# plot details
ax.tick_params(axis="x", labelbottom=False)
ax.set_ylabel("dB")
ax.tick_params(axis='x', # changes apply to the x-axis
which='both', # both major and minor ticks are affected
bottom=False, # ticks along the bottom edge are off
top=False, # ticks along the top edge are off
labelbottom=False)
ax.set_ylim(bottom=None, top=plot_mag_max)
return ax
def report_key(ax, leglines, leglabels, summary_info, res_flags=None):
ax.tick_params(axis='x', # changes apply to the x-axis
which='both', # both major and minor ticks are affected
bottom=False, # ticks along the bottom edge are off
top=False, # ticks along the top edge are off
labelbottom=False)
ax.tick_params(axis='y', # changes apply to the x-axis
which='both', # both major and minor ticks are affected
left=False, # ticks along the bottom edge are off
right=False, # ticks along the top edge are off
labelleft=False)
ax.text(0.5, 1, summary_info, color='black',
horizontalalignment='center', verticalalignment='top', multialignment='left', fontsize=10)
ax.set_xlim(left=0, right=1)
ax.set_ylim(bottom=0, top=1)
# ax.set_title("KEY")
ax.legend(leglines, leglabels, loc=8, numpoints=5, handlelength=3, fontsize=10)
if res_flags is not None:
omitted_res = []
for res_flag in res_flags:
omitted_res.append([res_num_to_str(res_flag.seed_res_num), res_flag.type])
ax.table(omitted_res, loc='center', fontsize=10)
return ax
def report_plot_init(num_of_scatter_hist_x=3, num_of_scatter_hist_y=2):
"""
Three Major Regions
1) Top: Frequency Rug Plot 2) Middle: Resonator Spectrum 3) Bottom: Scatter plots with side histograms
definitions for the axes
:param num_of_scatter_hist_x: int
:param num_of_scatter_hist_y: int
:return:
"""
left = 0.05
bottom = 0.05
right = 0.99
top = 0.95
major12_region_spacing = 0.000
major32_region_spacing = 0.001
major_regions_y = (0.50, top - 0.15)
key_margin_x = 0.85
key_space = 0.003
scatter_hist_little_space = 0.005
scatter_hist_bigger_vspace = 0.005
scatter_hist_bigger_hspace = 0.060
scatter_to_hist_ratio = 1.6
# 0) A plot used as a Key
key_top = top
key_bottom = major_regions_y[0] + major32_region_spacing
key_height = key_top - key_bottom
key_left = key_margin_x + key_space
key_right = right
key_width = key_right - key_left
key_cood = [key_left, key_bottom, key_width, key_height]
# 1) Top: Frequency Rug Plot
rug_top = top
rug_bottom = major_regions_y[1] + major12_region_spacing
rug_height = rug_top - rug_bottom
rug_left = left
rug_right = key_margin_x - key_space
rug_width = rug_right - rug_left
rug_cood = [rug_left, rug_bottom, rug_width, rug_height]
# 2) Middle: Resonator Spectrum
res_spec_top = major_regions_y[1] - major12_region_spacing
res_spec_bottom = major_regions_y[0] + major32_region_spacing
res_spec_height = res_spec_top - res_spec_bottom
res_spec_left = left
res_spec_right = key_margin_x - key_space
res_spec_width = res_spec_right - res_spec_left
res_spec_cood = [res_spec_left, res_spec_bottom, res_spec_width, res_spec_height]
# 3) Bottom:Scatter plots with side histograms
shist_top = major_regions_y[0] - major32_region_spacing
available_plot_y_per_histogram = (((shist_top - bottom) - ((num_of_scatter_hist_y - 1) * scatter_hist_bigger_vspace))
/ num_of_scatter_hist_y)
available_plot_x_per_histogram = (((right - left) - ((num_of_scatter_hist_x - 1) * scatter_hist_bigger_hspace))
/ num_of_scatter_hist_x) - scatter_hist_little_space
scat_width = available_plot_x_per_histogram * scatter_to_hist_ratio / (scatter_to_hist_ratio + 1.0)
hist_width = available_plot_x_per_histogram - scat_width
hist_coords = []
scatter_coords = []
for yhist_index in range(num_of_scatter_hist_y):
shist_bottom = shist_top - available_plot_y_per_histogram
shist_height = shist_top - shist_bottom
scat_left = left
for xhist_index in range(num_of_scatter_hist_x):
hist_left = scat_left + scat_width + scatter_hist_little_space
scatter_coords.append([scat_left, shist_bottom, scat_width, shist_height])
hist_coords.append([hist_left, shist_bottom, hist_width, shist_height])
scat_left = hist_left + hist_width + scatter_hist_bigger_hspace
shist_top = shist_bottom - scatter_hist_bigger_vspace
# initialize the plot
fig = plt.figure(figsize=(25, 10))
ax_key = fig.add_axes(key_cood, frameon=False)
ax_res_spec = fig.add_axes(res_spec_cood, frameon=False)
ax_rug = fig.add_axes(rug_cood, sharex=ax_res_spec, frameon=False)
axes_scatter = [fig.add_axes(scatter_cood, sharex=ax_res_spec, frameon=False) for scatter_cood in scatter_coords]
axes_hist = [fig.add_axes(hist_coord, sharey=ax_scatter, frameon=False)
for hist_coord, ax_scatter in zip(hist_coords, axes_scatter)]
axes_shist = [(ax_scatter, ax_hist) for ax_scatter, ax_hist in zip(axes_scatter, axes_hist)]
return fig, ax_key, ax_res_spec, ax_rug, axes_shist
def f_ghz_from_lambda_fit(lambda_fit, ua_array):
def lamb_fit_these_params(ua):
f_ghz = f0_of_I(ramp_current_amps=ua * 1.0e-6, ramp_current_amps_0=lambda_fit.i0fit,
m=lambda_fit.mfit, f2=lambda_fit.f2fit, P=lambda_fit.pfit, lamb=lambda_fit.lambfit)
return f_ghz
return np.fromiter(map(lamb_fit_these_params, ua_array), dtype=float)
def single_lamb_to_report_plot(axes, res_set, color, leglines, leglabels, band_str, flag_table_info, ordered_res_strs,
markersize=8, alpha=0.5):
summary_info = {}
# check to make sure we have date for all the requested resonator numbers
for res_str in list(ordered_res_strs):
if not hasattr(res_set, res_str):
ordered_res_strs.remove(res_str)
if "lost_res_nums" in summary_info.keys():
summary_info["lost_res_nums"].add(res_str)
else:
summary_info["lost_res_nums"] = {res_str}
# do some data analysis
lamb_values = np.array([res_set.__getattribute__(res_str).lamb_fit.lambfit for res_str in ordered_res_strs])
lamb_value_errs = np.array([res_set.__getattribute__(res_str).lamb_fit.lambfit_err
for res_str in ordered_res_strs])
flux_ramp_pp_khz = np.array([res_set.__getattribute__(res_str).lamb_fit.pfit * 1.0e6
for res_str in ordered_res_strs])
flux_ramp_pp_khz_errs = np.array([res_set.__getattribute__(res_str).lamb_fit.pfit_err * 1.0e6
for res_str in ordered_res_strs])
conversion_factor = (ref.phi_0 / (2.0 * np.pi)) * 1.0e12
fr_squid_mi_pH = np.array([res_set.__getattribute__(res_str).lamb_fit.mfit * conversion_factor
for res_str in ordered_res_strs])
fr_squid_mi_pH_err = np.array([res_set.__getattribute__(res_str).lamb_fit.mfit_err * conversion_factor
for res_str in ordered_res_strs])
port_powers_dbm = np.array([res_set.__getattribute__(res_str).metadata["port_power_dbm"]
for res_str in ordered_res_strs])
# This should be a real calibration not this hacky one size fits all subtraction, I hate that I wrote this
at_res_power_dbm = []
for res_str, port_power_dbm in zip(ordered_res_strs, port_powers_dbm):
wafer_num = res_set.__getattribute__(res_str).metadata["wafer"]
if wafer_num < 12.5:
# with warm 20 dBm attenuator that make the VNA output unleveled
at_res_power_dbm.append(port_power_dbm - 75.0)
else:
# no warm 20 dBm attenuator on the input
at_res_power_dbm.append(port_power_dbm - 55.0)
at_res_power_dbm_mean = | np.mean(at_res_power_dbm) | numpy.mean |
import torch
import numpy as np
from torch.autograd import Variable
# Module to compute and evaluate the Taylor approximate loss in the paper on larger-scale tasks
# - Standard Taylor, global order 2 (eq. 12)
# - Our Taylor, up to order 2 for each \epsilon and \delta (eq. 4)
# --- Note that for cross entropy loss, this only amounts to adding an
# \epsilon\delta^2 term
# (equation refs are taken from "On Mixup Regularization"):
# https://arxiv.org/pdf/2006.06049.pdf
### some modules for computing the necessary covariances, approximately with SVD as needed ###
# takes images and one-hot target vectors as input and computes the means and covariances of the data that are necessary to compute Taylor-approximate loss
def compute_moments(data, targets):
assert(data.shape[0] == targets.shape[0])
num = data.shape[0]
num_classes = targets.shape[1]
x = data.reshape((num, -1))
y = targets.reshape((num, -1))
x_dim = x.shape[1]
xbar = x.mean(axis=0)
xcent = x - xbar
ybar = y.mean(axis=0)
ycent = y - ybar
xxcov = 1/num * torch.matmul(torch.transpose(xcent, 0, 1), xcent)
xycov = 1/num * torch.matmul(torch.transpose(xcent, 0, 1), ycent)
T = torch.zeros((num_classes, x_dim, x_dim)).cuda()
for i in range(num_classes):
# xcent is (num by x_dim)
# T[i,:,:] = E_j(y'_j(c) x'_j x'_j^T)
T[i,:,:] = (1/num)*xcent.t() @ (xcent * ycent[:,i].reshape((num, 1)))
return xbar, ybar, xxcov, xycov, T
# takes a covariance matrix X as input
# and returns U, S, V such that X ~ U * diag(S) * V^T
def decomposition(cov, n_components):
U, S, V = torch.svd(cov)
return U[:, :n_components], S[:n_components], V[:, :n_components]
# manual cross_entropy for single model output x (not necessarily distribution)
# and one-hot encoded label y, each a vector-Pytorch tensor
# needed for hvp (see below)
# X and Y are (N x x/y_dim) matrices, batch size N
# NOTE: changed to natural logarithm by Seyoon
def cross_entropy_manual(X, Y):
# note X.shape[0] is the batch size
X_softmax = X.exp() / X.exp().sum(axis=1).reshape((X.shape[0], 1))
# TODO: check pytorch uses base 2
return -(Y * torch.log(X_softmax)).sum()
# given a pytorch function loss(x_i, y_i) (twice differentiable)
# and a neural network 'model',
# compute matrix-vector products of the form:
# (\nabla_{x1 x2}^2 loss(model(x), y)) @ v
# data_shape is the original shape of the batch tensor (non-flattened
# iamges)
# X is a tensor of size (N, data_dim), where N is the size of the batch,
# and data_dim is the dimension of the input data (flattened)
# Y is a tensor of size (N, c), where c is the number of classes. Each
# row is a Euclidean basis vector corresponding to the true label
# x1 and x2 are strings, either 'x' or 'y'
# --- these indicate which variables to take derivatives w.r.t.
# v is vector to get Hessian's action on
### v should have same dimension as x1, and must be a row vector
# TODO: deal w/ fact that zero hessian returns None object
def hvp(loss, model, data_shape, X, Y, x1, x2, v):
# setting up pytorch stuff to prepare for backprop
vvar = Variable(v, requires_grad=True)
# extract batch size
N = X.shape[0]
Xvar = Variable(X, requires_grad=True)
Yvar = Variable(Y, requires_grad=True)
model_eval = model(Xvar.reshape(data_shape))
# xvar = Variable(X[i,:], requires_grad=True)
# yvar = Variable(Y[i,:], requires_grad=True)
# choose which variable x1var corresponds to
x1var = Xvar if x1=='x' else Yvar
x2var = Xvar if x2=='x' else Yvar
score = loss(model_eval, Yvar)
# gradient w.r.t. entire batch
grad, = torch.autograd.grad(score, x1var, create_graph=True)
# sum over batch elements (avg. at end)
total = torch.sum(grad.sum(axis=0) * vvar)
if Xvar.grad:
Xvar.grad.data.zero_()
if Yvar.grad:
Yvar.grad.data.zero_()
grad2, = torch.autograd.grad(total, x2var, create_graph=True, allow_unused=True)
# sum over rows (different elements in batch)
hvprod = (1/N)*grad2.sum(axis=0)
return hvprod
# computes quadratics of the form \sum w_i H(x_i, y_i) v_i over a batch, where H is a Hessian
# w.r.t. loss
# suppose the batch size is N
# X is a (N by x_dim) matrix, where x_dim is the dimensionality of the data
# Y is a (N by num_classes) matrix
# x1 is a string: 'x' to take the 1st derivative w.r.t. X, 'y' for 1st derivative
# w.r.t. Y
# x2 is a string: "" "" 2nd derivative w.r.t. X, 'y' for 2st derivative
# w.r.t. Y
# V has the same shape as the variable corresponding to x1
# W has the same shape as the variable corresponding to x2
# see comments over hvp for further details
def hess_quadratic(loss, model, data_shape, X, Y, x1, x2, V, W):
# setting up pytorch stuff to prepare for backprop
Vvar = Variable(V, requires_grad=True)
Wvar = Variable(W, requires_grad=True)
# extract batch size
N = X.shape[0]
Xvar = Variable(X, requires_grad=True)
Yvar = Variable(Y, requires_grad=True)
model_eval = model(Xvar.reshape(data_shape))
# choose which variable x1var corresponds to
x1var = Xvar if x1=='x' else Yvar
x2var = Xvar if x2=='x' else Yvar
score = loss(model_eval, Yvar)
# gradient w.r.t. entire batch
grad, = torch.autograd.grad(score, x1var, create_graph=True)
# sum over batch elements (avg. at end)
total = torch.sum(grad * Vvar)
if Xvar.grad:
Xvar.grad.data.zero_()
if Yvar.grad:
Yvar.grad.data.zero_()
# NOTE: THIS WILL NOT ALLOW FURTHER BACKPROP, BRING create_graph=True BACK TO ALLOW THIS
grad2, = torch.autograd.grad(total, x2var, create_graph=False, allow_unused=True)
# sum over rows (different elements in batch)
wHv = torch.sum(W * grad2)
return (1/N)*wHv
# Computes a quadratic of the form w^T \sum_i H(x_i, y_i) v, where H is a Hessian w.r.t. loss
# v, w are vectors that come from an SVD.
#
# v has the same dimension as what x1 corresponds to (x_dim if 'x', num_classes if 'y')
# w has the same dimension as what x2 corresponds to
def hess_svd(loss, model, data_shape, X, Y, x1, x2, v, w):
# setting up pytorch stuff to prepare for backprop
vvar = Variable(v, requires_grad=True)
wvar = Variable(w, requires_grad=True)
# extract batch size
N = X.shape[0]
Xvar = Variable(X, requires_grad=True)
Yvar = Variable(Y, requires_grad=True)
model_eval = model(Xvar.reshape(data_shape))
# choose which variable x1var corresponds to
x1var = Xvar if x1=='x' else Yvar
x2var = Xvar if x2=='x' else Yvar
score = loss(model_eval, Yvar)
# gradient w.r.t. entire batch
grad, = torch.autograd.grad(score, x1var, create_graph=True)
# sum over batch elements (avg. at end)
total = torch.sum(grad.sum(axis=0) * vvar)
if Xvar.grad:
Xvar.grad.data.zero_()
if Yvar.grad:
Yvar.grad.data.zero_()
# NOTE: THIS WILL NOT ALLOW FURTHER BACKPROP, BRING create_graph=True BACK TO ALLOW THIS
grad2, = torch.autograd.grad(total, x2var, create_graph=False, allow_unused=True)
# sum over rows (different elements in batch)
wHv = torch.sum(grad2.sum(axis=0) * wvar)
return (1/N)*wHv
# the equivalent Hessian quadratic form for the epsilon delta^2 terms:
# computes \delta^T (1/N) \sum_i \nabla_{x_ix_i}^2(log(S(model(x_i))_{class_val})) \delta
# See project overleaf for details.
# inputs identical to hess_svd, except for class_val
# class_val indicates which corresponding class the current matrix inner product
# is being taken w.r.t.
def hess_svd_ed2(class_val, model, data_shape, X, Y, x1, x2, v, w):
# setting up pytorch stuff to prepare for backprop
vvar = Variable(v, requires_grad=True)
wvar = Variable(w, requires_grad=True)
# extract batch size
N = X.shape[0]
Xvar = Variable(X, requires_grad=True)
Yvar = Variable(Y, requires_grad=True)
model_eval = model(Xvar.reshape(data_shape))
# here is where we take only the class_val component
model_eval_softmax = model_eval[:,class_val].exp().reshape((N,1)) / model_eval.exp().sum(axis=1).reshape((N, 1))
# choose which variable x1var corresponds to
x1var = Xvar if x1=='x' else Yvar
x2var = Xvar if x2=='x' else Yvar
f_val = torch.log(model_eval_softmax).sum()
# gradient w.r.t. entire batch
grad, = torch.autograd.grad(f_val, x1var, create_graph=True)
# sum over batch elements (avg. at end)
total = torch.sum(grad.sum(axis=0) * vvar)
if Xvar.grad:
Xvar.grad.data.zero_()
if Yvar.grad:
Yvar.grad.data.zero_()
# NOTE: THIS WILL NOT ALLOW FURTHER BACKPROP, BRING create_graph=True BACK TO ALLOW THIS
grad2, = torch.autograd.grad(total, x2var, create_graph=False, allow_unused=True)
# sum over rows (different elements in batch)
wHv = torch.sum(grad2.sum(axis=0) * wvar)
return (1/N)*wHv
# theta_bar is 3/4
# images and labels are not scaled down/flattened
# returns regularization (non-loss) terms
def taylor_loss(images, labels, model, mu_img, mu_y, Uxx, Sxx, Vxx, Uxy, Sxy, Vxy, T_U, T_S, T_V):
# extract batch size
N = images.shape[0]
# extract number of total pixels for images
img_size = int(images.numel() / N)
# extract original batch shape
batch_shape = images.shape
# flatten input images
images_flat = images.reshape((N, img_size))
mu_img_flat = mu_img.reshape((1, img_size))
num_classes = labels.max() + 1
# Y is a stack of rows, where each row is the one_hot version
# of the correct label
Y = torch.zeros((N, num_classes)).cuda()
Y[np.arange(N), labels] = 1
# COMPUTE raw tilde loss (term 1)
# we assume uniform distribution
theta_bar = 0.75*torch.ones((1)).cuda()
# matrix form for x_theta over whole batch
Xt = (1 - theta_bar)*mu_img_flat + theta_bar*images_flat
# same for y_tilde
Yt = (1 - theta_bar)*mu_y + theta_bar*Y
# torch.save(Xt, 'Xt.pt')
# torch.save(Yt, 'Yt.pt')
loss = (1/N)*cross_entropy_manual(model(Xt.reshape(batch_shape)), Yt)
# COMPUTE delta delta term (term 2)
# first compute the data-dependent part.
V = (images_flat - mu_img_flat).detach().clone()
# compute the data dependent component of inner product
data_dependent = hess_quadratic(
lambda x, y : cross_entropy_manual(x, y), model, batch_shape, Xt, Yt, 'x', 'x', V, V)
# extract number of singular values extracted from global covariance matrix
num_components = Sxx.numel()
data_independent = torch.zeros((1)).cuda()
for i in range(num_components):
data_independent += hess_svd(
lambda x, y : cross_entropy_manual(x, y), model, batch_shape, Xt, Yt, 'x', 'x', Sxx[i]*Uxx[:,i].reshape((1, img_size)), Vxx[:,i].reshape((1, img_size)))
var_half_mixup = 0.5**2 / 12
gamma_squared = var_half_mixup + (1 - theta_bar)**2
ddterm = 0.5*(var_half_mixup*data_dependent + gamma_squared * data_independent)
# COMPUTE epsilon delta "cross-term" (term 3)
# first compute the data-dependent part.
W = (Y - mu_y).detach().clone()
# compute the data dependent component of inner product
data_dependent_cross = hess_quadratic(
lambda x, y : cross_entropy_manual(x, y), model, batch_shape, Xt, Yt, 'x', 'y', V, W)
# extract number of singular values extracted from global covariance matrix
num_components = Sxy.numel()
data_independent_cross = torch.zeros((1)).cuda()
for i in range(num_components):
data_independent_cross += hess_svd(
lambda x, y : cross_entropy_manual(x, y), model, batch_shape, Xt, Yt, 'x', 'y', Sxy[i]*Uxy[:,i].reshape((1, img_size)), Vxy[:,i].reshape((1, num_classes)))
edterm = var_half_mixup*data_dependent_cross + gamma_squared * data_independent_cross
# update num components
num_components = T_S[0,:].numel()
# COMPUTE epsilon delta delta "3-term" (term 4, new)
hess_quad_innerprod = torch.zeros((1)).cuda()
# sum over classes
for i in range(num_classes):
# sum over all compoments we take from T_a matrices
for j in range(num_components):
hess_quad_innerprod += hess_svd_ed2(
i, model, batch_shape, Xt, Xt, 'x', 'x', T_S[i, j]*T_U[i, :, j].reshape((1, img_size)), T_V[i,:,j].reshape((1, img_size)))
eddterm = -0.5 * ((1-theta_bar)**3) * hess_quad_innerprod
return loss, ddterm, edterm, eddterm
# returns regularization (non-loss) terms
def taylor_loss_base(images, labels, model, mu_img, mu_y, Uxx, Sxx, Vxx, Uxy, Sxy, Vxy, T_U, T_S, T_V):
# extract batch size
N = images.shape[0]
# extract number of total pixels for images
img_size = int(images.numel() / N)
# extract original batch shape
batch_shape = images.shape
# flatten input images
images_flat = images.reshape((N, img_size))
mu_img_flat = mu_img.reshape((1, img_size))
num_classes = labels.max() + 1
# Y is a stack of rows, where each row is the one_hot version
# of the correct label
Y = torch.zeros((N, num_classes)).cuda()
Y[np.arange(N), labels] = 1
# COMPUTE raw tilde loss (term 1)
# we assume uniform distribution
theta_bar = 0.75*torch.ones((1)).cuda()
# matrix form for x_theta over whole batch
Xt = (1 - theta_bar)*mu_img_flat + theta_bar*images_flat
# same for y_tilde
Yt = (1 - theta_bar)*mu_y + theta_bar*Y
# torch.save(Xt, 'Xt.pt')
# torch.save(Yt, 'Yt.pt')
return (1/N)*cross_entropy_manual(model(Xt.reshape(batch_shape)), Yt)
# returns regularization (non-loss) terms
def taylor_loss_d2(images, labels, model, mu_img, mu_y, Uxx, Sxx, Vxx, Uxy, Sxy, Vxy, T_U, T_S, T_V):
# extract batch size
N = images.shape[0]
# extract number of total pixels for images
img_size = int(images.numel() / N)
# extract original batch shape
batch_shape = images.shape
# flatten input images
images_flat = images.reshape((N, img_size))
mu_img_flat = mu_img.reshape((1, img_size))
num_classes = labels.max() + 1
# Y is a stack of rows, where each row is the one_hot version
# of the correct label
Y = torch.zeros((N, num_classes)).cuda()
Y[ | np.arange(N) | numpy.arange |
# Author: <NAME> <<EMAIL>>
"""PySurfer Brain subclass to embed in Eelbrain"""
from collections import OrderedDict
from distutils.version import LooseVersion
from functools import partial
import os
import sys
from tempfile import mkdtemp
from time import time, sleep
from warnings import warn
from matplotlib.colors import ListedColormap, Colormap, to_rgb, to_rgba
from matplotlib.image import imsave
from mne.io.constants import FIFF
import numpy as np
from .._data_obj import NDVar, SourceSpace, asndvar
from .._text import ms
from .._utils import LazyProperty
from ..fmtxt import Image
from ..mne_fixes import reset_logger
from ._base import CONFIG, TimeSlicer, do_autorun, find_axis_params_data, find_fig_cmaps, find_fig_vlims, fix_vlim_for_cmap, use_inline_backend
from ._color_luts import p_lut
from ._colors import ColorBar, ColorList, colors_for_oneway
# Traits-GUI related imports
# --------------------------
# - Set ETS toolkit before importing traits-GUI
# - Readthedocs does not support mayavi import, so we can't use surfer
# - if this is the first surfer import, lower screen logging level
first_import = 'surfer' not in sys.modules
INLINE_DISPLAY = False
try:
from traits.trait_base import ETSConfig
if use_inline_backend() or not CONFIG['eelbrain']:
INLINE_DISPLAY = True
else:
ETSConfig.toolkit = 'wx'
import surfer
except ImportError as exception:
from . import _mock_surfer as surfer
warn("Error importing PySurfer: %s" % exception)
else:
if first_import:
reset_logger(surfer.utils.logger)
del first_import
HEMI_ID_TO_STR = {FIFF.FIFFV_MNE_SURF_LEFT_HEMI: 'lh',
FIFF.FIFFV_MNE_SURF_RIGHT_HEMI: 'rh'}
OTHER_HEMI = {'lh': 'rh', 'rh': 'lh'}
# default size
BRAIN_H = 250
BRAIN_W = 300
def assert_can_save_movies():
if LooseVersion(surfer.__version__) < LooseVersion('0.6'):
raise ImportError("Saving movies requires PySurfer 0.6")
def get_source_dim(ndvar):
if isinstance(ndvar, SourceSpace):
return ndvar
elif isinstance(ndvar, NDVar):
for source in ndvar.dims:
if isinstance(source, SourceSpace):
return source
raise ValueError("ndvar has no SourceSpace dimension")
else:
raise TypeError("ndvar=%r; needs to be NDVar or SourceSpace")
class Brain(TimeSlicer, surfer.Brain):
"""PySurfer :class:`Brain` subclass returned by :mod:`plot.brain` functions
PySurfer :class:`surfer.Brain` subclass adding Eelbrain GUI integration and
methods to visualize data in :class:`NDVar` format.
Parameters
----------
subject : str
Subject name.
hemi : 'lh' | 'rh' | 'both' | 'split'
'both': both hemispheres are shown in the same window;
'split': hemispheres are displayed side-by-side in different viewing
panes.
surf : str
Freesurfer surface mesh name (ie 'white', 'inflated', etc.).
title : str
Title for the window.
cortex : str, tuple, dict, or None
Specifies how the cortical surface is rendered. Options:
1. The name of one of the preset cortex styles:
``'classic'`` (default), ``'high_contrast'``,
``'low_contrast'``, or ``'bone'``.
2. A color-like argument to render the cortex as a single
color, e.g. ``'red'`` or ``(0.1, 0.4, 1.)``. Setting
this to ``None`` is equivalent to ``(0.5, 0.5, 0.5)``.
3. The name of a colormap used to render binarized
curvature values, e.g., ``Grays``.
4. A list of colors used to render binarized curvature
values. Only the first and last colors are used. E.g.,
['red', 'blue'] or [(1, 0, 0), (0, 0, 1)].
5. A container with four entries for colormap (string
specifiying the name of a colormap), vmin (float
specifying the minimum value for the colormap), vmax
(float specifying the maximum value for the colormap),
and reverse (bool specifying whether the colormap
should be reversed. E.g., ``('Greys', -1, 2, False)``.
6. A dict of keyword arguments that is passed on to the
call to surface.
alpha : float in [0, 1]
Alpha level to control opacity of the cortical surface.
background, foreground : matplotlib colors
color of the background and foreground of the display window
subjects_dir : str | None
If not None, this directory will be used as the subjects directory
instead of the value set using the SUBJECTS_DIR environment
variable.
views : list | str
views to use
offset : bool
If True, aligs origin with medial wall. Useful for viewing inflated
surface where hemispheres typically overlap (Default: True)
show_toolbar : bool
If True, toolbars will be shown for each view.
offscreen : bool
If True, rendering will be done offscreen (not shown). Useful
mostly for generating images or screenshots, but can be buggy.
Use at your own risk.
interaction : str
Can be "trackball" (default) or "terrain", i.e. a turntable-style
camera.
w, h : int
Figure width and height.
axw, axh : int
Width and height of the individual viewing panes.
name : str
Window title (alternative to ``title`` for consistency with other
Eelbrian figures).
pos : tuple of int
Position of the new window on the screen.
show : bool
Currently meaningless due to limitation in VTK that does not allow
hidden plots.
run : bool
Run the Eelbrain GUI app (default is True for interactive plotting and
False in scripts).
Notes
-----
The documentation lists only the methods that Eelbrain adds to or overrides
from the PySurfer :class:`~surfer.Brain` super-class. For complete PySurfer
functionality see te PySurfer documentation.
"""
_display_time_in_frame_title = True
def __init__(self, subject, hemi, surf='inflated', title=None,
cortex="classic", alpha=1.0, background="white",
foreground="black", subjects_dir=None, views='lat',
offset=True, show_toolbar=False, offscreen=False,
interaction='trackball', w=None, h=None, axw=None, axh=None,
name=None, pos=None, source_space=None, show=True, run=None):
from ._wx_brain import BrainFrame
self.__data = []
self.__annot = None
self.__labels = OrderedDict() # {name: color}
self.__time_index = 0
self.__source_space = source_space
if isinstance(views, str):
views = [views]
elif not isinstance(views, list):
views = list(views)
n_rows = len(views)
if hemi == 'split':
n_columns = 2
elif hemi in ('lh', 'rh', 'both'):
n_columns = 1
else:
raise ValueError("hemi=%r" % (hemi,))
# layout
if w is None and axw is None:
if h is None and axh is None:
axw = BRAIN_W
axh = BRAIN_H
else:
if axh is None:
axh = int(round(h / n_rows))
axw = int(round(axh * (BRAIN_W / BRAIN_H)))
elif h is None and axh is None:
if axw is None:
axw = int(round(w / n_columns))
axh = int(round(axw * (BRAIN_H / BRAIN_W)))
if w is None:
w = axw * n_columns
if h is None:
h = axh * n_rows
if title is None:
if name is None:
title = subject
elif isinstance(name, str):
title = name
else:
raise TypeError("name=%r (str required)" % (name,))
elif not isinstance(title, str):
raise TypeError("title=%r (str required)" % (title,))
if foreground is None:
foreground = 'black'
if background is None:
background = 'white'
if INLINE_DISPLAY:
self._frame = figure = None
self._png_repr_meta = {'height': h, 'width': w}
else:
self._frame = BrainFrame(None, self, title, w, h, n_rows, n_columns, surf, pos)
figure = self._frame.figure
self._png_repr_meta = None
if subjects_dir is not None:
subjects_dir = os.path.expanduser(subjects_dir)
surfer.Brain.__init__(self, subject, hemi, surf, '', cortex, alpha, (w, h), background, foreground, figure, subjects_dir, views, offset, show_toolbar, offscreen, interaction)
TimeSlicer.__init__(self)
if self._frame and CONFIG['show'] and show:
self._frame.Show()
if CONFIG['eelbrain'] and do_autorun(run):
from .._wxgui import run as run_gui # lazy import for docs
run_gui()
def __repr__(self):
args = [self.subject_id, self._hemi, self.surf]
if self.n_times:
args.append(f"{self.n_times} time points {ms(self._time_dim.tmin)}-{ms(self._time_dim.tstop)} ms")
return f"<plot.brain.Brain: {', '.join(args)}>"
def _asfmtext(self):
return self.image()
# pysurfer 0.10
def _ipython_display_(self):
"""Called by Jupyter notebook to display a brain."""
if use_inline_backend():
import IPython.display
IPython.display.display(self.image())
else:
print(repr(self))
def _check_source_space(self, source):
"Make sure SourceSpace is compatible"
source = get_source_dim(source)
if source.subject != self.subject_id:
raise ValueError(
"Trying to plot NDVar from subject %s on Brain from subject "
"%s" % (source.subject, self.subject_id))
elif self._hemi == 'lh' and source.lh_n == 0:
raise ValueError("Trying to add NDVar without lh data to plot of lh")
elif self._hemi == 'rh' and source.rh_n == 0:
raise ValueError("Trying to add NDVar without rh data to plot of rh")
return source
def add_label(self, label, color=None, alpha=1, scalar_thresh=None,
borders=False, hemi=None, subdir=None):
surfer.Brain.add_label(self, label, color, alpha, scalar_thresh,
borders, hemi, subdir)
if color is None:
color = getattr(label, 'color', None) or "crimson"
name = label if isinstance(label, str) else label.name
self.__labels[name] = color
def add_mask(self, source, color=(0, 0, 0, 0.5), smoothing_steps=None,
alpha=None, subjects_dir=None):
"""Add a mask shading areas that are not included in an NDVar
Parameters
----------
source : SourceSpace
SourceSpace.
color : matplotlib color
Mask color, can include alpha (defauls is black with alpha=0.5:
``(0, 0, 0, 0.5)``).
smoothing_steps : scalar (optional)
Smooth transition at the mask's border. If smoothing, the mask is
added as data layer, otherwise it is added as label.
alpha : scalar
Alpha for the mask (supercedes alpha in ``color``).
subjects_dir : str
Use this directory as the subjects directory.
"""
source = self._check_source_space(source)
color = to_rgba(color, alpha)
if smoothing_steps is not None:
# generate LUT
lut = np.repeat(np.reshape(color, (1, 4)), 256, 0)
lut[:, 3] = np.linspace(color[-1], 0, 256)
np.clip(lut, 0, 1, lut)
lut *= 255
lut = np.round(lut).astype(np.uint8)
# generate mask Label
mask_ndvar = source._mask_ndvar(subjects_dir)
self.add_ndvar(mask_ndvar, lut, 0., 1., smoothing_steps, False,
None, False)
else:
lh, rh = source._mask_label(subjects_dir)
if self._hemi == 'lh':
rh = None
elif self._hemi == 'rh':
lh = None
if source.lh_n and lh:
self.add_label(lh, color[:3], color[3])
self.labels_dict['mask-lh'][0].actor.property.lighting = False
if source.rh_n and rh:
self.add_label(rh, color[:3], color[3])
self.labels_dict['mask-rh'][0].actor.property.lighting = False
def add_ndvar(self, ndvar, cmap=None, vmin=None, vmax=None,
smoothing_steps=None, colorbar=False, time_label='ms',
lighting=False, contours=None, remove_existing=False):
"""Add data layer form an NDVar
Parameters
----------
ndvar : NDVar ([case,] source[, time])
NDVar with SourceSpace dimension and optional time dimension. If it
contains a :class:`Case` dimension, the average over cases is
displayed. Values outside of the source-space, as well as masked
values are set to 0, assuming a colormap in which 0 is transparent.
cmap : str | list of matplotlib colors | array
Colormap. Can be the name of a matplotlib colormap, a list of
colors, or a custom lookup table (an n x 4 array with RBGA values
between 0 and 255).
vmin, vmax : scalar
Endpoints for the colormap. Need to be set explicitly if ``cmap`` is
a LUT array.
smoothing_steps : None | int
Number of smoothing steps if data is spatially undersampled
(PySurfer ``Brain.add_data()`` argument).
colorbar : bool
Add a colorbar to the figure (use ``.plot_colorbar()`` to plot a
colorbar separately).
time_label : str | callable
Label to show time point. Use ``'ms'`` or ``'s'`` to display time in
milliseconds or in seconds, or supply a custom formatter for time
values in seconds (default is ``'ms'``).
lighting : bool
The data overlay is affected by light sources (default ``False``,
i.e. data overlays appear luminescent).
contours : bool | sequence of scalar
Draw contour lines instead of a solid overlay. Set to a list of
contour levels or ``True`` for automatic contours.
remove_existing : bool
Remove data layers that have been added previously (default False).
"""
ndvar = asndvar(ndvar)
# check input data and dimensions
source = self._check_source_space(ndvar)
# find ndvar time axis
if ndvar.ndim == 1 + ndvar.has_case:
if ndvar.has_case:
ndvar = ndvar.mean('case')
time_dim = times = None
data_dims = (source.name,)
elif ndvar.ndim != 2:
raise ValueError(f"{ndvar}: must be one- or two dimensional")
elif ndvar.has_dim('time'):
time_dim = ndvar.time
times = ndvar.time.times
data_dims = (source.name, 'time')
if time_label == 'ms':
time_label = lambda x: '%s ms' % int(round(x * 1000))
elif time_label == 's':
time_label = '%.3f s'
elif time_label is False:
time_label = None
else:
data_dims = ndvar.get_dimnames((source.name, None))
time_dim = ndvar.get_dim(data_dims[1])
times = np.arange(len(time_dim))
time_label = None
# remove existing data before modifying attributes
if remove_existing:
self.remove_data()
# make sure time axis is compatible with existing data
if time_dim is not None:
if self._time_dim is None:
self._set_time_dim(time_dim)
elif time_dim != self._time_dim:
raise ValueError(f"The brain already displays an NDVar with incompatible time dimension (current: {self._time_dim}; new: {time_dim})")
# find colormap parameters
meas = ndvar.info.get('meas')
if cmap is None or isinstance(cmap, (str, Colormap)):
epochs = ((ndvar,),)
cmaps = find_fig_cmaps(epochs, cmap, alpha=True)
vlims = find_fig_vlims(epochs, vmax, vmin, cmaps)
vmin, vmax = vlims[meas]
# colormap
if contours is not None:
if cmap is None:
cmap = ('w', 'w')
elif isinstance(cmap, str) and len(cmap) > 1:
cmap = cmaps[meas]
else:
contour_color = to_rgb(cmap)
cmap = (contour_color, contour_color)
elif cmap is None or isinstance(cmap, str):
cmap = cmaps[meas]
# general PySurfer data args
alpha = 1
if smoothing_steps is None and source.kind == 'ico':
smoothing_steps = source.grade + 1
# determine which hemi we're adding data to
if self._hemi in ('lh', 'rh'):
data_hemi = self._hemi
elif not source.lh_n:
data_hemi = 'rh'
elif not source.rh_n:
data_hemi = 'lh'
else:
data_hemi = 'both'
# remember where to find data_dict
dict_hemi = 'rh' if data_hemi == 'rh' else 'lh'
data_index = len(self._data_dicts[dict_hemi])
# add data
new_surfaces = []
if data_hemi != 'rh':
if self._hemi == 'lh':
colorbar_ = colorbar
colorbar = False
time_label_ = time_label
time_label = None
else:
colorbar_ = False
time_label_ = None
src_hemi = ndvar.sub(**{source.name: 'lh'})
data = src_hemi.get_data(data_dims, 0)
vertices = source.lh_vertices
self.add_data(data, vmin, vmax, None, cmap, alpha, vertices,
smoothing_steps, times, time_label_, colorbar_, 'lh')
new_surfaces.extend(self.data_dict['lh']['surfaces'])
if data_hemi != 'lh':
src_hemi = ndvar.sub(**{source.name: 'rh'})
data = src_hemi.get_data(data_dims, 0)
vertices = source.rh_vertices
self.add_data(data, vmin, vmax, None, cmap, alpha, vertices,
smoothing_steps, times, time_label, colorbar, 'rh')
new_surfaces.extend(self.data_dict['rh']['surfaces'])
# update surfaces
for surface in new_surfaces:
if contours is not None:
surface.enable_contours = True
# http://code.enthought.com/projects/files/ets_api/enthought.mayavi.components.contour.Contour.html
surface.contour.auto_update_range = False
# surface.contour.maximum_contour = ndvar.max()
# surface.contour.minimum_contour = ndvar.min()
if contours is not True:
surface.contour.contours = contours
surface.contour.auto_contours = False
if not lighting:
surface.actor.property.lighting = False
self.__data.append({
'hemi': data_hemi,
'data': ndvar,
'dict_hemi': dict_hemi,
'dict_index': data_index,
'cmap': cmap,
'vmin': vmin,
'vmax': vmax,
})
def add_ndvar_annotation(self, ndvar, colors=None, borders=True, alpha=1,
lighting=True):
"""Add annotation from labels in an NDVar
Parameters
----------
ndvar : NDVar of int
NDVar in which each unique integer indicates a label. By default,
``0`` is interpreted as unlabeled, but this can be overridden by
providing a ``colors`` dictionary that contains an entry for ``0``.
colors : dict
Dictionary mapping label IDs to colors.
borders : bool | int
Show label borders (instead of solid labels). If int, specify the
border width.
alpha : scalar [0, 1]
Opacity of the labels (default 1).
lighting : bool
Labels are affected by lights (default True).
"""
source = self._check_source_space(ndvar)
x = ndvar.get_data(source.name)
if x.dtype.kind not in 'iu':
raise TypeError("Need NDVar of integer type, not %r" % (x.dtype,))
# determine colors
label_values = np.unique(x)
if colors is None:
colors = plot_colors = colors_for_oneway([v for v in label_values if v])
elif 0 in colors and 0 in label_values:
x = x + 1
label_values += 1
try:
plot_colors = {k: colors[k - 1] for k in label_values}
except KeyError:
raise ValueError(
"The following values of ndvar are missing from colors: %s" %
', '.join(set(label_values - 1).difference(colors)))
colors = {k - 1: v for k, v in plot_colors.items()}
else:
try:
colors = plot_colors = {k: colors[k] for k in label_values if k}
except KeyError:
raise ValueError(
"The following values of ndvar are missing from colors: %s" %
', '.join(set(label_values).difference(colors).difference((0,))))
# generate color table
ctab = np.zeros((len(label_values), 5), int)
ctab[:, 4] = label_values
for i, v in enumerate(label_values):
if v == 0:
continue
ctab[i, :4] = [int(round(c * 255.)) for c in to_rgba(plot_colors[v])]
# generate annotation
sss = source.get_source_space()
indexes = (slice(None, source.lh_n), slice(source.lh_n, None))
annot = []
has_annot = []
for ss, vertices, index in zip(sss, source.vertices, indexes):
hemi = HEMI_ID_TO_STR[ss['id']]
if self._hemi == OTHER_HEMI[hemi]:
continue
# expand to full source space
ss_map = np.zeros(ss['nuse'], int)
ss_map[np.in1d(ss['vertno'], vertices)] = x[index]
# select only the used colors; Mayavi resets the range of the data-
# to-LUT mapping to the extrema of the data at various points, so it
# is safer to restrict the LUT to used colors
ctab_index = np.in1d(ctab[:, 4], ss_map)
hemi_ctab = ctab[ctab_index]
if np.any(hemi_ctab):
# expand to full brain
full_map = ss_map[ss['nearest']]
annot.append((full_map, hemi_ctab))
has_annot.append(hemi)
if len(annot) == 0:
return
elif len(annot) == 1:
annot = annot[0]
hemi = has_annot[0]
else:
hemi = None
self.add_annotation(annot, borders, alpha, hemi)
self.__annot = colors
if not lighting:
for annot in self.annot_list:
annot['surface'].actor.property.lighting = False
def add_ndvar_label(self, ndvar, color=(1, 0, 0), borders=False, name=None,
alpha=None, lighting=False):
"""Draw a boolean NDVar as label.
Parameters
----------
ndvar : NDVar
Boolean NDVar.
color : matplotlib-style color | None
anything matplotlib accepts: string, RGB, hex, etc. (default
"crimson")
borders : bool | int
Show only label borders. If int, specify the number of steps
(away from the true border) along the cortical mesh to include
as part of the border definition.
name : str
Name for the label (for display in legend).
alpha : float in [0, 1]
alpha level to control opacity
lighting : bool
Whether label should be affected by lighting (default False).
Notes
-----
To remove previously added labels, run Brain.remove_labels().
"""
source = self._check_source_space(ndvar)
x = ndvar.get_data(source.name)
if x.dtype.kind != 'b':
raise ValueError("Require NDVar of type bool, got %r" % (x.dtype,))
if name is None:
name = str(ndvar.name)
color = to_rgba(color, alpha)
lh_vertices = source.lh_vertices[x[:source.lh_n]]
rh_vertices = source.rh_vertices[x[source.lh_n:]]
lh, rh = source._label((lh_vertices, rh_vertices), name, color[:3])
if lh and self._hemi != 'rh':
while lh.name in self.labels_dict:
lh.name += '_'
self.add_label(lh, color[:3], color[3], borders=borders)
self.labels_dict[lh.name][0].actor.property.lighting = lighting
if rh and self._hemi != 'lh':
while rh.name in self.labels_dict:
rh.name += '_'
self.add_label(rh, color[:3], color[3], borders=borders)
self.labels_dict[rh.name][0].actor.property.lighting = lighting
self.__labels[name] = color
def add_ndvar_p_map(self, p_map, param_map=None, p0=0.05, p1=0.01,
p0alpha=0.5, *args, **kwargs):
"""Add a map of p-values as data-layer
Parameters
----------
p_map : NDVar | NDTest
Map of p values, or test result.
param_map : NDVar
Statistical parameter covering the same data points as p_map. Only the
sign is used, for incorporating the directionality of the effect into
the plot.
p0 : scalar
Highest p-value that is visible.
p1 : scalar
P-value where the colormap changes from ramping alpha to ramping color.
p0alpha : 1 >= float >= 0
Alpha at ``p0``. Set to 0 for a smooth transition, or a larger value to
clearly delineate significant regions (default 0.5).
...
Other parameters for :meth:`.add_ndvar`.
"""
from .._stats.testnd import NDTest, MultiEffectNDTest
if isinstance(p_map, NDTest):
if isinstance(p_map, MultiEffectNDTest):
raise NotImplementedError(f"plot.brain.p_map for {p_map.__class__.__name__}")
elif param_map is not None:
raise TypeError(f"param_map={param_map!r} when p_map is NDTest result")
res = p_map
p_map = res.p
param_map = res._statistic_map
p_map, lut, vmax = p_lut(p_map, param_map, p0, p1, p0alpha)
self.add_ndvar(p_map, lut, -vmax, vmax, *args, **kwargs)
def close(self):
"Close the figure window"
if self._frame:
self._frame.Close()
else:
self._surfer_close()
@property
def closed(self):
return self._figures[0][0] is None
def _surfer_close(self):
surfer.Brain.close(self)
def copy_screenshot(self):
"Copy the currently shown image to the clipboard"
from .._wxgui import wx
tempdir = mkdtemp()
tempfile = os.path.join(tempdir, "brain.png")
self.save_image(tempfile, 'rgba', True)
bitmap = wx.Bitmap(tempfile, wx.BITMAP_TYPE_PNG)
bitmap_obj = wx.BitmapDataObject(bitmap)
if not wx.TheClipboard.IsOpened():
open_success = wx.TheClipboard.Open()
if open_success:
wx.TheClipboard.SetData(bitmap_obj)
wx.TheClipboard.Close()
wx.TheClipboard.Flush()
def _get_cmap_params(self, layer=0, label=True):
"""Return parameters required to plot a colorbar"""
data = self.__data[layer]
data_dict = self._data_dicts[data['dict_hemi']][data['dict_index']]
colormap = ListedColormap(data_dict['orig_ctable'] / 255., label)
return colormap, data_dict['fmin'], data_dict['fmax']
def _has_annot(self):
return bool(self.__annot)
def _has_data(self):
return bool(self.__data)
def _has_labels(self):
return bool(self.__labels)
def _enable_selecting_vertex(self, color='red'):
"""Find source space vertex numbers by clicking on the brain
After enabling this functionality, each right-click on the brain will
cause the vertex number of the closest source space vertex to be printed
in the terminal.
Parameters
----------
color : mayavi color
Color for the vertex marker.
Example
-------
Load a source space and plot it to be able to select vertices::
ss = SourceSpace.from_file('directory/mri_subjects', 'fsaverage', 'ico-4')
brain = plot.brain.brain(ss)
brain._enable_selecting_vertex()
"""
if self.__source_space is None:
raise RuntimeError("Can't enable vertex selection for brian without source space")
for brain in self.brains:
func = partial(self._select_nearest_source, hemi=brain.hemi, color=color)
brain._f.on_mouse_pick(func, button="Right")
@LazyProperty
def _tris_lh(self):
return self.__source_space._read_surf('lh')[1]
@LazyProperty
def _tris_rh(self):
return self.__source_space._read_surf('rh')[1]
def _select_nearest_source(self, vertex, hemi, color='red'):
if not isinstance(vertex, int):
vertex = vertex.point_id
ss_vertices = self.__source_space.vertices[hemi == 'rh']
if vertex not in ss_vertices:
tris = self._tris_lh if hemi == 'lh' else self._tris_rh
selected = np.any(tris == vertex, 1)
for i in range(7):
selected_v = np.unique(tris[selected])
index = np.in1d(ss_vertices, selected_v)
if index.any():
vertex = ss_vertices[index][0]
break
for v in selected_v:
selected |= | np.any(tris == v, 1) | numpy.any |
#!/usr/bin/env python
# ------------------------------------------------------------------------------------------------------%
# Created by "<NAME>" at 08:58, 16/03/2020 %
# %
# Email: <EMAIL> %
# Homepage: https://www.researchgate.net/profile/Thieu_Nguyen6 %
# Github: https://github.com/thieu1995 %
# ------------------------------------------------------------------------------------------------------%
import numpy as np
from math import gamma
from copy import deepcopy
from mealpy.utils.history import History
from mealpy.problem import Problem
from mealpy.utils.termination import Termination
import concurrent.futures as parallel
import time
class Optimizer:
""" This is base class of all Algorithms """
## Assumption the A solution with format: [position, [target, [obj1, obj2, ...]]]
ID_POS = 0 # Index of position/location of solution/agent
ID_FIT = 1 # Index of fitness value of solution/agent
ID_TAR = 0 # Index of target (the final fitness) in fitness
ID_OBJ = 1 # Index of objective list in fitness
EPSILON = 10E-10
def __init__(self, problem, kwargs):
"""
Args:
problem: Design your problem based on the format of the Problem class
Examples:
problem = {
"obj_func": your objective function,
"lb": list of value
"ub": list of value
"minmax": "min" or "max"
"verbose": True or False
"n_dims": int (Optional)
"batch_idea": True or False (Optional)
"batch_size": int (Optional, smaller than population size)
"obj_weight": list weights for all your objectives (Optional, default = [1, 1, ...1])
}
"""
super(Optimizer, self).__init__()
self.epoch, self.pop_size, self.solution = None, None, None
self.mode = "sequential"
self.pop, self.g_best = None, None
self.history = History()
if not isinstance(problem, Problem):
problem = Problem(problem)
self.problem = problem
self.verbose = problem.verbose
self.termination_flag = False # Check if exist object or not
if "termination" in kwargs:
termination = kwargs["termination"]
if not isinstance(termination, Termination):
print("Please create and input your Termination object!")
exit(0)
else:
self.termination = termination
self.termination_flag = True
self.nfe_per_epoch = self.pop_size
self.sort_flag = False
def termination_start(self):
if self.termination_flag:
if self.termination.mode == 'TB':
self.count_terminate = time.time()
elif self.termination.mode == 'ES':
self.count_terminate = 0
elif self.termination.mode == 'MG':
self.count_terminate = self.epoch
else: # number of function evaluation (NFE)
self.count_terminate = self.pop_size # First out of loop
else:
pass
def initialization(self):
self.pop = self.create_population(self.pop_size)
if self.sort_flag:
self.pop, self.g_best = self.get_global_best_solution(self.pop) # We sort the population
else:
_, self.g_best = self.get_global_best_solution(self.pop) # We don't sort the population
def before_evolve(self, epoch):
pass
def after_evolve(self, epoch):
pass
def solve(self, mode='sequential'):
"""
Args:
mode (str): 'sequential', 'thread', 'process'
+ 'sequential': recommended for simple and small task (< 10 seconds for calculating objective)
+ 'thread': recommended for IO bound task, or small computing task (< 2 minutes for calculating objective)
+ 'process': recommended for hard and big task (> 2 minutes for calculating objective)
Returns:
[position, fitness value]
"""
self.mode = mode
self.termination_start()
self.initialization()
self.history.save_initial_best(self.g_best)
for epoch in range(0, self.epoch):
time_epoch = time.time()
## Call before evolve function
self.before_evolve(epoch)
## Evolve method will be called in child class
self.evolve(epoch)
## Call after evolve function
self.after_evolve(epoch)
# update global best position
if self.sort_flag:
self.pop, self.g_best = self.update_global_best_solution(self.pop) # We sort the population
else:
_, self.g_best = self.update_global_best_solution(self.pop) # We don't sort the population
## Additional information for the framework
time_epoch = time.time() - time_epoch
self.history.list_epoch_time.append(time_epoch)
self.history.list_population.append(deepcopy(self.pop))
self.print_epoch(epoch + 1, time_epoch)
if self.termination_flag:
if self.termination.mode == 'TB':
if time.time() - self.count_terminate >= self.termination.quantity:
self.termination.logging(self.verbose)
break
elif self.termination.mode == 'FE':
self.count_terminate += self.nfe_per_epoch
if self.count_terminate >= self.termination.quantity:
self.termination.logging(self.verbose)
break
elif self.termination.mode == 'MG':
if epoch >= self.termination.quantity:
self.termination.logging(self.verbose)
break
else: # Early Stopping
temp = self.count_terminate + self.history.get_global_repeated_times(self.ID_FIT, self.ID_TAR, self.EPSILON)
if temp >= self.termination.quantity:
self.termination.logging(self.verbose)
break
## Additional information for the framework
self.save_optimization_process()
return self.solution[self.ID_POS], self.solution[self.ID_FIT][self.ID_TAR]
def evolve(self, epoch):
pass
def create_solution(self):
"""
Returns:
The position position with 2 element: index of position/location and index of fitness wrapper
The general format: [position, [target, [obj1, obj2, ...]]]
## To get the position, fitness wrapper, target and obj list
## A[self.ID_POS] --> Return: position
## A[self.ID_FIT] --> Return: [target, [obj1, obj2, ...]]
## A[self.ID_FIT][self.ID_TAR] --> Return: target
## A[self.ID_FIT][self.ID_OBJ] --> Return: [obj1, obj2, ...]
"""
position = np.random.uniform(self.problem.lb, self.problem.ub)
fitness = self.get_fitness_position(position=position)
return [position, fitness]
def create_population(self, pop_size=None):
"""
Args:
mode (str): processing mode, it can be "sequential", "thread" or "process"
pop_size (int): number of solutions
Returns:
population: list of solutions/agents
"""
if pop_size is None:
pop_size = self.pop_size
pop = []
if self.mode == "thread":
with parallel.ThreadPoolExecutor() as executor:
list_executors = [executor.submit(self.create_solution) for _ in range(pop_size)]
# This method yield the result everytime a thread finished their job (not by order)
for f in parallel.as_completed(list_executors):
pop.append(f.result())
elif self.mode == "process":
with parallel.ProcessPoolExecutor() as executor:
list_executors = [executor.submit(self.create_solution) for _ in range(pop_size)]
# This method yield the result everytime a cpu finished their job (not by order).
for f in parallel.as_completed(list_executors):
pop.append(f.result())
else:
pop = [self.create_solution() for _ in range(0, pop_size)]
return pop
def update_fitness_population(self, pop=None):
"""
Args:
mode (str): processing mode, it can be "sequential", "thread" or "process"
pop (list): the population
Returns:
population: with updated fitness value
"""
if self.mode == "thread":
with parallel.ThreadPoolExecutor() as executor:
list_results = executor.map(self.get_fitness_solution, pop) # Return result not the future object
for idx, fit in enumerate(list_results):
pop[idx][self.ID_FIT] = fit
elif self.mode == "process":
with parallel.ProcessPoolExecutor() as executor:
list_results = executor.map(self.get_fitness_solution, pop) # Return result not the future object
for idx, fit in enumerate(list_results):
pop[idx][self.ID_FIT] = fit
else:
for idx, agent in enumerate(pop):
pop[idx][self.ID_FIT] = self.get_fitness_solution(agent)
return pop
def get_fitness_position(self, position=None):
"""
Args:
position (nd.array): 1-D numpy array
Returns:
[target, [obj1, obj2, ...]]
"""
objs = self.problem.obj_func(position)
if not self.problem.obj_is_list:
objs = [objs]
fit = np.dot(objs, self.problem.obj_weight)
return [fit, objs]
def get_fitness_solution(self, solution=None):
"""
Args:
solution (list): A solution with format [position, [target, [obj1, obj2, ...]]]
Returns:
[target, [obj1, obj2, ...]]
"""
return self.get_fitness_position(solution[self.ID_POS])
def get_global_best_solution(self, pop: list):
"""
Sort population and return the sorted population and the best solution
Args:
pop (list): The population of pop_size individuals
Returns:
Sorted population and global best solution
"""
sorted_pop = sorted(pop, key=lambda agent: agent[self.ID_FIT][self.ID_TAR]) # Already returned a new sorted list
if self.problem.minmax == "min":
return sorted_pop, deepcopy(sorted_pop[0])
else:
return sorted_pop, deepcopy(sorted_pop[-1])
def get_better_solution(self, agent1: list, agent2: list):
"""
Args:
agent1 (list): A solution
agent2 (list): Another solution
Returns:
The better solution between them
"""
if self.problem.minmax == "min":
if agent1[self.ID_FIT][self.ID_TAR] < agent2[self.ID_FIT][self.ID_TAR]:
return deepcopy(agent1)
return deepcopy(agent2)
else:
if agent1[self.ID_FIT][self.ID_TAR] < agent2[self.ID_FIT][self.ID_TAR]:
return deepcopy(agent2)
return deepcopy(agent1)
def compare_agent(self, agent_a: list, agent_b: list):
"""
Args:
agent_a (list): Solution a
agent_b (list): Solution b
Returns:
boolean: Return True if solution a better than solution b and otherwise
"""
if self.problem.minmax == "min":
if agent_a[self.ID_FIT][self.ID_TAR] < agent_b[self.ID_FIT][self.ID_TAR]:
return True
return False
else:
if agent_a[self.ID_FIT][self.ID_TAR] < agent_b[self.ID_FIT][self.ID_TAR]:
return False
return True
def get_special_solutions(self, pop=None, best=3, worst=3):
"""
Args:
pop (list): The population
best (int): Top k1 best solutions, default k1=3, it can be None
worst (int): Top k2 worst solutions, default k2=3, it can be None
Returns:
sorted_population, k1 best solutions and k2 worst solutions
"""
if self.problem.minmax == "min":
pop = sorted(pop, key=lambda agent: agent[self.ID_FIT][self.ID_TAR])
else:
pop = sorted(pop, key=lambda agent: agent[self.ID_FIT][self.ID_TAR], reverse=True)
if best is None:
if worst is None:
exit(0)
else:
return pop, None, deepcopy(pop[:-worst])
else:
if worst is None:
return pop, deepcopy(pop[:best]), None
else:
return pop, deepcopy(pop[:best]), deepcopy(pop[:-worst])
def get_special_fitness(self, pop=None):
"""
Args:
pop (list): The population
Returns:
Total fitness, best fitness, worst fitness
"""
total_fitness = np.sum([agent[self.ID_FIT][self.ID_TAR] for agent in pop])
if self.problem.minmax == "min":
pop = sorted(pop, key=lambda agent: agent[self.ID_FIT][self.ID_TAR])
else:
pop = sorted(pop, key=lambda agent: agent[self.ID_FIT][self.ID_TAR], reverse=True)
return total_fitness, pop[0][self.ID_FIT][self.ID_TAR], pop[-1][self.ID_FIT][self.ID_TAR]
def update_global_best_solution(self, pop=None, save=True):
"""
Update the global best solution saved in variable named: self.history_list_g_best
Args:
pop (list): The population of pop_size individuals
save (bool): True if you want to add new current global best and False if you just want update the current one.
Returns:
Sorted population and the global best solution
"""
if self.problem.minmax == "min":
sorted_pop = sorted(pop, key=lambda agent: agent[self.ID_FIT][self.ID_TAR])
else:
sorted_pop = sorted(pop, key=lambda agent: agent[self.ID_FIT][self.ID_TAR], reverse=True)
current_best = sorted_pop[0]
# self.history_list_c_best.append(current_best)
# better = self.get_better_solution(current_best, self.history_list_g_best[-1])
# self.history_list_g_best.append(better)
if save:
self.history.list_current_best.append(current_best)
better = self.get_better_solution(current_best, self.history.list_global_best[-1])
self.history.list_global_best.append(better)
return deepcopy(sorted_pop), deepcopy(better)
else:
local_better = self.get_better_solution(current_best, self.history.list_current_best[-1])
self.history.list_current_best[-1] = local_better
global_better = self.get_better_solution(current_best, self.history.list_global_best[-1])
self.history.list_global_best[-1] = global_better
return deepcopy(sorted_pop), deepcopy(global_better)
def print_epoch(self, epoch, runtime):
"""
Print out the detailed information of training process
Args:
epoch (int): current iteration
runtime (float): the runtime for current iteration
"""
if self.verbose:
print(f"> Epoch: {epoch}, Current best: {self.history.list_current_best[-1][self.ID_FIT][self.ID_TAR]}, "
f"Global best: {self.history.list_global_best[-1][self.ID_FIT][self.ID_TAR]}, Runtime: {runtime:.5f} seconds")
def save_optimization_process(self):
"""
Detail: Save important data for later use such as:
+ history_list_g_best_fit
+ history_list_c_best_fit
+ history_list_div
+ history_list_explore
+ history_list_exploit
"""
# self.history_list_g_best_fit = [agent[self.ID_FIT][self.ID_TAR] for agent in self.history_list_g_best]
# self.history_list_c_best_fit = [agent[self.ID_FIT][self.ID_TAR] for agent in self.history_list_c_best]
#
# # Draw the exploration and exploitation line with this data
# self.history_list_div = np.ones(self.epoch)
# for idx, pop in enumerate(self.history_list_pop):
# pos_matrix = np.array([agent[self.ID_POS] for agent in pop])
# div = np.mean(abs((np.median(pos_matrix, axis=0) - pos_matrix)), axis=0)
# self.history_list_div[idx] = np.mean(div, axis=0)
# div_max = np.max(self.history_list_div)
# self.history_list_explore = 100 * (self.history_list_div / div_max)
# self.history_list_exploit = 100 - self.history_list_explore
self.history.epoch = len(self.history.list_global_best)
self.history.list_global_best_fit = [agent[self.ID_FIT][self.ID_TAR] for agent in self.history.list_global_best]
self.history.list_current_best_fit = [agent[self.ID_FIT][self.ID_TAR] for agent in self.history.list_current_best]
# Draw the exploration and exploitation line with this data
self.history.list_diversity = np.ones(self.history.epoch)
for idx, pop in enumerate(self.history.list_population):
pos_matrix = np.array([agent[self.ID_POS] for agent in pop])
div = np.mean(abs((np.median(pos_matrix, axis=0) - pos_matrix)), axis=0)
self.history.list_diversity[idx] = np.mean(div, axis=0)
div_max = np.max(self.history.list_diversity)
self.history.list_exploration = 100 * (self.history.list_diversity / div_max)
self.history.list_exploitation = 100 - self.history.list_exploration
self.solution = self.history.list_global_best[-1]
## Crossover techniques
def get_index_roulette_wheel_selection(self, list_fitness: np.array):
"""
This method can handle min/max problem, and negative or positive fitness value.
Args:
list_fitness (nd.array): 1-D numpy array
Returns:
Index of selected solution
"""
scaled_fitness = (list_fitness - np.min(list_fitness)) / (np.ptp(list_fitness) + self.EPSILON)
if self.problem.minmax == "min":
final_fitness = 1.0 - scaled_fitness
else:
final_fitness = scaled_fitness
total_sum = sum(final_fitness)
r = np.random.uniform(low=0, high=total_sum)
for idx, f in enumerate(final_fitness):
r = r + f
if r > total_sum:
return idx
return np.random.choice(range(0, len(list_fitness)))
def get_solution_kway_tournament_selection(self, pop: list, k_way=0.2, output=2):
if 0 < k_way < 1:
k_way = int(k_way * len(pop))
k_way = round(k_way)
list_id = np.random.choice(range(len(pop)), k_way, replace=False)
list_parents = [pop[i] for i in list_id]
list_parents = sorted(list_parents, key=lambda agent: agent[self.ID_FIT][self.ID_TAR])
if self.problem.minmax == "min":
return list_parents[:output]
else:
return list_parents[-output:]
def get_levy_flight_step(self, beta=1.0, multiplier=0.001, case=0):
"""
Parameters
----------
multiplier (float, optional): 0.01
beta: [0-2]
+ 0-1: small range --> exploit
+ 1-2: large range --> explore
case: 0, 1, -1
+ 0: return multiplier * s * np.random.uniform()
+ 1: return multiplier * s * np.random.normal(0, 1)
+ -1: return multiplier * s
"""
# u and v are two random variables which follow np.random.normal distribution
# sigma_u : standard deviation of u
sigma_u = np.power(gamma(1 + beta) * np.sin(np.pi * beta / 2) / (gamma((1 + beta) / 2) * beta * | np.power(2, (beta - 1) / 2) | numpy.power |
import numpy as np
import torch
import torch.nn as nn
import warnings
from typing import Iterable
from datetime import datetime, timedelta
import ptan
import ptan.ignite as ptan_ignite
from ignite.engine import Engine
from ignite.metrics import RunningAverage
from ignite.contrib.handlers import tensorboard_logger as tb_logger
@torch.no_grad()
def calc_values_of_states(states, net, device="cpu"):
mean_vals = []
for batch in np.array_split(states, 64):
states_v = torch.tensor(batch).to(device)
action_values_v = net(states_v)
best_action_values_v = action_values_v.max(1)[0]
mean_vals.append(best_action_values_v.mean().item())
return | np.mean(mean_vals) | numpy.mean |
'''
Author: <NAME>
E-mail: <EMAIL>
Here is a implementation of an autoencoder with 4 encoder and decoder layers, based on the Restricted Boltzmann Machine (RBM) in TensorFlow according to Hinton's:
[1] <NAME>* and <NAME>. "Reducing the Dimensionality of Data with Neural Networks"
Science 28 Jul 2006: Vol. 313, Issue 5786, pp. 504-507.
'''
from RBM import RBM
import numpy as np
import tensorflow as tf
from numpy import genfromtxt
class RBM_Weights:
def __init__(self, weights, visBias, hidBias):
self.weights = weights
self.visBias = visBias
self.hidBias = hidBias
def getWeights(self):
return self.weights
def getVisBias(self):
return self.visBias
def getHidBias(self):
return self.hidBias
class AE_RBM:
nEncoderLayers = 4 # number of encoder layers of the autoencoder
sEncoderLayers = None # size of the encoder layers
def __init__ (self, sEncoderLayers):
if(self.nEncoderLayers != sEncoderLayers.shape[0]):
print('Invalid number of size layers')
raise Exception('Autoencoder constructor ERROR !!!')
self.sEncoderLayers = sEncoderLayers
def train(self, trainingData):
rbmList = [] # list RBM's weights
tempData = trainingData
# start RBM's training and get the respective weights
for n in range(self.nEncoderLayers):
if(n==0 or n==(self.nEncoderLayers-1)):
rbm = RBM(tempData, self.sEncoderLayers[n], rbmType='GBRBM')
else:
rbm = RBM(tempData, self.sEncoderLayers[n], rbmType='BBRBM')
print('Start %d RBM training' % (n+1) )
rbm.train(batchSize=100)
[weights, visBias, hidBias] = rbm.getWeights()
rbmList.append(RBM_Weights(weights, visBias, hidBias))
data = tf.convert_to_tensor( tempData, dtype=tf.float32, name='data')
probHid = tf.sigmoid( tf.matmul( data, weights) + hidBias)
hid = tf.cast( tf.greater( probHid, tf.random_uniform( tf.shape(probHid), minval=0, maxval=1, dtype=tf.float32)), dtype=tf.float32)
with tf.Session() as sess:
if((self.nEncoderLayers-1) == n):
tempData = sess.run(probHid)
else:
tempData = sess.run(hid)
# start the fine tuning process
return self.fineTuning( rbmList, trainingData)
def fineTuning(self, rbmList, trainingData):
# create the weight variables
layer_01_Weights = tf.Variable(rbmList[0].getWeights(), dtype=tf.float32, name='layer_01_Weights')
layer_01_VisBias = tf.Variable(rbmList[0].getVisBias(), dtype=tf.float32, name='layer_01_VisBias')
layer_01_HidBias = tf.Variable(rbmList[0].getHidBias(), dtype=tf.float32, name='layer_01_HidBias')
layer_02_Weights = tf.Variable(rbmList[1].getWeights(), dtype=tf.float32, name='layer_02_Weights')
layer_02_VisBias = tf.Variable(rbmList[1].getVisBias(), dtype=tf.float32, name='layer_02_VisBias')
layer_02_HidBias = tf.Variable(rbmList[1].getHidBias(), dtype=tf.float32, name='layer_02_HidBias')
layer_03_Weights = tf.Variable(rbmList[2].getWeights(), dtype=tf.float32, name='layer_03_Weights')
layer_03_VisBias = tf.Variable(rbmList[2].getVisBias(), dtype=tf.float32, name='layer_03_VisBias')
layer_03_HidBias = tf.Variable(rbmList[2].getHidBias(), dtype=tf.float32, name='layer_03_HidBias')
layer_04_Weights = tf.Variable(rbmList[3].getWeights(), dtype=tf.float32, name='layer_04_Weights')
layer_04_VisBias = tf.Variable(rbmList[3].getVisBias(), dtype=tf.float32, name='layer_04_VisBias')
layer_04_HidBias = tf.Variable(rbmList[3].getHidBias(), dtype=tf.float32, name='layer_04_HidBias')
# create some placeholders for the model
probHid_01 = tf.placeholder(dtype=tf.float32, name='probHid_01')
hid_01 = tf.placeholder(dtype=tf.float32, name='hid_01')
probHid_02 = tf.placeholder(dtype=tf.float32, name='probHid_02')
hid_02 = tf.placeholder(dtype=tf.float32, name='hid_02')
probHid_03 = tf.placeholder(dtype=tf.float32, name='probHid_03')
probHid_04 = tf.placeholder(dtype=tf.float32, name='probHid_04')
hid_04 = tf.placeholder(dtype=tf.float32, name='hid_04')
recons_04 = tf.placeholder(dtype=tf.float32, name='recons_04')
recons_03 = tf.placeholder(dtype=tf.float32, name='recons_03')
recons_02 = tf.placeholder(dtype=tf.float32, name='recons_02')
recons_01 = tf.placeholder(dtype=tf.float32, name='recons_01')
data = tf.convert_to_tensor( trainingData, dtype=tf.float32, name='visRecs_01')
# W1_Encoder
probHid_01 = tf.sigmoid( tf.matmul( data, layer_01_Weights) + layer_01_HidBias)
hid_01 = tf.cast( tf.greater( probHid_01, tf.random_uniform( tf.shape(probHid_01), minval=0, maxval=1, dtype=tf.float32)), dtype=tf.float32)
# W2_Encoder
probHid_02 = tf.sigmoid( tf.matmul( hid_01, layer_02_Weights) + layer_02_HidBias)
hid_02 = tf.cast( tf.greater( probHid_02, tf.random_uniform( tf.shape(probHid_02), minval=0, maxval=1, dtype=tf.float32)), dtype=tf.float32)
# W3_Encoder
probHid_03 = tf.sigmoid( tf.matmul( hid_02, layer_03_Weights) + layer_03_HidBias)
# W4_Encoder
probHid_04 = tf.sigmoid( tf.matmul( probHid_03, layer_04_Weights) + layer_04_HidBias)
hid_04 = tf.cast( tf.greater( probHid_04, tf.random_uniform( tf.shape(probHid_04), minval=0, maxval=1, dtype=tf.float32)), dtype=tf.float32)
# W4_Decoder
recons_04 = tf.sigmoid( tf.matmul(hid_04, layer_04_Weights, False, True) + layer_04_VisBias)
# W3_Decoder
recons_03 = tf.sigmoid( tf.matmul(recons_04, layer_03_Weights, False, True) + layer_03_VisBias)
# W2_Decoder
recons_02 = tf.sigmoid( tf.matmul(recons_03, layer_02_Weights, False, True) + layer_02_VisBias)
# W1_Decoder
recons_01 = tf.matmul( recons_02, layer_01_Weights, False, True) + layer_01_VisBias
# cost function
error = tf.losses.mean_squared_error(trainingData, recons_01)
# some tensorflow optimizers
#train_op = tf.train.AdagradOptimizer(0.1).minimize(error)
train_op = tf.train.AdadeltaOptimizer(1).minimize(error)
#train_op = tf.train.GradientDescentOptimizer(0.1).minimize(error)
errorArray = np.array([])
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(1000):
_, auxError = sess.run([train_op, error])
errorArray = | np.append(errorArray, auxError) | numpy.append |
import pandas, pcap, os, json, sys
import numpy as np
import os.path as osp
from datetime import datetime
from socket import inet_ntop, AF_INET
from kaitaistruct import KaitaiStream, BytesIO
from common.pcap import EthernetFrame
from scapy.all import rdpcap, wrpcap, Ether, IP, TCP, UDP, Raw, Padding
from collections import deque
def find_data_files(dir):
data_files = []
data_dirs = []
for d in os.listdir(dir):
dp = osp.join(dir, d)
if osp.isdir(dp):
data_dirs.append(d)
data_files.append([])
for f in os.listdir(dp):
fp = osp.join(dp, f)
if osp.isfile(fp):
data_files[-1].append(f)
return data_dirs, data_files
def label_cicids17_short(timestamp, src_ip, dst_ip, src_port=None, dst_port=None):
timestamp = datetime.fromtimestamp(timestamp)
date = timestamp.strftime('%d%m')
if (src_ip == '172.16.31.10' or dst_ip == '172.16.31.10' or src_ip == '192.168.127.12' or dst_ip == '192.168.127.12') and date == '1502':
label = 1
description = 'App-DoS'
elif (src_ip == '172.16.31.10' or dst_ip == '172.16.31.10') and date in ['2202', '2302']:
label = 2
description = 'BruteForce-Web'
elif (src_ip == '172.16.17.32' or dst_ip == '172.16.17.32') and date in ['2802', '0103']:
label = 3
description = 'Infiltration'
elif (src_ip == '172.16.31.10' or dst_ip == '172.16.31.10') and date == '0203':
label = 4
description = 'Botnet attack'
else:
label = 0
description = 'Normal traffic'
return label, description
def label_cicids17(timestamp, src_ip, dst_ip, src_port=None, dst_port=None):
timestamp = datetime.fromtimestamp(timestamp)
date = timestamp.strftime('%d%m')
loic = [
'172.16.31.10',
'172.16.31.10',
'172.16.58.3',
'192.168.127.12',
'192.168.127.12',
'172.16.31.10',
'172.16.31.10',
'172.16.31.10',
'172.16.58.3',
'192.168.127.12'
]
if (src_ip == '172.16.58.3' or dst_ip == '172.16.58.3') and date == '1402':
label = 1
description = 'FTP bruteforce'
elif (src_ip == '192.168.127.12' or dst_ip == '192.168.127.12') and date == '1402':
label = 2
description = 'SSH bruteforce'
elif (src_ip == '172.16.31.10' or dst_ip == '172.16.31.10') and date == '1502':
label = 3
description = 'DoS-GoldenEye'
elif (src_ip == '192.168.127.12' or dst_ip == '192.168.127.12') and date == '1502':
label = 4
description = 'DoS-Slowloris'
elif (src_ip == '172.16.31.10' or dst_ip == '172.16.31.10') and date == '1602':
label = 5
description = 'DoS-Hulk'
elif (src_ip in loic or dst_ip in loic) and date in ['2002', '2102']:
label = 6
description = 'DoS-LOIC/HOIC'
elif (src_ip == '172.16.31.10' or dst_ip == '172.16.31.10') and date in ['2202', '2302']:
label = 7
description = 'BruteForce-Web'
elif (src_ip == '172.16.17.32' or dst_ip == '172.16.17.32') and date in ['2802', '0103']:
label = 8
description = 'Infiltration'
elif (src_ip == '172.16.31.10' or dst_ip == '172.16.31.10') and date == '0203':
label = 9
description = 'Botnet attack'
else:
label = 0
description = 'Normal traffic'
return label, description
def decode_tcp_flags_value(value, nflags):
b = '{0:b}'.format(value)[::-1]
l = len(b)
positions = [b[i] for i in range(nflags) if i < l] + ['0' for _ in range(nflags - l)]
return ','.join(positions)
def read_tcp_packet(body, nflags):
src_port = body.body.body.src_port
dst_port = body.body.body.dst_port
payload = [str(b) for b in body.body.body.body]
flags = body.body.body.b13
window = body.body.body.window_size
return src_port, dst_port, len(payload), decode_tcp_flags_value(flags, nflags), window
def read_udp_packet(body):
src_port = body.body.body.src_port
dst_port = body.body.body.dst_port
payload = [str(b) for b in body.body.body.body]
return src_port, dst_port, len(payload)
def read_ip_pkt(body, nflags=8, faster=False):
src_ip = inet_ntop(AF_INET, body.src_ip_addr)
dst_ip = inet_ntop(AF_INET, body.dst_ip_addr)
read_size = body.read_len
proto = body.protocol
tos = body.b2
print(tos)
if faster:
src_port = body.body.body.src_port
dst_port = body.body.body.dst_port
plen = 0
flags = ','.join(['0'] * nflags)
window = 0
else:
if proto == 6:
src_port, dst_port, plen, flags, window = read_tcp_packet(body, nflags)
elif proto == 17:
src_port, dst_port, plen, = read_udp_packet(body)
flags = ','.join(['0'] * nflags)
window = 0
else:
src_port = 0
dst_port = 0
plen = 0
flags = ','.join(['0'] * nflags)
window = 0
return src_ip, dst_ip, src_port, dst_port, proto, read_size, plen, flags, window, tos
def read_pkt(raw):
id = None
features = None
flags = None
tos = None
try:
pkt = EthernetFrame(KaitaiStream(BytesIO(raw)))
if pkt.ether_type.value == 2048:
frame_size = len(raw)
src_ip, dst_ip, src_port, dst_port, proto, read_size, payload_size, flags, window, tos = read_ip_pkt(pkt.body)
header_size = 14 + read_size - payload_size
id = [src_ip, src_port, dst_ip, dst_port, proto]
features = [frame_size, header_size, payload_size, window]
flags = [int(item) for item in flags.split(',')]
elif pkt.ether_type.value == 2054:
raise NotImplemented
except:
pass
return id, features, flags, tos
def read_pkt_faster(raw):
id = None
features = None
flags = None
tos = None
try:
pkt = EthernetFrame(KaitaiStream(BytesIO(raw)))
if pkt.ether_type.value == 2048:
frame_size = len(raw)
src_ip, dst_ip, src_port, dst_port, proto, read_size, payload_size, flags, window, tos = read_ip_pkt(pkt.body, faster=True)
header_size = 14 + read_size - payload_size
id = [src_ip, src_port, dst_ip, dst_port, proto]
features = [frame_size, header_size, payload_size, window]
flags = [int(item) for item in flags.split(',')]
elif pkt.ether_type.value == 2054:
raise NotImplemented
except:
pass
return id, features, flags, tos
class Flow():
def __init__(self, ts, id, features, flags, blk_thr=1.0, idl_thr=5.0):
# lists
self.id = id
self.pkts = [[ts, *features]]
self.flags = [flags]
self.directions = [1]
# thresholds
self.blk_thr = blk_thr
self.idl_thr = idl_thr
# zero features
self.fl_dur = 0
self.tot_bw_pk = 0
self.fw_pkt_l_std = 0
self.bw_pkt_l_max = 0
self.bw_pkt_l_min = 0
self.bw_pkt_l_avg = 0
self.bw_pkt_l_std = 0
self.fl_byt_s = 0
self.fl_pkt_s = 0
self.fl_iat_avg = 0
self.fl_iat_std = 0
self.fl_iat_max = 0
self.fl_iat_min = 0
self.fw_iat_tot = 0
self.fw_iat_avg = 0
self.fw_iat_std = 0
self.fw_iat_max = 0
self.fw_iat_min = 0
self.bw_iat_tot = 0
self.bw_iat_avg = 0
self.bw_iat_std = 0
self.bw_iat_max = 0
self.bw_iat_min = 0
self.fw_psh_flag = 0
self.bw_psh_flag = 0
self.fw_urg_flag = 0
self.bw_urg_flag = 0
self.bw_hdr_len = 0
self.fw_pkt_s = 0
self.bw_pkt_s = 0
self.pkt_len_std = 0
self.down_up_ratio = 0
self.fw_byt_blk_avg = 0
self.fw_pkt_blk_avg = 0
self.fw_blk_rate_avg = 0
self.bw_byt_blk_avg = 0
self.bw_pkt_blk_avg = 0
self.bw_blk_rate_avg = 0
self.fw_pkt_sub_avg = 0
self.fw_byt_sub_avg = 0
self.bw_pkt_sub_avg = 0
self.bw_byt_sub_avg = 0
self.bw_win_byt = 0
self.atv_avg = 0
self.atv_std = 0
self.atv_max = 0
self.atv_min = 0
self.idl_avg = 0
self.idl_std = 0
self.idl_max = 0
self.idl_min = 0
self.flag_counts = [0 for _ in range(5)]
# features
self.is_tcp = 0
self.is_udp = 0
if id[4] == 6:
self.is_tcp = 1
elif id[4] == 17:
self.is_udp = 1
for i in range(len(self.flag_counts)):
self.flag_counts[i] = 1 if flags[i] == 1 else 0
self.tot_fw_pk = 1
psize = features[0]
self.tot_l_fw_pkt = psize
self.fw_pkt_l_max = psize
self.fw_pkt_l_min = psize
self.fw_pkt_l_avg = psize
self.fw_hdr_len = psize
self.pkt_len_min = psize
self.pkt_len_max = psize
self.pkt_len_avg = psize
self.subfl_fw_pk = 1
self.subfl_fw_byt = psize
self.fw_win_byt = psize
self.fw_act_pkt = 1 if features[2] > 0 else 0
# is active
self.is_active = True
def append(self, ts, features, flags, direction):
self.pkts.append([ts, *features])
self.flags.append(flags)
self.directions.append(direction)
if flags[0] == 1 or flags[2] == 1:
self.is_active = False
def get_features(self):
# recalculate features
npkts = len(self.pkts)
fw_pkts = np.array([pkt for pkt, d in zip(self.pkts, self.directions) if d > 0])
bw_pkts = np.array([pkt for pkt, d in zip(self.pkts, self.directions) if d < 0])
fw_flags = np.array([f for f, d in zip(self.flags, self.directions) if d > 0])
bw_flags = np.array([f for f, d in zip(self.flags, self.directions) if d < 0])
# forward and backward bulks
if len(fw_pkts) > 1:
fwt = np.zeros(len(fw_pkts))
fwt[1:] = fw_pkts[1:, 0] - fw_pkts[:-1, 0]
fw_blk_idx = np.where(fwt <= self.blk_thr)[0]
fw_bulk = fw_pkts[fw_blk_idx, :]
fw_blk_dur = np.sum(fwt[fw_blk_idx])
elif len(fw_pkts) == 1:
fw_bulk = [fw_pkts[0, :]]
fw_blk_dur = 0
else:
fw_bulk = []
fw_blk_dur = 0
fw_bulk = np.array(fw_bulk)
if len(bw_pkts) > 1:
bwt = np.zeros(len(bw_pkts))
bwt[1:] = bw_pkts[1:, 0] - bw_pkts[:-1, 0]
bw_blk_idx = np.where(bwt <= self.blk_thr)[0]
bw_bulk = bw_pkts[bw_blk_idx, :]
bw_blk_dur = np.sum(bwt[bw_blk_idx])
elif len(bw_pkts) == 1:
bw_bulk = [bw_pkts[0, :]]
bw_blk_dur = 0
else:
bw_bulk = []
bw_blk_dur = 0
bw_bulk = np.array(bw_bulk)
pkts = np.array(self.pkts)
flags = np.array(self.flags)
if npkts > 1:
iat = pkts[1:, 0] - pkts[:-1, 0]
self.fl_dur = pkts[-1, 0] - pkts[0, 0]
self.tot_fw_pk = len(fw_pkts)
self.tot_bw_pk = len(bw_pkts)
self.tot_l_fw_pkt = | np.sum(fw_pkts[:, 1]) | numpy.sum |
# coding=utf-8
import numpy as np
import scipy.sparse as sparse
from hyperg.hyperg import HyperG
def test_hyperg():
edge_idx = np.array([0, 0, 1, 1, 2, 2, 2])
node_idx = np.array([0, 1, 2, 3, 0, 1, 4])
val = | np.array([0.1, 0.3, 0.2, 0.5, 0.6, 0.1, 0.3]) | numpy.array |
'''
Tools to compute STRF
Copyright (c) <NAME>, <NAME>
All rights reserved
Implementation using a light implementation of the Matlab NLS toolbox by TODO
'''
import numpy as np
import math
from scipy import signal
from ext import utils
def spectrum2scaletime(stft, num_channels, num_ch_oct, sr_time, nfft_rate,
nfft_scale, KIND):
'''
spectrum2scaletime
'''
lgt_time = stft.shape[0]
mod_scale = np.zeros((lgt_time, nfft_scale), dtype=complex)
phase_scale = np.zeros((lgt_time, nfft_scale))
# perform a FFT for each time slice
for i in range(lgt_time):
mod_scale[i, :] = np.fft.fft(stft[i, :], nfft_scale)
phase_scale[i, :] = utils.angle(mod_scale[i, :])
mod_scale = np.abs(mod_scale) # modulus of the fft
scales = np.linspace(0, nfft_scale + 1, num_ch_oct)
times = np.linspace(0, mod_scale.shape[1] + 1, int(lgt_time / sr_time))
return mod_scale, phase_scale, times, scales
def scaletime2scalerate(mod_scale, num_channels, num_ch_oct, sr_time,
nfft_rate, nfft_scale, KIND):
'''
scaletime2scalerate
'''
lgt_scale = mod_scale.shape[1]
scale_rate = np.zeros((nfft_rate, lgt_scale), dtype=complex)
phase_scale_rate = np.zeros((nfft_rate, lgt_scale))
for i in range(lgt_scale):
scale_rate[:, i] = np.fft.fft(mod_scale[:, i], nfft_rate)
phase_scale_rate[:, i] = utils.angle(scale_rate[:, i])
scale_rate = np.abs(scale_rate)
rates = np.linspace(0, nfft_rate + 1, sr_time)
scales = np.linspace(0, nfft_scale + 1, num_ch_oct)
return scale_rate, phase_scale_rate, rates, scales
def scalerate2cortical(stft, scaleRate, phase_scale_rate, scales, rates,
num_channels, num_ch_oct, sr_time, nfft_rate,
nfft_scale, KIND):
LgtRateVector = len(rates)
LgtScaleVector = len(scales) # length scale vector
LgtFreq = stft.shape[1]
LgtTime = stft.shape[0]
cortical_rep = np.zeros(
(LgtTime, LgtFreq, LgtScaleVector, LgtRateVector), dtype=complex)
for j in range(LgtRateVector):
fc_rate = rates[j]
t = np.arange(nfft_rate / 2) / sr_time * abs(fc_rate)
h = np.sin(2 * math.pi * t) * np.power(t, 2) * np.exp(
-3.5 * t) * abs(fc_rate)
h = h - np.mean(h)
STRF_rate0 = np.fft.fft(h, nfft_rate)
A = utils.angle(STRF_rate0[:nfft_rate // 2])
A[0] = 0.0 # instead of pi
STRF_rate = | np.absolute(STRF_rate0[:nfft_rate // 2]) | numpy.absolute |
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import widgets
from matplotlib import animation
from .visualization import Visualization
class VisualizationSingleParticle1D(Visualization):
def __init__(self,eigenstates):
self.eigenstates = eigenstates
def plot_eigenstate(self, k, xlim = None):
eigenstates_array = self.eigenstates.array
energies = self.eigenstates.energies
plt.style.use("dark_background")
fig = plt.figure(figsize=(16/9 *5.804 * 0.9,5.804))
grid = plt.GridSpec(2, 2, width_ratios=[4.5, 1], height_ratios=[1, 1] , hspace=0.1, wspace=0.2)
ax1 = fig.add_subplot(grid[0:2, 0:1])
ax2 = fig.add_subplot(grid[0:2, 1:2])
ax1.set_xlabel("x [Å]")
ax2.set_title('E Level')
ax2.set_facecolor('black')
ax2.set_ylabel('$E_N$ (Relative to $E_{1}$)')
ax2.set_xticks(ticks=[])
if xlim != None:
ax1.set_xlim(xlim)
E0 = energies[0]
x = np.linspace(-self.eigenstates.extent/2, self.eigenstates.extent/2, self.eigenstates.N)
ax1.plot(x, eigenstates_array[k])
for E in energies:
ax2.plot([0,1], [E/E0, E/E0], color='gray', alpha=0.5)
ax2.plot([0,1], [energies[k]/E0, energies[k]/E0], color='yellow', lw = 3)
plt.show()
def slider_plot(self, xlim = None):
plt.style.use("dark_background")
eigenstates_array = self.eigenstates.array
energies = self.eigenstates.energies
fig = plt.figure(figsize=(16/9 *5.804 * 0.9,5.804))
grid = plt.GridSpec(2, 2, width_ratios=[5, 1], height_ratios=[1, 1] , hspace=0.1, wspace=0.2)
ax1 = fig.add_subplot(grid[0:2, 0:1])
ax2 = fig.add_subplot(grid[0:2, 1:2])
ax1.set_xlabel("x [Å]")
ax2.set_title('E Level')
ax2.set_facecolor('black')
ax2.set_ylabel('$E_N$ (Relative to $E_{1}$)')
ax2.set_xticks(ticks=[])
if xlim != None:
ax1.set_xlim(xlim)
E0 = energies[0]
for E in energies:
ax2.plot([0,1], [E/E0, E/E0], color='gray', alpha=0.5)
x = np.linspace(-self.eigenstates.extent/2, self.eigenstates.extent/2, self.eigenstates.N)
eigenstate_plot, = ax1.plot(x, eigenstates_array[1])
eigenstate_plot.set_data = eigenstate_plot.set_ydata
line = ax2.plot([0,1], [energies[1]/E0, energies[1]/E0], color='yellow', lw = 3)
plt.subplots_adjust(bottom=0.2)
from matplotlib.widgets import Slider
slider_ax = plt.axes([0.2, 0.05, 0.7, 0.05])
slider = Slider(slider_ax, # the axes object containing the slider
'state', # the name of the slider parameter
0, # minimal value of the parameter
len(eigenstates_array)-1, # maximal value of the parameter
valinit = 0, # initial value of the parameter
valstep = 1,
color = '#5c05ff'
)
def update(state):
state = int(state)
eigenstate_plot.set_data(eigenstates_array[state])
line[0].set_ydata([energies[state]/E0, energies[state]/E0])
slider.on_changed(update)
plt.show()
def animate(self, seconds_per_eigenstate = 0.5, fps = 20, max_states = None, xlim = None, save_animation = False):
if max_states == None:
max_states = len(self.eigenstates.energies)
frames_per_eigenstate = fps * seconds_per_eigenstate
total_time = max_states * seconds_per_eigenstate
total_frames = int(fps * total_time)
eigenstates_array = self.eigenstates.array
energies = self.eigenstates.energies
plt.style.use("dark_background")
fig = plt.figure(figsize=(16/9 *5.804 * 0.9,5.804))
grid = plt.GridSpec(2, 2, width_ratios=[5, 1], height_ratios=[1, 1] , hspace=0.1, wspace=0.2)
ax1 = fig.add_subplot(grid[0:2, 0:1])
ax2 = fig.add_subplot(grid[0:2, 1:2])
ax1.set_xlabel("[Å]")
ax2.set_title('E Level')
ax2.set_facecolor('black')
ax2.set_ylabel('$E_N$ (Relative to $E_{1}$)')
ax2.set_xticks(ticks=[])
if xlim != None:
ax1.set_xlim(xlim)
E0 = energies[0]
for E in energies:
ax2.plot([0,1], [E/E0, E/E0], color='gray', alpha=0.5)
x = np.linspace(-self.eigenstates.extent/2, self.eigenstates.extent/2, self.eigenstates.N)
eigenstate_plot, = ax1.plot(x, eigenstates_array[1])
eigenstate_plot.set_data = eigenstate_plot.set_ydata
line, = ax2.plot([0,1], [energies[1]/E0, energies[1]/E0], color='yellow', lw = 3)
plt.subplots_adjust(bottom=0.2)
import matplotlib.animation as animation
animation_data = {'n': 0.0}
def func_animation(*arg):
animation_data['n'] = (animation_data['n'] + 0.1) % len(energies)
state = int(animation_data['n'])
if (animation_data['n'] % 1.0) > 0.5:
transition_time = (animation_data['n'] - int(animation_data['n']) - 0.5)
eigenstate_plot.set_data(np.cos(np.pi*transition_time)*eigenstates_array[state] +
np.sin(np.pi*transition_time)*
eigenstates_array[(state + 1) % len(energies)])
E_N = energies[state]/E0
E_M = energies[(state + 1) % len(energies)]/E0
E = E_N*np.cos(np.pi*transition_time)**2 + E_M*np.sin(np.pi*transition_time)**2
line.set_ydata([E, E])
else:
line.set_ydata([energies[state]/E0, energies[state]/E0])
eigenstate_plot.set_data(eigenstates_array[int(state)])
return eigenstate_plot, line
a = animation.FuncAnimation(fig, func_animation,
blit=True, frames=total_frames, interval= 1/fps * 1000)
if save_animation == True:
Writer = animation.writers['ffmpeg']
writer = Writer(fps=fps, metadata=dict(artist='Me'), bitrate=1800)
a.save('animation.mp4', writer=writer)
else:
plt.show()
def superpositions(self, states, fps = 30, total_time = 20, **kw):
"""
Visualize the time evolution of a superposition of energy eigenstates.
The circle widgets control the relative phase of each of the eigenstates.
These widgets are inspired by the circular phasors from the
quantum mechanics applets by <NAME>:
https://www.falstad.com/qm1d/
"""
total_frames = fps * total_time
from .complex_slider_widget import ComplexSliderWidget
eigenstates = self.eigenstates.array
coeffs = None
get_norm_factor = lambda psi: 1.0/np.sqrt(np.sum(psi*np.conj(psi)))
animation_data = {'ticks': 0, 'norm': get_norm_factor(eigenstates[0]),
'is_paused': False}
psi0 = eigenstates[0]*get_norm_factor(eigenstates[0])
if isinstance(states, int) or isinstance(states, float):
coeffs = np.array([1.0 if i == 0 else 0.0 for i in range(states)],
dtype=np.complex128)
eigenstates = eigenstates[0: states]
else:
coeffs = states
eigenstates = eigenstates[0: len(states)]
states = len(states)
psi0 = np.tensordot(coeffs, eigenstates, 1)
animation_data['norm'] = get_norm_factor(psi0)
psi0 *= animation_data['norm']
energies = self.eigenstates.energies
params = {'dt': 0.001,
'xlim': [-self.eigenstates.extent/2.0,
self.eigenstates.extent/2.0],
'save_animation': False,
'frames': 120
}
for k in kw.keys():
params[k] = kw[k]
plt.style.use("dark_background")
fig = plt.figure(figsize=(16/9 *5.804 * 0.9,5.804))
grid = plt.GridSpec(5, states)
ax = fig.add_subplot(grid[0:3, 0:states])
ax.set_xlabel("[Å]")
x = np.linspace(-self.eigenstates.extent/2.0,
self.eigenstates.extent/2.0,
len(eigenstates[0]))
ax.set_yticks([])
ax.set_xlim(params['xlim'])
line1, = ax.plot(x, np.real(eigenstates[0]), label='$Re|\psi(x)|$')
line2, = ax.plot(x, np.imag(eigenstates[0]), label='$Im|\psi(x)|$')
line3, = ax.plot(x, np.abs(eigenstates[0]), label='$|\psi(x)|$', color='white')
ax.set_ylim(-1.7*np.amax(np.abs(psi0)), 1.7*np.amax(np.abs(psi0)))
ax.legend()
def make_update(n):
def update(phi, r):
animation_data['is_paused'] = True
coeffs[n] = r*np.exp(1.0j*phi)
psi = np.tensordot(coeffs, eigenstates, 1)
animation_data['norm'] = get_norm_factor(psi)
line1.set_ydata(np.real(psi))
line2.set_ydata( | np.imag(psi) | numpy.imag |
import torch
import numpy as np
from visdom import Visdom
class VisdomWriter(object):
def __init__(self, title, xlabel='Epoch', ylabel='Loss'):
"""Extended Visdom Writer"""
self.vis = Visdom()
assert self.vis.check_connection()
self.title = title
self.xlabel = xlabel
self.ylabel = ylabel
self.x = 0
self.win = None
def update_text(self, text):
"""Text Memo (usually used to note hyperparameter-configurations)"""
self.vis.text(text)
def update(self, y):
"""Update loss (X: Step (Epoch) / Y: loss)"""
self.x += 1
if self.win is None:
self.win = self.vis.line(
X=np.array([self.x]),
Y= | np.array([y]) | numpy.array |
#!/usr/bin/env python
# Copyright 2013-2019 <NAME>, <NAME> (<EMAIL>, <EMAIL>)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Revision History
# 16/07/13 01:00AM - original version
# 20/06/17 12:07AM - np.asarray replaced by .toarray()
# - minor bug fix in initializing q(Z)
# - minor bug fix in ELBO calculation
# - few more optimizations
# 03/10/19 02:27PM - speaker regularization coefficient Fb added
#
import numpy as np
from scipy.sparse import coo_matrix
import scipy.linalg as spl
import numexpr as ne # the dependency on this modul can be avoided by replacing
# logsumexp_ne and exp_ne with logsumexp and np.exp
#[gamma pi Li] =
def VB_diarization(X, m, invSigma, w, V, pi=None, gamma=None,
maxSpeakers = 10, maxIters = 10,
epsilon = 1e-4, loopProb = 0.99, statScale = 1.0,
alphaQInit = 1.0, downsample = None, VtinvSigmaV = None, ref=None,
plot=False, sparsityThr=0.001, llScale=1.0, minDur=1, Fa=1.0, Fb=1.0):
"""
This a generalized version of speaker diarization described in:
<NAME>., <NAME>., <NAME>., <NAME>.
Analysis of Speaker Diarization based on Bayesian HMM with Eigenvoice Priors
Variable names and equation numbers refer to those used the paper
Inputs:
X - T x D array, where columns are D dimensional feature vectors for T frames
m - C x D array of GMM component means
invSigma - C x D array of GMM component inverse covariance matrix diagonals
w - C dimensional column vector of GMM component weights
V - R x C x D array of eigenvoices
maxSpeakers - maximum number of speakers expected in the utterance
maxIters - maximum number of algorithm iterations
epsilon - stop iterating, if obj. fun. improvement is less than epsilon
loopProb - probability of not switching speakers between frames
statScale - deprecated, use Fa instead
Fa - scale sufficient statiscits collected using UBM
Fb - speaker regularization coefficient Fb (controls final # of speaker)
llScale - scale UBM likelihood (i.e. llScale < 1.0 make atribution of
frames to UBM componets more uncertain)
sparsityThr - set occupations smaller that this threshold to 0.0 (saves memory
as the posteriors are represented by sparse matrix)
alphaQInit - Dirichlet concentraion parameter for initializing gamma
downsample - perform diarization on input downsampled by this factor
VtinvSigmaV - C x (R**2+R)/2 matrix normally calculated by VB_diarization when
VtinvSigmaV is None. However, it can be pre-calculated using function
precalculate_VtinvSigmaV(V) and used across calls of VB_diarization.
minDur - minimum number of frames between speaker turns imposed by linear
chains of HMM states corresponding to each speaker. All the states
in a chain share the same output distribution
ref - T dim. integer vector with reference speaker ID (0:maxSpeakers)
per frame
plot - if set to True, plot per-frame speaker posteriors.
Outputs:
gamma - S x T matrix of posteriors attribution each frame to one of S possible
speakers, where S is given by opts.maxSpeakers
pi - S dimensional column vector of ML learned speaker priors. Ideally, these
should allow to estimate # of speaker in the utterance as the
probabilities of the redundant speaker should converge to zero.
Li - values of auxiliary function (and DER and frame cross-entropy between gamma
and reference if 'ref' is provided) over iterations.
"""
# The references to equations corresponds to
# <NAME>., <NAME>., <NAME>., <NAME>.
# Analysis of Speaker Diarization based on Bayesian HMM with Eigenvoice Priors
D=X.shape[1] # feature dimensionality
C=len(w) # number of mixture components
R=V.shape[0] # subspace rank
nframes=X.shape[0]
if VtinvSigmaV is None:
VtinvSigmaV = precalculate_VtinvSigmaV(V, invSigma)
V = V.reshape(V.shape[0],-1)
if pi is None:
pi = np.ones(maxSpeakers)/maxSpeakers
else:
maxSpeakers = len(pi)
if gamma is None:
# initialize gamma from flat Dirichlet prior with concentration parameter alphaQInit
gamma = np.random.gamma(alphaQInit, size=(nframes, maxSpeakers))
gamma = gamma / gamma.sum(1, keepdims=True)
# calculate UBM mixture frame posteriors (i.e. per-frame zero order statistics)
ll = (X**2).dot(-0.5*invSigma.T) + X.dot(invSigma.T*m.T)-0.5*((invSigma * m**2 - np.log(invSigma)).sum(1) - 2*np.log(w) + D*np.log(2*np.pi))
ll *= llScale
G = logsumexp_ne(ll, axis=1)
zeta = exp_ne(ll - G[:,np.newaxis])
zeta[zeta<sparsityThr] = 0.0
zeta = zeta * statScale
G = G * statScale
#Kx = np.sum(zeta * (np.log(w) - np.log(zeta)), 1)
zeta = coo_matrix(zeta) # represent zero-order stats using sparse matrix
print('Sparsity: ', len(zeta.row), float(len(zeta.row))/np.prod(zeta.shape))
LL = np.sum(G) # total log-likelihod as calculated using UBM
mixture_sum = coo_matrix((np.ones(C*D), (np.repeat(range(C),D), range(C*D))))
#G = np.sum((zeta.multiply(ll - np.log(w))).toarray(), 1) + Kx # from eq. (30) # Aleready calculated above
# Calculate per-frame first order statistics projected into the R-dim. subspace
# V^T \Sigma^{-1} F_m
F_s =coo_matrix((((X[zeta.row]-m[zeta.col])*zeta.data[:,np.newaxis]).flat,
(zeta.row.repeat(D), zeta.col.repeat(D)*D+np.tile(range(D), len(zeta.col)))))
rho = F_s.tocsr().dot((invSigma.flat * V).T) ; del F_s
## The code above is only efficient implementation of the following comented code
#rho = 0;
#for ii in range(C):
# rho = rho + V[ii*D:(ii+1)*D,:].T.dot(zeta[ii,:] * invSigma[:,[ii]] * (X - m[:,[ii]]))
if downsample is not None:
# Downsample zeta, rho, G and gamma by summing the statistic over 'downsample' frames
# This speeds-up diarization for the price of lowering its frame resolution
#downsampler = coo_matrix((np.ones(nframes), (np.ceil(np.arange(nframes)/downsample).astype(int), np.arange(nframes))))
downsampler = coo_matrix(( | np.ones(nframes) | numpy.ones |
import lmdb
import os
import io
import numpy as np
from utils import *
from tqdm import tqdm
import torch
import pandas as pd
import json
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(
"-c",
"--city",
default="BERLIN",
type=str,
)
args = parser.parse_args()
city = args.city.upper()
cfg = get_cfg()
cfg.merge_from_file('./config/v3-hrnet-8-day.yaml')
test_slots = "./processed_data/test_slots.json"
with open(test_slots) as f:
test_json = json.load(f)
test_json = {list(d.keys())[0]:list(d.values())[0] for d in test_json}
test_json = {pd.to_datetime(k).dayofyear:v for k,v in test_json.items()}
val_dates = "./processed_data/val_dates.json"
with open(val_dates) as f:
valid_json = json.load(f)
valid_json = [pd.to_datetime(k).dayofyear for k in valid_json]
cipt_map = {'BERLIN':int(5e10),'ISTANBUL':int(1e11),'MOSCOW':int(2e11)}
env = lmdb.open(os.path.join(cfg.DATASET.DATA_PATH, city.upper()),map_size = cipt_map[city])
def process(dayofyear):
all_data = []
for idx in range((dayofyear-1)*288,dayofyear*288):
idx = str(idx).encode("ascii")
with env.begin() as txn:
data = txn.get(idx)
data = np.load(io.BytesIO(data))
x = np.zeros(495 * 436 * 9, dtype=np.uint8)
x[data["x"]] = data["y"]
x = x.reshape([495, 436, 9])
x = np.moveaxis(x, -1, 0)
all_data.append(x.copy())
all_data = np.stack(all_data)
if dayofyear<=181:
for rand_idx in range(50):
idx_num = np.random.choice(range(1, 6), p=[0.02, 0.23, 0.5, 0.23, 0.02])
idx = np.random.randint(0, 60, [5]) + np.arange(0, 288, 60)
idx = np.clip(idx, 0, 276)
idx = np.random.choice(idx, idx_num)
idx.sort()
idx = np.array([i+j for i in idx for j in range(12)])
value = torch.clamp(torch.round(torch.tensor(all_data[idx]).float().mean(0)),0,255).cpu().numpy()
d = value.astype(np.uint8)
d = d.reshape(-1)
str_id = f"dayofyear/{dayofyear}/{rand_idx}"
s = io.BytesIO()
np.savez(s,x= | np.where(d!=0) | numpy.where |
import pyglet
from pyglet.gl import *
from .globs import *
from .constants import *
from . import config
import ctypes
import math
from .colors import _getColor, color, blue
try:
import numpy
npy = True
numpy.seterr(divide='ignore')
except:
npy = False
# exports
__all__ = ['PImage', 'loadImage', 'image', 'get', 'setScreen', 'save',
'createImage', 'loadPixels', 'updatePixels', 'screenFilter', 'blend']
# the PImage class
class PImage(object):
"""This basically wraps pyglet's AbstractImage with a Processing-like syntax."""
img = None # this is the actual AbstractImage
def __init__(self, *args):
"""Either creates a new image from scratch or wraps an AbstractImage.
Arguments are of the form
PImage()
PImage(width,height)
PImage(width,height,format)
PImage(img)
"""
if len(args) == 1 and isinstance(args[0], pyglet.image.AbstractImage):
# Wraps an AbstractImage
self.img = args[0]
elif len(args) in (2, 3):
# Creates an ImageData from width, height and type
if len(args) == 2:
# default
w, h = args
format = ARGB
else:
w, h, format = args
data = create_string_buffer(w * h * len(format))
self.img = pyglet.image.ImageData(w, h, format, data.raw)
else:
assert (len(args) == 0)
# Do an initial loading of the pixels[] array
self.loadPixels()
self.updatePixels()
def loadPixels(self):
"""Gets the pixel data as an array of integers."""
n = self.width * self.height
self.buf = self.img.get_image_data().get_data('BGRA', -self.width * 4)
if npy:
self.pixels = numpy.fromstring(self.buf, dtype=ctypes.c_uint)
else:
self.pixels = ctypes.cast(self.buf, ctypes.POINTER(ctypes.c_uint))
def filter(self, mode, *args):
"""Applies a filter to the image.
The existant filters are: GRAY, INVERT, OPAQUE, THRESHOLD, POSTERIZE,
ERODE, DILATE and BLUR. This method requires numpy."""
if not npy:
raise ImportError("Numpy is required")
if mode == GRAY:
# Gray value = (77*(n>>16&0xff) + 151*(n>>8&0xff) + 28*(n&0xff)) >> 8
# Where n is the ARGB color of the pixel
lum1 = numpy.multiply(
numpy.bitwise_and(numpy.right_shift(self.pixels, 16), 0xff), 77)
lum2 = numpy.multiply(
numpy.bitwise_and(numpy.right_shift(self.pixels, 8), 0xff), 151)
lum3 = numpy.multiply(numpy.bitwise_and(self.pixels, 0xff), 28)
lum = numpy.right_shift(numpy.add(numpy.add(lum1, lum2), lum3), 8)
self.pixels = numpy.bitwise_and(self.pixels, 0xff000000)
self.pixels = numpy.bitwise_or(self.pixels,
numpy.left_shift(lum, 16))
self.pixels = numpy.bitwise_or(self.pixels,
numpy.left_shift(lum, 8))
self.pixels = numpy.bitwise_or(self.pixels, lum)
elif mode == INVERT:
# This is the same as applying an exclusive or with the maximum value
self.pixels = numpy.bitwise_xor(self.pixels, 0xffffff)
elif mode == BLUR:
if not args:
args = [3]
# Makes the image square by adding zeros.
# This avoids the convolution (via fourier transform multiplication)
# from jumping to another extreme of the image when a border is reached
if self.width > self.height:
dif = self.width - self.height
updif = numpy.zeros(self.width * dif / 2, dtype=numpy.uint32)
downdif = numpy.zeros(self.width * (dif - dif / 2),
dtype=numpy.uint32)
self.pixels = numpy.concatenate((updif, self.pixels, downdif))
size = self.width
elif self.width < self.height:
dif = self.height - self.width
leftdif = numpy.zeros(self.height * dif / 2, dtype=numpy.uint32)
rightdif = numpy.zeros(self.height * (dif - dif / 2),
dtype=numpy.uint32)
self.pixels = self.pixels.reshape(self.height, self.width)
self.pixels = numpy.transpose(self.pixels)
self.pixels = self.pixels.reshape(self.width * self.height)
self.pixels = numpy.concatenate(
(leftdif, self.pixels, rightdif))
self.pixels = self.pixels.reshape(self.height, self.height)
self.pixels = numpy.transpose(self.pixels)
self.pixels = self.pixels.reshape(self.height * self.height)
size = self.height
else:
size = self.height
# Creates a gaussian kernel of the image's size
_createKernel2d(args[0], size)
# Divides the image's R, G and B channels, reshapes them
# to square matrixes and applies two dimensional fourier transforms
red = numpy.bitwise_and(numpy.right_shift(self.pixels, 16), 0xff)
red = numpy.reshape(red, (size, size))
red = numpy.fft.fft2(red)
green = numpy.bitwise_and(numpy.right_shift(self.pixels, 8), 0xff)
green = numpy.reshape(green, (size, size))
green = numpy.fft.fft2(green)
blue = numpy.bitwise_and(self.pixels, 0xff)
blue = numpy.reshape(blue, (size, size))
blue = numpy.fft.fft2(blue)
# Does a element-wise multiplication of each channel matrix
# and the fourier transform of the kernel matrix
kernel = numpy.fft.fft2(weights)
red = numpy.multiply(red, kernel)
green = numpy.multiply(green, kernel)
blue = numpy.multiply(blue, kernel)
# Reshapes them back to arrays and converts to unsigned integers
red = numpy.reshape(numpy.fft.ifft2(red).real, size * size)
green = numpy.reshape(numpy.fft.ifft2(green).real, size * size)
blue = numpy.reshape(numpy.fft.ifft2(blue).real, size * size)
red = red.astype(numpy.uint32)
green = green.astype(numpy.uint32)
blue = blue.astype(numpy.uint32)
self.pixels = numpy.bitwise_or(numpy.left_shift(green, 8), blue)
self.pixels = numpy.bitwise_or(numpy.left_shift(red, 16),
self.pixels)
# Crops out the zeros added
if self.width > self.height:
self.pixels = self.pixels[
self.width * dif / 2:size * size - self.width * (
dif - dif / 2)]
elif self.width < self.height:
self.pixels = numpy.reshape(self.pixels, (size, size))
self.pixels = numpy.transpose(self.pixels)
self.pixels = numpy.reshape(self.pixels, size * size)
self.pixels = self.pixels[
self.height * dif / 2:size * size - self.height * (
dif - dif / 2)]
self.pixels = numpy.reshape(self.pixels,
(self.width, self.height))
self.pixels = numpy.transpose(self.pixels)
self.pixels = numpy.reshape(self.pixels,
self.height * self.width)
elif mode == OPAQUE:
# This is the same as applying an bitwise or with the maximum value
self.pixels = numpy.bitwise_or(self.pixels, 0xff000000)
elif mode == THRESHOLD:
# Maximum = max((n & 0xff0000) >> 16, max((n & 0xff00)>>8, (n & 0xff)))
# Broken down to Maximum = max(aux,aux2)
# The pixel will be white if its maximum is greater than the threshold
# value, and black if not. This was implemented via a boolean matrix
# multiplication.
if not args:
args = [0.5]
thresh = args[0] * 255
aux = numpy.right_shift(numpy.bitwise_and(self.pixels, 0xff00), 8)
aux = numpy.maximum(aux, numpy.bitwise_and(self.pixels, 0xff))
aux2 = numpy.right_shift(numpy.bitwise_and(self.pixels, 0xff0000),
16)
boolmatrix = numpy.greater_equal(numpy.maximum(aux, aux2), thresh)
self.pixels.fill(0xffffff)
self.pixels = numpy.multiply(self.pixels, boolmatrix)
elif mode == POSTERIZE:
# New channel = ((channel*level)>>8)*255/(level-1)
if not args:
args = [8]
levels1 = args[0] - 1
rlevel = numpy.bitwise_and(numpy.right_shift(self.pixels, 16), 0xff)
glevel = numpy.bitwise_and(numpy.right_shift(self.pixels, 8), 0xff)
blevel = numpy.bitwise_and(self.pixels, 0xff)
rlevel = numpy.right_shift(numpy.multiply(rlevel, args[0]), 8)
rlevel = numpy.divide(numpy.multiply(rlevel, 255), levels1)
glevel = numpy.right_shift(numpy.multiply(glevel, args[0]), 8)
glevel = numpy.divide(numpy.multiply(glevel, 255), levels1)
blevel = numpy.right_shift(numpy.multiply(blevel, args[0]), 8)
blevel = numpy.divide(numpy.multiply(blevel, 255), levels1)
self.pixels = numpy.bitwise_and(self.pixels, 0xff000000)
self.pixels = numpy.bitwise_or(self.pixels,
numpy.left_shift(rlevel, 16))
self.pixels = numpy.bitwise_or(self.pixels,
numpy.left_shift(glevel, 8))
self.pixels = numpy.bitwise_or(self.pixels, blevel)
elif mode == ERODE:
# Checks the pixels directly above, under and to the left and right
# of each pixel of the image. If it has a greater luminosity, then
# the center pixel receives its color
colorOrig = numpy.array(self.pixels)
colOut = numpy.array(self.pixels)
colLeft = numpy.roll(colorOrig, 1)
colRight = numpy.roll(colorOrig, -1)
colUp = numpy.roll(colorOrig, self.width)
colDown = numpy.roll(colorOrig, -self.width)
currLum1 = numpy.bitwise_and(numpy.right_shift(colorOrig, 16), 0xff)
currLum1 = numpy.multiply(currLum1, 77)
currLum2 = numpy.bitwise_and(numpy.right_shift(colorOrig, 8), 0xff)
currLum2 = numpy.multiply(currLum2, 151)
currLum3 = numpy.multiply(numpy.bitwise_and(colorOrig, 0xff), 28)
currLum = numpy.add(numpy.add(currLum1, currLum2), currLum3)
lumLeft1 = numpy.bitwise_and(numpy.right_shift(colLeft, 16), 0xff)
lumLeft1 = numpy.multiply(lumLeft1, 77)
lumLeft2 = numpy.bitwise_and(numpy.right_shift(colLeft, 8), 0xff)
lumLeft2 = numpy.multiply(lumLeft2, 151)
lumLeft3 = numpy.multiply(numpy.bitwise_and(colLeft, 0xff), 28)
lumLeft = numpy.add(numpy.add(lumLeft1, lumLeft2), lumLeft3)
lumRight1 = numpy.bitwise_and(numpy.right_shift(colRight, 16), 0xff)
lumRight1 = numpy.multiply(lumRight1, 77)
lumRight2 = numpy.bitwise_and(numpy.right_shift(colRight, 8), 0xff)
lumRight2 = numpy.multiply(lumRight2, 151)
lumRight3 = numpy.multiply(numpy.bitwise_and(colRight, 0xff), 28)
lumRight = numpy.add(numpy.add(lumRight1, lumRight2), lumRight3)
lumDown1 = numpy.bitwise_and(numpy.right_shift(colDown, 16), 0xff)
lumDown1 = numpy.multiply(lumDown1, 77)
lumDown2 = numpy.bitwise_and(numpy.right_shift(colDown, 8), 0xff)
lumDown2 = numpy.multiply(lumDown2, 151)
lumDown3 = numpy.multiply(numpy.bitwise_and(colDown, 0xff), 28)
lumDown = numpy.add(numpy.add(lumDown1, lumDown2), lumDown3)
lumUp1 = numpy.bitwise_and(numpy.right_shift(colUp, 16), 0xff)
lumUp1 = numpy.multiply(lumUp1, 77)
lumUp2 = numpy.bitwise_and(numpy.right_shift(colUp, 8), 0xff)
lumUp2 = numpy.multiply(lumUp2, 151)
lumUp3 = numpy.multiply(numpy.bitwise_and(colUp, 0xff), 28)
lumUp = numpy.add(numpy.add(lumUp1, lumUp2), lumUp3)
numpy.putmask(colOut, lumLeft > currLum, colLeft)
numpy.putmask(currLum, lumLeft > currLum, lumLeft)
numpy.putmask(colOut, lumRight > currLum, colRight)
numpy.putmask(currLum, lumRight > currLum, lumRight)
numpy.putmask(colOut, lumUp > currLum, colUp)
numpy.putmask(currLum, lumUp > currLum, lumUp)
numpy.putmask(colOut, lumDown > currLum, colDown)
numpy.putmask(currLum, lumDown > currLum, lumDown)
self.pixels = colOut
elif mode == DILATE:
# Checks the pixels directly above, under and to the left and right
# of each pixel of the image. If it has a lesser luminosity, then
# the center pixel receives its color
colorOrig = numpy.array(self.pixels)
colOut = numpy.array(self.pixels)
colLeft = numpy.roll(colorOrig, 1)
colRight = numpy.roll(colorOrig, -1)
colUp = numpy.roll(colorOrig, self.width)
colDown = numpy.roll(colorOrig, -self.width)
currLum1 = numpy.bitwise_and(numpy.right_shift(colorOrig, 16), 0xff)
currLum1 = numpy.multiply(currLum1, 77)
currLum2 = numpy.bitwise_and(numpy.right_shift(colorOrig, 8), 0xff)
currLum2 = numpy.multiply(currLum2, 151)
currLum3 = numpy.multiply(numpy.bitwise_and(colorOrig, 0xff), 28)
currLum = numpy.add(numpy.add(currLum1, currLum2), currLum3)
lumLeft1 = numpy.bitwise_and(numpy.right_shift(colLeft, 16), 0xff)
lumLeft1 = numpy.multiply(lumLeft1, 77)
lumLeft2 = numpy.bitwise_and(numpy.right_shift(colLeft, 8), 0xff)
lumLeft2 = numpy.multiply(lumLeft2, 151)
lumLeft3 = numpy.multiply(numpy.bitwise_and(colLeft, 0xff), 28)
lumLeft = numpy.add(numpy.add(lumLeft1, lumLeft2), lumLeft3)
lumRight1 = numpy.bitwise_and(numpy.right_shift(colRight, 16), 0xff)
lumRight1 = numpy.multiply(lumRight1, 77)
lumRight2 = numpy.bitwise_and(numpy.right_shift(colRight, 8), 0xff)
lumRight2 = numpy.multiply(lumRight2, 151)
lumRight3 = numpy.multiply(numpy.bitwise_and(colRight, 0xff), 28)
lumRight = numpy.add(numpy.add(lumRight1, lumRight2), lumRight3)
lumDown1 = numpy.bitwise_and(numpy.right_shift(colDown, 16), 0xff)
lumDown1 = numpy.multiply(lumDown1, 77)
lumDown2 = numpy.bitwise_and(numpy.right_shift(colDown, 8), 0xff)
lumDown2 = numpy.multiply(lumDown2, 151)
lumDown3 = numpy.multiply(numpy.bitwise_and(colDown, 0xff), 28)
lumDown = numpy.add(numpy.add(lumDown1, lumDown2), lumDown3)
lumUp1 = numpy.bitwise_and(numpy.right_shift(colUp, 16), 0xff)
lumUp1 = numpy.multiply(lumUp1, 77)
lumUp2 = numpy.bitwise_and(numpy.right_shift(colUp, 8), 0xff)
lumUp2 = numpy.multiply(lumUp2, 151)
lumUp3 = numpy.multiply(numpy.bitwise_and(colUp, 0xff), 28)
lumUp = numpy.add(numpy.add(lumUp1, lumUp2), lumUp3)
numpy.putmask(colOut, lumLeft < currLum, colLeft)
numpy.putmask(currLum, lumLeft < currLum, lumLeft)
numpy.putmask(colOut, lumRight < currLum, colRight)
numpy.putmask(currLum, lumRight < currLum, lumRight)
numpy.putmask(colOut, lumUp < currLum, colUp)
numpy.putmask(currLum, lumUp < currLum, lumUp)
numpy.putmask(colOut, lumDown < currLum, colDown)
numpy.putmask(currLum, lumDown < currLum, lumDown)
self.pixels = colOut
self.updatePixels()
def mask(self, image):
"""Uses the image passed as parameter as alpha mask."""
if npy:
aux1 = numpy.bitwise_and(self.pixels, 0xffffff)
aux2 = numpy.bitwise_and(image.pixels, 0xff000000)
self.pixels = numpy.bitwise_or(aux1, aux2)
return
for i in range(self.width):
for j in range(self.height):
n = self.get(i, j)
m = image.get(i, j)
new = ((m & 0xff000000) << 24) | (n & 0xffffff)
self.set(i, j, new)
def updatePixels(self):
"""Saves the pixel data."""
if npy:
self.buf = self.pixels.tostring()
self.img.get_image_data().set_data('BGRA', -self.width * 4, self.buf)
def set(self, x, y, color):
"""Sets the pixel at x,y with the given color."""
self.pixels[y * self.width + x] = color
self.updatePixels()
def get(self, *args):
"""Returns a copy, a part or a pixel of this image.
Arguments are of the form:
get()
get(x,y)
get(x,y,width,height)
"""
if len(args) in (0, 4):
# the result is an image
if len(args) == 0:
x, y, width, height = 0, 0, self.width, self.height
else:
x, y, width, height = args
assert (x >= 0 and x < self.width and y >= 0 and y < self.height and
width > 0 and height > 0 and x + width <= self.width and
y + height <= self.height)
if width != self.width or height != self.height:
source = self.img.get_region(x, self.height - y - height, width,
height)
else:
source = self.img
result = PImage(width, height, self.img.format)
# print source._current_pitch
# print result.img._current_pitch
# buf = source.get_data ('BGRA',result.img._current_pitch)
# result.img.set_data ('BGRA', result.img._current_pitch, buf)
result.img.get_texture().blit_into(source, 0, 0, 0)
return result
else:
# result is a pixel
x, y = args
assert (x >= 0 and x < self.width and y >= 0 and y < self.height)
return self.pixels[y * self.width + x]
def save(self, filename):
"""Saves this image as a file of the proper format."""
self.img.save(filename)
def __getWidth(self):
"""Getter for the width property."""
return self.img.width
width = property(__getWidth)
def __getHeight(self):
"""Getter for the height property."""
return self.img.height
height = property(__getHeight)
# Image functions
def screenFilter(mode, *args):
"""Applies a filter to the current drawing canvas.
This method requires numpy."""
if not npy:
raise ImportError("Numpy is required")
new = createImage(width, height, 'RGBA')
loadPixels()
new.pixels = numpy.array(screen.pixels)
new.filter(mode, *args)
new.updatePixels()
image(new, 0, 0)
def mix(a, b, f):
return a + (((b - a) * f) >> 8);
def _mix(a, b, f):
# Used for the blend function (mixes colors according to their alpha values)
c = numpy.multiply(numpy.subtract(b, a), f)
return numpy.add(numpy.right_shift(c, 8), a)
def _high(a, b):
# Used for the blend function (returns the matrix with the maximum bitwise values)
c = numpy.multiply(a.__le__(b), b)
d = numpy.multiply(a.__gt__(b), a)
return numpy.add(c, d)
def _low(a, b):
# Used for the blend function (returns the matrix with the minimum bitwise values)
c = numpy.multiply(a.__ge__(b), b)
d = numpy.multiply(a.__lt__(b), a)
return numpy.add(c, d)
def _peg(a):
# Used for the blend function (returns the matrix with constrained values)
b = numpy.multiply(a.__ge__(0), a)
c = numpy.multiply(b.__le__(255), b)
d = numpy.multiply(b.__gt__(255), 255)
return numpy.add(c, d)
def _sub(a, b):
# Used for the blend function (mimics an unsigned subtraction with signed arrays)
aux = a
aux1 = numpy.multiply(aux.__ge__(b), b)
aux2 = numpy.multiply(b.__gt__(aux), aux)
b = numpy.add(aux1, aux2)
return numpy.subtract(aux, b)
def blend(source, x, y, swidth, sheight, dx, dy, dwidth, dheight, mode):
"""Blends a region of pixels from one image into another."""
if not npy:
raise ImportError("Numpy is required")
loadPixels()
a = screen.pixels.reshape((height, width))
a = a[dy:dy + dheight, dx:dx + dwidth]
a = a.reshape(a.shape[1] * a.shape[0])
b = source.pixels.reshape((source.height, source.width))
b = b[y:y + sheight, x:x + swidth]
b = b.reshape(b.shape[1] * b.shape[0])
f = numpy.right_shift(numpy.bitwise_and(b, 0xff000000), 24)
a.dtype = "int32"
b.dtype = "int32"
# BLEND Mode
if mode == 0:
alpha = numpy.right_shift(numpy.bitwise_and(a, 0xff000000), 24)
alpha = numpy.left_shift(_low(numpy.add(alpha, f), 0xff), 24)
red = _mix(numpy.bitwise_and(a, 0xff0000),
numpy.bitwise_and(b, 0xff0000), f)
red = numpy.bitwise_and(red, 0xff0000)
green = _mix(numpy.bitwise_and(a, 0xff00), numpy.bitwise_and(b, 0xff00),
f)
green = numpy.bitwise_and(green, 0xff00)
blue = _mix(numpy.bitwise_and(a, 0xff), numpy.bitwise_and(b, 0xff), f)
# ADD Mode
elif mode == 1:
alpha = numpy.right_shift( | numpy.bitwise_and(a, 0xff000000) | numpy.bitwise_and |
from ai_ct_scans import data_loading
import torch
from ai_ct_scans import models
from tqdm import tqdm
import matplotlib.pyplot as plt
import numpy as np
from cv2 import blur
from ai_ct_scans import phase_correlation_image_processing
from ai_ct_scans.data_writing import ndarray_to_memmap
plt.ion()
if torch.cuda.is_available():
dev = torch.device("cuda")
else:
dev = "cpu"
def det(tensor):
"""Detach a torch Tensor to a cpu numpy version
Args:
tensor (torch.Tensor): A tensor to be detached and turned into an ndarray
Returns:
(ndarray): The same data as an ndarray
"""
return tensor.cpu().detach().numpy()
def debug_plot(model_out, batch, index=0):
"""Plot the original image, the masked image, and the infilled version. Useful during debugging.
Args:
model_out: The infilled image stack from an Infiller model
batch (dict of tensors): A dictionary with torch Tensors 'labels' and 'input_images'
index (int): The index of the model's output to compare to the original image and masked version, [0-batch size]
"""
out = det(model_out)
ims = det(batch["labels"])
inputs = det(batch["input_images"])
f, axes = plt.subplots(1, 3)
axes = np.ravel(axes)
axes[0].imshow(ims[index, 0, :, :])
axes[0].set_title("original image")
axes[1].imshow(inputs[index, 0, :, :])
axes[1].set_title("masked inputs")
axes[2].imshow(out[index, 0, :, :])
axes[2].set_title("output")
class InfillTrainer:
"""A class for training an ai_ct_scans.models.Infiller network"""
def __init__(
self,
axial_width=256,
coronal_width=256,
sagittal_width=256,
batch_size=8,
batch_width=256,
batch_height=256,
blank_width=64,
num_encoder_convs=3,
encoder_filts_per_layer=10,
neurons_per_dense=512,
num_dense_layers=3,
decoder_filts_per_layer=10,
num_decoder_convs=3,
kernel_size=3,
learning_rate=1e-5,
save_dir=None,
clear_previous_memmaps=False,
save_freq=200,
blur_kernel=None,
show_outline=False,
):
"""Initialises the network and dataset handling, gets the trainer ready for run self.train_for_iterations()
Args:
axial_width (int): How wide the model will expect views taken from the axial plane to be in pixels
coronal_width (int): How wide the model will expect views taken from the coronal plane to be in pixels
sagittal_width (int):How wide the model will expect views taken from the sagittal plane to be in pixels
batch_size (int): How many random views to take for a single training iteration (typically 1-8 trialled)
batch_width (int): How wide the views should be at the point of input to the model in pixels
batch_height (int): How high the views should be at the point of input to the model in pixels
blank_width (int): Square size of the centre masked region to be applied in the middle of each view before
input to network
num_encoder_convs (int): How many convolution-maxpool steps to build into the model in the encoder
encoder_filts_per_layer (int): How many filters to include in the first convolution layer (to be doubled at
each subsequent layer Unet style)
neurons_per_dense (int): (currently disconnected) How many neurons in each dense layer that connects the
convolutional layers in the encoder to the convolutional layers in the decoder
num_dense_layers (int): (currently disconnected) How many layers of dense neurons to use to connect the
convolutional encoder and decoder layers
decoder_filts_per_layer (int): (currently must be same as encoder filts_per_layer)
num_decoder_convs (int): How many upsample-convolutional layers to include in the decoder, currently
throws an error if not equal to num_encoder_convs to fit Unet style of the network
kernel_size (int or tuple of two ints): 2D size of kernels used in Conv2D layers
learning_rate (float): parameter to control the rate at which the model learns, typically <1e-4
save_dir (pathlib Path): A directory in which to save the model during training
clear_previous_memmaps (bool): Whether to re-initialise the dataset (i.e. rebuild memmaps off of original
DICOM data)
save_freq (int): How often to save the model, every save_freq iterations
blur_kernel (None or tuple of ints): If not None, apply a blur to the input views before masking and feeding
into the network. This is theorised to prevent the model getting stuck due to attemptin to recreate high
frequency random noise
show_outline (bool): Whether to perform an edge detection and expose these edges in the masked region. This
helps the model to get the correct shapes at output, without showing it much about the intensity/texture it
should aim for.
"""
self.multi_patient_loader = data_loading.MultiPatientLoader()
# Included just abdo due to simplicity of focusing on one body part
# Mentioned twice in the array to preserve the index for testing for multiple body parts
# self.body_parts = ['abdo', 'thorax']
self.body_parts = ["abdo", "abdo"]
self.scan_nums = ["scan_1", "scan_2"]
for patient in self.multi_patient_loader.patients:
for body_part in self.body_parts:
for scan_num in self.scan_nums:
if clear_previous_memmaps is True:
patient.__getattribute__(body_part).__getattribute__(
scan_num
).delete_memmap()
patient.__getattribute__(body_part).__getattribute__(
scan_num
).load_memmap_and_clear_scan()
self.blur_kernel = blur_kernel
self.show_outline = show_outline
self.axial_width = axial_width
self.coronal_width = coronal_width
self.sagittal_width = sagittal_width
self.batch_width = batch_width
self.batch_height = batch_height
self.batch_size = batch_size
self.blank_width = blank_width
self.loss_weighting_width = int(self.blank_width * 1.5)
self.slicers = [
self.random_axial_slicer,
self.random_coronal_slicer,
self.random_sagittal_slicer,
]
self.plane_masks = self.plane_mask_builder()
self.edge_detection_pad = 3
self.edge_window_width = 2 * self.edge_detection_pad + self.blank_width
self.edge_detection_mask = np.logical_not(
self.plane_mask_builder(blank_width=self.edge_window_width)[0]
)
self.inv_plane_mask = np.logical_not(self.plane_masks[0])
self.loss_masks = self.plane_mask_builder(self.loss_weighting_width)
self.loss_masks = self._convert_loss_masks_to_tensor()
self.label_masks = [
np.logical_not(plane_mask) for plane_mask in self.plane_masks
]
self.patient_indices = list(range(len(self.multi_patient_loader.patients)))
self.model = models.Infiller(
input_height=self.batch_height,
input_width=self.batch_width,
output_height=self.blank_width,
output_width=self.blank_width,
num_encoder_convs=num_encoder_convs,
encoder_filts_per_layer=encoder_filts_per_layer,
neurons_per_dense=neurons_per_dense,
num_dense_layers=num_dense_layers,
decoder_filts_per_layer=decoder_filts_per_layer,
num_decoder_convs=num_decoder_convs,
kernel_size=kernel_size,
)
self.optimiser = torch.optim.AdamW(self.model.parameters(), lr=learning_rate)
if save_dir is None:
save_dir = data_loading.data_root_directory().parent / "infiller"
save_dir.mkdir(exist_ok=True, parents=True)
self.save_dir = save_dir
self.iteration = 0
self.last_n_losses = []
self.loss_num_to_ave_over = 100
self.latest_loss = np.inf
self.save_freq = save_freq
self.input_stack = np.zeros(
[self.batch_size, 1, self.batch_height, self.batch_width], dtype="float64"
)
self.plane_mask_stack = np.zeros_like(self.input_stack)
self.error_weighting = (
self.loss_weighting_width ** 2 / self.axial_width ** 2 + 1
)
self.best_loss = np.inf
def _convert_loss_masks_to_tensor(self):
"""Convert existing loss masks, used to reweight the central masked region in the loss function, to tensors
Returns:
(tensor): A stack of tensors that are 1 in the central and border regions around the mask, and 0 elsewhere
"""
return torch.Tensor(self.loss_masks).to(dev)
def loss(self, model_out, batch):
"""Defines a custom loss function for the network. Weights the loss such that reproduction of the masked region
(and a small border area around it) contributes to the overall loss on the same order of magnitude as all other
pixels that were predicted
Args:
model_out (torch Tensor): Stack of images that the model has predicted
batch (dict as built by self.build_batch): The batch that was used for the iteration, which should include
at least a 'labels' stack of Tensor images of the same shape as model_out
Returns:
(torch Tensor): the MSE error in the output prediction after reweighting masked region of prediction
"""
error = model_out - batch["labels"]
squared_error = error ** 2
weighted_error = squared_error * (self.error_weighting - self.loss_masks[0])
mse = torch.mean(weighted_error)
return mse
def train_step(self):
"""Build a single batch, do a single forward and backward pass."""
batch = self.build_batch()
self.optimiser.zero_grad()
out = self.model(batch)
loss = self.loss(out, batch)
loss.backward()
self.optimiser.step()
detached_loss = loss.cpu().detach().numpy()
if len(self.last_n_losses) == self.loss_num_to_ave_over:
self.last_n_losses.pop(0)
self.last_n_losses.append(detached_loss)
else:
self.last_n_losses.append(detached_loss)
self.iteration += 1
if self.iteration % 5000 == 0:
print(f"{self.iteration} iterations complete")
def train_for_iterations(self, iterations):
"""Train the model for a set number of iterations
Args:
iterations (int): Number of iterations to train for
"""
self.model.train()
progress_bar = tqdm(range(iterations))
for _ in progress_bar:
self.train_step()
progress_bar.set_description(f"Average loss {np.mean(self.last_n_losses)}")
if (self.iteration % self.save_freq) == 0:
self.save_model(self.save_dir)
def save_model(self, directory, bypass_loss_check=False):
"""Save the model. If it has achieved the best loss, save to 'model.pth' within directory, otherwise save to
'latest_model.pth'
Args:
directory (pathlib Path): A directory in which to save the model
"""
directory.mkdir(exist_ok=True, parents=True)
curr_loss = np.mean(self.last_n_losses)
if curr_loss < self.best_loss or bypass_loss_check:
torch.save(
{
"iteration": self.iteration,
"model_state_dict": self.model.state_dict(),
"optimiser_state_dict": self.optimiser.state_dict(),
"loss": curr_loss,
"running_loss": self.last_n_losses,
},
str(directory / "model.pth"),
)
self.best_loss = curr_loss
else:
torch.save(
{
"iteration": self.iteration,
"model_state_dict": self.model.state_dict(),
"optimiser_state_dict": self.optimiser.state_dict(),
"loss": curr_loss,
"running_loss": self.last_n_losses,
},
str(directory / "latest_model.pth"),
)
self.best_loss = curr_loss
def load_model(self, directory, model="model.pth"):
"""Load a pretrained model, optimiser state, loss at time of saving, iteration at time of saving
Args:
directory (pathlib Path): Directory in which the model is saved
model (str): Model filename, defaults to 'model.pth'
"""
checkpoint = torch.load(str(directory / model))
self.model.load_state_dict(checkpoint["model_state_dict"])
self.optimiser.load_state_dict(checkpoint["optimiser_state_dict"])
self.latest_loss = checkpoint["loss"]
self.iteration = checkpoint["iteration"]
self.last_n_losses = checkpoint["running_loss"]
self.best_loss = checkpoint["loss"]
def plane_mask_builder(self, blank_width=None):
"""Get a list of logical ndarrays that can be used to mask out the central region of an input image, and
extract that local region for a 'label' array at output of the model
Returns:
(list of 2D ndarrays): A set of masks to apply to the axial, coronal and sagittal views taken during
building of a batch
"""
if blank_width is None:
blank_width = self.blank_width
axial_mask = np.ones([self.coronal_width, self.sagittal_width], dtype=bool)
coronal_mask = np.ones([self.axial_width, self.sagittal_width], dtype=bool)
sagittal_mask = np.ones([self.axial_width, self.coronal_width], dtype=bool)
for mask in [axial_mask, coronal_mask, sagittal_mask]:
row_start = int(np.floor(mask.shape[0] / 2) - blank_width / 2)
col_start = int(np.floor(mask.shape[1] / 2) - blank_width / 2)
mask[
row_start : row_start + blank_width, col_start : col_start + blank_width
] = False
# for mask, border_mask in zip([axial_mask, coronal_mask, sagittal_mask], self.border_masks):
# mask *= border_mask
return [axial_mask, coronal_mask, sagittal_mask]
def border_mask_builder(self):
"""Get a list of logical ndarrays that can be used to mask out the border region of an input image, and
extract that local region for a 'label' array at output of the model. Applying these should help with aliasing
effects at the edges of cnn output
Returns:
(list of 2D ndarrays): A set of masks to apply to the axial, coronal and sagittal views taken during
building of a batch
"""
axial_mask = np.ones([self.coronal_width, self.sagittal_width], dtype=bool)
coronal_mask = np.ones([self.axial_width, self.sagittal_width], dtype=bool)
sagittal_mask = np.ones([self.axial_width, self.coronal_width], dtype=bool)
for mask in [axial_mask, coronal_mask, sagittal_mask]:
mask[: self.border_width] = False
mask[-self.border_width :] = False
mask[:, : self.border_width] = False
mask[:, -self.border_width :] = False
return [axial_mask, coronal_mask, sagittal_mask]
@staticmethod
def _rand_nd_ints(high, low=0):
return np.random.randint(low, high)
def random_coronal_slicer(self, arr, indices=None, allow_off_edge=False):
"""Takes a random crop from a random coronal plane of 3D array arr
Args:
allow_off_edge (bool): optional, defaults to False. Whether to allow indices which will take the view
off the edges of arr
indices (list of 3 ints): Coordinates at which to take the slice from. 0th and 2nd indices define a top
left corner of the view, 1st index defines the coronal slice
arr (ndarray): 3D volume
Returns:
(ndarray): 2D image
"""
if indices is None:
indices = self._rand_nd_ints(
high=[
arr.shape[0] - self.axial_width,
arr.shape[1],
arr.shape[2] - self.sagittal_width,
]
)
if allow_off_edge:
out_arr = np.zeros([self.axial_width, self.sagittal_width])
new_out_start_inds = []
new_out_end_inds = []
new_arr_start_inds = []
new_arr_end_inds = []
non_coronal_inds = [indices[0], indices[2]]
for ind, width, arr_width in zip(
non_coronal_inds,
[self.axial_width, self.sagittal_width],
[arr.shape[0], arr.shape[2]],
):
if ind < 0:
new_out_start_inds.append(-ind)
else:
new_out_start_inds.append(0)
new_arr_start_inds.append(max(ind, 0))
remaining_width = width - new_out_start_inds[-1]
if new_arr_start_inds[-1] + remaining_width > arr_width:
new_arr_end_inds.append(arr_width)
else:
new_arr_end_inds.append(new_arr_start_inds[-1] + remaining_width)
curr_width = new_arr_end_inds[-1] - new_arr_start_inds[-1]
new_out_end_inds.append(new_out_start_inds[-1] + curr_width)
out_arr[
new_out_start_inds[0] : new_out_end_inds[0],
new_out_start_inds[1] : new_out_end_inds[1],
] = arr[
new_arr_start_inds[0] : new_arr_end_inds[0],
indices[1],
new_arr_start_inds[1] : new_arr_end_inds[1],
]
else:
out_arr = arr[
indices[0] : indices[0] + self.axial_width,
indices[1],
indices[2] : indices[2] + self.sagittal_width,
]
return out_arr, indices
def random_sagittal_slicer(self, arr, indices=None, allow_off_edge=False):
"""Takes a random crop from a random sagittal plane of 3D array arr
Args:
allow_off_edge (bool): optional, defaults to False. Whether to allow indices which will take the view
off the edges of arr
indices (list of 3 ints): Coordinates at which to take the slice from. 0th and 1st indices define a top
left corner of the view, 0th index defines the sagittal slice
arr (ndarray): 3D volume
Returns:
(ndarray): 2D image
"""
if indices is None:
indices = self._rand_nd_ints(
high=[
arr.shape[0] - self.axial_width,
arr.shape[1] - self.coronal_width,
arr.shape[2],
]
)
if allow_off_edge:
out_arr = np.zeros([self.axial_width, self.coronal_width])
new_out_start_inds = []
new_out_end_inds = []
new_arr_start_inds = []
new_arr_end_inds = []
for ind, width, arr_width in zip(
indices[:2],
[self.axial_width, self.coronal_width],
[arr.shape[0], arr.shape[1]],
):
if ind < 0:
new_out_start_inds.append(-ind)
else:
new_out_start_inds.append(0)
new_arr_start_inds.append(max(ind, 0))
remaining_width = width - new_out_start_inds[-1]
if new_arr_start_inds[-1] + remaining_width > arr_width:
new_arr_end_inds.append(arr_width)
else:
new_arr_end_inds.append(new_arr_start_inds[-1] + remaining_width)
curr_width = new_arr_end_inds[-1] - new_arr_start_inds[-1]
new_out_end_inds.append(new_out_start_inds[-1] + curr_width)
out_arr[
new_out_start_inds[0] : new_out_end_inds[0],
new_out_start_inds[1] : new_out_end_inds[1],
] = arr[
new_arr_start_inds[0] : new_arr_end_inds[0],
new_arr_start_inds[1] : new_arr_end_inds[1],
indices[2],
]
else:
out_arr = arr[
indices[0] : indices[0] + self.axial_width,
indices[1] : indices[1] + self.coronal_width,
indices[2],
]
return out_arr, indices
def random_axial_slicer(self, arr, indices=None, allow_off_edge=False):
"""Takes a random crop from a random axial plane of 3D array arr
Args:
allow_off_edge (bool): optional, defaults to False. Whether to allow indices which will take the view
off the edges of arr
indices (list of 3 ints): Coordinates at which to take the slice from. 1st and 2nd indices define a top
left corner of the view, 0th index defines the axial slice
arr (ndarray): 3D volume
Returns:
(ndarray): 2D image
"""
if indices is None:
indices = self._rand_nd_ints(
high=[
arr.shape[0],
arr.shape[1] - self.coronal_width,
arr.shape[2] - self.sagittal_width,
]
)
if allow_off_edge:
out_arr = np.zeros([self.coronal_width, self.sagittal_width])
new_out_start_inds = []
new_out_end_inds = []
new_arr_start_inds = []
new_arr_end_inds = []
for ind, width, arr_width in zip(
indices[1:],
[self.coronal_width, self.sagittal_width],
[arr.shape[1], arr.shape[2]],
):
if ind < 0:
new_out_start_inds.append(-ind)
else:
new_out_start_inds.append(0)
new_arr_start_inds.append(max(ind, 0))
remaining_width = width - new_out_start_inds[-1]
if new_arr_start_inds[-1] + remaining_width > arr_width:
new_arr_end_inds.append(arr_width)
else:
new_arr_end_inds.append(new_arr_start_inds[-1] + remaining_width)
curr_width = new_arr_end_inds[-1] - new_arr_start_inds[-1]
new_out_end_inds.append(new_out_start_inds[-1] + curr_width)
out_arr[
new_out_start_inds[0] : new_out_end_inds[0],
new_out_start_inds[1] : new_out_end_inds[1],
] = arr[
indices[0],
new_arr_start_inds[0] : new_arr_end_inds[0],
new_arr_start_inds[1] : new_arr_end_inds[1],
]
else:
out_arr = arr[
indices[0],
indices[1] : indices[1] + self.coronal_width,
indices[2] : indices[2] + self.sagittal_width,
]
return out_arr, indices
def build_batch(
self,
patient_indices=None,
body_part_indices=None,
plane_indices=None,
scan_num_indices=None,
coords_input_array=None,
batch_size=None,
require_above_thresh=True,
allow_off_edge=False,
):
"""Get a batch of inputs and labels for a ai_ct_scans.models.
Args:
patient_indices (optional, ndarray of type int): The indices of patients to access for each batch element,
with zero-indexing (i.e. patient 1 will be at 0). Should be length equal to batch_size, if batch_size used
body_part_indices (optional, ndarray of type int): Indices of body parts to use to build each batch element,
0 for abdomen, 1 for thorax
plane_indices (optional, ndarray of type int): Indices of plane to view the batch element from, 0 for axial,
1 for coronal, 2 for sagittal
scan_num_indices (optional, ndarray of type int): Indices of which sequential scan from each patient to use,
0 for first scan, 1 for second scan
coords_input_array (optional, list of lendth 3 1D ndarrays of type int): The coordinates to use when
building each batch element. The coordinate corresponding to the plane_index will be the slice along that
index, while the other two coordinates will define the top left coordinate of the rectangle extracted from
that plane
batch_size (optional, int): How many slices to return for a batch
require_above_thresh (bool): Whether to reject random slices that do not have any elements above
self.threshold and seek out new slices until one is found
allow_off_edge (bool): Whether to allow coords_input_array to cause the output slice to overlap the edges of
the original scans - useful to ensure that it is possible for every part of a scan to occur at the central
masked region
Returns:
(dict of torch.Tensors): 'input_images': a stack of 2d axial, coronal and sagittal slices
'input_planes': a stack of one hot vectors, that correspond to which view the slice
was taken from. Shape [batch size, 3]
'input_body_part': a stack of one hot vectors, that correspond to the body part the
slice was taken from. Shape [batch size, 2]
'input_coords': a stack of 1D vectors describing the original xyz location of the
slice taken
'labels': a stack of 2D axial, coronal and sagittal slices, representing the data
that was masked at the centre of each element of input_images
"""
coords_sets = []
labels = []
if batch_size is None:
batch_size = self.batch_size
if batch_size != self.batch_size:
# if batch size for evaluation is different to what was used originally for the trainer, resize the input
# stack and reset batch size
self.input_stack = np.zeros(
[batch_size, 1, self.batch_height, self.batch_width]
)
self.batch_size = batch_size
if patient_indices is None:
patient_indices = np.random.choice(self.patient_indices, batch_size)
if plane_indices is None:
plane_indices = np.random.randint(0, 3, batch_size)
plane_one_hots = []
if body_part_indices is None:
body_part_indices = np.random.randint(0, 2, batch_size)
body_part_one_hots = []
if scan_num_indices is None:
scan_num_indices = np.random.randint(0, 2, batch_size)
if coords_input_array is None:
coords_input_array = [None for _ in range(batch_size)]
for i in range(batch_size):
filled = False
first_attempt = True
while not filled:
if first_attempt:
patient_index = patient_indices[i]
plane_index = plane_indices[i]
body_part_index = body_part_indices[i]
scan_index = scan_num_indices[i]
else:
patient_index = np.random.choice(self.patient_indices, 1)[0]
plane_index = np.random.randint(0, 3, 1)[0]
body_part_index = np.random.randint(0, 2, 1)[0]
scan_index = np.random.randint(0, 2, 1)[0]
plane_array = np.zeros(3)
plane_array[plane_indices[i]] = 1
body_part_array = np.zeros(2)
body_part_array[body_part_indices[i]] = 1
if plane_indices[i] == 2:
if coords_input_array[i] is not None:
coords_input_array[i][1], coords_input_array[i][2] = (
coords_input_array[i][2],
coords_input_array[i][1],
)
curr_slice, coords = self.slicers[plane_index - 1](
self.multi_patient_loader.patients[patient_index]
.__getattribute__(self.body_parts[body_part_index])
.__getattribute__(self.scan_nums[scan_index])
.transpose_memmap,
indices=coords_input_array[i],
allow_off_edge=allow_off_edge,
)
# switch coords 1 and 2 because the view is taken from the transpose scan
coords[1], coords[2] = coords[2], coords[1]
else:
curr_slice, coords = self.slicers[plane_index](
self.multi_patient_loader.patients[patient_index]
.__getattribute__(self.body_parts[body_part_index])
.__getattribute__(self.scan_nums[scan_index])
.full_memmap,
indices=coords_input_array[i],
allow_off_edge=allow_off_edge,
)
if curr_slice.max() >= 0.05 or not require_above_thresh:
filled = True
else:
first_attempt = False
continue
if self.blur_kernel is not None:
blurred_slice = blur(curr_slice, self.blur_kernel)
else:
blurred_slice = curr_slice
self.input_stack[i, 0][:] = blurred_slice[:]
labels.append(blurred_slice)
coords_sets.append(coords)
plane_one_hots.append(plane_array)
body_part_one_hots.append(body_part_array)
if self.show_outline is True:
for im_i, im in enumerate(self.input_stack):
edges = im[0][self.edge_detection_mask].reshape(
[self.edge_window_width, self.edge_window_width]
)
edge_weight = np.mean(edges)
edges = phase_correlation_image_processing.lmr(
edges, radius=self.edge_detection_pad
)
edges = edges[
self.edge_detection_pad : -self.edge_detection_pad,
self.edge_detection_pad : -self.edge_detection_pad,
]
edges = phase_correlation_image_processing.zero_crossings(
edges, thresh="auto"
)
self.input_stack[im_i, 0] *= self.plane_masks[0]
self.input_stack[im_i, 0][self.inv_plane_mask] += (
edges.reshape(-1) * edge_weight
)
else:
self.input_stack *= self.plane_masks[0]
labels = np.stack(labels)
labels = labels.reshape([labels.shape[0], 1, *labels.shape[1:]])
out_dict = {
"input_images": torch.Tensor(self.input_stack).to(dev),
"input_planes": torch.Tensor(np.stack(plane_one_hots)).to(dev),
"input_body_part": torch.Tensor(np.stack(body_part_one_hots)).to(dev),
"input_coords": torch.Tensor(np.stack(coords_sets)).to(dev),
"plane_mask": torch.Tensor(self.plane_masks[0]).to(dev),
"labels": torch.Tensor(labels).to(dev),
}
return out_dict
def process_full_scan(
self,
patient_index,
body_part_index,
plane_index,
scan_index,
batch_size,
overlap=1,
save_path=None,
allow_off_edge=True,
):
"""Run a single scan through the model in batches along a chosen axis, patching the prediction of the masked
region together and subtracting from the real scan to form an 'anomaly scan'.
Args:
patient_index (int): The index of a patient as stored in ai_ct_scans.data_loading.MultiPatientLoader, ie
Patient 1 at 0 index, Patient 2 at 1 etc
body_part_index (int): Index of a body part, 0 for abdomen, 1 for thorax currently supported
plane_index (int): Index of plane to stack inputs from, 0 for axial, 1 for coronal, 2 for sagittal
scan_index (int): 0 for scan 1, 1 for scan 2
batch_size (int): How many layers to take along the plane_index stack for each batch, 24 with image sizes
256x256 seems to work fine with 8GB of VRAM
overlap (int): Number of times to overlap the masked regions to build up an average predicted view. The
remainder of self.blank_width and overlap should be 0 for well-stitched output
save_path (pathlib Path): File path at which to save the anomaly scan as a memmap (shape will be appended
into the filename for ease of reloading with ai_ct_scans.data_loading.load_memmap)
allow_off_edge (bool): Whether to allow the model input to move off the edge of the scans, so that the
stitched central blank regions can cover the entire scan. If False, the central square column of masked
regions will be returned
Returns:
(ndarray): 3D volume of input - predicted output
"""
self.model.eval()
with torch.inference_mode():
torch.no_grad()
if allow_off_edge:
pad_sizes = (
(
np.array(
[self.axial_width, self.coronal_width, self.sagittal_width]
)
- self.blank_width
)
/ 2
).astype("int")
pad_sizes[plane_index] = 0
else:
pad_sizes = np.zeros(3)
mask = torch.Tensor(self.inv_plane_mask).to(dev)
blank_inds = | np.ones(batch_size, dtype=int) | numpy.ones |
# -*- coding: utf-8 -*-
import numpy as np
import cv2
def mosic(image, bboxes, labels,
image2, bboxes2, labels2,
image3, bboxes3, labels3,
image4, bboxes4, labels4,
min_offset=0.3):
h, w = image.shape[0], image.shape[1]
mix_img = np.zeros(shape=(h, w, 3), dtype='uint8')
cut_x = np.random.randint(w * min_offset, w * (1 - min_offset))
cut_y = np.random.randint(h * min_offset, h * (1 - min_offset))
# s = (cut_x * cut_y) / (w * h)
# s2 = ((w - cut_x) * cut_y) / (w * h)
# s3 = (cut_x * (h - cut_y)) / (w * h)
# s4 = ((w - cut_x) * (h - cut_y)) / (w * h)
mix_img[:cut_y, :cut_x] = image[:cut_y, :cut_x]
mix_img[:cut_y, cut_x:] = image2[:cut_y, cut_x:]
mix_img[cut_y:, :cut_x] = image3[cut_y:, :cut_x]
mix_img[cut_y:, cut_x:] = image4[cut_y:, cut_x:]
keep_idx, bboxes = clip_bbox(bboxes, (0, 0, cut_x, cut_y))
keep_idx2, bboxes2 = clip_bbox(bboxes2, (cut_x, 0, w, cut_y))
keep_idx3, bboxes3 = clip_bbox(bboxes3, (0, cut_y, cut_x, h))
keep_idx4, bboxes4 = clip_bbox(bboxes4, (cut_x, cut_y, w, h))
mix_bboxes = np.vstack((bboxes, bboxes2, bboxes3, bboxes4))
mix_labels = np.vstack((labels[keep_idx], labels2[keep_idx2], labels3[keep_idx3], labels4[keep_idx4]))
return mix_img, mix_bboxes, mix_labels
def clip_bbox(bboxes, target_bbox):
tx1, ty1, tx2, ty2 = target_bbox
x1 = np.maximum(bboxes[..., 0], tx1)
y1 = np.maximum(bboxes[..., 1], ty1)
x2 = np.minimum(bboxes[..., 2], tx2)
y2 = np.minimum(bboxes[..., 3], ty2)
new_bbox = np.stack([x1, y1, x2, y2], axis=-1)
v_ioa = ioa(new_bbox, bboxes)
keep_idx = v_ioa > 0.2
return keep_idx, new_bbox[keep_idx]
def ioa(bboxes, target_bboxes):
w = np.maximum(bboxes[..., 2] - bboxes[..., 0], 0)
h = np.maximum(bboxes[..., 3] - bboxes[..., 1], 0)
tw = np.maximum(target_bboxes[..., 2] - target_bboxes[..., 0], 0)
th = np.maximum(target_bboxes[..., 3] - target_bboxes[..., 1], 0)
ioa = w * h / np.maximum(tw * th, 1e-8)
return ioa
# def keep_bbox_within(bboxes, target_bbox):
# tx1, ty1, tx2, ty2 = target_bbox
#
# if not isinstance(bboxes, np.ndarray):
# bboxes = np.asarray(bboxes)
#
# x1 = np.maximum(bboxes[..., 0], tx1)
# y1 = np.maximum(bboxes[..., 1], ty1)
# x2 = np.minimum(bboxes[..., 2], tx2)
# y2 = np.minimum(bboxes[..., 3], ty2)
#
# int_w = np.maximum(x2 - x1, 0)
# int_h = np.maximum(y2 - y1, 0)
# int_area = int_w * int_h
#
# bboxes = np.stack([x1, y1, x2, y2], axis=-1)
# # keep_idx = np.any(np.not_equal(bboxes, 0), axis=-1)
# keep_idx = int_area > 0
#
# return keep_idx, bboxes[keep_idx]
# def cut_mix(image, bboxes, labels, image2, bboxes2, labels2, beta=1):
# """
# CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features
# """
#
# def rand_bbox(W, H, lambd):
# cut_rat = np.sqrt(1. - lambd)
# cut_w = np.int(W * cut_rat)
# cut_h = np.int(H * cut_rat)
#
# # uniform
# x1 = np.random.randint(0, W - cut_w)
# y1 = np.random.randint(0, H - cut_h)
# x2 = x1 + cut_w
# y2 = y1 + cut_h
#
# return x1, y1, x2, y2
#
# H, W = image.shape[0], image.shape[1]
# lambd = np.random.beta(beta, beta)
# min, max = 0.3, 0.8
# lambd = min + (max - min) * lambd
#
# x1, y1, x2, y2 = rand_bbox(W, H, lambd)
# mix_img = image.copy()
# mix_img[x1:x2, y1:y2] = image2[x1:x2, y1:y2]
# # adjust lambda to exactly match pixel ratio
# lambd = 1 - ((x2 - x1) * (y2 - y1) / (W * H))
#
# mix_bboxes = np.vstack((bboxes, bboxes2))
# mix_labels = np.vstack((labels, labels2))
# mix_weights = np.hstack((np.full(len(labels), lambd),
# np.full(len(labels2), (1. - lambd))))
#
# return mix_img, mix_bboxes, mix_labels, mix_weights
def mix_up(image, bboxes, labels, image2, bboxes2, labels2, alpha=None, beta=None):
if alpha is None or beta is None:
# Yolo use fixed 0.5
lambd = 0.5
else:
lambd = np.random.beta(beta, beta)
H = max(image.shape[0], image2.shape[0])
W = max(image.shape[1], image2.shape[1])
mix_img = np.zeros(shape=(H, W, 3), dtype='float32')
mix_img[:image.shape[0], :image.shape[1], :] = image.astype('float32') * lambd
mix_img[:image2.shape[0], :image2.shape[1], :] += image2.astype('float32') * (1. - lambd)
mix_img = mix_img.astype(np.uint8)
mix_bboxes = np.vstack((bboxes, bboxes2))
mix_labels = np.vstack((labels, labels2))
mix_weights = np.hstack((np.full(len(labels), lambd),
np.full(len(labels2), (1. - lambd))))
return mix_img, mix_bboxes, mix_labels, mix_weights
def onehot(labels, num_classes, smoothing):
bboxes_class = np.asarray(labels, dtype=np.int64)
labels = np.eye(num_classes, dtype=np.float32)
labels = labels[bboxes_class]
if smoothing:
uniform_distribution = np.full(num_classes, 1.0 / num_classes)
delta = 0.1
labels = labels * (1 - delta) + uniform_distribution * delta
return labels
def random_grayscale(image, alpha=(0.0, 1.0)):
alpha = alpha[0] + np.random.uniform() * (alpha[1] - alpha[0])
img_gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
img_gray = np.expand_dims(img_gray, axis=-1)
img_gray = np.tile(img_gray, (1, 1, 3))
img_gray = img_gray.astype(np.float32)
img = image.astype(np.float32)
img = img + alpha * (img_gray - img)
img = np.clip(img, 0., 255.)
image = img.astype(np.uint8)
return image
def random_distort(image, hue=18, saturation=1.5, exposure=1.5):
# determine scale factors
dhue = np.random.uniform(-hue, hue)
dsat = np.random.uniform(1. / saturation, saturation)
dexp = np.random.uniform(1. / exposure, exposure)
# convert RGB space to HSV space
image = cv2.cvtColor(image, cv2.COLOR_RGB2HSV).astype('float')
# change satuation and exposure
image[:, :, 1] *= dsat
image[:, :, 2] *= dexp
# change hue
image[:, :, 0] += dhue
image[:, :, 0] = np.clip(image[:, :, 0], 0., 179.)
image[:, :, 1] = np.clip(image[:, :, 1], 0., 255.)
image[:, :, 2] = np.clip(image[:, :, 2], 0., 255.)
# convert back to RGB from HSV
return cv2.cvtColor(image.astype('uint8'), cv2.COLOR_HSV2RGB)
def random_rotate(image, bboxes, angle=7.):
angle = np.random.uniform(-angle, angle)
h, w, _ = image.shape
m = cv2.getRotationMatrix2D((w / 2, h / 2), angle, 1)
image = cv2.warpAffine(image, m, (w, h), borderValue=(127, 127, 127))
if len(bboxes) != 0:
top_left = bboxes[..., [0, 1]]
top_right = bboxes[..., [2, 1]]
bottom_left = bboxes[..., [0, 3]]
bottom_right = bboxes[..., [2, 3]]
# N, 4, 2
points = np.stack([top_left, top_right, bottom_left, bottom_right], axis=-2)
points_3d = np.ones(points.shape[:-1] + (3,), np.float32)
points_3d[..., :2] = points
# points = m @ points_3d[0].T
points = map(lambda x: m @ x.T, points_3d)
points = np.array(list(points))
points = np.transpose(points, [0, 2, 1])
bboxes[..., 0] = np.min(points[..., 0], axis=-1)
bboxes[..., 1] = np.min(points[..., 1], axis=-1)
bboxes[..., 2] = np.max(points[..., 0], axis=-1)
bboxes[..., 3] = np.max(points[..., 1], axis=-1)
bboxes[:, [0, 2]] = np.clip(bboxes[:, [0, 2]], 0, w)
bboxes[:, [1, 3]] = np.clip(bboxes[:, [1, 3]], 0, h)
return image, bboxes
def random_flip_lr(image, bboxes):
if np.random.randint(2):
h, w, _ = image.shape
image = image[:, ::-1, :]
bboxes[:, [0, 2]] = w - bboxes[:, [2, 0]]
return image, bboxes
def random_crop_and_zoom(image, bboxes, labels, size, jitter=0.3):
net_w, net_h = size
h, w, _ = image.shape
dw = w * jitter
dh = h * jitter
rate = (w + np.random.uniform(-dw, dw)) / (h + np.random.uniform(-dh, dh))
scale = | np.random.uniform(1 / 1.5, 1.5) | numpy.random.uniform |
import logging
from collections import deque
import numpy as np
import torch
from scipy.optimize import minimize
from torchays.modules.base import AysBaseModule
from torchays.utils.minfunc import func, funcJac, conFunc, conFunc1, conJac, boundFun, boundJac, cfunc, jacCcfunc, ccfunc, jacCfunc
# TODO: 使用递归来进行一种迭代算法。简单来说就是暴力搜索每种节点,然后继续向下搜索下一个区域的方式。
# 搜索不到子节点就停止。不考虑Bound以外的数据,确保训练数据在一个bound以内。例如图像是每个像素点是(0-255)
# 优化1:减少递归使用;x
# 优化2:增加下一个区域的搜索,取消暴力循环历遍。(大幅度减少搜索时间);√
# 优化3:尝试区域内点的搜索方式,改进条件约束的计算方式,减少点计算时间;x
class WapperArea(object):
"""
Get the area(sign) of the funtion list.
* 1 : f(x) >= 0
* -1 : f(x) < 0
"""
def __init__(self):
self.sRSign = torch.Tensor().type(torch.int8)
self.area = deque()
def __iter__(self):
return self
def __next__(self):
try:
self._updateList()
while self.checkArea(self.output):
self._updateList()
except:
raise StopIteration
return self.output
def _updateList(self):
self.output = self.area.popleft()
def registArea(self, areaSign):
if not self.checkArea(areaSign):
self.area.append(areaSign)
def registAreas(self, areaSigns: torch.Tensor):
for area in areaSigns:
self.registArea(area)
def updateIndex(self, areaSign):
if self.checkArea(areaSign):
return
self.sRSign = torch.cat([self.sRSign, areaSign.view(1, -1)], dim=0)
def checkArea(self, area: torch.Tensor):
try:
a = ((self.sRSign.abs() * area) - self.sRSign).abs().sum(dim=1)
return (0 in a)
except:
return False
class AnalysisReLUNetUtils(object):
"""
AnalysisReLUNetUtils needs to ensure that the net has the function:
>>> def forward_graph_Layer(*args, layer=layerNum):
>>> ''' layer is a 'int' before every ReLU module. 'Layer' can get the layer weight and bias graph.'''
>>> if layer == num:
>>> return output
args:
device: torch.device
GPU or CPU to get the graph from the network;
logger: def info(...)
print the information (Default: print in console)(logger.info(...)).
"""
def __init__(self, device=torch.device('cpu'), logger=None):
self.device = device
self.one = torch.ones(1).double()
if logger is None:
self.logger = logging.getLogger("AnalysisReLUNetUtils-Console")
self.logger.setLevel(level=logging.INFO)
formatter = logging.Formatter('[%(asctime)s] - %(name)s : %(message)s')
console = logging.StreamHandler()
console.setLevel(logging.INFO)
console.setFormatter(formatter)
self.logger.addHandler(console)
else:
self.logger = logger
def _getFuncList(self, point, layerNum):
"""
Get the list of the linear function before ReLU layer.
"""
point = torch.from_numpy(point).float()
point = point.to(self.device).unsqueeze(dim=0)
with torch.no_grad():
_, graph = self.net.forward_graph_Layer(point, layer=layerNum)
# (1, *output.size(), *input.size())
weight_graph, bias_graph = graph['weight_graph'], graph['bias_graph']
# (output.num, input.num)
weight_graph = weight_graph.reshape(-1, point.size()[1:].numel())
# self.logger.info(weight_graph.size())
# (output.num, 1)
bias_graph = bias_graph.reshape(-1, 1)
# self.logger.info(bias_graph.size())
# (output.num, input.num + 1)
return torch.cat([weight_graph, bias_graph], dim=1)
def _calulateR(self, funcList, point):
"""
Calculate the max radius of the insphere in the region to make the radius less than the distance of the insphere center to the all functions
which can express a liner region.
maximizing the following function.
* max_{x,r} r
* s.t. (AX+B-r||A|| >= 0)
To minimize:
* min_{x,r} (-r)
* s.t. (AX+B-r||A|| >= 0)
"""
cons = []
normA = np.linalg.norm(funcList[:, :-1], ord=2, axis=1)
for i in range(funcList.shape[0]):
con = {
'type': 'ineq',
'fun': cfunc(funcList[i], normA[i]),
'jac': jacCfunc(funcList[i], normA[i]),
}
cons.append(con)
cons.extend(self.con)
function = ccfunc(funcList[0])
res = minimize(function, point, method='SLSQP', constraints=cons, jac=jacCcfunc(funcList[0]), tol=1e-10, options={"maxiter": 100})
x, r = res.x[:-1], res.x[-1]
return x, r
def _calulateAreaPoint(self, cFuncList, cArea, pFuncList, pArea, point, layerNum):
"""
* min_{x} (aX + b);
* s.t. AX + B >= 0;
"""
funcList, area = torch.cat([cFuncList, pFuncList], dim=0), torch.cat([cArea, pArea], dim=0)
conFuncs = area.view(-1, 1) * funcList
funcList, conFuncs, area = funcList.numpy(), conFuncs.numpy(), area.numpy()
conArea = np.ones_like(area)
nextFuncList, nextArea, funcPoints = [], [], []
# ==================================================
r = np.random.uniform(0, self.bound)
if layerNum == 0:
point = np.random.uniform(-self.bound, self.bound, [conFuncs[0].shape[0] - 1, ])
point = | np.append(point, r) | numpy.append |
"""Script for computing linear transforms from all frames to frame 1"""
import numpy as np
from scipy.io import loadmat, savemat
from otimage.imagereg import ot_reg_linear_1
# Zimmer
#MP_FPATH = '/home/mn2822/Desktop/WormOT/data/zimmer/mp_components/mp_0000_0050.mat'
#OUT_FPATH = '/home/mn2822/Desktop/WormOT/data/zimmer/registration/reg2_0003_0008.mat'
# Vivek
MP_FPATH = '/home/mn2822/Desktop/WormOT/data/vivek/0930_tail_01/mp_components/mp_0000_0900.mat'
OUT_FPATH = '/home/mn2822/Desktop/WormOT/data/vivek/0930_tail_01/registration/reg3_0000_0900.mat'
N_FRAMES = 899
N_MPS = 400
def main():
print(f'Loading MP data from {MP_FPATH}...')
mp_data = loadmat(MP_FPATH)
pts = mp_data['means'][1:N_FRAMES+1, :, :]
wts = mp_data['weights'][1:N_FRAMES+1, :, :]
cov = mp_data['cov']
print('Computing transformations...')
# Points and weights for first frame
pts_0 = pts[1, 0:N_MPS, :]
wts_0 = wts[1, 0:N_MPS, 0]
wts_unif = np.ones(N_MPS) / N_MPS
f_alpha = [None] * N_FRAMES
f_beta = [None] * N_FRAMES
p_mtx = [None] * N_FRAMES
f_alpha[0] = | np.array([0, 0, 0]) | numpy.array |
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
import json
import collections
import copy as cp
import math
from collections import OrderedDict
import os.path
import numpy as np
import time
import operator
import sys
import pickle
import os
import random
from datetime import datetime
from .Node import Node
from .utils import latin_hypercube, from_unit_cube
# from torch.quasirandom import SobolEngine
# import torch
class MCTS:
#############################################
def __init__(
self,
space,
sample_latent_bounds,
dims,
split_latent_converter,
sample_latent_converter,
split_latent_dims,
sample_latent_dims,
C_p=10,
sample_per_inner_alg=1,
split_metric: str = 'max',
kernel_type="rbf",
solver='cmaes',
# solver_options={},
cmaes_sigma_mult=1.,
use_gpr=True,
gamma_type="auto",
treeify_freq=1,
init_within_leaf='mean',
leaf_size=20,
splitter_type='kmeans',
normalize=True,
rng=np.random.RandomState(42),
split_use_predict=True,
verbose=False,
**kwargs):
'''
::solver: type=str, default='cmaes', choices=['cmaes'], help='leaf solver'
::init_within_leaf: type=str, default='mean', choices=['mean', 'random', 'max'], help='how to choose initial value within leaf for cmaes and gradient'
::leaf_size: type=int, default=20, help='min leaf size before splitting'
::split_type: type=str, default='kmeans', choices=['kmeans', 'linreg', 'value'], help='how to split nodes for LaMCTS. value = just split in half based on value'
'''
self.space = space
# = args
self.split_latent_converter = split_latent_converter
self.sample_latent_converter = sample_latent_converter
self.dims = dims
self.split_metric = split_metric
self.solver_type = solver
# ub, lb = sample_latent_bounds.ub, sample_latent_bounds.lb
self.cmaes_sigma_mult = cmaes_sigma_mult
self.use_gpr = use_gpr
self.treeify_freq = treeify_freq
self.init_within_leaf = init_within_leaf
# self.leaf_size = leaf_size
# self.split_type = split_type
# self.split_latent_dims = func.split_latent_converter.latent_dim if func.split_latent_converter is not None else dims
# self.sample_latent_dims = func.sample_latent_converter.latent_dim if args.latent_samples else dims
self.split_latent_dims = split_latent_dims
self.sample_latent_dims = sample_latent_dims
self.sample_latent_bounds = sample_latent_bounds
self.rng = rng
self.samples = []
self.f_samples = []
self.nodes = []
self.C_p = C_p
self.sample_per_inner_alg = sample_per_inner_alg
self.sample_per_inner_alg_count = 0
# self.lb = lb
# self.ub = ub
# self.ninits = ninits
# self.func = func
# self.curt_best_value = float("inf")
# self.curt_best_sample = None
self.best_value_trace = []
# self.sample_counter = 0
self.visualization = False
self.LEAF_SAMPLE_SIZE = leaf_size
self.kernel_type = kernel_type
self.gamma_type = gamma_type
# self.cmaes_sigma_mult = args.cmaes_sigma_mult
# self.solver_type = args.solver #solver can be 'bo' or 'turbo'
self.normalize = normalize
self.splitter_type = splitter_type
self.verbose = verbose
if self.verbose:
print("gamma_type:", gamma_type)
self.kwargs = kwargs
#we start the most basic form of the tree, 3 nodes and height = 1
self.split_use_predict = split_use_predict
root = Node(
parent=None,
sample_dims=self.sample_latent_dims,
split_dims=self.split_latent_dims,
true_dims=self.dims,
reset_id=True,
kernel_type=self.kernel_type,
cmaes_sigma_mult=self.cmaes_sigma_mult,
leaf_size=self.LEAF_SAMPLE_SIZE,
splitter_type=self.splitter_type,
split_metric=self.split_metric,
use_gpr=self.use_gpr,
gamma_type=self.gamma_type,
normalize=self.normalize,
verbose=self.verbose,
rng=self.rng,
split_use_predict=split_use_predict,
**kwargs)
self.nodes.append(root)
self.ROOT = root
self.CURT = self.ROOT
# self.init_train()
self.iterations_since_treeify = 0
def populate_training_data(self):
#only keep root
self.ROOT.obj_counter = 0
for node in self.nodes:
node.clear_data()
self.nodes.clear()
new_root = Node(
parent=None,
sample_dims=self.sample_latent_dims,
split_dims=self.split_latent_dims,
true_dims=self.dims,
reset_id=True,
kernel_type=self.kernel_type,
cmaes_sigma_mult=self.cmaes_sigma_mult,
leaf_size=self.LEAF_SAMPLE_SIZE,
splitter_type=self.splitter_type,
split_metric=self.split_metric,
use_gpr=self.use_gpr,
gamma_type=self.gamma_type,
normalize=self.normalize,
verbose=self.verbose,
rng=self.rng,
split_use_predict=self.split_use_predict,
**self.kwargs)
self.nodes.append(new_root)
self.ROOT = new_root
self.CURT = self.ROOT
self.ROOT.update_bag(self.latent_samples, self.split_vectors,
self.samples, self.f_samples)
def get_leaf_status(self):
status = []
for node in self.nodes:
if node.is_leaf() == True and len(
node.sample_X
) > self.LEAF_SAMPLE_SIZE and node.is_svm_splittable == True:
status.append(True)
else:
status.append(False)
return np.array(status)
def get_split_idx(self):
split_by_samples = np.argwhere(
self.get_leaf_status() == True).reshape(-1)
return split_by_samples
def is_splitable(self):
status = self.get_leaf_status()
if True in status:
return True
else:
return False
def dynamic_treeify(self):
# we bifurcate a node once it contains over 20 samples
# the node will bifurcate into a good and a bad kid
self.populate_training_data()
assert len(self.ROOT.sample_X) == len(self.samples)
assert len(self.nodes) == 1
while self.is_splitable():
to_split = self.get_split_idx()
#print("==>to split:", to_split, " total:", len(self.nodes) )
for nidx in to_split:
parent = self.nodes[
nidx] # parent check if the boundary is splittable by svm
assert len(parent.sample_X) >= self.LEAF_SAMPLE_SIZE
assert parent.is_svm_splittable == True
# print("spliting node:", parent.get_name(), len(parent.bag))
good_kid_data, bad_kid_data = parent.train_and_split()
#creat two kids, assign the data, and push into lists
# children's lb and ub will be decided by its parent
assert len(good_kid_data[0]) + len(bad_kid_data[0]) == len(
parent.sample_X)
assert len(good_kid_data[0]) > 0
assert len(bad_kid_data[0]) > 0
good_kid = Node(
parent=parent,
sample_dims=self.sample_latent_dims,
split_dims=self.split_latent_dims,
true_dims=self.dims,
reset_id=False,
kernel_type=self.kernel_type,
cmaes_sigma_mult=self.cmaes_sigma_mult,
leaf_size=self.LEAF_SAMPLE_SIZE,
splitter_type=self.splitter_type,
split_metric=self.split_metric,
use_gpr=self.use_gpr,
gamma_type=self.gamma_type,
normalize=self.normalize,
verbose=self.verbose,
rng=self.rng,
split_use_predict=self.split_use_predict,
**self.kwargs)
bad_kid = Node(
parent=parent,
sample_dims=self.sample_latent_dims,
split_dims=self.split_latent_dims,
true_dims=self.dims,
reset_id=False,
kernel_type=self.kernel_type,
cmaes_sigma_mult=self.cmaes_sigma_mult,
leaf_size=self.LEAF_SAMPLE_SIZE,
splitter_type=self.splitter_type,
split_metric=self.split_metric,
use_gpr=self.use_gpr,
gamma_type=self.gamma_type,
normalize=self.normalize,
verbose=self.verbose,
rng=self.rng,
split_use_predict=self.split_use_predict,
**self.kwargs)
good_kid.update_bag(good_kid_data[0], good_kid_data[1],
good_kid_data[2], good_kid_data[3])
bad_kid.update_bag(bad_kid_data[0], bad_kid_data[1],
bad_kid_data[2], bad_kid_data[3])
parent.update_kids(good_kid=good_kid, bad_kid=bad_kid)
self.nodes.append(good_kid)
self.nodes.append(bad_kid)
#print("continue split:", self.is_splitable())
if self.verbose:
self.print_tree()
# def collect_samples(self, sample, value=None, split_info=None, final_obs=None):
# #TODO: to perform some checks here
# if value == None:
# value, split_info, final_obs = self.func(sample, return_final_obs=True)
# value *= -1
# if value > self.curt_best_value:
# self.curt_best_value = value
# self.curt_best_sample = sample
# self.best_value_trace.append( (value, self.sample_counter) )
# self.sample_counter += 1
# self.samples.append( (sample, value, split_info, final_obs ))
# # self.samples.append( (sample, value, self.func.env.get_obs(), split_info, final_obs ))
# return value
# def init_train(self):
# if init_file is not None:
# with open(init_file, 'rb') as rf:
# init = pickle.load(rf)
# random.shuffle(init)
# init_points = [ip[0].ravel() for ip in init[:self.ninits]]
# else:
# std = init_sigma_mult
# init_points = std * np.random.randn(self.ninits, self.dims)
# for point in init_points:
# v = self.collect_samples(point)
# if self.verbose:
# print("="*10 + 'collect '+ str(len(self.samples) ) +' points for initializing MCTS'+"="*10)
# print("lb:", self.lb)
# print("ub:", self.ub)
# print("Cp:", self.C_p)
# print("inits:", self.ninits)
# print("dims:", self.dims)
# print("="*58)
def print_tree(self):
print('-' * 100)
for node in self.nodes:
print(node)
print('-' * 100)
def reset_to_root(self):
self.CURT = self.ROOT
def load_agent(self):
node_path = 'mcts_agent'
if os.path.isfile(node_path) == True:
with open(node_path, 'rb') as json_data:
self = pickle.load(json_data)
if self.verbose:
print("=====>loads:", len(self.samples), " samples")
def dump_agent(self):
node_path = 'mcts_agent'
if self.verbose:
print("dumping the agent.....")
with open(node_path, "wb") as outfile:
pickle.dump(self, outfile)
def dump_samples(self):
sample_path = 'samples_' + str(self.sample_counter)
with open(sample_path, "wb") as outfile:
pickle.dump(self.samples, outfile)
def dump_trace(self):
trace_path = 'best_values_trace'
final_results_str = json.dumps(self.best_value_trace)
with open(trace_path, "a") as f:
f.write(final_results_str + '\n')
def greedy_select(self):
self.reset_to_root()
curt_node = self.ROOT
path = []
if self.visualization == True:
curt_node.plot_samples_and_boundary(self.func)
while curt_node.is_leaf() == False:
UCT = []
for i in curt_node.kids:
UCT.append(i.get_xbar())
choice = self.rng.choice(
np.argwhere(UCT == np.amax(UCT)).reshape(-1), 1)[0]
path.append((curt_node, choice))
curt_node = curt_node.kids[choice]
if curt_node.is_leaf() == False and self.visualization == True:
curt_node.plot_samples_and_boundary(self.func)
if self.verbose:
print("=>", curt_node.get_name(), end=' ')
if self.verbose:
print("")
return curt_node, path
def select(self):
self.reset_to_root()
curt_node = self.ROOT
path = []
while curt_node.is_leaf() == False:
UCT = []
for i in curt_node.kids:
UCT.append(i.get_uct(self.C_p))
choice = self.rng.choice(
np.argwhere(UCT == np.amax(UCT)).reshape(-1), 1)[0]
path.append((curt_node, choice))
curt_node = curt_node.kids[choice]
if self.verbose:
print("=>", curt_node.get_name(), end=' ')
if self.verbose:
print("")
# print([n[1] for n in path])
return curt_node, path
def no_tree_select(self):
# select the best leaf regardless of tree path
self.reset_to_root()
best_node, best_UCT = None, -1e8
for node in self.nodes:
if node.is_leaf():
uct = node.get_uct(self.C_p)
if uct > best_UCT:
best_node, best_UCT = node, uct
return node, None # no path; should be unused
def locate_x(self, x): # used for debugging/inspection
self.reset_to_root()
curt_node = self.ROOT
path = []
while curt_node.is_leaf() == False:
if self.splitter_type == 'kmeans':
choice = curt_node.classifier.svm.predict([x])[0]
elif self.splitter_type == 'linreg':
choice = 0 if curt_node.classifier.regressor.predict(
[x])[0] <= curt_node.classifier.regressor_threshold else 1
path.append((curt_node, choice))
curt_node = curt_node.kids[choice]
if self.verbose:
print("=>", curt_node.get_name(), end=' ')
if self.verbose:
print("")
return curt_node, path
def backpropogate(self, leaf, latent_sample, true_sample, acc):
curt_node = leaf
while curt_node is not None:
assert curt_node.n > 0
if self.split_metric == 'mean':
curt_node.x_bar = (curt_node.x_bar * curt_node.n +
acc) / (curt_node.n + 1)
else:
curt_node.x_bar = max(curt_node.x_bar, acc)
curt_node.n += 1
curt_node.sample_X = np.concatenate(
[curt_node.sample_X,
latent_sample.reshape((1, -1))], axis=0)
# curt_node.split_X = np.concatenate([curt_node.split_X, split_vector.reshape((1, -1))], axis=0) # don't need to update this until new treeify
curt_node.true_X = np.concatenate(
[curt_node.true_X,
true_sample.reshape((1, -1))], axis=0)
curt_node.fX = np.concatenate(
[curt_node.fX, np.array([acc])], axis=0)
curt_node.classifier.sample_X = np.concatenate([
curt_node.classifier.sample_X,
latent_sample.reshape((1, -1))
],
axis=0)
# curt_node.classifier.split_X = np.concatenate([curt_node.classifier.split_X, split_vector.reshape((1, -1))], axis=0)
curt_node.classifier.true_X = np.concatenate(
[curt_node.classifier.true_X,
true_sample.reshape((1, -1))],
axis=0)
curt_node.classifier.fX = np.concatenate(
[curt_node.classifier.fX,
| np.array([acc]) | numpy.array |
from __future__ import annotations
from typing import Any, List
import numpy as np
def_rng = np.random.default_rng()
seed_seq = np.random.SeedSequence()
mt19937 = np.random.MT19937()
pcg64 = np.random.PCG64()
sfc64 = np.random.SFC64()
philox = np.random.Philox()
seedless_seq = np.random.bit_generator.SeedlessSeedSequence()
reveal_type(def_rng) # E: numpy.random._generator.Generator
reveal_type(mt19937) # E: numpy.random._mt19937.MT19937
reveal_type(pcg64) # E: numpy.random._pcg64.PCG64
reveal_type(sfc64) # E: numpy.random._sfc64.SFC64
reveal_type(philox) # E: numpy.random._philox.Philox
reveal_type(seed_seq) # E: numpy.random.bit_generator.SeedSequence
reveal_type(seedless_seq) # E: numpy.random.bit_generator.SeedlessSeedSequence
mt19937_jumped = mt19937.jumped()
mt19937_jumped3 = mt19937.jumped(3)
mt19937_raw = mt19937.random_raw()
mt19937_raw_arr = mt19937.random_raw(5)
reveal_type(mt19937_jumped) # E: numpy.random._mt19937.MT19937
reveal_type(mt19937_jumped3) # E: numpy.random._mt19937.MT19937
reveal_type(mt19937_raw) # E: int
reveal_type(mt19937_raw_arr) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]]
reveal_type(mt19937.lock) # E: threading.Lock
pcg64_jumped = pcg64.jumped()
pcg64_jumped3 = pcg64.jumped(3)
pcg64_adv = pcg64.advance(3)
pcg64_raw = pcg64.random_raw()
pcg64_raw_arr = pcg64.random_raw(5)
reveal_type(pcg64_jumped) # E: numpy.random._pcg64.PCG64
reveal_type(pcg64_jumped3) # E: numpy.random._pcg64.PCG64
reveal_type(pcg64_adv) # E: numpy.random._pcg64.PCG64
reveal_type(pcg64_raw) # E: int
reveal_type(pcg64_raw_arr) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]]
reveal_type(pcg64.lock) # E: threading.Lock
philox_jumped = philox.jumped()
philox_jumped3 = philox.jumped(3)
philox_adv = philox.advance(3)
philox_raw = philox.random_raw()
philox_raw_arr = philox.random_raw(5)
reveal_type(philox_jumped) # E: numpy.random._philox.Philox
reveal_type(philox_jumped3) # E: numpy.random._philox.Philox
reveal_type(philox_adv) # E: numpy.random._philox.Philox
reveal_type(philox_raw) # E: int
reveal_type(philox_raw_arr) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]]
reveal_type(philox.lock) # E: threading.Lock
sfc64_raw = sfc64.random_raw()
sfc64_raw_arr = sfc64.random_raw(5)
reveal_type(sfc64_raw) # E: int
reveal_type(sfc64_raw_arr) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]]
reveal_type(sfc64.lock) # E: threading.Lock
reveal_type(seed_seq.pool) # numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]]
reveal_type(seed_seq.entropy) # E:Union[None, int, Sequence[int]]
reveal_type(seed_seq.spawn(1)) # E: list[numpy.random.bit_generator.SeedSequence]
reveal_type(seed_seq.generate_state(8, "uint32")) # E: numpy.ndarray[Any, numpy.dtype[Union[numpy.unsignedinteger[numpy.typing._32Bit], numpy.unsignedinteger[numpy.typing._64Bit]]]]
reveal_type(seed_seq.generate_state(8, "uint64")) # E: numpy.ndarray[Any, numpy.dtype[Union[numpy.unsignedinteger[numpy.typing._32Bit], numpy.unsignedinteger[numpy.typing._64Bit]]]]
def_gen: np.random.Generator = np.random.default_rng()
D_arr_0p1: np.ndarray[Any, np.dtype[np.float64]] = np.array([0.1])
D_arr_0p5: np.ndarray[Any, np.dtype[np.float64]] = np.array([0.5])
D_arr_0p9: np.ndarray[Any, np.dtype[np.float64]] = np.array([0.9])
D_arr_1p5: np.ndarray[Any, np.dtype[np.float64]] = np.array([1.5])
I_arr_10: np.ndarray[Any, np.dtype[np.int_]] = np.array([10], dtype=np.int_)
I_arr_20: np.ndarray[Any, np.dtype[np.int_]] = np.array([20], dtype=np.int_)
D_arr_like_0p1: List[float] = [0.1]
D_arr_like_0p5: List[float] = [0.5]
D_arr_like_0p9: List[float] = [0.9]
D_arr_like_1p5: List[float] = [1.5]
I_arr_like_10: List[int] = [10]
I_arr_like_20: List[int] = [20]
D_2D_like: List[List[float]] = [[1, 2], [2, 3], [3, 4], [4, 5.1]]
D_2D: np.ndarray[Any, np.dtype[np.float64]] = np.array(D_2D_like)
S_out: np.ndarray[Any, np.dtype[np.float32]] = np.empty(1, dtype=np.float32)
D_out: np.ndarray[Any, np.dtype[np.float64]] = np.empty(1)
reveal_type(def_gen.standard_normal()) # E: float
reveal_type(def_gen.standard_normal(dtype=np.float32)) # E: float
reveal_type(def_gen.standard_normal(dtype="float32")) # E: float
reveal_type(def_gen.standard_normal(dtype="double")) # E: float
reveal_type(def_gen.standard_normal(dtype=np.float64)) # E: float
reveal_type(def_gen.standard_normal(size=None)) # E: float
reveal_type(def_gen.standard_normal(size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]]
reveal_type(def_gen.standard_normal(size=1, dtype=np.float32)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._32Bit]]]
reveal_type(def_gen.standard_normal(size=1, dtype="f4")) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._32Bit]]]
reveal_type(def_gen.standard_normal(size=1, dtype="float32", out=S_out)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._32Bit]]]
reveal_type(def_gen.standard_normal(dtype=np.float32, out=S_out)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._32Bit]]]
reveal_type(def_gen.standard_normal(size=1, dtype=np.float64)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]]
reveal_type(def_gen.standard_normal(size=1, dtype="float64")) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]]
reveal_type(def_gen.standard_normal(size=1, dtype="f8")) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]]
reveal_type(def_gen.standard_normal(out=D_out)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]]
reveal_type(def_gen.standard_normal(size=1, dtype="float64")) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]]
reveal_type(def_gen.standard_normal(size=1, dtype="float64", out=D_out)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]]
reveal_type(def_gen.random()) # E: float
reveal_type(def_gen.random(dtype=np.float32)) # E: float
reveal_type(def_gen.random(dtype="float32")) # E: float
reveal_type(def_gen.random(dtype="double")) # E: float
reveal_type(def_gen.random(dtype=np.float64)) # E: float
reveal_type(def_gen.random(size=None)) # E: float
reveal_type(def_gen.random(size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]]
reveal_type(def_gen.random(size=1, dtype=np.float32)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._32Bit]]]
reveal_type(def_gen.random(size=1, dtype="f4")) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._32Bit]]]
reveal_type(def_gen.random(size=1, dtype="float32", out=S_out)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._32Bit]]]
reveal_type(def_gen.random(dtype=np.float32, out=S_out)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._32Bit]]]
reveal_type(def_gen.random(size=1, dtype=np.float64)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]]
reveal_type(def_gen.random(size=1, dtype="float64")) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]]
reveal_type(def_gen.random(size=1, dtype="f8")) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]]
reveal_type(def_gen.random(out=D_out)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]]
reveal_type(def_gen.random(size=1, dtype="float64")) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]]
reveal_type(def_gen.random(size=1, dtype="float64", out=D_out)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]]
reveal_type(def_gen.standard_cauchy()) # E: float
reveal_type(def_gen.standard_cauchy(size=None)) # E: float
reveal_type(def_gen.standard_cauchy(size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.standard_exponential()) # E: float
reveal_type(def_gen.standard_exponential(method="inv")) # E: float
reveal_type(def_gen.standard_exponential(dtype=np.float32)) # E: float
reveal_type(def_gen.standard_exponential(dtype="float32")) # E: float
reveal_type(def_gen.standard_exponential(dtype="double")) # E: float
reveal_type(def_gen.standard_exponential(dtype=np.float64)) # E: float
reveal_type(def_gen.standard_exponential(size=None)) # E: float
reveal_type(def_gen.standard_exponential(size=None, method="inv")) # E: float
reveal_type(def_gen.standard_exponential(size=1, method="inv")) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]]
reveal_type(def_gen.standard_exponential(size=1, dtype=np.float32)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._32Bit]]]
reveal_type(def_gen.standard_exponential(size=1, dtype="f4", method="inv")) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._32Bit]]]
reveal_type(def_gen.standard_exponential(size=1, dtype="float32", out=S_out)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._32Bit]]]
reveal_type(def_gen.standard_exponential(dtype=np.float32, out=S_out)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._32Bit]]]
reveal_type(def_gen.standard_exponential(size=1, dtype=np.float64, method="inv")) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]]
reveal_type(def_gen.standard_exponential(size=1, dtype="float64")) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]]
reveal_type(def_gen.standard_exponential(size=1, dtype="f8")) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]]
reveal_type(def_gen.standard_exponential(out=D_out)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]]
reveal_type(def_gen.standard_exponential(size=1, dtype="float64")) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]]
reveal_type(def_gen.standard_exponential(size=1, dtype="float64", out=D_out)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]]
reveal_type(def_gen.zipf(1.5)) # E: int
reveal_type(def_gen.zipf(1.5, size=None)) # E: int
reveal_type(def_gen.zipf(1.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.zipf(D_arr_1p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.zipf(D_arr_1p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.zipf(D_arr_like_1p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.zipf(D_arr_like_1p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.weibull(0.5)) # E: float
reveal_type(def_gen.weibull(0.5, size=None)) # E: float
reveal_type(def_gen.weibull(0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.weibull(D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.weibull(D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.weibull(D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.weibull(D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.standard_t(0.5)) # E: float
reveal_type(def_gen.standard_t(0.5, size=None)) # E: float
reveal_type(def_gen.standard_t(0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.standard_t(D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.standard_t(D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.standard_t(D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.standard_t(D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.poisson(0.5)) # E: int
reveal_type(def_gen.poisson(0.5, size=None)) # E: int
reveal_type(def_gen.poisson(0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.poisson(D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.poisson(D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.poisson(D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.poisson(D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.power(0.5)) # E: float
reveal_type(def_gen.power(0.5, size=None)) # E: float
reveal_type(def_gen.power(0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.power(D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.power(D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.power(D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.power(D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.pareto(0.5)) # E: float
reveal_type(def_gen.pareto(0.5, size=None)) # E: float
reveal_type(def_gen.pareto(0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.pareto(D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.pareto(D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.pareto(D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.pareto(D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.chisquare(0.5)) # E: float
reveal_type(def_gen.chisquare(0.5, size=None)) # E: float
reveal_type(def_gen.chisquare(0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.chisquare(D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.chisquare(D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.chisquare(D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.chisquare(D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.exponential(0.5)) # E: float
reveal_type(def_gen.exponential(0.5, size=None)) # E: float
reveal_type(def_gen.exponential(0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.exponential(D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.exponential(D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.exponential(D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.exponential(D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.geometric(0.5)) # E: int
reveal_type(def_gen.geometric(0.5, size=None)) # E: int
reveal_type(def_gen.geometric(0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.geometric(D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.geometric(D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.geometric(D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.geometric(D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.logseries(0.5)) # E: int
reveal_type(def_gen.logseries(0.5, size=None)) # E: int
reveal_type(def_gen.logseries(0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.logseries(D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.logseries(D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.logseries(D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.logseries(D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.rayleigh(0.5)) # E: float
reveal_type(def_gen.rayleigh(0.5, size=None)) # E: float
reveal_type(def_gen.rayleigh(0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.rayleigh(D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.rayleigh(D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.rayleigh(D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.rayleigh(D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.standard_gamma(0.5)) # E: float
reveal_type(def_gen.standard_gamma(0.5, size=None)) # E: float
reveal_type(def_gen.standard_gamma(0.5, dtype="float32")) # E: float
reveal_type(def_gen.standard_gamma(0.5, size=None, dtype="float32")) # E: float
reveal_type(def_gen.standard_gamma(0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]]
reveal_type(def_gen.standard_gamma(D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]]
reveal_type(def_gen.standard_gamma(D_arr_0p5, dtype="f4")) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._32Bit]]]
reveal_type(def_gen.standard_gamma(0.5, size=1, dtype="float32", out=S_out)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._32Bit]]]
reveal_type(def_gen.standard_gamma(D_arr_0p5, dtype=np.float32, out=S_out)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._32Bit]]]
reveal_type(def_gen.standard_gamma(D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]]
reveal_type(def_gen.standard_gamma(D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]]
reveal_type(def_gen.standard_gamma(D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]]
reveal_type(def_gen.standard_gamma(0.5, out=D_out)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]]
reveal_type(def_gen.standard_gamma(D_arr_like_0p5, out=D_out)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]]
reveal_type(def_gen.standard_gamma(D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]]
reveal_type(def_gen.standard_gamma(D_arr_like_0p5, size=1, out=D_out, dtype=np.float64)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]]
reveal_type(def_gen.vonmises(0.5, 0.5)) # E: float
reveal_type(def_gen.vonmises(0.5, 0.5, size=None)) # E: float
reveal_type(def_gen.vonmises(0.5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.vonmises(D_arr_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.vonmises(0.5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.vonmises(D_arr_0p5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.vonmises(0.5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.vonmises(D_arr_like_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.vonmises(0.5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.vonmises(D_arr_0p5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.vonmises(D_arr_like_0p5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.vonmises(D_arr_0p5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.vonmises(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.wald(0.5, 0.5)) # E: float
reveal_type(def_gen.wald(0.5, 0.5, size=None)) # E: float
reveal_type(def_gen.wald(0.5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.wald(D_arr_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.wald(0.5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.wald(D_arr_0p5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.wald(0.5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.wald(D_arr_like_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.wald(0.5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.wald(D_arr_0p5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.wald(D_arr_like_0p5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.wald(D_arr_0p5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.wald(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.uniform(0.5, 0.5)) # E: float
reveal_type(def_gen.uniform(0.5, 0.5, size=None)) # E: float
reveal_type(def_gen.uniform(0.5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.uniform(D_arr_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.uniform(0.5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.uniform(D_arr_0p5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.uniform(0.5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.uniform(D_arr_like_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.uniform(0.5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.uniform(D_arr_0p5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.uniform(D_arr_like_0p5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.uniform(D_arr_0p5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.uniform(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.beta(0.5, 0.5)) # E: float
reveal_type(def_gen.beta(0.5, 0.5, size=None)) # E: float
reveal_type(def_gen.beta(0.5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.beta(D_arr_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.beta(0.5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.beta(D_arr_0p5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.beta(0.5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.beta(D_arr_like_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.beta(0.5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.beta(D_arr_0p5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.beta(D_arr_like_0p5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.beta(D_arr_0p5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.beta(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.f(0.5, 0.5)) # E: float
reveal_type(def_gen.f(0.5, 0.5, size=None)) # E: float
reveal_type(def_gen.f(0.5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.f(D_arr_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.f(0.5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.f(D_arr_0p5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.f(0.5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.f(D_arr_like_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.f(0.5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.f(D_arr_0p5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.f(D_arr_like_0p5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.f(D_arr_0p5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.f(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.gamma(0.5, 0.5)) # E: float
reveal_type(def_gen.gamma(0.5, 0.5, size=None)) # E: float
reveal_type(def_gen.gamma(0.5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.gamma(D_arr_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.gamma(0.5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.gamma(D_arr_0p5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.gamma(0.5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.gamma(D_arr_like_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.gamma(0.5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.gamma(D_arr_0p5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.gamma(D_arr_like_0p5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.gamma(D_arr_0p5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.gamma(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.gumbel(0.5, 0.5)) # E: float
reveal_type(def_gen.gumbel(0.5, 0.5, size=None)) # E: float
reveal_type(def_gen.gumbel(0.5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.gumbel(D_arr_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.gumbel(0.5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.gumbel(D_arr_0p5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.gumbel(0.5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.gumbel(D_arr_like_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.gumbel(0.5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.gumbel(D_arr_0p5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.gumbel(D_arr_like_0p5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.gumbel(D_arr_0p5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.gumbel(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.laplace(0.5, 0.5)) # E: float
reveal_type(def_gen.laplace(0.5, 0.5, size=None)) # E: float
reveal_type(def_gen.laplace(0.5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.laplace(D_arr_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.laplace(0.5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.laplace(D_arr_0p5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.laplace(0.5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.laplace(D_arr_like_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.laplace(0.5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.laplace(D_arr_0p5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.laplace(D_arr_like_0p5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.laplace(D_arr_0p5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.laplace(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.logistic(0.5, 0.5)) # E: float
reveal_type(def_gen.logistic(0.5, 0.5, size=None)) # E: float
reveal_type(def_gen.logistic(0.5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.logistic(D_arr_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.logistic(0.5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.logistic(D_arr_0p5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.logistic(0.5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.logistic(D_arr_like_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.logistic(0.5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.logistic(D_arr_0p5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.logistic(D_arr_like_0p5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.logistic(D_arr_0p5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.logistic(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.lognormal(0.5, 0.5)) # E: float
reveal_type(def_gen.lognormal(0.5, 0.5, size=None)) # E: float
reveal_type(def_gen.lognormal(0.5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.lognormal(D_arr_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.lognormal(0.5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.lognormal(D_arr_0p5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.lognormal(0.5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.lognormal(D_arr_like_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.lognormal(0.5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.lognormal(D_arr_0p5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.lognormal(D_arr_like_0p5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.lognormal(D_arr_0p5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.lognormal(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.noncentral_chisquare(0.5, 0.5)) # E: float
reveal_type(def_gen.noncentral_chisquare(0.5, 0.5, size=None)) # E: float
reveal_type(def_gen.noncentral_chisquare(0.5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.noncentral_chisquare(D_arr_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.noncentral_chisquare(0.5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.noncentral_chisquare(D_arr_0p5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.noncentral_chisquare(0.5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.noncentral_chisquare(D_arr_like_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.noncentral_chisquare(0.5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.noncentral_chisquare(D_arr_0p5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.noncentral_chisquare(D_arr_like_0p5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.noncentral_chisquare(D_arr_0p5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.noncentral_chisquare(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.normal(0.5, 0.5)) # E: float
reveal_type(def_gen.normal(0.5, 0.5, size=None)) # E: float
reveal_type(def_gen.normal(0.5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.normal(D_arr_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.normal(0.5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.normal(D_arr_0p5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.normal(0.5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.normal(D_arr_like_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.normal(0.5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.normal(D_arr_0p5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.normal(D_arr_like_0p5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.normal(D_arr_0p5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.normal(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.triangular(0.1, 0.5, 0.9)) # E: float
reveal_type(def_gen.triangular(0.1, 0.5, 0.9, size=None)) # E: float
reveal_type(def_gen.triangular(0.1, 0.5, 0.9, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.triangular(D_arr_0p1, 0.5, 0.9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.triangular(0.1, D_arr_0p5, 0.9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.triangular(D_arr_0p1, 0.5, D_arr_like_0p9, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.triangular(0.1, D_arr_0p5, 0.9, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.triangular(D_arr_like_0p1, 0.5, D_arr_0p9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.triangular(0.5, D_arr_like_0p5, 0.9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.triangular(D_arr_0p1, D_arr_0p5, 0.9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.triangular(D_arr_like_0p1, D_arr_like_0p5, 0.9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.triangular(D_arr_0p1, D_arr_0p5, D_arr_0p9, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.triangular(D_arr_like_0p1, D_arr_like_0p5, D_arr_like_0p9, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.noncentral_f(0.1, 0.5, 0.9)) # E: float
reveal_type(def_gen.noncentral_f(0.1, 0.5, 0.9, size=None)) # E: float
reveal_type(def_gen.noncentral_f(0.1, 0.5, 0.9, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.noncentral_f(D_arr_0p1, 0.5, 0.9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.noncentral_f(0.1, D_arr_0p5, 0.9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.noncentral_f(D_arr_0p1, 0.5, D_arr_like_0p9, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.noncentral_f(0.1, D_arr_0p5, 0.9, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.noncentral_f(D_arr_like_0p1, 0.5, D_arr_0p9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.noncentral_f(0.5, D_arr_like_0p5, 0.9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.noncentral_f(D_arr_0p1, D_arr_0p5, 0.9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.noncentral_f(D_arr_like_0p1, D_arr_like_0p5, 0.9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.noncentral_f(D_arr_0p1, D_arr_0p5, D_arr_0p9, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.noncentral_f(D_arr_like_0p1, D_arr_like_0p5, D_arr_like_0p9, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]
reveal_type(def_gen.binomial(10, 0.5)) # E: int
reveal_type(def_gen.binomial(10, 0.5, size=None)) # E: int
reveal_type(def_gen.binomial(10, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.binomial(I_arr_10, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.binomial(10, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.binomial(I_arr_10, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.binomial(10, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.binomial(I_arr_like_10, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.binomial(10, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.binomial(I_arr_10, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.binomial(I_arr_like_10, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.binomial(I_arr_10, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.binomial(I_arr_like_10, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.negative_binomial(10, 0.5)) # E: int
reveal_type(def_gen.negative_binomial(10, 0.5, size=None)) # E: int
reveal_type(def_gen.negative_binomial(10, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.negative_binomial(I_arr_10, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.negative_binomial(10, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.negative_binomial(I_arr_10, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.negative_binomial(10, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.negative_binomial(I_arr_like_10, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.negative_binomial(10, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.negative_binomial(I_arr_10, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.negative_binomial(I_arr_like_10, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.negative_binomial(I_arr_10, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.negative_binomial(I_arr_like_10, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.hypergeometric(20, 20, 10)) # E: int
reveal_type(def_gen.hypergeometric(20, 20, 10, size=None)) # E: int
reveal_type(def_gen.hypergeometric(20, 20, 10, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.hypergeometric(I_arr_20, 20, 10)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.hypergeometric(20, I_arr_20, 10)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.hypergeometric(I_arr_20, 20, I_arr_like_10, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.hypergeometric(20, I_arr_20, 10, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.hypergeometric(I_arr_like_20, 20, I_arr_10)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.hypergeometric(20, I_arr_like_20, 10)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.hypergeometric(I_arr_20, I_arr_20, 10)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.hypergeometric(I_arr_like_20, I_arr_like_20, 10)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.hypergeometric(I_arr_20, I_arr_20, I_arr_10, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.hypergeometric(I_arr_like_20, I_arr_like_20, I_arr_like_10, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]]
I_int64_100: np.ndarray[Any, np.dtype[np.int64]] = np.array([100], dtype=np.int64)
reveal_type(def_gen.integers(0, 100)) # E: int
reveal_type(def_gen.integers(100)) # E: int
reveal_type(def_gen.integers([100])) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.integers(0, [100])) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]]
I_bool_low: np.ndarray[Any, np.dtype[np.bool_]] = np.array([0], dtype=np.bool_)
I_bool_low_like: List[int] = [0]
I_bool_high_open: np.ndarray[Any, np.dtype[np.bool_]] = np.array([1], dtype=np.bool_)
I_bool_high_closed: np.ndarray[Any, np.dtype[np.bool_]] = np.array([1], dtype=np.bool_)
reveal_type(def_gen.integers(2, dtype=bool)) # E: builtins.bool
reveal_type(def_gen.integers(0, 2, dtype=bool)) # E: builtins.bool
reveal_type(def_gen.integers(1, dtype=bool, endpoint=True)) # E: builtins.bool
reveal_type(def_gen.integers(0, 1, dtype=bool, endpoint=True)) # E: builtins.bool
reveal_type(def_gen.integers(I_bool_low_like, 1, dtype=bool, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]
reveal_type(def_gen.integers(I_bool_high_open, dtype=bool)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]
reveal_type(def_gen.integers(I_bool_low, I_bool_high_open, dtype=bool)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]
reveal_type(def_gen.integers(0, I_bool_high_open, dtype=bool)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]
reveal_type(def_gen.integers(I_bool_high_closed, dtype=bool, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]
reveal_type(def_gen.integers(I_bool_low, I_bool_high_closed, dtype=bool, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]
reveal_type(def_gen.integers(0, I_bool_high_closed, dtype=bool, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]
reveal_type(def_gen.integers(2, dtype=np.bool_)) # E: builtins.bool
reveal_type(def_gen.integers(0, 2, dtype=np.bool_)) # E: builtins.bool
reveal_type(def_gen.integers(1, dtype=np.bool_, endpoint=True)) # E: builtins.bool
reveal_type(def_gen.integers(0, 1, dtype=np.bool_, endpoint=True)) # E: builtins.bool
reveal_type(def_gen.integers(I_bool_low_like, 1, dtype=np.bool_, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]
reveal_type(def_gen.integers(I_bool_high_open, dtype=np.bool_)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]
reveal_type(def_gen.integers(I_bool_low, I_bool_high_open, dtype=np.bool_)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]
reveal_type(def_gen.integers(0, I_bool_high_open, dtype=np.bool_)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]
reveal_type(def_gen.integers(I_bool_high_closed, dtype=np.bool_, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]
reveal_type(def_gen.integers(I_bool_low, I_bool_high_closed, dtype=np.bool_, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]
reveal_type(def_gen.integers(0, I_bool_high_closed, dtype=np.bool_, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]
I_u1_low: np.ndarray[Any, np.dtype[np.uint8]] = np.array([0], dtype=np.uint8)
I_u1_low_like: List[int] = [0]
I_u1_high_open: np.ndarray[Any, np.dtype[np.uint8]] = np.array([255], dtype=np.uint8)
I_u1_high_closed: np.ndarray[Any, np.dtype[np.uint8]] = np.array([255], dtype=np.uint8)
reveal_type(def_gen.integers(256, dtype="u1")) # E: int
reveal_type(def_gen.integers(0, 256, dtype="u1")) # E: int
reveal_type(def_gen.integers(255, dtype="u1", endpoint=True)) # E: int
reveal_type(def_gen.integers(0, 255, dtype="u1", endpoint=True)) # E: int
reveal_type(def_gen.integers(I_u1_low_like, 255, dtype="u1", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]]
reveal_type(def_gen.integers(I_u1_high_open, dtype="u1")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]]
reveal_type(def_gen.integers(I_u1_low, I_u1_high_open, dtype="u1")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]]
reveal_type(def_gen.integers(0, I_u1_high_open, dtype="u1")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]]
reveal_type(def_gen.integers(I_u1_high_closed, dtype="u1", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]]
reveal_type(def_gen.integers(I_u1_low, I_u1_high_closed, dtype="u1", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]]
reveal_type(def_gen.integers(0, I_u1_high_closed, dtype="u1", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]]
reveal_type(def_gen.integers(256, dtype="uint8")) # E: int
reveal_type(def_gen.integers(0, 256, dtype="uint8")) # E: int
reveal_type(def_gen.integers(255, dtype="uint8", endpoint=True)) # E: int
reveal_type(def_gen.integers(0, 255, dtype="uint8", endpoint=True)) # E: int
reveal_type(def_gen.integers(I_u1_low_like, 255, dtype="uint8", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]]
reveal_type(def_gen.integers(I_u1_high_open, dtype="uint8")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]]
reveal_type(def_gen.integers(I_u1_low, I_u1_high_open, dtype="uint8")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]]
reveal_type(def_gen.integers(0, I_u1_high_open, dtype="uint8")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]]
reveal_type(def_gen.integers(I_u1_high_closed, dtype="uint8", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]]
reveal_type(def_gen.integers(I_u1_low, I_u1_high_closed, dtype="uint8", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]]
reveal_type(def_gen.integers(0, I_u1_high_closed, dtype="uint8", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]]
reveal_type(def_gen.integers(256, dtype=np.uint8)) # E: int
reveal_type(def_gen.integers(0, 256, dtype=np.uint8)) # E: int
reveal_type(def_gen.integers(255, dtype=np.uint8, endpoint=True)) # E: int
reveal_type(def_gen.integers(0, 255, dtype=np.uint8, endpoint=True)) # E: int
reveal_type(def_gen.integers(I_u1_low_like, 255, dtype=np.uint8, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]]
reveal_type(def_gen.integers(I_u1_high_open, dtype=np.uint8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]]
reveal_type(def_gen.integers(I_u1_low, I_u1_high_open, dtype=np.uint8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]]
reveal_type(def_gen.integers(0, I_u1_high_open, dtype=np.uint8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]]
reveal_type(def_gen.integers(I_u1_high_closed, dtype=np.uint8, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]]
reveal_type(def_gen.integers(I_u1_low, I_u1_high_closed, dtype=np.uint8, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]]
reveal_type(def_gen.integers(0, I_u1_high_closed, dtype=np.uint8, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]]
I_u2_low: np.ndarray[Any, np.dtype[np.uint16]] = np.array([0], dtype=np.uint16)
I_u2_low_like: List[int] = [0]
I_u2_high_open: np.ndarray[Any, np.dtype[np.uint16]] = np.array([65535], dtype=np.uint16)
I_u2_high_closed: np.ndarray[Any, np.dtype[np.uint16]] = np.array([65535], dtype=np.uint16)
reveal_type(def_gen.integers(65536, dtype="u2")) # E: int
reveal_type(def_gen.integers(0, 65536, dtype="u2")) # E: int
reveal_type(def_gen.integers(65535, dtype="u2", endpoint=True)) # E: int
reveal_type(def_gen.integers(0, 65535, dtype="u2", endpoint=True)) # E: int
reveal_type(def_gen.integers(I_u2_low_like, 65535, dtype="u2", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]]
reveal_type(def_gen.integers(I_u2_high_open, dtype="u2")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]]
reveal_type(def_gen.integers(I_u2_low, I_u2_high_open, dtype="u2")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]]
reveal_type(def_gen.integers(0, I_u2_high_open, dtype="u2")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]]
reveal_type(def_gen.integers(I_u2_high_closed, dtype="u2", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]]
reveal_type(def_gen.integers(I_u2_low, I_u2_high_closed, dtype="u2", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]]
reveal_type(def_gen.integers(0, I_u2_high_closed, dtype="u2", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]]
reveal_type(def_gen.integers(65536, dtype="uint16")) # E: int
reveal_type(def_gen.integers(0, 65536, dtype="uint16")) # E: int
reveal_type(def_gen.integers(65535, dtype="uint16", endpoint=True)) # E: int
reveal_type(def_gen.integers(0, 65535, dtype="uint16", endpoint=True)) # E: int
reveal_type(def_gen.integers(I_u2_low_like, 65535, dtype="uint16", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]]
reveal_type(def_gen.integers(I_u2_high_open, dtype="uint16")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]]
reveal_type(def_gen.integers(I_u2_low, I_u2_high_open, dtype="uint16")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]]
reveal_type(def_gen.integers(0, I_u2_high_open, dtype="uint16")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]]
reveal_type(def_gen.integers(I_u2_high_closed, dtype="uint16", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]]
reveal_type(def_gen.integers(I_u2_low, I_u2_high_closed, dtype="uint16", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]]
reveal_type(def_gen.integers(0, I_u2_high_closed, dtype="uint16", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]]
reveal_type(def_gen.integers(65536, dtype=np.uint16)) # E: int
reveal_type(def_gen.integers(0, 65536, dtype=np.uint16)) # E: int
reveal_type(def_gen.integers(65535, dtype=np.uint16, endpoint=True)) # E: int
reveal_type(def_gen.integers(0, 65535, dtype=np.uint16, endpoint=True)) # E: int
reveal_type(def_gen.integers(I_u2_low_like, 65535, dtype=np.uint16, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]]
reveal_type(def_gen.integers(I_u2_high_open, dtype=np.uint16)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]]
reveal_type(def_gen.integers(I_u2_low, I_u2_high_open, dtype=np.uint16)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]]
reveal_type(def_gen.integers(0, I_u2_high_open, dtype=np.uint16)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]]
reveal_type(def_gen.integers(I_u2_high_closed, dtype=np.uint16, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]]
reveal_type(def_gen.integers(I_u2_low, I_u2_high_closed, dtype=np.uint16, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]]
reveal_type(def_gen.integers(0, I_u2_high_closed, dtype=np.uint16, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]]
I_u4_low: np.ndarray[Any, np.dtype[np.uint32]] = np.array([0], dtype=np.uint32)
I_u4_low_like: List[int] = [0]
I_u4_high_open: np.ndarray[Any, np.dtype[np.uint32]] = np.array([4294967295], dtype=np.uint32)
I_u4_high_closed: np.ndarray[Any, np.dtype[np.uint32]] = np.array([4294967295], dtype=np.uint32)
reveal_type(def_gen.integers(4294967296, dtype=np.int_)) # E: int
reveal_type(def_gen.integers(0, 4294967296, dtype=np.int_)) # E: int
reveal_type(def_gen.integers(4294967295, dtype=np.int_, endpoint=True)) # E: int
reveal_type(def_gen.integers(0, 4294967295, dtype=np.int_, endpoint=True)) # E: int
reveal_type(def_gen.integers(I_u4_low_like, 4294967295, dtype=np.int_, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]]
reveal_type(def_gen.integers(I_u4_high_open, dtype=np.int_)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]]
reveal_type(def_gen.integers(I_u4_low, I_u4_high_open, dtype=np.int_)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]]
reveal_type(def_gen.integers(0, I_u4_high_open, dtype=np.int_)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]]
reveal_type(def_gen.integers(I_u4_high_closed, dtype=np.int_, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]]
reveal_type(def_gen.integers(I_u4_low, I_u4_high_closed, dtype=np.int_, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]]
reveal_type(def_gen.integers(0, I_u4_high_closed, dtype=np.int_, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]]
reveal_type(def_gen.integers(4294967296, dtype="u4")) # E: int
reveal_type(def_gen.integers(0, 4294967296, dtype="u4")) # E: int
reveal_type(def_gen.integers(4294967295, dtype="u4", endpoint=True)) # E: int
reveal_type(def_gen.integers(0, 4294967295, dtype="u4", endpoint=True)) # E: int
reveal_type(def_gen.integers(I_u4_low_like, 4294967295, dtype="u4", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]]
reveal_type(def_gen.integers(I_u4_high_open, dtype="u4")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]]
reveal_type(def_gen.integers(I_u4_low, I_u4_high_open, dtype="u4")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]]
reveal_type(def_gen.integers(0, I_u4_high_open, dtype="u4")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]]
reveal_type(def_gen.integers(I_u4_high_closed, dtype="u4", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]]
reveal_type(def_gen.integers(I_u4_low, I_u4_high_closed, dtype="u4", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]]
reveal_type(def_gen.integers(0, I_u4_high_closed, dtype="u4", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]]
reveal_type(def_gen.integers(4294967296, dtype="uint32")) # E: int
reveal_type(def_gen.integers(0, 4294967296, dtype="uint32")) # E: int
reveal_type(def_gen.integers(4294967295, dtype="uint32", endpoint=True)) # E: int
reveal_type(def_gen.integers(0, 4294967295, dtype="uint32", endpoint=True)) # E: int
reveal_type(def_gen.integers(I_u4_low_like, 4294967295, dtype="uint32", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]]
reveal_type(def_gen.integers(I_u4_high_open, dtype="uint32")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]]
reveal_type(def_gen.integers(I_u4_low, I_u4_high_open, dtype="uint32")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]]
reveal_type(def_gen.integers(0, I_u4_high_open, dtype="uint32")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]]
reveal_type(def_gen.integers(I_u4_high_closed, dtype="uint32", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]]
reveal_type(def_gen.integers(I_u4_low, I_u4_high_closed, dtype="uint32", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]]
reveal_type(def_gen.integers(0, I_u4_high_closed, dtype="uint32", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]]
reveal_type(def_gen.integers(4294967296, dtype=np.uint32)) # E: int
reveal_type(def_gen.integers(0, 4294967296, dtype=np.uint32)) # E: int
reveal_type(def_gen.integers(4294967295, dtype=np.uint32, endpoint=True)) # E: int
reveal_type(def_gen.integers(0, 4294967295, dtype=np.uint32, endpoint=True)) # E: int
reveal_type(def_gen.integers(I_u4_low_like, 4294967295, dtype=np.uint32, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]]
reveal_type(def_gen.integers(I_u4_high_open, dtype=np.uint32)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]]
reveal_type(def_gen.integers(I_u4_low, I_u4_high_open, dtype=np.uint32)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]]
reveal_type(def_gen.integers(0, I_u4_high_open, dtype=np.uint32)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]]
reveal_type(def_gen.integers(I_u4_high_closed, dtype=np.uint32, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]]
reveal_type(def_gen.integers(I_u4_low, I_u4_high_closed, dtype=np.uint32, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]]
reveal_type(def_gen.integers(0, I_u4_high_closed, dtype=np.uint32, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]]
reveal_type(def_gen.integers(4294967296, dtype=np.uint)) # E: int
reveal_type(def_gen.integers(0, 4294967296, dtype=np.uint)) # E: int
reveal_type(def_gen.integers(4294967295, dtype=np.uint, endpoint=True)) # E: int
reveal_type(def_gen.integers(0, 4294967295, dtype=np.uint, endpoint=True)) # E: int
reveal_type(def_gen.integers(I_u4_low_like, 4294967295, dtype=np.uint, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[{uint}]]
reveal_type(def_gen.integers(I_u4_high_open, dtype=np.uint)) # E: numpy.ndarray[Any, numpy.dtype[{uint}]]
reveal_type(def_gen.integers(I_u4_low, I_u4_high_open, dtype=np.uint)) # E: numpy.ndarray[Any, numpy.dtype[{uint}]]
reveal_type(def_gen.integers(0, I_u4_high_open, dtype=np.uint)) # E: numpy.ndarray[Any, numpy.dtype[{uint}]]
reveal_type(def_gen.integers(I_u4_high_closed, dtype=np.uint, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[{uint}]]
reveal_type(def_gen.integers(I_u4_low, I_u4_high_closed, dtype=np.uint, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[{uint}]]
reveal_type(def_gen.integers(0, I_u4_high_closed, dtype=np.uint, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[{uint}]]
I_u8_low: np.ndarray[Any, np.dtype[np.uint64]] = np.array([0], dtype=np.uint64)
I_u8_low_like: List[int] = [0]
I_u8_high_open: np.ndarray[Any, np.dtype[np.uint64]] = np.array([18446744073709551615], dtype=np.uint64)
I_u8_high_closed: np.ndarray[Any, np.dtype[np.uint64]] = np.array([18446744073709551615], dtype=np.uint64)
reveal_type(def_gen.integers(18446744073709551616, dtype="u8")) # E: int
reveal_type(def_gen.integers(0, 18446744073709551616, dtype="u8")) # E: int
reveal_type(def_gen.integers(18446744073709551615, dtype="u8", endpoint=True)) # E: int
reveal_type(def_gen.integers(0, 18446744073709551615, dtype="u8", endpoint=True)) # E: int
reveal_type(def_gen.integers(I_u8_low_like, 18446744073709551615, dtype="u8", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.integers(I_u8_high_open, dtype="u8")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.integers(I_u8_low, I_u8_high_open, dtype="u8")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.integers(0, I_u8_high_open, dtype="u8")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.integers(I_u8_high_closed, dtype="u8", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.integers(I_u8_low, I_u8_high_closed, dtype="u8", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.integers(0, I_u8_high_closed, dtype="u8", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.integers(18446744073709551616, dtype="uint64")) # E: int
reveal_type(def_gen.integers(0, 18446744073709551616, dtype="uint64")) # E: int
reveal_type(def_gen.integers(18446744073709551615, dtype="uint64", endpoint=True)) # E: int
reveal_type(def_gen.integers(0, 18446744073709551615, dtype="uint64", endpoint=True)) # E: int
reveal_type(def_gen.integers(I_u8_low_like, 18446744073709551615, dtype="uint64", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.integers(I_u8_high_open, dtype="uint64")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.integers(I_u8_low, I_u8_high_open, dtype="uint64")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.integers(0, I_u8_high_open, dtype="uint64")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.integers(I_u8_high_closed, dtype="uint64", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.integers(I_u8_low, I_u8_high_closed, dtype="uint64", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.integers(0, I_u8_high_closed, dtype="uint64", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.integers(18446744073709551616, dtype=np.uint64)) # E: int
reveal_type(def_gen.integers(0, 18446744073709551616, dtype=np.uint64)) # E: int
reveal_type(def_gen.integers(18446744073709551615, dtype=np.uint64, endpoint=True)) # E: int
reveal_type(def_gen.integers(0, 18446744073709551615, dtype=np.uint64, endpoint=True)) # E: int
reveal_type(def_gen.integers(I_u8_low_like, 18446744073709551615, dtype=np.uint64, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.integers(I_u8_high_open, dtype=np.uint64)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.integers(I_u8_low, I_u8_high_open, dtype=np.uint64)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.integers(0, I_u8_high_open, dtype=np.uint64)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.integers(I_u8_high_closed, dtype=np.uint64, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.integers(I_u8_low, I_u8_high_closed, dtype=np.uint64, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]]
reveal_type(def_gen.integers(0, I_u8_high_closed, dtype=np.uint64, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]]
I_i1_low: np.ndarray[Any, np.dtype[np.int8]] = np.array([-128], dtype=np.int8)
I_i1_low_like: List[int] = [-128]
I_i1_high_open: np.ndarray[Any, np.dtype[np.int8]] = np.array([127], dtype=np.int8)
I_i1_high_closed: np.ndarray[Any, np.dtype[np.int8]] = np.array([127], dtype=np.int8)
reveal_type(def_gen.integers(128, dtype="i1")) # E: int
reveal_type(def_gen.integers(-128, 128, dtype="i1")) # E: int
reveal_type(def_gen.integers(127, dtype="i1", endpoint=True)) # E: int
reveal_type(def_gen.integers(-128, 127, dtype="i1", endpoint=True)) # E: int
reveal_type(def_gen.integers(I_i1_low_like, 127, dtype="i1", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]]
reveal_type(def_gen.integers(I_i1_high_open, dtype="i1")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]]
reveal_type(def_gen.integers(I_i1_low, I_i1_high_open, dtype="i1")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]]
reveal_type(def_gen.integers(-128, I_i1_high_open, dtype="i1")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]]
reveal_type(def_gen.integers(I_i1_high_closed, dtype="i1", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]]
reveal_type(def_gen.integers(I_i1_low, I_i1_high_closed, dtype="i1", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]]
reveal_type(def_gen.integers(-128, I_i1_high_closed, dtype="i1", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]]
reveal_type(def_gen.integers(128, dtype="int8")) # E: int
reveal_type(def_gen.integers(-128, 128, dtype="int8")) # E: int
reveal_type(def_gen.integers(127, dtype="int8", endpoint=True)) # E: int
reveal_type(def_gen.integers(-128, 127, dtype="int8", endpoint=True)) # E: int
reveal_type(def_gen.integers(I_i1_low_like, 127, dtype="int8", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]]
reveal_type(def_gen.integers(I_i1_high_open, dtype="int8")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]]
reveal_type(def_gen.integers(I_i1_low, I_i1_high_open, dtype="int8")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]]
reveal_type(def_gen.integers(-128, I_i1_high_open, dtype="int8")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]]
reveal_type(def_gen.integers(I_i1_high_closed, dtype="int8", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]]
reveal_type(def_gen.integers(I_i1_low, I_i1_high_closed, dtype="int8", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]]
reveal_type(def_gen.integers(-128, I_i1_high_closed, dtype="int8", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]]
reveal_type(def_gen.integers(128, dtype=np.int8)) # E: int
reveal_type(def_gen.integers(-128, 128, dtype=np.int8)) # E: int
reveal_type(def_gen.integers(127, dtype=np.int8, endpoint=True)) # E: int
reveal_type(def_gen.integers(-128, 127, dtype=np.int8, endpoint=True)) # E: int
reveal_type(def_gen.integers(I_i1_low_like, 127, dtype=np.int8, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]]
reveal_type(def_gen.integers(I_i1_high_open, dtype=np.int8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]]
reveal_type(def_gen.integers(I_i1_low, I_i1_high_open, dtype=np.int8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]]
reveal_type(def_gen.integers(-128, I_i1_high_open, dtype=np.int8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]]
reveal_type(def_gen.integers(I_i1_high_closed, dtype=np.int8, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]]
reveal_type(def_gen.integers(I_i1_low, I_i1_high_closed, dtype=np.int8, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]]
reveal_type(def_gen.integers(-128, I_i1_high_closed, dtype=np.int8, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]]
I_i2_low: np.ndarray[Any, np.dtype[np.int16]] = np.array([-32768], dtype=np.int16)
I_i2_low_like: List[int] = [-32768]
I_i2_high_open: np.ndarray[Any, np.dtype[np.int16]] = np.array([32767], dtype=np.int16)
I_i2_high_closed: np.ndarray[Any, np.dtype[np.int16]] = np.array([32767], dtype=np.int16)
reveal_type(def_gen.integers(32768, dtype="i2")) # E: int
reveal_type(def_gen.integers(-32768, 32768, dtype="i2")) # E: int
reveal_type(def_gen.integers(32767, dtype="i2", endpoint=True)) # E: int
reveal_type(def_gen.integers(-32768, 32767, dtype="i2", endpoint=True)) # E: int
reveal_type(def_gen.integers(I_i2_low_like, 32767, dtype="i2", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]]
reveal_type(def_gen.integers(I_i2_high_open, dtype="i2")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]]
reveal_type(def_gen.integers(I_i2_low, I_i2_high_open, dtype="i2")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]]
reveal_type(def_gen.integers(-32768, I_i2_high_open, dtype="i2")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]]
reveal_type(def_gen.integers(I_i2_high_closed, dtype="i2", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]]
reveal_type(def_gen.integers(I_i2_low, I_i2_high_closed, dtype="i2", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]]
reveal_type(def_gen.integers(-32768, I_i2_high_closed, dtype="i2", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]]
reveal_type(def_gen.integers(32768, dtype="int16")) # E: int
reveal_type(def_gen.integers(-32768, 32768, dtype="int16")) # E: int
reveal_type(def_gen.integers(32767, dtype="int16", endpoint=True)) # E: int
reveal_type(def_gen.integers(-32768, 32767, dtype="int16", endpoint=True)) # E: int
reveal_type(def_gen.integers(I_i2_low_like, 32767, dtype="int16", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]]
reveal_type(def_gen.integers(I_i2_high_open, dtype="int16")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]]
reveal_type(def_gen.integers(I_i2_low, I_i2_high_open, dtype="int16")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]]
reveal_type(def_gen.integers(-32768, I_i2_high_open, dtype="int16")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]]
reveal_type(def_gen.integers(I_i2_high_closed, dtype="int16", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]]
reveal_type(def_gen.integers(I_i2_low, I_i2_high_closed, dtype="int16", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]]
reveal_type(def_gen.integers(-32768, I_i2_high_closed, dtype="int16", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]]
reveal_type(def_gen.integers(32768, dtype=np.int16)) # E: int
reveal_type(def_gen.integers(-32768, 32768, dtype=np.int16)) # E: int
reveal_type(def_gen.integers(32767, dtype=np.int16, endpoint=True)) # E: int
reveal_type(def_gen.integers(-32768, 32767, dtype=np.int16, endpoint=True)) # E: int
reveal_type(def_gen.integers(I_i2_low_like, 32767, dtype=np.int16, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]]
reveal_type(def_gen.integers(I_i2_high_open, dtype=np.int16)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]]
reveal_type(def_gen.integers(I_i2_low, I_i2_high_open, dtype=np.int16)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]]
reveal_type(def_gen.integers(-32768, I_i2_high_open, dtype=np.int16)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]]
reveal_type(def_gen.integers(I_i2_high_closed, dtype=np.int16, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]]
reveal_type(def_gen.integers(I_i2_low, I_i2_high_closed, dtype=np.int16, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]]
reveal_type(def_gen.integers(-32768, I_i2_high_closed, dtype=np.int16, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]]
I_i4_low: np.ndarray[Any, np.dtype[np.int32]] = np.array([-2147483648], dtype=np.int32)
I_i4_low_like: List[int] = [-2147483648]
I_i4_high_open: np.ndarray[Any, np.dtype[np.int32]] = np.array([2147483647], dtype=np.int32)
I_i4_high_closed: np.ndarray[Any, np.dtype[np.int32]] = np.array([2147483647], dtype=np.int32)
reveal_type(def_gen.integers(2147483648, dtype="i4")) # E: int
reveal_type(def_gen.integers(-2147483648, 2147483648, dtype="i4")) # E: int
reveal_type(def_gen.integers(2147483647, dtype="i4", endpoint=True)) # E: int
reveal_type(def_gen.integers(-2147483648, 2147483647, dtype="i4", endpoint=True)) # E: int
reveal_type(def_gen.integers(I_i4_low_like, 2147483647, dtype="i4", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]]
reveal_type(def_gen.integers(I_i4_high_open, dtype="i4")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]]
reveal_type(def_gen.integers(I_i4_low, I_i4_high_open, dtype="i4")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]]
reveal_type(def_gen.integers(-2147483648, I_i4_high_open, dtype="i4")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]]
reveal_type(def_gen.integers(I_i4_high_closed, dtype="i4", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]]
reveal_type(def_gen.integers(I_i4_low, I_i4_high_closed, dtype="i4", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]]
reveal_type(def_gen.integers(-2147483648, I_i4_high_closed, dtype="i4", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]]
reveal_type(def_gen.integers(2147483648, dtype="int32")) # E: int
reveal_type(def_gen.integers(-2147483648, 2147483648, dtype="int32")) # E: int
reveal_type(def_gen.integers(2147483647, dtype="int32", endpoint=True)) # E: int
reveal_type(def_gen.integers(-2147483648, 2147483647, dtype="int32", endpoint=True)) # E: int
reveal_type(def_gen.integers(I_i4_low_like, 2147483647, dtype="int32", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]]
reveal_type(def_gen.integers(I_i4_high_open, dtype="int32")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]]
reveal_type(def_gen.integers(I_i4_low, I_i4_high_open, dtype="int32")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]]
reveal_type(def_gen.integers(-2147483648, I_i4_high_open, dtype="int32")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]]
reveal_type(def_gen.integers(I_i4_high_closed, dtype="int32", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]]
reveal_type(def_gen.integers(I_i4_low, I_i4_high_closed, dtype="int32", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]]
reveal_type(def_gen.integers(-2147483648, I_i4_high_closed, dtype="int32", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]]
reveal_type(def_gen.integers(2147483648, dtype=np.int32)) # E: int
reveal_type(def_gen.integers(-2147483648, 2147483648, dtype=np.int32)) # E: int
reveal_type(def_gen.integers(2147483647, dtype=np.int32, endpoint=True)) # E: int
reveal_type(def_gen.integers(-2147483648, 2147483647, dtype=np.int32, endpoint=True)) # E: int
reveal_type(def_gen.integers(I_i4_low_like, 2147483647, dtype=np.int32, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]]
reveal_type(def_gen.integers(I_i4_high_open, dtype=np.int32)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]]
reveal_type(def_gen.integers(I_i4_low, I_i4_high_open, dtype=np.int32)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]]
reveal_type(def_gen.integers(-2147483648, I_i4_high_open, dtype=np.int32)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]]
reveal_type(def_gen.integers(I_i4_high_closed, dtype=np.int32, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]]
reveal_type(def_gen.integers(I_i4_low, I_i4_high_closed, dtype=np.int32, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]]
reveal_type(def_gen.integers(-2147483648, I_i4_high_closed, dtype=np.int32, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]]
I_i8_low: np.ndarray[Any, np.dtype[np.int64]] = np.array([-9223372036854775808], dtype=np.int64)
I_i8_low_like: List[int] = [-9223372036854775808]
I_i8_high_open: np.ndarray[Any, np.dtype[np.int64]] = np.array([9223372036854775807], dtype=np.int64)
I_i8_high_closed: np.ndarray[Any, np.dtype[np.int64]] = | np.array([9223372036854775807], dtype=np.int64) | numpy.array |
import os,sys,glob,time
import obspy
import scipy
import pycwt
import pyasdf
import datetime
import numpy as np
import pandas as pd
from obspy.signal.invsim import cosine_taper
from obspy.signal.regression import linear_regression
from scipy.fftpack import fft,ifft,next_fast_len
from seisgo import stacking as stack
from seisgo.types import CorrData, FFTData
from seisgo import utils
#####
########################################################
################ CROSS-CORRELATE FUNCTIONS ##################
########################################################
def cc_memory(inc_hours,sps,nsta,ncomp,cc_len,cc_step):
"""
Estimates the memory usage with given correlation parameters, assuming float 32.
"""
nseg_chunk = int(np.floor((3600*inc_hours-cc_len)/cc_step))+1
npts_chunk = int(nseg_chunk*cc_len*sps)
memory_size = nsta*npts_chunk*4/1024/1024/1024**ncomp
return memory_size
def compute_fft(trace,win_len,step,stainv=None,
freqmin=None,freqmax=None,time_norm='no',freq_norm='no',
smooth=20,smooth_spec=None,misc=dict(),taper_frac=0.05,df=None):
"""
Call FFTData to build the object. This is an alternative of directly call FFTData().
The motivation of this function is to provide an user interface to build FFTData object.
"""
return FFTData(trace=trace,win_len=win_len,step=step,
stainv=stainv,freqmin=freqmin,freqmax=freqmax,time_norm=time_norm,
freq_norm=freq_norm,smooth=smooth,smooth_spec=smooth_spec,misc=misc,
taper_frac=taper_frac,df=df)
#assemble FFT with given asdf file name
def assemble_fft(sfile,win_len,step,freqmin=None,freqmax=None,
time_norm='no',freq_norm='no',smooth=20,smooth_spec=20,
taper_frac=0.05,df=None,exclude_chan=[None],v=True):
#only deal with ASDF format for now.
# retrive station information
ds=pyasdf.ASDFDataSet(sfile,mpi=False,mode='r')
sta_list = ds.waveforms.list()
nsta=len(sta_list)
print('found %d stations in total'%nsta)
fftdata_all=[]
if nsta==0:
print('no data in %s'%sfile);
return fftdata_all
# loop through all stations
print('working on file: '+sfile.split('/')[-1])
for ista in sta_list:
# get station and inventory
try:
inv1 = ds.waveforms[ista]['StationXML']
except Exception as e:
print('abort! no stationxml for %s in file %s'%(ista,sfile))
continue
# get days information: works better than just list the tags
all_tags = ds.waveforms[ista].get_waveform_tags()
if len(all_tags)==0:continue
#----loop through each stream----
for itag in all_tags:
if v:print("FFT for station %s and trace %s" % (ista,itag))
# read waveform data
source = ds.waveforms[ista][itag]
if len(source)==0:continue
# channel info
comp = source[0].stats.channel
if comp[-1] =='U': comp.replace('U','Z')
#exclude some channels in the exclude_chan list.
if comp in exclude_chan:
print(comp+" is in the exclude_chan list. Skip it!")
continue
fftdata=FFTData(source,win_len,step,stainv=inv1,
time_norm=time_norm,freq_norm=freq_norm,
smooth=smooth,freqmin=freqmin,freqmax=freqmax,
smooth_spec=smooth_spec,taper_frac=taper_frac,df=df)
if fftdata.data is not None:
fftdata_all.append(fftdata)
####
return fftdata_all
def smooth_source_spect(fft1,cc_method,sn):
'''
this function smoothes amplitude spectrum of the 2D spectral matrix. (used in S1)
PARAMETERS:
---------------------
cc_para: dictionary containing useful cc parameters
fft1: source spectrum matrix
RETURNS:
---------------------
sfft1: complex numpy array with normalized spectrum
'''
smoothspect_N = sn #cc_para['smoothspect_N']
N=fft1.shape[0]
Nfft2=fft1.shape[1]
fft1=fft1.reshape(fft1.size)
if cc_method == 'deconv':
#-----normalize single-station cc to z component-----
temp = utils.moving_ave(np.abs(fft1),smoothspect_N)
try:
sfft1 = fft1/temp**2
except Exception:
raise ValueError('smoothed spectrum has zero values')
elif cc_method == 'coherency':
temp = utils.moving_ave(np.abs(fft1),smoothspect_N)
try:
sfft1 = fft1/temp
except Exception:
raise ValueError('smoothed spectrum has zero values')
elif cc_method == 'xcorr':
sfft1 = fft1
else:
raise ValueError('no correction correlation method is selected at L59')
return sfft1.reshape(N,Nfft2)
#
def do_correlation(sfile,win_len,step,maxlag,cc_method='xcorr',acorr_only=False,
xcorr_only=False,substack=False,substack_len=None,smoothspect_N=20,
maxstd=10,freqmin=None,freqmax=None,time_norm='no',freq_norm='no',
smooth_N=20,exclude_chan=[None],outdir='.',v=True):
"""
Wrapper for computing correlation functions. It includes two key steps: 1) compute and assemble
the FFT of all data in the sfile, into a list of FFTData objects; 2) loop through the FFTData object
list and do correlation (auto or xcorr) for each source-receiver pair.
====RETURNS====
ndata: the number of station-component pairs in the sfile, that have been processed.
"""
if win_len in [1,2,3]:
print("!!!WARNING: you may call do_correlation() in the old way with the 2nd argument as the ncomp info.")
print(" This may cause errors with arguments getting the wrong values. In this version and later,")
print(" ncomp is deprecated. No change for other arguments. This warning will be removed in")
print(" versions v0.7.x and later.")
if acorr_only and xcorr_only:
raise ValueError('acorr_only and xcorr_only CAN NOT all be True.')
tname = sfile.split('/')[-1]
tmpfile = os.path.join(outdir,tname.split('.')[0]+'.tmp')
if not os.path.isdir(outdir):os.makedirs(outdir)
#file to store CC results.
outfile=os.path.join(outdir,tname)
# check whether time chunk been processed or not
if os.path.isfile(tmpfile):
ftemp = open(tmpfile,'r')
alines = ftemp.readlines()
if len(alines) and alines[-1] == 'done':
return 0
else:
ftemp.close()
os.remove(tmpfile)
if os.path.isfile(outfile): os.remove(outfile)
ftmp = open(tmpfile,'w')
##############compute FFT#############
fftdata=assemble_fft(sfile,win_len,step,freqmin=freqmin,freqmax=freqmax,
time_norm=time_norm,freq_norm=freq_norm,smooth=smooth_N,exclude_chan=exclude_chan)
ndata=len(fftdata)
#############PERFORM CROSS-CORRELATION##################
if v: print(tname)
iend=ndata
for iiS in range(ndata):
# get index right for auto/cross correlation
istart=iiS;
src=fftdata[iiS].net+"."+fftdata[iiS].sta
# if acorr_only:iend=np.minimum(iiS+ncomp,ndata)
# if xcorr_only:istart=np.minimum(iiS+ncomp,ndata)
#-----------now loop III for each receiver B----------
for iiR in range(istart,iend):
# if v:print('receiver: %s %s' % (fftdata[iiR].net,fftdata[iiR].sta))
rcv=fftdata[iiR].net+"."+fftdata[iiR].sta
if (acorr_only and src==rcv) or (xcorr_only and src != rcv) or (not acorr_only and not xcorr_only):
if fftdata[iiS].data is not None and fftdata[iiR].data is not None:
if v:print('receiver: %s %s' % (fftdata[iiR].net,fftdata[iiR].sta))
corrdata=correlate(fftdata[iiS],fftdata[iiR],maxlag,method=cc_method,substack=substack,
smoothspect_N=smoothspect_N,substack_len=substack_len,
maxstd=maxstd)
if corrdata.data is not None: corrdata.to_asdf(file=outfile)
# create a stamp to show time chunk being done
ftmp.write('done')
ftmp.close()
return ndata
def correlate(fftdata1,fftdata2,maxlag,method='xcorr',substack=False,
substack_len=None,smoothspect_N=20,maxstd=10,terror=0.01):
'''
this function does the cross-correlation in freq domain and has the option to keep sub-stacks of
the cross-correlation if needed. it takes advantage of the linear relationship of ifft, so that
stacking is performed in spectrum domain first to reduce the total number of ifft.
PARAMETERS:
---------------------
fftdata1: FFTData for the source station
fftdata2: FFTData of the receiver station
maxlag: maximum lags to keep in the cross correlation
method: cross-correlation methods selected by the user
terror: 0-1 fraction of timing error in searching for overlapping. The timing error =
terror*dt
RETURNS:
---------------------
corrdata: CorrData object of cross-correlation functions in time domain
'''
corrdata=CorrData()
#check overlapping timestamps before any other processing
#this step is required when there are gaps in the data.
ind1,ind2=utils.check_overlap(fftdata1.time,fftdata2.time,error=terror*fftdata1.dt)
if not len(ind1):
print('no overlapped timestamps in the data.')
return corrdata
#---------- check the existence of earthquakes by std of the data.----------
source_std = fftdata1.std[ind1]
sou_ind = np.where((source_std<maxstd)&(source_std>0)&(np.isnan(source_std)==0))[0]
if not len(sou_ind): return corrdata
receiver_std = fftdata2.std[ind2]
rec_ind = np.where((receiver_std<maxstd)&(receiver_std>0)&(np.isnan(receiver_std)==0))[0]
if not len(rec_ind): return corrdata
bb=np.intersect1d(sou_ind,rec_ind)
if len(bb)==0:return corrdata
bb_data1=[ind1[i] for i in bb]
bb_data2=[ind2[i] for i in bb]
#----load paramters----
dt = fftdata1.dt
cc_len = fftdata1.win_len
cc_step = fftdata1.step
if substack_len is None: substack_len=cc_len
Nfft = fftdata1.Nfft
Nfft2 = Nfft//2
fft1=np.conj(fftdata1.data[bb_data1,:Nfft2]) #get the conjugate of fft1
nwin = fft1.shape[0]
fft2=fftdata2.data[bb_data2,:Nfft2]
timestamp=fftdata1.time[bb_data1]
if method != "xcorr":
fft1 = smooth_source_spect(fft1,method,smoothspect_N)
#------convert all 2D arrays into 1D to speed up--------
corr = np.zeros(nwin*Nfft2,dtype=np.complex64)
corr = fft1.reshape(fft1.size,)*fft2.reshape(fft2.size,)
if method == "coherency":
temp = utils.moving_ave(np.abs(fft2.reshape(fft2.size,)),smoothspect_N)
corr /= temp
corr = corr.reshape(nwin,Nfft2)
if substack:
if substack_len == cc_len:
# choose to keep all fft data for a day
s_corr = np.zeros(shape=(nwin,Nfft),dtype=np.float32) # stacked correlation
ampmax = np.zeros(nwin,dtype=np.float32)
n_corr = np.zeros(nwin,dtype=np.int16) # number of correlations for each substack
t_corr = timestamp # timestamp
crap = np.zeros(Nfft,dtype=np.complex64)
for i in range(nwin):
n_corr[i]= 1
crap[:Nfft2] = corr[i,:]
crap[:Nfft2] = crap[:Nfft2]-np.mean(crap[:Nfft2]) # remove the mean in freq domain (spike at t=0)
crap[-(Nfft2)+1:] = np.flip(np.conj(crap[1:(Nfft2)]),axis=0)
crap[0]=complex(0,0)
s_corr[i,:] = np.real(np.fft.ifftshift(scipy.fftpack.ifft(crap, Nfft, axis=0)))
# remove abnormal data
ampmax = np.max(s_corr,axis=1)
tindx = np.where( (ampmax<20*np.median(ampmax)) & (ampmax>0))[0]
s_corr = s_corr[tindx,:]
t_corr = t_corr[tindx]
n_corr = n_corr[tindx]
else:
# get time information
Ttotal = timestamp[-1]-timestamp[0] # total duration of what we have now
tstart = timestamp[0]
nstack = int(np.round(Ttotal/substack_len))
ampmax = np.zeros(nstack,dtype=np.float32)
s_corr = np.zeros(shape=(nstack,Nfft),dtype=np.float32)
n_corr = np.zeros(nstack,dtype=np.int)
t_corr = np.zeros(nstack,dtype=np.float)
crap = np.zeros(Nfft,dtype=np.complex64)
for istack in range(nstack):
# find the indexes of all of the windows that start or end within
itime = np.where( (timestamp >= tstart) & (timestamp < tstart+substack_len) )[0]
if len(itime)==0:tstart+=substack_len;continue
crap[:Nfft2] = np.mean(corr[itime,:],axis=0) # linear average of the correlation
crap[:Nfft2] = crap[:Nfft2]-np.mean(crap[:Nfft2]) # remove the mean in freq domain (spike at t=0)
crap[-(Nfft2)+1:]=np.flip(np.conj(crap[1:(Nfft2)]),axis=0)
crap[0]=complex(0,0)
s_corr[istack,:] = np.real(np.fft.ifftshift(scipy.fftpack.ifft(crap, Nfft, axis=0)))
n_corr[istack] = len(itime) # number of windows stacks
t_corr[istack] = tstart # save the time stamps
tstart += substack_len
#print('correlation done and stacked at time %s' % str(t_corr[istack]))
# remove abnormal data
ampmax = np.max(s_corr,axis=1)
tindx = np.where( (ampmax<20*np.median(ampmax)) & (ampmax>0))[0]
s_corr = s_corr[tindx,:]
t_corr = t_corr[tindx]
n_corr = n_corr[tindx]
else:
# average daily cross correlation functions
ampmax = np.max(corr,axis=1)
tindx = np.where( (ampmax<20*np.median(ampmax)) & (ampmax>0))[0]
n_corr = nwin
s_corr = np.zeros(Nfft,dtype=np.float32)
t_corr = timestamp[0]
crap = np.zeros(Nfft,dtype=np.complex64)
crap[:Nfft2] = np.mean(corr[tindx],axis=0)
crap[:Nfft2] = crap[:Nfft2]-np.mean(crap[:Nfft2],axis=0)
crap[-(Nfft2)+1:]=np.flip(np.conj(crap[1:(Nfft2)]),axis=0)
s_corr = np.real(np.fft.ifftshift(scipy.fftpack.ifft(crap, Nfft, axis=0)))
# trim the CCFs in [-maxlag maxlag]
t = np.arange(-Nfft2+1, Nfft2)*dt
ind = np.where(np.abs(t) <= maxlag)[0]
if s_corr.ndim==1:
s_corr = s_corr[ind]
elif s_corr.ndim==2:
s_corr = s_corr[:,ind]
### call CorrData to build the object
cc_comp= fftdata1.chan[-1]+fftdata2.chan[-1]
dist,azi,baz = obspy.geodetics.base.gps2dist_azimuth(fftdata1.lat,fftdata1.lon,fftdata2.lat,fftdata2.lon)
corrdata=CorrData(net=[fftdata1.net,fftdata2.net],sta=[fftdata1.sta,fftdata2.sta],\
loc=[fftdata1.loc,fftdata2.loc],chan=[fftdata1.chan,fftdata2.chan],\
lon=[fftdata1.lon,fftdata2.lon],lat=[fftdata1.lat,fftdata2.lat],\
ele=[fftdata1.ele,fftdata2.ele],cc_comp=cc_comp,lag=maxlag,\
dt=fftdata1.dt,cc_len=cc_len,cc_step=cc_step,dist=dist/1000,az=azi,\
baz=baz,time=t_corr,data=s_corr,substack=substack,\
side="A",misc={"cc_method":method,"dist_unit":"km"})
return corrdata
def do_stacking(ccfiles,pairlist=None,outdir='./STACK',method=['linear'],
rotation=False,correctionfile=None,flag=False,keep_substack=False,
to_egf=False):
# source folder
if pairlist is None:
pairlist,netsta_all=get_stationpairs(ccfiles,False)
if len(ccfiles)==0:
raise IOError('Abort! no available CCF data for stacking')
for s in netsta_all:
tmp = os.path.join(outdir,s)
if not os.path.isdir(tmp):os.mkdir(tmp)
if isinstance(pairlist,str):pairlist=[pairlist]
if not os.path.isdir(outdir):os.makedirs(outdir)
if rotation:
enz_system = ['EE','EN','EZ','NE','NN','NZ','ZE','ZN','ZZ']
rtz_components = ['ZR','ZT','ZZ','RR','RT','RZ','TR','TT','TZ']
for pair in pairlist:
ttr = pair.split('_')
snet,ssta = ttr[0].split('.')
rnet,rsta = ttr[1].split('.')
idir = ttr[0]
# continue when file is done
toutfn = os.path.join(outdir,idir+'/'+pair+'.tmp')
if os.path.isfile(toutfn):continue
if flag:print('assembling all corrdata ...')
t0=time.time()
corrdict_all=dict() #all components for the single station pair
txtract=np.zeros(len(ccfiles),dtype=np.float32)
tmerge=np.zeros(len(ccfiles),dtype=np.float32)
tparameters=None
for i,ifile in enumerate(ccfiles):
# tt00=time.time()
corrdict=extract_corrdata(ifile,pair=pair)
# txtract[i]=time.time()-tt00
if len(list(corrdict.keys()))>0:
comp_list=list(corrdict[pair].keys())
if len(comp_list)==0:
continue
elif len(comp_list) >9:
print(comp_list)
raise ValueError('more than 9 cross-component exists for %s %s! please double check'%(ifile,pair))
### merge same component corrdata.
# tt11=time.time()
for c in comp_list:
#convert corrdata to empirical Green's functions by
#taking the negative time derivative. See types.CorrData.to_egf() for details.
if to_egf:
corrdict[pair][c].to_egf()
if tparameters is None:tparameters=corrdict[pair][c].misc
if c in list(corrdict_all.keys()):
corrdict_all[c].merge(corrdict[pair][c])
else:corrdict_all[c]=corrdict[pair][c]
# tmerge[i]=time.time()-tt11
#
# if flag:print('extract time:'+str(np.sum(txtract)))
# if flag:print('merge time:'+str(np.sum(tmerge)))
t1=time.time()
if flag:print('finished assembling in %6.2fs ...'%(t1-t0))
#get length info from anyone of the corrdata, assuming all corrdata having the same length.
cc_comp=list(corrdict_all.keys()) #final check on number of keys after merging all data.
if len(cc_comp)==0:
if flag:print('continue! no cross components for %s'%(pair))
continue
elif len(cc_comp)<9 and rotation:
if flag:print('continue! not enough cross components for %s to do rotation'%(pair))
continue
elif len(cc_comp) >9:
print(cc_comp)
raise ValueError('more than 9 cross-component exists for %s! please double check'%(pair))
#save data.
outfn = pair+'.h5'
if flag:print('ready to output to %s'%(outfn))
t2=time.time()
# loop through cross-component for stacking
if isinstance(method,str):method=[method]
tparameters['station_source']=ssta
tparameters['station_receiver']=rsta
if rotation: #need to order the components according to enz_system list.
if corrdict_all[cc_comp[0]].substack:
npts_segmt = corrdict_all[cc_comp[0]].data.shape[1]
else:
npts_segmt = corrdict_all[cc_comp[0]].data.shape[0]
bigstack=np.zeros(shape=(9,npts_segmt),dtype=np.float32)
if flag:print('applying stacking and rotation ...')
stack_h5 = os.path.join(outdir,idir+'/'+outfn)
ds=pyasdf.ASDFDataSet(stack_h5,mpi=False)
#codes for ratation option.
for m in method:
data_type = 'Allstack_'+m
bigstack=np.zeros(shape=(9,npts_segmt),dtype=np.float32)
for icomp in range(9):
comp = enz_system[icomp]
indx = | np.where(cc_comp==comp) | numpy.where |
#!/usr/bin/env python
# -*- coding: utf-8 -*
"""
tools module
"""
__author__ = 'Dr. <NAME>, University of Bristol, UK'
__maintainer__ = 'Dr. <NAME>'
__email__ = '<EMAIL>'
__status__ = 'Development'
import sys
import os
import copy
import numpy as np
try:
import opt_einsum as oe
OE_AVAILABLE = True
except ImportError:
OE_AVAILABLE = False
from subprocess import Popen, PIPE
from pyscf import gto, scf, dft, symm, lib
from pyscf import tools as pyscf_tools
from typing import Tuple, List, Dict, Union
MAX_CYCLE = 100
NATORB_THRES = 1.e-12
class Logger(object):
"""
this class pipes all write statements to both stdout and output_file
"""
def __init__(self, output_file, both=True) -> None:
"""
init Logger
"""
self.terminal = sys.stdout
self.log = open(output_file, 'a')
self.both = both
def write(self, message) -> None:
"""
define write
"""
self.log.write(message)
if self.both:
self.terminal.write(message)
def flush(self) -> None:
"""
define flush
"""
pass
def git_version() -> str:
"""
this function returns the git revision as a string
"""
def _minimal_ext_cmd(cmd):
env = {}
for k in ['SYSTEMROOT', 'PATH', 'HOME']:
v = os.environ.get(k)
if v is not None:
env[k] = v
# LANGUAGE is used on win32
env['LANGUAGE'] = 'C'
env['LANG'] = 'C'
env['LC_ALL'] = 'C'
out = Popen(cmd, stdout=PIPE, env=env, \
cwd=os.path.dirname(__file__)).communicate()[0]
return out
try:
out = _minimal_ext_cmd(['git', 'rev-parse', 'HEAD'])
GIT_REVISION = out.strip().decode('ascii')
except OSError:
GIT_REVISION = "Unknown"
return GIT_REVISION
def dim(mo_occ: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
"""
determine molecular dimensions
"""
return np.where(np.abs(mo_occ[0]) > 0.)[0], np.where(np.abs(mo_occ[1]) > 0.)[0]
def mf_info(mf: Union[scf.hf.SCF, dft.rks.KohnShamDFT]) -> Tuple[Tuple[np.ndarray, np.ndarray], \
Tuple[np.ndarray, np.ndarray]]:
"""
retrieve mf information (mo coefficients & occupations)
"""
# mo occupations
if np.asarray(mf.mo_occ).ndim == 1:
mo_occ = (np.ones(np.count_nonzero(0. < mf.mo_occ)), np.ones(np.count_nonzero(1. < mf.mo_occ)))
else:
mo_occ = (mf.mo_occ[0][np.nonzero(mf.mo_occ[0])], mf.mo_occ[1][ | np.nonzero(mf.mo_occ[1]) | numpy.nonzero |
import warnings
import pytest
import numpy as np
import os,sys,inspect
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(currentdir)
sys.path.insert(0,parentdir)
from ADPYNE.AutoDiff import AutoDiff, vectorize
import ADPYNE.elemFunctions as ef
# helper function tests
def test_convertNonArray_array():
AD = AutoDiff(np.array([[1,2]]),1)
assert np.all(np.equal(AD.val, np.array([[1,2]])))
def test_convertNonArray_num():
AD = AutoDiff(1,1)
assert np.all(np.equal(AD.val, np.array([[1]])))
def test_calcJacobian_array():
AD = AutoDiff(1,2)
assert np.all(np.equal(AD.jacobian, np.array([[1]])))
def test_calcJacobian_array_withJ():
AD = AutoDiff(1,1,1,0,np.array([[1]]))
assert np.all(np.equal(AD.jacobian, np.array([[1]])))
def test_calcJacobian_vector():
AD = AutoDiff(4, np.array([[2, 1]]).T, n=2, k=1)
assert np.all(np.equal(AD.jacobian, np.array([[1, 0]])))
AD = AutoDiff(3, np.array([[1, 2]]).T, n=2, k=2)
assert np.all(np.equal(AD.jacobian, np.array([[0, 1]])))
def test_calcDerivative():
AD = AutoDiff(4, 2, n=4, k=3)
assert np.all(np.equal(AD.der, np.array([[0, 0, 2, 0]])))
# addition tests
def test_add_ad_results():
# single input cases
# positive numbers
x = AutoDiff(5, 2)
f = x + x
assert f.val == 10
assert f.der == 4
assert f.jacobian == 2
# negative numbers
y = AutoDiff(-5, 2)
f = y + y
assert f.val == -10
assert f.der == 4
assert f.jacobian == 2
def test_add_vector_results():
x = AutoDiff(np.array([[3],[1]]), np.array([[2, 1]]).T, 2, 1)
y = AutoDiff(np.array([[2],[-3]]), np.array([[3, 2]]).T, 2, 2)
f = x + y
assert np.all(f.val == np.array([[5], [-2]]))
assert np.all(f.der == np.array([[2, 3], [1, 2]]))
assert np.all(f.jacobian == np.array([[1, 1], [1, 1]]))
def test_add_constant_results():
# single input case
# positive numbers
x = AutoDiff(5, 2)
f = x + 3
assert f.val == 8
assert f.der == 2
assert f.jacobian == 1
# negative numbers
x = AutoDiff(-5, 2)
f = x + 3
assert f.val == -2
assert f.der == 2
assert f.jacobian == 1
def test_add_constant_vector_results():
x = AutoDiff(np.array([[1, 3]]).T, np.array([[2, 1]]).T, 2, 1)
f = x + 3
assert np.all(f.val == np.array([[4, 6]]).T)
assert np.all(f.der == np.array([[2, 0], [1, 0]]))
assert np.all(f.jacobian == np.array([[1, 0], [1, 0]]))
# reverse addition tests
def test_radd_constant_results():
# single input case
# positive numbers
x = AutoDiff(5, 2)
f = 3 + x
assert f.val == 8
assert f.der == 2
assert f.jacobian == 1
# negative numbers
x = AutoDiff(-5, 2)
f = 3 + x
assert f.val == -2
assert f.der == 2
assert f.jacobian == 1
def test_radd_constant_vector_results():
x = AutoDiff(np.array([[1, 3]]).T, np.array([[2, 1]]).T, 2, 1)
f = 3 + x
assert np.all(f.val == np.array([[4, 6]]).T)
assert np.all(f.der == np.array([[2, 0], [1, 0]]))
assert np.all(f.jacobian == np.array([[1, 0], [1, 0]]))
# subtraction tests
def test_sub_ad_results():
# single input cases
# positive numbers
x = AutoDiff(5, 2)
f = x - x
assert f.val == 0
assert f.der == 0
assert f.jacobian == 0
# negative numbers
y = AutoDiff(-5, 2)
f = y - y
assert f.val == 0
assert f.der == 0
assert f.jacobian == 0
def test_sub_vector_results():
x = AutoDiff([3, 1], [2, 1], 2, 1)
y = AutoDiff([2, -3], [3, 2], 2, 2)
f = x - y
assert np.all(f.val == np.array([[1], [4]]))
assert np.all(f.der == np.array([[2, -3], [1, -2]]))
assert np.all(f.jacobian == np.array([[1, -1], [1, -1]]))
def test_sub_constant_results():
# single input case
# positive numbers
x = AutoDiff(5, 2)
f = x - 3
assert f.val == 2
assert f.der == 2
assert f.jacobian == 1
# negative numbers
x = AutoDiff(-5, 2)
f = x - 3
assert f.val == -8
assert f.der == 2
assert f.jacobian == 1
def test_sub_constant_vector_results():
x = AutoDiff([1, 3], [2, 1], 2, 1)
f = x - 3
assert np.all(f.val == np.array([[-2, 0]]).T)
assert np.all(f.der == np.array([[2, 0], [1, 0]]))
assert np.all(f.jacobian == np.array([[1, 0], [1, 0]]))
# reverse subtraction tests
def test_rsub_constant_results():
# single input case
# positive numbers
x = AutoDiff(5, 2)
f = 3 - x
assert f.val == -2
assert f.der == 2
assert f.jacobian == 1
# negative numbers
x = AutoDiff(-5, 2)
f = 3 - x
assert f.val == 8
assert f.der == 2
assert f.jacobian == 1
def test_rsub_constant_vector_results():
x = AutoDiff([1, 3], [2, 1], 2, 1)
f = 3 - x
assert np.all(f.val == np.array([[2, 0]]).T)
assert np.all(f.der == np.array([[2, 0], [1, 0]]))
assert np.all(f.jacobian == np.array([[1, 0], [1, 0]]))
# multiplication tests
def test_mul_ad_results():
# single input case
# positive numbers
x = AutoDiff(5, 2)
f = x * x
assert f.val == 25
assert f.der == 20
assert f.jacobian == 10
# negative numbers
x = AutoDiff(-5, 2)
f = x * x
assert f.val == 25
assert f.der == -20
assert f.jacobian == -10
def test_mul_vector_results():
x = AutoDiff([3, 1], [2, 1], 2, 1)
y = AutoDiff([2, -3], [1, 2], 2, 2)
f = x*y
assert np.all(f.val == np.array([[6, -3]]).T)
assert np.all(f.der == np.array([[4, 3], [-3, 2]]))
assert np.all(f.jacobian == np.array([[2, 3], [-3, 1]]))
def test_mul_constant_results():
# single input case
# positive numbers
x = AutoDiff(5, 2)
f = x * 3
assert f.val == 15
assert f.der == 6
assert f.jacobian == 3
# negative numbers
x = AutoDiff(-5, 2)
f = x * 3
assert f.val == -15
assert f.der == 6
assert f.jacobian == 3
def test_mul_constant_vector_results():
x = AutoDiff([3, 1], [2, 1], 2, 1)
f = x * 3
assert np.all(f.val == np.array([[9, 3]]).T)
assert np.all(f.der == np.array([[6, 0], [3, 0]]))
assert np.all(f.jacobian == np.array([[3, 0], [3, 0]]))
# reverse multiplication tests
def test_rmul_constant_results():
# single input case
# positive numbers
x = AutoDiff(5, 2)
f = 3 * x
assert f.val == 15
assert f.der == 6
assert f.jacobian == 3
# negative numbers
x = AutoDiff(-5, 2)
f = 3 * x
assert f.val == -15
assert f.der == 6
assert f.jacobian == 3
def test_rmul_constant_vector_results():
x = AutoDiff([3, 1], [2, 1], 2, 1)
f = 3 * x
assert np.all(f.val == np.array([[9, 3]]).T)
assert np.all(f.der == np.array([[6, 0], [3, 0]]))
assert np.all(f.jacobian == np.array([[3, 0], [3, 0]]))
# division tests
def test_truediv_ad_results():
# single input case
# positive numbers
x = AutoDiff(5, 2)
f = x / x
assert f.val == 1
assert f.der == 0
assert f.jacobian == 0
# negative numbers
x = AutoDiff(-5, 2)
f = x / x
assert f.val == 1
assert f.der == 0
assert f.jacobian == 0
def test_truediv_vector_results():
x = AutoDiff([3, 1], [2, 1], 2, 1)
y = AutoDiff([2, -3], [1, 2], 2, 2)
f = x/y
assert np.all(f.val == np.array([[3/2, -1/3]]).T)
assert np.all(f.der == np.array([[1, -0.75], [-1/3, -2/9]]))
assert np.all(f.jacobian == np.array([[0.5, -0.75], [-1/3, -1/9]]))
def test_truediv_constant_results():
# single input case
# positive numbers
x = AutoDiff(9, 6)
f = x / 3
assert f.val == 3
assert f.der == 2
assert f.jacobian == (1/3)
# negative numbers
x = AutoDiff(-9, 6)
f = x / 3
assert f.val == -3
assert f.der == 2
assert f.jacobian == (1/3)
def test_truediv_constant_vector_results():
x = AutoDiff([-9, 3], [2, 1], 2, 1)
f = x / 3
assert np.all(f.val == np.array([[-3, 1]]).T)
assert np.all(f.der == np.array([[2/3, 0], [1/3, 0]]))
assert np.all(f.jacobian == np.array([[1/3, 0], [1/3, 0]]))
# reverse division tests
def test_rtruediv_constant_results():
# single input case
# positive numbers
x = AutoDiff(3, 2)
f = 6 / x
assert f.val == 2
assert f.der == -4/3
assert f.jacobian == -2/3
# negative numbers
x = AutoDiff(-3, 2)
f = 6 / x
assert f.val == -2
assert f.der == -4/3
assert f.jacobian == -2/3
def test_rtruediv_constant_vector_results():
x = AutoDiff([-9, 3], [2, 1], 1, 1)
f = 3 / x
assert np.all(f.val == np.array([[-1/3, 1]]).T)
assert np.all(f.der == np.array([[-3*((-9)**(-2))*2], [-3*((3)**(-2))*1]]))
assert np.all(f.jacobian == np.array([[-3*((-9)**(-2))*1], [-3*((3)**(-2))*1]]))
# power tests
def test_pow_ad_results():
x = AutoDiff(2, 1)
f = x**x
assert f.val == 4
assert f.der == 4 + np.log(16)
assert f.jacobian == 4 + np.log(16)
def test_rpow_vector_results():
x = AutoDiff([4, 3], [2, 1], 2, 1)
y = AutoDiff([2, 1], [1, 3], 2, 2)
f = x**y
assert np.all(f.val == np.array([[4**2, 3**1]]).T)
assert np.all(f.der == np.array([[2*(4**(2-1))*2, (4**2) * np.log(4) * 1], [1*(3**(1-1))*1, (3**1) * np.log(3)*3]]))
assert np.all(f.jacobian == np.array([[2*(4**(2-1))*1, (4**2) * np.log(4) * 1], [1*(3**(1-1))*1, (3**1) * np.log(3)*1]]))
def test_pow_constant_results():
# positive numbers
x = AutoDiff(5, 2)
f = x**3
assert f.val == 125
assert f.der == 150
assert f.jacobian == 75
# negative numbers
x = AutoDiff(-5, 2)
f = x**3
assert f.val == -125
assert f.der == 150
assert f.jacobian == 75
def test_pow_constant_vector_results():
x = AutoDiff([4, 3], [2, 1], 1, 1)
f = x**3
assert np.all(f.val == np.array([[4**3, 3**3]]).T)
assert np.all(f.der == np.array([[3*(4**2)*2], [3*(3**2)*1]]))
assert np.all(f.jacobian == np.array([[3*(4**2)*1], [3*(3**2)*1]]))
# reverse power tests
def test_rpow_constant_results():
x = AutoDiff(5, 2)
f = 3**x
assert f.val == 243
assert f.der == 486 * np.log(3)
assert f.jacobian == 243 * np.log(3)
def test_rpow_constant_vector_results():
x = AutoDiff([4, 3], [2, 1], 1, 1)
f = 3**x
assert np.all(f.val == np.array([[3**(4), 3**3]]).T)
assert np.all(f.der == np.array([[(3**(4))*2 * np.log(3)], [(3**(3))*1 * np.log(3)]]))
assert np.all(f.jacobian == np.array([[(3**(4))*1 * np.log(3)], [(3**(3))*1 * np.log(3)]]))
# positive tests
def test_pos_results():
# positive numbers
x = AutoDiff(5, 2)
f = + x
assert f.val == 5
assert f.der == 2
assert f.jacobian == 1
# negative numbers
y = AutoDiff(-5, 2)
f = + y
assert f.val == -5
assert f.der == 2
assert f.jacobian == 1
def test_pos_vector_results():
x = AutoDiff([4, 3], [2, 1], 1, 1)
f = + x
assert np.all(f.val == np.array([[4, 3]]).T)
assert np.all(f.der == np.array([[2], [1]]))
assert np.all(f.jacobian == np.array([[1], [1]]))
y = AutoDiff([-4, -3], [2, 1], 1, 1)
g = + y
assert np.all(g.val == np.array([[-4, -3]]).T)
assert np.all(g.der == np.array([[2], [1]]))
assert np.all(g.jacobian == np.array([[1], [1]]))
# negation tests
def test_neg_results():
# positive numbers
x = AutoDiff(5, 2)
f = - x
assert f.val == -5
assert f.der == -2
assert f.jacobian == -1
# negative numbers
y = AutoDiff(-5, 2)
f = - y
assert f.val == 5
assert f.der == -2
assert f.jacobian == -1
def test_neg_vector_results():
x = AutoDiff([4, 3], [2, 1], 1, 1)
f = - x
assert np.all(f.val == np.array([[-4, -3]]).T)
assert np.all(f.der == np.array([[-2], [-1]]))
assert np.all(f.jacobian == np.array([[-1], [-1]]))
y = AutoDiff([-4, -3], [2, 1], 1, 1)
g = - y
assert np.all(g.val == np.array([[4, 3]]).T)
assert np.all(g.der == np.array([[-2], [-1]]))
assert np.all(g.jacobian == np.array([[-1], [-1]]))
def test_neg_constant_results():
x = 3
f = - x
assert f == -3
# absolute value tests
def test_abs_results():
# positive numbers
x = AutoDiff(5, 2)
f = abs(x)
assert f.val == 5
assert f.der == 2
assert f.jacobian == 1
# negative numbers
y = AutoDiff(-5, 2)
f = abs(y)
assert f.val == 5
assert f.der == -2
assert f.jacobian == -1
def test_abs_vector_results():
x = AutoDiff([4, 3], [2, 1], 1, 1)
f = abs(x)
assert np.all(f.val == np.array([[4, 3]]).T)
assert np.all(f.der == np.array([[2], [1]]))
assert np.all(f.jacobian == np.array([[1], [1]]))
y = AutoDiff([-4, -3], [2, 1], 1, 1)
g = abs(y)
assert np.all(g.val == np.array([[4, 3]]).T)
assert np.all(g.der == np.array([[-2], [-1]]))
assert np.all(g.jacobian == np.array([[-1], [-1]]))
def test_abs_constant_results():
x = -3
f = abs(x)
assert f == 3
# Comparison tests
def test_eq_results():
x = AutoDiff(5, 2)
y = AutoDiff(5, 2)
z = AutoDiff(5, 1)
assert x == y
assert (x == z) == False
def test_eq_vector_results():
w = AutoDiff([4, 5], [2, 1], 1, 1)
x = AutoDiff([4, 3], [2, 1], 1, 1)
y = AutoDiff([4, 3], [2, 1], 1, 1)
z = AutoDiff([4, 5], [2, 1], 1, 1)
assert np.all(x == y)
assert np.all(x==z) == False
assert np.all(w==x) == False
def test_eq_constant():
x = AutoDiff(5, 2)
assert (x == 5) == False
def test_ne_results():
x = AutoDiff(5, 2)
y = AutoDiff(5, 2)
z = AutoDiff(5, 1)
assert x != z
assert (x != y) == False
def test_neq_vector_results():
w = AutoDiff([4, 5], [2, 1], 1, 1)
x = AutoDiff([4, 3], [2, 1], 1, 1)
y = AutoDiff([4, 3], [2, 1], 1, 1)
z = AutoDiff([4, 5], [2, 1], 1, 1)
assert np.all(x != y) == False
assert np.all(x!=z)
assert np.all(w!=x)
def test_ne_constant():
x = AutoDiff(5, 2)
assert x != 5
def test_vectorize():
x = AutoDiff(3, np.array([[2]]), n=3, k=1)
y = AutoDiff(2, np.array([[2]]), n=3, k=2)
z = AutoDiff(-1, np.array([[2]]), n=3, k=3)
fs = [3*x + 2*y + 4*z, x - y + z, x/2, 2*x - 2*y]
f = vectorize(fs, 3)
assert np.all(f.val == np.array([[9],[0],[1.5],[2]]))
assert np.all(f.der == np.array([[6, 4, 8], [2, -2, 2], [1, 0, 0], [4, -4, 0]]))
assert np.all(f.jacobian == | np.array([[3, 2, 4], [1, -1, 1], [0.5, 0, 0], [2, -2, 0]]) | numpy.array |
# [1]
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
# [2]
import cv2
import matplotlib.pyplot as plt
import seaborn as sns
import os
from PIL import Image
from keras.preprocessing.image import img_to_array
from keras.preprocessing.image import load_img
from keras.utils import np_utils
# [3]
parasitized_data = os.listdir('../input/cell_images/cell_images/Parasitized/')
print(parasitized_data[:10]) #the output we get are the .png files
uninfected_data = os.listdir('../input/cell_images/cell_images/Uninfected/')
print('\n')
print(uninfected_data[:10])
# [4]
plt.figure(figsize = (12,12))
for i in range(4):
plt.subplot(1, 4, i+1)
img = cv2.imread('../input/cell_images/cell_images/Parasitized' + "/" + parasitized_data[i])
plt.imshow(img)
plt.title('PARASITIZED : 1')
plt.tight_layout()
plt.show()
# [5]
plt.figure(figsize = (12,12))
for i in range(4):
plt.subplot(1, 4, i+1)
img = cv2.imread('../input/cell_images/cell_images/Uninfected' + "/" + uninfected_data[i+1])
plt.imshow(img)
plt.title('UNINFECTED : 0')
plt.tight_layout()
plt.show()
# [6]
data = []
labels = []
for img in parasitized_data:
try:
img_read = plt.imread('../input/cell_images/cell_images/Parasitized/' + "/" + img)
img_resize = cv2.resize(img_read, (50, 50))
img_array = img_to_array(img_resize)
data.append(img_array)
labels.append(1)
except:
None
for img in uninfected_data:
try:
img_read = plt.imread('../input/cell_images/cell_images/Uninfected' + "/" + img)
img_resize = cv2.resize(img_read, (50, 50))
img_array = img_to_array(img_resize)
data.append(img_array)
labels.append(0)
except:
None
# [7]
plt.imshow(data[0])
plt.show()
# [8]
image_data = np.array(data)
labels = | np.array(labels) | numpy.array |
import random
from typing import List
import numpy as np
import prettytable
random.seed(43)
class _SimplexTable:
"""
A table that provides a convenient interface for the operation of the Simplex method.
"""
DECIMALS_FOR_AROUND = 3
def __init__(self, func_vec: np.ndarray, conditions_matrix: np.ndarray,
constraints_vec: np.ndarray, var_tag: str, func_tag: str):
"""
Initialization of an object of the "Simplex table" class.
:param func_vec: Coefficients of the equation.
:param conditions_matrix: The left part of the restriction system.
:param constraints_vec: The right part of the restriction system.
:param var_tag: The name of the variables, default is "x".
:param func_tag: The name of the function, default is "F".
"""
self.table: np.ndarray = NotImplemented
self.var_tag = var_tag
self.func_tag = func_tag
self.column_tags: List[str] = NotImplemented
self.row_tags: List[str] = NotImplemented
self.column_indices: List[int] = NotImplemented
self.row_indices: List[int] = NotImplemented
self._has_optimal_solution = True
self._was_solved = False
self._set_table(func_vec, conditions_matrix, constraints_vec)
def _set_table(self, c_vec: np.ndarray, a_matrix: np.ndarray, b_vec: np.ndarray) -> None:
"""
Filling the class object with data.
:param c_vec: Coefficients of the equation.
:param a_matrix: The left part of the restriction system.
:param b_vec: The right part of the restriction system.
:return: None.
"""
# 1. Check shapes of data.
self._check_input_data(c_vec, a_matrix, b_vec)
# 2. Set simplex-table.
self.table = np.zeros([size + 1 for size in a_matrix.shape], dtype=np.float64)
self.table[:-1, 1:] = a_matrix
self.table[:-1, 0] = b_vec
self.table[-1, 1:] = c_vec
# 3. Set tags for print-ability.
self.column_indices = [i for i in range(self.table.shape[1])]
self.column_tags = [f"{self.var_tag}{i}" for i in self.column_indices]
self.column_tags[0] = "S0"
self.row_indices = [i + self.table.shape[1] for i in range(self.table.shape[0])]
self.row_tags = [f"{self.var_tag}{i}" for i in self.row_indices]
self.row_tags[-1] = self.func_tag
@staticmethod
def _check_input_data(c_vec: np.ndarray, a_matrix: np.ndarray, b_vec: np.ndarray) -> None:
"""
Checking the dimensions of the input data for errors.
:param c_vec: Coefficients of the equation.
:param a_matrix: The left part of the restriction system.
:param b_vec: The right part of the restriction system.
:return: None.
"""
if len(b_vec.shape) > 1:
raise ValueError("The shape of constraints-vector must be of the form (m,).")
if len(c_vec.shape) > 1:
raise ValueError("The shape of function-vector must be of the form (n,).")
if b_vec.shape[0] != a_matrix.shape[0]:
raise ValueError("The shape of constraints-vector must be of the form (m,); "
"the shape of conditions-matrix must be of the form (m, n).")
if c_vec.shape[0] != a_matrix.shape[1]:
raise ValueError("The shape of function-vector must be of the form (n,); "
"the shape of conditions-matrix must be of the form (m, n).")
def get_index_of_pivot_column(self) -> int:
"""
Searches for a pivot column in the simplex table.
:return: Index of a pivot column.
"""
index_of_pivot_column = NotImplemented
# 1. Поиск индекса разрешающего столбца в столбце пересечений S0 со строками с переменными.
column_s0 = self.table[:-1, 0]
for row_index, item_s0 in enumerate(column_s0):
if item_s0 < 0:
row_without_s0 = self.table[row_index, 1:]
if row_without_s0.min() >= 0:
# System hasn't optimal solution.
self._has_optimal_solution = False
return -1
if item_s0 == column_s0.min():
index_of_pivot_column = row_without_s0.argmin() + 1
if index_of_pivot_column is not NotImplemented:
return index_of_pivot_column
# 2. Поиск индекса разрешающего столбца в строке пересечений F со столбцами с переменными.
row_func = self.table[-1, 1:]
if row_func.max() > 0:
# find index of minimal positive value in row_func.
index_of_min: np.ndarray = np.where(row_func == [min(row_func[row_func > 0])])[0]
return int(index_of_min[0]) + 1
# Optimal solution was found.
self._was_solved = True
return -1
def get_index_of_pivot_row(self, i_pc: int) -> int:
"""
Searches for a pivot row in the simplex table.
:param i_pc: Index of a pivot column.
:return: Index of a pivot row.
"""
targets_of_rows = np.zeros((self.table.shape[0] - 1,), dtype=np.float64)
for index, row in enumerate(self.table[:-1]):
if row[i_pc] and row[0] / row[i_pc] > 0:
targets_of_rows[index] = row[0] / row[i_pc]
else:
targets_of_rows[index] = np.inf
indices_of_mins = np.where(targets_of_rows == np.amin(targets_of_rows))[0]
return random.choice(indices_of_mins)
def recalculate(self, i_pr: int, i_pc: int) -> None:
"""
Performs one iteration of the recalculation of the simplex table for a pivot element.
:param i_pr: Index of a pivot row.
:param i_pc: Index of a pivot column.
:return: None.
"""
self.column_tags[i_pc], self.row_tags[i_pr] = self.row_tags[i_pr], self.column_tags[i_pc]
self.column_indices[i_pc], self.row_indices[i_pr] = self.row_indices[i_pr], self.column_indices[i_pc]
central_item = self.table[i_pr, i_pc]
new_table = np.copy(self.table)
for i_r, column in enumerate(self.table):
for i_c, item in enumerate(column):
if i_r == i_pr and i_c == i_pc:
new_table[i_r, i_c] = 1 / central_item
elif i_r == i_pr:
new_table[i_r, i_c] = item / central_item
elif i_c == i_pc:
new_table[i_r, i_c] = -item / central_item
else:
new_table[i_r, i_c] = item - self.table[i_pr, i_c] * self.table[i_r, i_pc] / central_item
self.table = new_table
def __str__(self) -> str:
"""
Returns a beautiful representation of a simplex table for printing.
:return: Simplex table for print.
"""
table_for_print = prettytable.PrettyTable(field_names=["", *self.column_tags])
row_tags = np.array(self.row_tags).reshape((len(self.row_tags), 1))
data = | np.around(self.table, decimals=_SimplexTable.DECIMALS_FOR_AROUND) | numpy.around |
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import pickle
import os
os.chdir('/export/home/tape/profile_depths/')
from netsurfp2 import accuracy
from plot_accuracies import *
import sys
sys.path[0] = '/export/home/tape'
from tape.utils import *
with open('cb513_netsurf.pkl', 'rb') as handle:
predictions = pickle.load(handle)
profiles = np.load('netsurfp2/CB513_HHblits.npz')
ids = profiles['pdbids']
predictions['q3'].shape
accuracies = accuracy(predictions['labels'], predictions['q3'])
index_sorted = np.argsort(accuracies)
sorted_inputs = profiles['data'][index_sorted]
sorted_predictions = predictions['q3'][index_sorted]
plt.scatter(np.arange(len(index_sorted)), accuracies[index_sorted])
sorted_inputs.shape
mean_first = np.sum(sorted_inputs[:, :, 47], axis=1) / np.sum(sorted_inputs[:, :, 47] != 0.0, axis=1)
mean_second = np.sum(sorted_inputs[:, :, 48], axis=1) / np.sum(sorted_inputs[:, :, 48] != 0.0, axis=1)
mean_third = np.sum(sorted_inputs[:, :, 49], axis=1) / np.sum(sorted_inputs[:, :, 49] != 0.0, axis=1)
plt.scatter(mean_first, accuracies[index_sorted])
plt.scatter(mean_second, accuracies[index_sorted])
plt.scatter(mean_third, accuracies[index_sorted])
protein_lengths = np.sum(sorted_inputs[:, :, 50], axis=-1)
sparsity_pattern = np.sum(sorted_inputs[:, :, 20:40] != 0.0, axis=(1, 2)) / protein_lengths
plt.scatter(protein_lengths, accuracies[index_sorted])
plt.scatter(sparsity_pattern, accuracies[index_sorted])
reconstructed_netsurf_predictions = np.load('cb513_uniclust30_netsurf.npz')['q3']
reconstructed_netsurf_keys = list(sorted(list(set(ids))))
reconstructed_netsurf_dict = dict(zip(reconstructed_netsurf_keys, range(len(reconstructed_netsurf_keys))))
reconstructed_netsurf_predictions = np.stack([reconstructed_netsurf_predictions[reconstructed_netsurf_dict[id]] for id in ids], axis=0)
reconstructed_netsurf_accuracies = accuracy(predictions['labels'], reconstructed_netsurf_predictions)
plt.scatter(accuracies, reconstructed_netsurf_accuracies)
stats = []
for id in ids:
file_name = f'cb513_uniclust30/{id}/{id}_PROFILE.hhm'
stat = get_stats(file_name)
stats.append(stat)
ids[0]
stats[0]
plt.scatter([stat['neff'] for stat in stats],
reconstructed_netsurf_accuracies,
c=[stat['lower'] for stat in stats])
plt.scatter([stat['num_seq'] for stat in stats],
reconstructed_netsurf_accuracies,
c=[stat['lower'] for stat in stats])
plt.scatter(np.linspace(2, 6, 100), [np.mean(reconstructed_netsurf_accuracies[[stat['neff'] < x for stat in stats]]) for x in np.linspace(2, 6, 100)])
plt.scatter(np.linspace(5, 1000, 1000), [np.mean(reconstructed_netsurf_accuracies[[stat['num_seq'] < x for stat in stats]]) for x in np.linspace(5, 1000, 1000)])
np.mean(reconstructed_netsurf_accuracies[[stat['num_seq'] < 40 for stat in stats]])
transformer_accuracies = [accuracy_single(batch) for batch in transformer_results]
transformer_ids = [a['id'].decode() for a in dataset.data]
transformer_dict = dict(zip(transformer_ids, transformer_accuracies))
with open('/export/home/tape/results/epoch34/secondary_structure_profile_prediction_transformer_full/cb513.pkl', 'rb') as handle:
transformer_results = pickle.load(handle)
transformer_results = transformer_results[1]
dataset = setup_dataset(task='secondary_structure',
data_dir='/export/home/tape/data',
split='cb513')
transformer_accuracies = [accuracy_single(batch) for batch in transformer_results]
transformer_ids = [a['id'].decode() for a in dataset.data]
transformer_dict = dict(zip(transformer_ids, transformer_accuracies))
transformer_accuracies = [transformer_dict[id] for id in ids]
transformer_accuracies = np.array(transformer_accuracies)
plt.scatter( | np.linspace(2, 6, 100) | numpy.linspace |
# %%
import numpy as np
from parameters import *
# %%
wxyz_all = () # the tuple that stores all the wannier xyz
Oxyz_all = () # the tuple that stores all the Oxygen xyz
Hxyz_all = () # the tuple that stores all the Hydrogen xyz
fO_all = ()
fH_all = ()
boxlength_all = () # the tuple that stores all the boxlengths
for ifolder in folder_names:
for iconfig in test_configs: # 801 is the number of Config folders we have
print(ifolder, iconfig)
fxyz_name = ifolder + "/Config" + str(iconfig) + "/W64-bulk-HOMO_centers_s1-1_0.xyz" # this files stores the nucleus and wannier xyz
fxyz = open(fxyz_name, "r")
lines_all = fxyz.readlines() # read in all the lines for the fxyz file
nxyz_lines = int(lines_all[0].split()[0]) # the total number of lines that stores xyz data of nuclues and wannier center
# read in the coordinates of the nucleus
lines_nucleus_start_index = 2 # start from the third line
nucleus_xyz = | np.zeros((natoms, 3)) | numpy.zeros |
from scipy.spatial import cKDTree
from sklearn.decomposition import PCA
import numpy as np
from .utils.descriptors import normalize
def is_gt_match_3D(query_poses, ref_poses, distance_thresh, angle_thresh):
distances = np.linalg.norm(np.expand_dims(query_poses['pos'], axis=1)
- np.expand_dims(ref_poses['pos'], axis=0), axis=-1)
angle_errors = np.arccos(
(np.trace(
np.matmul(np.expand_dims(np.linalg.inv(query_poses['rot']), axis=1),
np.expand_dims(ref_poses['rot'], axis=0)),
axis1=2, axis2=3) - 1)/2)
return np.logical_and(distances < distance_thresh, angle_errors < angle_thresh)
def is_gt_match_2D(query_poses, ref_poses, distance_thresh, angle_thresh):
distances = np.linalg.norm(
np.expand_dims([query_poses['x'], query_poses['y']], axis=2)
- np.expand_dims([ref_poses['x'], ref_poses['y']], axis=1), axis=0)
angle_errors = np.abs(np.mod(np.expand_dims(query_poses['angle'], axis=1)
- np.expand_dims(ref_poses['angle'], axis=0) + np.pi,
2*np.pi) - np.pi) # bring it in [-pi,+pi]
return | np.logical_and(distances < distance_thresh, angle_errors < angle_thresh) | numpy.logical_and |
def get_image_parameters(
particle_center_x_list=lambda : [0, ],
particle_center_y_list=lambda : [0, ],
particle_radius_list=lambda : [3, ],
particle_bessel_orders_list=lambda : [[1, ], ],
particle_intensities_list=lambda : [[.5, ], ],
particle_speed_list = lambda : [10, ],
particle_direction_list = lambda : [0, ],
image_size=lambda : 128,
image_background_level=lambda : .5,
signal_to_noise_ratio=lambda : 30,
gradient_intensity=lambda : .2,
gradient_direction=lambda : 0,
ellipsoidal_orientation=lambda : [0, ],
ellipticity=lambda : 1):
"""Get image parameters.
Inputs:
particle_center_x_list: x-centers of the particles [px, list of real numbers]
particle_center_y_list: y-centers of the particles [px, list of real numbers]
particle_radius_list: radii of the particles [px, list of real numbers]
particle_bessel_orders_list: Bessel orders of the particles [list (of lists) of positive integers]
particle_intensities_list: intensities of the particles [list (of lists) of real numbers, normalized to 1]
image_size: size of the image in pixels [px, positive integer]
image_background_level: background level [real number normalized to 1]
signal_to_noise_ratio: signal to noise ratio [positive real number]
gradient_intensity: gradient intensity [real number normalized to 1]
gradient_direction: gradient angle [rad, real number]
ellipsoidal_orientation: Orientation of elliptical particles [rad, real number]
ellipticity: shape of the particles, from spherical to elliptical [real number]
Note: particle_center_x, particle_center_x, particle_radius,
particle_bessel_order, particle_intensity, ellipsoidal_orientation must have the same length.
Output:
image_parameters: list with the values of the image parameters in a dictionary:
image_parameters['Particle Center X List']
image_parameters['Particle Center Y List']
image_parameters['Particle Radius List']
image_parameters['Particle Bessel Orders List']
image_parameters['Particle Intensities List']
image_parameters['Image Size']
image_parameters['Image Background Level']
image_parameters['Signal to Noise Ratio']
image_parameters['Gradient Intensity']
image_parameters['Gradient Direction']
image_parameters['Ellipsoid Orientation']
image_parameters['Ellipticity']
"""
image_parameters = {}
image_parameters['Particle Center X List'] = particle_center_x_list()
image_parameters['Particle Center Y List'] = particle_center_y_list()
image_parameters['Particle Radius List'] = particle_radius_list()
image_parameters['Particle Bessel Orders List'] = particle_bessel_orders_list()
image_parameters['Particle Intensities List'] = particle_intensities_list()
image_parameters['Particle Speed List'] = particle_speed_list()
image_parameters['Particle Direction List'] = particle_direction_list()
image_parameters['Image Size'] = image_size()
image_parameters['Image Background Level'] = image_background_level()
image_parameters['Signal to Noise Ratio'] = signal_to_noise_ratio()
image_parameters['Gradient Intensity'] = gradient_intensity()
image_parameters['Gradient Direction'] = gradient_direction()
image_parameters['Ellipsoid Orientation'] = ellipsoidal_orientation()
image_parameters['Ellipticity'] = ellipticity()
return image_parameters
def get_image_parameters_preconfig(image_size = 256):
from numpy.random import uniform, randint
from math import pi
particle_number= randint(5, 6)
particle_radius_list = list(uniform(0.25, 3, particle_number))
(particle_center_x_list, particle_center_y_list) = get_particle_positions(particle_radius_list,image_size)
particle_bessel_orders_list= []
particle_intensities_list= []
for i in range(particle_number):
particle_bessel_orders_list.append([1,])
particle_intensities_list.append([uniform(0.1,0.5),])
image_parameters = get_image_parameters(
particle_center_x_list= lambda : particle_center_x_list,
particle_center_y_list= lambda : particle_center_y_list,
particle_radius_list=lambda : particle_radius_list,
particle_bessel_orders_list= lambda: particle_bessel_orders_list,
particle_intensities_list= lambda : particle_intensities_list,
particle_speed_list= lambda : list(uniform(1,5,particle_number)),
particle_direction_list= lambda : list(uniform(pi*0.9,pi*1.1,particle_number)),
image_size=lambda : image_size,
image_background_level=lambda : uniform(.2, .5),
signal_to_noise_ratio=lambda : 100,
gradient_intensity=lambda : uniform(0.25, 0.75),
gradient_direction=lambda : uniform(-pi, pi),
ellipsoidal_orientation=lambda : list(uniform(-pi, pi, particle_number)),
ellipticity= lambda: 1)
return image_parameters
def get_image_parameters_film(image_parameters_prev, image_size = 256):
from numpy.random import uniform, randint
from math import pi, cos, sin
max_move = 10
particle_centers = []
for (radius, x, y, speed, direction, index) in zip(image_parameters_prev['Particle Radius List'],
image_parameters_prev['Particle Center X List'],
image_parameters_prev['Particle Center Y List'],
image_parameters_prev['Particle Speed List'],
image_parameters_prev['Particle Direction List'],
range(len(image_parameters_prev['Particle Radius List']))):
for i in range(100):
r = 0#uniform(0, max_move)
theta = uniform(0, 2*pi)
(x_new, y_new) = (x+r*cos(theta)+speed*cos(direction), y+r*sin(theta)+speed*sin(direction))
if all(((x_new - coord[0]) ** 2 + (y_new - coord[1]) ** 2) ** 0.5 > radius for coord in particle_centers):
if (not (radius < x_new < image_size-radius)) or (not (radius < y_new < image_size-radius)):
del image_parameters_prev['Particle Radius List'][index]
del image_parameters_prev['Particle Bessel Orders List'][index]
del image_parameters_prev['Particle Intensities List'][index]
del image_parameters_prev['Particle Speed List'][index]
del image_parameters_prev['Particle Direction List'][index]
del image_parameters_prev['Ellipsoid Orientation'][index]
else:
particle_centers.append([x_new, y_new])
break
elif i==99:
raise Exception("Couldn't place out another particle after 100 tries")
particle_centers_x=[]
particle_centers_y=[]
for coordinates in particle_centers:
particle_centers_x.append(coordinates[0])
particle_centers_y.append(coordinates[1])
image_parameters_prev['Particle Center X List'] = particle_centers_x
image_parameters_prev['Particle Center Y List'] = particle_centers_y
if uniform(0,1) < 0.5:
image_parameters_prev['Particle Center X List'].append(image_size-10)
image_parameters_prev['Particle Center Y List'].append(uniform(10,image_size))
image_parameters_prev['Particle Radius List'].append(uniform(0.25,3))
image_parameters_prev['Particle Bessel Orders List'].append([1,])
image_parameters_prev['Particle Intensities List'].append([uniform(0.1,0.5),])
image_parameters_prev['Particle Speed List'].append(uniform(1,5))
image_parameters_prev['Particle Direction List'].append(uniform(pi*0.9,pi*1.1))
image_parameters_prev['Ellipsoid Orientation'].append(uniform(-pi,pi))
return image_parameters_prev
def get_aug_parameters():
return dict(rotation_range=0.2,
width_shift_range=0.05,
height_shift_range=0.05,
shear_range=0.05,
zoom_range=0.05,
horizontal_flip=True,
fill_mode='nearest')
def get_particle_positions(particle_radius_list = [], image_size = 128):
"""Generates multiple particle x- and y-coordinates with respect to each other.
Inputs:
particle_number: number of particles to generate coordinates for
first_particle_range: allowed x- and y-range of the centermost particle
other_particle_range: allowed x- and y-range for all other particles
particle_distance: particle interdistance
Output:
particles_center_x: list of x-coordinates for the particles
particles_center_y: list of y-coordinates for the particles
"""
from numpy.random import uniform
from numpy import reshape
particle_centers=[]
for radius in particle_radius_list:
#print('X is: ' + str(x) + ". Y is: " + str(y) + ". Radius is: " + str(radius) + ". Image size is: " + str(image_size) + '.')
for i in range(100):
(x, y) = (uniform(radius, image_size - radius), uniform(radius, image_size - radius))
if all(((x - coord[0]) ** 2 + (y - coord[1]) ** 2) ** 0.5 > radius for coord in particle_centers):
particle_centers.append([x, y])
break
elif i==99:
raise Exception("Couldn't place out another particle after 100 tries")
particle_centers_x=[]
particle_centers_y=[]
for coordinates in particle_centers:
particle_centers_x.append(coordinates[0])
particle_centers_y.append(coordinates[1])
return (particle_centers_x,particle_centers_y)
def get_image(image_parameters, use_gpu=False):
"""Generate image with particles.
Input:
image_parameters: list with the values of the image parameters in a dictionary:
image_parameters['Particle Center X List']
image_parameters['Particle Center Y List']
image_parameters['Particle Radius List']
image_parameters['Particle Bessel Orders List']
image_parameters['Particle Intensities List']
image_parameters['Image Size']
image_parameters['Image Background Level']
image_parameters['Signal to Noise Ratio']
image_parameters['Gradient Intensity']
image_parameters['Gradient Direction']
image_parameters['Ellipsoid Orientation']
image_parameters['Ellipticity']
Note: image_parameters is typically obained from the function get_image_parameters()
Output:
image: image of the particle [2D numpy array of real numbers betwen 0 and 1]
"""
from numpy import meshgrid, arange, ones, zeros, sin, cos, sqrt, clip, array
from numpy.random import poisson as poisson
particle_center_x_list = image_parameters['Particle Center X List']
particle_center_y_list = image_parameters['Particle Center Y List']
particle_radius_list = image_parameters['Particle Radius List']
particle_bessel_orders_list = image_parameters['Particle Bessel Orders List']
particle_intensities_list = image_parameters['Particle Intensities List']
image_size = image_parameters['Image Size']
image_background_level = image_parameters['Image Background Level']
signal_to_noise_ratio = image_parameters['Signal to Noise Ratio']
gradient_intensity = image_parameters['Gradient Intensity']
gradient_direction = image_parameters['Gradient Direction']
ellipsoidal_orientation_list = image_parameters['Ellipsoid Orientation']
ellipticity = image_parameters['Ellipticity']
### CALCULATE BACKGROUND
# initialize the image at the background level
image_background = ones((image_size, image_size)) * image_background_level
# calculate matrix coordinates from the center of the image
image_coordinate_x, image_coordinate_y = meshgrid(arange(0, image_size),
| arange(0, image_size) | numpy.arange |
import numpy as np
def fnmtf(X, k, l, num_iter=100, norm=False, orthogonal_strategy=False):
m, n = X.shape
U = np.random.rand(m, k)
S = np.random.rand(k, l)
V = np.random.rand(n, l)
error_best = np.inf
error = error_best
if norm:
X = Normalizer().fit_transform(X)
for _ in xrange(num_iter):
S = np.linalg.pinv(U.T.dot(U)).dot(U.T).dot(X).dot(V).dot(np.linalg.pinv(V.T.dot(V)))
# solve subproblem to update V
U_tilde = U.dot(S)
V_new = np.zeros(n*l).reshape(n, l)
for j in xrange(n):
errors = np.zeros(l)
for col_clust_ind in xrange(l):
errors[col_clust_ind] = ((X[:][:, j] - U_tilde[:][:, col_clust_ind])**2).sum()
ind = np.argmin(errors)
V_new[j][ind] = 1
V = V_new
if orthogonal_strategy:
while np.linalg.det(V.T.dot(V)) <= 0:
if np.isnan(np.sum(V)):
break
erros = (X - U.dot(S).dot(V.T)) ** 2
erros = np.sum(erros.dot(V), axis=0) / np.sum(V, axis=0)
erros[np.where(np.sum(V, axis=0) <= 1)] = -np.inf
quantidade = np.sum(V, axis=0)
indexMin = np.argmin(quantidade)
indexMax = np.argmax(erros)
indexes = np.nonzero(V[:, indexMax])[0]
end = len(indexes)
indexes_p = np.random.permutation(end)
V[indexes[indexes_p[0:np.floor(end/2.0)]], indexMax] = 0.0
V[indexes[indexes_p[0:np.floor(end/2.0)]], indexMin] = 1.0
# solve subproblem to update U
V_tilde = S.dot(V.T)
U_new = np.zeros(m*k).reshape(m, k)
for i in xrange(m):
errors = np.zeros(k)
for row_clust_ind in xrange(k):
errors[row_clust_ind] = ((X[i][:] - V_tilde[row_clust_ind][:])**2).sum()
ind = np.argmin(errors)
U_new[i][ind] = 1
U = U_new
if orthogonal_strategy:
while np.linalg.det(U.T.dot(U)) <= 0:
if np.isnan( np.sum(U) ):
break
erros = (X - U.dot(V_tilde)) ** 2
erros = np.sum(U.T.dot(erros), axis=1) / np.sum(U, axis=0)
erros[np.where( | np.sum(U, axis=0) | numpy.sum |
import mobula
import mobula.layers as L
import numpy as np
def go_eltwise(op):
a = np.array([1,0,6]).astype(np.float)
b = np.array([4,5,3]).astype(np.float)
print ("a: ", a)
print ("b: ", b)
data1 = L.Data(a)
data2 = L.Data(b)
coeffs = np.array([-1.0,1.2])
l = L.Eltwise([data1,data2], op = op, coeffs = coeffs)
l.reshape()
l.forward()
print ("Y: ", l.Y)
dY = np.array([7, 8, 9]).astype(np.float)
l.dY = dY
print ("dY: ", l.dY)
l.backward()
print ("dX: ", l.dX[0], l.dX[1])
c0, c1 = coeffs
if op == L.Eltwise.SUM:
Y = c0 * a + c1 * b
dX0 = c0 * dY
dX1 = c1 * dY
elif op == L.Eltwise.PROD:
Y = a * b * c0 * c1
dX0 = b * dY * c0 * c1
dX1 = a * dY * c0 * c1
elif op == L.Eltwise.MAX:
Y = | np.max([c0*a,c1*b], 0) | numpy.max |
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
import pandas as pd
import numpy as np
from torch.utils.data import DataLoader, TensorDataset
class BottomModelA(nn.Module):
def __init__(self):
super(BottomModelA, self).__init__()
self.layer1 = nn.Sequential(nn.Linear(5, 10), nn.ReLU(True))
self.layer2 = nn.Sequential(nn.Linear(10, 20), nn.ReLU(True))
def forward(self, x):
x = self.layer1(x)
x = self.layer2(x)
return x
class BottomModelB(nn.Module):
def __init__(self):
super(BottomModelB, self).__init__()
self.layer1 = nn.Sequential(nn.Linear(5, 10), nn.ReLU(True))
self.layer2 = nn.Sequential(nn.Linear(10, 20), nn.ReLU(True))
def forward(self, x):
x = self.layer1(x)
x = self.layer2(x)
return x
class Interactive(nn.Module):
def __init__(self):
super(Interactive, self).__init__()
self.layerA = nn.Sequential(nn.Linear(20, 10))
self.layerB = nn.Sequential(nn.Linear(20, 10))
self.activation = nn.ReLU(True)
def forward(self, a, b):
a = self.layerA(a)
b = self.layerB(b)
x = self.activation(a + b)
return x
class TopModel(nn.Module):
def __init__(self):
super(TopModel, self).__init__()
self.layer1 = nn.Sequential(nn.Linear(10, 15), nn.ReLU(True))
self.layer2 = nn.Sequential(nn.Linear(15, 20), nn.ReLU(True))
self.layer3 = nn.Linear(20, 2)
def forward(self, x):
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
return x
if __name__ == '__main__':
bottom_model_A = BottomModelA()
bottom_model_B = BottomModelB()
interactive = Interactive()
top_model = TopModel()
criterion = torch.nn.CrossEntropyLoss()
optimizer1 = optim.SGD(top_model.parameters(), lr=0.01, momentum=0.9)
optimizer2 = optim.SGD(interactive.parameters(), lr=0.01, momentum=0.9)
optimizer3 = optim.SGD(bottom_model_A.parameters(), lr=0.01, momentum=0.9)
optimizer4 = optim.SGD(bottom_model_B.parameters(), lr=0.01, momentum=0.9)
guest_data = pd.read_csv('give_credit_a.csv', usecols=['x0', 'x1', 'x2', 'x3', 'x4'])
guest_data = torch.from_numpy(np.array(guest_data, dtype='float32'))
host_data = pd.read_csv('give_credit_b.csv', usecols=['x0', 'x1', 'x2', 'x3', 'x4'])
host_data = torch.from_numpy(np.array(host_data, dtype='float32'))
label = pd.read_csv('give_credit_b.csv', usecols=['y'])
label = | np.array(label) | numpy.array |
import os
import cv2
import matplotlib.pyplot as plt
import numpy as np
import pymunk
from matplotlib.collections import PatchCollection
from matplotlib.colors import to_rgba
from matplotlib.patches import Circle, Polygon
from pymunk.vec2d import Vec2d
from utils import rand_float, rand_int, calc_dis, norm
class Engine(object):
def __init__(self, dt, state_dim, action_dim, param_dim):
self.dt = dt
self.state_dim = state_dim
self.action_dim = action_dim
self.param_dim = param_dim
self.state = None
self.action = None
self.param = None
self.init()
def init(self):
pass
def get_param(self):
return self.param.copy()
def set_param(self, param):
self.param = param.copy()
def get_state(self):
return self.state.copy()
def set_state(self, state):
self.state = state.copy()
def get_scene(self):
return self.state.copy(), self.param.copy()
def set_scene(self, state, param):
self.state = state.copy()
self.param = param.copy()
def get_action(self):
return self.action.copy()
def set_action(self, action):
self.action = action.copy()
def d(self, state, t, param):
# time derivative
pass
def step(self):
pass
def render(self, state, param):
pass
def clean(self):
pass
class RopeEngine(Engine):
def __init__(self, dt, state_dim, action_dim, param_dim,
num_mass_range=[4, 8], k_range=[500., 1500.], gravity_range=[-2., -8.],
position_range=[-0.6, 0.6], bihop=True):
# state_dim = 4
# action_dim = 1
# param_dim = 5
# param [n_ball, init_x, k, damping, gravity]
self.radius = 0.06
self.mass = 1.
self.num_mass_range = num_mass_range
self.k_range = k_range
self.gravity_range = gravity_range
self.position_range = position_range
self.bihop = bihop
super(RopeEngine, self).__init__(dt, state_dim, action_dim, param_dim)
def init(self, param=None):
if param is None:
self.n_ball, self.init_x, self.k, self.damping, self.gravity = [None] * 5
else:
self.n_ball, self.init_x, self.k, self.damping, self.gravity = param
self.n_ball = int(self.n_ball)
num_mass_range = self.num_mass_range
position_range = self.position_range
if self.n_ball is None:
self.n_ball = rand_int(num_mass_range[0], num_mass_range[1])
if self.init_x is None:
self.init_x = np.random.rand() * (position_range[1] - position_range[0]) + position_range[0]
if self.k is None:
self.k = rand_float(self.k_range[0], self.k_range[1])
if self.damping is None:
self.damping = self.k / 20.
if self.gravity is None:
self.gravity = rand_float(self.gravity_range[0], self.gravity_range[1])
self.param = np.array([self.n_ball, self.init_x, self.k, self.damping, self.gravity])
# print('Env Rope param: n_ball=%d, init_x=%.4f, k=%.4f, damping=%.4f, gravity=%.4f' % (
# self.n_ball, self.init_x, self.k, self.damping, self.gravity))
self.space = pymunk.Space()
self.space.gravity = (0., self.gravity)
self.height = 1.0
self.rest_len = 0.3
self.add_masses()
self.add_rels()
self.state_prv = None
@property
def num_obj(self):
return self.n_ball
def add_masses(self):
inertia = pymunk.moment_for_circle(self.mass, 0, self.radius, (0, 0))
x = self.init_x
y = self.height
self.balls = []
for i in range(self.n_ball):
body = pymunk.Body(self.mass, inertia)
body.position = Vec2d(x, y)
shape = pymunk.Circle(body, self.radius, (0, 0))
if i == 0:
# fix the first mass to a specific height
move_joint = pymunk.GrooveJoint(self.space.static_body, body, (-2, y), (2, y), (0, 0))
self.space.add(body, shape, move_joint)
else:
self.space.add(body, shape)
self.balls.append(body)
y -= self.rest_len
def add_rels(self):
give = 1. + 0.075
# add springs over adjacent balls
for i in range(self.n_ball - 1):
c = pymunk.DampedSpring(
self.balls[i], self.balls[i + 1], (0, 0), (0, 0),
rest_length=self.rest_len * give, stiffness=self.k, damping=self.damping)
self.space.add(c)
# add bihop springs
if self.bihop:
for i in range(self.n_ball - 2):
c = pymunk.DampedSpring(
self.balls[i], self.balls[i + 2], (0, 0), (0, 0),
rest_length=self.rest_len * give * 2, stiffness=self.k * 0.5, damping=self.damping)
self.space.add(c)
def add_impulse(self):
impulse = (self.action[0], 0)
self.balls[0].apply_impulse_at_local_point(impulse=impulse, point=(0, 0))
def get_param(self):
return self.n_ball, self.init_x, self.k, self.damping, self.gravity
def get_state(self):
state = np.zeros((self.n_ball, 4))
for i in range(self.n_ball):
ball = self.balls[i]
state[i] = np.array([ball.position[0], ball.position[1], ball.velocity[0], ball.velocity[1]])
vel_dim = self.state_dim // 2
if self.state_prv is None:
state[:, vel_dim:] = 0
else:
state[:, vel_dim:] = (state[:, :vel_dim] - self.state_prv[:, :vel_dim]) / self.dt
return state
def step(self):
self.add_impulse()
self.state_prv = self.get_state()
self.space.step(self.dt)
def render(self, states, actions=None, param=None, video=True, image=False, path=None,
act_scale=None, draw_edge=True, lim=(-2.5, 2.5, -2.5, 2.5), states_gt=None,
count_down=False, gt_border=False):
if video:
video_path = path + '.avi'
fourcc = cv2.VideoWriter_fourcc('M', 'J', 'P', 'G')
print('Save video as %s' % video_path)
out = cv2.VideoWriter(video_path, fourcc, 25, (640, 480))
if image:
image_path = path + '_img'
print('Save images to %s' % image_path)
os.system('mkdir -p %s' % image_path)
c = ['royalblue', 'tomato', 'limegreen', 'orange', 'violet', 'chocolate', 'lightsteelblue']
time_step = states.shape[0]
n_ball = states.shape[1]
if actions is not None and actions.ndim == 3:
'''get the first ball'''
actions = actions[:, 0, :]
for i in range(time_step):
fig, ax = plt.subplots(1)
plt.xlim(lim[0], lim[1])
plt.ylim(lim[2], lim[3])
plt.axis('off')
if draw_edge:
cnt = 0
for x in range(n_ball - 1):
plt.plot([states[i, x, 0], states[i, x + 1, 0]],
[states[i, x, 1], states[i, x + 1, 1]],
'-', color=c[1], lw=2, alpha=0.5)
circles = []
circles_color = []
for j in range(n_ball):
circle = Circle((states[i, j, 0], states[i, j, 1]), radius=self.radius * 5 / 4)
circles.append(circle)
circles_color.append(c[0])
pc = PatchCollection(circles, facecolor=circles_color, linewidth=0, alpha=1.)
ax.add_collection(pc)
if states_gt is not None:
circles = []
circles_color = []
for j in range(n_ball):
circle = Circle((states_gt[i, j, 0], states_gt[i, j, 1]), radius=self.radius * 5 / 4)
circles.append(circle)
circles_color.append('orangered')
pc = PatchCollection(circles, facecolor=circles_color, linewidth=0, alpha=1.)
ax.add_collection(pc)
if actions is not None:
F = actions[i, 0] / 4
normF = norm(F)
if normF < 1e-10:
pass
else:
ax.arrow(states[i, 0, 0] + F / normF * 0.1, states[i, 0, 1],
F, 0., fc='Orange', ec='Orange', width=0.04, head_width=0.2, head_length=0.2)
ax.set_aspect('equal')
font = {'family': 'serif',
'color': 'darkred',
'weight': 'normal',
'size': 16}
if count_down:
plt.text(-2.5, 1.5, 'CountDown: %d' % (time_step - i - 1), fontdict=font)
plt.tight_layout()
if video:
fig.canvas.draw()
frame = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
frame = frame.reshape(fig.canvas.get_width_height()[::-1] + (3,))
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
out.write(frame)
if i == time_step - 1:
for _ in range(5):
out.write(frame)
if image:
plt.savefig(os.path.join(image_path, 'fig_%s.png' % i), bbox_inches='tight')
plt.close()
if video:
out.release()
# ===================================================================
'''
For Soft and Swim
'''
def get_init_p_fish_8():
init_p = np.zeros((8, 3))
init_p[0, :] = np.array([0, 0, 2])
init_p[1, :] = np.array([0, 1, 0])
init_p[2, :] = np.array([0, 2, 2])
init_p[3, :] = np.array([0, 3, 0])
init_p[4, :] = np.array([1, 0, 2])
init_p[5, :] = np.array([1, 1, 0])
init_p[6, :] = np.array([1, 2, 2])
init_p[7, :] = np.array([1, 3, 0])
return init_p
def sample_init_p_flight(n_box, shape_type=None, aug=False, train=False,
min_offset=False, max_offset=False):
assert 5 <= n_box < 10
c_box_dict = {
5: [[1, 3, 1], [2, 1, 2]],
6: [[3, 3], [2, 2, 2]],
7: [[2, 3, 2], [1, 2, 1, 2, 1], [2, 1, 1, 1, 2]],
8: [[2, 2, 2, 2], [1, 2, 2, 2, 1], [2, 1, 2, 1, 2], [3, 2, 3]],
9: [[2, 2, 1, 2, 2], [1, 2, 3, 2, 1], [2, 1, 3, 1, 2], [3, 3, 3]],
}
if shape_type is None:
shape_type = rand_int(0, len(c_box_dict[n_box]))
else:
shape_type = shape_type % len(c_box_dict[n_box])
c_box = c_box_dict[n_box][shape_type]
init_p = np.zeros((n_box, 3))
y_offset = np.zeros(len(c_box))
for i in range(1, (len(c_box) + 1) // 2):
left = c_box[i - 1]
right = c_box[i]
y_offset[i] = rand_int(1 - right, left)
if min_offset: y_offset[i] = 1 - right
if max_offset: y_offset[i] = left
y_offset[len(c_box) - i] = - y_offset[i]
assert len(c_box) - i > i
y = np.zeros(len(c_box))
for i in range(1, len(c_box)):
y[i] = y[i - 1] + y_offset[i]
y -= y.min()
# print('y_offset', y_offset, 'y', y)
while True:
idx = 0
for i, c in enumerate(c_box):
for j in range(c):
# if not train:
if False:
material = 2 if j < c - 1 or c == 1 else 0
else:
r = np.random.rand()
if c == 1:
r_actuated, r_soft, r_rigid = 0.25, 0.25, 0.5
elif j == 0:
r_actuated, r_soft, r_rigid = 0.0, 0.5, 0.5
elif j == c - 1:
r_actuated, r_soft, r_rigid = 0.75, 0.25, 0.0
else:
r_actuated, r_soft, r_rigid = 0.4, 0.2, 0.4
if r < r_actuated:
material = 0
elif r < r_actuated + r_soft:
material = 1
else:
material = 2
init_p[idx, :] = np.array([i, y[i] + j, material])
idx += 1
if (init_p[:, 2] == 0).sum() >= 2:
break
# print('init_p', init_p)
if aug:
if np.random.rand() > 0.5:
'''flip y'''
init_p[:, 1] = -init_p[:, 1]
if np.random.rand() > 0.5:
'''flip x'''
init_p[:, 0] = -init_p[:, 0]
if np.random.rand() > 0.5:
'''swap x and y'''
x, y = init_p[:, 0], init_p[:, 1]
init_p[:, 0], init_p[:, 1] = y.copy(), x.copy()
# print('init_p', init_p)
return init_p
def sample_init_p_regular(n_box, shape_type=None, aug=False):
print('sample_init_p')
init_p = np.zeros((n_box, 3))
if shape_type is None: shape_type = rand_int(0, 4)
print('shape_type', shape_type)
if shape_type == 0: # 0 or u shape
init_p[0, :] = np.array([0, 0, 2])
init_p[1, :] = np.array([-1, 0, 2])
init_p[2, :] = np.array([1, 0, 2])
idx = 3
y = 0
x = [-1, 0, 1]
res = n_box - 3
while res > 0:
y += 1
if res == 3:
i_list = [0, 1, 2]
else:
i_list = [0, 2]
material = [0, 1][int(np.random.rand() < 0.5 and res > 3)]
for i in i_list:
init_p[idx, :] = np.array([x[i], y, material])
idx += 1
res -= 1
elif shape_type == 1: # 1 shape
init_p[0, :] = np.array([0, 0, 2])
for i in range(1, n_box):
material = [0, 1][int(np.random.rand() < 0.5 and i < n_box - 1)]
init_p[i, :] = np.array([0, i, material])
elif shape_type == 2: # I shape
if n_box < 7:
init_p[0, :] = np.array([0, 0, 2])
for i in range(1, n_box - 3):
material = [0, 1][int(np.random.rand() < 0.5 and i < n_box - 1)]
init_p[i, :] = np.array([0, i, material])
init_p[n_box - 1, :] = np.array([-1, n_box - 3, 0])
init_p[n_box - 2, :] = np.array([0, n_box - 3, 0])
init_p[n_box - 3, :] = np.array([1, n_box - 3, 0])
else:
init_p[0, :] = np.array([-1, 0, 2])
init_p[1, :] = | np.array([0, 0, 2]) | numpy.array |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Mar 15 12:16:01 2018
@author: <NAME> <<EMAIL>>
"""
import numpy as np
import os
from glob import glob
import h5py
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import matplotlib.colors as colors
from pyGnss import gnssUtils as gu
#from sdomask import mask2d
from sunrise import sunrise
from scipy import ndimage
import datetime
def getNeighbours(image,i,j):
"""
Return an array of <=9 neighbour pixel of an image with a center at (i,j)
"""
nbg = []
for k in np.arange(i-1, i+2):
for l in np.arange(j-1, j+2):
try:
nbg.append(image[k,l])
except Exception as e:
pass
return np.array(nbg)
def fillPixels(im, N=1):
"""
Fill in the dead pixels. If a dead pixel has a least 4 finite neighbour
pixel, than replace the center pixel with a mean valuse of the neighbours
"""
for n in range(N):
for i in np.arange(0,im.shape[0]):
for j in | np.arange(0,im.shape[1]) | numpy.arange |
import numpy
import fc2dpy
from scipy import special
from matplotlib import pyplot
from matplotlib.animation import FuncAnimation
fc2dpy.array_dtype=numpy.complex256
resolution = 256 # 512 4096
order = 128 # 128
PD = fc2dpy.polydisk(0.0 + 0.0j, 0.0 + -0.1j, 15.0, numpy.pi, resolution=resolution) #cos
#PD = fc2dpy.polydisk(0.0 + 1j, 1.5 + -1j, 15.0, 5.0, resolution=resolution)
PD.set_parameterization(1.0 + 0.0j, 1.0 + 0.0j)
def encoding(a):
# return fc2dpy.Gamma(a + 1) ####-------- NICE --------####
# return 1.0/fc2dpy.Gamma(-a + 1) ####-------- NICE --------####
# beta = -numpy.pi/2
# return (a)**beta
return numpy.cos(a) + numpy.tan(a) # cos
# return numpy.exp(-1/(a**3)) # nice
def Log(x, a, order=None):
return (x**a*( | numpy.log(x) | numpy.log |
#%%
import numpy as np
import cv2
import glob
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
def abs_sobel_thresh(img, orient='x', thresh_min=0, thresh_max=255, kernel=3):
# Apply the following steps to img
# 1) Convert to grayscale
# 2) Take the derivative in x or y given orient = 'x' or 'y'
# 3) Take the absolute value of the derivative or gradient
# 4) Scale to 8-bit (0 - 255) then convert to type = np.uint8
# 5) Create a mask of 1's where the scaled gradient magnitude
# is > thresh_min and < thresh_max
# 6) Return this mask as your binary_output image
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
if orient == 'x':
abs_sobel = np.absolute(cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=kernel))
if orient == 'y':
abs_sobel = np.absolute(cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=kernel))
scaled_sobel = np.uint8(255*abs_sobel/np.max(abs_sobel))
binary_output = np.zeros_like(scaled_sobel)
binary_output[(scaled_sobel >= thresh_min) & (scaled_sobel <= thresh_max)] = 1
return binary_output
def mag_threshold(img, sobel_kernel=3, mag_thresh=(0, 255)):
# Apply the following steps to img
# 1) Convert to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
# 2) Take the gradient in x and y separately
sobelX = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel)
sobelY = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel)
# 3) Calculate the magnitude
gradmag = np.sqrt(sobelX**2 + sobelY**2)
# 4) Scale to 8-bit (0 - 255) and convert to type = np.uint8
scale_factor = np.max(gradmag)/255
gradmag = (gradmag/scale_factor).astype(np.uint8)
# 5) Create a binary mask where mag thresholds are met
binary_output = np.zeros_like(gradmag)
binary_output[(gradmag >= mag_thresh[0]) & (gradmag <= mag_thresh[1])] = 1
# 6) Return this mask as your binary_output image
return binary_output
def dir_threshold(img, sobel_kernel=3, thresh=(0, np.pi/2)):
# Apply the following steps to img
# 1) Convert to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
# 2) Take the gradient in x and y separately
sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel)
sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel)
# 3) Take the absolute value of the x and y gradients
# 4) Use np.arctan2(abs_sobely, abs_sobelx) to calculate the direction of the gradient
absgraddir = np.arctan2(np.absolute(sobely), | np.absolute(sobelx) | numpy.absolute |
from dataclasses import dataclass
import numpy as np
from .utils import bool_bernoulli, categorical
@dataclass
class Case:
category: int
covid: bool
symptomatic: bool
day_noticed_symptoms: int
inf_profile: list
def __init__(self, category, covid, symptomatic, day_noticed_symptoms, inf_profile):
self.category = category
self.covid = covid
self.symptomatic = symptomatic
self.day_noticed_symptoms = day_noticed_symptoms
self.inf_profile = inf_profile
def to_dict(self):
return dict(
category=self.category,
covid=self.covid,
symptomatic=self.symptomatic,
day_noticed_symptoms=self.day_noticed_symptoms,
inf_profile=self.inf_profile,
)
@dataclass
class CaseFactors:
wfh: bool
has_app: bool
report_app: bool
report_manual: bool
@classmethod
def simulate_from(cls, rng, case, app_cov, go_to_school_prob, wfh_prob, compliance):
"""Simulate case factors
Args:
rng:
case:
app_cov:
go_to_school_prob:
wfh_prob:
compliance:
Returns:
"""
p = (1 - go_to_school_prob) if (case.category==1 or case.category==2) else wfh_prob
wfh = bool_bernoulli(p, rng)
has_app = bool_bernoulli(app_cov, rng)
does_report = case.symptomatic and bool_bernoulli(compliance, rng)
report_app = does_report and has_app
report_manual = does_report and not has_app
return cls(
wfh=wfh, has_app=has_app, report_app=report_app, report_manual=report_manual
)
def simulate_case(
rng, p_for_categories_continued, p_for_categories, infection_proportions, p_day_noticed_symptoms, inf_profile
):
"""simulate_case
Args:
rng (np.random.RandomState): random number generator.
p_under18 (float): Probability of case being under 18
infection_proportions (dict): Probs of being symp covid neg, symp covid pos, asymp covid pos
The only required key is 'dist', which contains list of the named probs, in that order.
p_day_noticed_symptoms (np.array[float]): Distribution of day on which case notices
their symptoms. (In our model this is same as reporting symptoms.)
Conditional on being symptomatic.
inf_profile (list[float]): Distribution of initial exposure of positive secondary cases
relative to start of primary case's infectious period.
Returns (Case): case with attributes populated.
"""
if(p_for_categories_continued != []):
p_for_categories = p_for_categories_continued
(
p_symptomatic_covid_neg,
p_symptomatic_covid_pos,
p_asymptomatic_covid_pos,
) = infection_proportions["dist"]
category = rng.choice(range(7), p = p_for_categories)
illness_pvals = [
p_asymptomatic_covid_pos,
p_symptomatic_covid_neg,
p_symptomatic_covid_pos,
]
illness = categorical(illness_pvals, rng).item()
if illness == 0:
return Case(
covid=True,
symptomatic=False,
category=category,
day_noticed_symptoms=-1,
inf_profile= | np.array(inf_profile) | numpy.array |
from fypy.model.levy.LevyModel import LevyModel
from fypy.model.FourierModel import Cumulants
from fypy.termstructures.ForwardCurve import ForwardCurve
from fypy.termstructures.DiscountCurve import DiscountCurve
import numpy as np
from scipy.special import gamma
from typing import List, Tuple, Optional, Union
class CMGY(LevyModel):
def __init__(self,
forwardCurve: ForwardCurve,
discountCurve: DiscountCurve,
C: float = 0.02,
G: float = 5.,
M: float = 15.,
Y: float = 1.2):
"""
Carr-Geman-Madan-Yor (CGMY) model. When Y=0, this model reduces to VG
:param forwardCurve: ForwardCurve term structure
:param C: float, viewed as a measure of the overall level of activity, and influences kurtosis
:param G: float, rate of exponential decay on the right tail
:param M: float, rate of exponential decay on the left tail. Typically for equities G < M, ie the left
tail is then heavier than the right (more down risk)
:param Y: float, controls the "fine structure" of the process
"""
super().__init__(forwardCurve=forwardCurve, discountCurve=discountCurve,
params= | np.asarray([C, G, M, Y]) | numpy.asarray |
#!/usr/bin/env python3
import numpy as np
import matplotlib.pyplot as plt
import argparse
def plot_reward(
time_steps: np.ndarray,
avg_rewards: np.ndarray,
save_path: str = None
) -> None:
"""
Plot avg_reward of #episodes per evaluation step against time steps
"""
fig, ax = plt.subplots()
ax.plot(time_steps, avg_rewards, marker='o')
ax.plot(time_steps, np.full(avg_rewards.shape, 25),'g--')
ax.set(xlabel='timesteps', ylabel='avg reward of #episodes', title='Average Reward')
ax.grid()
if save_path is not None:
fig.savefig(save_path)
plt.show()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Visualize results')
parser.add_argument('--log_dir', dest='log_dir', \
required=False, help='full path for location to .npz file', \
default='./logs/RAND/results/evaluations.npz')
args = parser.parse_args()
npz_data = np.load(args.log_dir)
time_steps = npz_data['timesteps']
avg_rewards = | np.mean(npz_data['results'], axis=1) | numpy.mean |
"""
Implements a Masked Autoregressive MLP, where carefully constructed
binary masks over weights ensure the autoregressive property.
Copied from https://github.com/karpathy/pytorch-made.
"""
import numpy as np
import torch
from torch import nn
class MaskedLinear(nn.Linear):
"""A dense layer with a configurable mask on the weights."""
def __init__(self, n_in, n_out, bias=True):
super().__init__(n_in, n_out, bias)
self.register_buffer("mask", torch.ones(n_in, n_out))
def set_mask(self, mask):
self.mask.data.copy_(torch.from_numpy(mask))
def forward(self, x):
return x @ (self.weight.T * self.mask) + self.bias
class MADE(nn.Sequential):
def __init__(self, n_in, hidden_sizes, n_out, num_masks=1, natural_ordering=False):
"""
n_in (int): number of inputs
hidden sizes (list of ints): number of units in hidden layers
n_out (int): number of outputs, which usually collectively parameterize some 1D
distribution. Note: if n_out is e.g. 2x larger than n_in (perhaps the mean
and std), then the first n_in will be all the means and the second n_in will
be the std. devs. Make sure to deconstruct this correctly downstream.
num_masks: can be used to train ensemble over orderings/connections
natural_ordering: retain ordering of inputs, don't use random permutations
"""
assert n_out % n_in == 0, "n_out must be integer multiple of n_in"
self.n_in = n_in
self.n_out = n_out
self.hidden_sizes = hidden_sizes
# define a simple MLP neural net
layers = []
hs = [n_in] + hidden_sizes + [n_out]
for h0, h1 in zip(hs, hs[1:]):
layers.extend([MaskedLinear(h0, h1), nn.ReLU()])
super().__init__(*layers[:-1]) # drop last ReLU)
# seeds for orders/connectivities of the model ensemble
self.natural_ordering = natural_ordering
self.num_masks = num_masks
self.seed = 0 # for cycling through num_masks orderings
self.m = {}
self.update_masks() # builds the initial self.m connectivity
# note, we could also precompute the masks and cache them, but this
# could get memory expensive for large number of masks.
def update_masks(self):
if self.m and self.num_masks == 1:
return # only a single seed, skip for efficiency
# fetch the next seed and construct a random stream
rng = | np.random.RandomState(self.seed) | numpy.random.RandomState |
import random
import time
from dataclasses import dataclass
from typing import Optional
import cv2
import numpy as np
import textdistance
from Arknights.addons.common import CommonAddon
from automator import AddonBase, cli_command
from imgreco import imgops, resources, ocr
import imgreco.ocr.tesseract as tesseract
import util.cvimage as Image
from util.cvimage import Rect
from . import database
operator_set = set(database.operators)
operator_alphabet = ''.join(set(c for s in database.operators for c in s))
@dataclass
class OperatorBox:
box: Rect
name: str
mood: float
status: str
room: Optional[str]
skill_icons: list[str]
selected: bool = False
def transform_rect(rc, M):
l, t, r, b = rc
pts = np.asarray([l,t, r,t, r,b, l,b], dtype=np.float32).reshape(-1, 1, 2)
tpts: np.ndarray = cv2.transform(pts, M).reshape(-1, 2)
left = int(round(tpts[:, 0].min()))
top = int(round(tpts[:, 1].min()))
right = int(round(tpts[:, 0].max()))
bottom = int(round(tpts[:, 1].max()))
return left, top, right, bottom
class RIICAddon(AddonBase):
def on_attach(self) -> None:
self.sync_richlog()
self.ocr = tesseract.Engine(lang=None, model_name='chi_sim')
self.tag = time.time()
self.seq = 0
def check_in_riic(self, screenshot=None):
if self.match_roi('riic/overview', method='template_matching', screenshot=screenshot):
return True
if roi := self.match_roi('riic/pending', method='template_matching', screenshot=screenshot):
self.logger.info('取消待办事项')
self.tap_rect(roi.bbox)
return True
return False
def enter_riic(self):
self.addon(CommonAddon).back_to_main(extra_predicate=self.check_in_riic)
if self.check_in_riic():
return
result = self.match_roi('riic/riic_entry', fixed_position=False, method='sift', mode='L')
if result:
self.logger.info('进入基建')
self.tap_quadrilateral(result.context.template_corners, post_delay=6)
else:
raise RuntimeError('failed to find riic entry')
while not self.check_in_riic():
self.delay(1)
self.logger.info('已进入基建')
def collect_all(self):
self.enter_riic()
count = 0
while count < 2:
if roi := self.match_roi('riic/notification2', fixed_position=False, method='mse'):
while True:
self.logger.info('发现蓝色通知')
self.tap_rect(roi.bbox)
if self.match_roi('riic/pending'):
break
self.logger.info('重试点击蓝色通知')
while roi := self.wait_for_roi('riic/collect_all2', timeout=2, fixed_position=False, method='mse'):
self.logger.info('发现全部收取按钮')
rc = roi.bbox
rc.y = 93.704 * self.vh
rc.height = 5.833 * self.vh
rc.x -= 7.407 * self.vh
self.tap_rect(roi.bbox)
break
else:
self.logger.info('未发现蓝色通知,等待 3 s')
self.delay(3)
count += 1
self.logger.info('一键收取完成')
def recognize_layout(self):
if not self.check_in_riic():
raise RuntimeError('not here')
self.logger.info('正在识别基建布局')
screenshot = self.device.screenshot()
t0 = time.monotonic()
# screen_mask = None
templ_mask = resources.load_image_cached('riic/layout.mask.png', 'L').array
left_mask = imgops.scale_to_height(resources.load_image_cached('riic/layout.screen_mask.left.png', 'L'), screenshot.height, Image.NEAREST)
right_mask = imgops.scale_to_height(resources.load_image_cached('riic/layout.screen_mask.right.png', 'L'), screenshot.height, Image.NEAREST)
screen_mask = np.concatenate([left_mask.array, np.full((screenshot.height, screenshot.width - left_mask.width - right_mask.width), 255, dtype=np.uint8), right_mask.array], axis=1)
match = imgops.match_feature_orb(resources.load_image_cached('riic/layout.png', 'L'), screenshot.convert('L'), templ_mask=templ_mask, haystack_mask=screen_mask, limited_transform=True)
# roi = self.match_roi('riic/layout', fixed_position=False, method='sift', mode='L')
self.logger.debug('%r', match)
if match.M is None:
raise RuntimeError('未能识别基建布局')
# discard rotation
M = match.M
scalex = np.sqrt(M[0,0] ** 2 + M[0,1] ** 2)
scaley = | np.sqrt(M[1,0] ** 2 + M[1,1] ** 2) | numpy.sqrt |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Jun 26 14:46:56 2017
@author: luohao
"""
"""
CVPR2017 paper:<NAME>, <NAME>, <NAME>, et al. Re-ranking Person Re-identification with k-reciprocal Encoding[J]. 2017.
url:http://openaccess.thecvf.com/content_cvpr_2017/papers/Zhong_Re-Ranking_Person_Re-Identification_CVPR_2017_paper.pdf
Matlab version: https://github.com/zhunzhong07/person-re-ranking
"""
"""
API
probFea: all feature vectors of the query set, shape = (image_size, feature_dim)
galFea: all feature vectors of the gallery set, shape = (image_size, feature_dim)
k1,k2,lambda: parameters, the original paper is (k1=20,k2=6,lambda=0.3)
MemorySave: set to 'True' when using MemorySave mode
Minibatch: avaliable when 'MemorySave' is 'True'
"""
import numpy as np
from scipy.spatial.distance import cdist
from scipy.stats import entropy # for KL divergence
from math import log
def compute_metadata_distance_hard(q_metadatas, g_metadatas, metadata_prob_ranges):
q_num = q_metadatas.shape[0]
g_num = g_metadatas.shape[0]
dist = np.zeros((q_num, g_num), dtype=np.float32)
for iq in range(q_num):
for ig in range(g_num):
for p_begin, p_end in metadata_prob_ranges:
cq = np.argmax(q_metadatas[iq][p_begin:p_end])
cg = np.argmax(g_metadatas[ig][p_begin:p_end])
if cq != cg:
dist[iq, ig] += 1
break
return dist
def compute_metadata_distance_semihard(q_metadatas, g_metadatas, metadata_prob_ranges):
q_num = q_metadatas.shape[0]
g_num = g_metadatas.shape[0]
dist = np.zeros((q_num, g_num), dtype=np.float32)
for iq in range(q_num):
for ig in range(g_num):
for p_begin, p_end in metadata_prob_ranges:
cq = np.argmax(q_metadatas[iq][p_begin:p_end])
cg = np.argmax(g_metadatas[ig][p_begin:p_end])
if cq != cg and cq != (p_end - p_begin - 1) and cg != (p_end - p_begin - 1): # the last class is "other"
dist[iq, ig] += 1
break
return dist
def compute_metadata_distance_easy(q_metadatas, g_metadatas, metadata_prob_ranges):
q_num = q_metadatas.shape[0]
g_num = g_metadatas.shape[0]
dist = np.ones((q_num, g_num), dtype=np.float32)
for iq in range(q_num):
for ig in range(g_num):
for p_begin, p_end in metadata_prob_ranges:
cq = np.argmax(q_metadatas[iq][p_begin:p_end])
cg = np.argmax(g_metadatas[ig][p_begin:p_end])
if cq == cg:
dist[iq, ig] = 0
break
return dist
def compute_KL_divergence(q_metadatas, g_metadatas, metadata_prob_ranges = [(0,6), (6,18), (18,26)]):
q_num = q_metadatas.shape[0]
g_num = g_metadatas.shape[0]
m_num = len(metadata_prob_ranges)
KL_div = np.zeros((q_num, g_num, m_num), dtype=np.float32)
epsilon = 1e-4
for iq in range(q_num):
for ig in range(g_num):
for im, (p_begin, p_end) in enumerate(metadata_prob_ranges):
KL_div[iq, ig, im] = entropy(q_metadatas[iq][p_begin:p_end]+epsilon, g_metadatas[ig][p_begin:p_end]+epsilon)
return KL_div
def compute_pred(metadatas, metadata_prob_ranges):
all_num = metadatas.shape[0]
m_num = len(metadata_prob_ranges)
pred = np.zeros((all_num, m_num), dtype=np.int32)
for im, (p_begin, p_end) in enumerate(metadata_prob_ranges):
pred[:,im] = np.argmax(metadatas[:,p_begin:p_end], axis=1)
return pred
def compute_confusion_weight_old(q_pred, g_pred, confusion_mat):
q_num = q_pred.shape[0]
g_num = g_pred.shape[0]
c_num = confusion_mat.shape[0]
confusion_mat = confusion_mat + 1e-4*np.ones((c_num, c_num), dtype=np.float32)
c_weight = np.transpose(confusion_mat)*np.diag(confusion_mat)
c_weight += np.transpose(c_weight)
c_sum = np.sum(confusion_mat, axis=0).reshape(1,-1)
c_sum = np.matmul(np.transpose(c_sum), c_sum)
c_weight = c_weight * np.reciprocal(c_sum)
#c_weight[range(c_num),range(c_num)]/=2
np.fill_diagonal(c_weight, 1) # no penalty for the same class
#print('c_weight = ')
#print(c_weight)
confusion_weight = np.ones((q_num, g_num), dtype=np.float32)
for iq in range(q_num):
for ig in range(g_num):
confusion_weight[iq, ig] = c_weight[q_pred[iq], g_pred[ig]]
return confusion_weight
def compute_confusion_weight(q_pred, g_pred, confusion_mat):
q_num = q_pred.shape[0]
g_num = g_pred.shape[0]
c_num = confusion_mat.shape[0]
#print('confusion_mat = ')
#print(confusion_mat)
confusion_mat = confusion_mat + 1e-4*np.ones((c_num, c_num), dtype=np.float32)
c_sum = np.sum(confusion_mat, axis=0)
confusion_mat_norm = confusion_mat * np.reciprocal(c_sum)
#print('confusion_mat_norm = ')
#print(confusion_mat_norm)
c_weight = np.matmul(np.transpose(confusion_mat_norm), confusion_mat_norm)
np.fill_diagonal(c_weight, 1) # no penalty for the same class
#print('c_weight = ')
#print(c_weight)
confusion_weight = np.ones((q_num, g_num), dtype=np.float32)
for iq in range(q_num):
for ig in range(g_num):
confusion_weight[iq, ig] = c_weight[q_pred[iq], g_pred[ig]]
return confusion_weight
def cluster_gallery_soft(gf, g_metadatas, metadata_prob_ranges = [(0,6), (6,18), (18,26)], k=20, learning_rate=0.5, num_iter=20, MemorySave=False, Minibatch=2000):
'''
return new gallery feature gf_new
'''
gf = gf.copy() # make a copy since it will be updated in each iteration
g_num = gf.shape[0]
# meta data penalty
'''dist_meta = np.zeros((g_num, g_num), dtype=np.float16)
epsilon = 1e-4
for i in range(g_num):
metaI = g_metadatas[i]
for j in range(g_num):
metaJ = g_metadatas[j]
for prob_range_begin, prob_ranges_end in metadata_prob_ranges:
if entropy (metaI[prob_range_begin:prob_ranges_end] + epsilon, metaJ[prob_range_begin:prob_ranges_end] + epsilon) > 0.5:
dist_meta[i][j] = 1
break'''
dist_meta = compute_metadata_distance_hard(g_metadatas, g_metadatas, metadata_prob_ranges)
for iter in range(num_iter):
#print('iter: %d' % iter)
#print('computing original distance')
if MemorySave:
g_g_dist = np.zeros(shape=[g_num, g_num], dtype=np.float16)
i = 0
while True:
it = i + Minibatch
if it < np.shape(gf)[0]:
g_g_dist[i:it, ] = np.power(cdist(gf[i:it, ], gf), 2).astype(np.float16)
else:
g_g_dist[i:, :] = np.power(cdist(gf[i:, ], gf), 2).astype(np.float16)
break
i = it
else:
g_g_dist = cdist(gf, gf).astype(np.float16)
g_g_dist = np.power(g_g_dist, 2).astype(np.float16)
dist_min = np.min(g_g_dist[np.triu_indices(g_num,1)])
dist_max = np.max(g_g_dist[np.triu_indices(g_num,1)])
#print('dist_min = %f, dist_max = %f' % (dist_min, dist_max))
#g_g_dist = np.transpose(g_g_dist / np.max(g_g_dist, axis=0))
# apply meta data
g_g_dist += np.transpose(dist_meta * np.max(g_g_dist, axis=1))
initial_rank = np.argsort(g_g_dist).astype(np.int32)
# apply mean field
gf_new = gf.copy()
sigma = dist_min / 2 + 1
for i in range(g_num):
k_neigh_index = initial_rank[i, :k + 1]
sigma = np.min(g_g_dist[i, k_neigh_index[1:]]) + 1
weight = np.exp(-g_g_dist[i, k_neigh_index] / sigma)
weight /= np.sum(weight)
if i % 100 == 0 and False:
print(i)
print(k_neigh_index)
print(g_g_dist[i, k_neigh_index])
print(weight)
gf_new[i] = np.dot(np.transpose(gf[k_neigh_index]), weight)
gf = gf * (1 - learning_rate) + gf_new * (learning_rate)
return gf
def re_ranking_metadata_soft_v3(original_dist, metadata_dist, query_num, all_num, r_metadata, k1, k2, lambda_value):
'''
input:
original_dist: pre-compute distmat
metadata_dist: metadata distance
r_metadata: weight for metadata distance
return:
final_dist
'''
# The following naming, e.g. gallery_num, is different from outer scope.
# Don't care about it.
gallery_num = all_num
original_dist = np.transpose(original_dist / np.max(original_dist, axis=0))
### additional scaling
scaling = False
if scaling:
tmp_rank = np.argsort(original_dist).astype(np.int32)
min_dist = original_dist[range(all_num), tmp_rank[:,1]]
metadata_dist = np.transpose(metadata_dist * min_dist)
#print('min_dist = ')
#print(min_dist)
###
original_dist += r_metadata * metadata_dist
print('starting re_ranking')
initial_rank = np.argsort(original_dist).astype(np.int32)
V = np.zeros_like(original_dist).astype(np.float16)
for i in range(all_num):
# k-reciprocal neighbors
forward_k_neigh_index = initial_rank[i, :k1 + 1]
backward_k_neigh_index = initial_rank[forward_k_neigh_index, :k1 + 1]
fi = np.where(backward_k_neigh_index == i)[0]
k_reciprocal_index = forward_k_neigh_index[fi]
k_reciprocal_expansion_index = k_reciprocal_index
for j in range(len(k_reciprocal_index)):
candidate = k_reciprocal_index[j]
candidate_forward_k_neigh_index = initial_rank[candidate, :int(np.around(k1 / 2)) + 1]
candidate_backward_k_neigh_index = initial_rank[candidate_forward_k_neigh_index,
:int(np.around(k1 / 2)) + 1]
fi_candidate = np.where(candidate_backward_k_neigh_index == candidate)[0]
candidate_k_reciprocal_index = candidate_forward_k_neigh_index[fi_candidate]
if len(np.intersect1d(candidate_k_reciprocal_index, k_reciprocal_index)) > 2 / 3 * len(
candidate_k_reciprocal_index):
k_reciprocal_expansion_index = np.append(k_reciprocal_expansion_index, candidate_k_reciprocal_index)
k_reciprocal_expansion_index = np.unique(k_reciprocal_expansion_index)
weight = np.exp(-original_dist[i, k_reciprocal_expansion_index])
V[i, k_reciprocal_expansion_index] = weight / np.sum(weight)
original_dist = original_dist[:query_num, ]
if k2 != 1:
V_qe = np.zeros_like(V, dtype=np.float16)
for i in range(all_num):
V_qe[i, :] = np.mean(V[initial_rank[i, :k2], :], axis=0)
V = V_qe
del V_qe
del initial_rank
invIndex = []
for i in range(gallery_num):
invIndex.append(np.where(V[:, i] != 0)[0])
jaccard_dist = np.zeros_like(original_dist, dtype=np.float16)
for i in range(query_num):
temp_min = np.zeros(shape=[1, gallery_num], dtype=np.float16)
indNonZero = np.where(V[i, :] != 0)[0]
indImages = []
indImages = [invIndex[ind] for ind in indNonZero]
for j in range(len(indNonZero)):
temp_min[0, indImages[j]] = temp_min[0, indImages[j]] + np.minimum(V[i, indNonZero[j]], V[indImages[j], indNonZero[j]])
jaccard_dist[i] = 1 - temp_min / (2 - temp_min)
final_dist = jaccard_dist * (1 - lambda_value) + original_dist * lambda_value
del original_dist
del V
del jaccard_dist
final_dist = final_dist[:query_num, query_num:]
# np.save('final_dist.npy', final_dist)
return final_dist
def re_ranking_metadata_soft_v2(qf, gf, q_metadatas, g_metadatas, confusion_mats, metadata_prob_ranges, k1=4, k2=4, lambda_value=0.5, MemorySave=False, Minibatch=2000):
m_num = len(metadata_prob_ranges)
for p_begin, p_end in metadata_prob_ranges:
assert (p_begin, p_end) in confusion_mats
query_num = qf.shape[0]
all_num = query_num + gf.shape[0]
feat = np.append(qf, gf, axis=0)
all_metadatas = np.append(q_metadatas, g_metadatas, axis=0)
###feat = np.concatenate((feat, all_metadatas*20), axis=1)
# feat = np.append(probFea, galFea)
# feat = np.vstack((probFea, galFea))
feat = feat.astype(np.float16)
print('computing original distance')
if MemorySave:
original_dist = np.zeros(shape=[all_num, all_num], dtype=np.float16)
i = 0
while True:
it = i + Minibatch
if it < np.shape(feat)[0]:
original_dist[i:it, ] = np.power(cdist(feat[i:it, ], feat), 2).astype(np.float16)
else:
original_dist[i:, :] = np.power(cdist(feat[i:, ], feat), 2).astype(np.float16)
break
i = it
else:
original_dist = cdist(feat, feat).astype(np.float16)
original_dist = np.power(original_dist, 2).astype(np.float16)
del feat
gallery_num = original_dist.shape[0]
original_dist = np.transpose(original_dist / np.max(original_dist, axis=0))
V = np.zeros_like(original_dist).astype(np.float16)
# apply meta data
print('computing KL divergence')
KL_div = compute_KL_divergence(all_metadatas, all_metadatas, metadata_prob_ranges)
KL_div_U = compute_KL_divergence(all_metadatas, np.ones(all_metadatas.shape, dtype=np.float32), metadata_prob_ranges)
conf_pred = np.zeros((all_num, all_num, m_num), dtype=np.float32)
for im, (p_begin, p_end) in enumerate(metadata_prob_ranges):
conf_pred[:,:,im] = KL_div_U[:,:,im] * np.transpose(KL_div_U[:,:,im]) / (np.log(p_end - p_begin)*np.log(p_end - p_begin))
pred = compute_pred(all_metadatas, metadata_prob_ranges)
confusion_dist = np.zeros((all_num, all_num, m_num), dtype=np.float32)
for im, (p_begin, p_end) in enumerate(metadata_prob_ranges):
confusion_weight = compute_confusion_weight(pred[:,im], pred[:,im], confusion_mats[(p_begin, p_end)])
confusion_dist[:,:,im] = -np.log(confusion_weight + 1e-4) / np.log(p_end-p_begin)
pred_weight = conf_pred * confusion_dist# * KL_div
pred_weight = np.sum(pred_weight, axis=2)
#print('confusion_dist = ')
#print(confusion_dist)
tmp_rank = np.argsort(original_dist).astype(np.int32)
min_dist = original_dist[range(all_num), tmp_rank[:,1]]
#print('min_dist = ')
#print(min_dist)
pred_dist = np.transpose(pred_weight * min_dist)
#print('pred_dist = ')
#print(pred_dist)
r_KL = 10#0.5#20.0
#print('original_dist = ')
#print(original_dist)
#original_dist_no_meta = original_dist.copy()
original_dist += pred_dist*r_KL
#original_dist = np.clip(original_dist, 0, 1) # not meaningful
#print('original_dist = ')
#print(original_dist)
initial_rank = np.argsort(original_dist).astype(np.int32)
#original_dist_no_query = original_dist.copy()
#original_dist_no_query[:,:query_num] = 1000.0
#initial_rank = np.argsort(original_dist_no_query).astype(np.int32)
print('starting re_ranking')
for i in range(all_num):
# k-reciprocal neighbors
forward_k_neigh_index = initial_rank[i, :k1 + 1]
backward_k_neigh_index = initial_rank[forward_k_neigh_index, :k1 + 1]
fi = np.where(backward_k_neigh_index == i)[0]
k_reciprocal_index = forward_k_neigh_index[fi]
k_reciprocal_expansion_index = k_reciprocal_index
for j in range(len(k_reciprocal_index)):
candidate = k_reciprocal_index[j]
candidate_forward_k_neigh_index = initial_rank[candidate, :int(np.around(k1 / 2)) + 1]
candidate_backward_k_neigh_index = initial_rank[candidate_forward_k_neigh_index,
:int( | np.around(k1 / 2) | numpy.around |
import copy
from PIL import Image
from PIL import ImageEnhance
from torch.utils.data import DataLoader, Dataset
import torch
import numpy as np
import glob
import torchvision
import matplotlib.pyplot as plt
import random
import cv2
from torchvision import transforms
np.seterr(divide='ignore', invalid='ignore')
def takeSecond(elem):
return elem[0]**2+elem[1]**2
class heatmap_dataset(Dataset):
def __init__(self, ds_dir, sigma, setname='train', transform=None, norm_factor=256, rgb2gray=False, resize=True):
self.ds_dir = ds_dir
self.setname = setname
self.transform = transform
self.norm_factor = norm_factor
self.rgb2gray = rgb2gray
self.__sigma = sigma
self.resize = resize
self.c = 0
self.s = 0
self.r = 0
if setname == 'train':
data = []
gt = []
train_list = '/media/home_bak/ziqi/park/Hourglass_twopoint/dataset/train.txt'
f = open(train_list)
for line in f:
line_data = line.strip('\n')
line_gt = line_data.replace(
'perspective_img', 'point').replace('.jpg', '_OA.txt')
data.append(line_data)
gt.append(line_gt)
self.data = data
self.gt = gt
if setname == 'val':
data = []
gt = []
test_list = '/media/home_bak/ziqi/park/Hourglass_twopoint/dataset/val.txt'
f = open(test_list)
for line in f:
line_data = line.strip('\n')
line_gt = line_data.replace(
'perspective_img', 'point').replace('.jpg', '_OA.txt')
data.append(line_data)
gt.append(line_gt)
self.data = data
self.gt = gt
def __len__(self):
return len(self.data)
def get_affine_transform(self, center, scale, rot, output_size, shift=np.array([0, 0], dtype=np.float32), inv=0):
if not isinstance(scale, np.ndarray) and not isinstance(scale, list):
print(scale)
scale = np.array([scale, scale])
scale_tmp = scale * 200
# print('scale_tmp',scale_tmp)
# print("scale_tmp: {}".format(scale_tmp))
# print("output_size: {}".format(output_size)) # W H
src_w = scale_tmp[0]
dst_w = output_size[0]
dst_h = output_size[1]
rot_rad = np.pi * rot / 180
src_dir = self.get_dir([0, src_w * -0.5], rot_rad)
dst_dir = np.array([0, dst_w * -0.5], np.float32)
# print("src_dir: {}".format(src_dir))
# print("dst_dir: {}".format(dst_dir))
src = np.zeros((3, 2), dtype=np.float32)
dst = np.zeros((3, 2), dtype=np.float32)
# print("center: {}".format(center))
src[0, :] = center + scale_tmp * shift
# print("src[0, :]: {}".format(src[0, :]))
# print("src_dir: {}".format(src_dir))
src[1, :] = center + src_dir + scale_tmp * shift
# print("src[1, :]: {}".format(src[1, :]))
dst[0, :] = [dst_w * 0.5, dst_h * 0.5]
dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir
src[2:, :] = self.get_3rd_point(src[0, :], src[1, :])
# print("src[2:, :]: {}".format(src[2:, :]))
dst[2:, :] = self.get_3rd_point(dst[0, :], dst[1, :])
# print('src', src,dst)
# print("src:\n{}".format(src))
# print("dst:\n{}".format(dst))
if inv:
trans = cv2.getAffineTransform(np.float32(dst), np.float32(src))
else:
trans = cv2.getAffineTransform(np.float32(src), np.float32(dst))
# exit(1)
return trans
def get_dir(self, src_point, rot_rad):
sn, cs = np.sin(rot_rad), np.cos(rot_rad)
src_result = [0, 0]
src_result[0] = src_point[0] * cs - src_point[1] * sn
src_result[1] = src_point[0] * sn + src_point[1] * cs
return src_result
def get_3rd_point(self, a, b):
direct = a - b
return b + np.array([-direct[1], direct[0]], dtype=np.float32)
def _box2cs(self, size, aspect_ratio=None, scale_factor=None):
x, y, w, h = 0, 0, size[0], size[1]
return self._xywh2cs(x, y, w, h,
aspect_ratio,
scale_factor)
def _xywh2cs(self, x, y, w, h, aspect_ratio, scale_factor):
center = np.zeros((2), dtype=np.float32)
center[0] = x + w * 0.5
center[1] = y + h * 0.5
if w > aspect_ratio * h:
h = w * 1.0 / aspect_ratio
elif w < aspect_ratio * h:
w = h * aspect_ratio
scale = np.array(
[w * 1.0 / 200, h * 1.0 / 200],
dtype=np.float32)
return center, scale
def __getitem__(self, item):
if item < 0 or item >= self.__len__():
return None
# Read images
# data = Image.open(str(self.data[item]))
data = cv2.imread(str(self.data[item]))
imgPath = str(self.data[item])
gt = [[0, 0], [0, 0]]
# gt = np.loadtxt(str(self.data[item]))
with open(str(self.gt[item]), "r") as f:
lines = f.readlines() # 把全部数据文件读到一个列表lines中
# 表示矩阵的行,从0行开始
row = 0
# 把lines中的数据逐行读取出来
for line in lines:
# 处理逐行数据:strip表示把头尾的'\n'去掉,split表示以空格来分割行数据,然后把处理后的行数据返回到list列表中
list = line.strip('\n').split(' ')
gt[row][0] = float(list[0])
gt[row][1] = float(list[1])
# print("point:", list[0], list[1])
# 然后方阵A的下一行接着读
row = row + 1
if row == 2:
break
# gt.sort(key=takeSecond)
# print("file", imgPath)
H, W = 384, 384
# print(type(data))
# 数据增强
# data = self.randomBlur(data)
data = self.RandomBrightness(data)
data = self.RandomHue(data)
data = self.RandomSaturation(data)
# data = self.randomColor(data)
data = self.randomGaussian(data, mean=0.2, sigma=0.3)
data = 255 * np.array(data).astype('uint8')
data = cv2.cvtColor(np.array(data), cv2.COLOR_RGB2BGR) # PIL转cv2
if self.rgb2gray:
t = torchvision.transforms.Grayscale(1)
data = t(data)
# Convert to numpy
data = np.array(data, dtype=np.float32) / self.norm_factor
# gt = np.array(gt, dtype=np.float32) / 384
gt = | np.array(gt, dtype=np.float32) | numpy.array |
import numpy as np
import loupe
def asarray(a):
"""Convert the input to an array.
Parameters
----------
a : array_like
Input data, in any form that can be converted to an array. This
includes lists, lists of tuples, tuples, tuples of tuples,
tuples of lists and ndarrays.
Returns
-------
out : :class:`array`
Input data packaged as an :class:`array`. If input is already an
:class:`array` or :class:`~loupe.core.Function`, the original input is
returned.
Examples
--------
Convert a list into an array:
.. code:: pycon
>>> a = [1,2,3]
>>> loupe.asarray(a)
array([ 1.,2., 3.])
Existing arrays are not copied:
.. code:: pycon
>>> a = loupe.array([1,2,3])
>>> loupe.asarray(a) is a
True
"""
if isinstance(a, (loupe.array, loupe.core.Function)):
return a
elif isinstance(a, (int, float, complex, list, tuple, np.ndarray)):
return loupe.array(a)
else:
raise TypeError(f'Unsupported type. Cannot create array from \
{a.__class__.__name__}')
def zeros(shape, dtype=None, requires_grad=False):
"""Return a new array with values set to zeros.
Parameters
----------
shape : int or tuple of ints
Shape of the array
dtype : data type, optional
Desired data type for the array
requires_grad : bool, optional
It True, gradients will be computed for this array. Default is False.
Returns
-------
out : :class:`array`
Array of zeros with the given shape and dtype.
See Also
--------
zeros_like : Return an array of zeros with shape and type of input.
ones : Return a new array with values set to ones.
"""
return loupe.array(np.zeros(shape), dtype=dtype,
requires_grad=requires_grad)
def zeros_like(a, dtype=None, requires_grad=False):
"""Return a new array of zeros with the same shape and type as a given
array.
"""
return loupe.zeros(shape=a.shape, dtype=dtype,
requires_grad=requires_grad)
def ones(shape, dtype=None, requires_grad=False):
"""Return a new array with values set to ones."""
return loupe.array( | np.ones(shape) | numpy.ones |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Nov 29 19:48:05 2018
@author: andrew
"""
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
from scipy.ndimage.filters import gaussian_filter
from scipy.special import iv
from astropy.io import fits
import glob
import sys
#import gc
from scipy.stats import chisquare
from scipy.stats import chi2
from scipy.stats import skellam as skell
from scipy.special import erf
from scipy.integrate import quad
from astropy.stats import sigma_clip
import sep
def stdev_dist(data, n_x=3, n_y=3):
shape_x, shape_y = data.shape[0], data.shape[1]
# while shape_x % n_x != 0:
# n_x += 1
# while shape_y % n_y != 0:
# n_y += 1
# stdevs = []
# stamps_vert = np.split(data, n_x)
# stamps_horiz = np.split(data, n_y, axis=1)
# for x in stamps_vert:
# stdevs.append(np.ma.median(x))
# for y in stamps_horiz:
# stdevs.append(np.ma.median(y))
# return np.std(stdevs)
width_x, width_y = np.floor(shape_x/n_x), np.floor(shape_y/n_y)
d_x, d_y = np.floor(width_x/2), np.floor(width_y/2)
x = []
y = []
stdevs = []
# stamps = []
for i in range(n_x):
x.append(d_x + (i*width_x))
for j in range(n_y):
y.append(d_y + (j*width_y))
for h in x:
for k in y:
stamp = data.data[int((k-d_y)):int((k+d_y+1)), int((h-d_x)):int((h+d_x+1))]
# stamps.append(stamp)
stdevs.append(np.ma.std(stamp))
return np.std(stdevs)
def split_im(data, n_x=2, n_y=2):
# shape_x, shape_y = data.shape[0], data.shape[1]
# while shape_x % n_x != 0:
# n_x += 1
# while shape_y % n_y != 0:
# n_y += 1
# if n_x > 5 or n_y > 5:
# print("-> Warning: odd image dimensions-- optimization may take a long time")
stamps = []
stamps_vert = np.array_split(data, n_x)
stamps_horiz = np.array_split(data, n_y, axis=1)
for v in stamps_vert:
stamps_horiz = np.split(v, n_y, axis=1)
for h in stamps_horiz:
stamps.append(h)
return stamps
def make_im(x=1000,y=1000,numStars=50,seeing=2,maxFlux=10000,bkg=50):
Xs = np.random.randint(0,high=x,size=numStars)
Ys = np.random.randint(0,high=y,size=numStars)
fluxes = np.random.random(size=numStars)*maxFlux
image = np.zeros((x,y))
for i in range(numStars):
image[Xs[i],Ys[i]] = fluxes[i]
image = gaussian_filter(image,seeing)
image += bkg
return image
def add_poisson(image):
im = image + np.random.poisson(image)
return im
def plot_res(im1,im2):
res = im1 - im2
median1 = np.median(im1)
median2 = np.median(im2)
medianAvg = round(np.mean([median1,median2]))
bns = int(round(2*(len(res.flatten()))**(1/3)))
return plt.hist(res.flatten(), bins=bns, range=[-1*medianAvg,medianAvg], normed=True), medianAvg, bns
def get_res_data(image, N_x=2, N_y=2, opt=True):
name = image.split('/')[-1]
location = image.replace('/data/' + name,'')
residual = location + '/' + 'residuals/' + name[:-5] + 'residual_.fits'
template = glob.glob(location + '/templates/*.fits')
if opt == True:
res = '%s/temp/conv.fits' % (location)
try: weight_check = fits.getval(res, 'WEIGHT')
except: weight_check = 'N'
if weight_check == 'N':
res_data = np.ma.masked_array((fits.getdata(res))*-1, mask=fits.getdata(residual, 1))
else:
res_data = np.ma.masked_array((fits.getdata(res))*-1, mask=((fits.getdata(residual, 1)-1)*-1))
else:
try: weight_check = fits.getval(residual, 'WEIGHT')
except: weight_check = 'N'
if weight_check == 'N':
res_data = np.ma.masked_array(fits.getdata(residual), mask=fits.getdata(residual, 1))
else:
res_data = np.ma.masked_array(fits.getdata(residual), mask=((fits.getdata(residual, 1)-1)*-1))
res_data_clipped = sigma_clip(res_data.data, sigma=3)
res_data_master_mask = np.logical_or(res_data.mask, res_data_clipped.mask)
res_data = np.ma.MaskedArray(res_data.data, mask=res_data_master_mask)
if len(template) == 1:
im_data = fits.getdata(image)
temp_data = fits.getdata(template[0])
im_data = (im_data).byteswap().newbyteorder()
temp_data = (temp_data).byteswap().newbyteorder()
image_data = np.ma.masked_array(im_data, mask=np.logical_not(fits.getdata(image, 1)))
template_data = np.ma.masked_array(temp_data, mask=np.logical_not(fits.getdata(template[0], 1)))
# res_stamps = split_im(res_data, n_x=N_x, n_y=N_y)
res_stamps = np.array_split(res_data, N_x)
image_stamps = split_im(image_data, n_x=N_x, n_y=N_y)
template_stamps = split_im(template_data, n_x=N_x, n_y=N_y)
# try: image_median = float(fits.getval(image, 'MEDIAN'))
# except: image_median = np.median(np.ma.MaskedArray(fits.getdata(image), mask=np.logical_not(fits.getdata(image, 1))))
# try: template_median = float(fits.getval(template[0], 'MEDIAN'))
# except: template_median = np.median(np.ma.MaskedArray(fits.getdata(template[0]), mask=np.logical_not(fits.getdata(template[0], 1))))
# image_median = np.ma.median(image_data)
# template_median = np.ma.median(template_data)
# image_median = [np.ma.median(i) for i in image_stamps]
# template_median = [np.ma.median(i) for i in template_stamps]
image_backs = [sep.Background(i.data, mask=i.mask) for i in image_stamps]
template_backs = [sep.Background(j.data, mask=j.mask) for j in template_stamps]
image_median = [i.globalback for i in image_backs]
template_median = [j.globalback for j in template_backs]
del res_data, name, location, residual, template
return res_stamps, image_median, template_median
elif len(template) > 1:
print("\n-> Error: Too many template images in 'templates' directory\n")
sys.exit()
else:
print("\n-> Error: Problem with number of template images\n")
sys.exit()
#@profile
def get_res_hist(res_data, image_median_list, template_median_list):
image_median = np.mean(image_median_list)
template_median = np.mean(template_median_list)
medianAvg = np.mean([image_median, template_median])
res_median = np.ma.median(res_data)
res_median_theoretical = image_median - template_median
if np.ma.is_masked(np.ma.median(res_data)):
res_median = 0
rangeRes = abs((-1*5*medianAvg)+res_median_theoretical) + abs(res_median_theoretical+(5*medianAvg))
range_low = res_median_theoretical - (5*abs(medianAvg))
range_high = res_median_theoretical + (5*abs(medianAvg))
bns = int(round((rangeRes/400)*2*(len((res_data.data).flatten()))**(1/3))/2)
# if medianAvg > 0:
return np.histogram(res_data.data, weights=(np.logical_not(res_data.mask)).astype(int), bins=bns, range=[range_low, range_high], density=True), res_median, np.ma.std(res_data), bns
# elif medianAvg < 0:
# return np.histogram(res_data.data, weights=(np.logical_not(res_data.mask)).astype(int), bins=bns, range=[2*medianAvg+res_median, res_median+(-1*2*medianAvg)], density=True), res_median, np.ma.std(res_data), bns
# else:
# return np.histogram(res_data.data, weights=(np.logical_not(res_data.mask)).astype(int), bins=bns, range=[-100,100], density=True), res_median, np.ma.std(res_data), bns
def plot_im(im,rnge=[0,500],bns=100):
return plt.hist(im.flatten(), bins=bns, range=rnge)
def normal(x):
return (1/(np.sqrt(2*np.pi)))*np.exp(-0.5*(x**2))
def int_gauss(x1, x2):
I = quad(normal, x1, x2)
return I[0]
def chi2_fit(res_data, median1, median2, conf_level=0.995, dx=100, dy=100, delta_df=2):
# data_mid_horiz = data.shape[0] / 2
# data_mid_vert = data.shape[1] / 2
# res_data = data[(round(data_mid_vert)-dy):(round(data_mid_vert)+dy+1), (round(data_mid_horiz)-dx):(round(data_mid_horiz)+dx+1)]
expected_iter = len(res_data.flatten())
res_noise = np.sqrt(median1+median2)
res_data = (res_data - (median1-median2)) / res_noise
# expected_interval = skell.interval(0.99999999, median1, median2)
medianAvg = np.mean([median1, median2])
# data_range= abs((-1*2*medianAvg)+np.ma.median(res_data)) + abs(np.ma.median(res_data)+(2*medianAvg))
# data_range = expected_interval[1] - expected_interval[0]
# bns = int(round((data_range/400)*2*(len((res_data.data).flatten()))**(1/3))/2)
bns = int((np.log2(expected_iter) + 1))
expected_interval = (-5, 5)
# expected = skellam(np.linspace(expected_interval[0], expected_interval[1], num=expected_iter), median1, median2)
# expected = [skell.rvs(median1, median2) for i in range(expected_iter)]
# expected = np.random.normal(size=expected_iter)
if medianAvg >= 0:
data_hist = np.histogram(res_data.data, weights=( | np.logical_not(res_data.mask) | numpy.logical_not |
from numpy.testing import (assert_, assert_allclose,
assert_raises, assert_equal)
import numpy as np
from scipy.optimize._lsq.common import (
step_size_to_bound, find_active_constraints, make_strictly_feasible,
CL_scaling_vector, intersect_trust_region, build_quadratic_1d,
minimize_quadratic_1d, evaluate_quadratic, reflective_transformation)
class TestBounds(object):
def test_step_size_to_bounds(self):
lb = np.array([-1.0, 2.5, 10.0])
ub = np.array([1.0, 5.0, 100.0])
x = np.array([0.0, 2.5, 12.0])
s = np.array([0.1, 0.0, 0.0])
step, hits = step_size_to_bound(x, s, lb, ub)
assert_equal(step, 10)
assert_equal(hits, [1, 0, 0])
s = np.array([0.01, 0.05, -1.0])
step, hits = step_size_to_bound(x, s, lb, ub)
assert_equal(step, 2)
assert_equal(hits, [0, 0, -1])
s = np.array([10.0, -0.0001, 100.0])
step, hits = step_size_to_bound(x, s, lb, ub)
assert_equal(step, np.array(-0))
assert_equal(hits, [0, -1, 0])
s = np.array([1.0, 0.5, -2.0])
step, hits = step_size_to_bound(x, s, lb, ub)
assert_equal(step, 1.0)
assert_equal(hits, [1, 0, -1])
s = np.zeros(3)
step, hits = step_size_to_bound(x, s, lb, ub)
| assert_equal(step, np.inf) | numpy.testing.assert_equal |
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
# %% load data, prepare common variables
data = pd.read_csv("datasets/OMAE2020_Dataset_D.txt", sep=";")
data.columns = ["Datetime", "V", "Hs"]
data = data[["Hs", "V"]]
x, dx = np.linspace([0.1, 0.1], [6, 22], num=100, retstep=True)
# given_hs = list(range(1, 7))
# %% # vc2
from virocon import GlobalHierarchicalModel
from virocon.predefined import get_DNVGL_Hs_U
dist_descriptions, fit_descriptions, semantics = get_DNVGL_Hs_U()
ghm = GlobalHierarchicalModel(dist_descriptions)
ghm.fit(data, fit_descriptions=fit_descriptions)
# %%
from virocon.plotting import plot_2D_isodensity
plot_2D_isodensity(ghm, data, semantics=semantics)
# %%
my_f = ghm.pdf(x)
my_f_weibull3 = ghm.distributions[0].pdf(x[:, 0])
my_weibull3_params = (
ghm.distributions[0].beta,
ghm.distributions[0].gamma,
ghm.distributions[0].alpha,
)
my_weibull2 = ghm.distributions[1]
my_given = my_weibull2.conditioning_values
my_f_weibull2 = []
for given in my_given:
my_f_weibull2.append(my_weibull2.pdf(x[:, 1], given))
my_f_weibull2 = np.stack(my_f_weibull2, axis=1)
my_alphas = | np.array([par["alpha"] for par in my_weibull2.parameters_per_interval]) | numpy.array |
from __future__ import absolute_import
import re
import operator as op
import math
try:
basestring
except NameError:
basestring = (str, bytes)
try:
from collections.abc import Container, Sized
except ImportError:
from collections import Container, Sized
from bisect import bisect_right
from contextlib import contextmanager
from .structures import PyteomicsError
from .file_helpers import _keepstate, IteratorContextManager, _make_chain, ChainBase, TableJoiner
from .patch import pd
def _fix_docstring(f, **defaults):
for argname, v in defaults.items():
if v is not None:
f.__doc__ = re.sub('{} : .*'.format(argname),
lambda m: m.group() + ', optional', f.__doc__)
def _calculate_qvalues(scores, isdecoy, peps=False, **kwargs):
"""Actual q-value calculation.
Parameters
----------
scores : numpy.ndarray
Sorted array of PSMs.
isdecoy : numpy.ndarray
Sorted array of bools (decoy/target) or floats (PEPs).
Returns
-------
out : numpy.ndarray
Calculated q-values.
"""
correction = kwargs.pop('correction', 0)
ratio = kwargs.pop('ratio', 1)
remove_decoy = kwargs.get('remove_decoy', False)
formula = kwargs.pop('formula', (2, 1)[bool(remove_decoy)])
if formula not in {1, 2}:
raise PyteomicsError('`formula` must be either 1 or 2')
# score_label = kwargs['score_label']
cumsum = isdecoy.cumsum(dtype=np.float64)
tfalse = cumsum.copy()
ind = | np.arange(1., scores.shape[0] + 1., dtype=np.float64) | numpy.arange |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Author: nico
# @Date: 2018-02-13 18:16:02
"""
Created on Wed Jan 14 11:30:29 2015
@author: nico
"""
import numpy as np
from math import factorial
def savitzky_golay(y, window_size, order, deriv=0, rate=1):
"""
Smoothes input signal with a Savitzky-Golay function.
Uses a kernel of size "window_size" and a polinomial fit of order "order".
:param y: [description]
:type y: [type]
:param window_size: [description]
:type window_size: [type]
:param order: [description]
:type order: [type]
:param deriv: [description], defaults to 0
:param deriv: int, optional
:param rate: [description], defaults to 1
:param rate: int, optional
:raises ValueError: [description]
:raises TypeError: [description]
:raises TypeError: [description]
:return: [description]
:rtype: [type]
"""
y = np.array(y)
try:
window_size = np.abs(np.int(window_size))
order = np.abs(np.int(order))
except ValueError:
raise ValueError("window_size and order have to be of type int")
if window_size % 2 != 1 or window_size < 1:
raise TypeError("window_size size must be a positive odd number")
if window_size < order + 2:
raise TypeError("window_size is too small for the polynomials order")
order_range = range(order + 1)
half_window = (window_size - 1) // 2
# precompute coefficients
b = np.mat([[k**i for i in order_range] for k in range(
-half_window, half_window + 1)])
m = np.linalg.pinv(b).A[deriv] * rate**deriv * factorial(deriv)
# pad the signal at the extremes with
# values taken from the signal itself
firstvals = y[0] - np.abs(y[1:half_window + 1][::-1] - y[0])
lastvals = y[-1] + np.abs(y[-half_window - 1:-1][::-1] - y[-1])
y = | np.concatenate((firstvals, y, lastvals)) | numpy.concatenate |
# generates the ditance matrix for clustering
def caldistance(lst1, lst2): # calculates the L1 distance between lst1, lst2. they represent two layers (chcknum1/2) with heir list of metabolomic values
dist0 = 0
for ii in range(0, len(lst1)):
tmp = abs(lst1[ii] - lst2[ii])
dist0 = dist0 + tmp
return dist0
def strtofloat0(lst): # returns a list of float, given al ist of numbers in str type
ans = []
for ii in lst:
tmp = [float(kk) for kk in ii]
ans.append(tmp)
return ans
def getvalues0(polarval0, start1, len1, start2, len2): # returns lists with the values of the groups that we want to compare
grp1 = polarval0[:, start1:(start1+len1)]
grp2 = polarval0[:, start2:(start2+len2)]
grp1lst = grp1.tolist()
grp2lst = grp2.tolist()
return grp1lst, grp2lst
def averageingroupdis(dim0, mtrx0): # calculates the average distance within the same group (array) - sum of all elements, devided by (number of elements minus diagonal)
# dim0 is the number of rows/columns in the array.
# This is a symmetrical matrix with diagonal = 0. element ij is the distance between animal i and j (in the same group)
sm0 = np.sum(mtrx0)
numbrofelmnts = ((dim0*dim0) - dim0)
ans = sm0/numbrofelmnts
return ans
def averageoutgroupdis(dim0, mtrx0): # calculates the average distance beween two groups (array) - sum of all elements, devided by number of elements
# dim0 is the number of rows/columns in the array, here the diagonal has no meaning - each row is one group and each column is a second group.
# element ij is the distance between animal i and j (in the different groups!)
sm0 = np.sum(mtrx0)
numbrofelmnts = ((dim0*dim0))
ans = sm0/numbrofelmnts
return ans
def buildidsmatrx(distarr, perm0): # receives the original distance matrix/array and the permutation vector, builds the permutated matrix
permdist0 = []
for ii in perm0:
permtmp = []
for jj in perm0:
tmp = distarr[ii, jj] # need to have the indices starting from 0!
permtmp.append(tmp)
# print('permtmp', permtmp)
permdist0.append(permtmp)
return permdist0
def originaldistmtrx(distarry): # receives the two-group metabolomics data, generates the distance matrix(list)
distlstot0 = []
for ii in range(0, len(distarry)):
rowdist = []
for jj in range(0, len(distarry)):
tmpdist = caldistance(distarry[ii], distarry[jj])
rowdist.append(tmpdist)
distlstot0.append(rowdist)
return distlstot0
def generatepairgroup(group01, group02): # generates the distance matrix (array) for the group01-group02 pair
group01arr = np.array(group01)
group01arrt = group01arr.transpose()
print(len(group01arrt), len(group01arrt[0])) #
group01lst0 = group01arrt.tolist()
group02arr = np.array(group02)
group02arrt = group02arr.transpose()
print(len(group02arrt), len(group02arrt[0])) #
group02lst0 = group02arrt.tolist()
group0102lst0 = group01lst0 + group02lst0
print(len(group0102lst0), len(group0102lst0[0])) #
distlst0 = originaldistmtrx(group0102lst0) # generating the distance matrix (array)
print(len(distlst0), len(distlst0[0]), distlst0[0][0], distlst0[0][1], distlst0[1][1], distlst0[1][0])
return distlst0
def ingpdis(gpnum, gpsize, distmtrx): # receives the distance matrix(list), returns the intragroup distance of gpnum
distmtrxarr = np.array(distmtrx)
if gpnum == 1: # always size 15
tmpdistmtrxarr = distmtrxarr[0:gpsize, 0:gpsize]
sm0 = np.sum(tmpdistmtrxarr)
numbrofelmnts = ((gpsize * gpsize) - gpsize)
ans = sm0 / numbrofelmnts
if gpnum == 2: # should work for size 15 as well as 14
tmpdistmtrxarr = distmtrxarr[15:, 15:] # starts with No. 15 always
sm0 = np.sum(tmpdistmtrxarr)
numbrofelmnts = ((gpsize * gpsize) - gpsize) # goos for size 15 and 14 - this is the matrix size
ans = sm0 / numbrofelmnts
return ans
def outgpdis(gset, gpsize, distmtrx): # receives the distance matrix(list), returns the intergroup distance of gset
distmtrxarr = | np.array(distmtrx) | numpy.array |
'''
@file base.py
Contains the functions that compute the features
The MIT License (MIT)
Copyright (c) 2013 <NAME>
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
calculate filterbank features. Provides e.g. fbank and mfcc features for use in
ASR applications
Author: <NAME> 2012
'''
import numpy
import sigproc
from scipy.fftpack import dct
from scipy.ndimage import convolve1d
def mfcc(signal, samplerate, conf):
'''
Compute MFCC features from an audio signal.
Args:
signal: the audio signal from which to compute features. Should be an
N*1 array
samplerate: the samplerate of the signal we are working with.
conf: feature configuration
Returns:
A numpy array of size (NUMFRAMES by numcep) containing features. Each
row holds 1 feature vector, a numpy vector containing the signal
log-energy
'''
feat, energy = fbank(signal, samplerate, conf)
feat = numpy.log(feat)
feat = dct(feat, type=2, axis=1, norm='ortho')[:, :int(conf['numcep'])]
feat = lifter(feat, float(conf['ceplifter']))
return feat, numpy.log(energy)
def fbank(signal, samplerate, conf):
'''
Compute fbank features from an audio signal.
Args:
signal: the audio signal from which to compute features. Should be an
N*1 array
samplerate: the samplerate of the signal we are working with.
conf: feature configuration
Returns:
A numpy array of size (NUMFRAMES by nfilt) containing features, a numpy
vector containing the signal energy
'''
highfreq = int(conf['highfreq'])
if highfreq < 0:
highfreq = samplerate/2
signal = sigproc.preemphasis(signal, float(conf['preemph']))
frames = sigproc.framesig(signal, float(conf['winlen'])*samplerate,
float(conf['winstep'])*samplerate)
pspec = sigproc.powspec(frames, int(conf['nfft']))
# this stores the total energy in each frame
energy = numpy.sum(pspec, 1)
# if energy is zero, we get problems with log
energy = numpy.where(energy == 0, numpy.finfo(float).eps, energy)
filterbank = get_filterbanks(int(conf['nfilt']), int(conf['nfft']),
samplerate, int(conf['lowfreq']), highfreq)
# compute the filterbank energies
feat = numpy.dot(pspec, filterbank.T)
# if feat is zero, we get problems with log
feat = numpy.where(feat == 0, numpy.finfo(float).eps, feat)
return feat, energy
def logfbank(signal, samplerate, conf):
'''
Compute log-fbank features from an audio signal.
Args:
signal: the audio signal from which to compute features. Should be an
N*1 array
samplerate: the samplerate of the signal we are working with.
conf: feature configuration
Returns:
A numpy array of size (NUMFRAMES by nfilt) containing features, a numpy
vector containing the signal log-energy
'''
feat, energy = fbank(signal, samplerate, conf)
return numpy.log(feat), numpy.log(energy)
def ssc(signal, samplerate, conf):
'''
Compute ssc features from an audio signal.
Args:
signal: the audio signal from which to compute features. Should be an
N*1 array
samplerate: the samplerate of the signal we are working with.
conf: feature configuration
Returns:
A numpy array of size (NUMFRAMES by nfilt) containing features, a numpy
vector containing the signal log-energy
'''
highfreq = int(conf['highfreq'])
if highfreq < 0:
highfreq = samplerate/2
signal = sigproc.preemphasis(signal, float(conf['preemph']))
frames = sigproc.framesig(signal, float(conf['winlen'])*samplerate,
float(conf['winstep'])*samplerate)
pspec = sigproc.powspec(frames, int(conf['nfft']))
# this stores the total energy in each frame
energy = numpy.sum(pspec, 1)
# if energy is zero, we get problems with log
energy = numpy.where(energy == 0, numpy.finfo(float).eps, energy)
filterbank = get_filterbanks(int(conf['nfilt']), int(conf['nfft']),
samplerate, int(conf['lowfreq']), highfreq)
# compute the filterbank energies
feat = numpy.dot(pspec, filterbank.T)
tiles = numpy.tile(numpy.linspace(1, samplerate/2, | numpy.size(pspec, 1) | numpy.size |
import os
import numpy as np
from array import array
from sklearn.metrics import mean_absolute_error
from skmultiflow.data import RegressionGenerator
from skmultiflow.trees import HoeffdingTreeRegressor
from difflib import SequenceMatcher
def test_hoeffding_tree_regressor():
stream = RegressionGenerator(n_samples=500, n_features=20, n_informative=15, random_state=1)
learner = HoeffdingTreeRegressor(leaf_prediction='mean')
cnt = 0
max_samples = 500
y_pred = array('d')
y_true = array('d')
wait_samples = 10
while cnt < max_samples:
X, y = stream.next_sample()
# Test every n samples
if (cnt % wait_samples == 0) and (cnt != 0):
y_pred.append(learner.predict(X)[0])
y_true.append(y[0])
learner.partial_fit(X, y)
cnt += 1
expected_predictions = array('d', [102.38946041769101, 55.6584574987656, 5.746076599168373, 17.11797209372667,
2.566888222752787, 9.188247802192826, 17.87894804676911, 15.940629626883966,
8.981172175448485, 13.152624115190092, 11.106058099429399, 6.473195313058236,
4.723621479590173, 13.825568609556493, 8.698873073880696, 1.6452441811010252,
5.123496188584294, 6.34387187194982, 5.9977733790395105, 6.874251577667707,
4.605348088338317, 8.20112636572672, 9.032631648758098, 4.428189978974459,
4.249801041367518, 9.983272668044492, 12.859518508979734, 11.741395774380285,
11.230028410261868, 9.126921979081521, 9.132146661688296, 7.750655625124709,
6.445145118245414, 5.760928671876355, 4.041291302080659, 3.591837600560529,
0.7640424010500604, 0.1738639840537784, 2.2068337802212286, -81.05302946841077,
96.17757415335177, -77.35894903819677, 95.85568683733698, 99.1981674250886,
99.89327888035015, 101.66673013734784, -79.1904234513751, -80.42952143783687,
100.63954789983896])
assert np.allclose(y_pred, expected_predictions)
error = mean_absolute_error(y_true, y_pred)
expected_error = 143.11351404083086
assert | np.isclose(error, expected_error) | numpy.isclose |
# -*- coding: utf-8 -*-
#
# Test basic functionality of ComputationalRoutine class
#
# Builtin/3rd party package imports
import os
import tempfile
import time
import pytest
import numpy as np
from glob import glob
from scipy import signal
# Local imports
from syncopy import __acme__
if __acme__:
import dask.distributed as dd
from syncopy.datatype import AnalogData
from syncopy.datatype.base_data import Selector
from syncopy.io import load
from syncopy.shared.computational_routine import ComputationalRoutine
from syncopy.shared.kwarg_decorators import unwrap_io, unwrap_cfg, unwrap_select
from syncopy.tests.misc import generate_artificial_data
# Decorator to decide whether or not to run dask-related tests
skip_without_acme = pytest.mark.skipif(not __acme__, reason="acme not available")
@unwrap_io
def lowpass(arr, b, a=None, noCompute=None, chunkShape=None):
if noCompute:
return arr.shape, arr.dtype
res = signal.filtfilt(b, a, arr.T, padlen=200).T
return res
class LowPassFilter(ComputationalRoutine):
computeFunction = staticmethod(lowpass)
def process_metadata(self, data, out):
if data.selection is not None:
chanSec = data.selection.channel
trl = data.selection.trialdefinition
else:
chanSec = slice(None)
trl = np.zeros((len(self.trialList), 3), dtype=int)
trial_lengths = | np.diff(data.sampleinfo) | numpy.diff |
import torch
import torch.nn as nn
import numpy as np
from mmdet.core import bbox2roi, build_assigner, build_sampler, tensor2imgs, get_classes
from .two_stage import TwoStageDetector
from .. import builder
from ..registry import DETECTORS
import pycocotools.mask as mask_util
import mmcv
from mmcv import imresize
@DETECTORS.register_module
class ClusterRCNN(TwoStageDetector):
def __init__(self,
backbone,
rpn_head,
bbox_roi_extractor,
bbox_head,
mask_roi_extractor,
train_cfg,
test_cfg,
backbone_of=None,
neck=None,
shared_head=None,
mask_head=None,
mask_cluster_head=None,
roi_cluster_head=None,
pretrained=None,
swapped=False,
num_clusters=2):
super(ClusterRCNN, self).__init__(
backbone=backbone,
neck=neck,
shared_head=shared_head,
rpn_head=rpn_head,
bbox_roi_extractor=bbox_roi_extractor,
bbox_head=bbox_head,
mask_roi_extractor=mask_roi_extractor,
mask_head=mask_head,
train_cfg=train_cfg,
test_cfg=test_cfg,
pretrained=pretrained)
self.swapped = swapped
self.num_clusters = num_clusters
if mask_cluster_head is not None:
self.mask_cluster_head = builder.build_head(mask_cluster_head)
self.mask_cluster_head.init_weights()
if mask_roi_extractor is not None:
self.mask_roi_extractor = builder.build_roi_extractor(mask_roi_extractor)
self.share_roi_extractor = False
if roi_cluster_head is not None:
self.roi_cluster_head = builder.build_head(roi_cluster_head)
self.roi_cluster_head.init_weights()
@property
def with_cluster(self):
return hasattr(self, 'mask_cluster_head') and self.mask_cluster_head is not None
@property
def with_roi_cluster(self):
return hasattr(self, 'roi_cluster_head') and self.roi_cluster_head is not None
def forward_train(self,
img,
img_meta,
gt_bboxes,
gt_labels,
gt_inst_ids=None,
gt_masks=None,
gt_bboxes_ignore=None,
proposals=None,
return_targets=False):
M = self.forward_to_neck(img)
losses, _ = self.forward_heads( M,
img_meta,
gt_bboxes,
gt_labels,
gt_inst_ids,
gt_masks,
gt_bboxes_ignore,
proposals,
return_targets)
return losses
def forward_to_neck(self, img, of=None):
return self.extract_feat(img, of)
def forward_heads(self,
M,
img_meta,
gt_bboxes,
gt_labels,
gt_inst_ids=None,
gt_masks=None,
gt_bboxes_ignore=None,
proposals=None,
return_targets=False,
calculate_losses=True,
img=None):
x = M
losses = dict()
targets = dict()
# RPN forward and loss
if self.with_rpn:
rpn_outs = self.rpn_head(x)
rpn_loss_inputs = rpn_outs + (gt_bboxes, img_meta,
self.train_cfg.rpn)
if calculate_losses:
rpn_losses = self.rpn_head.loss(
*rpn_loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore)
losses.update(rpn_losses)
proposal_cfg = self.train_cfg.get('rpn_proposal',
self.test_cfg.rpn)
proposal_inputs = rpn_outs + (img_meta, proposal_cfg)
proposal_list = self.rpn_head.get_bboxes(*proposal_inputs)
else:
asd #TODO
proposal_list = proposals
# assign gts and sample proposals
if self.with_bbox or self.with_mask:
bbox_assigner = build_assigner(self.train_cfg.rcnn.assigner)
bbox_sampler = build_sampler(
self.train_cfg.rcnn.sampler, context=self)
num_imgs = len(img_meta)
if gt_bboxes_ignore is None:
gt_bboxes_ignore = [None for _ in range(num_imgs)]
sampling_results = []
for i in range(num_imgs):
assign_result = bbox_assigner.assign(proposal_list[i],
gt_bboxes[i],
gt_bboxes_ignore[i],
gt_labels[i])
sampling_result = bbox_sampler.sample(
assign_result,
proposal_list[i],
gt_bboxes[i],
gt_labels[i],
feats=[lvl_feat[i][None] for lvl_feat in x])
sampling_results.append(sampling_result)
# bbox head forward and loss
if self.with_bbox:
rois = bbox2roi([res.bboxes for res in sampling_results])
# TODO: a more flexible way to decide which feature maps to use
bbox_feats = self.bbox_roi_extractor(
x[:self.bbox_roi_extractor.num_inputs], rois)
if self.with_shared_head:
bbox_feats = self.shared_head(bbox_feats)
cls_score, bbox_pred = self.bbox_head(bbox_feats)
bbox_targets = self.bbox_head.get_target(sampling_results,
gt_bboxes, gt_labels,
self.train_cfg.rcnn)
if calculate_losses:
loss_bbox = self.bbox_head.loss(cls_score, bbox_pred,
*bbox_targets)
losses.update(loss_bbox)
# mask head forward and loss
if not self.share_roi_extractor:
pos_rois = bbox2roi(
[res.pos_bboxes for res in sampling_results])
mask_feats = self.mask_roi_extractor(
x[:self.mask_roi_extractor.num_inputs], pos_rois)
if self.with_shared_head:
mask_feats = self.shared_head(mask_feats)
else:
pos_inds = []
device = bbox_feats.device
for res in sampling_results:
pos_inds.append(
torch.ones(
res.pos_bboxes.shape[0],
device=device,
dtype=torch.uint8))
pos_inds.append(
torch.zeros(
res.neg_bboxes.shape[0],
device=device,
dtype=torch.uint8))
pos_inds = torch.cat(pos_inds)
mask_feats = bbox_feats[pos_inds]
pos_labels = torch.cat(
[res.pos_gt_labels for res in sampling_results])
if self.with_cluster:
# mask cluster head forward and loss
mask_cluster_pred = self.mask_cluster_head(mask_feats)
if gt_inst_ids==None:
gt_inst_ids = [torch.arange(1, gt_mask.shape[0]+1) for gt_mask in gt_masks]
mask_bg_targets, mask_inst_targets, mask_inst_score, \
roi_inst_targets, roi_inst_score = self.mask_cluster_head.get_target(
sampling_results, gt_masks, gt_inst_ids, self.train_cfg.rcnn)
im_size_list = [max(gt_mask.shape) for gt_mask in gt_masks]
pos_assigned_gt_inds = [res.pos_assigned_gt_inds for res in sampling_results]
if calculate_losses:
loss_bg = self.mask_cluster_head.background_loss(mask_cluster_pred[:, :1], mask_bg_targets, pos_labels)
losses.update(loss_bg)
#############
def batch_separator(assigned_gt_inds):
start_idx = 0
batch_sep = []
for inds in assigned_gt_inds:
batch_sep.append(list(range(start_idx, start_idx+len(inds))))
start_idx += len(inds)
return batch_sep
batch_sep = batch_separator(pos_assigned_gt_inds)
mask_cluster_pred = [mask_cluster_pred[sep] for sep in batch_sep]
mask_feats = [mask_feats[sep] for sep in batch_sep]
roi_inst_targets, roi_indeces, cluster_indeces, ext_assigned_gt_inds \
= self.mask_cluster_head.get_roi_mask_target(
sampling_results,
gt_masks,
gt_inst_ids,
mask_cluster_pred,
self.train_cfg.rcnn)
selected_cluster_featuremap = []
ext_mask_feats = []
for clustermap, roi_idx, cluster_idx, mask_feat in zip(mask_cluster_pred, roi_indeces, cluster_indeces, mask_feats):
#inds = torch.arange(0, clustermap.shape[0], dtype=torch.long, device=clustermap.device)
selected_cluster_featuremap.append(clustermap[roi_idx, cluster_idx])
ext_mask_feats.append(mask_feat[roi_idx])
selected_cluster_featuremap = torch.cat(selected_cluster_featuremap)
mask_feats = torch.cat(ext_mask_feats)
roi_cluster_pred = self.roi_cluster_head(mask_feats, selected_cluster_featuremap)
####################x
batch_sep = batch_separator(ext_assigned_gt_inds)
roi_cluster_pred = [roi_cluster_pred[sep] for sep in batch_sep]
#roi_bboxes = [roi_bboxes[sep] for sep in batch_sep]
if return_targets:
roi_bboxes = [res.pos_bboxes for res in sampling_results]
targets = dict(pos_assigned_gt_inds=pos_assigned_gt_inds,
ext_assigned_gt_inds=ext_assigned_gt_inds,
gt_bboxes=gt_bboxes,
im_size_list=im_size_list,
mask_cluster_pred=mask_cluster_pred,
roi_cluster_pred=roi_cluster_pred,
mask_inst_targets=mask_inst_targets,
mask_inst_score=mask_inst_score,
roi_bboxes=roi_bboxes,
mask_feats=mask_feats,
roi_inst_targets=roi_inst_targets,
roi_inst_score=roi_inst_score)
return losses, targets
def simple_test_mask(self,
x,
img_meta,
det_bboxes,
det_labels,
det_obj_ids=None,
rescale=False):
# image shape of the first image in the batch (only one)
ori_shape = img_meta[0]['ori_shape']
scale_factor = img_meta[0]['scale_factor']
if det_bboxes.shape[0] == 0:
segm_result = [[] for _ in range(self.mask_head.num_classes - 1)]
else:
# if det_bboxes is rescaled to the original image size, we need to
# rescale it back to the testing scale to obtain RoIs.
_bboxes = (
det_bboxes[:, :4] * scale_factor if rescale else det_bboxes)
mask_rois = bbox2roi([_bboxes])
mask_feats = self.mask_roi_extractor(
x[:len(self.mask_roi_extractor.featmap_strides)], mask_rois)
if self.with_shared_head:
mask_feats = self.shared_head(mask_feats)
if self.swapped:
_, mask_cluster_pred = self.mask_cluster_head(mask_feats)
cluster_pred_pooled = torch.nn.MaxPool2d(2, 2)(mask_cluster_pred)
mask_feats = torch.cat((mask_feats, cluster_pred_pooled), 1)
mask_pred = self.mask_head(mask_feats)
segm_result = self.mask_head.get_seg_masks(mask_pred, _bboxes,
det_labels,
self.test_cfg.rcnn,
ori_shape, scale_factor,
rescale, det_obj_ids=det_obj_ids)
return segm_result
def simple_video_test_mask(self,
x,
img_meta,
det_bboxes,
det_labels,
mask_roi_map,
rescale=False):
# image shape of the first image in the batch (only one)
ori_shape = img_meta[0]['ori_shape']
scale_factor = img_meta[0]['scale_factor']
if det_bboxes.shape[0] == 0:
obj_segms = []
mask_clusters = [[]]
mask_cluster_ids = []
cluster_map = np.zeros((0, 0, 6), dtype=np.float32)
roi_cluster_ids = []
roi_indeces = []
else:
# if det_bboxes is rescaled to the original image size, we need to
# rescale it back to the testing scale to obtain RoIs.
if rescale:
det_bboxes[:, :4] *= scale_factor
mask_rois = bbox2roi([det_bboxes])
mask_feats = self.mask_roi_extractor(
x[:len(self.mask_roi_extractor.featmap_strides)], mask_rois)
if self.with_shared_head:
mask_feats = self.shared_head(mask_feats)
mask_cluster_pred = self.mask_cluster_head(mask_feats)
obj_segms, mask_cluster_ids, roi_indeces, cluster_map = self.mask_cluster_head.get_cluster_mask_ids(
mask_cluster_pred, det_bboxes,
det_labels,
self.test_cfg.rcnn,
ori_shape, scale_factor,
rescale, roi_id=False)
mask_cluster_ids = [mask_cluster_id + 1 for mask_cluster_id in mask_cluster_ids]
mask_cluster_pred = mask_cluster_pred[roi_indeces, mask_cluster_ids]
mask_feats = mask_feats[roi_indeces]
if len(roi_indeces) > 0:
roi_cluster_pred = self.roi_cluster_head(mask_feats, mask_cluster_pred)
roi_cluster_pred = roi_cluster_pred.cpu().numpy()
roi_cluster_ids = np.argmax(roi_cluster_pred, axis=1)
roi_cluster_ids = [pred[0]+1 for pred in roi_cluster_ids]
if len(np.unique(np.asarray(roi_cluster_ids))) > 1:
mask_roi_map_tmp = {}
for m, r in zip(mask_cluster_ids, roi_cluster_ids):
mask_roi_map_tmp[m] = r
if len(list(mask_roi_map_tmp.values())) == self.num_clusters and len(np.unique(np.asarray(list(mask_roi_map_tmp.values())))) == self.num_clusters:
mask_roi_map = mask_roi_map_tmp
else:
if mask_roi_map:
roi_cluster_ids = [mask_roi_map[m] for m in mask_cluster_ids]
obj_segms = {roi_cluster_id:obj_segm for roi_cluster_id, obj_segm in zip(roi_cluster_ids, obj_segms)}
else:
roi_cluster_ids = []
return obj_segms, cluster_map, roi_cluster_ids, roi_indeces, mask_roi_map
def simple_test(self, img, img_meta, proposals=None, rescale=False, with_cluster=True):
if not with_cluster:
return super(ClusterRCNN, self).simple_test(img, img_meta,
proposals=proposals,
rescale=rescale)
"""Test without augmentation."""
assert self.with_bbox, "Bbox head must be implemented."
x = self.extract_feat(img)
proposal_list = self.simple_test_rpn(
x, img_meta, self.test_cfg.rpn) if proposals is None else proposals
det_bboxes, det_labels = self.simple_test_bboxes(
x, img_meta, proposal_list, self.test_cfg.rcnn, rescale=rescale)
segm_results, mask_clusters, mask_cluster_ids = self.simple_video_test_mask(
x, img_meta, det_bboxes, det_labels, rescale=rescale)
bbox_results = bbox2result_with_id(det_bboxes, det_labels, mask_cluster_ids, self.bbox_head.num_classes)
return bbox_results, segm_results, mask_clusters
def gen_colormask(self, N=256):
def bitget(byteval, idx):
return ((byteval & (1 << idx)) != 0)
dtype = 'uint8'
cmap = np.zeros((N, 3), dtype=dtype)
for i in range(N):
r = g = b = 0
c = i
for j in range(8):
r = r | (bitget(c, 0) << 7-j)
g = g | (bitget(c, 1) << 7-j)
b = b | (bitget(c, 2) << 7-j)
c = c >> 3
cmap[i] = np.array([r, g, b])
self.color_mask = cmap[3:]
def show_result(self,
data,
result, dataset=None, score_thr=0.3):
if isinstance(result, tuple):
bbox_results, segm_results, mask_clusters, mask_clusters_orig = result
else:
bbox_results, segm_results, mask_clusters, mask_clusters_orig = result, None, None, None
if dataset is None:
class_names = self.CLASSES
elif isinstance(dataset, str):
class_names = get_classes(dataset)
elif isinstance(dataset, (list, tuple)):
class_names = dataset
else:
raise TypeError(
'dataset must be a valid dataset name or a sequence'
' of class names, not {}'.format(type(dataset)))
# use colors to denote different object instances in videos
# for YTVOS, only refresh color_mask at the first frame of each video
if not hasattr(self, 'color_mask'):
self.gen_colormask()
if isinstance(bbox_results, dict) and len(bbox_results.keys()) == 0:
return
for inp, bbox_result, segm_result, mask_cluster, mask_cluster_orig in zip(data['inp_seq'], bbox_results, segm_results, mask_clusters, mask_clusters_orig):
img_tensor = inp['img'][0]
img_meta = inp['img_meta'][0].data[0][0]
img = tensor2imgs(img_tensor, **img_meta['img_norm_cfg'])[0]
h, w, _ = img_meta['img_shape']
img = imresize(img, (w, h))
#img_show = img[:h, :w, :]
img_show = np.ones((h,w,3))
if bbox_result:
bboxes = np.vstack([x['bbox'] for x in bbox_result.values()])
obj_ids = list(bbox_result.keys())
else:
bboxes = np.zeros((0, 5))
obj_ids = []
# draw segmentation masks
if len(segm_result)>0:
inds = np.where(bboxes[:, -1] > score_thr)[0]
for i in inds:
if obj_ids[i] in segm_result:
mask = mask_util.decode(segm_result[obj_ids[i]]).astype(np.bool)
color_id = obj_ids[i] +1
img_show[mask] = self.color_mask[color_id,:]
mask_cluster = (mask_cluster * 255).astype(np.uint8)
mask_cluster_orig = (mask_cluster_orig * 255).astype(np.uint8)
mask_cluster_img = np.concatenate((mask_cluster_orig[:, :, [0, 1, 2]], mask_cluster_orig[:, :, [0, 3, 4]]))
#mask_cluster_img = np.concatenate((mask_cluster, mask_cluster_orig))
save_vis = True
save_path = 'viss'
if save_vis:
show = False
save_path = '{}/{}/{}.png'.format(save_path, img_meta['video_id'], img_meta['frame_id'])
else:
show = True
save_path = None
# draw bounding boxes
if dataset == 'coco':
labels = [
np.full(bbox.shape[0], i, dtype=np.int32)
for i, bbox in enumerate(bbox_result)
]
labels = np.concatenate(labels)
else:
labels = [ x['label'] for x in bbox_result.values()]
labels = | np.array(labels) | numpy.array |
import unittest
from setup.settings import *
from numpy.testing import *
from pandas.util.testing import *
import numpy as np
import dolphindb_numpy as dnp
import pandas as pd
import orca
class FunctionDivideTest(unittest.TestCase):
@classmethod
def setUpClass(cls):
# connect to a DolphinDB server
orca.connect(HOST, PORT, "admin", "123456")
def test_function_math_binary_divide_scalar(self):
self.assertEqual(dnp.divide(1.2 + 1j, 1.2 - 1j), np.divide(1.2 + 1j, 1.2 - 1j))
self.assertEqual(dnp.divide(0.5, 9), np.divide(0.5, 9))
self.assertEqual(dnp.divide(-1, 8.5), np.divide(-1, 8.5))
self.assertEqual(dnp.divide(1, 4), np.divide(1, 4))
self.assertEqual(dnp.divide(1, -5), np.divide(1, -5))
self.assertEqual(dnp.divide(0, 9), np.divide(0, 9))
self.assertEqual(dnp.isnan(dnp.divide(dnp.nan, -5)), True)
self.assertEqual(np.isnan(np.divide(dnp.nan, -5)), True)
def test_function_math_binary_divide_list(self):
lst1 = [1, 2, 3]
lst2 = [4, 6, 9]
assert_array_equal(dnp.divide(lst1, lst2), np.divide(lst1, lst2))
def test_function_math_binary_divide_array_with_scalar(self):
npa = np.array([1, 2, 3])
dnpa = dnp.array([1, 2, 3])
assert_array_equal(dnp.divide(dnpa, 1), np.divide(npa, 1))
assert_array_equal(dnp.divide(dnpa, dnp.nan), np.divide(npa, np.nan))
# TODO: divide bug
# assert_array_equal(dnp.divide(1, dnpa), np.divide(1, npa))
def test_function_math_binary_divide_array_with_array(self):
npa1 = np.array([1, 2, 3])
npa2 = np.array([4, 6, 9])
dnpa1 = dnp.array([1, 2, 3])
dnpa2 = dnp.array([4, 6, 9])
assert_array_equal(dnp.divide(dnpa1, dnpa2), np.divide(npa1, npa2))
def test_function_math_binary_divide_array_with_array_param_out(self):
npa1 = np.array([1, 2, 3])
npa2 = np.array([4, 6, 9])
npa = np.zeros(shape=(1, 3))
dnpa1 = dnp.array([1, 2, 3])
dnpa2 = dnp.array([4, 6, 9])
dnpa = dnp.zeros(shape=(1, 3))
np.divide(npa1, npa2, out=npa)
dnp.divide(dnpa1, dnpa2, out=dnpa)
# TODO: dolphindb numpy divide bug
# assert_array_equal(dnpa.to_numpy(), npa)
def test_function_math_binary_divide_array_with_series(self):
npa = np.array([1, 2, 3])
dnpa = dnp.array([1, 2, 3])
ps = pd.Series([4, 6, 9])
os = orca.Series([4, 6, 9])
assert_series_equal(dnp.divide(dnpa, os).to_pandas(), np.divide(npa, ps))
assert_series_equal(dnp.divide(os, dnpa).to_pandas(), np.divide(ps, npa))
def test_function_math_binary_divide_array_with_dataframe(self):
npa = | np.array([1, 2, 3]) | numpy.array |
import wx, numpy, re
# The recommended way to use wx with mpl is with the WXAgg backend.
import matplotlib
matplotlib.use('WXAgg')
import matplotlib.pyplot as plt
import scipy.spatial.distance
import matplotlib.colors
from matplotlib.text import Text
from matplotlib.patches import Ellipse
from matplotlib.patches import Polygon
from ..reremi.classQuery import SYM, Query
from ..reremi.classRedescription import Redescription
from ..reremi.classSParts import SSetts
from classInterObjects import MaskCreator
import pdb
class DrawerBasis(object):
wait_delay = 300
max_emphlbl = 5
ann_xy = (-10, 15)
info_dets = {"px": 0, "py":0, "dx": 10, "dy":10, "va":"bottom", "ha": "left", "ec": "#111111", "alpha": .6}
ltids_map = {1: "binary", 2: "spectral", 3: "viridis"}
@classmethod
def getCMap(tcl, ltid):
return plt.get_cmap(tcl.ltids_map.get(ltid, "jet"))
def __init__(self, view):
self.view = view
self.call_wait = None
self.elements = {"active_info": False, "act_butt": [1]}
self.initPlot()
self.plot_void()
def initPlot(self):
self.setAxe(self.getFigure().add_subplot( 111 ))
def draw(self):
self.getLayH().draw()
def setFocus(self):
self.getLayH().setFocus()
def getVecAndDets(self, inter_params=None):
vec = self.getPltDtH().getVec()
vec_dets = self.getPltDtH().getVecDets()
return vec, vec_dets
def update(self, more=None):
if self.view.wasKilled():
return
if self.isReadyPlot():
self.clearPlot()
self.makeBackground()
inter_params = self.getParamsInter()
vec, vec_dets = self.getVecAndDets(inter_params)
draw_settings = self.getDrawSettings()
selected = self.getPltDtH().getUnvizRows()
x0, x1, y0, y1 = self.getAxisLims()
bx, by = (x1-x0)/100.0, (y1-y0)/100.0
corners = (x0, x1, y0, y1, bx, by)
if self.getPltDtH().isSingleVar():
self.dots_draws, mapper = self.prepareSingleVarDots(vec, vec_dets, draw_settings)
else:
self.dots_draws = self.prepareEntitiesDots(vec, vec_dets, draw_settings)
mapper = None
if len(selected) > 0:
selp = inter_params.get("slide_opac", 50)/100.
self.dots_draws["fc_dots"][numpy.array(list(selected)), -1] *= selp
self.dots_draws["ec_dots"][numpy.array(list(selected)), -1] *= selp
draw_indices = numpy.where(self.dots_draws["draw_dots"])[0]
if self.plotSimple(): ## #### NO PICKER, FASTER PLOTTING.
self.plotDotsSimple(self.getAxe(), self.dots_draws, draw_indices, draw_settings)
else:
self.plotDotsPoly(self.getAxe(), self.dots_draws, draw_indices, draw_settings)
if mapper is not None:
corners = self.plotMapperHist(self.axe, vec, vec_dets, mapper, self.NBBINS, corners, draw_settings)
self.makeFinish(corners[:4], corners[4:])
self.updateEmphasize(review=False)
self.draw()
self.setFocus()
else:
self.plot_void()
### IMPLEMENT
def isEntitiesPlt(self):
return False
def isRedPlt(self):
return False
def inCapture(self, event):
return event.inaxes == self.getAxe()
def isReadyPlot(self):
return True
def getAxisLims(self):
return (0,1,0,1)
def drawPoly(self):
return False
def plotSimple(self):
return not self.drawPoly()
def adjust(self):
pass
def makeBackground(self):
pass
def makeFinish(self, xylims=(0,1,0,1), xybs=(.1,.1)):
self.axe.axis([xylims[0], xylims[1], xylims[2], xylims[3]])
def updateEmphasize(self, review=True):
if self.hasParent() and self.isEntitiesPlt():
lids = self.getParentViewsm().getEmphasizedR(vkey=self.getId())
self.emphasizeOnOff(turn_on=lids, turn_off=None, review=review)
def emphasizeOnOff(self, turn_on=set(), turn_off=set(), hover=False, review=True):
pass
def clearPlot(self):
axxs = self.getFigure().get_axes()
for ax in axxs:
ax.cla()
if ax != self.getAxe():
self.getFigure().delaxes(ax)
self.clearHighlighted()
self.clearInfoText()
def clearHighlighted(self):
### IMPLEMENT
pass
def getId(self):
return self.view.getId()
def hasParent(self):
return self.view.hasParent()
def getParent(self):
return self.view.getParent()
def getLayH(self):
return self.view.getLayH()
def getPltDtH(self):
return self.view.getPltDtH()
def getParentData(self):
return self.view.getParentData()
def getParentViewsm(self):
return self.view.getParentViewsm()
def getDrawSettDef(self):
return self.view.getDrawSettDef()
def getDrawSettings(self):
return self.view.getDrawSettings()
def getVec(self, more=None):
return self.getPltDtH().getVec(more)
def getFigure(self):
return self.getLayH().getFigure()
def getAxe(self):
return self.axe
def setAxe(self, value):
self.axe = value
def delElement(self, key):
if key in self.elements:
del self.elements[key]
def setElement(self, key, value):
self.elements[key] = value
def getElement(self, key):
return self.elements[key]
def hasElement(self, key):
return key in self.elements
def getSettV(self, key, default=False):
return self.view.getSettV(key, default)
def makeAdditionalElements(self, panel=None):
return []
#### SEC: INTERACTIVE ELEMENTS
###########################################
def prepareInteractive(self, panel=None):
self.setElement("inter_elems", {})
boxes = self.makeAdditionalElements(panel)
self.interBind()
self.setElement("ellipse", Ellipse((2, -1), 0.5, 0.5))
for act, meth in self.getCanvasConnections():
if act == "MASK":
self.setElement("mask_creator", MaskCreator(self.getAxe(), None, buttons_t=[], callback_change=self.view.makeMenu))
else:
self.getFigure().canvas.mpl_connect(act, meth)
self.prepareActions()
self.setKeys()
return boxes
def getCanvasConnections(self):
return []
def interBind(self):
for button in self.getElement("buttons"):
button["element"].Bind(wx.EVT_BUTTON, button["function"])
for name, elem in self.getElement("inter_elems").items():
if re.match("slide", name):
elem.Bind(wx.EVT_SCROLL_THUMBRELEASE, self.OnSlide)
if re.match("choice", name):
elem.Bind(wx.EVT_CHOICE, self.OnChoice)
def getParamsInter(self):
inter_params = {}
for name, elem in self.getElement("inter_elems").items():
if re.match("slide", name):
inter_params[name] = elem.GetValue()
if re.match("choice", name):
inter_params[name] = elem.GetSelection()
return inter_params
def getInterElements(self):
return self.getElement("inter_elems")
def OnSlide(self, event):
self.update()
def OnChoice(self, event):
self.update()
#### SEC: ACTIONS
###########################################
def hasToolbActive(self):
return self.getLayH().getToolbar().has_active_button()
def getActionsDetails(self):
details = []
for action, dtl in self.actions_map.items():
details.append({"label": "%s[%s]" % (dtl["label"].ljust(30), dtl["key"]),
"legend": dtl["legend"], "active": dtl["active_q"](),
"key": dtl["key"], "order": dtl["order"], "type": dtl["type"]})
if self.hasElement("mask_creator"):
details.extend(self.getElement("mask_creator").getActionsDetails(6))
return details
def prepareActions(self):
self.actions_map = {}
def OnMenuAction(self, event):
if event.GetId() in self.menu_map_act:
self.doActionForKey(self.menu_map_act[event.GetId()])
def OnMenuMCAction(self, event):
if self.hasElement("mask_creator") and event.GetId() in self.menu_map_act:
self.getElement("mask_creator").doActionForKey(self.menu_map_act[event.GetId()])
def makeActionsMenu(self, frame, menuAct=None):
self.menu_map_act = {}
if menuAct is None:
menuAct = wx.Menu()
for action in sorted(self.getActionsDetails(), key=lambda x:(x["order"],x["key"])):
ID_ACT = wx.NewId()
if action["type"] == "check":
m_act = menuAct.AppendCheckItem(ID_ACT, action["label"], action["legend"])
frame.Bind(wx.EVT_MENU, self.OnMenuAction, m_act)
self.menu_map_act[ID_ACT] = action["key"]
if action["active"]:
m_act.Check()
else:
m_act = menuAct.Append(ID_ACT, action["label"], action["legend"])
if action["active"]:
if action["type"] == "mc":
frame.Bind(wx.EVT_MENU, self.OnMenuMCAction, m_act)
else:
frame.Bind(wx.EVT_MENU, self.OnMenuAction, m_act)
self.menu_map_act[ID_ACT] = action["key"]
else:
menuAct.Enable(ID_ACT, False)
if menuAct.GetMenuItemCount() == 0:
self.getParent().appendEmptyMenuEntry(menuAct, "No Actions", "There are no edit actions.")
return menuAct
################ HANDLING KEY ACTIONS
def setKeys(self, keys=None):
self.keys_map = {}
if keys is None:
for action, details in self.actions_map.items():
details["key"] = action[0]
self.keys_map[details["key"]] = action
else:
for action, details in self.actions_map.items():
details["key"] = None
for key, action in keys.items():
if action in self.actions_map:
self.actions_map[action]["key"] = key
self.keys_map[key] = action
def doActionForKey(self, key):
if self.keys_map.get(key, None in self.actions_map):
act = self.actions_map[self.keys_map[key]]
if act["type"] == "check" or act["active_q"]():
self.actions_map[self.keys_map[key]]["method"](self.actions_map[self.keys_map[key]]["more"])
return True
return False
def key_press_callback(self, event):
self.doActionForKey(event.key)
def mkey_press_callback(self, event):
self.doActionForKey(chr(event.GetKeyCode()).lower())
################ ACTIONS QUERIES
def q_has_poly(self):
return self.hasElement("mask_creator") and self.getElement("mask_creator").q_has_poly()
def q_active_poly(self):
return self.hasElement("mask_creator") and self.getElement("mask_creator").isActive()
def q_active_info(self):
return self.getElement("active_info")
def q_true(self):
return True
def q_not_svar(self):
return not self.getPltDtH().isSingleVar()
def q_has_selected(self):
return len(self.getHighlightedIds()) > 0
################ ACTIONS FUNCTIONS
def do_toggle_info(self, event):
self.setElement("active_info", not self.getElement("active_info"))
def do_toggle_poly(self, event):
self.togglePoly()
def togglePoly(self):
if self.hasElement("mask_creator"):
if self.getElement("mask_creator").isActive():
self.getElement("mask_creator").setButtons([])
self.setElement("act_butt", [1])
else:
self.getElement("mask_creator").setButtons([1])
self.setElement("act_butt", [])
self.view.makeMenu()
self.getLayH().getToolbar().mouse_move()
def apply_mask(self, path, radius=0.0):
if path is not None and self.getCoords() is not None:
points = numpy.transpose((self.getCoords(0), self.getCoords(1)))
return [i for i,point in enumerate(points) if path.contains_point(point, radius=radius)]
return []
def do_deselect_all(self, more=None):
if self.isEntitiesPlt():
self.sendEmphasize(None)
def do_set_select(self, setp):
if self.isEntitiesPlt():
points = [i for (i,p) in enumerate(self.getVec()) if p in setp]
self.sendEmphasize(points)
def do_select_poly(self, more=None):
if self.isEntitiesPlt():
points = self.apply_mask(self.getElement("mask_creator").get_path())
self.getElement("mask_creator").clear()
if points != set():
self.sendEmphasize(points)
def do_flip_emphasized(self, more=None):
if self.isEntitiesPlt():
self.sendFlipEmphasizedR()
def save_supp_var(self, more=None):
if self.hasParent():
self.getParent().OnSaveSuppAsVar(self.getVec(), "%s" % self.getParentViewsm().getItemId(self.getId()))
def save_sel_var(self, more=None):
if self.hasParent() and self.isEntitiesPlt():
lids = self.getParentViewsm().getEmphasizedR(vkey=self.getId())
self.getParent().OnSaveSelAsVar(lids, "S%s" % self.getParentViewsm().getItemId(self.getId()))
#### SEC: FILL and WAIT PLOTTING
###########################################
def plot_void(self):
if self.view.wasKilled():
return
self.clearPlot()
self.axe.plot([r/10.0+0.3 for r in [0,2,4]], [0.5 for r in [0,2,4]], 's', markersize=10, mfc="#DDDDDD", mec="#DDDDDD")
self.axe.axis([0,1,0,1])
self.draw()
def init_wait(self):
self.call_wait = wx.CallLater(1, self.plot_wait)
self.cp = 0
def kill_wait(self):
if self.call_wait is not None:
self.call_wait.Stop()
if self.view.wasKilled():
return
self.clearPlot()
self.axe.plot([r/10.0+0.3 for r in [1,3]], [0.5, 0.5], 's', markersize=10, mfc="#DDDDDD", mec="#DDDDDD")
self.axe.plot([r/10.0+0.3 for r in [0,2,4]], [0.5, 0.5, 0.5], 'ks', markersize=10)
self.axe.axis([0,1,0,1])
self.draw()
def plot_wait(self):
if self.view.wasKilled():
return
self.clearPlot()
self.axe.plot([r/10.0+0.3 for r in range(5)], [0.5 for r in range(5)], 'ks', markersize=10, mfc="#DDDDDD", mec="#DDDDDD")
self.axe.plot(((self.cp)%5)/10.0+0.3, 0.5, 'ks', markersize=10)
self.axe.axis([0,1,0,1])
self.draw()
self.cp += 1
self.call_wait.Restart(self.wait_delay)
def setInfoText(self, text_str):
if not self.hasElement("info_text"):
info_text = {}
ax = self.getAxe()
dets = self.getInfoDets()
xlims = ax.get_xlim()
lx = xlims[0] + dets["px"]*(xlims[1]-xlims[0])
ylims = ax.get_ylim()
ly = ylims[0] + dets["py"]*(ylims[1]-ylims[0])
info_text["text"] = ax.annotate(text_str, xy=(lx, ly),
xycoords='data', xytext=(dets["dx"], dets["dy"]), textcoords='offset points',
color=dets["ec"], va=dets["va"], ha=dets["ha"], backgroundcolor="#FFFFFF",
bbox=dict(boxstyle="round", facecolor="#FFFFFF", ec=dets["ec"], alpha=dets["alpha"]),
zorder=8, **self.view.getFontProps())
self.setElement("info_text", info_text)
else:
self.getElement("info_text")["text"].set_text(text_str)
self.draw()
def clearInfoText(self):
self.delElement("info_text")
def delInfoText(self):
if self.hasElement("info_text"):
self.getElement("info_text")["text"].remove()
self.delElement("info_text")
self.draw()
def addStamp(self, pref=""):
if not self.getPltDtH().hasQueries():
return
if not self.hasElement("red_stamp"):
old_pos = self.getAxe().get_position()
# print "PosA", old_pos
new_pos = [old_pos.x0, old_pos.y0, old_pos.width, 7./8*old_pos.height]
# # pos2 = [0., 0., 1., 1.0]
self.getAxe().set_position(new_pos)
# pos1 = self.axe.get_position()
# print "PosB", pos1
qrs = self.getPltDtH().getQueries()
red = Redescription.fromQueriesPair(qrs, self.getParentData())
tex_fields = ["LHS:query:", "RHS:query:", ":acc:", ":perc:Exx"]
headers = ["qL=", "qR=", "J=", "%supp="]
if self.getParentData().hasLT():
tex_fields.extend(["acc_ratioTL", "len_I_ratioTA"])
headers.extend(["J$_{I/O}$=", "supp$_{I/A}$="])
rr = pref
tex_str = red.disp(self.getParentData().getNames(), list_fields=tex_fields, with_fname=headers, sep=" ", delim="", nblines=3, style="T") #, rid=rr)
if not self.hasElement("red_stamp"):
red_stamp = {"old_pos": old_pos}
old_pos = self.getAxe().get_position()
red_stamp["text"] = self.getAxe().text(0.5*self.getAxe().get_xlim()[1], self.getAxe().get_ylim()[1], tex_str, ha="center", va="bottom", **self.view.getFontProps())
self.setElement("red_stamp", red_stamp)
else:
self.getElement("red_stamp")["text"].set_text(tex_str, **self.view.getFontProps())
self.draw()
def delStamp(self):
if self.hasElement("red_stamp"):
red_stamp = self.getElement("red_stamp")
self.axe.set_position(red_stamp["old_pos"])
red_stamp["text"].remove()
self.delElement("red_stamp")
self.draw()
class DrawerEntitiesTD(DrawerBasis):
NBBINS = 20
MAP_POLY = False
max_emphlbl = 5
map_select_supp = [("l", "|E"+SSetts.sym_sparts[SSetts.Exo]+"|", [SSetts.Exo]),
("r", "|E"+SSetts.sym_sparts[SSetts.Eox]+"|", [SSetts.Eox]),
("i", "|E"+SSetts.sym_sparts[SSetts.Exx]+"|", [SSetts.Exx]),
("o", "|E"+SSetts.sym_sparts[SSetts.Eoo]+"|", [SSetts.Eoo])]
def __init__(self, view):
DrawerBasis.__init__(self, view)
self.dots_draws = None
def isEntitiesPlt(self):
return True
def drawPoly(self):
return self.getPltDtH().hasPolyCoords() & self.getSettV("map_poly", self.MAP_POLY)
def getAxisLims(self):
return self.getPltDtH().getParentCoordsExtrema()
#### SEC: ACTIONS
######################################
def makeAdditionalElements(self, panel=None):
if panel is None:
panel = self.getLayH().getPanel()
flags = wx.ALIGN_CENTER | wx.ALL # | wx.EXPAND
buttons = []
buttons.append({"element": wx.Button(panel, size=(self.getLayH().butt_w,-1), label="Expand"),
"function": self.view.OnExpandSimp})
buttons[-1]["element"].SetFont(wx.Font(8, wx.FONTFAMILY_DEFAULT, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL))
inter_elems = {}
inter_elems["slide_opac"] = wx.Slider(panel, -1, 10, 0, 100, wx.DefaultPosition, (self.getLayH().sld_w, -1), wx.SL_HORIZONTAL)
##############################################
add_boxB = wx.BoxSizer(wx.HORIZONTAL)
add_boxB.AddSpacer((self.getLayH().getSpacerWn()/2.,-1))
v_box = wx.BoxSizer(wx.VERTICAL)
label = wx.StaticText(panel, wx.ID_ANY,u"- opac. disabled +")
label.SetFont(wx.Font(8, wx.FONTFAMILY_DEFAULT, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL))
v_box.Add(label, 0, border=1, flag=flags) #, userData={"where": "*"})
v_box.Add(inter_elems["slide_opac"], 0, border=1, flag=flags) #, userData={"where":"*"})
add_boxB.Add(v_box, 0, border=1, flag=flags)
add_boxB.AddSpacer((self.getLayH().getSpacerWn(),-1))
add_boxB.Add(buttons[-1]["element"], 0, border=1, flag=flags)
add_boxB.AddSpacer((self.getLayH().getSpacerWn()/2.,-1))
self.setElement("buttons", buttons)
self.setElement("inter_elems", inter_elems)
return [add_boxB]
def getCanvasConnections(self):
return [("MASK", None),
("key_press_event", self.key_press_callback),
("button_release_event", self.on_click),
("motion_notify_event", self.on_motion)]
def hoverActive(self):
return self.getSettV('hover_entities') and not self.hasToolbActive()
def hoverCoordsActive(self):
return self.getSettV('hover_coords') and not self.hasToolbActive()
def clickActive(self):
return self.getSettV('click_entities') and not self.hasToolbActive()
def getLidAt(self, x, y):
if self.drawPoly():
return self.getLidAtPoly(x, y)
return self.getLidAtSimple(x, y)
def getLidAtPoly(self, x, y):
ids_drawn = | numpy.where(self.dots_draws["draw_dots"]) | numpy.where |
'''
Basic classes for sections and surfaces, and fundamental functions
'''
import copy
import os
import re
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
from scipy.interpolate import CubicSpline
from scipy import spatial
from scipy.interpolate import interp1d
from scipy.spatial.distance import cdist
class BasicSection():
'''
Section: 3D curve and 2D unit curve
'''
def __init__(self, thick=None, chord=1.0, twist=0.0):
self.xLE = 0.0
self.yLE = 0.0
self.zLE = 0.0
self.chord = chord
self.twist = twist
self.thick = 0.0
self.thick_set = thick
#* 2D unit curve
self.xx = None
self.yy = None # open curve
self.yu = None # upper surface of closed curve
self.yl = None # lower surface of closed curve
#* 3D section
self.x = np.zeros(1)
self.y = np.zeros(1)
self.z = np.zeros(1)
def set_params(self, init=False, **kwargs):
'''
Set parameters of the section
### Inputs:
```text
init: True, set to default values
```
### kwargs:
```text
xLE, yLE, zLE, chord, twist, thick (None)
```
'''
if init:
self.xLE = 0.0
self.yLE = 0.0
self.zLE = 0.0
self.chord = 1.0
self.twist = 0.0
self.thick = 0.0
self.thick_set = None
return
if 'xLE' in kwargs.keys():
self.xLE = kwargs['xLE']
if 'yLE' in kwargs.keys():
self.yLE = kwargs['yLE']
if 'zLE' in kwargs.keys():
self.zLE = kwargs['zLE']
if 'chord' in kwargs.keys():
self.chord = kwargs['chord']
if 'twist' in kwargs.keys():
self.twist = kwargs['twist']
if 'thick' in kwargs.keys():
self.thick_set = kwargs['thick']
def section(self, nn=1001, flip_x=False, proj=True):
'''
### Functions:
```text
1. Construct 2D unit curve (null in the BasicSection)
2. Transform to 3D curve
```
### Inputs:
```text
nn: total amount of points (it's here for function BasicSurface.geo_secs)
flip_x: True ~ flip section.xx in reverse order
proj: True => for unit airfoil, the rotation keeps the projection length the same
```
'''
if not isinstance(self.xx, np.ndarray):
raise Exception('The 2D curve has not been constructed')
#* Flip xx
if flip_x:
self.xx = np.flip(self.xx)
#* Transform to 3D for open section
if isinstance(self.yy, np.ndarray):
self.x, _, self.y, _ = transform(self.xx, self.xx, self.yy, self.yy,
scale=self.chord, rot=self.twist, dx=self.xLE, dy=self.yLE, proj=proj)
self.z = np.ones_like(self.x)*self.zLE
#* Transform to 3D for closed section
if isinstance(self.yu, np.ndarray):
xu_, xl_, yu_, yl_ = transform(self.xx, self.xx, self.yu, self.yl,
scale=self.chord, rot=self.twist, dx=self.xLE, dy=self.yLE, proj=proj)
self.x = np.concatenate((np.flip(xl_),xu_[1:]), axis=0)
self.y = np.concatenate((np.flip(yl_),yu_[1:]), axis=0)
self.z = np.ones_like(self.x)*self.zLE
def copyfrom(self, other):
'''
Copy from anthor BasicSection object
'''
if not isinstance(other, BasicSection):
raise Exception('Must copy from another BasicSection object')
self.xLE = other.xLE
self.yLE = other.yLE
self.zLE = other.zLE
self.chord = other.chord
self.twist = other.twist
self.xx = copy.deepcopy(other.xx)
self.yy = copy.deepcopy(other.yy)
self.yu = copy.deepcopy(other.yu)
self.yl = copy.deepcopy(other.yl)
self.x = other.x.copy()
self.y = other.y.copy()
self.z = other.z.copy()
class BasicSurface():
'''
Construct multi-section surface with BasicSection objects.
>>> BasicSurface(n_sec=0, name='Surf', nn=1001, ns=101, project=True)
'''
def __init__(self, n_sec=0, name='Surf', nn=1001, ns=101, project=True):
n_ = max(1, n_sec)
self.l2d = n_ == 1 # type: bool
self.name = name # type: str
self.nn = nn # type: int
self.ns = ns # type: int
self.secs = [ BasicSection() for _ in range(n_) ]
self.surfs = [] # type: list[list]
self.project = project # type: bool
# Parameters for plot
self.half_s = 0.5 # type: float
self.center = np.array([0.5, 0.5, 0.5])
@property
def n_sec(self):
return len(self.secs)
@property
def zLE_secs(self):
'''
List of section zLE
'''
return [round(sec.zLE,5) for sec in self.secs]
def read_setting(self, fname: str):
'''
Read in Surface layout parameters from file
### Inputs:
```text
fname: control file name
```
'''
if not os.path.exists(fname):
raise Exception(fname+' does not exist for surface setting')
key_dict = {'Layout:': 1}
found_surf = False
found_key = 0
with open(fname, 'r') as f:
lines = f.readlines()
iL = 0
while iL<len(lines):
line = lines[iL].split()
if len(line) < 1:
iL += 1
continue
if not found_surf and len(line) > 1:
if '[Surf]' in line[0] and self.name == line[1]:
found_surf = True
elif found_surf and '[Surf]' in line[0]:
break
elif found_surf and found_key == 0:
if line[0] in key_dict:
found_key = key_dict[line[0]]
elif found_surf and found_key == 1:
for i in range(self.n_sec):
iL += 1
line = lines[iL].split()
self.secs[i].xLE = float(line[0])
self.secs[i].yLE = float(line[1])
self.secs[i].zLE = float(line[2])
self.secs[i].chord = float(line[3])
self.secs[i].twist = float(line[4])
if len(line) >= 6:
self.secs[i].thick_set = float(line[5])
if self.l2d:
self.secs[i].zLE = 0.0
found_key = 0
else:
# Lines that are not relevant
pass
iL += 1
self.layout_center()
def layout_center(self):
'''
Locate layout center for plot
'''
x_range = [self.secs[0].xLE, self.secs[0].xLE]
y_range = [self.secs[0].yLE, self.secs[0].yLE]
z_range = [self.secs[0].zLE, self.secs[0].zLE]
for i in range(self.n_sec):
x_range[0] = min(x_range[0], self.secs[i].xLE)
x_range[1] = max(x_range[1], self.secs[i].xLE+self.secs[i].chord)
y_range[0] = min(y_range[0], self.secs[i].yLE)
y_range[1] = max(y_range[1], self.secs[i].yLE)
z_range[0] = min(z_range[0], self.secs[i].zLE)
z_range[1] = max(z_range[1], self.secs[i].zLE)
span = np.array([x_range[1]-x_range[0], y_range[1]-y_range[0], z_range[1]-z_range[0]])
self.half_s = span.max()/2.0
self.center[0] = 0.5*(x_range[1]+x_range[0])
self.center[1] = 0.5*(y_range[1]+y_range[0])
self.center[2] = 0.5*(z_range[1]+z_range[0])
def copyfrom(self, other):
'''
Copy from another BasicSurface object
'''
if not isinstance(other, BasicSurface):
raise Exception('Must copy from a BasicSurface object')
self.l2d = other.l2d
self.name = other.name
self.nn = other.nn
self.ns = other.ns
self.secs = copy.deepcopy(other.secs)
self.surfs = copy.deepcopy(other.surfs)
self.half_s = other.half_s
self.center = other.center.copy()
def linear_interpolate_z(self, z: float, key='x'):
'''
Linear interpolation of key by given z
>>> key_value = linear_interpolate_z(z: float, key='x')
### Inputs:
```text
z: location of the value
key: The value to be interpolated
'x' or 'X'
'y' or 'Y'
'c' or 'C' or 'chord'
't' or 'thick' or 'thickness'
'twist'
```
'''
#* Find the adjacent control sections
i_sec = self.n_sec
for i in range(self.n_sec-1):
if (z-self.secs[i].zLE)*(z-self.secs[i+1].zLE)<0 or z==self.secs[i].zLE:
i_sec = i
if i_sec >= self.n_sec:
raise Exception('z is not within the surface: ', z, self.secs[0].zLE, self.secs[-1].zLE)
#* Linear interpolation
tt = (z-self.secs[i_sec].zLE)/(self.secs[i_sec+1].zLE-self.secs[i_sec].zLE)
key_value = None
if key == 'x' or key == 'X':
key_value = (1-tt)*self.secs[i_sec].xLE + tt*self.secs[i_sec+1].xLE
elif key == 'y' or key == 'Y':
key_value = (1-tt)*self.secs[i_sec].yLE + tt*self.secs[i_sec+1].yLE
elif key == 'c' or key == 'C' or key == 'chord':
key_value = (1-tt)*self.secs[i_sec].chord + tt*self.secs[i_sec+1].chord
elif key == 't' or key == 'thick' or key == 'thickness':
key_value = (1-tt)*self.secs[i_sec].thick + tt*self.secs[i_sec+1].thick
elif key == 'twist':
key_value = (1-tt)*self.secs[i_sec].twist + tt*self.secs[i_sec+1].twist
else:
raise Exception('Unknown key:', key)
return key_value
def geo_secs(self, flip_x=False):
'''
Update surface sections
### Functions:
```text
1. Construct 2D unit curve (null in the BasicSection)
2. Transform to 3D curve
```
### Inputs:
```text
flip_x: True ~ flip section.xx in reverse order
```
'''
for i in range(self.n_sec):
self.secs[i].section(nn=self.nn, flip_x=flip_x, proj=self.project)
def geo(self, flip_x=False, update_sec=True):
'''
Generate surface geometry
### Inputs:
```text
flip_x: True ~ flip section.xx in reverse order
update_sec: True ~ update sections
```
'''
if update_sec:
self.geo_secs(flip_x=flip_x)
self.surfs = []
if self.l2d:
sec_ = copy.deepcopy(self.secs[0])
sec_.zLE = 1.0
surf = self.section_surf(self.secs[0], sec_, ns=self.ns)
self.surfs.append(surf)
else:
for i in range(self.n_sec-1):
surf = self.section_surf(self.secs[i], self.secs[i+1], ns=self.ns)
self.surfs.append(surf)
def geo_axisymmetric(self, phi, flip_x=False, update_sec=True):
'''
Generate axisymmetric surface geometry
### Inputs:
```text
phi: list or ndarray, position angle of control sections
flip_x: True ~ flip section.xx in reverse order
update_sec: True ~ update sections
```
'''
if update_sec:
self.geo_secs(flip_x=flip_x)
self.surfs = []
if self.l2d:
raise Exception('Axisymmetric geometry can not be 2D surface')
else:
for i in range(self.n_sec-1):
surf = self.section_surf_axisymmetric(self.secs[i], self.secs[i+1], phi[i], phi[i+1], ns=self.ns)
self.surfs.append(surf)
@staticmethod
def section_surf(sec0, sec1, ns=101):
'''
Interplot surface section between curves
>>> surf = section_surf(sec0, sec1, ns)
### Inputs:
```text
sec0, sec1: Section object
ns: number of spanwise points
```
### Return:
```text
surf: [surf_x, surf_y, surf_z]
list of ndarray [ns, nn]
```
'''
nn = sec0.x.shape[0]
surf_x = np.zeros((ns,nn))
surf_y = np.zeros((ns,nn))
surf_z = np.zeros((ns,nn))
for i in range(ns):
tt = 1.0*i/(ns-1.0)
surf_x[i,:] = (1-tt)*sec0.x + tt*sec1.x
surf_y[i,:] = (1-tt)*sec0.y + tt*sec1.y
surf_z[i,:] = (1-tt)*sec0.z + tt*sec1.z
surf = [surf_x, surf_y, surf_z]
return surf
@staticmethod
def section_surf_axisymmetric(sec0, sec1, phi0: float, phi1: float, ns=101):
'''
Interplot axisymmetric surface section between curves
>>> surf = section_surf_axisymmetric(sec0, sec1, ns)
### Inputs:
```text
sec0, sec1: Section object
phi0, phi1: angle (degree) about X-axis (X-Y plane is 0 degree)
ns: number of spanwise points
```
### Return:
```text
surf: [surf_x, surf_y, surf_z]
list of ndarray [ns, nn]
```
'''
nn = sec0.x.shape[0]
surf_x = np.zeros((ns,nn))
surf_y = np.zeros((ns,nn))
surf_z = np.zeros((ns,nn))
xx = np.zeros(nn)
yy = np.zeros(nn)
zz = np.zeros(nn)
R = np.sqrt(sec0.yLE**2+sec0.zLE**2)
for i in range(ns):
tt = 1.0*i/(ns-1.0)
t0 = 1-tt
xLE = t0*sec0.xLE + tt*sec1.xLE
yLE_ = t0*sec0.yLE + tt*sec1.yLE
zLE_ = t0*sec0.zLE + tt*sec1.zLE
angle = t0*phi0 + tt*phi1
yLE = R*np.cos(angle/180.0*np.pi)
zLE = R*np.sin(angle/180.0*np.pi)
xx = t0*sec0.x + tt*sec1.x
yy = t0*sec0.y + tt*sec1.y + (yLE-yLE_)
zz = t0*sec0.z + tt*sec1.z + (zLE-zLE_)
surf_x[i,:], surf_y[i,:], surf_z[i,:] = rotate(xx, yy, zz, angle=angle, origin=[xLE, yLE, zLE], axis='X')
return [surf_x, surf_y, surf_z]
def flip(self, axis='None', plane='None'):
'''
For surfs, and center. (This should be the last action)
The axis and plane can be a single string,
or a string contains multiple actions to take in order, e.g., '+X +Y'.
### Inputs:
```text
axis: turn 90 degrees about axis: +X, -X, +Y, -Y, +Z, -Z
plane: get symmetry about plane: 'XY', 'YZ', 'ZX'
```
'''
for axis_ in axis.split():
if '+X' in axis_:
for i_sec in range(len(self.surfs)):
temp = -self.surfs[i_sec][2]
self.surfs[i_sec][2] = copy.deepcopy(self.surfs[i_sec][1])
self.surfs[i_sec][1] = copy.deepcopy(temp)
temp = self.center[2]*1.0
self.center[2] = self.center[1]*1.0
self.center[1] = -temp
if '-X' in axis_:
for i_sec in range(len(self.surfs)):
temp = -self.surfs[i_sec][1]
self.surfs[i_sec][1] = copy.deepcopy(self.surfs[i_sec][2])
self.surfs[i_sec][2] = copy.deepcopy(temp)
temp = self.center[1]*1.0
self.center[1] = self.center[2]
self.center[2] = -temp
if '+Y' in axis_:
for i_sec in range(len(self.surfs)):
temp = -self.surfs[i_sec][0]
self.surfs[i_sec][0] = copy.deepcopy(self.surfs[i_sec][2])
self.surfs[i_sec][2] = copy.deepcopy(temp)
temp = self.center[0]
self.center[0] = self.center[2]
self.center[2] = -temp
if '-Y' in axis_:
for i_sec in range(len(self.surfs)):
temp = -self.surfs[i_sec][2]
self.surfs[i_sec][2] = copy.deepcopy(self.surfs[i_sec][0])
self.surfs[i_sec][0] = copy.deepcopy(temp)
temp = self.center[2]
self.center[2] = self.center[0]
self.center[0] = -temp
if '+Z' in axis_:
for i_sec in range(len(self.surfs)):
temp = -self.surfs[i_sec][1]
self.surfs[i_sec][1] = copy.deepcopy(self.surfs[i_sec][0])
self.surfs[i_sec][0] = copy.deepcopy(temp)
temp = self.center[1]
self.center[1] = self.center[0]
self.center[0] = -temp
if '-Z' in axis_:
for i_sec in range(len(self.surfs)):
temp = -self.surfs[i_sec][0]
self.surfs[i_sec][0] = copy.deepcopy(self.surfs[i_sec][1])
self.surfs[i_sec][1] = copy.deepcopy(temp)
temp = self.center[0]
self.center[0] = self.center[1]
self.center[1] = -temp
if 'XY' in plane:
for i_sec in range(len(self.surfs)):
self.surfs[i_sec][2] = -self.surfs[i_sec][2]
self.center[2] = - self.center[2]
if 'YZ' in plane:
for i_sec in range(len(self.surfs)):
self.surfs[i_sec][0] = -self.surfs[i_sec][0]
self.center[0] = - self.center[0]
if 'ZX' in plane:
for i_sec in range(len(self.surfs)):
self.surfs[i_sec][1] = -self.surfs[i_sec][1]
self.center[1] = - self.center[1]
def translate(self, dX=0.0, dY=0.0, dZ=0.0):
'''
Translate surface coordinates
>>> translate(dX=0.0, dY=0.0, dZ=0.0)
'''
for surf in self.surfs:
surf[0] += dX
surf[1] += dY
surf[2] += dZ
self.center[0] += dX
self.center[1] += dY
self.center[2] += dZ
def scale(self, scale=1.0, X0=0.0, Y0=0.0, Z0=0.0):
'''
Scale surface coordinates about (X0, Y0, Z0)
>>> scale(scale=1.0, X0=0.0, Y0=0.0, Z0=0.0)
'''
for surf in self.surfs:
surf[0] = (surf[0]-X0)*scale + X0
surf[1] = (surf[1]-Y0)*scale + Y0
surf[2] = (surf[2]-Z0)*scale + Z0
self.center[0] = (self.center[0]-X0)*scale + X0
self.center[1] = (self.center[1]-Y0)*scale + Y0
self.center[2] = (self.center[2]-Z0)*scale + Z0
def smooth(self, i_sec0: int, i_sec1: int, smooth0=False, smooth1=False, dyn0=None, ratio_end=10):
'''
Smooth the spanwise curve between i_sec0 and i_sec1
### Inputs:
```text
i_sec0, i_sec1: the starting and ending section index of the smooth region
smooth0, smooth1: bool, whether have smooth transition to the neighboring surfaces
dyn0: (dy/dz)|n, set the slope of y-z curve at the end of section 0
```
'''
#* Do not have neighboring surfaces
if i_sec0 == 0:
smooth0 = False
if i_sec1 == self.n_sec-1:
smooth1 = False
#* For each point in the section curve (n_point)
n_point = self.surfs[0][0].shape[1]
for ip in range(n_point):
#* Collect the spanwise control points
xx = []
yy = []
zz = []
for i_surf in range(i_sec0, i_sec1):
xx.append(self.surfs[i_surf][0][0,ip])
yy.append(self.surfs[i_surf][1][0,ip])
zz.append(self.surfs[i_surf][2][0,ip])
xx.append(self.surfs[i_sec1-1][0][-1,ip])
yy.append(self.surfs[i_sec1-1][1][-1,ip])
zz.append(self.surfs[i_sec1-1][2][-1,ip])
#* Construct spanwise spline curve
bcx0 = (2,0.0)
bcx1 = (2,0.0)
bcy0 = (2,0.0)
bcy1 = (2,0.0)
if smooth0:
ii = i_sec0-1
dz = self.surfs[ii][2][-1,ip] - self.surfs[ii][2][-2,ip]
dxz0 = (self.surfs[ii][0][-1,ip] - self.surfs[ii][0][-2,ip])/dz
dyz0 = (self.surfs[ii][1][-1,ip] - self.surfs[ii][1][-2,ip])/dz
bcx0 = (1,dxz0)
bcy0 = (1,dyz0)
if smooth1:
ii = i_sec1+1
dz = self.surfs[ii][2][1,ip] - self.surfs[ii][2][0,ip]
dxz1 = (self.surfs[ii][0][1,ip] - self.surfs[ii][0][0,ip])/dz
dyz1 = (self.surfs[ii][1][1,ip] - self.surfs[ii][1][0,ip])/dz
bcx1 = (1,dxz1)
bcy1 = (1,dyz1)
curve_x = CubicSpline(zz, xx, bc_type=(bcx0, bcx1))
if isinstance(dyn0, float) or isinstance(dyn0, int):
if abs(dyn0)<=1e-6:
if ip < n_point-1:
_x1 = self.surfs[i_sec0][0][0,ip+1] - self.surfs[i_sec0][0][0,ip]
_y1 = self.surfs[i_sec0][1][0,ip+1] - self.surfs[i_sec0][1][0,ip]
_z2 = self.surfs[i_sec0][2][1,ip] - self.surfs[i_sec0][2][0,ip]
_x2 = curve_x(self.surfs[i_sec0][2][1,ip]) - self.surfs[i_sec0][0][0,ip]
_yz = _y1/_z2 * np.clip(_x2/_x1, -1, 1)
bcy0 = (1,_yz)
else:
bcy0 = (1,_yz)
else:
bcy0 = (1,dyn0)
curve_y = CubicSpline(zz, yy, bc_type=(bcy0, bcy1))
#* Smoothly change to the original geometry at both ends of the curve (ip=0, n_point-1)
r1 = self.smooth_ratio_function(-ip/(n_point-1)*10, a=ratio_end)
r2 = self.smooth_ratio_function((ip/(n_point-1)-1)*10, a=ratio_end)
ratio = r1+r2
#* Use the spanwise spline to update the spanwise geometry
for i_surf in range(i_sec0, i_sec1):
nn = self.surfs[i_surf][0].shape[0]
for j in range(nn):
zi = self.surfs[i_surf][2][j,ip]
self.surfs[i_surf][0][j,ip] = (1-ratio)*curve_x(zi) + ratio*self.surfs[i_surf][0][j,ip]
self.surfs[i_surf][1][j,ip] = (1-ratio)*curve_y(zi) + ratio*self.surfs[i_surf][1][j,ip]
def smooth_axisymmetric(self, i_sec0: int, i_sec1: int, phi, linear_TEx=True, RTE=None, RTE_=None, func_trans=None):
'''
Smooth the axisymmetric curve between i_sec0 and i_sec1
### Inputs:
```text
i_sec0, i_sec1: the starting and ending section index of the smooth region
phi: list or ndarray, position angle of control sections: i_sec0 ~ i_sec1
linear_TEx: if True, the x coordinates of trailing edge curve are piece-wise
linear distribution. Otherwise, they can be nonlinear distribution
due to the leading edge curve
RTE: default None, then the trailing edge curve in YZ plane is generated
by the layout parameters. If provided a float, then the trailing
edge curve in YZ plane is set to a circle. Its origin is (0,0),
radius is RTE
RTE_: if RTE_ is provided, it means the control section is close sections
i.e., both upper and lower surfaces of the control section exist
Then, RTE_ is the inner circle radius
func_trans: optional function: ratio = func_trans(tx)
ratio is a float (0~1), representing the extent of the YZ-plane
curve being similar to a circle. When ratio is 1, the curve is the
specified circle of which the radius is RTE.
tx is a float (0~1), representing the relative x-axis location of
the YZ-plane curve
default None, means ratio = tx
```
'''
periodic = False
if np.abs(phi[0]+phi[-1]-360.0)<1E-3:
periodic = True
#* First, smooth the X-axis position of each section
xx = []
for i in range(i_sec0, i_sec1+1):
xx.append(self.secs[i].xLE)
if periodic:
curve_x = CubicSpline(phi, xx, bc_type='periodic')
else:
curve_x = CubicSpline(phi, xx)
for i_surf in range(i_sec0, i_sec1):
sec0 = self.secs[i_surf]
sec1 = self.secs[i_surf+1]
for j in range(self.ns):
tt = 1.0*j/(self.ns-1.0)
xLE_ = (1-tt)*sec0.xLE + tt*sec1.xLE
chord = (1-tt)*sec0.chord + tt*sec1.chord
angle = (1-tt)*phi[i_surf] + tt*phi[i_surf+1]
xLE = curve_x(angle) # type: float
if linear_TEx:
self.surfs[i_surf][0][j,:] = (self.surfs[i_surf][0][j,:]-xLE_)/chord*(chord-xLE+xLE_) + xLE
else:
self.surfs[i_surf][0][j,:] += xLE - xLE_
#* Second, smooth the radius distribution in the circumferential direction
# For each point in the section curve (nn)
nn = self.secs[0].x.shape[0]
for ip in range(nn):
# Collect the circumferential control points
# Must use surfs data instead of secs data, since only the surfs data is rotated
rr = []
for i_surf in range(i_sec0, i_sec1):
y_ = self.surfs[i_surf][1][0,ip]
z_ = self.surfs[i_surf][2][0,ip]
r_ = np.sqrt(y_**2+z_**2)
rr.append(r_)
y_ = self.surfs[i_surf][1][-1,ip]
z_ = self.surfs[i_surf][2][-1,ip]
r_ = np.sqrt(y_**2+z_**2)
rr.append(r_)
if periodic:
curve_r = CubicSpline(phi, rr, bc_type='periodic')
else:
curve_r = CubicSpline(phi, rr)
# Use the circumferential spline to update the circumferential geometry
for i_surf in range(i_sec0, i_sec1):
for j in range(self.ns):
tt = 1.0*j/(self.ns-1.0)
angle = (1-tt)*phi[i_surf] + tt*phi[i_surf+1]
R = curve_r(angle) # type: float
if isinstance(RTE, float):
chord = (1-tt)*self.secs[i_surf].chord + tt*self.secs[i_surf+1].chord
xLE_ = (1-tt)*self.secs[i_surf].xLE + tt*self.secs[i_surf+1].xLE
xLE = curve_x(angle) # type: float
tx = (self.surfs[i_surf][0][j,ip]-xLE)/(chord-xLE+xLE_)
if func_trans is not None:
tx = func_trans(tx)
if isinstance(RTE_, float):
if ip>nn/2.0:
R = (1-tx)*R + tx*RTE
else:
R = (1-tx)*R + tx*RTE_
else:
R = (1-tx)*R + tx*RTE
self.surfs[i_surf][1][j,ip] = R*np.cos(angle/180.0*np.pi)
self.surfs[i_surf][2][j,ip] = R*np.sin(angle/180.0*np.pi)
@staticmethod
def smooth_ratio_function(x, a=4):
'''
x<=0, y: 0 -> 1
'''
y1 = 1.0/(1.0+np.exp(-a*x-2))
y2 = 1.0 + a/4*x
rr = x < -2/a
return rr*y1 + (1-rr)*y2
def bend(self, i_sec0: int, i_sec1: int, leader=None, kx=None, ky=None, kc=None, rot_x=False):
'''
Bend surfaces by a guide curve, i.e., leader.
>>> bend(i_sec0: int, i_sec1: int, leader=None,
>>> kx=None, ky=None, kc=None, rot_x=False)
### Inputs:
```text
i_sec0: the index of start section
i_sec1: the index of end section
leader: list of points (and chord length) in the guide curve.
[[x,y,z(,c)], [x,y,z(,c)], ...]
axis: Z-axis, spanwise direction
kx: X-axis slope (dx/dz) at both ends [kx0, kx1]
ky: Y-axis slope (dy/dz) at both ends [ky0, ky1]
kc: Chord slope (dc/dz) at both ends [kc0, kc1]
rot_x: if True, rotate sections in x-axis to
make the section vertical to the leader
```
### Note:
```text
The leader is a list of points to define the spline curve that
describes the leading edge curve.
Regenerate the surface between section i_sec0 and i_sec1
X is the flow direction (chord direction)
```
'''
if self.l2d:
print('No bending for 2D cases')
return
def sortZ(loc):
return loc[2]
#* Control points of the leader curve
leader_points = []
spline_chord = False
if not kc is None:
spline_chord = True
elif not leader is None:
if len(leader[0])==4:
spline_chord = True
if spline_chord:
for i in range(i_sec0, i_sec1+1):
leader_points.append([self.secs[i].xLE, self.secs[i].yLE, self.secs[i].zLE, self.secs[i].chord])
else:
for i in range(i_sec0, i_sec1+1):
leader_points.append([self.secs[i].xLE, self.secs[i].yLE, self.secs[i].zLE])
#* Manually provided leader points
if not leader is None:
if (spline_chord and len(leader[0])==4) or (not spline_chord and len(leader[0])==3):
# Need c and provide c // Don't need c and have no c
for point in leader:
leader_points.append(point)
elif spline_chord and len(leader[0])==3:
# Need c but have no c
for point in leader:
chord = self.linear_interpolate_z(point[2], key='chord')
point_ = point.append(chord)
leader_points.append(point)
else:
print('spline_chord', spline_chord)
print('len(leader[0])', len(leader[0]))
print('kc', kc)
raise Exception('Should not happen')
leader_points.sort(key=sortZ)
n_point = len(leader_points)
#* Generating leader curve
u = np.zeros(n_point) # independent variable list
v = np.zeros(n_point) # dependent variable list
w = np.zeros(n_point) # dependent variable list
c = np.zeros(n_point) # chord list
for i in range(n_point):
u[i] = leader_points[i][2] # z
v[i] = leader_points[i][0] # x
w[i] = leader_points[i][1] # y
if spline_chord:
c[i] = leader_points[i][3] # chord
if kx is None:
leader_x = CubicSpline(u, v)
else:
leader_x = CubicSpline(u, v, bc_type=((1,kx[0]), (1,kx[1])))
if ky is None:
leader_y = CubicSpline(u, w)
else:
leader_y = CubicSpline(u, w, bc_type=((1,ky[0]), (1,ky[1])))
if spline_chord and kc is None:
leader_c = CubicSpline(u, c)
elif not kc is None:
leader_c = CubicSpline(u, c, bc_type=((1,kc[0]), (1,kc[1])))
#* Bend surfaces
i0 = i_sec0
i1 = i_sec1
for i_surf in range(i0, i1):
sec0 = self.secs[i_surf]
sec1 = self.secs[i_surf+1]
ns = self.surfs[i_surf][0].shape[0]
for j in range(ns):
# Transition of inner sections
if i_sec0!=0 and j==0:
if i_surf==i0:
continue
if i_sec1!=self.n_sec-1 and j==ns-1:
if i_surf==i1-1:
continue
# Start bending
xx = self.surfs[i_surf][0][j,:]
yy = self.surfs[i_surf][1][j,:]
zz = self.surfs[i_surf][2][j,:]
nn = xx.shape[0]
zLE = zz[0]
xLE = leader_x(zLE)
yLE = leader_y(zLE)
# Original leading edge coordinates
tt = 1.0*j/(ns-1.0)
x0 = (1-tt)*sec0.xLE + tt*sec1.xLE
y0 = (1-tt)*sec0.yLE + tt*sec1.yLE
c0 = (1-tt)*sec0.chord + tt*sec1.chord
#* Rotation of x-axis (dy/dz)
if rot_x:
angle = -np.arctan(leader_y(zLE, 1))/np.pi*180.0
#xx, yy, zz = rotate(xx, yy, zz, angle=angle, origin=[xLE, yLE, zLE])
xx, yy, zz = rotate(xx, yy, zz, angle=angle, origin=[x0, y0, zLE])
#* Translation
if spline_chord:
xx, _, yy, _ = transform(xx, xx, yy, yy, dx=xLE-x0, dy=yLE-y0,
x0=xLE, y0=yLE, scale=leader_c(zLE)/c0)
else:
i_half = int(np.floor(nn/2.0))
if abs(xx[i_half]-x0)>1e-6 or abs(yy[i_half]-y0)>1e-6:
#* The location of curve end is fixed
# Single piece of open curve to be bent
xx, yy = stretch_fixed_point(xx, yy, dx=xLE-x0, dy=yLE-y0,
xm=x0, ym=y0, xf=xx[-1], yf=yy[-1])
else:
#* The locations of the trailing edge of upper and lower surface are fixed
# An airfoil (containing both upper and lower surfaces) to be bent
# Original leading edge: x0, xu[0], xl[-1]
# New leading edge: xLE
# Original trailing edge: xu[-1], xl[0]
xu = xx[i_half:]
xl = xx[:i_half+1]
yu = yy[i_half:]
yl = yy[:i_half+1]
xu, yu = stretch_fixed_point(xu, yu, dx=xLE-x0, dy=yLE-y0,
xm=x0, ym=y0, xf=xu[-1], yf=yu[-1])
xl, yl = stretch_fixed_point(xl, yl, dx=xLE-x0, dy=yLE-y0,
xm=x0, ym=y0, xf=xl[0], yf=yl[0])
xx = np.concatenate((xl,xu[1:]), axis=0)
yy = np.concatenate((yl,yu[1:]), axis=0)
self.surfs[i_surf][0][j,:] = xx.copy()
self.surfs[i_surf][1][j,:] = yy.copy()
self.surfs[i_surf][2][j,:] = zz.copy()
def Surf2Cylinder(self, flip=True, origin=None):
'''
Bend the surface (surfs) to cylinder (turbomachinery).
The original surface is constructed by 2D sections.
### Inputs:
```text
flip: if True, flip X
origin: default None, i.e., the cylinder origin axis is Z-axis for all sections
otherwise, provide a list of actual cylinder origins, [O0, O1, ...]
list length is the number of sections
each element is the cylinder origin of that section, i.e., [xO, yO]
can be ndarray or list
```
'''
if origin is None:
for surf in self.surfs:
ns = surf[0].shape[0]
for j in range(ns):
x, y, z = toCylinder(surf[0][j,:], surf[1][j,:], surf[2][j,:], flip=flip)
surf[0][j,:] = x.copy()
surf[1][j,:] = y.copy()
surf[2][j,:] = z.copy()
for sec in self.secs:
sec.x, sec.y, sec.z = toCylinder(sec.x, sec.y, sec.z, flip=flip)
else:
for i in range(len(self.surfs)):
surf = self.surfs[i]
ns = surf[0].shape[0]
for j in range(ns):
#! This linear interplotation of origins
#! causes non-smooth surface even when the smooth function is used
tt = j/(ns-1.0)
x0 = (1-tt)*origin[i][0] + tt*origin[i+1][0]
y0 = (1-tt)*origin[i][1] + tt*origin[i+1][1]
x, y, z = toCylinder(surf[0][j,:], surf[1][j,:], surf[2][j,:], flip=flip, origin=[x0,y0])
surf[0][j,:] = x.copy()
surf[1][j,:] = y.copy()
surf[2][j,:] = z.copy()
for i in range(self.n_sec):
sec = self.secs[i]
sec.x, sec.y, sec.z = toCylinder(sec.x, sec.y, sec.z, flip=flip, origin=origin[i])
def read_cylinder_origins(self, fname):
'''
Read in orgins of each section from file
>>> origins = read_cylinder_origins(fname)
### Inputs:
```text
fname: settings file name
```
'''
if not os.path.exists(fname):
raise Exception(fname+' does not exist for surface read setting')
key_dict = {'CylinderOrigin:': 9}
origins = []
found_surf = False
found_key = 0
with open(fname, 'r') as f:
lines = f.readlines()
iL = 0
while iL<len(lines):
line = lines[iL].split()
if len(line) < 1:
iL += 1
continue
if not found_surf and len(line) > 1:
if '[Surf]' in line[0] and self.name == line[1]:
found_surf = True
elif found_surf and '[Surf]' in line[0]:
break
elif found_surf and found_key == 0:
if line[0] in key_dict:
found_key = key_dict[line[0]]
elif found_surf and found_key == 9:
for i in range(self.n_sec):
iL += 1
line = lines[iL].split()
origins.append([float(line[0]), float(line[1])])
found_key = 0
else:
# Lines that are not relevant
pass
iL += 1
return origins
def output_tecplot(self, fname=None, one_piece=False):
'''
Output the surface to *.dat in Tecplot format
### Inputs:
```text
fname: the name of the file
one_piece: True ~ combine the spanwise sections into one piece
```
'''
# surf_x[ns,nt], ns => spanwise
if fname is None:
fname = self.name + '.dat'
n_sec = 1 if self.l2d else self.n_sec-1
n_piece = len(self.surfs)
with open(fname, 'w') as f:
f.write('Variables= X Y Z \n ')
nt = self.surfs[0][0].shape[1]
ns = self.ns
if not one_piece:
for i_sec in range(n_piece):
surf_x = self.surfs[i_sec][0]
surf_y = self.surfs[i_sec][1]
surf_z = self.surfs[i_sec][2]
f.write('zone T="sec %d" i= %d j= %d \n'%(i_sec, nt, ns))
for i in range(ns):
for j in range(nt):
f.write(' %.9f %.9f %.9f\n'%(surf_x[i,j], surf_y[i,j], surf_z[i,j]))
else:
n_point = n_sec*(self.ns-1) + 1
f.write('zone T="sec" i= %d j= %d \n'%(nt, n_point))
for i_sec in range(n_piece):
surf_x = self.surfs[i_sec][0]
surf_y = self.surfs[i_sec][1]
surf_z = self.surfs[i_sec][2]
if i_sec>=n_piece-2:
i_add = 0
else:
i_add = 1
for i in range(ns-i_add):
for j in range(nt):
f.write(' %.9f %.9f %.9f\n'%(surf_x[i,j], surf_y[i,j], surf_z[i,j]))
def output_plot3d(self, fname=None):
'''
Output the surface to *.grd in plot3d format
### Inputs:
```text
fname: the name of the file
```
'''
if fname is None:
fname = self.name + '.grd'
n_piece = len(self.surfs)
# X[ns][nn], ns => spanwise
X = self.surfs[0][0]
ns = X.shape[0]
nn = X.shape[1]
with open(fname, 'w') as f:
f.write('%d \n '%(n_piece)) # Number of surfaces
for i_sec in range(n_piece):
f.write('%d %d 1\n '%(nn, ns))
for i_sec in range(n_piece):
X = self.surfs[i_sec][0]
ii = 0
for i in range(ns):
for j in range(nn):
f.write(' %.9f '%(X[i,j]))
ii += 1
if ii%3==0 or (i==ns-1 and j==nn-1):
f.write(' \n ')
Y = self.surfs[i_sec][1]
ii = 0
for i in range(ns):
for j in range(nn):
f.write(' %.9f '%(Y[i,j]))
ii += 1
if ii%3==0 or (i==ns-1 and j==nn-1):
f.write(' \n ')
Z = self.surfs[i_sec][2]
ii = 0
for i in range(ns):
for j in range(nn):
f.write(' %.9f '%(Z[i,j]))
ii += 1
if ii%3==0 or (i==ns-1 and j==nn-1):
f.write(' \n ')
def output_section(self, fname=None, TwoD=True):
'''
Output the control sections
### Inputs:
```text
fname: file name of the output file
TwoD: if True, output the 2D unit curves
otherwise, output the 3D control sections
```
'''
if fname is None:
fname = self.name + '-section.dat'
f = open(fname, 'w')
if TwoD:
f.write('Variables= X Y \n ')
nn = self.secs[0].xx.shape[0]
for i in range(self.n_sec):
f.write('zone T="sec-u %d" i= %d \n'%(i, nn))
for j in range(nn):
f.write(' %20.10f %20.10f \n'%(self.secs[i].xx[j], self.secs[i].yu[j]))
f.write('zone T="sec-l %d" i= %d \n'%(i, nn))
for j in range(nn):
f.write(' %20.10f %20.10f \n'%(self.secs[i].xx[j], self.secs[i].yl[j]))
else:
f.write('Variables= X Y Z \n ')
nn = self.secs[0].x.shape[0]
for i in range(self.n_sec):
f.write('zone T="sec %d" i= %d \n'%(i, nn))
for j in range(nn):
f.write(' %20.10f %20.10f %20.10f \n'%(
self.secs[i].x[j], self.secs[i].y[j], self.secs[i].z[j]))
f.close()
def plot(self, fig_id=1, type='wireframe'):
'''
Plot surface
### Inputs:
```text
fig_id: ID of the figure
type: wireframe, surface
```
'''
fig = plt.figure(fig_id)
ax = Axes3D(fig)
for surf in self.surfs:
if type in 'wireframe':
ax.plot_wireframe(surf[0], surf[1], surf[2])
else:
ax.plot_surface(surf[0], surf[1], surf[2])
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
ax.set_xlim3d(self.center[0]-self.half_s, self.center[0]+self.half_s)
ax.set_ylim3d(self.center[1]-self.half_s, self.center[1]+self.half_s)
ax.set_zlim3d(self.center[2]-self.half_s, self.center[2]+self.half_s)
plt.show()
#* ===========================================
#* Supportive functions
#* ===========================================
def transform(xu, xl, yu, yl, scale=1.0, rot=None, x0=None, y0=None, dx=0.0, dy=0.0, proj=False):
'''
Apply chord length, twist angle(deg) and leading edge position to unit airfoil
>>> xu_new, xl_new, yu_new, yl_new = transform()
### Inputs:
```text
xu, xl, yu, yl: current curve or unit airfoil (ndarray)
scale: scale factor, e.g., chord length
rot: rotate angle (deg), +z direction for x-y plane,
e.g., twist angle
x0, y0: rotation and scale center
dx, dy: translation, e.g., leading edge location
proj: if True, for unit airfoil, the rotation keeps
the projection length the same
```
### Return:
```text
xu_new, xl_new, yu_new, yl_new (ndarray)
```
'''
#* Translation
xu_new = dx + xu
xl_new = dx + xl
yu_new = dy + yu
yl_new = dy + yl
#* Rotation center
if x0 is None:
x0 = xu_new[0]
if y0 is None:
y0 = 0.5*(yu_new[0]+yl_new[0])
#* Scale (keeps the same projection length)
rr = 1.0
if proj and not rot is None:
angle = rot/180.0*np.pi # rad
rr = np.cos(angle)
xu_new = x0 + (xu_new-x0)*scale/rr
xl_new = x0 + (xl_new-x0)*scale/rr
yu_new = y0 + (yu_new-y0)*scale/rr
yl_new = y0 + (yl_new-y0)*scale/rr
#* Rotation
if not rot is None:
xu_new, yu_new, _ = rotate(xu_new, yu_new, None, angle=rot, origin=[x0, y0, 0.0], axis='Z')
xl_new, yl_new, _ = rotate(xl_new, yl_new, None, angle=rot, origin=[x0, y0, 0.0], axis='Z')
return xu_new, xl_new, yu_new, yl_new
def rotate(x, y, z, angle=0.0, origin=[0.0, 0.0, 0.0], axis='X'):
'''
Rotate the 3D curve according to origin
>>> x_, y_, z_ = rotate(x, y, z, angle, origin, axis)
### Inputs:
```text
x,y,z: curve ndarray
angle: rotation angle (deg)
origin: rotation origin
axis: rotation axis (use positive direction to define angle)
```
### Return:
x_, y_, z_ (ndarray)
'''
cc = np.cos( angle/180.0*np.pi )
ss = np.sin( angle/180.0*np.pi )
x_ = copy.deepcopy(x)
y_ = copy.deepcopy(y)
z_ = copy.deepcopy(z)
if axis in 'X':
y_ = origin[1] + (y-origin[1])*cc - (z-origin[2])*ss
z_ = origin[2] + (y-origin[1])*ss + (z-origin[2])*cc
if axis in 'Y':
z_ = origin[2] + (z-origin[2])*cc - (x-origin[0])*ss
x_ = origin[0] + (z-origin[2])*ss + (x-origin[0])*cc
if axis in 'Z':
x_ = origin[0] + (x-origin[0])*cc - (y-origin[1])*ss
y_ = origin[1] + (x-origin[0])*ss + (y-origin[1])*cc
return x_, y_, z_
def stretch_fixed_point(x, y, dx=0.0, dy=0.0, xm=None, ym=None, xf=None, yf=None):
'''
Linearly stretch a curve when certain point is fixed
>>> x_, y_ = stretch_fixed_point(x, y, dx, dy, xm, ym, xf, yf)
### Inputs:
```text
x, y: curve (ndarray)
dx, dy: movement of the first element (scaler)
xm, ym: The point that moves dx, dy (e.g., the first element of the curve)
xf, yf: The fixed point (e.g., the last element of the curve)
```
### Returns:
x_, y_ (ndarray)
'''
x_ = x.copy()
y_ = y.copy()
if xf is None or yf is None:
xf = x[-1]
yf = y[-1]
if xm is None or ym is None:
xm = x[0]
ym = y[0]
lm = np.linalg.norm([xm-xf, ym-yf])
for i in range(x.shape[0]):
rr = np.linalg.norm([x[i]-xf, y[i]-yf]) / lm
x_[i] = x_[i] + rr*dx
y_[i] = y_[i] + rr*dy
return x_, y_
def interplot_basic_sec(sec0: BasicSection, sec1: BasicSection, ratio: float):
'''
Interplot a basic section by ratio.
>>> sec = interplot_basic_sec(sec0, sec1, ratio)
'''
sec = copy.deepcopy(sec0)
sec.xLE = (1-ratio)*sec0.xLE + ratio*sec1.xLE
sec.yLE = (1-ratio)*sec0.yLE + ratio*sec1.yLE
sec.zLE = (1-ratio)*sec0.zLE + ratio*sec1.zLE
sec.chord = (1-ratio)*sec0.chord + ratio*sec1.chord
sec.twist = (1-ratio)*sec0.twist + ratio*sec1.twist
sec.thick = (1-ratio)*sec0.thick + ratio*sec1.thick
sec.xx = (1-ratio)*sec0.xx + ratio*sec1.xx
if isinstance(sec.yy, np.ndarray):
sec.yy = (1-ratio)*sec0.yy + ratio*sec1.yy
else:
sec.yu = (1-ratio)*sec0.yu + ratio*sec1.yu
sec.yl = (1-ratio)*sec0.yl + ratio*sec1.yl
sec.x = (1-ratio)*sec0.x + ratio*sec1.x
sec.y = (1-ratio)*sec0.y + ratio*sec1.y
sec.z = (1-ratio)*sec0.z + ratio*sec1.z
return sec
def fromCylinder(x, y, z, flip=True, origin=None):
'''
Bend the cylinder curve to a 2D plane curve.
### Inputs:
```text
x, y ,z: ndarray, point coordinates of curves on the cylinder
flip: if True, flip the X of plane curve
origin: default None.
if provided a list [x0, y0], then the cylinder origin is [x0, y0]
```
### Return:
X, Y, Z: ndarray, point coordinates of curves bent to 2D X-Y planes
### Note:
```text
Cylinder: origin (0,0,0), axis is z-axis
x and y must not be 0 at the same time
The origin of cylinder and plane curves is the same (0,0,0).
Cylinder: x, y, z ~~ r, theta, z
Plane: X, Y, Z
theta = arctan(y/x)
r = sqrt(x^2+y^2)
z = z
X = r*theta
Y = z
Z = r
```
'''
coef = -1.0 if flip else 1.0
if origin is not None:
x = x - origin[0]
y = y - origin[1]
rr = np.sqrt(x*x+y*y)
tt = np.arctan2(y, x) * coef
X = rr*tt
Y = z.copy()
Z = rr
return X, Y, Z
def toCylinder(X, Y, Z, flip=True, origin=None):
'''
Bend the plane sections to curves on a cylinder.
### Inputs:
```text
X, Y, Z: ndarray, point coordinates of curves on 2D X-Y planes
Z must not be 0
flip: if True, flip the X of plane curve
origin: default None.
if provided a list [x0, y0], then the cylinder origin is [x0, y0]
```
### Return:
x, y ,z: ndarray, point coordinate of curves bent to a cylinder
### Note:
```text
The origin of cylinder and plane curves is the same (0,0,0).
Plane: X, Y, Z
Cylinder: x, y, z ~~ r, theta, z
theta = arctan(y/x)
r = sqrt(x^2+y^2)
z = z
X = r*theta
Y = z
Z = r
```
'''
coef = -1.0 if flip else 1.0
nn = X.shape[0]
x = np.zeros(nn)
y = np.zeros(nn)
z = Y.copy()
for i in range(nn):
r = Z[i]
theta = X[i]/r * coef
x[i] = r*np.cos(theta)
y[i] = r*np.sin(theta)
if origin is not None:
x = x + origin[0]
y = y + origin[1]
return x, y, z
def output_curve(x, y, fname='curve.dat', ID=0):
'''
Output airfoil data to tecplot ASCII format file
### Inputs:
```text
x, y: current curve (ndarray)
ID: >0 append to existed file. 0: write header
```
'''
nn = x.shape[0]
if ID == 0:
with open(fname, 'w') as f:
f.write('Variables= X Y \n ')
with open(fname, 'a') as f:
f.write('zone T="%d" i= %d \n'%(ID, nn))
for i in range(nn):
f.write(' %20.9f %20.9f \n'%(x[i], y[i]))
f.write('\n')
def read_curves(fname='curve.dat'):
'''
Read curves from a tecplot format file.
>>> xs, ys = read_curves(fname='curve.dat')
### Return:
```text
xs, ys: list [list]
len(xs) = len(ys) = number of curves
len(xs[i]) = number of points on curve i
```
'''
xs = []
ys = []
with open(fname, 'r') as f:
lines = f.readlines()
for line in lines:
line = line.split()
if len(line)<=1:
continue
if line[0] in 'zone':
xs.append([])
ys.append([])
continue
if len(line)!=2:
continue
xs[-1].append(float(line[0]))
ys[-1].append(float(line[1]))
return xs, ys
def read_tecplot(fname='tecplot.dat'):
'''
Read a tecplot format data file
>>> data, name_var, titles = read_tecplot(fname='tecplot.dat')
### Return:
```text
data: list of ndarray [ni,nj,nk,nv], data of all zones
name_var: list, name of variables
titles: list, title of zones
```
'''
name_var = []
data = []
titles = []
n_var = 0
with open(fname, 'r') as f:
lines = f.readlines()
nLine = len(lines)
iLine = 0
while iLine < nLine:
line = lines[iLine].split()
if len(line) == 0:
iLine += 1
continue
if line[0] in 'Variables=' or line[0] in 'VARIABLES=' :
line = re.split(r'[=",\s]', lines[iLine])
while '' in line:
line.remove('')
name_var = line[1:]
n_var = len(name_var)
iLine += 1
continue
if line[0] in 'zone' or line[0] in 'ZONE' or line[0] in 'Zone':
line = re.split(r'[=\s]', lines[iLine])
while '' in line:
line.remove('')
if 'i' in line:
ni = int(line[line.index('i')+1])
elif 'I' in line:
ni = int(line[line.index('I')+1])
else:
ni = 1
if 'j' in line:
nj = int(line[line.index('j')+1])
elif 'J' in line:
nj = int(line[line.index('J')+1])
else:
nj = 1
if 'k' in line:
nk = int(line[line.index('k')+1])
elif 'K' in line:
nk = int(line[line.index('K')+1])
else:
nk = 1
if 'T' in line:
# 非贪婪模式:寻找最短的可能匹配 https://www.cnblogs.com/baxianhua/p/8571967.html
str_pat = re.compile(r'\"(.*?)\"')
name = str_pat.findall(lines[iLine])
titles.append(name[0])
else:
titles.append('')
data_ = np.zeros((ni,nj,nk,n_var))
iLine += 1
for k in range(nk):
for j in range(nj):
for i in range(ni):
line = ['#']
while line[0] == '#':
line = lines[iLine].split()
iLine += 1
for v in range(n_var):
data_[i,j,k,v] = float(line[v])
data.append(data_.copy())
continue
return data, name_var, titles
#* ===========================================
#* Intersection and interplotation
#* ===========================================
def interplot_from_curve(x0, x, y) -> np.ndarray:
'''
Interplot points from curve represented points [x, y]
>>> y0 = interplot_from_curve(x0, x, y)
### Inputs:
```text
x0 : ndarray/value of x locations to be interploted
x, y: points of curve (ndarray)
```
### Return:
y0: ndarray/float
'''
f = interp1d(x, y, kind='cubic')
y0 = f(x0)
return y0
def interpolate_IDW(x0, xs, ys, eps=1e-10):
'''
Inverse distance weighted interpolation
>>> y0 = interpolate_IDW(x0, xs, ys, eps=1e-10)
### Inputs:
```text
x0: ndarray [n0,3]
xs: ndarray [n, 3]
ys: ndarray [n, ny]
```
### Return:
```text
y0: ndarray [n0,ny]
```
'''
n0 = x0.shape[0]
n = xs.shape[0]
ny = ys.shape[1]
y0 = np.zeros([n0,ny])
ds = dis_matrix(x0, xs) # [n0, n]
for i0 in range(n0):
if np.min(ds[i0,:]) <= eps:
j = np.argmin(ds[i0,:])
y0[i0,:] = ys[j,:]
continue
ws = ds[i0,:]**-1 # [n]
w_all = np.sum(ws) # float
y0[i0,:] = np.dot(np.transpose(ys), ws)/w_all
return y0
def dis_matrix(xs1, xs2):
'''
Calculate the distance between vectors in xs1 and xs2
Suggest: each components of vectors in x1 and x2 is 0~1
>>> RR = dis_matrix(xs1, xs2)
### Inputs:
```text
xs1: ndarray [n1, nx], vectors of all samples
xs2: ndarray [n2, nx], vectors of all samples
```
### Return:
```text
RR: ndarray [n1, n2], dis=sqrt(sum((x1-x2)**2)/nx)
```
'''
nx = xs1.shape[1]
RR = cdist(xs1, xs2, metric='euclidean')
RR = RR/np.sqrt(1.0*nx)
return RR
def curve_intersect(x1, y1, x2, y2):
'''
Find the intersect index between two curves.
>>> i1, i2, points = curve_intersect(x1, y1, x2, y2)
### Inputs:
```text
x1, y1: curve 1 coordinates, list or ndarray
x2, y2: curve 2 coordinates, list or ndarray
```
### Return:
```text
i1, i2: index of the closest points in curve 1 & 2
points: tuple of two closest points in curve 1 & 2
```
'''
arr1 = np.vstack((np.array(x1),np.array(y1))).T
arr2 = np.vstack((np.array(x2),np.array(y2))).T
tree = spatial.KDTree(arr2)
distance, arr2_index = tree.query(arr1)
i1 = distance.argmin() # type: int
i2 = arr2_index[i1] # type: int
points = (arr1[i1], arr2[i2])
return i1, i2, points
def intersect_point(p1, p2, p3, p4):
'''
Calculate intersection point of two segments p1p2 & p3p4
### Inputs:
```text
px: ndarray [2] or [:,2]
```
### Return:
```text
pi: ndarray [2] or [:,2]
```
'''
if len(p1.shape)==1:
a1 = p2[1]-p1[1]
b1 = p1[0]-p2[0]
c1 = p1[0]*p2[1]-p2[0]*p1[1]
a2 = p4[1]-p3[1]
b2 = p3[0]-p4[0]
c2 = p3[0]*p4[1]-p4[0]*p3[1]
dd = a1*b2-a2*b1
if dd==0:
return None
else:
x0 = (c1*b2-c2*b1)/dd
y0 = (c2*a1-c1*a2)/dd
return np.array([x0,y0])
else:
a1 = p2[:,1]-p1[:,1]
b1 = p1[:,0]-p2[:,0]
c1 = p1[:,0]*p2[:,1]-p2[:,0]*p1[:,1]
a2 = p4[:,1]-p3[:,1]
b2 = p3[:,0]-p4[:,0]
c2 = p3[:,0]*p4[:,1]-p4[:,0]*p3[:,1]
dd = a1*b2-a2*b1
if np.any(dd==0):
print('Parallel segments')
return None
else:
x0 = (c1*b2-c2*b1)/dd
y0 = (c2*a1-c1*a2)/dd
pi = np.concatenate((x0, y0), axis=1)
return pi
def intersect_vec_plane(V0, V1, P0, P1, P3):
'''
Calculate the intersection point of a vector and a plane
>>> xi, t1, t3, rv = intersect_vec_plane(V0, V1, P0, P1, P3)
### Inputs:
```text
V0, V1: ndarray [3], coordinates of vector: V01
P0, P1, P3: ndarray [3], coordinates of three points of plane P0123
```
### Return:
```text
xi: ndarray [3], intersection point
t1, t3: ratio of xi in P01, P03 direction
rv: ratio of xi in V01 direction
```
'''
nR = V1 - V0
l0 = np.linalg.norm(nR) + 1E-20
nR = nR / l0
A = np.zeros((3,3))
A[:,0] = P1-P0
A[:,1] = P3-P0
A[:,2] = - nR
B = V0-P0
Sol = | np.linalg.solve(A, B) | numpy.linalg.solve |
#!/usr/bin/env python
# --------------------------------------------------------
# LDDP
# Licensed under UC Berkeley's Standard Copyright [see LICENSE for details]
# Written by <NAME>
# --------------------------------------------------------
import numpy as np
from fast_rcnn.bbox_transform import bbox_transform_inv, clip_boxes,bbox_transform
from boxTools import *
from fast_rcnn.config import cfg
class DPP():
def __init__(self,stds=[],means=[],sim_classes=[],epsilon=0.01,loss_weight=0.001):
self.stds =stds
self.means = means
self.sim_classes = sim_classes
self.epsilon = epsilon
self._loss_weight = loss_weight
def select_bg(self,Phi_labels,boxes,labels,bbox_pred,keeps_Y,good_gt_overlap,M,im_shape_w,im_shape_h):
"""
Find B in p(B|Xb)
"""
selected_item = range(M)
prob_dpp = np.ones((M,))
ignores=[]
dict_keeps_Y = {}
for i,j in keeps_Y.iteritems():
if j not in dict_keeps_Y:
dict_keeps_Y[j]=[]
dict_keeps_Y[j].append(i)
for k in range(M):
if (k in keeps_Y and keeps_Y[k]==Phi_labels[k]) \
or (k in good_gt_overlap and Phi_labels[k]==labels[k] and labels[k]>0):
ignores.append(k)
else:
label_k = labels[k]
if label_k in dict_keeps_Y:
loc_lbl = bbox_pred[[k],4*label_k:4*(label_k+1)]
loc_lbl = loc_lbl * self.stds[label_k,:] + self.means[label_k,:]
pbox = bbox_transform_inv(boxes[[k],:], loc_lbl)
pbox = clip_boxes(pbox, (im_shape_w,im_shape_h))
pbox = np.reshape(np.tile(pbox,len(dict_keeps_Y[label_k])),(len(dict_keeps_Y[label_k]),4))
Y_selected_ll = bbox_pred[dict_keeps_Y[label_k],4*label_k:4*(label_k+1)]
Y_selected_ll = Y_selected_ll*self.stds[label_k,:] + self.means[label_k,:]
Y_selected_pbox = bbox_transform_inv(boxes[dict_keeps_Y[label_k],:], Y_selected_ll)
Y_selected_pbox = clip_boxes(Y_selected_pbox, (im_shape_w,im_shape_h))
if np.max(IoU_target(pbox,Y_selected_pbox)) > cfg.TRAIN.IGNORANCE:
ignores.append(k)
selected_item = np.array([x for ii,x in enumerate(selected_item) if ii not in ignores])
prob_dpp = [x for ii,x in enumerate(prob_dpp) if ii not in ignores]
return selected_item,prob_dpp
def dpp_greedy(self,S, scores_s, score_power, max_per_image, among_ims, num_gt_per_img=1000, close_thr=0.0001):
"""
Greedy optimization to select boxes
S: similarity matrix
scores_s : predicted scores over different categories
"""
prob_thresh = cfg.TEST.PROB_THRESH
S = S[among_ims,:][:,among_ims]
scores_s = scores_s[among_ims]
M = S.shape[0]
#keep: selected_boxes
keep = []
#left : boxes not selected yet
left = np.zeros((M,3))
left[:,0] = np.arange(M) #box number
left[:,1] = 1 # 0/1? Is the box left?
selected_prob = []
while (len(keep) < max_per_image) and sum(left[:,1])>0:
z = np.zeros((M,1))
z[keep] = 1
sum_scores = (score_power*np.log(scores_s).T).dot(z)
prob_rest = np.zeros((M,))
left_indices = np.where(left[:,1]==1)[0]
done_indices = | np.where(left[:,1]==0) | numpy.where |
from typing import Union
from pdb import set_trace as st
import numpy as np
__all__ = ["argtopk", "arg_approx", "arg_approx_signed", "repeat", "concatenate"]
def get_int_k(array: np.ndarray, k: Union[int, float]) -> int:
if type(k) is float:
if 0.0 < k < 1.0:
k = round(array.size * k)
if k == array.size:
return array.size - 1
elif k == 0:
return 1
return k
else:
raise ValueError()
else:
return k
def argtopk(array: np.ndarray, k: Union[int, float]) -> np.ndarray:
k = get_int_k(array, k)
if k == 1:
return np.array([np.argmax(array)])
else:
return np.argpartition(array, -k, axis=None)[-k:]
def arg_sorted_topk(array: np.ndarray, k: Union[int, float]) -> np.ndarray:
# topk_index = argtopk(array, k)
# sorted_index = np.array(list(reversed(np.argsort(array[topk_index]))))
# return topk_index[sorted_index]
k = get_int_k(array, k)
return np.argsort(array)[::-1][:k]
def arg_approx(array: np.ndarray, precision: float) -> np.ndarray:
if (1 / array.size) >= precision:
return np.array([np.argmax(array)])
input_sum = array.sum()
if input_sum <= 0:
return np.array([ | np.argmax(array) | numpy.argmax |
# -*- coding: utf-8 -*-
from sklearn.decomposition import TruncatedSVD
from sklearn.manifold import TSNE, SpectralEmbedding
from sklearn.manifold import Isomap
from sklearn.decomposition import KernelPCA
import numpy as np
from random import randint
import os
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
import sys
import re
from itertools import cycle
sys.path.append("../")
"""
Utility functions for processing timerseries data:
1) convert input data into timeseries format
2) plotting py timeseries into pytorch tensors to input into VRAE
"""
def split_train_val_timeseries(normal_data,
abnormal_zone1_data,
abnormal_zone2_data,
abnormal_zone3_data,
length_time_series,
window_size,
ratio_train=0.8):
"""
Splits 3D time series data into train and validation sets
It also assigns labels to data (for cluster visualization):
0 - normal cases zone 0
1 - abnormal case zone 1
2 - abnormal case zone 2
3 - abnormal case zone 3
:param normal and abnormal data: 3D np array of dimensions (samples, length_time_series, features)
:param seq_length: sequence length
:param ration_train: argument to split data into training and testing
Output: np.arrays
(x_train, x_val):
(shuffled timeseries until ind_cut,
rest of shuffled timeseries starting in ind_cut)
"""
features = normal_data.shape[2]
print("[INFO] total normal time series:", len(normal_data))
print("[INFO] total abnormal zone 1 time series:", len(abnormal_zone1_data))
print("[INFO] total abnormal zone 2 time series:", len(abnormal_zone2_data))
print("[INFO] total abnormal zone 3 time series:", len(abnormal_zone3_data))
print("[INFO] sequence length:", length_time_series)
print("[INFO] features:", features)
print()
print("[INFO] splitting data into chunks every {0} time step based on window size parameter".format(window_size))
# if window_size:
normal_chunks = int(normal_data.shape[1] / window_size)
abnormal_chunks_zone1 = int(abnormal_zone1_data.shape[1] / window_size)
abnormal_chunks_zone2 = int(abnormal_zone2_data.shape[1] / window_size)
abnormal_chunks_zone3 = int(abnormal_zone3_data.shape[1] / window_size)
print("normal chunks (per sample):", normal_chunks)
print("abnormal chunks zone 1 (per sample):", abnormal_chunks_zone1)
print("abnormal chunks zone 2 (per sample):", abnormal_chunks_zone2)
print("abnormal chunks zone 3 (per sample):", abnormal_chunks_zone3)
# reshape chunks into time series format
normal_data = normal_data.reshape(len(normal_data) * normal_chunks, window_size, features)
abnormal_zone1_data = abnormal_zone1_data.reshape(len(abnormal_zone1_data) * abnormal_chunks_zone1, window_size, features)
abnormal_zone2_data = abnormal_zone2_data.reshape(len(abnormal_zone2_data) * abnormal_chunks_zone2, window_size, features)
abnormal_zone3_data = abnormal_zone3_data.reshape(len(abnormal_zone3_data) * abnormal_chunks_zone3, window_size, features)
print()
print("normal (after chunk split):", normal_data.shape)
print("abnormal zone1 data (after chunk split):", abnormal_zone1_data.shape)
print("abnormal zone2 data (after chunk split):", abnormal_zone2_data.shape)
print("abnormal zone3 data (after chunk split)::", abnormal_zone3_data.shape)
# create random indices to shuffle TRAIN and VALIDATION data
normal_index_cut = int(ratio_train * len(normal_data))
normal_indices = np.random.permutation(len(normal_data))
abnormal_zone1_index_cut = int(ratio_train * len(abnormal_zone1_data))
abnormal_zone1_indices = np.random.permutation(len(abnormal_zone1_data))
abnormal_zone2_index_cut = int(ratio_train * len(abnormal_zone2_data))
abnormal_zone2_indices = np.random.permutation(len(abnormal_zone2_data))
abnormal_zone3_index_cut = int(ratio_train * len(abnormal_zone3_data))
abnormal_zone3_indices = np.random.permutation(len(abnormal_zone3_data))
# else:
# # NOTE: almost always working with window size
# # perform random selection of timeseries for training and evaluation
# ind_cut = int(ratio_train * normal_samples)
# ind = np.random.permutation(normal_samples)
# create X_train and X_val arrays
X_normal_train = normal_data[normal_indices[:normal_index_cut], 0:, :]
X_abnormal_zone1_train = abnormal_zone1_data[abnormal_zone1_indices[:abnormal_zone1_index_cut], 0:, :]
X_abnormal_zone2_train = abnormal_zone2_data[abnormal_zone2_indices[:abnormal_zone2_index_cut], 0:, :]
X_abnormal_zone3_train = abnormal_zone3_data[abnormal_zone3_indices[:abnormal_zone3_index_cut], 0:, :]
X_normal_val = normal_data[normal_indices[normal_index_cut:], 0:, :]
X_abnormal_zone1_val = abnormal_zone1_data[abnormal_zone1_indices[abnormal_zone1_index_cut:], 0:, :]
X_abnormal_zone2_val = abnormal_zone2_data[abnormal_zone2_indices[abnormal_zone2_index_cut:], 0:, :]
X_abnormal_zone3_val = abnormal_zone3_data[abnormal_zone3_indices[abnormal_zone3_index_cut:], 0:, :]
# create class labels with train/val arrays
normal_labels, abnormal_zone1_labels, abnormal_zone2_labels, abnormal_zone3_labels = \
create_timeseries_labels(X_normal_val, X_abnormal_zone1_val, X_abnormal_zone2_val, X_abnormal_zone3_val)
# once labels are generated per zone, stack all train/val arrays vertically (no more need to differentiate them)
X_train = np.vstack((X_normal_train, X_abnormal_zone1_train, X_abnormal_zone2_train, X_abnormal_zone3_train))
X_val = np.vstack((X_normal_val, X_abnormal_zone1_val, X_abnormal_zone2_val, X_abnormal_zone3_val))
X_val_labels = np.hstack((normal_labels, abnormal_zone1_labels, abnormal_zone2_labels, abnormal_zone3_labels))
return X_train, X_val, X_val_labels
def create_timeseries_labels(normal_validation, abnormal_zone1_validation, abnormal_zone2_validation, abnormal_zone3_validation):
"""
Assigns integer values to each zone for later label 2D embedding projections
"""
normal_labels = [0 for i in range(len(normal_validation))]
abnormal_zone1_labels = [1 for i in range(len(abnormal_zone1_validation))]
abnormal_zone2_labels = [2 for i in range(len(abnormal_zone2_validation))]
abnormal_zone3_labels = [3 for i in range(len(abnormal_zone3_validation))]
return normal_labels, abnormal_zone1_labels, abnormal_zone2_labels, abnormal_zone3_labels
def get_data_offset(data, samples, length_time_series):
offset = len(data) - samples*length_time_series
print("offset of dataset:", offset)
return data[:-offset,:]
def plot_clustering(z_run, labels, image_folder, image_name, engine = 'matplotlib', download=False):
"""
Given latent variables for all timeseries, and output of k-means, run PCA
and tSNE on latent vectors and color the points using cluster_labels.
:param z_run: Latent vectors for all input tensors
:param labels: Cluster labels for all input tensors
:param engine: plotly/matplotlib
:param download: If true, it will download plots in `image_folder`
:param image_folder: Download folder to dump plots
:return:
"""
def plot_clustering_matplotlib(z_run, labels, download, image_folder, image_name):
labels = labels[:z_run.shape[0]] # because of weird batch_size
# hex_colors = []
# for _ in np.unique(labels):
# hex_colors.append('#%06X' % randint(0, 0xFFFFFF))
#
# colors = [hex_colors[int(i)] for i in labels]
z_run_pca = TruncatedSVD(n_components=3).fit_transform(z_run)
z_run_tsne = TSNE(perplexity=50, min_grad_norm=1E-12, n_iter=3000).fit_transform(z_run)
z_run_se = SpectralEmbedding(n_components=2).fit_transform(z_run)
z_run_kernel_PCA = KernelPCA(n_components=3, kernel="rbf", gamma=0.5).fit_transform(z_run)
z_run_iso = Isomap(n_components=2, n_neighbors=10).fit_transform(z_run)
print("[INFO] saving 2D projections from different methods")
np.save(image_folder + "/z_run_PCA.npy", z_run_pca)
np.save(image_folder + "/z_run_tSNE.npy", z_run_tsne)
np.save(image_folder + "/z_run_SE.npy", z_run_se)
np.save(image_folder + "/z_run_kernel_PCA.npy", z_run_kernel_PCA)
np.save(image_folder + "/z_run_iso.npy", z_run_iso)
print("z_run shape:", z_run.shape)
print("z_run PCA shape", z_run_pca.shape)
# fetch indices of labels
zero_index, = | np.where(labels == 0) | numpy.where |
import os
from functools import partial
import numpy as np
import gc
import time
import open3d as o3d
import pymp
import torch.utils.data
from data_source import DataSource
from dh_grid import DHGrid
from sphere import Sphere
from tqdm.auto import tqdm, trange
from tqdm.contrib.concurrent import process_map, thread_map
# LiDARMace
T_B_L_mace = np.array(
[[0.999776464807781, -0.016285963261510, 0.013460141210110, -0.029098378563024],
[0.016299962125963, 0.999865603816677, -0.000875084243449, 0.121665163511970],
[-0.013444131722031, 0.001094290840472, 0.999909050000742, -0.157908708175463],
[0, 0, 0, 1]])
# LiDARStick
T_B_L_stick = np.array(
[[0.699172, -0.7149, 0.00870821, -0.100817],
[-0.714841, -0.699226, -0.00925541, -0.00368789],
[0.0127057, 0.000246142, -0.999919, -0.0998847],
[0, 0, 0, 1]])
def transformStickCloudToIMU(cloud):
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(cloud[:, 0:3])
pcd.transform(T_B_L_stick)
dst = np.asarray(pcd.points)
return np.column_stack((dst, cloud[:, 3]))
def transformMaceCloudToIMU(cloud):
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(cloud[:, 0:3])
pcd.transform(T_B_L_mace)
dst = np.asarray(pcd.points)
return np.column_stack((dst, cloud[:, 3]))
def progresser_low_res(sample, grid, auto_position=True, write_safe=False, blocking=True, progress=False):
sample_in_B = transformStickCloudToIMU(sample)
sample_sphere = Sphere(sample_in_B)
return sample_sphere.sampleUsingGrid(grid)
def progresser_high_res(sample, grid, auto_position=True, write_safe=False, blocking=True, progress=False):
sample_in_B = transformMaceCloudToIMU(sample)
sample_sphere = Sphere(sample_in_B)
return sample_sphere.sampleUsingGrid(grid)
class TrainingSet(torch.utils.data.Dataset):
def __init__(self, restore, bw=100):
self.ds = None
self.bw = bw
self.is_restoring = restore
self.test_indices = []
self.cache = None
self.grid = DHGrid.CreateGrid(bw)
self.anchor_features = []
self.positive_features = []
self.negative_features = []
def generateAll(self, datasource):
self.ds = datasource
self.cache = datasource.cache
print(f'Generating features from {self.ds.start_cached} to {self.ds.end_cached}')
# Generate features from clouds.
a_pcl_features=None
p_pcl_features=None
n_pcl_features=None
if self.ds.load_negatives:
(a, p, n) = self.ds.get_all_cached_clouds()
a_pcl_features, p_pcl_features, n_pcl_features = self.__genAllCloudFeatures(
a, p, n)
else:
(a, p) = self.ds.get_all_cached_clouds()
a_pcl_features, p_pcl_features, _ = self.__genAllCloudFeatures(a, p, None)
# Copy all features to the data structure.
double_bw = 2 * self.bw
n_clouds = len(a_pcl_features)
self.anchor_features = [np.zeros((3, double_bw, double_bw))] * n_clouds
self.positive_features = [
np.zeros((3, double_bw, double_bw))] * n_clouds
self.negative_features = [
np.zeros((3, double_bw, double_bw))] * n_clouds
if self.ds.load_negatives:
a_img_features, p_img_features, n_img_features = self.ds.get_all_cached_images()
for i in range(self.ds.start_cached, self.ds.end_cached):
self.anchor_features[i], self.positive_features[i], self.negative_features[i] = self.createFeature(
a_pcl_features[i], a_img_features[i], p_pcl_features[i], p_img_features[i], n_pcl_features[i], n_img_features[i])
self.negative_features = np.array(self.negative_features)
else:
a_img_features, p_img_features = self.ds.get_all_cached_images()
for i in range(self.ds.start_cached, self.ds.end_cached):
self.anchor_features[i], self.positive_features[i] = self.createFeatureForTest(
a_pcl_features[i], a_img_features[i], p_pcl_features[i], p_img_features[i])
self.anchor_features = np.array(self.anchor_features)
self.positive_features = np.array(self.positive_features)
def __getitem__(self, index):
# isinstance(l[1], str)
if (self.ds is not None):
return self.loadFromDatasource(index)
else:
return self.loadFromFeatures(index)
def loadFromDatasource(self, index):
if (index >= self.ds.start_cached) and (index < self.ds.end_cached):
return self.get_and_delete_torch_feature(index)
# We reached the end of the current cached batch.
# Free the current set and cache the next one.
a_cloud, p_cloud, n_cloud = self.ds.load_clouds_directly(index)
a_cloud, p_cloud, n_cloud = self.__gen_all_features_single(
a_cloud, p_cloud, n_cloud)
a_img, p_img, n_img = self.ds.load_images_directly(index)
a, p, n = self.createFeature(
a_cloud, a_img, p_cloud, p_img, n_cloud, n_img)
return a, p, n
def loadFromFeatures(self, index):
return self.anchor_features[index], self.positive_features[index], self.negative_features[index]
def createFeature(self, a_cloud, a_img, p_cloud, p_img, n_cloud, n_img):
double_bw = 2 * self.bw
anchor_features = np.zeros((3, double_bw, double_bw))
positive_features = np.zeros((3, double_bw, double_bw))
negative_features = np.zeros((3, double_bw, double_bw))
a_img_feat = np.reshape(a_img.transpose(), (4, double_bw, double_bw))
anchor_features[0, :, :] = np.nan_to_num(a_cloud[0, :, :])
anchor_features[1, :, :] = np.nan_to_num(a_cloud[1, :, :])
anchor_features[2, :, :] = np.nan_to_num(a_img_feat[3, :, :])
p_img_feat = np.reshape(p_img.transpose(), (4, double_bw, double_bw))
positive_features[0, :, :] = np.nan_to_num(p_cloud[0, :, :])
positive_features[1, :, :] = np.nan_to_num(p_cloud[1, :, :])
positive_features[2, :, :] = np.nan_to_num(p_img_feat[3, :, :])
n_img_feat = np.reshape(n_img.transpose(), (4, double_bw, double_bw))
negative_features[0, :, :] = np.nan_to_num(n_cloud[0, :, :])
negative_features[1, :, :] = np.nan_to_num(n_cloud[1, :, :])
negative_features[2, :, :] = np.nan_to_num(n_img_feat[3, :, :])
return anchor_features, positive_features, negative_features
def createFeatureForTest(self, a_cloud, a_img, p_cloud, p_img):
double_bw = 2 * self.bw
anchor_features = np.zeros((3, double_bw, double_bw))
positive_features = np.zeros((3, double_bw, double_bw))
a_img_feat = np.reshape(a_img.transpose(), (4, double_bw, double_bw))
anchor_features[0, :, :] = np.nan_to_num(a_cloud[0, :, :])
anchor_features[1, :, :] = np.nan_to_num(a_cloud[1, :, :])
anchor_features[2, :, :] = np.nan_to_num(a_img_feat[3, :, :])
p_img_feat = np.reshape(p_img.transpose(), (4, double_bw, double_bw))
positive_features[0, :, :] = np.nan_to_num(p_cloud[0, :, :])
positive_features[1, :, :] = np.nan_to_num(p_cloud[1, :, :])
positive_features[2, :, :] = np.nan_to_num(p_img_feat[3, :, :])
return anchor_features, positive_features
def get_and_delete_torch_feature(self, index):
anchor = torch.from_numpy(self.anchor_features[index])
positive = torch.from_numpy(self.positive_features[index])
if self.ds.load_negatives:
negative = torch.from_numpy(self.negative_features[index])
return anchor, positive, negative
return anchor, positive
def __len__(self):
return len(self.anchor_features)
def __genAllCloudFeatures(self, anchors, positives, negatives):
elapsed_s = 0
processed = 0
print("Generating anchor spheres")
start = time.time()
anchor_features = process_map(
partial(progresser_high_res, grid=self.grid), anchors, max_workers=32)
end = time.time()
elapsed_s = elapsed_s + (end - start)
processed = processed + len(anchors)
print(f'Processing time in total {elapsed_s} for {processed} anchors.')
np.save('/home/berlukas/data/spherical/arche_low_res_big/anchor_cloud_features.npy', anchor_features)
anchors = []
print("Generating positive spheres")
start = time.time()
positive_features = process_map(
partial(progresser_high_res, grid=self.grid), positives, max_workers=32)
end = time.time()
elapsed_s = elapsed_s + (end - start)
processed = processed + len(positives)
print(f'Processing time in total {elapsed_s} for {processed} positives.')
np.save('/home/berlukas/data/spherical/arche_low_res_big/positive_cloud_features.npy', positive_features)
positives = []
if self.ds.load_negatives:
print("Generating negative spheres")
start = time.time()
negative_features = process_map(
partial(progresser_high_res, grid=self.grid), negatives, max_workers=32)
end = time.time()
elapsed_s = elapsed_s + (end - start)
processed = processed + len(negatives)
print(f'Processing time in total {elapsed_s} for {processed} negatives.')
np.save('/home/berlukas/data/spherical/arche_low_res_big/negative_cloud_features.npy', negative_features)
negatives = []
else:
negative_features = None
print("Generated all pcl features")
#anchor_features = np.load('/home/berlukas/data/spherical/arche_low_res_big/anchor_cloud_features.npy');
#positive_features = np.load('/home/berlukas/data/spherical/arche_low_res_big/positive_cloud_features.npy');
#negative_features = np.load('/home/berlukas/data/spherical/arche_low_res_big/negative_cloud_features.npy');
if processed > 0:
print(f'Processing time in total {elapsed_s} for {processed} items.')
avg_s = elapsed_s / (processed)
print(f'Processing time avg is {avg_s:.5f}')
return anchor_features, positive_features, negative_features
def __gen_all_features_single(self, a, p, n):
anchor_features = progresser(a, self.grid)
positive_features = progresser(p, self.grid)
negative_features = progresser(n, self.grid)
return anchor_features, positive_features, negative_features
def __loadTestSet(self):
with open('test_indices.txt', 'rb') as f:
self.test_indices = np.loadtxt(f).astype(int)
#import pdb; pdb.set_trace()
a = [self.ds.anchors[i] for i in self.test_indices]
p = [self.ds.positives[i] for i in self.test_indices]
n = [self.ds.negatives[i] for i in self.test_indices]
return (a, p, n)
def isRestoring(self):
return self.is_restoring
def exportGeneratedFeatures(self, export_path):
k_anchor_features_path = export_path + '/anchor_features.npy'
k_positive_features_path = export_path + '/positiv_featurese.npy'
k_negative_features_path = export_path + '/negativ_featurese.npy'
k_anchor_poses_path = export_path + '/anchor_poses.npy'
k_positive_poses_path = export_path + '/positiv_poses.npy'
k_negative_poses_path = export_path + '/negativ_poses.npy'
| np.save(k_anchor_features_path, self.anchor_features) | numpy.save |
import numpy as np
import cv2
from keras.models import load_model
from mtcnn.mtcnn import MTCNN
from PIL import Image
from sklearn.svm import SVC
from SVMclassifier import model as svm
from SVMclassifier import out_encoder
model = load_model('../models/facenet_keras.h5')
# get the face embedding for one face
def get_embedding(model, face_pixels):
# scale pixel values
face_pixels = face_pixels.astype('float32')
# standardize pixel values across channels (global)
mean, std = face_pixels.mean(), face_pixels.std()
face_pixels = (face_pixels - mean) / std
print(face_pixels.shape)
# transform face into one sample
#expand dims adds a new dimension to the tensor
samples = np.expand_dims(face_pixels, axis=0)
print(samples.shape)
# make prediction to get embedding
yhat = model.predict(samples)
return yhat[0]
faceCascade = cv2.CascadeClassifier('C:/Users/alisy/OneDrive/Documents/AIandMachineLearning/FaceNet-FriendScan/Real-Time_Face-Recognition-System/haarcascades/haarcascade_frontalface_default.xml')
video_capture = cv2.VideoCapture(0)
while True:
# Capture frame-by-frame
ret, frame = video_capture.read()
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = faceCascade.detectMultiScale(
gray,
scaleFactor=1.1,
minNeighbors=5,
minSize=(30, 30),
flags= cv2.CASCADE_SCALE_IMAGE
)
# Draw a rectangle around the faces and predict the face name
for (x, y, w, h) in faces:
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)
#take the face pixels from the frame
crop_frame = frame[y:y+h, x:x+w]
#turn the face pixels back into an image
new_crop = Image.fromarray(crop_frame)
#resize the image to meet the size requirment of facenet
new_crop = new_crop.resize((160, 160))
#turn the image back into a tensor
crop_frame = | np.asarray(new_crop) | numpy.asarray |
from tensorboard.plugins.inference.ReadTFRecord import read_and_decode
from tensorboard.plugins.inference.refresh_board import pred_refresh, fea_refresh
import matplotlib.pyplot as plt
import tensorflow as tf
import numpy as np
import math
import cv2
import os
class Inference(object):
def __init__(self,
model_path = None,
model_type = None):
tf.reset_default_graph()
self.model_path = model_path
self.model_type = model_type
self.tensor_name = []
self.tensor_in_graph = []
self.tensor_channel_num=[]
self.sess = tf.Session()
self.sess.run(tf.global_variables_initializer())
self.coord = tf.train.Coordinator()
self.threads = tf.train.start_queue_runners(sess=self.sess, coord=self.coord)
self.restore(self.model_path,self.model_type)
self.loaded_graph = tf.get_default_graph()
self.ifDone = False
self.test_x=None
self.test_label=None
print('load susess')
def restore(self,model_dir,model_type_name):
saver = tf.train.import_meta_graph(model_dir+"/model-1000.meta")
saver.restore(self.sess,model_dir+"/model-1000")
def each_label_acc(self,label,pred):
total_amount = [0]*10
correct_amount = [0]*10
for i in range(len(label)):
total_amount[label[i]]+=1
if(label[i]==pred[i]):
correct_amount[label[i]]+=1
acc = np.true_divide(np.array(correct_amount),np.array(total_amount))
return acc.tolist()
def concact_features(self, conv_output):
num_or_size_splits = int(math.sqrt(conv_output.shape[0])) #side
margin = int(conv_output.shape[1]/7)
index = np.unravel_index(np.argmax(conv_output),conv_output.shape)
blank_value = conv_output[index[0],index[1],index[2],index[3]]#white
img_out_list = []
if num_or_size_splits!=1:
conv_tmp=[]
for i in range(conv_output.shape[0]):
conv_tmp.append(np.pad(
conv_output[i],
((margin, margin), (margin, margin),(0,0)),
'constant', constant_values=(blank_value, blank_value)))#margin
conv_output = np.array(conv_tmp)
for j in range(num_or_size_splits):
img_temp = conv_output[j*4]
#img_temp = np.pad(conv_output[j*4], ((4, 4), (4, 4),(0,0)), 'constant', constant_values=(0, 0))
for i in range(num_or_size_splits-1):
img_temp = np.concatenate((img_temp,conv_output[i+1+4*j]),axis=1)
img_out_list.append(img_temp)
img_out = img_out_list[0]
for k in range(len(img_out_list)-1):
img_out = np.concatenate((img_out,img_out_list[k+1]))
return img_out
def generate_tensor_single(self,conv):
g = tf.Graph()
with tf.Session(graph=g) as sess:
#conv_transpose = sess.run(tf.transpose(conv, [3, 1, 2, 0]))
conv1_channel = sess.run(tf.transpose(conv[15], [2, 0, 1]))
tensor_conv = tf.convert_to_tensor(conv1_channel)[:, :, :, np.newaxis]
return tensor_conv
def generate_tensor(self,conv):
g = tf.Graph()
with tf.Session(graph=g) as sess:
conv_transpose = sess.run(tf.transpose(conv, [3, 2, 1, 0]))
print(conv_transpose.shape)# (16,28,28,1024,1)
self.tensor_channel_num.append(conv_transpose.shape[0])
with tf.Session(graph=g) as sess:
conv_concact = sess.run(tf.transpose(self.concact_features(conv_transpose), [2, 1, 0]))
tensor_conv = tf.convert_to_tensor(conv_concact)[:, :, :, np.newaxis]
return tensor_conv
def predict(self,
file_path,
batchsize_s,
inputshape,
outputshape):
batchsize = int(batchsize_s)
filename_queue = tf.train.string_input_producer([file_path],num_epochs=None)
img,label = read_and_decode(filename_queue,True,batchsize,inputshape,outputshape)
#threads stop problem
sv = tf.train.Supervisor()
with sv.managed_session() as sess:
test_x, test_label=sess.run([img,label])
#acc = self.sess.run(self.net.accuracy,feed_dict = {self.net.init_x:test_x,self.net.label:test_label})
y = self.sess.run(self.net.y,feed_dict = {self.net.init_x:test_x})
values = self.sess.run(self.net.variable_names)
print((np.array(values)).shape,(np.array(values[0])).shape,(np.array(values[1])).shape,(np.array(values[2])).shape,(np.array(values[3])).shape,(np.array(values[4])).shape,(np.array(values[5])).shape,(np.array(values[6])).shape,(np.array(values[7])).shape)
h_conv1_dist=values[2]
h_conv1_dist = np.transpose(h_conv1_dist, (2,3,0,1))
h_conv1_dist = np.reshape(h_conv1_dist, (-1,25))
print(h_conv1_dist[3],(np.array(h_conv1_dist)).shape)
y_label = []
y_pred = []
for i in range(batchsize):
y_label.append(np.argmax(test_label[i]))
y_pred.append(np.argmax(y[i]))
eachlabelacc = self.each_label_acc(y_label,y_pred)
label = [0,1,2,3,4,5,6,7,8,9]
data = []
data.append(['label','accuracy'])
for i in range(len(eachlabelacc)):
data.append([label[i],eachlabelacc[i]])
print(eachlabelacc,data)
return {'acc': eachlabelacc, 'label': label, 'data':data}
def accuracy(self,file_path,batchsize_s):
batchsize = int(batchsize_s)
filename_queue = tf.train.string_input_producer([file_path],num_epochs=None)
img,label = read_and_decode(filename_queue,True,batchsize)#(batchsize,28,28)
#threads stop problem
sv = tf.train.Supervisor()
with sv.managed_session() as sess:
test_x, test_label=sess.run([img,label])
acc = self.sess.run(self.net.accuracy,feed_dict = {self.net.init_x:test_x,self.net.label:test_label})
return acc
def channel(self,layer_index_s,channel_s,input_cache,label_cache):
#values = self.loaded_graph.get_tensor_by_name("layer1/Variable/Adam:0")
#h_conv1_dist = self.sess.run(values)
channel = int(channel_s)
layer_index = int(layer_index_s)
self.get_all_tensor()
values = self.tensor_in_graph[layer_index]
init_x = self.loaded_graph.get_tensor_by_name("input/Placeholder:0")
label_y = self.loaded_graph.get_tensor_by_name("label/Placeholder:0")
h_conv1_dist = self.sess.run(values,feed_dict = {init_x:input_cache, label_y:label_cache})
print(h_conv1_dist.shape)
h_conv1_dist = np.transpose(h_conv1_dist, (0,3,1,2))
print(h_conv1_dist.shape)
h_conv1_dist = np.reshape(h_conv1_dist,
(h_conv1_dist.shape[0],
h_conv1_dist.shape[1],
h_conv1_dist.shape[2]*h_conv1_dist.shape[3]))
print(h_conv1_dist.shape)
weights = np.arange(len(h_conv1_dist[0][0]))
data = []
data.append(['weights','figure'])
for i in range(len(weights)):
print(weights[i],h_conv1_dist[0][channel][i])
data.append([weights[i].tolist(),h_conv1_dist[0][channel][i].tolist()])#sample batch 0
return {'data':data}
def feature(
self,
file_path,
batchsize_s,
inputshape,
outputshape):
init_x = self.loaded_graph.get_tensor_by_name("input/Placeholder:0")
label_y = self.loaded_graph.get_tensor_by_name("label/Placeholder:0")
predict = self.loaded_graph.get_tensor_by_name("predict/Equal:0")
#output_y = self.loaded_graph.get_tensor_by_name("layer1/Relu:0")
#grads = self.loaded_graph.get_tensor_by_name("grads/div:0")
#accuracy = self.loaded_graph.get_tensor_by_name("accuracy/Const:0")
batchsize = int(batchsize_s)
filename_queue = tf.train.string_input_producer([file_path],num_epochs=None)
img,label = read_and_decode(
filename_queue,
True,
batchsize,
inputshape,
outputshape)
#threads stop problem
sv = tf.train.Supervisor()
with sv.managed_session() as sess:
self.test_x, self.test_label=sess.run([img,label])
self.get_all_tensor()
predict_list = self.sess.run(predict,
feed_dict={init_x:self.test_x, label_y:self.test_label})
#output,grads_val = self.sess.run([output_y,grads],
# feed_dict = {init_x:self.test_x, label_y:self.test_label})
acc = 0
for result in predict_list:
if result:
acc+=1
acc = round(float(acc/len(predict_list)),5)
grads_list=[]
#for i in range(16):
# grads_list.append(self.convert_cam(self.grad_cam(output,grads_val)[i]))
#grads_npary = np.array(grads_list)
#print(grads_npary.shape)
#grads_npary = np.transpose(grads_npary, (1,2,0,3))
#print("%%%%%%%%%%%%%%%%")
#print(grads_npary.shape)
#acc, = self.sess.run(accuracy,feed_dict = {init_x:self.test_x,label_y:self.test_label})
tf.reset_default_graph()
g = tf.Graph()
with g.as_default():
feature_list = self.sess.run(self.tensor_in_graph,
feed_dict={init_x:self.test_x})#list
feature_tensor = []
for i in range(len(self.tensor_in_graph)):
feature_tensor.append(self.generate_tensor(feature_list[i]))
#print(np.array(feature_list[i]).shape)
#print(self.tensor_channel_num)
#feature_tensor.append(self.generate_tensor(grads_npary))
#self.tensor_name.append("grads")
fea_refresh("/tmp/mnist/feature", feature_tensor, self.tensor_name)
return acc,self.test_x,self.test_label
def feature_edit(self,
input_cache,
label_cache,
batchsize_s,
batch,
x,
y,
c,
value):
init_x = self.loaded_graph.get_tensor_by_name("input/Placeholder:0")
label_y = self.loaded_graph.get_tensor_by_name("label/Placeholder:0")
#accuracy = self.loaded_graph.get_tensor_by_name("accuracy/Const:0")
predict = self.loaded_graph.get_tensor_by_name("predict/Equal:0")
input_reshape = self.loaded_graph.get_tensor_by_name("input_reshape/Reshape:0")
output_y = self.loaded_graph.get_tensor_by_name("layer1/Relu:0")
grads = self.loaded_graph.get_tensor_by_name("grads/div:0")
batchsize = int(batchsize_s)
img_reshape = np.reshape(input_cache,
(-1,
input_reshape.shape[1],
input_reshape.shape[2],
input_reshape.shape[3]))
img_edit = self.edit(img_reshape,batch,x,y,c,value)#edit
img_reshape = np.reshape(img_edit,(-1,init_x.shape[1]))
#threads stop problem
self.get_all_tensor()
predict_list = self.sess.run(predict,
feed_dict={input_reshape:img_edit, label_y:label_cache})
#output,grads_val = self.sess.run([output_y,grads], feed_dict = {init_x:self.test_x, label_y:self.test_label})
acc = 0
for result in predict_list:
if result:
acc+=1
acc = round(float(acc/len(predict_list)),5)
#acc = self.sess.run(accuracy,feed_dict = {input_reshape:img_edit, label_y:label_cache})
tf.reset_default_graph()
g = tf.Graph()
with g.as_default():
feature_list = self.sess.run(self.tensor_in_graph,
feed_dict={input_reshape:img_edit})
feature_tensor = []
for i in range(len(self.tensor_in_graph)):
feature_tensor.append(self.generate_tensor(feature_list[i]))
#feature_tensor.append(self.generate_tensor(self.convert_cam(self.grad_cam(output,grads_val))))
fea_refresh("/tmp/mnist/feature", feature_tensor, self.tensor_name)
return acc
def grad_cam(self,output,grads_val):
print(np.array(grads_val).shape,output.shape) #[1024,28,28,16]
#output = output[0]
#grads_val = grads_val[0]
#print(grads_val,grads_val.shape)
weights = np.mean(grads_val[:],axis=(1,2)) # average pooling [1024,16]
print("##################################")
print(weights.shape)
cam = np.ones(output.shape[0:3], dtype = np.float32) #[1024,28,28]
print(cam.shape)
#for i,w in enumerate(weights):
# cam += w*output[:,:,i]
cam = [[]]*len(weights) #1024
for i,w in enumerate(weights):#i==1024,w==[16,]
for j,u in enumerate(w):#j==16
cam[i].append((u*output[i,:,:,j]).tolist())
return cam #(1024,16,28,28,3)
def convert_cam(self,cam):
# Passing through ReLU
cam = | np.maximum(cam, 0) | numpy.maximum |
import math
from math import cos, degrees, pi, radians, sin
from pathlib import Path
import matplotlib.lines as lines
import matplotlib.patches as mpatches
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
from matplotlib.patches import Ellipse
from numpy import arctan2
from numpy import linalg as LA
from shapely import affinity
from shapely import geometry as geom
from . import io
IMG_X_SIZE = 840
IMG_Y_SIZE = 648
def set_subframe_size(ax):
"""Set plot view limit on Planet 4 subframe size."""
ax.set_xlim(0, IMG_X_SIZE)
ax.set_ylim(IMG_Y_SIZE, 0)
def calc_fig_size(width):
"""Calc figure height in ratio of subframes."""
ratio = IMG_X_SIZE / IMG_Y_SIZE
return (width, width / ratio)
class Marking:
def __init__(self, data, scope="planet4"):
self.data = data
self.scope = scope
class Blotch(Ellipse):
"""Blotch management class for P4.
Parameters
----------
data : object with blotch data attributes
object should provide attributes [`x`, `y`, `radius_1`, `radius_2`, `angle`]
scope : {'planet4', 'hirise'}
string that decides between using x/y or image_x/image_y as center corods
color : str, optional
to control the color of the mpl.Ellipse object
Attributes
----------
to_average : list
List of cols to be averaged after clustering
data : object with blotch data attributes, as provided by `data`
center : tuple (inherited from matplotlib.Ellipse)
Coordinates of center, i.e. self.x, self.y
"""
to_average = "x y image_x image_y angle radius_1 radius_2".split()
def __init__(self, data, scope="planet4", with_center=False, url_db="", **kwargs):
self.data = data
self.scope = scope if scope is not None else "planet4"
self.with_center = with_center
self.url_db = Path(url_db)
self.ax = None
if scope not in ["hirise", "planet4"]:
raise TypeError("Unknown scope: {}".format(scope))
try:
self.x = data.x if scope == "planet4" else data.image_x
self.y = data.y if scope == "planet4" else data.image_y
except AttributeError:
print("No x and y attributes in data:\n{}".format(data))
raise AttributeError
# default member number is 1. This is set to the cluster member inside
# clustering execution.
self._n_members = 1
super(Blotch, self).__init__(
(self.x, self.y),
data.radius_1 * 2,
data.radius_2 * 2,
data.angle,
alpha=0.65,
linewidth=2,
fill=False,
**kwargs
)
self.data = data
@property
def subframe(self):
url = io.get_url_for_tile_id(self.data.tile_id)
return io.get_subframe(url)
def show_subframe(self, ax=None, aspect="auto"):
if ax is None:
_, ax = plt.subplots(figsize=calc_fig_size(8))
ax.imshow(self.subframe, origin="upper", aspect=aspect)
ax.set_axis_off()
self.ax = ax
def is_equal(self, other):
if (
self.data.x == other.data.x
and self.data.y == other.data.y
and self.data.image_x == other.data.image_y
and self.data.image_y == other.data.image_y
and self.data.radius_1 == other.data.radius_1
and self.data.radius_2 == other.data.radius_2
and self.data.angle == other.data.angle
):
return True
else:
return False
def to_shapely(self):
"""Convert a markings.Blotch to shapely Ellipse.
Code from https://gis.stackexchange.com/questions/243459/drawing-ellipse-with-shapely/243462
"""
circ = geom.Point(self.center).buffer(1)
ell = affinity.scale(circ, self.data.radius_1, self.data.radius_2)
ellr = affinity.rotate(ell, self.data.angle)
return ellr
@property
def area(self):
return pi * self.data.radius_1 * self.data.radius_2
@property
def x1(self):
return math.cos(math.radians(self.angle)) * self.data.radius_1
@property
def y1(self):
return math.sin(self.angle) * self.data.radius_1
@property
def p1(self):
return np.array(self.center) + np.array([self.x1, self.y1])
@property
def p2(self):
return np.array(self.center) - np.array([self.x1, self.y1])
@property
def x2(self):
return math.cos(math.radians(self.angle + 90)) * self.data.radius_2
@property
def y2(self):
return math.sin(math.radians(self.angle + 90)) * self.data.radius_2
@property
def p3(self):
return np.array(self.center) + np.array([self.x2, self.y2])
@property
def p4(self):
return np.array(self.center) - np.array([self.x2, self.y2])
@property
def limit_points(self):
return [self.p1, self.p2, self.p3, self.p4]
def plot_center(self, ax, color="b"):
ax.scatter(self.x, self.y, color=color, s=20, marker=".")
def plot_limit_points(self, ax, color="b"):
for x, y in self.limit_points:
ax.scatter(x, y, color=color, s=20, marker="o")
@property
def n_members(self):
return self._n_members
@n_members.setter
def n_members(self, value):
self._n_members = value
def plot(self, color="green", ax=None):
self.show_subframe(ax)
ax = self.ax
if ax is None:
_, ax = plt.subplots()
if color is not None:
self.set_color(color)
ax.add_patch(self)
if self.with_center:
self.plot_center(ax, color=color)
def store(self, fpath=None):
out = self.data
for p in range(1, 5):
attr = "p" + str(p)
point = getattr(self, attr)
out[attr + "_x"] = point[0]
out[attr + "_y"] = point[1]
if "image_id" not in out.index:
pass
# out['image_id'] = self.image_id
if fpath is not None:
out.to_hdf(str(fpath.with_suffix(".hdf")), "df")
out["n_members"] = self.n_members
return out
def __str__(self):
s = "markings.Blotch object. Input data:\n"
s += self.data.__str__()
s += "\n"
s += "N_members: {}".format(self.n_members)
return s
def __repr__(self):
return self.__str__()
def rotate_vector(v, angle):
"""Rotate vector by angle given in degrees.
Parameters
----------
v : np.array
Vector to be rotated
angle : float
Angle in degrees
"""
rangle = radians(angle)
rotmat = np.array([[cos(rangle), -sin(rangle)], [sin(rangle), cos(rangle)]])
return rotmat.dot(v)
class Fan(lines.Line2D):
"""Fan management class for P4.
Parameters
----------
data : object with fan data attributes
object has to provide [`x`, `y`, `angle`, `spread`, `distance`]
scope : {'planet4', 'hirise'}
string that decides between using x/y or image_x/image_y as base coords
kwargs : dictionary, optional
Attributes
----------
to_average : list
List of columns to average after clustering
data : object with fan data attributes
as provided by `data`.
base : tuple
base coordinates `x` and `y`.
inside_half : float
`data` divided by 2.0.
armlength : float
length of the fan arms.
v1 : float[2]
vector of first arm of fan.
v2 : float[2]
vector of second arm of fan.
coords : float[3, 2]
Set of coords to draw for MPL.Line2D object: arm1->base->arm2
circle_base
center
radius
midpoint
base_to_midpoint_vec
"""
to_average = "x y image_x image_y angle spread distance".split()
def __init__(self, data, scope="planet4", with_center=False, **kwargs):
self.data = data
self.scope = scope if scope is not None else "planet4"
self.with_center = with_center
if scope not in ["hirise", "planet4"]:
raise TypeError("Unknown scope: {}".format(scope))
# first coordinate is the base of fan
actual_x = "x" if scope == "planet4" else "image_x"
actual_y = "y" if scope == "planet4" else "image_y"
try:
self.base = self.data.loc[[actual_x, actual_y]].values.astype("float")
except KeyError:
print("No x and y in the data:\n{}".format(data))
raise KeyError
# default n_members value (property)
self._n_members = 1
# angles
self.inside_half = self.data.spread / 2.0
alpha = self.data.angle - self.inside_half
beta = self.data.angle + self.inside_half
# length of arms
self.armlength = self.get_arm_length()
# first arm
self.v1 = rotate_vector([self.armlength, 0], alpha)
# second arm
self.v2 = rotate_vector([self.armlength, 0], beta)
# vector matrix, stows the 1D vectors row-wise
self.coords = np.vstack((self.base + self.v1, self.base, self.base + self.v2))
# init fan line, first column are the x-components of the row-vectors
lines.Line2D.__init__(
self,
self.coords[:, 0],
self.coords[:, 1],
alpha=0.65,
color="white",
**kwargs
)
def is_equal(self, other):
if (
self.data.x == other.data.x
and self.data.y == other.data.y
and self.data.image_x == other.data.image_x
and self.data.image_y == other.data.image_y
and self.data.angle == other.data.angle
and self.data.spread == other.data.spread
and self.data.distance == other.data.distance
):
return True
else:
return False
@property
def n_members(self):
return self._n_members
@n_members.setter
def n_members(self, value):
self._n_members = value
def get_arm_length(self):
half = radians(self.inside_half)
return self.data.distance / (cos(half) + sin(half))
@property
def area(self):
tr_h = | np.sqrt(self.armlength ** 2 - self.radius ** 2) | numpy.sqrt |
import gym
import collections
import numpy as np
from models.q_table import Q_Table
from util.bitmask import BitMask
class IMTAgent():
def __init__(self, obs_size: int, action_size: int, alpha: float, gamma: float, epsilon: float, retries=1, target_value=0, window_size: int = 20):
self.obs_size = obs_size
self.action_size = action_size
self.past_qs = collections.deque(maxlen=window_size)
self.arousal_model = Q_Table(100, alpha, gamma, epsilon)
self.emotive_model = Q_Table(100, alpha, gamma, epsilon)
self.goal_model = Q_Table(3, alpha, gamma, epsilon)
self.subgoal_idx = 0
self.attentional_model = Q_Table(3, alpha, gamma, epsilon)
self.attentional_mask = BitMask(obs_size, random=True)
self.affordance_model = Q_Table(3, alpha, gamma, epsilon)
self.affordance_mask = BitMask(action_size, random=True)
self.retries = retries
self.experiential_model = Q_Table(
self.action_size, alpha, gamma, epsilon)
self.visited_states = []
self.target_value = target_value
self.affective_values = np.arange(0, 100, 1)
@staticmethod
def create_circular_mask(h, w, center, radius):
Y, X = np.ogrid[:h, :w]
dist_from_center = np.sqrt((X - center[0])**2 + (Y-center[1])**2)
mask = dist_from_center <= radius
return mask
def get_distance(self, first_state, second_state):
first_state = np.array(first_state)
second_state = np.array(second_state)
return np.linalg.norm(first_state - second_state)
def clamp(self, n, minn, maxn):
return max(min(maxn, n), minn)
def concatenate_state(self, *args):
return | np.append(args[0], args[1:]) | numpy.append |
"""
Sequence preprocessing functionality. Extends sklearn
transformers to sequences.
"""
import numpy as np
from sklearn.base import ClassifierMixin, BaseEstimator, TransformerMixin, clone
from sklearn.model_selection import GridSearchCV, train_test_split
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import LabelEncoder, StandardScaler
from sklearn.metrics import accuracy_score
from sklearn.svm import LinearSVC
# A set of procedures for preprocessing of sequences
def make_subsequences(x, y, step=1, max_len=2 ** 31):
"""
Creates views to all subsequences of the sequence x. For example if
x = [1,2,3,4]
y = [1,1,0,0]
step = 1
the result is a tuple a, b, where:
a = [[1],
[1,2],
[1,2,3],
[1,2,3,4]
]
b = [1,1,0,0]
Note that only a view into x is created, but not a copy of elements of x.
Parameters
----------
X : array [seq_length, n_features]
y : numpy array of shape [n_samples]
Target values. Can be string, float, int etc.
step : int
Step with which to subsample the sequence.
max_len : int, default 2 ** 31
Step with which to subsample the sequence.
Returns
-------
a, b : a is all subsequences of x taken with some step, and b is labels assigned to these sequences.
"""
r = range(step-1, len(x), step)
X = []
Y = []
for i in r:
start = max(0, i - max_len)
stop = i+1
X.append(x[start:stop])
Y.append(y[i])
return X, Y
class PadSubsequence(BaseEstimator, TransformerMixin):
"""
Takes subsequences of fixed length from input list of sequences.
If sequence is not long enough, it is left padded with zeros.
Parameters
----------
length : float, length of the subsequence to take
"""
def __init__(self, length=10, step=1):
self.length = length
self.step = step
def _check_input(self, X):
if len(X.shape) < 2:
raise ValueError("The input should be a sequence, found shape %s" % X.shape)
def fit(self,X,y=None):
# remeber the num. of features
self.n_features = X[0].shape[-1]
return self
def transform(self, X, y=None):
if not hasattr(self, 'step'):
self.step = 1
# X might be a list
R = []
for x in X:
if len(x) >= self.length:
R.append(x[-self.length::self.step])
else:
z = np.zeros((self.length - len(x), x.shape[-1]))
zx = np.row_stack((z,x))
zx = zx[::self.step]
R.append(zx)
R = np.array(R)
return R
class CalculateSpectrum(BaseEstimator, TransformerMixin):
"""Calculates spectrum of sequence.
"""
def __init__(self, copy=True, with_mean=True, with_std=True):
self.with_mean = with_mean
self.with_std = with_std
def fit(self, X, y=None):
return self
def transform(self, X, y=None):
"""Perform fft on sequence along every feature
Parameters
----------
X : array-like, shape [n_samples, seq_len, n_features]
The data used to fft along the features axis.
"""
from scipy import fftpack
X = abs(fftpack.fft(X, axis=1))
return X
class FlattenShape(BaseEstimator, TransformerMixin):
"""
Flattens the shape of samples to a single vector. This is useful in cases
when "classic" models like SVM are used.
Parameters
----------
"""
def fit(self, X, y=None):
self.shape = X[0].shape
return self
def transform(self, X, y=None):
V = np.array([np.ravel(x) for x in X])
return V
def inverse_transform(self, X, y=None):
V = np.array([np.reshape(x, self.shape) for x in X])
return V
# Wrapper for the standard classes of sklearn to work with sequence labeling
class SequenceTransformer(BaseEstimator, TransformerMixin):
def __init__(self, transformer, mode='stack'):
"""
Applies transformer to every element in input sequence.
transformer: TransformerMixin
mode: How to preprocess sequences for transformer fitting.
default: stack all sequences into one huge sequence
so that then it looks like a normal 2d training set
"""
self.transformer = transformer
self.mode = mode
self.transformer_ = None
def fit(self, X, y=None):
"""
Fit base transformer to the set of sequences.
X: iterable of shape [n_samples, ...]
y: iterable of shape [n_samples, ...]
"""
# stack all the elements into one huge dataset
self.transformer_ = clone(self.transformer)
if self.mode == 'stack':
X_conc = np.row_stack(x for x in X)
# might have bugs here in future :(
if y is not None:
y_conc = np.concatenate([[v] * len(x) for x, v in zip(X, y)])
else:
X_conc = X
y_conc = y
if y is None:
self.transformer_.fit(X_conc)
else:
self.transformer_.fit(X_conc, y_conc)
return self
def transform(self, X, y=None):
if y is None:
result = [self.transformer_.transform(xx) for xx in X]
else:
result = [self.transformer_.transform(xx, [yy] * len(xx)) for xx, yy in zip(X, y)]
result = np.array(result)
return result
def set_params(self, **params):
self.base_transformer.set_params(**params)
return self
class Seq1Dto2D(BaseEstimator, TransformerMixin):
"""
Useful for working with text sequences.
Such sequence is just a list of characters.
This converts a sequence of elements to a sequence
of lists of size 1 of characters. So
"abc" -> [['a'], ['b'], ['c']]
Useful for applications where you do not want
to convert text to features explicitly.
"""
def __init__(self):
pass
def fit(self, X, y=None):
return self
def transform(self, X, y=None):
return [np.array(list(xx))[:, np.newaxis] for xx in X]
class Subsequensor(BaseEstimator, TransformerMixin):
"""
Creates views in all subsequences of a numpy sequence.
Parameters
----------
step: int, step with which the subsequences are taken.
max_subsequence: int or None, maximum subsequence size that is used
in order to predict a certain output value.
"""
def __init__(self, step, max_subsequence=None):
self.step = step
self.max_subsequence = max_subsequence
def fit(self, X, Y):
"""Fit the transformer according to the given training data.
Parameters
----------
X : list of numpy arrays
List of sequences, where every sequence is a 2d numpy array,
where the first dimension corresponds to time, and last for features.
Y : list of object
List of labels assigned to corresponding sequences in X.
Returns
-------
self : object
Returns self.
"""
return self
def transform(self, X, Y=None):
"""Transform the input data.
Parameters
----------
X : list of numpy arrays
List of sequences, where every sequence is a 2d numpy array,
where the first dimension corresponds to time, and last for features.
Y : list of object
List of labels assigned to corresponding sequences in X.
Returns
-------
X : list
Returns list of views into the sequences.
"""
test_time = Y is None
if test_time:
Y = [[None]*len(x) for x in X]
if self.max_subsequence is None:
args = (self.step, )
else:
args = (self.step, self.max_subsequence)
XY = [make_subsequences(*((x, y, ) + args)) for x, y in zip(X, Y)]
X = [z[0] for z in XY]
if test_time:
return X
return X, [z[1] for z in XY]
class SequenceEstimator(BaseEstimator):
"""
This generic estimator class can be used to label every element in a sequence using underlying subsequence estimator.
One example would be labeling which parts of sensory data correspond to what kind of activity of the user.
Consider the following example:
X = [[1,2,3]]
y = [[0,0,1]]
fit() will train the estimator to classify properly the following data:
X = [[1], [1,2], [1,2,3]]
y = [[0, 0, 1]]
predict() on X will return labels for every element in a sequence.
Parameters
----------
estimator: BaseEstimator, model which is used to do estimations on subsequences.
step: int, step with which the subsequences are taken for training of internal sestimator.
"""
def __init__(self, estimator, step=1, max_subsequence=None):
self.estimator = estimator
self.step = step
self.max_subsequence = max_subsequence
self.subsequencer = None # class instance that is responsible for getting views into the sequence
def set_params(self, **params):
step_name = self.__class__.__name__.lower() + "__step"
if step_name in params:
self.step = params[step_name]
params = params.copy()
del params[step_name]
self.estimator.set_params(**params)
return self
def fit(self, X, y):
X, y = Subsequensor(step=self.step, max_subsequence=self.max_subsequence).transform(X, y)
X, y = sum(X, []), sum(y, []) # concat all data together
self.estimator.fit(X, y)
return self
def predict(self, X):
X = Subsequensor(step=1).transform(X)
R = [self.estimator.predict(x) for x in X]
return R
def score(self, X, y):
X, y = Subsequensor(step=self.step, max_subsequence=self.max_subsequence).transform(X, y)
X, y = sum(X, []), sum(y, []) # concat all data together
return self.estimator.score(X, y)
# Classes that work with sequences directly
# Readers
def read_wav(filename, mono=False):
"""
Reads a wav file into a sequence of vectors, which represent
the intensity of sound at some time.
Every vector has a lenght of 1 if mono mode is used, else 2.
Parameters
----------
filename : string, file to read
mono: bool, whether to read audio as mono or stereo. Mono files are always read as mono.
Returns
-------
numpy array containing sequence of audio intensities.
"""
import scipy.io.wavfile as scw
framerate, data = scw.read(filename)
if len(data.shape) < 2:
data = data[:,np.newaxis]
if mono:
data = np.mean(data, axis=1)
data = data[:,np.newaxis]
return data
# Example pipelines
def rnn_pipe():
pipe = make_pipeline(
PadSubsequence(),
RNNClassifier()
)
grid = [
{
"paddedsubsequence__length":[2,4],
"rnnclassifier__n_neurons":[32]
}
]
return pipe, grid
def svm_pipe():
pipe = make_pipeline(
PadSubsequence(),
FlattenShape(),
StandardScaler(),
LinearSVC(),
)
grid = [
{
"paddedsubsequence__length":[1,2,4,8,16],
"linearsvc__C":10 ** | np.linspace(-10, 10, 51) | numpy.linspace |
import functools
import logging
import pickle
import sys
import time
from collections import Counter
from datetime import datetime
from pathlib import Path
from typing import Dict
from typing import Set
from typing import Union, Tuple, List
import igraph as ig
import matplotlib.pyplot as plt
import networkx as nx
import numpy as np
import seaborn as sns;
sns.set_style('white')
from matplotlib import gridspec
from numpy import linalg as la
from scipy import sparse as sps
from scipy.sparse import issparse
import statsmodels.stats.api as sm
from VRG.src.LightMultiGraph import LightMultiGraph
sns.set(); sns.set_style("darkgrid")
clusters = {} # stores the cluster members
original_graph = None # to keep track of the original edges covered
def matrix_distance(A: np.array, B: np.array, kind: str) -> float:
# pad matrices such that their orders match
if A.shape[0] > B.shape[0]: B = _pad(B, A.shape[0])
elif A.shape[0] < B.shape[0]: A = _pad(A, B.shape[0])
assert A.shape[0] == B.shape[0]
if kind == 'L1': d = np.sum(np.abs(A - B))
elif kind == 'L2': d = np.sqrt(np.sum(np.square(A - B)))
elif kind == 'L_inf': d = np.max(np.max(np.abs(A - B)))
else: raise NotImplementedError(f'Invalid kind: {kind!r}')
return d
def unnest_attr_dict(g):
new_g = nx.Graph()
for n, d in g.nodes(data=True):
while 'attr_dict' in d:
d = d['attr_dict']
new_g.add_node(n, **d)
new_g.add_edges_from(g.edges())
return new_g
def get_terminal_subgraph(g):
"""
Return the subgraph induced by terminal nodes in g
:param g:
:return:
"""
terminals = {node for node, d in g.nodes(data=True) if 'nt' not in d}
return g.subgraph(terminals).copy()
def get_compatibility_matrix(g: nx.Graph, attr_name: str):
"""
From Danai's heterophily paper
:param g:
:param attr_name:
:return:
"""
values = set(nx.get_node_attributes(g, attr_name).values())
mapping = {val: i for i, val in enumerate(values)}
print(mapping)
C = nx.attribute_mixing_matrix(g, attribute=attr_name, mapping=mapping, normalized=False)
np.fill_diagonal(C, C.diagonal() / 2)
D = np.diag(np.diag(C))
e = np.ones(shape=(len(mapping), 1))
h = float((e.T @ D @ e) / (e.T @ C @ e))
Y = np.zeros(shape=(g.order(), len(mapping)))
for n, d in g.nodes(data=True):
attr = d[attr_name]
Y[n, mapping[attr]] = 1
A = nx.adjacency_matrix(g)
E = np.ones(shape=(A.shape[0], len(mapping)))
H = (Y.T @ A @ Y) / (Y.T @ A @ E)
return_d = dict(homophily_ratio=h, compatibility_mat=H, attr_name=attr_name, mapping=mapping)
return return_d
def find_boundary_edges(g: LightMultiGraph, nbunch: Set[int]) -> List[Tuple]:
"""
Collect all of the boundary edges (i.e., the edges
that connect the subgraph to the original graph)
:param g: whole graph
:param nbunch: set of nodes in the subgraph
:return: boundary edges
"""
nbunch = set(nbunch)
if len(nbunch) == g.order(): # it's the entire node set
return []
boundary_edges = []
for u, v in nx.edge_boundary(g, nbunch):
edges = [(u, v)] * g.number_of_edges(u, v)
boundary_edges.extend(edges)
return boundary_edges
def set_boundary_degrees(g: LightMultiGraph, sg: LightMultiGraph) -> None:
boundary_degree = {n: 0 for n in sg.nodes} # by default every boundary degree is 0
for u, v in nx.edge_boundary(g, sg.nodes()):
if sg.has_node(u):
boundary_degree[u] += g.number_of_edges(u, v)
else:
boundary_degree[v] += g.number_of_edges(u, v)
nx.set_node_attributes(sg, values=boundary_degree, name='b_deg')
return
def set_boundary_degrees_old(g: LightMultiGraph, sg: LightMultiGraph) -> None:
"""
Find the nunber of boundary edges that each node participate in.
This is stored as a node level attribute - 'b_deg' in nodes in g that are part of nbunch
:param g: whole graph
:param sg: the subgraph
:return: nothing
"""
boundary_degree = {}
for u in sg.nodes():
boundary_degree[u] = 0
for v in g.neighbors(u):
if not sg.has_node(v):
boundary_degree[u] += g.number_of_edges(u, v) # for a multi-graph
nx.set_node_attributes(sg, values=boundary_degree, name='b_deg')
return
def get_nodes_covered(sg: LightMultiGraph) -> Set[int]:
"""
Get nodes covered by a non-terminal
:param g:
:param sg:
:return:
"""
nodes_covered = set()
for node, data in sg.nodes(data=True):
if 'nt' in data: # if the subgraph has a non-terminal node, the new non-terminal now has all the nodes_covered of that non-terminal node
nt = data['nt']
assert isinstance(nt.nodes_covered, set) and len(
nt.nodes_covered) > 0, 'non-terminal has invalid nodes_covered'
nodes_covered.update(nt.nodes_covered)
else: # it's a regular node
nodes_covered.add(node)
return nodes_covered
def load_pickle(fname):
try:
obj = pickle.load(open(fname, 'rb'))
except Exception as e:
obj = None
logging.error(f'{e} Error loading pickle from {fname!r}')
return obj
def dump_pickle(obj, fname):
logging.error(f'Dumping pickle at {fname!r}')
pickle.dump(obj, open(fname, 'wb'))
return
def mean_confidence_interval(arr, alpha=0.05) -> Tuple:
if len(arr) == 1:
return 0, 0
return sm.DescrStatsW(arr).tconfint_mean(alpha=alpha)
def node_matcher_b_deg(node_attr_1: Dict, node_attr_2: Dict) -> bool:
"""
Only match boundary degrees
"""
return node_attr_1['b_deg'] == node_attr_2['b_deg']
def node_matcher_strict(node_attr_1: Dict, node_attr_2: Dict) -> bool:
"""
If node n1 in G1 are the same as node n2 in G2
:param node_attr_1: Dictionary of node attrs
:param node_attr_2:
:return:
"""
# check if they have the same set of attributes
# only check if their b_deg are the same
same = set(node_attr_1.keys()) == set(node_attr_2.keys())
if same:
# check if the values are the same too
for key, val_1 in node_attr_1.items():
if key == 'actual_label': # ignore actual_label attribute
continue
val_2 = node_attr_2[key]
if val_1 != val_2: # if the values don't match, break
same = False
break
return same
def edge_matcher(edge_attr_1: Dict, edge_attr_2: Dict) -> bool:
"""
If edge e1 in G1 is the same as edge e2 in G2
:param edge_attr_1:
:param edge_attr_2:
:return:
"""
# they must have the same set of edge attrs
same = set(edge_attr_1.keys()) == set(edge_attr_1.keys())
if same:
# check if the values are the same too
for key, val_1 in edge_attr_1.items():
val_2 = edge_attr_2[key]
if val_1 != val_2: # if values dont match
same = False
break
return same
def jaccard(set1: Set[int], set2: Set[int]):
return len(set1 & set2) / len(set1 | set2)
def cvm_distance(data1, data2) -> float:
data1, data2 = map(np.asarray, (data1, data2))
n1 = len(data1)
n2 = len(data2)
data1 = np.sort(data1)
data2 = np.sort(data2)
data_all = np.concatenate([data1, data2])
cdf1 = np.searchsorted(data1, data_all, side='right') / n1
cdf2 = np.searchsorted(data2, data_all, side='right') / n2
assert len(cdf1) == len(cdf2), 'CDFs should be of the same length'
d = np.sum(np.absolute(cdf1 - cdf2)) / len(cdf1)
return np.round(d, 3)
def ks_distance(data1, data2) -> float:
data1, data2 = map(np.asarray, (data1, data2))
n1 = len(data1)
n2 = len(data2)
data1 = np.sort(data1)
data2 = np.sort(data2)
data_all = np.concatenate([data1, data2])
cdf1 = np.searchsorted(data1, data_all, side='right') / n1
cdf2 = np.searchsorted(data2, data_all, side='right') / n2
d = np.max(np.absolute(cdf1 - cdf2))
return np.round(d, 3)
def timer(func):
@functools.wraps(func)
def wrapper_timer(*args, **kwargs):
ColorPrint.print_bold(f'({func.__name__}) Start: {datetime.now().ctime()}')
tic = time.perf_counter()
value = func(*args, **kwargs)
toc = time.perf_counter()
elapsed_time = toc - tic
ColorPrint.print_bold(f'({func.__name__}) End: {datetime.now().ctime()}, Elapsed time: {elapsed_time:0.4f}s')
return value
return wrapper_timer
def _pad(A, N):
"""Pad A so A.shape is (N,N)"""
n, _ = A.shape
if n >= N:
return A
else:
if issparse(A):
# thrown if we try to np.concatenate sparse matrices
side = sps.csr_matrix((n, N - n))
bottom = sps.csr_matrix((N - n, N))
A_pad = sps.hstack([A, side])
A_pad = sps.vstack([A_pad, bottom])
else:
side = np.zeros((n, N - n))
bottom = np.zeros((N - n, N))
A_pad = | np.concatenate([A, side], axis=1) | numpy.concatenate |
"""
CMSC733 Spring 2019: Classical and Deep Learning Approaches for
Geometric Computer Vision
Project 1: Autopano
Author(s):
<NAME> (<EMAIL>)
Graduate Student in M.Eng Robotics,
University of Maryland, College Park
<NAME> (<EMAIL>)
Graduate Student in M.Eng Robotics,
University of Maryland, College Park
"""
# Dependencies:
# opencv, do (pip install opencv-python)
# skimage, do (apt install python-skimage)
import cv2
import os
import sys
import glob
import random
from skimage import data, exposure, img_as_float
import matplotlib.pyplot as plt
from Network.Network import *
from Misc.MiscUtils import *
from Misc.DataUtils import *
from Wrapper import *
import numpy as np
import time
import argparse
import shutil
import string
import math as m
from tqdm import tqdm
from Misc.TFSpatialTransformer import *
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
# Don't generate pyc codes
sys.dont_write_bytecode = True
'''-------------GPU Verification-------------'''
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
session = tf.Session(config=config)
print("\n-->> TotalGPUs Available: ", len(tf.config.experimental.list_physical_devices('GPU')))
if (len(tf.config.experimental.list_physical_devices('GPU')) > 0) :
print("\n<<<<<<<<<<--------------------Preparing To Run on GPU-------------------->>>>>>>>>>")
else:
print("\n<<<<<<<<<<--------------------NO GPU FOUND !!!!-------------------->>>>>>>>>>")
def GenerateBatch(BasePath, DirNamesTrain, TrainLabels, ImageSize, MiniBatchSize, NumTestSamples):
"""
Inputs:
BasePath - Path to COCO folder without "/" at the end
DirNamesTrain - Variable with Subfolder paths to train files
NOTE that Train can be replaced by Val/Test for generating batch corresponding to validation (held-out testing in this case)/testing
TrainLabels - Labels corresponding to Train
NOTE that TrainLabels can be replaced by Val/TestLabels for generating batch corresponding to validation (held-out testing in this case)/testing
ImageSize - Size of the Image
MiniBatchSize is the size of the MiniBatch
Outputs:
I1Batch - Batch of images
LabelBatch - Batch of one-hot encoded labels
"""
image_IA_batches = []
corner_1_batches = []
patch_2_batches = []
patch_batches = []
for n in range(NumTestSamples):
index = n
p_1_dir = BasePath + os.sep + "Patch_A/" + DirNamesTrain[index, 0]
p_2_dir = BasePath + os.sep + "Patch_B/" + DirNamesTrain[index, 0]
image_IA_dir = BasePath + os.sep + "Image_IA/" + DirNamesTrain[index, 0]
p_1 = cv2.imread(p_1_dir, cv2.IMREAD_GRAYSCALE)
p_2 = cv2.imread(p_2_dir, cv2.IMREAD_GRAYSCALE)
image_IA = cv2.imread(image_IA_dir, cv2.IMREAD_GRAYSCALE)
if(p_1 is None) or (p_2 is None):
print("\nPatch empty moving on ..")
continue
p_1 = np.float32(p_1)
p_2 = np.float32(p_2)
image_IA = np.float32(image_IA)
p_pair = np.dstack((p_1, p_2))
o_corner = TrainLabels[index, :, :, 0]
patch_batches.append(p_pair)
corner_1_batches.append(o_corner)
patch_2_batches.append(p_2.reshape(128, 128, 1))
image_IA_batches.append(image_IA.reshape(image_IA.shape[0], image_IA.shape[1], 1))
patch_batches = np.array(patch_batches)
corner_1_batches = np.array(corner_1_batches)
patch_2_batches = np.array(patch_2_batches)
image_IA_batches = np.array(image_IA_batches)
p_indices_batch = []
for i in range(corner_1_batches.shape[0]):
x_min, y_min = corner_1_batches[i, 0, 0], corner_1_batches[i, 0, 1]
x_max, y_max = corner_1_batches[i, 3, 0], corner_1_batches[i, 3, 1]
X_, Y_ = np.mgrid[x_min : x_max, y_min : y_max]
p_indices_batch.append(np.dstack((Y_, X_)))
return patch_batches, corner_1_batches, patch_2_batches, image_IA_batches, p_indices_batch
def testUnsupervised(ImgPH, LabelPH, DirNamesTrain, ImageSize, TrainLabels, CornerPH, Patch2PH, patchIndicesPH, SavePath, ModelPath, BasePath, NumTestSamples):
if(not (os.path.isdir(SavePath))):
print(SavePath, "\nCreating Results Dir ...")
os.makedirs(SavePath)
_, h_4_batch, _ = unsuperHomographyModel(LabelPH, ImgPH, CornerPH, patchIndicesPH)
Saver = tf.train.Saver()
with tf.Session() as sess:
Saver.restore(sess, ModelPath)
print('Number of parameters in this model are %d ' % np.sum([np.prod(v.get_shape().as_list()) for v in tf.trainable_variables()]))
patch_batches, corner_1_batches, _, image_IA_batches, p_indices_batch = GenerateBatch(BasePath, DirNamesTrain, TrainLabels, ImageSize, _, NumTestSamples)
FeedDict = {LabelPH: patch_batches, CornerPH: corner_1_batches, ImgPH: image_IA_batches, patchIndicesPH: p_indices_batch}
pred_h = sess.run(h_4_batch, FeedDict)
np.save(SavePath+"predicted_H.npy", pred_h)
def testSupervised(LabelPH, ModelPath, SavePath):
"""
Inputs:
ImgPH is the Input Image placeholder
ImageSize is the size of the image
ModelPath - Path to load trained model from
DataPath - Paths of all images where testing will be run on
LabelsPathPred - Path to save predictions
Outputs:
Predictions written to ./TxtFiles/PredOut.txt
"""
image_IA_dir= "../Data/Val/"
image_name = os.listdir(image_IA_dir)
ran_index = random.randint(0, len(image_name) - 1)
a = image_name[ran_index]
ad = cv2.imread(image_IA_dir + a, 0)
random_Image = cv2.resize(ad, (320, 240), interpolation = cv2.INTER_AREA)
pA, pB, _, _, coors = patchCreation(random_Image)
patch_batch = np.dstack((pA, pB))
h_4_points = superHomographyModel(LabelPH)
Saver = tf.train.Saver()
with tf.Session() as sess:
Saver.restore(sess, ModelPath)
print('Number of parameters in this model are %d ' % np.sum([np.prod(v.get_shape().as_list()) for v in tf.trainable_variables()]))
patch_batch = np.array(patch_batch).reshape(1, 128, 128, 2)
# patch_batch = tf.reshape(patch_batch, shape=(1, 128, 128, 2))
FeedDict = {LabelPH: patch_batch}
Predicted = sess.run(h_4_points, FeedDict)
pA_new = coors[0] + Predicted.reshape(4, 2)
h_4_points_new = coors[1] - pA_new
cv2.polylines(ad, np.int32([coors[0]]), True,(0, 255, 0), 3)
cv2.polylines(ad, np.int32([coors[1]]), True,(255, 0, 0), 5)
cv2.polylines(ad, np.int32([pA_new]), True,(0, 0, 255), 5)
plt.figure()
plt.imshow(ad)
plt.show()
cv2.imwrite(SavePath + "Stacked" + ".png", ad)
def main():
"""
Inputs:
None
Outputs:
Prints out the confusion matrix with accuracy
"""
# Parse Command Line arguments
Parser = argparse.ArgumentParser()
Parser.add_argument('--ModelPath', dest='ModelPath', default='../Checkpoints/unsupervised/9model.ckpt', help='Path to load latest model from, Default:ModelPath')
Parser.add_argument('--CheckPointPath', dest='CheckPointPath', default= '../Checkpoints/unsupervised/', help='Path to load latest model from, Default:CheckPointPath')
Parser.add_argument('--BasePath', dest='BasePath', default='../Data/Validated_', help='Path to load images from, Default:BasePath')
Parser.add_argument('--SavePath', dest='SavePath', default='./Results/', help='Path of labels file, Default: ./Results/')
Parser.add_argument('--ModelType', default='Unsup', help='Model type, Supervised or Unsupervised? Choose from Sup and Unsup, Default:Unsup')
Args = Parser.parse_args()
ModelPath = Args.ModelPath
BasePath = Args.BasePath
CheckPointPath = Args.CheckPointPath
SavePath = Args.SavePath
ModelType = Args.ModelType
# Plot Confusion Matrix
# LabelsTrue, LabelsPred = ReadLabels(LabelsPath, LabelsPathPred)
# ConfusionMatrix(LabelsTrue, LabelsPred)
if ModelType == 'Unsup':
DirNamesTrain, SaveCheckPoint, ImageSize, _, TrainLabels, NumClasses = SetupAll(BasePath, CheckPointPath)
NumTestSamples = 100
TrainLabels = | np.load(BasePath + "/points_list.npy") | numpy.load |
# encoding: utf-8
from __future__ import division
import sys
import os
import time
import datetime
import pandas as pd
import numpy as np
import math
import ast
CURRENT_DIR = os.path.abspath(os.path.dirname(__file__))
ADD_PATH = "%s/../"%(CURRENT_DIR)
sys.path.append(ADD_PATH)
from tools.mail import MyEmail
from tools.html import html_with_style
DATA_PATH = "%s/../data/basic_matrix" % (CURRENT_DIR)
def reviewing_data(df,send_str):
if len(df) ==0:
send_str += '零单' + '<br>'
return send_str
send_str += '审核中单量:'+str(len(df[(df['type']=='nan')])) + ' ' + '<br>'
send_str += '审核中比例:'+str(100.0*len(df[(df['type']=='nan')])/len(df)) + ' ' + '<br>' + '<br>'
return send_str
def pass_rate(df,send_str):
if len(df) == 0:
send_str += '零完成单' + '<br>'
return send_str
out = []
concat = []
out.append((len(df),len(df[df['suggestion']=='1']),100.0*len(df[df['suggestion']=='1'])/len(df)))
if len(df[df['type']=='first']) == 0:
out.append((0,0,0))
else:
out.append((len(df[df['type']=='first']),len(df[(df['suggestion']=='1')&(df['type']=='first')]),100.0*len(df[(df['suggestion']=='1')&(df['type']=='first')])/len(df[df['type']=='first'])))
if len(df[df['type']=='regular']) == 0:
out.append((0,0,0))
else:
out.append((len(df[df['type']=='regular']),len(df[(df['suggestion']=='1')&(df['type']=='regular')]),100.0*len(df[(df['suggestion']=='1')&(df['type']=='regular')])/len(df[df['type']=='regular'])))
if len(df[df['type']=='again']) == 0:
out.append((0,0,0))
else:
out.append((len(df[df['type']=='again']),len(df[(df['suggestion']=='1')&(df['type']=='again')]),100.0*len(df[(df['suggestion']=='1')&(df['type']=='again')])/len(df[df['type']=='again'])))
frame = pd.DataFrame(out, index=['总通过率','新单通过率','续贷通过率','再次通过率'], columns=['订单申请数','通过数','通过率'])
concat.append(frame)
concat = pd.concat(concat, keys=['机审通过率'], axis=1)
send_str += html_with_style(concat) + '<br>'
return send_str
def baseline(df,send_str):
if len(df) == 0:
send_str += '无新单' + '<br>'
return send_str
out = []
concat = []
baseline_data = []
baseline = df['baseline'].values.tolist()
for i in baseline:
temp = ast.literal_eval(i)
if len(temp) != 0:
baseline_data.extend(temp)
if baseline_data == []:
send_str += '无baseline' + '<br>'
return send_str
for i in set(baseline_data):
out.append((i,baseline_data.count(i),100.0*baseline_data.count(i)/len(df)))
frame = pd.DataFrame(out, columns=['baseline','个数','拒绝率'])
concat.append(frame)
concat = pd.concat(concat, keys=['新单baseline拒绝率'], axis=1)
send_str += html_with_style(concat) + '<br>'
return send_str
def score(df,send_str):
if len(df) == 0:
send_str += '无新单' + '<br>'
return send_str
out = []
concat = []
temp = df['score'].values.tolist()
score = []
for i in temp:
try:
score.append(int(i))
except:
continue
score = np.array(score)
out.append(('>1000',sum(np.array(score)>1000),100.0*sum( | np.array(score) | numpy.array |
from typing import Tuple
import numpy as np
from scipy.stats import norm
def step_f(z: np.ndarray, scale: float, loc: float) -> np.ndarray:
"""
:param z: z-dimension
:param scale: width of step function, always 0
:param loc: position of step
:return: positioned step function
"""
new_z = z - loc
f = np.ones_like(new_z) * 0.5
f[new_z <= -scale] = 0
f[new_z >= scale] = 1
return f
def sld_with_roughness(beta: np.ndarray, d: np.ndarray, sigma: np.ndarray) -> Tuple[np.ndarray]:
"""
Determine the scattering length density profile shape, with roughness present.
:param beta: array of scattering length densities, shape: (number_layers)
:param d: layer thicknesses, shape: (number_layers)
:param sigma: interfacial roughnesses, shape (number_layers-1)
:return: z-dimension and the SLD profile
"""
dist = np.cumsum(d[:-1])
zstart = -5 - 4 * sigma[1]
zend = 5 + dist[-1] + 4 * sigma[-1]
zed = np.linspace(zstart, zend, 500)
sld = np.ones_like(zed, dtype=float) * beta[0].real
delta_rho = beta[1:].real - beta[:-1].real
erf_f = norm.cdf
for i in range(beta.shape[0] - 1):
f = erf_f
if sigma[i] == 0:
f = step_f
sld += delta_rho[i] * f(zed, scale=sigma[i], loc=dist[i])
return zed, sld
def microslicing(beta: np.ndarray, d: np.ndarray, sigma: np.ndarray, slice_size: float=0.5) -> Tuple[np.ndarray]:
"""
Creates a microslab representation of the scattering length density profile.
:param beta: scattering length densitys, shape: (number_layers)
:param d: layer thicknesses, shape: (number_layers)
:param sigma: interfacial roughnesses, shape: (number_layers-1)
:param slice_size: Thickness of each slab in the micro-slab representation
Returns
-------
micro_slabs : np.ndarray
The micro-slab representation of the model. See the
`Structure.slabs` method for a description of the array.
"""
dist = np.cumsum(d[:-1])
zstart = -20.0 - 8 * sigma[0]
zend = 20.0 + dist[-1] + 8 * sigma[0]
nsteps = int((zend - zstart) / slice_size + 1)
zed = np.linspace(zstart, zend, num=nsteps)
sld = np.ones_like(zed, dtype=float) * beta[0].real
delta_rho = beta[1:].real - beta[:-1].real
for i in range(len(d) - 1):
f = norm.cdf
if sigma[i] == 0:
f = step_f
p = f(zed, scale=sigma[i], loc=dist[i])
sld += delta_rho[i] * p
return zed + 0.5 * slice_size, sld
def normal_wavevectors(q: np.ndarray, beta: np.ndarray) -> np.ndarray:
"""
:param q: array of q-wavevectors, shape: (number_q)
:param beta: array of scattering length densities, shape: (number_layers)
:return: wavevectors normal to surface, shape: (number_q, number_layers)
"""
k0 = 0.5 * q[:, np.newaxis]
kn = np.sqrt(k0 ** 2 - 4.0 * np.pi * (beta - beta[0]))
return kn
def fresnel_reflectance(kn: np.ndarray) -> np.ndarray:
"""
:param kn: wavevectors normal to surface, shape: (number_q, number_layers)
:return: fresnel reflectance between layers, shape: (number_q, number_layers-1)
"""
return (kn[:, :-1] - kn[:, 1:]) / (kn[:, :-1] + kn[:, 1:])
def fresnel_reflectance_with_roughness(kn: np.ndarray, sigma: np.ndarray) -> np.ndarray:
"""
:param kn: wavevectors normal to surface, shape: (number_q, number_layers)
:param sigma: interfacial roughness widths, shape: (number_layers-1)
:return: fresnel reflectance between layers, shape: (number_q, number_layers-1)
"""
return (kn[:, :-1] - kn[:, 1:]) / (kn[:, :-1] + kn[:, 1:]) * np.exp(-2 * kn[:, :-1] * kn[:, 1:] * sigma ** 2)
def phase_factor(kn:np.ndarray, d: np.ndarray) -> np.ndarray:
"""
:param kn: wavevectors normal to surface, shape: (number_q, number_layers)
:param d: layer thicknesses, shape: (number_layers)
:return: phase factor, shape: (number_q, number_layers)
"""
phi_t = kn * d
phi_t[:, 0] = np.zeros(kn.shape[0])
return phi_t
def characteristic_matrices(r: np.ndarray, phi: np.ndarray) -> np.ndarray:
"""
:param r: Fresnel reflectances, shape: (number_q, number_layers-1)
:param phi: phase factors, shape: (number_q, number_layers-1)
:returns: characteristic matrices, shape: (2, 2, number_q, number_layers-1)
"""
M = np.ones((2, 2, *r.shape), dtype=complex)
M[0, 0, :, 1:] = np.exp(1j * phi[:, 1:-1])
M[1, 1, :, 1:] = | np.exp(-1j * phi[:, 1:-1]) | numpy.exp |
import os
from multiprocessing import cpu_count
from pathlib import Path
import pickle
import re
from PIL import Image
import pandas as pd
import numpy as np
from sklearn.preprocessing import OneHotEncoder
from sklearn.utils.class_weight import compute_class_weight
from sklearn.model_selection import train_test_split
from nltk.tokenize import word_tokenize
import keras
from keras import layers
from keras_preprocessing.image import ImageDataGenerator, img_to_array
from keras import backend as K
import tensorflow as tf
from tqdm import tqdm
"""Combines text and image features to form one classifier. Not used in the end due to mediocre performance"""
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
session = tf.Session(config=config)
K.set_session(session)
psychic_learners_dir = Path.cwd().parent
BIG_CATEGORY = 'fashion'
IMAGE_MODEL_PATH = str(psychic_learners_dir / 'data' /
'keras_checkpoints' / BIG_CATEGORY / 'converted_model.h5')
TEXT_MODEL_PATH = str(psychic_learners_dir / 'data' / 'keras_checkpoints' /
BIG_CATEGORY / 'word_cnn' / '0.7805109797045588.ckpt-382000')
TRAIN_CSV = str(psychic_learners_dir / 'data' / 'csvs' / f'{BIG_CATEGORY}_train_split.csv')
VALID_CSV = str(psychic_learners_dir / 'data' / 'csvs' / f'{BIG_CATEGORY}_valid_split.csv')
TEST_CSV = str(psychic_learners_dir / 'data' / 'csvs' / f'{BIG_CATEGORY}_test_split.csv')
TRAIN_IMAGE_DIR = str(psychic_learners_dir / 'data' / 'image' / 'v1_train_240x240' / BIG_CATEGORY)
VAL_IMAGE_DIR = str(psychic_learners_dir / 'data' / 'image' / 'valid_240x240' / BIG_CATEGORY)
TEST_IMAGE_DIR = str(psychic_learners_dir / 'data' / 'test_240x240' / 'test_240x240')
FEATURES_DIR = psychic_learners_dir / 'data'/ 'features' / BIG_CATEGORY
IMAGE_SIZE = (240, 240)
N_CLASSES = 17
BATCH_SIZE = 128
WORD_MAX_LEN = 15
os.makedirs(FEATURES_DIR, exist_ok=True)
with open("word_dict.pickle", "rb") as f:
word_dict = pickle.load(f)
def build_word_dataset(titles, word_dict, document_max_len):
df = pd.DataFrame(data={'title': titles})
x = list(map(lambda d: word_tokenize(clean_str(d)), df["title"]))
x = list(map(lambda d: list(map(lambda w: word_dict.get(w, word_dict["<unk>"]), d)), x))
x = list(map(lambda d: d + [word_dict["<eos>"]], x))
x = list(map(lambda d: d[:document_max_len], x))
x = list(map(lambda d: d + (document_max_len - len(d)) * [word_dict["<pad>"]], x))
return x
def clean_str(text):
text = re.sub(r"[^A-Za-z0-9]", " ", text)
text = re.sub(r"\s{2,}", " ", text)
text = text.strip().lower()
return text
def batch_iter(inputs, batch_size):
inputs = | np.array(inputs) | numpy.array |
import os
import types
import pickle
from utils.misc import isnotebook
if isnotebook():
from tqdm import tqdm_notebook as tqdm
else:
from tqdm import tqdm
import numpy as np
import networkx as nx
import graph_tool as gt
import graph_tool.stats as gt_stats
import graph_tool.topology as gt_topology
import graph_tool.clustering as gt_clustering
import graph_tool.generation as gt_generation
from utils.conversions import convert_to_gt
def unique_non_isomorphic(H_set):
H_unique = []
for H in H_set:
found = False
for H_saved in H_unique:
if H.num_vertices() != H_saved.num_vertices() or H.num_edges() != H_saved.num_edges():
# avoid running isomorphism routine if num vertices/num edges is different
continue
iso = True if H.num_edges() == 0 and H.num_vertices() == 1 else \
gt_topology.isomorphism(H, H_saved)
if iso:
found = True
break
if not found:
H_unique.append(H)
return H_unique
def get_motifs(k_min, k_max, graphs_ptg, directed=False):
#n_shuffles = 100
motif_num_vertices_list = list(range(k_min, k_max+1))
H_dictionary = []
counts = []
# add single nodes and single edges
H_dictionary += [gt_generation.complete_graph(1), gt_generation.complete_graph(2)]
counts += [0,0]
for i in tqdm(range(len(graphs_ptg))):
G_edge_index = graphs_ptg[i].edge_index.transpose(1,0).tolist()
G_gt = gt.Graph(directed=directed)
G_gt.add_edge_list(G_edge_index)
gt_stats.remove_self_loops(G_gt)
gt_stats.remove_parallel_edges(G_gt)
for motif_num_vertices in motif_num_vertices_list:
motifs_k, counts_k = gt_clustering.motifs(G_gt, motif_num_vertices)
for motif, count in zip(motifs_k, counts_k):
found=False
for H_index, H in enumerate(H_dictionary):
if H.num_vertices() != motif.num_vertices() or H.num_edges() != motif.num_edges():
# avoid running isomorphism routine if num vertices/num edges is different
continue
iso = True if H.num_edges() == 0 and H.num_vertices()==1 else \
gt_topology.isomorphism(H, motif)
if iso:
counts[H_index] += count
found = True
break
if not found:
H_dictionary.append(motif)
counts += [count]
counts = np.array(counts)
H_dictionary = list( | np.array(H_dictionary) | numpy.array |
from __future__ import print_function
#!/usr/bin/python
"""
Simple adjunct routine to plot LSPS/CRACM maps with traces, over cell image if possible.
Reuqires acq4read.
Takes advantage of acq4read code to access all data and attributes.
"""
import os
import re
import itertools
import argparse
from collections import OrderedDict
from pathlib import Path
import pandas as pd
import matplotlib
matplotlib.use('Qt5Agg')
import matplotlib.pyplot as mpl
from matplotlib.widgets import RectangleSelector
import matplotlib.backend_bases as MBB
import scipy.ndimage as SND
import pylibrary.plotting.plothelpers as PH
import seaborn as sns
import ephys.ephysanalysis.acq4read as ARC
import ephys.ephysanalysis.metaarray as EM
from pyqtgraph import configfile
from pylibrary.plotting import picker
import scipy.ndimage
import numpy as np
import datetime
import pprint
import textwrap as WR
import collections
import tifffile as tf
import ephys.ephysanalysis.boundrect as BR
import ephys.mapanalysistools.digital_filters as FILT
import mahotas as MH
import nf107.set_expt_paths as set_expt_paths
set_expt_paths.get_computer()
experiments = set_expt_paths.get_experiments()
exclusions = set_expt_paths.get_exclusions()
class ScannerInfo(object):
"""
Get scanner information, compute the scanner box and some additional parameters
Do this as a class to encapsulate the data and make reusable.
"""
def __init__(self, AR):
BRI = BR.BoundRect()
self.AR = AR # save the acq4read instance for access to the data
self.AR.getScannerPositions()
self.scannerpositions = np.array(AR.scannerpositions)
pos = self.AR.scannerCamera['frames.ma']['transform']['pos']
scale = self.AR.scannerCamera['frames.ma']['transform']['scale']
region = self.AR.scannerCamera['frames.ma']['region']
self.binning = self.AR.scannerCamera['frames.ma']['binning']
scale = list(scale)
scale[0] = scale[0]/self.binning[0]
scale[1] = scale[1]/self.binning[1]
self.scale = scale
if self.AR.spotsize is not None:
print ('Spot Size: {0:0.3f} microns'.format(self.AR.spotsize*1e6))
else:
self.AR.spotsize=50.
self.camerabox = [[pos[0] + scale[0]*region[0], pos[1] + scale[1]*region[1]],
[pos[0] + scale[0]*region[0], pos[1] + scale[1]*region[3]],
[pos[0] + scale[0]*region[2], pos[1] + scale[1]*region[3]],
[pos[0] + scale[0]*region[2], pos[1] + scale[1]*region[1]],
[pos[0] + scale[0]*region[0], pos[1] + scale[1]*region[1]]
]
scannerbox = BRI.getRectangle(self.AR.scannerpositions)
if scannerbox is None: # likely just one point
pt = self.AR.scannerpositions
fp = np.array([[pt[0][0]], [pt[0][1]]])
scannerbox = fp
else:
fp = np.array([scannerbox[0][0], scannerbox[1][1]]).reshape(2,1)
# print('fp: ', fp)
scannerbox = np.append(scannerbox, fp, axis=1)
self.scboxw = np.array(scannerbox)
self.boxw = np.swapaxes(np.array(self.camerabox), 0, 1)
class MapTraces(object):
def __init__(self):
self.cell = None
self.datasets = OrderedDict()
self.image = None
self.AR = ARC.Acq4Read()
self.outputfn = None
self.invert = True
self.vmax = 20000.
self.voff = 0.
self.ioff = 0.050
self.basezero = True
self.ax = None
self.ax2 = None
self.xscale = 1.0
self.yscale = 1.0
self.nspots = 0
self.ticks = None
self.overlay = True
self.indicesplotted = []
self.twin = [0, 0.6]
self.averageScannerImages = False # normally, would not do
self.calbar = [20, 500] # 20 ms, 500 pA
self.picker = picker.Picker()
sns.set()
sns.color_palette("colorblind", 10)
self.palette = itertools.cycle(sns.color_palette("colorblind", 10))
sns.set_style("white")
sns.set_style("ticks")
self.window = False
self.XY = [[None, None]]
self.XYdepth = 0
self.calbarobj = None
self.calbartext = None
self.mx = 0
self.my = 0
def setProtocol(self, cell, image=None, videos=None):
self.cell = Path(cell)
if not self.cell.is_dir():
print(f"Did not find directory: {str(cell):s}")
raise ValueError
if image is not None:
self.image = Path(self.cell, image)
print(self.image)
print(self.cell)
self.image_data = self.AR.getImage(self.image)
else:
self.image = None
self.videos = []
if videos is not None:
for v in videos:
self.videos.append(Path(self.cell, f"video_0{v:02d}"))
self.AR.setProtocol(self.cell)
def setWindow(self, x0, x1, y0, y1):
self.xlim = (x0, x1)
self.ylim = (y0, y1)
if not pd.isnull(x0):
self.window = True
print('window set!!!!!')
else:
self.window = False
def setOutputFile(self, filename):
self.outputfn = filename
def setPars(self, pdict):
for k in list(pdict.keys()):
if k == 'invert':
self.invert = pdict[k]
if k == 'vmax':
self.vmax = pdict[k]
if k == 'voff':
self.voff = pdict[k]
if k == 'ioff':
self.ioff = pdict[k]
if k == 'xscale':
self.xscale = pdict[k]
if k == 'yscale':
self.yscale = pdict[k]
if k == 'calbar':
self.calbar[0] = pdict[k][0]*1e-3
self.calbar[1] = pdict[k][1]*1e-12
if k == 'twin':
self.twin[0] = pdict[k][0]
self.twin[1] = pdict[k][1]
if k == 'ticks':
self.ticks = pdict[k]
def plot_maps(self, protocols, traces=None, linethickness=1.0):
"""
Plot map or superimposed maps...
"""
print('plot_maps')
self.figure = mpl.figure()
# print(dir(self.figure))
self.figure.set_size_inches(14., 8.)
if traces is None:
self.ax = self.figure.add_subplot('111')
print('set ax')
else:
self.ax = self.figure.add_subplot('121')
self.ax2 = self.figure.add_subplot('122')
sns.despine(ax=self.ax2, left=True, bottom=True, right=True, top=True)
print('set ax and ax2')
# self.ax3 = self.figure.add_subplot('133')
self.data = dict.fromkeys(list(protocols.keys()))
cols = ['r', 'b', 'c', 'g']
self.traces = traces
for i, p in enumerate(protocols):
prot = protocols[p]
self.datasets[p] = []
if i == 0:
self.setProtocol(prot, self.image)
self.show_traces(self.figure, self.ax, pcolor=cols[i], name=p, linethickness=linethickness)
else:
self.setProtocol(prot)
self.show_traces(self.figure, self.ax, pcolor=cols[i], name=p, linethickness=linethickness)
if self.traces is not None:
for tr in self.traces:
self.handle_event(index=tr)
PH.calbar(self.ax2, calbar=[0, -6., 50, 5.], scale=[1.0, 1.0],
axesoff=True, orient='left', unitNames=None, fontsize=11, weight='normal', color='k', font='Arial')
else:
self.picker = picker.Picker()
self.picker.setData(2, self.scp)
self.picker.setAction(self.handle_event)
# self.figure.canvas.mpl_connect('button_press_event', self.picker.pickEvent)
# self.figure.canvas.mpl_connect('pick_event', self.picker.pickEvent)
# self.figure.canvas.mpl_connect('motion_notify_event', self.picker.onMouseMotion)
x1, x2 = self.ax.get_xlim()
y1, y2 = self.ax.get_ylim()
self.XY = [self.get_XYlims()]
cp = self.cell.parts
cellname = '/'.join(cp[-4:])
self.figure.suptitle(cellname, fontsize=11)
self.fig2 = None
if self.outputfn is not None:
mpl.savefig(self.outputfn)
# mpl.show()
def get_XYlims(self):
x1, x2 = self.ax.get_xlim()
y1, y2 = self.ax.get_ylim()
return([x1, y1, x2, y2])
def show_traces(self, f, ax, pcolor='r', linethickness=0.5, name=None):
self.cell.glob('*')
# imageplotted = False
# imagetimes = []
# imagename = []
# maptimes = []
# mapname = []
supindex = self.AR.readDirIndex(currdir=self.cell)
self.SI = ScannerInfo(self.AR)
print(self.SI.boxw)
if self.invert:
cmap = 'gist_gray_r'
else:
cmap = 'gist_gray'
self.imageax = None
max_camera = None
if self.averageScannerImages:
max_camera = self.AR.getAverageScannerImages(dataname='Camera/frames.ma', mode='max', firstonly=False, limit=None)
self.imageax = ax.imshow(max_camera, aspect='equal', cmap='Reds', alpha=0.7, vmin = 1000, vmax=self.vmax,
extent=[np.min(self.SI.boxw[0]), np.max(self.SI.boxw[0]), np.min(self.SI.boxw[1]), np.max(self.SI.boxw[1])])
# max_camera = scipy.ndimage.gaussian_filter(max_camera, sigma=256/(4.*10))
self.cmin = SND.minimum(self.max_camera)
self.cmax = SND.maximum(self.max_camera)
if len(self.videos) > 0:
self.process_videos()
self.imageax = ax.imshow(self.merged_image, aspect='equal', cmap=cmap, alpha=0.75, vmin = 0, vmax=self.vmax,
extent=[np.min(self.SI.boxw[0]), np.max(self.SI.boxw[0]), np.min(self.SI.boxw[1]), np.max(self.SI.boxw[1])])
self.cmin = SND.minimum(self.merged_image)
self.cmax = SND.maximum(self.merged_image)
else:
self.imageax = ax.imshow(self.image_data, aspect='equal', cmap=cmap, alpha=0.75, vmin = 0, vmax=self.vmax,
extent=[np.min(self.SI.boxw[0]), np.max(self.SI.boxw[0]), np.min(self.SI.boxw[1]), np.max(self.SI.boxw[1])])
self.cmin = SND.minimum(self.image_data)
self.cmax = SND.maximum(self.image_data)
print('self.window: ', self.window)
if self.window:
ax.set_xlim(self.xlim)
ax.set_ylim(self.ylim)
self.scp = self.SI.scannerpositions
scp = self.scp
xmin = np.min(scp[:,0])
xmax = np.max(scp[:,0])
ymin = | np.min(scp[:,1]) | numpy.min |
#
# pylint: disable=missing-docstring
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import re
import sys
import tarfile
from six.moves import urllib
import tensorflow as tf
import numpy as np
import joblib
import json
import argparse
import dmm_input
#from dmm_model import inference_by_sample, loss, p_filter, sampleVariationalDist
from dmm_model import inference, loss, p_filter, sampleVariationalDist
from dmm_model import construct_placeholder, computeEmission, computeVariationalDist
import hyopt as hy
from attractor import field,potential,make_griddata_discrete,compute_discrete_transition_mat
#FLAGS = tf.app.flags.FLAGS
# Basic model parameters.
#tf.app.flags.DEFINE_boolean('use_fp16', False,"""Train the model using fp16.""")
class dotdict(dict):
"""dot.notation access to dictionary attributes"""
__getattr__ = dict.get
__setattr__ = dict.__setitem__
__delattr__ = dict.__delitem__
class NumPyArangeEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, np.int64):
return int(obj)
if isinstance(obj, np.int32):
return int(obj)
if isinstance(obj, np.float32):
return float(obj)
if isinstance(obj, np.float64):
return float(obj)
if isinstance(obj, np.ndarray):
return obj.tolist() # or map(int, obj)
return json.JSONEncoder.default(self, obj)
def get_default_config():
config={}
# data and network
#config["dim"]=None
config["dim"]=2
# training
config["epoch"] = 10
config["patience"] = 5
config["batch_size"] = 100
config["alpha"] = 1.0
config["learning_rate"] = 1.0e-2
config["curriculum_alpha"]=False
config["epoch_interval_save"] =10#100
config["epoch_interval_print"] =10#100
config["sampling_tau"]=10#0.1
config["normal_max_var"]=5.0#1.0
config["normal_min_var"]=1.0e-5
config["zero_dynamics_var"]=1.0
config["pfilter_sample_size"]=10
config["pfilter_proposal_sample_size"]=1000
config["pfilter_save_sample_num"]=100
# dataset
config["train_test_ratio"]=[0.8,0.2]
config["data_train_npy"] = None
config["mask_train_npy"] = None
config["data_test_npy"] = None
config["mask_test_npy"] = None
# save/load model
config["save_model_path"] = None
config["load_model"] = None
config["save_result_train"]=None
config["save_result_test"]=None
config["save_result_filter"]=None
#config["state_type"]="discrete"
config["state_type"]="normal"
config["sampling_type"]="none"
config["time_major"]=True
config["steps_npy"]=None
config["steps_test_npy"]=None
config["sampling_type"]="normal"
config["emission_type"]="normal"
config["state_type"]="normal"
config["dynamics_type"]="distribution"
config["pfilter_type"]="trained_dynamics"
config["potential_enabled"]=True,
config["potential_grad_transition_enabled"]=True,
config["potential_nn_enabled"]=False,
# generate json
#fp = open("config.json", "w")
#json.dump(config, fp, ensure_ascii=False, indent=4, sort_keys=True, separators=(',', ': '))
return config
def construct_feed(idx,data,placeholders,alpha,is_train=False):
feed_dict={}
num_potential_points=100
hy_param=hy.get_hyperparameter()
dim=hy_param["dim"]
dim_emit=hy_param["dim_emit"]
n_steps=hy_param["n_steps"]
batch_size=len(idx)
dropout_rate=0.0
if is_train:
if "dropout_rate" in hy_param:
dropout_rate=hy_param["dropout_rate"]
else:
dropout_rate=0.5
#
for key,ph in placeholders.items():
if key == "x":
feed_dict[ph]=data.x[idx,:,:]
elif key == "m":
feed_dict[ph]=data.m[idx,:,:]
elif key == "s":
feed_dict[ph]=data.s[idx]
elif key == "alpha":
feed_dict[ph]=alpha
elif key == "vd_eps":
#eps=np.zeros((batch_size,n_steps,dim))
if hy_param["state_type"]=="discrete":
eps=np.random.uniform(1.0e-10,1.0-1.0e-10,(batch_size,n_steps,dim))
eps=-np.log(-np.log(eps))
else:
eps=np.random.standard_normal((batch_size,n_steps,dim))
feed_dict[ph]=eps
elif key == "tr_eps":
#eps=np.zeros((batch_size,n_steps,dim))
eps=np.random.standard_normal((batch_size,n_steps,dim))
feed_dict[ph]=eps
elif key == "potential_points":
pts=np.random.standard_normal((num_potential_points,dim))
feed_dict[ph]=pts
elif key == "dropout_rate":
feed_dict[ph]=dropout_rate
elif key == "is_train":
feed_dict[ph]=is_train
return feed_dict
def print_variables():
# print variables
print('## emission variables')
vars_em = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope="emission_var")
for v in vars_em:
print(v.name)
print('## variational dist. variables')
vars_vd = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope="variational_dist_var")
for v in vars_vd:
print(v.name)
print('## transition variables')
vars_tr = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope="transition_var")
for v in vars_tr:
print(v.name)
print('## potential variables')
vars_pot = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope="potential_var")
for v in vars_pot:
print(v.name)
return
def compute_alpha(config,i):
alpha_max=config["alpha"]
if config["curriculum_alpha"]:
begin_tau=config["epoch"]*0.1
end_tau=config["epoch"]*0.9
tau=100.0
if i < begin_tau:
alpha=0.0
elif i<end_tau:
alpha=alpha_max*(1.0-np.exp(-(i-begin_tau)/tau))
else:
alpha=alpha_max
return alpha
return alpha_max
class EarlyStopping:
def __init__(self,config, **kwargs):
self.prev_validation_cost=None
self.validation_count=0
self.config=config
def evaluate_validation(self,validation_cost,info):
config=self.config
if self.prev_validation_cost is not None and self.prev_validation_cost<validation_cost:
self.validation_count+=1
if config["patience"] >0 and self.validation_count>=config["patience"]:
self.print_info(info)
print("[stop] by validation")
return True
else:
self.validation_count=0
self.prev_validation_cost=validation_cost
return False
def print_info(self,info):
config=self.config
epoch=info["epoch"]
training_cost=info["training_cost"]
validation_cost=info["validation_cost"]
training_error=info["training_error"]
validation_error=info["validation_error"]
training_all_costs=info["training_all_costs"]
validation_all_costs=info["validation_all_costs"]
alpha=info["alpha"]
save_path=info["save_path"]
if save_path is None:
format_tuple=(epoch, training_cost, training_error,
validation_cost,validation_error, self.validation_count)
print("epoch %d, training cost %g (error=%g), validation cost %g (error=%g) (count=%d) "%format_tuple)
print("[LOG] %d, %g,%g,%g,%g, %g, %g,%g,%g, %g,%g,%g"%(epoch,
training_cost,validation_cost,training_error,validation_error,alpha,
training_all_costs[0],training_all_costs[1],training_all_costs[2],
validation_all_costs[0],validation_all_costs[1],validation_all_costs[2]))
else:
format_tuple=(epoch, training_cost,training_error,
validation_cost,validation_error,self.validation_count,save_path)
print("epoch %d, training cost %g (error=%g), validation cost %g (error=%g) (count=%d) ([SAVE] %s) "%format_tuple)
print("[LOG] %d, %g,%g,%g,%g, %g, %g,%g,%g, %g,%g,%g"%(epoch,
training_cost,validation_cost,training_error,validation_error,alpha,
training_all_costs[0],training_all_costs[1],training_all_costs[2],
validation_all_costs[0],validation_all_costs[1],validation_all_costs[2]))
def compute_cost(sess,placeholders,data,data_idx,output_cost,batch_size,alpha,is_train):
# initialize costs
cost=0.0
error=0.0
all_costs=np.zeros((3,),np.float32)
# compute cost in data
n_batch=int(np.ceil(data.num*1.0/batch_size))
for j in range(n_batch):
idx=data_idx[j*batch_size:(j+1)*batch_size]
feed_dict=construct_feed(idx,data,placeholders,alpha,is_train=is_train)
cost +=np.array(sess.run(output_cost["cost"],feed_dict=feed_dict))
all_costs+=np.array(sess.run(output_cost["all_costs"],feed_dict=feed_dict))
error +=np.array(sess.run(output_cost["error"],feed_dict=feed_dict))/n_batch
data_info={
"cost":cost,
"error":error,
"all_costs":all_costs,
}
return data_info
def compute_cost_train_valid(sess,placeholders,train_data,valid_data,train_idx,valid_idx,output_cost,batch_size,alpha):
train_data_info=compute_cost(sess,placeholders,train_data,train_idx,output_cost,batch_size,alpha,is_train=True)
valid_data_info=compute_cost(sess,placeholders,valid_data,valid_idx,output_cost,batch_size,alpha,is_train=False)
all_info={}
for k,v in train_data_info.items():
all_info["training_"+k]=v
for k,v in valid_data_info.items():
all_info["validation_"+k]=v
return all_info
def compute_result(sess,placeholders,data,data_idx,outputs,batch_size,alpha):
results={}
n_batch=int(np.ceil(data.num*1.0/batch_size))
for j in range(n_batch):
idx=data_idx[j*batch_size:(j+1)*batch_size]
feed_dict=construct_feed(idx,data,placeholders,alpha)
for k,v in outputs.items():
if v is not None:
res=sess.run(v,feed_dict=feed_dict)
if k in ["z_s"]:
if k in results:
results[k]=np.concatenate([results[k],res],axis=0)
else:
results[k]=res
elif k in ["obs_params","obs_pred_params", "z_params","z_pred_params"]:
if k in results:
for i in range(len(res)):
results[k][i]=np.concatenate([results[k][i],res[i]],axis=0)
else:
results[k]=res
for k,v in results.items():
if k in ["z_s"]:
print(k,v.shape)
elif k in ["obs_params","obs_pred", "z_params","z_pred"]:
if len(v)==1:
print(k,v[0].shape)
else:
print(k,v[0].shape,v[1].shape)
return results
def get_dim(config,hy_param,data):
dim_emit=data.dim
if config["dim"] is None:
dim=dim_emit
config["dim"]=dim
else:
dim=config["dim"]
hy_param["dim"]=dim
hy_param["dim_emit"]=dim_emit
return dim,dim_emit
def train(sess,config):
hy_param=hy.get_hyperparameter()
train_data,valid_data = dmm_input.load_data(config,with_shuffle=True,with_train_test=True)
batch_size,n_batch=get_batch_size(config,hy_param,train_data)
dim,dim_emit=get_dim(config,hy_param,train_data)
n_steps=train_data.n_steps
hy_param["n_steps"]=n_steps
print("train_data_size:",train_data.num)
print("batch_size :",batch_size)
print("n_steps :",n_steps)
print("dim_emit :",dim_emit)
placeholders=construct_placeholder(config)
control_params={
"config":config,
"placeholders":placeholders,
}
# inference
#outputs=inference_by_sample(n_steps,control_params=control_params)
outputs=inference(n_steps,control_params=control_params)
# cost
output_cost=loss(outputs,placeholders["alpha"],control_params=control_params)
# train_step
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
train_step = tf.train.AdamOptimizer(config["learning_rate"]).minimize(output_cost["cost"])
print_variables()
saver = tf.train.Saver()
# initialize
init = tf.global_variables_initializer()
sess.run(init)
train_idx=list(range(train_data.num))
valid_idx=list(range(valid_data.num))
## training
validation_count=0
prev_validation_cost=0
alpha=None
early_stopping=EarlyStopping(config)
print("[LOG] epoch, cost,cost(valid.),error,error(valid.),alpha,cost(recons.),cost(temporal),cost(potential),cost(recons.,valid.),cost(temporal,valid),cost(potential,valid)")
for i in range(config["epoch"]):
np.random.shuffle(train_idx)
alpha=compute_alpha(config,i)
training_info=compute_cost_train_valid(sess,placeholders,
train_data,valid_data,train_idx,valid_idx,
output_cost,batch_size,alpha)
# save
save_path=None
if i%config["epoch_interval_save"] == 0:
save_path = saver.save(sess, config["save_model_path"]+"/model.%05d.ckpt"%(i))
# early stopping
training_info["epoch"]=i
training_info["alpha"]=alpha
training_info["save_path"]=save_path
if i%config["epoch_interval_print"] == 0:
early_stopping.print_info(training_info)
if i%100:
if early_stopping.evaluate_validation(training_info["validation_cost"],training_info):
break
# update
n_batch=int(np.ceil(train_data.num*1.0/batch_size))
for j in range(n_batch):
idx=train_idx[j*batch_size:(j+1)*batch_size]
feed_dict=construct_feed(idx,train_data,placeholders,alpha,is_train=True)
train_step.run(feed_dict=feed_dict)
training_info=compute_cost_train_valid(sess,placeholders,
train_data,valid_data,train_idx,valid_idx,
output_cost,batch_size,alpha)
print("[RESULT] training cost %g, validation cost %g, training error %g, validation error %g"%(
training_info["training_cost"],
training_info["validation_cost"],
training_info["training_error"],
training_info["validation_error"]))
hy_param["evaluation"]=training_info
# save hyperparameter
if config["save_model"] is not None and config["save_model"]!="":
save_model_path=config["save_model"]
save_path = saver.save(sess, save_model_path)
print("[SAVE] %s"%(save_path))
hy.save_hyperparameter()
## save results
if config["save_result_train"]!="":
results=compute_result(sess,placeholders,train_data,train_idx,outputs,batch_size,alpha)
results["config"]=config
print("[SAVE] result : ",config["save_result_train"])
base_path = os.path.dirname(config["save_result_train"])
os.makedirs(base_path,exist_ok=True)
joblib.dump(results,config["save_result_train"])
#
e=(train_data.x-results["obs_params"][0])**2
#
def infer(sess,config):
hy_param=hy.get_hyperparameter()
_,test_data = dmm_input.load_data(config,with_shuffle=False,with_train_test=False,
test_flag=True)
batch_size,n_batch=get_batch_size(config,hy_param,test_data)
dim,dim_emit=get_dim(config,hy_param,test_data)
n_steps=test_data.n_steps
hy_param["n_steps"]=n_steps
print("test_data_size:",test_data.num)
print("batch_size :",batch_size)
print("n_steps :",n_steps)
print("dim_emit :",dim_emit)
alpha=config["alpha"]
print("alpha :",alpha)
placeholders=construct_placeholder(config)
control_params={
"config":config,
"placeholders":placeholders,
}
# inference
outputs=inference(n_steps,control_params)
# cost
output_cost=loss(outputs,placeholders["alpha"],control_params=control_params)
# train_step
saver = tf.train.Saver()
print("[LOAD]",config["load_model"])
saver.restore(sess,config["load_model"])
test_idx=list(range(test_data.num))
# check point
test_info=compute_cost(sess,placeholders,
test_data,test_idx,
output_cost,batch_size,alpha,is_train=False)
print("cost: %g"%(test_info["cost"]))
## save results
if config["save_result_test"]!="":
results=compute_result(sess,placeholders,test_data,test_idx,outputs,batch_size,alpha)
results["config"]=config
print("[SAVE] result : ",config["save_result_test"])
base_path = os.path.dirname(config["save_result_test"])
os.makedirs(base_path,exist_ok=True)
joblib.dump(results,config["save_result_test"])
def filter_discrete_forward(sess,config):
hy_param=hy.get_hyperparameter()
_,test_data = dmm_input.load_data(config,with_shuffle=False,with_train_test=False,test_flag=True)
batch_size,n_batch=get_batch_size(config,hy_param,test_data)
dim,dim_emit=get_dim(config,hy_param,test_data)
n_steps=1
hy_param["n_steps"]=n_steps
z_holder=tf.placeholder(tf.float32,shape=(None,dim))
z0=make_griddata_discrete(dim)
batch_size=z0.shape[0]
control_params={
"dropout_rate":0.0,
"config":config,
}
# inference
params=computeEmission(z_holder,n_steps,
init_params_flag=True,control_params=control_params)
x_holder=tf.placeholder(tf.float32,shape=(None,100,dim_emit))
qz=computeVariationalDist(x_holder,n_steps,init_params_flag=True,control_params=control_params)
# load
try:
saver = tf.train.Saver()
print("[LOAD] ",config["load_model"])
saver.restore(sess,config["load_model"])
except:
print("[SKIP] Load parameters")
#
feed_dict={z_holder:z0}
x_params=sess.run(params,feed_dict=feed_dict)
x=test_data.x
feed_dict={x_holder:x}
out_qz=sess.run(qz,feed_dict=feed_dict)
print(out_qz[0].shape)
print(len(out_qz))
# data:
# data_num x n_steps x emit_dim
num_d=x_params[0].shape[0]
dist_x=[]
for d in range(num_d):
m=x_params[0][d,0,:]
print("##,",d,",".join(map(str,m)))
for d in range(num_d):
cov=x_params[1][d,0,:]
print("##,",d,",".join(map(str,cov)))
for d in range(num_d):
m=x_params[0][d,0,:]
cov=x_params[1][d,0,:]
diff_x=-(x-m)**2/(2*cov)
prob=-1.0/2.0*np.log(2*np.pi*cov)+diff_x
# prob: data_num x n_steps x emit_dim
prob=np.mean(prob,axis=2)
dist_x.append(prob)
dist_x=np.array(dist_x)
dist_x=np.transpose(dist_x,[1,2,0])
# dist: data_num x n_steps x dim
dist_x_max=np.zeros_like(dist_x)
for i in range(dist_x.shape[0]):
for j in range(dist_x.shape[1]):
k=np.argmax(dist_x[i,j,:])
dist_x_max[i,j,k]=1
##
## p(x|z)*q(z)
## p(x,z)
dist_qz=out_qz[0].reshape((20,100,dim))
dist_pxz=dist_qz*np.exp(dist_x)
##
tr_mat=compute_discrete_transition_mat(sess,config)
print(tr_mat)
beta=5.0e-2
tr_mat=beta*tr_mat+(1.0-beta)*np.identity(dim)
print(tr_mat)
## viterbi
prob_viterbi=np.zeros_like(dist_x)
prob_viterbi[:,:,:]=-np.inf
path_viterbi=np.zeros_like(dist_x)
index_viterbi=np.zeros_like(dist_x,dtype=np.int32)
for d in range(dist_x.shape[0]):
prob_viterbi[d,0,:]=dist_pxz[d,0,:]
index_viterbi[d,0,:]=np.argmax(dist_pxz[d,0,:])
step=dist_x.shape[1]-1
for t in range(step):
for i in range(dim):
for j in range(dim):
p=0
p+=prob_viterbi[d,t,i]
p+= | np.log(dist_pxz[d,t+1,j]) | numpy.log |
# ________
# /
# \ /
# \ /
# \/
import random
import textwrap
import emd_mean
import AdvEMDpy
import emd_basis
import emd_utils
import numpy as np
import pandas as pd
import cvxpy as cvx
import seaborn as sns
import matplotlib.pyplot as plt
from scipy.integrate import odeint
from scipy.ndimage import gaussian_filter
from emd_utils import time_extension, Utility
from scipy.interpolate import CubicSpline
from emd_hilbert import Hilbert, hilbert_spectrum
from emd_preprocess import Preprocess
from emd_mean import Fluctuation
from AdvEMDpy import EMD
# alternate packages
from PyEMD import EMD as pyemd0215
import emd as emd040
sns.set(style='darkgrid')
pseudo_alg_time = np.linspace(0, 2 * np.pi, 1001)
pseudo_alg_time_series = np.sin(pseudo_alg_time) + np.sin(5 * pseudo_alg_time)
pseudo_utils = Utility(time=pseudo_alg_time, time_series=pseudo_alg_time_series)
# plot 0 - addition
fig = plt.figure(figsize=(9, 4))
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.title('First Iteration of Sifting Algorithm')
plt.plot(pseudo_alg_time, pseudo_alg_time_series, label=r'$h_{(1,0)}(t)$', zorder=1)
plt.scatter(pseudo_alg_time[pseudo_utils.max_bool_func_1st_order_fd()],
pseudo_alg_time_series[pseudo_utils.max_bool_func_1st_order_fd()],
c='r', label=r'$M(t_i)$', zorder=2)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time) + 1, '--', c='r', label=r'$\tilde{h}_{(1,0)}^M(t)$', zorder=4)
plt.scatter(pseudo_alg_time[pseudo_utils.min_bool_func_1st_order_fd()],
pseudo_alg_time_series[pseudo_utils.min_bool_func_1st_order_fd()],
c='c', label=r'$m(t_j)$', zorder=3)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time) - 1, '--', c='c', label=r'$\tilde{h}_{(1,0)}^m(t)$', zorder=5)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time), '--', c='purple', label=r'$\tilde{h}_{(1,0)}^{\mu}(t)$', zorder=5)
plt.yticks(ticks=[-2, -1, 0, 1, 2])
plt.xticks(ticks=[0, np.pi, 2 * np.pi],
labels=[r'0', r'$\pi$', r'$2\pi$'])
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.95, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/pseudo_algorithm.png')
plt.show()
knots = np.arange(12)
time = np.linspace(0, 11, 1101)
basis = emd_basis.Basis(time=time, time_series=time)
b_spline_basis = basis.cubic_b_spline(knots)
chsi_basis = basis.chsi_basis(knots)
# plot 1
plt.title('Non-Natural Cubic B-Spline Bases at Boundary')
plt.plot(time[500:], b_spline_basis[2, 500:].T, '--', label=r'$ B_{-3,4}(t) $')
plt.plot(time[500:], b_spline_basis[3, 500:].T, '--', label=r'$ B_{-2,4}(t) $')
plt.plot(time[500:], b_spline_basis[4, 500:].T, '--', label=r'$ B_{-1,4}(t) $')
plt.plot(time[500:], b_spline_basis[5, 500:].T, '--', label=r'$ B_{0,4}(t) $')
plt.plot(time[500:], b_spline_basis[6, 500:].T, '--', label=r'$ B_{1,4}(t) $')
plt.xticks([5, 6], [r'$ \tau_0 $', r'$ \tau_1 $'])
plt.xlim(4.4, 6.6)
plt.plot(5 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
plt.plot(6 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
plt.legend(loc='upper left')
plt.savefig('jss_figures/boundary_bases.png')
plt.show()
# plot 1a - addition
knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001)
knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time)
knots_uniform = np.linspace(0, 2 * np.pi, 51)
emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series)
imfs = emd.empirical_mode_decomposition(knots=knots_uniform, edge_effect='anti-symmetric', verbose=False)[0]
fig, axs = plt.subplots(3, 1)
fig.subplots_adjust(hspace=0.6)
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Time Series and Uniform Knots')
axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100)
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].set_title('IMF 1 and Uniform Knots')
axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[2].set_title('IMF 2 and Uniform Knots')
axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100)
axs[2].set_yticks(ticks=[-2, 0, 2])
axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[0].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[0].legend(loc='lower left')
axs[1].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[2].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
for i in range(3):
for j in range(1, len(knots_uniform)):
axs[i].plot(knots_uniform[j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey')
plt.savefig('jss_figures/knot_uniform.png')
plt.show()
# plot 1b - addition
knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001)
knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time)
emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series)
imfs, _, _, _, knots, _, _ = emd.empirical_mode_decomposition(edge_effect='anti-symmetric',
optimise_knots=1, verbose=False)
fig, axs = plt.subplots(3, 1)
fig.subplots_adjust(hspace=0.6)
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Time Series and Statically Optimised Knots')
axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100)
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].set_title('IMF 1 and Statically Optimised Knots')
axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[2].set_title('IMF 2 and Statically Optimised Knots')
axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100)
axs[2].set_yticks(ticks=[-2, 0, 2])
axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[0].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[0].legend(loc='lower left')
axs[1].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[2].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
for i in range(3):
for j in range(1, len(knots)):
axs[i].plot(knots[j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey')
plt.savefig('jss_figures/knot_1.png')
plt.show()
# plot 1c - addition
knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001)
knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time)
emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series)
imfs, _, _, _, knots, _, _ = emd.empirical_mode_decomposition(edge_effect='anti-symmetric',
optimise_knots=2, verbose=False)
fig, axs = plt.subplots(3, 1)
fig.subplots_adjust(hspace=0.6)
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Time Series and Dynamically Optimised Knots')
axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100)
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].set_title('IMF 1 and Dynamically Knots')
axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[2].set_title('IMF 2 and Dynamically Knots')
axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100)
axs[2].set_yticks(ticks=[-2, 0, 2])
axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[0].plot(knots[0][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[0].legend(loc='lower left')
axs[1].plot(knots[1][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[2].plot(knots[2][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
for i in range(3):
for j in range(1, len(knots[i])):
axs[i].plot(knots[i][j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey')
plt.savefig('jss_figures/knot_2.png')
plt.show()
# plot 1d - addition
window = 81
fig, axs = plt.subplots(2, 1)
fig.subplots_adjust(hspace=0.4)
figure_size = plt.gcf().get_size_inches()
factor = 0.8
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Preprocess Filtering Demonstration')
axs[1].set_title('Zoomed Region')
preprocess_time = pseudo_alg_time.copy()
np.random.seed(1)
random.seed(1)
preprocess_time_series = pseudo_alg_time_series + np.random.normal(0, 0.1, len(preprocess_time))
for i in random.sample(range(1000), 500):
preprocess_time_series[i] += np.random.normal(0, 1)
preprocess = Preprocess(time=preprocess_time, time_series=preprocess_time_series)
axs[0].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[0].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple',
label=textwrap.fill('Noiseless time series', 12))
axs[0].plot(preprocess_time, preprocess.mean_filter(window_width=window)[1], label=textwrap.fill('Mean filter', 12))
axs[0].plot(preprocess_time, preprocess.median_filter(window_width=window)[1], label=textwrap.fill('Median filter', 13))
axs[0].plot(preprocess_time, preprocess.winsorize(window_width=window, a=0.8)[1], label=textwrap.fill('Windsorize filter', 12))
axs[0].plot(preprocess_time, preprocess.winsorize_interpolate(window_width=window, a=0.8)[1],
label=textwrap.fill('Windsorize interpolation filter', 14))
axs[0].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.90)[1], c='grey',
label=textwrap.fill('Quantile window', 12))
axs[0].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.10)[1], c='grey')
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), -3 * np.ones(101), '--', c='black',
label=textwrap.fill('Zoomed region', 10))
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), 3 * np.ones(101), '--', c='black')
axs[0].plot(0.85 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].plot(1.15 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[1].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple', label=textwrap.fill('Noiseless time series', 12))
axs[1].plot(preprocess_time, preprocess.mean_filter(window_width=window)[1], label=textwrap.fill('Mean filter', 12))
axs[1].plot(preprocess_time, preprocess.median_filter(window_width=window)[1], label=textwrap.fill('Median filter', 13))
axs[1].plot(preprocess_time, preprocess.winsorize(window_width=window, a=0.8)[1], label=textwrap.fill('Windsorize filter', 12))
axs[1].plot(preprocess_time, preprocess.winsorize_interpolate(window_width=window, a=0.8)[1],
label=textwrap.fill('Windsorize interpolation filter', 14))
axs[1].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.90)[1], c='grey',
label=textwrap.fill('Quantile window', 12))
axs[1].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.10)[1], c='grey')
axs[1].set_xlim(0.85 * np.pi, 1.15 * np.pi)
axs[1].set_ylim(-3, 3)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[np.pi])
axs[1].set_xticklabels(labels=[r'$\pi$'])
box_0 = axs[0].get_position()
axs[0].set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height])
axs[0].legend(loc='center left', bbox_to_anchor=(1, -0.15))
box_1 = axs[1].get_position()
axs[1].set_position([box_1.x0 - 0.05, box_1.y0, box_1.width * 0.85, box_1.height])
plt.savefig('jss_figures/preprocess_filter.png')
plt.show()
# plot 1e - addition
fig, axs = plt.subplots(2, 1)
fig.subplots_adjust(hspace=0.4)
figure_size = plt.gcf().get_size_inches()
factor = 0.8
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Preprocess Smoothing Demonstration')
axs[1].set_title('Zoomed Region')
axs[0].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[0].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple',
label=textwrap.fill('Noiseless time series', 12))
axs[0].plot(preprocess_time, preprocess.hp()[1],
label=textwrap.fill('Hodrick-Prescott smoothing', 12))
axs[0].plot(preprocess_time, preprocess.hw(order=51)[1],
label=textwrap.fill('Henderson-Whittaker smoothing', 13))
downsampled_and_decimated = preprocess.downsample()
axs[0].plot(downsampled_and_decimated[0], downsampled_and_decimated[1],
label=textwrap.fill('Downsampled & decimated', 11))
downsampled = preprocess.downsample(decimate=False)
axs[0].plot(downsampled[0], downsampled[1],
label=textwrap.fill('Downsampled', 13))
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), -3 * np.ones(101), '--', c='black',
label=textwrap.fill('Zoomed region', 10))
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), 3 * np.ones(101), '--', c='black')
axs[0].plot(0.85 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].plot(1.15 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[1].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple',
label=textwrap.fill('Noiseless time series', 12))
axs[1].plot(preprocess_time, preprocess.hp()[1],
label=textwrap.fill('Hodrick-Prescott smoothing', 12))
axs[1].plot(preprocess_time, preprocess.hw(order=51)[1],
label=textwrap.fill('Henderson-Whittaker smoothing', 13))
axs[1].plot(downsampled_and_decimated[0], downsampled_and_decimated[1],
label=textwrap.fill('Downsampled & decimated', 13))
axs[1].plot(downsampled[0], downsampled[1],
label=textwrap.fill('Downsampled', 13))
axs[1].set_xlim(0.85 * np.pi, 1.15 * np.pi)
axs[1].set_ylim(-3, 3)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[np.pi])
axs[1].set_xticklabels(labels=[r'$\pi$'])
box_0 = axs[0].get_position()
axs[0].set_position([box_0.x0 - 0.06, box_0.y0, box_0.width * 0.85, box_0.height])
axs[0].legend(loc='center left', bbox_to_anchor=(1, -0.15))
box_1 = axs[1].get_position()
axs[1].set_position([box_1.x0 - 0.06, box_1.y0, box_1.width * 0.85, box_1.height])
plt.savefig('jss_figures/preprocess_smooth.png')
plt.show()
# plot 2
fig, axs = plt.subplots(1, 2, sharey=True)
axs[0].set_title('Cubic B-Spline Bases')
axs[0].plot(time, b_spline_basis[2, :].T, '--', label='Basis 1')
axs[0].plot(time, b_spline_basis[3, :].T, '--', label='Basis 2')
axs[0].plot(time, b_spline_basis[4, :].T, '--', label='Basis 3')
axs[0].plot(time, b_spline_basis[5, :].T, '--', label='Basis 4')
axs[0].legend(loc='upper left')
axs[0].plot(5 * np.ones(100), np.linspace(-0.2, 0.8, 100), 'k-')
axs[0].plot(6 * np.ones(100), np.linspace(-0.2, 0.8, 100), 'k-')
axs[0].set_xticks([5, 6])
axs[0].set_xticklabels([r'$ \tau_k $', r'$ \tau_{k+1} $'])
axs[0].set_xlim(4.5, 6.5)
axs[1].set_title('Cubic Hermite Spline Bases')
axs[1].plot(time, chsi_basis[10, :].T, '--')
axs[1].plot(time, chsi_basis[11, :].T, '--')
axs[1].plot(time, chsi_basis[12, :].T, '--')
axs[1].plot(time, chsi_basis[13, :].T, '--')
axs[1].plot(5 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
axs[1].plot(6 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
axs[1].set_xticks([5, 6])
axs[1].set_xticklabels([r'$ \tau_k $', r'$ \tau_{k+1} $'])
axs[1].set_xlim(4.5, 6.5)
plt.savefig('jss_figures/comparing_bases.png')
plt.show()
# plot 3
a = 0.25
width = 0.2
time = np.linspace(0, (5 - a) * np.pi, 1001)
time_series = np.cos(time) + np.cos(5 * time)
utils = emd_utils.Utility(time=time, time_series=time_series)
max_bool = utils.max_bool_func_1st_order_fd()
maxima_x = time[max_bool]
maxima_y = time_series[max_bool]
min_bool = utils.min_bool_func_1st_order_fd()
minima_x = time[min_bool]
minima_y = time_series[min_bool]
max_dash_time = np.linspace(maxima_x[-1] - width, maxima_x[-1] + width, 101)
max_dash = maxima_y[-1] * np.ones_like(max_dash_time)
min_dash_time = np.linspace(minima_x[-1] - width, minima_x[-1] + width, 101)
min_dash = minima_y[-1] * np.ones_like(min_dash_time)
dash_1_time = np.linspace(maxima_x[-1], minima_x[-1], 101)
dash_1 = np.linspace(maxima_y[-1], minima_y[-1], 101)
max_discard = maxima_y[-1]
max_discard_time = minima_x[-1] - maxima_x[-1] + minima_x[-1]
max_discard_dash_time = np.linspace(max_discard_time - width, max_discard_time + width, 101)
max_discard_dash = max_discard * np.ones_like(max_discard_dash_time)
dash_2_time = np.linspace(minima_x[-1], max_discard_time, 101)
dash_2 = np.linspace(minima_y[-1], max_discard, 101)
end_point_time = time[-1]
end_point = time_series[-1]
time_reflect = np.linspace((5 - a) * np.pi, (5 + a) * np.pi, 101)
time_series_reflect = np.flip(np.cos(np.linspace((5 - 2.6 * a) * np.pi,
(5 - a) * np.pi, 101)) + np.cos(5 * np.linspace((5 - 2.6 * a) * np.pi,
(5 - a) * np.pi, 101)))
time_series_anti_reflect = time_series_reflect[0] - time_series_reflect
utils = emd_utils.Utility(time=time, time_series=time_series_anti_reflect)
anti_max_bool = utils.max_bool_func_1st_order_fd()
anti_max_point_time = time_reflect[anti_max_bool]
anti_max_point = time_series_anti_reflect[anti_max_bool]
utils = emd_utils.Utility(time=time, time_series=time_series_reflect)
no_anchor_max_time = time_reflect[utils.max_bool_func_1st_order_fd()]
no_anchor_max = time_series_reflect[utils.max_bool_func_1st_order_fd()]
point_1 = 5.4
length_distance = np.linspace(maxima_y[-1], minima_y[-1], 101)
length_distance_time = point_1 * np.pi * np.ones_like(length_distance)
length_time = np.linspace(point_1 * np.pi - width, point_1 * np.pi + width, 101)
length_top = maxima_y[-1] * np.ones_like(length_time)
length_bottom = minima_y[-1] * np.ones_like(length_time)
point_2 = 5.2
length_distance_2 = np.linspace(time_series[-1], minima_y[-1], 101)
length_distance_time_2 = point_2 * np.pi * np.ones_like(length_distance_2)
length_time_2 = np.linspace(point_2 * np.pi - width, point_2 * np.pi + width, 101)
length_top_2 = time_series[-1] * np.ones_like(length_time_2)
length_bottom_2 = minima_y[-1] * np.ones_like(length_time_2)
symmetry_axis_1_time = minima_x[-1] * np.ones(101)
symmetry_axis_2_time = time[-1] * np.ones(101)
symmetry_axis = np.linspace(-2, 2, 101)
end_time = np.linspace(time[-1] - width, time[-1] + width, 101)
end_signal = time_series[-1] * np.ones_like(end_time)
anti_symmetric_time = np.linspace(time[-1] - 0.5, time[-1] + 0.5, 101)
anti_symmetric_signal = time_series[-1] * np.ones_like(anti_symmetric_time)
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.plot(time, time_series, LineWidth=2, label='Signal')
plt.title('Symmetry Edge Effects Example')
plt.plot(time_reflect, time_series_reflect, 'g--', LineWidth=2, label=textwrap.fill('Symmetric signal', 10))
plt.plot(time_reflect[:51], time_series_anti_reflect[:51], '--', c='purple', LineWidth=2,
label=textwrap.fill('Anti-symmetric signal', 10))
plt.plot(max_dash_time, max_dash, 'k-')
plt.plot(min_dash_time, min_dash, 'k-')
plt.plot(dash_1_time, dash_1, 'k--')
plt.plot(dash_2_time, dash_2, 'k--')
plt.plot(length_distance_time, length_distance, 'k--')
plt.plot(length_distance_time_2, length_distance_2, 'k--')
plt.plot(length_time, length_top, 'k-')
plt.plot(length_time, length_bottom, 'k-')
plt.plot(length_time_2, length_top_2, 'k-')
plt.plot(length_time_2, length_bottom_2, 'k-')
plt.plot(end_time, end_signal, 'k-')
plt.plot(symmetry_axis_1_time, symmetry_axis, 'r--', zorder=1)
plt.plot(anti_symmetric_time, anti_symmetric_signal, 'r--', zorder=1)
plt.plot(symmetry_axis_2_time, symmetry_axis, 'r--', label=textwrap.fill('Axes of symmetry', 10), zorder=1)
plt.text(5.1 * np.pi, -0.7, r'$\beta$L')
plt.text(5.34 * np.pi, -0.05, 'L')
plt.scatter(maxima_x, maxima_y, c='r', zorder=4, label='Maxima')
plt.scatter(minima_x, minima_y, c='b', zorder=4, label='Minima')
plt.scatter(max_discard_time, max_discard, c='purple', zorder=4, label=textwrap.fill('Symmetric Discard maxima', 10))
plt.scatter(end_point_time, end_point, c='orange', zorder=4, label=textwrap.fill('Symmetric Anchor maxima', 10))
plt.scatter(anti_max_point_time, anti_max_point, c='green', zorder=4, label=textwrap.fill('Anti-Symmetric maxima', 10))
plt.scatter(no_anchor_max_time, no_anchor_max, c='gray', zorder=4, label=textwrap.fill('Symmetric maxima', 10))
plt.xlim(3.9 * np.pi, 5.5 * np.pi)
plt.xticks((4 * np.pi, 5 * np.pi), (r'4$\pi$', r'5$\pi$'))
plt.yticks((-2, -1, 0, 1, 2), ('-2', '-1', '0', '1', '2'))
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/edge_effects_symmetry_anti.png')
plt.show()
# plot 4
a = 0.21
width = 0.2
time = np.linspace(0, (5 - a) * np.pi, 1001)
time_series = np.cos(time) + np.cos(5 * time)
utils = emd_utils.Utility(time=time, time_series=time_series)
max_bool = utils.max_bool_func_1st_order_fd()
maxima_x = time[max_bool]
maxima_y = time_series[max_bool]
min_bool = utils.min_bool_func_1st_order_fd()
minima_x = time[min_bool]
minima_y = time_series[min_bool]
max_dash_1 = np.linspace(maxima_y[-1] - width, maxima_y[-1] + width, 101)
max_dash_2 = np.linspace(maxima_y[-2] - width, maxima_y[-2] + width, 101)
max_dash_time_1 = maxima_x[-1] * np.ones_like(max_dash_1)
max_dash_time_2 = maxima_x[-2] * np.ones_like(max_dash_1)
min_dash_1 = np.linspace(minima_y[-1] - width, minima_y[-1] + width, 101)
min_dash_2 = np.linspace(minima_y[-2] - width, minima_y[-2] + width, 101)
min_dash_time_1 = minima_x[-1] * np.ones_like(min_dash_1)
min_dash_time_2 = minima_x[-2] * np.ones_like(min_dash_1)
dash_1_time = np.linspace(maxima_x[-1], minima_x[-1], 101)
dash_1 = np.linspace(maxima_y[-1], minima_y[-1], 101)
dash_2_time = np.linspace(maxima_x[-1], minima_x[-2], 101)
dash_2 = np.linspace(maxima_y[-1], minima_y[-2], 101)
s1 = (minima_y[-2] - maxima_y[-1]) / (minima_x[-2] - maxima_x[-1])
slope_based_maximum_time = maxima_x[-1] + (maxima_x[-1] - maxima_x[-2])
slope_based_maximum = minima_y[-1] + (slope_based_maximum_time - minima_x[-1]) * s1
max_dash_time_3 = slope_based_maximum_time * np.ones_like(max_dash_1)
max_dash_3 = np.linspace(slope_based_maximum - width, slope_based_maximum + width, 101)
dash_3_time = np.linspace(minima_x[-1], slope_based_maximum_time, 101)
dash_3 = np.linspace(minima_y[-1], slope_based_maximum, 101)
s2 = (minima_y[-1] - maxima_y[-1]) / (minima_x[-1] - maxima_x[-1])
slope_based_minimum_time = minima_x[-1] + (minima_x[-1] - minima_x[-2])
slope_based_minimum = slope_based_maximum - (slope_based_maximum_time - slope_based_minimum_time) * s2
min_dash_time_3 = slope_based_minimum_time * np.ones_like(min_dash_1)
min_dash_3 = np.linspace(slope_based_minimum - width, slope_based_minimum + width, 101)
dash_4_time = np.linspace(slope_based_maximum_time, slope_based_minimum_time)
dash_4 = np.linspace(slope_based_maximum, slope_based_minimum)
maxima_dash = np.linspace(2.5 - width, 2.5 + width, 101)
maxima_dash_time_1 = maxima_x[-2] * np.ones_like(maxima_dash)
maxima_dash_time_2 = maxima_x[-1] * np.ones_like(maxima_dash)
maxima_dash_time_3 = slope_based_maximum_time * np.ones_like(maxima_dash)
maxima_line_dash_time = np.linspace(maxima_x[-2], slope_based_maximum_time, 101)
maxima_line_dash = 2.5 * np.ones_like(maxima_line_dash_time)
minima_dash = np.linspace(-3.4 - width, -3.4 + width, 101)
minima_dash_time_1 = minima_x[-2] * np.ones_like(minima_dash)
minima_dash_time_2 = minima_x[-1] * np.ones_like(minima_dash)
minima_dash_time_3 = slope_based_minimum_time * np.ones_like(minima_dash)
minima_line_dash_time = np.linspace(minima_x[-2], slope_based_minimum_time, 101)
minima_line_dash = -3.4 * np.ones_like(minima_line_dash_time)
# slightly edit signal to make difference between slope-based method and improved slope-based method more clear
time_series[time >= minima_x[-1]] = 1.5 * (time_series[time >= minima_x[-1]] - time_series[time == minima_x[-1]]) + \
time_series[time == minima_x[-1]]
improved_slope_based_maximum_time = time[-1]
improved_slope_based_maximum = time_series[-1]
improved_slope_based_minimum_time = slope_based_minimum_time
improved_slope_based_minimum = improved_slope_based_maximum + s2 * (improved_slope_based_minimum_time -
improved_slope_based_maximum_time)
min_dash_4 = np.linspace(improved_slope_based_minimum - width, improved_slope_based_minimum + width, 101)
min_dash_time_4 = improved_slope_based_minimum_time * np.ones_like(min_dash_4)
dash_final_time = np.linspace(improved_slope_based_maximum_time, improved_slope_based_minimum_time, 101)
dash_final = np.linspace(improved_slope_based_maximum, improved_slope_based_minimum, 101)
ax = plt.subplot(111)
figure_size = plt.gcf().get_size_inches()
factor = 0.9
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
plt.gcf().subplots_adjust(bottom=0.10)
plt.plot(time, time_series, LineWidth=2, label='Signal')
plt.title('Slope-Based Edge Effects Example')
plt.plot(max_dash_time_1, max_dash_1, 'k-')
plt.plot(max_dash_time_2, max_dash_2, 'k-')
plt.plot(max_dash_time_3, max_dash_3, 'k-')
plt.plot(min_dash_time_1, min_dash_1, 'k-')
plt.plot(min_dash_time_2, min_dash_2, 'k-')
plt.plot(min_dash_time_3, min_dash_3, 'k-')
plt.plot(min_dash_time_4, min_dash_4, 'k-')
plt.plot(maxima_dash_time_1, maxima_dash, 'k-')
plt.plot(maxima_dash_time_2, maxima_dash, 'k-')
plt.plot(maxima_dash_time_3, maxima_dash, 'k-')
plt.plot(minima_dash_time_1, minima_dash, 'k-')
plt.plot(minima_dash_time_2, minima_dash, 'k-')
plt.plot(minima_dash_time_3, minima_dash, 'k-')
plt.text(4.34 * np.pi, -3.2, r'$\Delta{t^{min}_{m}}$')
plt.text(4.74 * np.pi, -3.2, r'$\Delta{t^{min}_{m}}$')
plt.text(4.12 * np.pi, 2, r'$\Delta{t^{max}_{M}}$')
plt.text(4.50 * np.pi, 2, r'$\Delta{t^{max}_{M}}$')
plt.text(4.30 * np.pi, 0.35, r'$s_1$')
plt.text(4.43 * np.pi, -0.20, r'$s_2$')
plt.text(4.30 * np.pi + (minima_x[-1] - minima_x[-2]), 0.35 + (minima_y[-1] - minima_y[-2]), r'$s_1$')
plt.text(4.43 * np.pi + (slope_based_minimum_time - minima_x[-1]),
-0.20 + (slope_based_minimum - minima_y[-1]), r'$s_2$')
plt.text(4.50 * np.pi + (slope_based_minimum_time - minima_x[-1]),
1.20 + (slope_based_minimum - minima_y[-1]), r'$s_2$')
plt.plot(minima_line_dash_time, minima_line_dash, 'k--')
plt.plot(maxima_line_dash_time, maxima_line_dash, 'k--')
plt.plot(dash_1_time, dash_1, 'k--')
plt.plot(dash_2_time, dash_2, 'k--')
plt.plot(dash_3_time, dash_3, 'k--')
plt.plot(dash_4_time, dash_4, 'k--')
plt.plot(dash_final_time, dash_final, 'k--')
plt.scatter(maxima_x, maxima_y, c='r', zorder=4, label='Maxima')
plt.scatter(minima_x, minima_y, c='b', zorder=4, label='Minima')
plt.scatter(slope_based_maximum_time, slope_based_maximum, c='orange', zorder=4,
label=textwrap.fill('Slope-based maximum', 11))
plt.scatter(slope_based_minimum_time, slope_based_minimum, c='purple', zorder=4,
label=textwrap.fill('Slope-based minimum', 11))
plt.scatter(improved_slope_based_maximum_time, improved_slope_based_maximum, c='deeppink', zorder=4,
label=textwrap.fill('Improved slope-based maximum', 11))
plt.scatter(improved_slope_based_minimum_time, improved_slope_based_minimum, c='dodgerblue', zorder=4,
label=textwrap.fill('Improved slope-based minimum', 11))
plt.xlim(3.9 * np.pi, 5.5 * np.pi)
plt.xticks((4 * np.pi, 5 * np.pi), (r'4$\pi$', r'5$\pi$'))
plt.yticks((-3, -2, -1, 0, 1, 2), ('-3', '-2', '-1', '0', '1', '2'))
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/edge_effects_slope_based.png')
plt.show()
# plot 5
a = 0.25
width = 0.2
time = np.linspace(0, (5 - a) * np.pi, 1001)
time_series = np.cos(time) + np.cos(5 * time)
utils = emd_utils.Utility(time=time, time_series=time_series)
max_bool = utils.max_bool_func_1st_order_fd()
maxima_x = time[max_bool]
maxima_y = time_series[max_bool]
min_bool = utils.min_bool_func_1st_order_fd()
minima_x = time[min_bool]
minima_y = time_series[min_bool]
A2 = np.abs(maxima_y[-2] - minima_y[-2]) / 2
A1 = np.abs(maxima_y[-1] - minima_y[-1]) / 2
P2 = 2 * np.abs(maxima_x[-2] - minima_x[-2])
P1 = 2 * np.abs(maxima_x[-1] - minima_x[-1])
Huang_time = (P1 / P2) * (time[time >= maxima_x[-2]] - time[time == maxima_x[-2]]) + maxima_x[-1]
Huang_wave = (A1 / A2) * (time_series[time >= maxima_x[-2]] - time_series[time == maxima_x[-2]]) + maxima_y[-1]
Coughlin_time = Huang_time
Coughlin_wave = A1 * np.cos(2 * np.pi * (1 / P1) * (Coughlin_time - Coughlin_time[0]))
Average_max_time = maxima_x[-1] + (maxima_x[-1] - maxima_x[-2])
Average_max = (maxima_y[-2] + maxima_y[-1]) / 2
Average_min_time = minima_x[-1] + (minima_x[-1] - minima_x[-2])
Average_min = (minima_y[-2] + minima_y[-1]) / 2
utils_Huang = emd_utils.Utility(time=time, time_series=Huang_wave)
Huang_max_bool = utils_Huang.max_bool_func_1st_order_fd()
Huang_min_bool = utils_Huang.min_bool_func_1st_order_fd()
utils_Coughlin = emd_utils.Utility(time=time, time_series=Coughlin_wave)
Coughlin_max_bool = utils_Coughlin.max_bool_func_1st_order_fd()
Coughlin_min_bool = utils_Coughlin.min_bool_func_1st_order_fd()
Huang_max_time = Huang_time[Huang_max_bool]
Huang_max = Huang_wave[Huang_max_bool]
Huang_min_time = Huang_time[Huang_min_bool]
Huang_min = Huang_wave[Huang_min_bool]
Coughlin_max_time = Coughlin_time[Coughlin_max_bool]
Coughlin_max = Coughlin_wave[Coughlin_max_bool]
Coughlin_min_time = Coughlin_time[Coughlin_min_bool]
Coughlin_min = Coughlin_wave[Coughlin_min_bool]
max_2_x_time = np.linspace(maxima_x[-2] - width, maxima_x[-2] + width, 101)
max_2_x_time_side = np.linspace(5.3 * np.pi - width, 5.3 * np.pi + width, 101)
max_2_x = maxima_y[-2] * np.ones_like(max_2_x_time)
min_2_x_time = np.linspace(minima_x[-2] - width, minima_x[-2] + width, 101)
min_2_x_time_side = | np.linspace(5.3 * np.pi - width, 5.3 * np.pi + width, 101) | numpy.linspace |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sat Oct 14 21:31:56 2017
@author: Franz
"""
import scipy.signal
import numpy as np
import scipy.io as so
import os.path
import re
import matplotlib.pylab as plt
import h5py
import matplotlib.patches as patches
import numpy.random as rand
import seaborn as sns
import pandas as pd
from functools import reduce
import random
import pdb
class Mouse :
def __init__(self, idf, list=None, typ='') :
self.recordings = []
self.recordings.append(list)
self.typ = typ
self.idf = idf
def add(self, rec) :
self.recordings.append(rec)
def __len__(self) :
return len(self.recordings)
def __repr__(self) :
return ", ".join(self.recordings)
### PROCESSING OF RECORDING DATA ##############################################
def load_stateidx(ppath, name, ann_name=''):
""" load the sleep state file of recording (folder) $ppath/$name
@Return:
M,K sequence of sleep states, sequence of
0'1 and 1's indicating non- and annotated states
"""
ddir = os.path.join(ppath, name)
ppath, name = os.path.split(ddir)
if ann_name == '':
ann_name = name
sfile = os.path.join(ppath, name, 'remidx_' + ann_name + '.txt')
f = open(sfile, 'r')
lines = f.readlines()
f.close()
n = 0
for l in lines:
if re.match('\d', l):
n += 1
M = np.zeros(n, dtype='int')
K = np.zeros(n, dtype='int')
i = 0
for l in lines :
if re.search('^\s+$', l) :
continue
if re.search('\s*#', l) :
continue
if re.match('\d+\s+-?\d+', l) :
a = re.split('\s+', l)
M[i] = int(a[0])
K[i] = int(a[1])
i += 1
return M,K
def load_recordings(ppath, rec_file) :
"""
load_recordings(ppath, rec_file)
load recording listing with syntax:
[E|C] \s+ recording_name
#COMMENT
@RETURN:
(list of controls, lis of experiments)
"""
exp_list = []
ctr_list = []
rfile = os.path.join(ppath, rec_file)
f = open(rfile, newline=None)
lines = f.readlines()
f.close()
for l in lines :
if re.search('^\s+$', l) :
continue
if re.search('^\s*#', l) :
continue
a = re.split('\s+', l)
if re.search('E', a[0]) :
exp_list.append(a[1])
if re.search('C', a[0]) :
ctr_list.append(a[1])
return ctr_list, exp_list
def load_dose_recordings(ppath, rec_file):
"""
load recording list with following syntax:
A line is either control or experiments; Control recordings look like:
C \s recording_name
Experimental recordings also come with an additional dose parameter
(allowing for comparison of multiple doses with controls)
E \s recording_name \s dose_1
E \s recording_name \s dose_2
"""
rfile = os.path.join(ppath, rec_file)
f = open(rfile, newline=None)
lines = f.readlines()
f.close()
# first get all potential doses
doses = {}
ctr_list = []
for l in lines :
if re.search('^\s+$', l):
continue
if re.search('^\s*#', l):
continue
a = re.split('\s+', l)
if re.search('E', a[0]):
if a[2] in doses:
doses[a[2]].append(a[1])
else:
doses[a[2]] = [a[1]]
if re.search('C', a[0]):
ctr_list.append(a[1])
return ctr_list, doses
def get_snr(ppath, name):
"""
read and return sampling rate (SR) from file $ppath/$name/info.txt
"""
fid = open(os.path.join(ppath, name, 'info.txt'), newline=None)
lines = fid.readlines()
fid.close()
values = []
for l in lines :
a = re.search("^" + 'SR' + ":" + "\s+(.*)", l)
if a :
values.append(a.group(1))
return float(values[0])
def get_infoparam(ifile, field):
"""
NOTE: field is a single string
and the function does not check for the type
of the values for field.
In fact, it just returns the string following field
"""
fid = open(ifile, newline=None)
lines = fid.readlines()
fid.close()
values = []
for l in lines :
a = re.search("^" + field + ":" + "\s+(.*)", l)
if a :
values.append(a.group(1))
return values
def add_infoparam(ifile, field, vals):
"""
:param ifile: info file
:param field: Parameters specifier, e.g. 'SR'
:param vals: list with parameters
"""
fid = open(ifile, 'a')
vals = [str(s) for s in vals]
param = " ".join(vals)
fid.write('%s:\t%s' % (field, param))
fid.write(os.linesep)
fid.close()
def laser_start_end(laser, SR=1525.88, intval=5):
"""laser_start_end(ppath, name)
print start and end index of laser stimulation trains: For example,
if you was stimulated for 2min every 20 min with 20 Hz, return the
start and end index of the each 2min stimulation period (train)
returns the tuple (istart, iend), both indices are inclusive,
i.e. part of the sequence
@Param:
laser - laser, vector of 0s and 1s
intval - minimum time separation [s] between two laser trains
@Return:
(istart, iend) - tuple of two np.arrays with laser start and end indices
"""
idx = np.where(laser > 0.5)[0]
if len(idx) == 0 :
return ([], [])
idx2 = np.nonzero(np.diff(idx)*(1./SR) > intval)[0]
istart = np.hstack([idx[0], idx[idx2+1]])
iend = np.hstack([idx[idx2], idx[-1]])
return (istart, iend)
def load_laser(ppath, name):
"""
load laser from recording ppath/name
@RETURN:
@laser, vector of 0's and 1's
"""
# laser might be .mat or h5py file
# perhaps we could find a better way of testing that
file = os.path.join(ppath, name, 'laser_'+name+'.mat')
try:
laser = np.array(h5py.File(file,'r').get('laser'))
except:
laser = so.loadmat(file)['laser']
return np.squeeze(laser)
def laser_protocol(ppath, name):
"""
What was the stimulation frequency and the inter-stimulation interval for recording
$ppath/$name?
@Return:
iinter-stimulation intervals, avg. inter-stimulation interval, frequency
"""
laser = load_laser(ppath, name)
SR = get_snr(ppath, name)
# first get inter-stimulation interval
(istart, iend) = laser_start_end(laser, SR)
intv = np.diff(np.array(istart/float(SR)))
d = intv/60.0
print("The laser was turned on in average every %.2f min," % (np.mean(d)))
print("with a min. interval of %.2f min and max. interval of %.2f min." % (np.min(d), np.max(d)))
print("Laser stimulation lasted for %f s." % (np.mean(np.array(iend/float(SR)-istart/float(SR)).mean())))
# print laser start times
print("Start time of each laser trial:")
j=1
for t in istart:
print("trial %d: %.2f" % (j, (t / float(SR)) / 60))
j += 1
# for each laser stimulation interval, check laser stimulation frequency
dt = 1/float(SR)
freq = []
laser_up = []
laser_down = []
for (i,j) in zip(istart, iend):
part = laser[i:j+1]
(a,b) = laser_start_end(part, SR, 0.005)
dur = (j-i+1)*dt
freq.append(len(a) / dur)
up_dur = (b-a+1)*dt*1000
down_dur = (a[1:]-b[0:-1]-1)*dt*1000
laser_up.append(np.mean(up_dur))
laser_down.append(np.mean(down_dur))
print(os.linesep + "Laser stimulation freq. was %.2f Hz," % np.mean(np.array(freq)))
print("with laser up and down duration of %.2f and %.2f ms." % (np.mean(np.array(laser_up)), np.mean(np.array(laser_down))))
return d, np.mean(d), np.mean(np.array(freq))
def swap_eeg(ppath, rec, ch='EEG'):
"""
swap EEG and EEG2 or EMG with EMG2 if $ch='EMG'
"""
if ch == 'EEG':
name = 'EEG'
else:
name = ch
EEG = so.loadmat(os.path.join(ppath, rec, name+'.mat'))[name]
EEG2 = so.loadmat(os.path.join(ppath, rec, name+'2.mat'))[name + '2']
tmp = EEG
EEG = EEG2
EEG2 = tmp
file_eeg1 = os.path.join(ppath, rec, '%s.mat' % name)
file_eeg2 = os.path.join(ppath, rec, '%s2.mat' % name)
so.savemat(file_eeg1, {name : EEG})
so.savemat(file_eeg2, {name+'2' : EEG2})
def eeg_conversion(ppath, rec, conv_factor=0.195):
"""
multiply all EEG and EMG channels with the given
conversion factor and write the conversion factor
as parameter (conversion:) into the info file.
Only if there's no conversion factor in the info file
specified, the conversion will be executed
:param ppath: base filder
:param rec: recording
:param conv_factor: conversion factor
:return: n/s
"""
ifile = os.path.join(ppath, rec, 'info.txt')
conv = get_infoparam(ifile, 'conversion')
if len(conv) > 0:
print("found conversion: parameter in info file")
print("returning: no conversion necessary!!!")
return
else:
files = os.listdir(os.path.join(ppath, rec))
files = [f for f in files if re.match('^EEG', f)]
for f in files:
name = re.split('\.', f)[0]
EEG = so.loadmat(os.path.join(ppath, rec, name+'.mat'), squeeze_me=True)[name]
if EEG[0].dtype == 'int16':
EEG = EEG * conv_factor
file_eeg = os.path.join(ppath, rec, '%s.mat' % name)
print(file_eeg)
so.savemat(file_eeg, {name: EEG})
else:
print('Wrong datatype! probably already converted; returning...')
return
files = os.listdir(os.path.join(ppath, rec))
files = [f for f in files if re.match('^EMG', f)]
for f in files:
name = re.split('\.', f)[0]
EMG = so.loadmat(os.path.join(ppath, rec, name+'.mat'), squeeze_me=True)[name]
if EMG[0].dtype == 'int16':
EMG = EMG * conv_factor
file_emg = os.path.join(ppath, rec, '%s.mat' % name)
print(file_emg)
so.savemat(file_emg, {name: EMG})
else:
print('Wrong datatype! probably already converted; returning...')
return
add_infoparam(ifile, 'conversion', [conv_factor])
calculate_spectrum(ppath, rec)
### DEPRICATED ############################################
def video_pulse_detection(ppath, rec, SR=1000, iv = 0.01):
"""
return index of each video frame onset
ppath/rec - recording
@Optional
SR - sampling rate of EEG(!) recording
iv - minimum time inverval (in seconds) between two frames
@Return
index of each video frame onset
"""
V = np.squeeze(so.loadmat(os.path.join(ppath, rec, 'videotime_' + rec + '.mat'))['video'])
TS = np.arange(0, len(V))
# indices where there's a jump in the signal
t = TS[np.where(V<0.5)];
if len(t) == 0:
idx = []
return idx
# time points where the interval between jumps is longer than iv
t2 = np.where(np.diff(t)*(1.0/SR)>=iv)[0]
idx = np.concatenate(([t[0]],t[t2+1]))
return idx
# SIGNAL PROCESSING ###########################################################
def my_lpfilter(x, w0, N=4):
"""
create a lowpass Butterworth filter with a cutoff of w0 * the Nyquist rate.
The nice thing about this filter is that is has zero-phase distortion.
A conventional lowpass filter would introduce a phase lag.
w0 - filter cutoff; value between 0 and 1, where 1 corresponds to nyquist frequency.
So if you want a filter with cutoff at x Hz, the corresponding w0 value is given by
w0 = 2 * x / sampling_rate
N - order of filter
@Return:
low-pass filtered signal
See also my hp_filter, or my_bpfilter
"""
from scipy import signal
b,a = signal.butter(N, w0)
y = signal.filtfilt(b,a, x)
return y
def my_hpfilter(x, w0, N=4):
"""
create an N-th order highpass Butterworth filter with cutoff frequency w0 * sampling_rate/2
"""
from scipy import signal
# use scipy.signal.firwin to generate filter
#taps = signal.firwin(numtaps, w0, pass_zero=False)
#y = signal.lfilter(taps, 1.0, x)
b,a = signal.butter(N, w0, 'high')
y = signal.filtfilt(b,a, x, padlen = x.shape[0]-1)
return y
def my_bpfilter(x, w0, w1, N=4,bf=True):
"""
create N-th order bandpass Butterworth filter with corner frequencies
w0*sampling_rate/2 and w1*sampling_rate/2
"""
#from scipy import signal
#taps = signal.firwin(numtaps, w0, pass_zero=False)
#y = signal.lfilter(taps, 1.0, x)
#return y
from scipy import signal
b,a = signal.butter(N, [w0, w1], 'bandpass')
if bf:
y = signal.filtfilt(b,a, x)
else:
y = signal.lfilter(b,a, x)
return y
def my_notchfilter(x, sr=1000, band=5, freq=60, ripple=10, order=3, filter_type='butter'):
from scipy.signal import iirfilter,lfilter
fs = sr
nyq = fs/2.0
low = freq - band/2.0
high = freq + band/2.0
low = low/nyq
high = high/nyq
b, a = iirfilter(order, [low, high], rp=ripple, btype='bandstop',
analog=False, ftype=filter_type)
filtered_data = lfilter(b, a, x)
return filtered_data
def downsample_vec(x, nbin):
"""
y = downsample_vec(x, nbin)
downsample the vector x by replacing nbin consecutive \
bin by their mean \
@RETURN: the downsampled vector
"""
n_down = int(np.floor(len(x) / nbin))
x = x[0:n_down*nbin]
x_down = np.zeros((n_down,))
# 0 1 2 | 3 4 5 | 6 7 8
for i in range(nbin) :
idx = list(range(i, int(n_down*nbin), int(nbin)))
x_down += x[idx]
return x_down / nbin
def smooth_data(x, sig):
"""
y = smooth_data(x, sig)
smooth data vector @x with gaussian kernel
with standard deviation $sig
"""
sig = float(sig)
if sig == 0.0:
return x
# gaussian:
gauss = lambda x, sig : (1/(sig*np.sqrt(2.*np.pi)))*np.exp(-(x*x)/(2.*sig*sig))
bound = 1.0/10000
L = 10.
p = gauss(L, sig)
while (p > bound):
L = L+10
p = gauss(L, sig)
#F = map(lambda x: gauss((x, sig)), np.arange(-L, L+1.))
# py3:
F = [gauss(x, sig) for x in np.arange(-L, L+1.)]
F = F / np.sum(F)
return scipy.signal.fftconvolve(x, F, 'same')
def power_spectrum(data, length, dt):
"""
scipy's implementation of Welch's method using hanning window to estimate
the power spectrum
The function returns power density with units V**2/Hz
see also https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.signal.welch.html
The label on the y-axis should say PSD [V**2/Hz]
@Parameters
data - time series; float vector!
length - length of hanning window, even integer!
@Return:
power density, frequencies
The function returns power density in units V^2 / Hz
Note that
np.var(data) ~ np.sum(power density) * (frequencies[1]-frequencies[0])
"""
f, pxx = scipy.signal.welch(data, fs=1.0/dt, window='hanning', nperseg=int(length), noverlap=int(length/2))
return pxx, f
def spectral_density(data, length, nfft, dt):
"""
calculate the spectrogram for the time series given by data with time resolution dt
The powerspectrum for each window of length $length is computed using
Welch's method.
The windows for the powerspectrum calculation are half-overlapping. If length contains 5s of data,
then the first windows goes from 0s to 5s, the second window from 2.5 to 7.5s, ...
The last window ends at ceil(len(data)/length)*5s
Another example, assume we have 13 s of data, with 5 s windows, the the powerdensity is calculated for the following
time windows:
0 -- 5, 2.5 -- 7.5, 5 -- 10, 7.5 -- 12.5, 10 -- 15
In total there are thus 2*ceil(13/5)-1 = 5 windows
The last window starts at 2*3-2 * (5/2) = 10 s
Note: the returned time axis starts at time point goes from 0 to 10s in 2.5s steps
@Parameters:
data - time series
length - window length of data used to calculate powerspectrum.
Note that the time resolution of the spectrogram is length/2
nfft - size of the window used to calculate the powerspectrum.
determines the frequency resolution.
@Return:
Powspectrum, frequencies, time axis
"""
n = len(data)
k = int(np.ceil((1.0*n)/length))
data = np.concatenate((data, np.zeros((length*k-n,))))
fdt = length*dt/2 # time step for spectrogram
t = np.arange(0, fdt*(2*k-2)+fdt/2.0, fdt)
# frequency axis of spectrogram
f = np.linspace(0, 1, int(np.ceil(nfft/2.0))+1) * (0.5/dt)
# the power spectrum is calculated for 2*k-1 time points
Pow = np.zeros((len(f), k*2-1))
j = 0
for i in range(0, k-2+1):
w1=data[(length*i):(i+1)*length]
w2=data[length*i+int(length/2):(i+1)*length+int(length/2)]
Pow[:,j] = power_spectrum(w1, nfft, dt)[0]
Pow[:,j+1] = power_spectrum(w2, nfft, dt)[0]
j += 2
# last time point
Pow[:,j],f = power_spectrum(data[length*(k-1):k*length], nfft, dt)
return Pow, f, t
def calculate_spectrum(ppath, name, fres=0.5):
"""
calculate EEG and EMG spectrogram used for sleep stage detection.
Function assumes that data vectors EEG.mat and EMG.mat exist in recording
folder ppath/name; these are used to calculate the powerspectrum
fres - resolution of frequency axis
all data saved in "true" mat files
:return EEG Spectrogram, EMG Spectrogram, frequency axis, time axis
"""
SR = get_snr(ppath, name)
swin = round(SR)*5
fft_win = round(swin/5) # approximate number of data points per second
if (fres == 1.0) or (fres == 1):
fft_win = int(fft_win)
elif fres == 0.5:
fft_win = 2*int(fft_win)
else:
print("Resolution %f not allowed; please use either 1 or 0.5" % fres)
(peeg2, pemg2) = (False, False)
# Calculate EEG spectrogram
EEG = np.squeeze(so.loadmat(os.path.join(ppath, name, 'EEG.mat'))['EEG'])
Pxx, f, t = spectral_density(EEG, int(swin), int(fft_win), 1/SR)
if os.path.isfile(os.path.join(ppath, name, 'EEG2.mat')):
peeg2 = True
EEG = np.squeeze(so.loadmat(os.path.join(ppath, name, 'EEG2.mat'))['EEG2'])
Pxx2, f, t = spectral_density(EEG, int(swin), int(fft_win), 1/SR)
#save the stuff to a .mat file
spfile = os.path.join(ppath, name, 'sp_' + name + '.mat')
if peeg2 == True:
so.savemat(spfile, {'SP':Pxx, 'SP2':Pxx2, 'freq':f, 'dt':t[1]-t[0],'t':t})
else:
so.savemat(spfile, {'SP':Pxx, 'freq':f, 'dt':t[1]-t[0],'t':t})
# Calculate EMG spectrogram
EMG = np.squeeze(so.loadmat(os.path.join(ppath, name, 'EMG.mat'))['EMG'])
Qxx, f, t = spectral_density(EMG, int(swin), int(fft_win), 1/SR)
if os.path.isfile(os.path.join(ppath, name, 'EMG2.mat')):
pemg2 = True
EMG = np.squeeze(so.loadmat(os.path.join(ppath, name, 'EMG2.mat'))['EMG2'])
Qxx2, f, t = spectral_density(EMG, int(swin), int(fft_win), 1/SR)
# save the stuff to .mat file
spfile = os.path.join(ppath, name, 'msp_' + name + '.mat')
if pemg2 == True:
so.savemat(spfile, {'mSP':Qxx, 'mSP2':Qxx2, 'freq':f, 'dt':t[1]-t[0],'t':t})
else:
so.savemat(spfile, {'mSP':Qxx, 'freq':f, 'dt':t[1]-t[0],'t':t})
return Pxx, Qxx, f, t
def whiten_spectrogram(ppath, name, fmax=50):
"""
experimental
:param ppath:
:param name:
:param fmax:
:return:
"""
P = so.loadmat(os.path.join(ppath, name, 'sp_' + name + '.mat'), squeeze_me=True)
SPE = P['SP']
freq = P['freq']
ifreq = np.where(freq <= fmax)[0]
SPE = SPE[ifreq,:]
nfilt = 5
filt = np.ones((nfilt, nfilt))
filt = np.divide(filt, filt.sum())
#SPE = scipy.signal.convolve2d(SPE, filt, boundary='symm', mode='same')
m = np.mean(SPE,axis=1)
SPE -= np.tile(m, (SPE.shape[1], 1)).T
SPE = SPE.T
C = np.dot(SPE.T, SPE)
[evals, L] = np.linalg.eigh(C)
idx = np.argsort(evals)
D = np.diag(np.sqrt(evals[idx]))
L = L[:,idx]
W = np.dot(L, np.dot(np.linalg.inv(D),np.dot(L.T,SPE.T)))
nfilt = 2
filt = np.ones((nfilt,nfilt))
filt = np.divide(filt, filt.sum())
W = scipy.signal.convolve2d(W, filt, boundary='symm', mode='same')
return W, D, L
def normalize_spectrogram(ppath, name, fmax=0, band=[], vm=5, pplot=True, sptype='', filt_dim=[]):
"""
Normalize EEG spectrogram by deviding each frequency band by its average value.
:param ppath, name: base folder, recording name
:param fmax: maximum frequency; frequency axis of spectrogram goes from 0 to fmax
if fmax=0, use complete frequency axis
:param band: list or tuple, define lower and upper range of a frequency band,
if pplot=True, plot band, along with spectrogram;
if band=[], disregard
:param vm: color range for plotting spectrogram
:pplot: if True, plot spectrogram along with power band
:sptype: if sptype='fine' plot 'special' spectrogram, save under sp_fine_$name.mat;
otherwise plot 'normal' spectrogram sp_$name.mat
:filt_dim: list or tuple; the two values define the dimensions of box filter
used to filter the normalized spectrogram; if filt_dim=[], then no filtering
:return SPE, t, freq: normalized spectrogram (np.array), time axis, frequency axis
"""
if (len(sptype) == 0) or (sptype=='std'):
P = so.loadmat(os.path.join(ppath, name, 'sp_' + name + '.mat'), squeeze_me=True)
elif sptype == 'fine':
P = so.loadmat(os.path.join(ppath, name, 'sp_fine_' + name + '.mat'), squeeze_me=True)
SPE = P['SP']
freq = P['freq']
t = P['t']
if fmax > 0:
ifreq = np.where(freq <= fmax)[0]
else:
ifreq = np.arange(0, len(freq))
freq = freq[ifreq]
nfilt = 4
filt = np.ones((nfilt,nfilt))
filt = np.divide(filt, filt.sum())
SPE = SPE[ifreq,:]
# before
#SPE = SPE[ifreq]
#W = scipy.signal.convolve2d(SPE, filt, boundary='symm', mode='same')
#sp_mean = W.mean(axis=1)
sp_mean = SPE.mean(axis=1)
SPE = np.divide(SPE, np.tile(sp_mean, (SPE.shape[1], 1)).T)
if len(filt_dim) > 0:
filt = np.ones(filt_dim)
filt = np.divide(filt, filt.sum())
SPE = scipy.signal.convolve2d(SPE, filt, boundary='symm', mode='same')
# get high gamma peaks
if len(band) > 0:
iband = np.where((freq >= band[0]) & (freq <= band[-1]))[0]
pow_band = SPE[iband,:].mean(axis=0)
thr = pow_band.mean() + pow_band.std()
idx = np.where(pow_band > thr)[0]
# plot normalized spectrogram, along with band
if pplot:
plt.ion()
plt.figure()
if len(band) > 0:
med = np.median(SPE.mean(axis=0))
ax1 = plt.subplot(211)
plt.pcolormesh(t, freq, SPE, vmin=0, vmax=vm*med, cmap='jet')
plt.subplot(212, sharex=ax1)
plt.plot(t,SPE[iband,:].mean(axis=0))
plt.plot(t[idx], pow_band[idx], '.')
plt.draw()
return SPE, t, freq[ifreq]
def recursive_spectrogram(ppath, name, sf=0.3, alpha=0.3, pplot=True):
"""
calculate EEG/EMG spectrogram in a way that can be implemented by a closed-loop system.
The spectrogram is temporally filtered using a recursive implementation of a lowpass filter
@Parameters:
ppath/name - mouse EEG recording
sf - smoothing factor along frequency axis
alpha - temporal lowpass filter time constant
pplot - if pplot==True, plot figure
@Return:
SE, SM - EEG, EMG spectrogram
"""
EEG = np.squeeze(so.loadmat(os.path.join(ppath, name, 'EEG.mat'))['EEG'])
EMG = np.squeeze(so.loadmat(os.path.join(ppath, name, 'EMG.mat'))['EMG'])
len_eeg = len(EEG)
fdt = 2.5
SR = get_snr(ppath, name)
# we calculate the powerspectrum for 5s windows
swin = int(np.round(SR) * 5.0)
# but we sample new data each 2.5 s
swinh = int(swin/2.0)
fft_win = int(swin / 5.0)
# number of 2.5s long samples
spoints = int(np.floor(len_eeg / swinh))
SE = np.zeros((int(fft_win/2+1), spoints))
SM = np.zeros((int(fft_win/2+1), spoints))
print("Starting calculating spectrogram for %s..." % name)
for i in range(2, spoints):
# we take the last two swinh windows (the new 2.5 s long sample and the one from
# the last iteration)
x = EEG[(i-2)*swinh:i*swinh]
[p, f] = power_spectrum(x.astype('float'), fft_win, 1.0/SR)
p = smooth_data(p, sf)
# recursive low pass filtering of spectrogram:
# the current state is an estimate of the current sample and the previous state
SE[:,i] = alpha*p + (1-alpha) * SE[:,i-1]
# and the same of EMG
x = EMG[(i-2)*swinh:i*swinh]
[p, f] = power_spectrum(x.astype('float'), fft_win, 1.0/SR)
p = smooth_data(p, sf)
SM[:,i] = alpha*p + (1-alpha) * SM[:,i-1]
if pplot:
# plot EEG spectrogram
t = np.arange(0, SM.shape[1])*fdt
plt.figure()
ax1 = plt.subplot(211)
im = np.where((f>=0) & (f<=30))[0]
med = np.median(SE.max(axis=0))
ax1.imshow(np.flipud(SE[im,:]), vmin=0, vmax=med*2)
plt.xticks(())
ix = list(range(0, 30, 10))
fi = f[im][::-1]
plt.yticks(ix, list(map(int, fi[ix])))
box_off(ax1)
plt.axis('tight')
plt.ylabel('Freq (Hz)')
# plot EMG amplitude
ax2 = plt.subplot(212)
im = np.where((f>=10) & (f<100))[0]
df = np.mean(np.diff(f))
# amplitude is the square root of the integral
ax2.plot(t, np.sqrt(SM[im,:].sum(axis=0)*df)/1000.0)
plt.xlim((0, t[-1]))
plt.ylabel('EMG Ampl (mV)')
plt.xlabel('Time (s)')
box_off(ax2)
plt.show(block=False)
return SE, SM, f
def recursive_sleepstate_rem(ppath, recordings, sf=0.3, alpha=0.3, past_mu=0.2, std_thdelta = 1.5, past_len=120, sdt=2.5, psave=False, xemg=False):
"""
predict a REM period only based on EEG/EMG history; the same algorithm is also used for
closed-loop REM sleep manipulation.
The algorithm uses for REM sleep detection a threshold on delta power, EMG power, and theta/delta power.
For theta/delta I use two thresholds: A hard (larger) threshold and a soft (lower) threshold. Initially,
theta/delta has to cross the hard threshold to initiate a REM period. Then, as long as,
theta/delta is above the soft threshold (and EMG power stays low) REM sleep continues.
@Parameters:
ppath base folder with recordings
recordings list of recordings
sf smoothing factor for each powerspectrum
alpha smoothing factor along time dimension
past_mu percentage (0 .. 1) of brain states that are allowed to have EMG power larger than threshold
during the last $past_len seconds
past_len window to calculate $past_mu
std_thdelta the hard theta/delta threshold is given by, mean(theta/delta) + $std_thdelta * std(theta/delta)
sdt time bin for brain sttate, typically 2.5s
psave if True, save threshold parameters to file.
"""
idf = re.split('_', recordings[0])[0]
# 02/05/2020 changed from int to float:
past_len = float(np.round(past_len/sdt))
# calculate spectrogram
(SE, SM) = ([],[])
for rec in recordings:
A,B, freq = recursive_spectrogram(ppath, rec, sf=sf, alpha=alpha)
SE.append(A)
SM.append(B)
# fuse lists SE and SM
SE = np.squeeze(reduce(lambda x,y: np.concatenate((x,y)), SE))
if not xemg:
SM = np.squeeze(reduce(lambda x,y: np.concatenate((x,y)), SM))
else:
SM = SE
# EEG, EMG bands
ntbins = SE.shape[1]
r_delta = [0.5, 4]
r_theta = [5,12]
# EMG band
r_mu = [300, 500]
i_delta = np.where((freq >= r_delta[0]) & (freq <= r_delta[1]))[0]
i_theta = np.where((freq >= r_theta[0]) & (freq <= r_theta[1]))[0]
i_mu = np.where((freq >= r_mu[0]) & (freq <= r_mu[1]))[0]
pow_delta = np.sum(SE[i_delta,:], axis=0)
pow_theta = np.sum(SE[i_theta,:], axis=0)
pow_mu = np.sum(SM[i_mu,:], axis=0)
# theta/delta
th_delta = np.divide(pow_theta, pow_delta)
thr_th_delta1 = np.nanmean(th_delta) + std_thdelta*np.nanstd(th_delta)
thr_th_delta2 = np.nanmean(th_delta) + 0.0*np.nanstd(th_delta)
thr_delta = pow_delta.mean()
thr_mu = pow_mu.mean() + 0.5*np.nanstd(pow_mu)
### The actual algorithm for REM detection
rem_idx = np.zeros((ntbins,))
prem = 0 # whether or not we are in REM
for i in range(ntbins):
if prem == 0 and pow_delta[i] < thr_delta and pow_mu[i] < thr_mu:
### could be REM
if th_delta[i] > thr_th_delta1:
### we are potentially entering REM
if (i - past_len) >= 0:
sstart = int(i-past_len)
else:
sstart = 0
# count the percentage of brainstate bins with elevated EMG power
c_mu = np.sum( np.where(pow_mu[sstart:i]>thr_mu)[0] ) / (past_len*1.0)
if c_mu < past_mu:
### we are in REM
prem = 1 # turn laser on
rem_idx[i] = 1
# We are currently in REM; do we stay there?
if prem == 1:
### REM continues, if theta/delta is larger than soft threshold and if there's
### no EMG activation
if (th_delta[i] > thr_th_delta2) and (pow_mu[i] < thr_mu):
rem_idx[i] = 1
else:
prem = 0 #turn laser off
# for loop ends
# Determine which channel is EEG, EMG
ch_alloc = get_infoparam(os.path.join(ppath, recordings[0], 'info.txt'), 'ch_alloc')[0]
# plot the whole stuff:
# (1) spectrogram
# (2) EMG Power
# (3) Delta
# (4) TH_Delta
plt.figure()
t = np.arange(0, sdt*(ntbins-1)+sdt/2.0, sdt)
ax1 = plt.subplot(411)
im = np.where((freq>=0) & (freq<=30))[0]
med = np.median(SE.max(axis=0))
ax1.imshow(np.flipud(SE[im,:]), vmin=0, vmax=med*2)
plt.yticks(list(range(0, 31, 10)), list(range(30, -1, -10)))
plt.ylabel('Freq. (Hz)')
plt.axis('tight')
ax2 = plt.subplot(412)
ax2.plot(t, pow_mu, color='black')
ax2.plot(t, np.ones((len(t),))*thr_mu, color='red')
plt.ylabel('EMG Pow.')
plt.xlim((t[0], t[-1]))
ax3 = plt.subplot(413, sharex=ax2)
ax3.plot(t, pow_delta, color='black')
ax3.plot(t, np.ones((len(t),))*thr_delta, color='red')
plt.ylabel('Delta Pow.')
plt.xlim((t[0], t[-1]))
ax4 = plt.subplot(414, sharex=ax3)
ax4.plot(t, th_delta, color='black')
ax4.plot(t, np.ones((len(t),))*thr_th_delta1, color='red')
ax4.plot(t, np.ones((len(t),))*thr_th_delta2, color='pink')
ax4.plot(t, rem_idx*thr_th_delta1, color='blue')
plt.ylabel('Theta/Delta')
plt.xlabel('Time (s)')
plt.xlim((t[0], t[-1]))
plt.show(block=False)
# write config file
if psave:
cfile = os.path.join(ppath, idf + '_rem.txt')
fid = open(cfile, 'w')
fid.write(('IDF: %s'+os.linesep) % idf)
fid.write(('ch_alloc: %s'+os.linesep) % ch_alloc)
fid.write(('THR_DELTA: %.2f'+os.linesep) % thr_delta)
fid.write(('THR_MU: %.2f'+os.linesep) % thr_mu)
fid.write(('THR_TH_DELTA: %.2f %.2f'+os.linesep) % (thr_th_delta1, thr_th_delta2))
fid.write(('STD_THDELTA: %.2f'+os.linesep) % std_thdelta)
fid.write(('PAST_MU: %.2f'+os.linesep) % past_mu)
fid.write(('SF: %.2f'+os.linesep) % sf)
fid.write(('ALPHA: %.2f'+os.linesep) % alpha)
fid.write(('Bern: %.2f' + os.linesep) % 0.5)
if xemg:
fid.write(('XEMG: %d'+os.linesep) % 1)
else:
fid.write(('XEMG: %d' + os.linesep) % 0)
fid.close()
print('wrote file %s' % cfile)
def recursive_sleepstate_rem_control(ppath, recordings, past_len=120, sdt=2.5, delay=120):
"""
algorithm running laser control for REM sleep dependent activation/inhibtion.
$delay s after a detected REM sleep period, the laser is turned on for the same duration. If a new REM period starts,
the laser stops, but we keep track of the missing time. The next time is laser turns on again,
it stays on for the duration of the most recent REM period + the remaining time.
The algorithm for REM detection is the same as used forclosed-loop REM sleep manipulation.
The function reads in the required parameters from the configuration file (MOUSEID_rem.txt)
The algorithm uses for REM sleep detection a threshold on delta power, EMG power, and theta/delta power.
For theta/delta I use two thresholds: A hard (larger) threshold and a soft (lower) threshold. Initially,
theta/delta has to cross the hard threshold to initiate a REM period. Then, as long as,
theta/delta is above the soft threshold (and EMG power stays low) REM sleep continues.
@Parameters:
ppath base folder with recordings
recordings list of recordings
past_len window to calculate $past_mu
sdt time bin for brain sttate, typically 2.5s
delay delay to wait after a REM sleep periods ends, till the laser is turned on.
"""
idf = re.split('_', recordings[0])[0]
past_len = int(np.round(past_len/sdt))
# load parameters
cfile = os.path.join(ppath, idf + '_rem.txt')
params = load_sleep_params(ppath, cfile)
thr_th_delta1 = params['THR_TH_DELTA'][0]
thr_th_delta2 = params['THR_TH_DELTA'][1]
thr_delta = params['THR_DELTA'][0]
thr_mu = params['THR_MU'][0]
alpha = params['ALPHA'][0]
sf = params['SF'][0]
past_mu = params['PAST_MU'][0]
xemg = params['XEMG'][0]
# calculate spectrogram
(SE, SM) = ([], [])
for rec in recordings:
A, B, freq = recursive_spectrogram(ppath, rec, sf=sf, alpha=alpha)
SE.append(A)
SM.append(B)
# fuse lists SE and SM
SE = np.squeeze(reduce(lambda x, y: np.concatenate((x, y)), SE))
if not xemg:
SM = np.squeeze(reduce(lambda x, y: np.concatenate((x, y)), SM))
else:
SM = SE
# EEG, EMG bands
ntbins = SE.shape[1]
r_delta = [0.5, 4]
r_theta = [5, 12]
# EMG band
r_mu = [300, 500]
i_delta = np.where((freq >= r_delta[0]) & (freq <= r_delta[1]))[0]
i_theta = np.where((freq >= r_theta[0]) & (freq <= r_theta[1]))[0]
i_mu = np.where((freq >= r_mu[0]) & (freq <= r_mu[1]))[0]
pow_delta = np.sum(SE[i_delta, :], axis=0)
pow_theta = np.sum(SE[i_theta, :], axis=0)
pow_mu = np.sum(SM[i_mu, :], axis=0)
th_delta = np.divide(pow_theta, pow_delta)
### The actual algorithm for REM detection
rem_idx = np.zeros((ntbins,))
prem = 0 # whether or not we are in REM
# NEW variables:
laser_idx = np.zeros((ntbins,))
delay = int(np.round(delay/sdt))
delay_count = 0
curr_rem_dur = 0
dur_count = 0
on_delay = False
laser_on = False
for i in range(ntbins):
if prem == 0 and pow_delta[i] < thr_delta and pow_mu[i] < thr_mu:
### could be REM
if th_delta[i] > thr_th_delta1:
### we are potentially entering REM
if (i - past_len) >= 0:
sstart = i - past_len
else:
sstart = 0
# count the percentage of brainstate bins with elevated EMG power
c_mu = np.sum(np.where(pow_mu[sstart:i] > thr_mu)[0]) / past_len
if c_mu < past_mu:
### we are in REM
prem = 1 # turn laser on
rem_idx[i] = 1
curr_rem_dur += 1 #NEW
# We are currently in REM; do we stay there?
if prem == 1:
### REM continues, if theta/delta is larger than soft threshold and if there's
### no EMG activation
if (th_delta[i] > thr_th_delta2) and (pow_mu[i] < thr_mu):
rem_idx[i] = 1
curr_rem_dur += 1
else:
prem = 0 # turn laser off
dur_count += curr_rem_dur #NEW
delay_count = delay #NEW
curr_rem_dur = 0 #NEW
on_delay = True #NEW
# NEW:
if on_delay:
if prem == 0:
delay_count -=1
if delay_count == 0:
laser_on = True
on_delay = False
if laser_on:
if prem == 0:
if dur_count >= 0:
dur_count -= 1
laser_idx[i] = 1
else:
laser_on = False
else:
laser_on = False
# plot the whole stuff:
# (1) spectrogram
# (2) EMG Power
# (3) Delta
# (4) TH_Delta
plt.figure()
t = np.arange(0, sdt*(ntbins-1)+sdt/2.0, sdt)
ax1 = plt.subplot(411)
im = np.where((freq>=0) & (freq<=30))[0]
med = np.median(SE.max(axis=0))
ax1.imshow(np.flipud(SE[im,:]), vmin=0, vmax=med*2)
plt.yticks(list(range(0, 31, 10)), list(range(30, -1, -10)))
plt.ylabel('Freq. (Hz)')
plt.axis('tight')
ax2 = plt.subplot(412)
ax2.plot(t, pow_mu, color='black')
ax2.plot(t, np.ones((len(t),))*thr_mu, color='red')
plt.ylabel('EMG Pow.')
plt.xlim((t[0], t[-1]))
ax3 = plt.subplot(413, sharex=ax2)
ax3.plot(t, pow_delta, color='black')
ax3.plot(t, np.ones((len(t),))*thr_delta, color='red')
plt.ylabel('Delta Pow.')
plt.xlim((t[0], t[-1]))
ax4 = plt.subplot(414, sharex=ax3)
ax4.plot(t, th_delta, color='black')
ax4.plot(t, np.ones((len(t),))*thr_th_delta1, color='red')
ax4.plot(t, np.ones((len(t),))*thr_th_delta2, color='pink')
ax4.plot(t, rem_idx*thr_th_delta1, color='green', label='REM')
ax4.plot(t, laser_idx * thr_th_delta1, color='blue', label='Laser')
plt.ylabel('Theta/Delta')
plt.xlabel('Time (s)')
plt.xlim((t[0], t[-1]))
plt.legend()
plt.show(block=False)
def load_sleep_params(path, param_file):
"""
load parameter file generated by &recursive_sleepstate_rem || &recursive_sleepstate_nrem
@Return:
Dictionary: Parameter --> Value
"""
fid = open(os.path.join(path, param_file), 'r')
lines = fid.readlines()
params = {}
for line in lines:
if re.match('^[\S_]+:', line):
a = re.split('\s+', line)
key = a[0][:-1]
params[key] = a[1:-1]
# transform number strings to floats
for k in params:
vals = params[k]
new_vals = []
for v in vals:
if re.match('^[\d\.]+$', v):
new_vals.append(float(v))
else:
new_vals.append(v)
params[k] = new_vals
return params
def recursive_sleepstate_nrem(ppath, recordings, sf=0.3, alpha=0.3, std_thdelta = 1.5, sdt=2.5, psave=False, xemg=False):
"""
predict NREMs period only based on EEG/EMG history; the same algorithm is also used for
closed-loop NREM sleep manipulation.
The algorithm uses for NREM sleep detection thresholds for delta power, EMG power, and theta/delta power.
For delta I use two thresholds: A hard (larger) threshold and a soft (lower) threshold. Initially,
theta/delta has to cross the hard threshold to initiate a NREM period. Then, as long as,
theta/delta is above the soft threshold (and EMG power stays low) REM sleep continues.
The values for hard and soft threshold are fitted using a Gaussian mixture model
:param ppath: base folder
:param recordings: list of recordings
:param sf: smoothing factor for each powerspectrum
:param alpha: spatial smoothing factor
:param std_thdelta: factor to set threshold for theta/delta
:param sdt: time step of brain state classification, typically 2.5 s
:param psave: save parameters to text file?
:param xemg: use EEG instead of EMG?
"""
# to fit Gaussian mixture model to delta power distributino
from sklearn import mixture
idf = re.split('_', recordings[0])[0]
# calculate spectrogram
(SE, SM) = ([],[])
for rec in recordings:
A,B, freq = recursive_spectrogram(ppath, rec, sf=sf, alpha=alpha)
SE.append(A)
SM.append(B)
# fuse lists SE and SM
SE = np.squeeze(reduce(lambda x,y: np.concatenate((x,y)), SE))
if not xemg:
SM = np.squeeze(reduce(lambda x,y: np.concatenate((x,y)), SM))
else:
SM = SE
# EEG, EMG bands
ntbins = SE.shape[1]
r_delta = [0.5, 4]
r_theta = [5,12]
# EMG band
r_mu = [300, 500]
i_delta = np.where((freq >= r_delta[0]) & (freq <= r_delta[1]))[0]
i_theta = np.where((freq >= r_theta[0]) & (freq <= r_theta[1]))[0]
i_mu = np.where((freq >= r_mu[0]) & (freq <= r_mu[1]))[0]
pow_delta = np.sum(SE[i_delta,:], axis=0)
pow_theta = np.sum(SE[i_theta,:], axis=0)
pow_mu = np.sum(SM[i_mu,:], axis=0)
# theta/delta
th_delta = np.divide(pow_theta, pow_delta)
thr_th_delta1 = np.nanmean(th_delta) + std_thdelta*np.nanstd(th_delta)
thr_th_delta2 = np.nanmean(th_delta) + 0.0*np.nanstd(th_delta)
thr_mu = pow_mu.mean() + 0.5*np.nanstd(pow_mu)
med_delta = np.median(pow_delta)
pow_delta_fit = pow_delta[np.where(pow_delta<=3*med_delta)]
# fit Gaussian mixture model to delta power
# see http://www.astroml.org/book_figures/chapter4/fig_GMM_1D.html
gm = mixture.GaussianMixture(n_components=2)
fit = gm.fit(pow_delta_fit.reshape(-1, 1))
means = np.squeeze(fit.means_)
x = np.arange(0, med_delta*3, 100)
plt.figure()
plt.hist(pow_delta_fit, 100, normed=True, histtype='stepfilled', alpha=0.4)
logprob = fit.score_samples(x.reshape(-1,1))
responsibilities = fit.predict_proba(x.reshape((-1,1)))
pdf = np.exp(logprob)
pdf_individual = responsibilities * pdf[:, np.newaxis]
plt.plot(x, pdf, '-k')
plt.plot(x, pdf_individual, '--k')
plt.xlim((0, med_delta*3))
plt.ylabel('p(x)')
plt.xlabel('x = Delta power')
# get point where curves cut each other
if means[0] < means[1]:
idx = np.where((x>= means[0]) & (x<= means[1]))[0]
else:
idx = np.where((x >= means[1]) & (x <= means[0]))[0]
imin = np.argmin(pdf[idx])
xcut = x[idx[0]+imin]
plt.plot(xcut, pdf[idx[0]+imin], 'ro')
ilow = np.argmin(np.abs(x-means[0]))
plt.plot(x[ilow], pdf[ilow], 'bo')
ihigh = np.argmin(np.abs(x-means[1]))
plt.plot(x[ihigh], pdf[ihigh], 'go')
plt.show(block=False)
# set parameters for hard and soft delta thresholds
tmp = np.array([x[ihigh], xcut, x[ilow]])
tmp.sort()
thr_delta1 = tmp[-1] # x[ihigh]; right peak of distribution
thr_delta2 = tmp[1] # trough of distribution
# NREM yes or no according to thresholds
# However, this variable does not directly control whether laser should
# be on or off; whether NREM sleep is really on or off is determined
# by nrem_idx; if pnrem_hidden == 1, then all threshold critera, but not
# sleep history criteria are fulfilled
pnrem_hidden = 0
# if nrem_idx[i] == 1, time point i is NREM
nrem_idx = np.zeros((ntbins,), dtype='int8')
# NREM stays on after thresholds are NOT fulfilled to avoid interruptions by microarousals
grace_period = int(20 / sdt)
# nrem_delay: NREM only starts with some delay
nrem_delay = int(10 / sdt)
grace_count = grace_period
delay_count = nrem_delay
for i in range(ntbins):
if pnrem_hidden == 0:
### Entering NREM:
# Delta power laser than high threshold
if pow_delta[i] > thr_delta1 and pow_mu[i] < thr_mu and th_delta[i] < thr_th_delta1:
### NOT-NREM -> NREM
pnrem_hidden = 1
nrem_idx[i] = 0
delay_count -= 1
# we are fully in NREM, that's why grace_count is reset:
grace_count = grace_period
else:
### NOT-NREM -> NOT-NREM
if grace_count > 0:
grace_count -= 1
nrem_idx[i] = 1
else:
nrem_idx[i] = 0
else:
### pnrem_hidden == 1
if pow_delta[i] > thr_delta2 and pow_mu[i] < thr_mu and th_delta[i] < thr_th_delta1:
if delay_count > 0:
delay_count -= 1
nrem_idx[i] = 0
else :
nrem_idx[i] = 1
else:
### Exit NREM -> NOT-NREM
# were are fully out of NREM, so delay_count can be reset:
delay_count = nrem_delay
pnrem_hidden = 0
if grace_count > 0:
grace_count -= 1
nrem_idx[i] = 1
#### figure ##############################################
plt.figure()
t = np.arange(0, sdt * (ntbins - 1) + sdt / 2.0, sdt)
ax1 = plt.subplot(411)
im = np.where((freq >= 0) & (freq <= 30))[0]
med = np.median(SE.max(axis=0))
ax1.imshow(np.flipud(SE[im, :]), vmin=0, vmax=med * 2, cmap='jet')
ax1.pcolorfast(t, freq[im], np.flipud(SE[im, :]), vmin=0, vmax=med * 2, cmap='jet')
plt.yticks(list(range(0, 31, 10)), list(range(30, -1, -10)))
plt.ylabel('Freq. (Hz)')
plt.axis('tight')
ax2 = plt.subplot(412, sharex=ax1)
ax2.plot(t, pow_mu, color='black')
ax2.plot(t, np.ones((len(t),)) * thr_mu, color='red')
plt.ylabel('EMG Pow.')
plt.xlim((t[0], t[-1]))
ax3 = plt.subplot(413, sharex=ax2)
ax3.plot(t, pow_delta, color='black')
ax3.plot(t, np.ones((len(t),)) * thr_delta1, color='red')
ax3.plot(t, np.ones((len(t),)) * thr_delta2, color=[1, 0.6, 0.6])
ax3.plot(t, nrem_idx * thr_delta1, color=[0.6, 0.6, 0.6])
plt.ylabel('Delta Pow.')
plt.xlim((t[0], t[-1]))
ax4 = plt.subplot(414, sharex=ax3)
ax4.plot(t, th_delta, color='black')
ax4.plot(t, np.ones((len(t),)) * thr_th_delta1, color='red')
plt.ylabel('Theta/Delta')
plt.xlabel('Time (s)')
plt.xlim((t[0], t[-1]))
plt.show(block=False)
# Determine which channel is EEG, EMG
ch_alloc = get_infoparam(os.path.join(ppath, recordings[0], 'info.txt'), 'ch_alloc')[0]
# write config file
if psave:
cfile = os.path.join(ppath, idf + '_nrem.txt')
fid = open(cfile, 'w')
fid.write(('IDF: %s' + os.linesep) % idf)
fid.write(('ch_alloc: %s' + os.linesep) % ch_alloc)
fid.write(('THR_DELTA: %.2f %.2f' + os.linesep) % (thr_delta1, thr_delta2))
fid.write(('THR_MU: %.2f' + os.linesep) % thr_mu)
fid.write(('THR_TH_DELTA: %.2f %.2f' + os.linesep) % (thr_th_delta1, thr_th_delta2))
fid.write(('STD_THDELTA: %.2f' + os.linesep) % std_thdelta)
fid.write(('SF: %.2f' + os.linesep) % sf)
fid.write(('ALPHA: %.2f' + os.linesep) % alpha)
if xemg:
fid.write(('XEMG: %d' + os.linesep) % 1)
else:
fid.write(('XEMG: %d' + os.linesep) % 0)
fid.close()
print('wrote file %s' % cfile)
def rem_online_analysis(ppath, recordings, backup='', single_mode=False, fig_file='', overlap=0):
"""
analyze results from closed-loop experiments
:param ppath: base folder
:param recordings: list of strings, recordinds
:param backup: string, potential second backup folder with recordings
:param single_mode: boolean, if True, average across all REM periods (irrespective of mouse)
and plot each single REM period as dot
:param overlap: float between 0 and 100; specifices percentage by which the online detected REM period has to
overlap with real (annotated) REM period to be further consided for analysis;
if overlap == 0, then any overlap counts, i.e. this parameter has no influence
:return: df, pd.DataFrame, with control and experimental REM durations as data columns
"""
if type(recordings) != list:
recordings = [recordings]
overlap = overlap / 100.0
paths = dict()
for rec in recordings:
if os.path.isdir(os.path.join(ppath, rec)):
paths[rec] = ppath
else:
paths[rec] = backup
mice = dict()
for rec in recordings:
idf = re.split('_', rec)[0]
if not idf in mice:
mice[idf] = 1
mice = list(mice.keys())
if len(mice) == 1:
single_mode=True
dur_exp = {m:[] for m in mice}
dur_ctr = {m:[] for m in mice}
for rec in recordings:
idf = re.split('_', rec)[0]
M,S = load_stateidx(paths[rec], rec)
sr = get_snr(paths[rec], rec)
nbin = int(np.round(sr)*2.5)
dt = (1.0/sr)*nbin
laser = load_laser(paths[rec], rec)
rem_trig = so.loadmat(os.path.join(paths[rec], rec, 'rem_trig_%s.mat'%rec), squeeze_me=True)['rem_trig']
laser = downsample_vec(laser, nbin)
laser[np.where(laser>0)] = 1
rem_trig = downsample_vec(rem_trig, nbin)
rem_trig[np.where(rem_trig>0)] = 1
laser_idx = np.where(laser==1)[0]
rem_idx = np.where(rem_trig==1)[0]
# REM sequences from offline analysis (assumed to be the
# "ground truth"
seq = get_sequences(np.where(M==1)[0])
for s in seq:
# check true REM sequences overlapping with online detected sequences
isect = np.intersect1d(s, rem_idx)
#print(len(isect)/ len(s))
# test if real REM period s overlaps with online detected REM periods and,
# if yes, make sure that the overlap is at least overlap *100 percent
if len(np.intersect1d(s, rem_idx)) > 0 and float(len(isect)) / len(s) >= overlap:
drn = (s[-1]-s[0]+1)*dt
# does the sequence overlap with laser?
if len(np.intersect1d(isect, laser_idx))>0:
dur_exp[idf].append(drn)
else:
dur_ctr[idf].append(drn)
data = {'exp':[], 'ctr':[]}
# if single_mode put all REM periods together,
# otherwise average across REM periods for each mouse
if len(mice) == 1 or single_mode==True:
for m in mice:
data['exp'] += dur_exp[m]
data['ctr'] += dur_ctr[m]
else:
for idf in dur_ctr:
dur_ctr[idf] = np.array(dur_ctr[idf]).mean()
dur_exp[idf] = np.array(dur_exp[idf]).mean()
data['exp'] = np.array(list(dur_exp.values()))
data['ctr'] = np.array(list(dur_ctr.values()))
df = pd.DataFrame({'ctr':pd.Series(data['ctr']), 'exp' : pd.Series(data['exp'])})
# plot everything
if not single_mode:
plt.ion()
plt.figure()
ax = plt.axes([0.2, 0.15, 0.3, 0.7])
df_mean = df.mean()
plt.bar([1], [df_mean['ctr']], color='grey', label='W/o Laser')
plt.bar([2], [df_mean['exp']], color='blue', label='With laser')
plt.xticks([1,2])
box_off(ax)
#ax.set_xticklabels(['ctr', 'exp'], rotation=30)
plt.ylabel('REM duration (s)')
for (a,b) in zip(df['ctr'], df['exp']):
plt.plot([1,2], [a,b], color='black')
plt.legend(bbox_to_anchor=(0., 1.0, 1., .102), loc=3, mode='expand', ncol=1, frameon=False)
else:
plt.figure()
ax = plt.axes([0.2, 0.15, 0.3, 0.7])
df_mean = df.mean()
plt.bar([1], [df_mean['ctr']], color='grey')
plt.bar([2], [df_mean['exp']], color='blue')
plt.xticks([1,2])
box_off(ax)
#ax.set_xticklabels(['ctr', 'exp'], rotation=30)
plt.ylabel('REM duration (s)')
a = df['ctr']
b = df['exp']
plt.plot(np.ones((len(a),)), a, '.', color='black', label='W/o Laser')
plt.plot(2*np.ones((len(b),)), b, '.', color='black', label='With laser')
plt.legend(bbox_to_anchor=(0., 1.0, 1., .102), loc=3, mode='expand', ncol=1, frameon=False)
plt.show()
if len(fig_file) > 0:
save_figure(fig_file)
return df
def online_homeostasis(ppath, recordings, backup='', mode=0, single_mode=False, pplot=True, overlap=0, ma_thr=0):
"""
Further analysis of data obtained from closed loop stimulation
Assume the sleep structure looks like this
R R R R W W N N N N N W W N N N N R R R R R
REM_pre -- inter REM ---- REM_post
REM_pre is the duration of the first REM period, inter-REM is everything between REM_pre and the
next REM period REM_post.
The function calculates the inter REM duration after REM periods with laser and after REM periods w/o laser
:param ppath: base folder
:param recordings: list of recording, or file listing
:param backup: backup folder for $ppath
:param mode: mode == 0, calculate complete inter REM duration
mode == 2, only calculate duration of wake in inter REM periods
mode == 3, only calculate duration of NREM in inter REM periods
:param single_mode: consider each single recording, instead of mice
:param overlap: percentage (number between 0 and 100). Defines the percentage
how much a true (offline annotated) REM period should overlap with laser
to be considered as REM sleep with laser.
Of note, REM periods w/o laser have to have 0 overlap with laser.
All remaining REM periods are discarded.
:param pplot: if True, plot figure; errorbars show 95% confidence intervals,
calculated using bootstrapping
:param ma:
:return: df, if single_mode == True $df is a pandas DataFrame:
REM iREM laser
mouse - mouse ID
REM - REM duration
iREM - inter REM duration after REM periods with laser
laser - 'y' or 'n'; depending on whether laser was on during REM sleep period (for "REM") or during the
preceding REM sleep period (for "iREM")
if single_mode == False, mouse is the data frame index
"""
if type(recordings) != list:
recordings = [recordings]
if overlap > 0:
overlap = overlap / 100
paths = dict()
for rec in recordings:
if os.path.isdir(os.path.join(ppath, rec)):
paths[rec] = ppath
else:
paths[rec] = backup
mice = dict()
for rec in recordings:
idf = re.split('_', rec)[0]
if not idf in mice:
mice[idf] = 1
mice = list(mice.keys())
if len(mice) == 1:
single_mode=True
remdur_exp = {m:[] for m in mice}
remdur_ctr = {m:[] for m in mice}
itdur_exp = {m:[] for m in mice}
itdur_ctr = {m:[] for m in mice}
for rec in recordings:
idf = re.split('_', rec)[0]
M = load_stateidx(paths[rec], rec)[0]
sr = get_snr(paths[rec], rec)
nbin = int(np.round(sr)*2.5)
dt = (1.0/sr)*nbin
if ma_thr>0:
seq = get_sequences(np.where(M==2)[0])
for s in seq:
if len(s)*dt <= ma_thr:
M[s] = 3
laser = load_laser(paths[rec], rec)
rem_trig = so.loadmat(os.path.join(paths[rec], rec, 'rem_trig_%s.mat' % rec), squeeze_me=True)['rem_trig']
laser = downsample_vec(laser, nbin)
laser[np.where(laser>0)] = 1
rem_trig = downsample_vec(rem_trig, nbin)
rem_trig[np.where(rem_trig>0)] = 1
laser_idx = np.where(laser==1)[0]
rem_idx = np.where(rem_trig==1)[0]
# REM sequences from offline analysis (assumed to be the
# "ground truth"
seq = get_sequences(np.where(M==1)[0])
for (p,q) in zip(seq[0:-1], seq[1:]):
# check if true REM sequences do overlap with online detected sequences
# and only continue working with those:
if len(np.intersect1d(p, rem_idx)) > 0:
drn = (p[-1]-p[0]+1)*dt
it_M = M[p[-1]+1:q[0]]
if mode == 0:
it_drn = len(it_M)*dt
elif mode == 2:
it_drn = len(np.where(it_M==2)[0]) * dt
else:
it_drn = len(np.where(it_M == 3)[0]) * dt
# does the true REM sequence overlap with laser?
# by setting overlap to a value > 0, you can
# set a percentage how much the REM period should overlap with laser
# NEW 08/26/21
if len(np.intersect1d(p, laser_idx)) / len(p) > overlap:
remdur_exp[idf].append(drn)
itdur_exp[idf].append(it_drn)
elif len(np.intersect1d(p, laser_idx)) == 0:
remdur_ctr[idf].append(drn)
itdur_ctr[idf].append(it_drn)
else:
pass
# if single_mode put all REM periods together,
# otherwise average across REM periods for each mouse
if len(mice) == 1 or single_mode==True:
data = {'itexp':[], 'itctr':[], 'remexp':[], 'remctr':[]}
for m in mice:
data['itexp'] += itdur_exp[m]
data['itctr'] += itdur_ctr[m]
data['remexp'] += remdur_exp[m]
data['remctr'] += remdur_ctr[m]
df = pd.DataFrame({'REM': data['remexp']+data['remctr'], 'iREM':data['itexp']+data['itctr'], 'laser': ['y']*len(data['remexp']) + ['n']*len(data['remctr'])})
else:
for idf in mice:
itdur_ctr[idf] = np.array(itdur_ctr[idf]).mean()
itdur_exp[idf] = np.array(itdur_exp[idf]).mean()
remdur_ctr[idf] = np.array(remdur_ctr[idf]).mean()
remdur_exp[idf] = np.array(remdur_exp[idf]).mean()
data = {}
for s in ['itexp', 'itctr', 'remexp', 'remctr']:
data[s] = np.zeros((len(mice),))
i = 0
for m in mice:
data['itexp'][i] = itdur_exp[m]
data['itctr'][i] = itdur_ctr[m]
data['remexp'][i] = remdur_exp[m]
data['remctr'][i] = remdur_ctr[m]
i += 1
df = pd.DataFrame({'REM': np.concatenate((data['remexp'], data['remctr'])),
'iREM': np.concatenate((data['itexp'], data['itctr'])),
'laser': ['y']*len(mice) + ['n']*len(mice),
'mouse': mice+mice})
if pplot and not single_mode:
dfm = pd.melt(df, id_vars=['laser', 'mouse'], var_name='state')
sns.set_style('whitegrid')
plt.ion()
plt.figure()
sns.barplot(data=dfm, hue='laser', x='state', y='value', palette=['blue', 'gray'])
sns.swarmplot(data=dfm, hue='laser', x='state', y='value', dodge=True, color='black')
sns.despine()
plt.ylabel('Duration (s)')
if pplot and single_mode:
dfm = pd.melt(df, id_vars=['laser'], var_name='state')
plt.ion()
plt.figure()
sns.set(style="whitegrid")
#sns.swarmplot(data=df[['itctr', 'itexp']], color='black')
#sns.barplot(data=df[['itctr', 'itexp']], palette=['gray', 'blue'], errcolor='black')
sns.barplot(data=dfm, hue='laser', x='state', y='value', palette=['blue', 'gray'])
sns.swarmplot(data=dfm, hue='laser', x='state', y='value', dodge=True, color='black')
sns.despine()
plt.ylabel('Duration (s)')
return df
### FUNCTIONS USED BY SLEEP_STATE #####################################################
def get_sequences(idx, ibreak=1) :
"""
get_sequences(idx, ibreak=1)
idx - np.vector of indices
@RETURN:
seq - list of np.vectors
"""
diff = idx[1:] - idx[0:-1]
breaks = np.nonzero(diff>ibreak)[0]
breaks = np.append(breaks, len(idx)-1)
seq = []
iold = 0
for i in breaks:
r = list(range(iold, i+1))
seq.append(idx[r])
iold = i+1
return seq
def threshold_crossing(data, th, ilen, ibreak, m):
"""
seq = threshold_crossing(data, th, ilen, ibreak, m)
"""
if m>=0:
idx = np.where(data>=th)[0]
else:
idx = np.where(data<=th)[0]
# gather sequences
j = 0
seq = []
while (j <= len(idx)-1):
s = [idx[j]]
for k in range(j+1,len(idx)):
if (idx[k] - idx[k-1]-1) <= ibreak:
# add j to sequence
s.append(idx[k])
else:
break
if (s[-1] - s[0]+1) >= ilen and not(s[0] in [i[1] for i in seq]):
seq.append((s[0], s[-1]))
if j == len(idx)-1:
break
j=k
return seq
def closest_precessor(seq, i):
"""
find the preceding element in seq which is closest to i
helper function for sleep_state
"""
tmp = seq-i;
d = np.where(tmp<0)[0]
if len(d)>0:
id = seq[d[-1]];
else:
id = 0;
return id
def write_remidx(M, K, ppath, name, mode=1) :
"""
rewrite_remidx(idx, states, ppath, name)
replace the indices idx in the remidx file of recording name
with the assignment given in states
"""
if mode == 0 :
outfile = os.path.join(ppath, name, 'remidx_' + name + '.txt')
else :
outfile = os.path.join(ppath, name, 'remidx_' + name + '_corr.txt')
f = open(outfile, 'w')
s = ["%d\t%d\n" % (i,j) for (i,j) in zip(M[0,:],K)]
f.writelines(s)
f.close()
#######################################################################################
### MANIPULATING FIGURES ##############################################################
def set_fontsize(fs):
import matplotlib
matplotlib.rcParams.update({'font.size': fs})
def set_fontarial():
"""
set Arial as default font
"""
import matplotlib
matplotlib.rcParams['font.sans-serif'] = "Arial"
def save_figure(fig_file):
# alternative way of setting nice fonts:
#matplotlib.rcParams['pdf.fonttype'] = 42
#matplotlib.rcParams['ps.fonttype'] = 42
#matplotlib.pylab.savefig(fig_file, dpi=300)
#matplotlib.rcParams['text.usetex'] = False
#matplotlib.rcParams['text.usetex'] = True
plt.savefig(fig_file, bbox_inches="tight", dpi=200)
#matplotlib.rcParams['text.usetex'] = False
def box_off(ax):
"""
similar to Matlab's box off
"""
ax.spines["top"].set_visible(False)
ax.spines["right"].set_visible(False)
ax.get_xaxis().tick_bottom()
ax.get_yaxis().tick_left()
#######################################################################################
def sleep_state(ppath, name, th_delta_std=1, mu_std=0, sf=1, sf_delta=3, pwrite=0,
pplot=True, pemg=True, vmax=2.5, pspec_norm=False, use_idx=[]):
"""
automatic sleep state detection based on
delta, theta, sigma, gamma and EMG power.
New: use also sigma band: that's very helpful to classify pre-REM periods
as NREM; otherwise they tend to be classified as wake.
Gamma peaks nicely pick up during microarousals.
My strategy is the following:
I smooth delta band a lot to avoid strong fragmentation of sleep; but to
still pick up microarousals I use the gamma power.
spectrogram data has to be calculated before using calculate_spectrum
Each bin in the spectrogram gets assigned one of four states:
1-REM
2-Wake
3-NREM
0-undef
:param ppath: base folder
:param name: recording name
:param th_delta_std: threshold for theta/delta band is calculated as mean(theta/delta) + th_delta_std*std(theta/delta)
:param mu_std: threshold for EMG power is calculate as "mean(EMG) + mu_std * mean(EMG)
:param sf: smoothing factor for gamma and sigma power
:param sf_delta: smoothing factor for delta power
:param pwrite: if True, save sleep classification to file remidx_$name.txt
:param pplot: if True, plot figures
:param pemg: if True, use EMG as EMG, otherwise use EEG gamma power instead
:param vmax: float, set maximum of color range of EEG heatmap.
:param pspec_norm: boolean, if True, normalized EEG spectrogram by deviding each frequency band by its mean; only affects
plotting, no effect on sleep state calculation
:param use_idx: list, if not empty, use only given indices to calculate sleep state
:return:
"""
PRE_WAKE_REM = 30.0
# Minimum Duration and Break in
# high theta/delta, high emg, high delta, high sigma and gamma sequences
#
# duration[i,0] is the minimum duration of sequence of state i
# duration[i,1] is maximal break duration allowed in a sequence of state i
duration = np.zeros((5,2))
# high theta/delta
duration[0,:] = [5,15]
# high emg
duration[1,:] = [0, 5]
# high delta
duration[2,:] = [10, 10]
# high sigma
duration[3,:] = [10, 10]
# gamma
duration[4,:] = [0, 5]
# Frequency Bands/Ranges for delta, theta, and, gamma
r_delta = [0.5, 4]
r_sigma = [12, 20]
r_theta = [5,12]
# EMG band
r_mu = [50, 500]
if not pemg:
r_mu = [250, 500]
# high gamma power
r_gamma = [100, 150]
#load EEG and EMG spectrum, calculated by calculate_spectrum
P = so.loadmat(os.path.join(ppath, name, 'sp_' + name + '.mat'))
if pemg:
Q = so.loadmat(os.path.join(ppath, name, 'msp_' + name + '.mat'))
else:
Q = so.loadmat(os.path.join(ppath, name, 'sp_' + name + '.mat'))
SPEEG = np.squeeze(P['SP'])
if pemg == 1:
SPEMG = np.squeeze(Q['mSP'])
else:
SPEMG = np.squeeze(P['SP'])
if use_idx == []:
use_idx = range(0, SPEEG.shape[1])
freq = np.squeeze(P['freq'])
t = np.squeeze(P['t'])
dt = float(np.squeeze(P['dt']))
N = len(t)
duration = np.divide(duration,dt)
# get indices for frequency bands
i_delta = np.where((freq >= r_delta[0]) & (freq <= r_delta[1]))[0]
i_theta = np.where((freq >= r_theta[0]) & (freq <= r_theta[1]))[0]
i_mu = np.where((freq >= r_mu[0]) & (freq <= r_mu[1]))[0]
i_sigma = np.where((freq >= r_sigma[0]) & (freq <= r_sigma[1]))[0]
i_gamma = np.where((freq >= r_gamma[0]) & (freq <= r_gamma[1]))[0]
p_delta = smooth_data( SPEEG[i_delta,:].mean(axis=0), sf_delta )
p_theta = smooth_data( SPEEG[i_theta,:].mean(axis=0), 0 )
# now filtering for EMG to pick up microarousals
p_mu = smooth_data( SPEMG[i_mu,:].mean(axis=0), sf )
p_sigma = smooth_data( SPEEG[i_sigma,:].mean(axis=0), sf )
p_gamma = smooth_data( SPEEG[i_gamma,:].mean(axis=0), 0 )
th_delta = np.divide(p_theta, p_delta)
#th_delta = smooth_data(th_delta, 2);
seq = {}
seq['high_theta'] = threshold_crossing(th_delta, np.nanmean(th_delta[use_idx])+th_delta_std*np.nanstd(th_delta[use_idx]),
duration[0,1], duration[0,1], 1)
seq['high_emg'] = threshold_crossing(p_mu, np.nanmean(p_mu[use_idx])+mu_std*np.nanstd(p_mu[use_idx]),
duration[1,0], duration[1,1], 1)
seq['high_delta'] = threshold_crossing(p_delta, np.nanmean(p_delta[use_idx]), duration[2,0], duration[2,1], 1)
seq['high_sigma'] = threshold_crossing(p_sigma, np.nanmean(p_sigma[use_idx]), duration[3,0], duration[3,1], 1)
seq['high_gamma'] = threshold_crossing(p_gamma, np.nanmean(p_gamma[use_idx]), duration[4,0], duration[4,1], 1)
# Sleep-State Rules
idx = {}
for k in seq:
tmp = [list(range(i,j+1)) for (i,j) in seq[k]]
# now idea why this works to flatten a list
# idx[k] = sum(tmp, [])
# alternative that I understand:
if len(tmp) == 0:
idx[k] = np.array([])
else:
idx[k] = np.array(reduce(lambda x,y: x+y, tmp))
idx['low_emg'] = np.setdiff1d(np.arange(0,N), np.array(idx['high_emg']))
idx['low_delta'] = np.setdiff1d(np.arange(0,N), np.array(idx['high_delta']))
idx['low_theta'] = np.setdiff1d(np.arange(0,N), np.array(idx['high_theta']))
#REM Sleep: thdel up, emg down, delta down
a = np.intersect1d(idx['high_theta'], idx['low_delta'])
# non high_emg phases
b = np.setdiff1d(a, idx['high_emg'])
rem = get_sequences(b, duration[0,1])
rem_idx = reduce(lambda x,y: np.concatenate((x,y)), rem)
# SWS Sleep
# delta high, no theta, no emg
a = np.setdiff1d(idx['high_delta'], idx['high_emg']) # no emg activation
b = np.setdiff1d(a, idx['high_theta']) # no theta;
sws = get_sequences(b)
sws_idx = reduce(lambda x,y: np.concatenate((x,y)), sws)
#print a
# Wake
# low delta + high emg and not rem
a = np.unique(np.union1d(idx['low_delta'], idx['high_emg']))
b = np.setdiff1d(a, rem_idx)
wake = get_sequences(b)
wake_idx = reduce(lambda x,y: np.concatenate((x,y)), wake)
# sequences with low delta, high sigma and low emg are NREM
a = np.intersect1d(np.intersect1d(idx['high_sigma'], idx['low_delta']), idx['low_emg'])
a = np.setdiff1d(a, rem_idx)
sws_idx = np.unique(np.union1d(a, sws_idx))
wake_idx = np.setdiff1d(wake_idx, a)
#NREM sequences with high gamma are wake
a = np.intersect1d(sws_idx, idx['high_gamma'])
sws_idx = np.setdiff1d(sws_idx, a)
wake_idx = np.unique(np.union1d(wake_idx,a))
# Wake and Theta
wake_motion_idx = np.intersect1d(wake_idx, idx['high_theta'])
# Wake w/o Theta
wake_nomotion_idx = np.setdiff1d(wake_idx, idx['low_theta'])
# Are there overlapping sequences?
a = np.intersect1d(np.intersect1d(rem_idx, wake_idx), sws_idx)
# Are there undefined sequences?
undef_idx = np.setdiff1d(np.setdiff1d(np.setdiff1d(np.arange(0,N), rem_idx), wake_idx), sws_idx)
# Wake wins over SWS
sws_idx = np.setdiff1d(sws_idx, wake_idx)
# Special rules
# if there's a REM sequence directly following a short wake sequence (PRE_WAKE_REM),
# this wake sequence goes to SWS
# NREM to REM transitions are sometimes mistaken as quite wake periods
for rem_seq in rem:
if len(rem_seq) > 0:
irem_start = rem_seq[0]
# is there wake in the preceding bin?
if irem_start-1 in wake_idx:
# get the closest sws bin in the preceding history
isws_end = closest_precessor(sws_idx, irem_start)
if (irem_start - isws_end)*dt < PRE_WAKE_REM:
new_rem = np.arange(isws_end+1,irem_start)
rem_idx = np.union1d(rem_idx, new_rem)
wake_idx = np.setdiff1d(wake_idx, new_rem)
else:
new_wake = rem_seq
wake_idx = np.union1d(wake_idx, new_wake)
rem_idx = np.setdiff1d(rem_idx, new_wake)
# two different representations for the results:
S = {}
S['rem'] = rem_idx
S['nrem'] = sws_idx
S['wake'] = wake_idx
S['awake'] = wake_motion_idx
S['qwake'] = wake_nomotion_idx
M = np.zeros((N,))
if len(rem_idx) > 0:
M[rem_idx] = 1
if len(wake_idx) > 0:
M[wake_idx] = 2
if len(sws_idx) > 0:
M[sws_idx] = 3
if len(undef_idx) > 0:
M[undef_idx] = 0
# write sleep annotation to file
if pwrite:
outfile = os.path.join(ppath, name, 'remidx_' + name + '.txt')
print("writing annotation to %s" % outfile)
f = open(outfile, 'w')
s = ["%d\t%d\n" % (i,j) for (i,j) in zip(M,np.zeros((N,)))]
f.writelines(s)
f.close()
# nice plotting
plt.ion()
if pplot:
plt.figure(figsize=(18,9))
axes1=plt.axes([0.1, 0.9, 0.8, 0.05])
A = np.zeros((1,len(M)))
A[0,:] = M
cmap = plt.cm.jet
my_map = cmap.from_list('ha', [[0,0,0], [0,1,1],[0.5,0,1], [0.8, 0.8, 0.8]], 4)
#tmp = axes1.imshow(A, vmin=0, vmax=3)
tmp = axes1.pcolorfast(t, [0,1], A, vmin=0, vmax=3)
tmp.set_cmap(my_map)
axes1.axis('tight')
tmp.axes.get_xaxis().set_visible(False)
tmp.axes.get_yaxis().set_visible(False)
box_off(axes1)
# show spectrogram
axes2=plt.axes([0.1, 0.75, 0.8, 0.1], sharex=axes1)
ifreq = np.where(freq <= 30)[0]
med = np.median(SPEEG.max(axis=0))
if pspec_norm:
ifreq = np.where(freq <= 80)[0]
filt = np.ones((6, 1))
filt = filt / np.sum(filt)
SPEEG = scipy.signal.convolve2d(SPEEG, filt, mode='same')
spec_mean = SPEEG.mean(axis=1)
SPEEG = np.divide(SPEEG, np.repeat([spec_mean], SPEEG.shape[1], axis=0).T)
med = np.median(SPEEG.max(axis=0))
axes2.pcolorfast(t, freq[ifreq], SPEEG[ifreq, :], vmax = med*vmax, cmap='jet')
else:
axes2.pcolorfast(t, freq[ifreq], SPEEG[ifreq, :], vmax=med * vmax, cmap='jet')
axes2.axis('tight')
plt.ylabel('Freq (Hz)')
box_off(axes2)
# show delta power
axes3=plt.axes([0.1, 0.6, 0.8, 0.1], sharex=axes2)
axes3.plot(t,p_delta, color='gray')
plt.ylabel('Delta (a.u.)')
plt.xlim((t[0], t[-1]))
seq = get_sequences(S['nrem'])
#for s in seq:
# plt.plot(t[s],p_delta[s], color='red')
s = idx['high_delta']
seq = get_sequences(s)
for s in seq:
plt.plot(t[s],p_delta[s], color='red')
box_off(axes3)
axes4=plt.axes([0.1, 0.45, 0.8, 0.1], sharex=axes3)
axes4.plot(t,p_sigma, color='gray')
plt.ylabel('Sigma (a.u.)')
plt.xlim((t[0], t[-1]))
s = idx['high_sigma']
seq = get_sequences(s)
for s in seq:
plt.plot(t[s],p_sigma[s], color='red')
box_off(axes4)
axes5=plt.axes([0.1, 0.31, 0.8, 0.1], sharex=axes4)
axes5.plot(t,th_delta, color='gray')
plt.ylabel('Th/Delta (a.u.)')
plt.xlim((t[0], t[-1]))
s = idx['high_theta']
seq = get_sequences(s)
for s in seq:
plt.plot(t[s],th_delta[s], color='red')
box_off(axes5)
axes6=plt.axes([0.1, 0.17, 0.8, 0.1], sharex=axes5)
axes6.plot(t,p_gamma, color='gray')
plt.ylabel('Gamma (a.u.)')
plt.xlim((t[0], t[-1]))
s = idx['high_gamma']
seq = get_sequences(s)
for s in seq:
plt.plot(t[s],p_gamma[s], color='red')
box_off(axes6)
axes7=plt.axes([0.1, 0.03, 0.8, 0.1], sharex=axes6)
axes7.plot(t,p_mu, color='gray')
plt.xlabel('Time (s)')
plt.ylabel('EMG (a.u.)')
plt.xlim((t[0], t[-1]))
s = idx['high_emg']
seq = get_sequences(s)
for s in seq:
plt.plot(t[s],p_mu[s], color='red')
box_off(axes7)
plt.show()
# 2nd figure showing distribution of different bands
plt.figure(figsize=(20,3))
axes1 = plt.axes([0.05, 0.1, 0.13, 0.8])
plt.hist(p_delta, bins=100)
plt.plot(np.nanmean(p_delta), 10, 'ro')
plt.title('delta')
plt.ylabel('# Occurances')
box_off(axes1)
axes1 = plt.axes([0.25, 0.1, 0.13, 0.8])
plt.hist(th_delta, bins=100)
plt.plot(np.nanmean(th_delta)+th_delta_std*np.nanstd(th_delta), 10, 'ro')
plt.title('theta/delta')
box_off(axes1)
axes1 = plt.axes([0.45, 0.1, 0.13, 0.8])
plt.hist(p_sigma, bins=100)
plt.plot(np.nanmean(p_sigma), 10, 'ro')
plt.title('sigma')
box_off(axes1)
axes1 = plt.axes([0.65, 0.1, 0.13, 0.8])
plt.hist(p_gamma, bins=100)
plt.plot(np.nanmean(p_gamma), 10, 'ro')
plt.title('gamma')
box_off(axes1)
axes1 = plt.axes([0.85, 0.1, 0.13, 0.8])
plt.hist(p_mu, bins=100)
plt.plot(np.nanmean(p_mu)+np.nanstd(p_mu), 10, 'ro')
plt.title('EMG')
plt.show(block=False)
box_off(axes1)
plt.show()
return M,S
def plot_hypnograms(ppath, recordings, tbin=0, unit='h', ma_thr=20, title='', tstart=0, tend=-1):
"""
plot all hypnograms specified in @recordings
:param ppath: base folder
:param recordings: list of recordings
:param tbin: tbin for xticks
:param unit: time unit; h - hour, min - minute, s - second
:param ma_thr: float, wake periods shorter than $ma_thr are considered as microarousals and further converted to NREM
:param tstart: float, start time point (in seconds!) of hypnograms
:param tend: float, last shown time point (in seconds!)
:param title: optional title for figure
"""
recordings = recordings[::-1]
sr = get_snr(ppath, recordings[0])
nbin = int(np.round(sr) * 2.5)
dt_sec = (1.0 / sr) * nbin
istart = int(np.round(tstart/dt_sec))
dt = dt_sec
if unit == 'h':
dt /= 3600
elif unit == 'min':
dt /= 60
rec_len = dict()
irec = 0
ny = (1.0-0.2) / len(recordings)
dy = ny * 0.75
cmap = plt.cm.jet
my_map = cmap.from_list('brs', [[0, 0, 0], [0, 1, 1], [0.5, 0, 1], [0.8, 0.8, 0.8]], 4)
plt.ion()
plt.figure(figsize=(9,4))
axes = []
for rec in recordings:
M,K = load_stateidx(ppath, rec)
#kcut = np.where(K<0)[0]
#M = M[kcut]
#M[kcut] = 0
if tend == -1:
iend = len(M)
else:
iend = int(tend/dt_sec)
M = M[istart:iend]
if ma_thr>0:
seq = get_sequences(np.where(M==2)[0])
for s in seq:
if len(s)*dt_sec <= ma_thr:
M[s] = 3
rec_len[rec] = len(M)*dt
t = np.arange(0, len(M))*dt
ax = plt.axes([0.05, ny*irec+0.15, 0.75, dy])
tmp = ax.pcolorfast(t, [0, 1], np.array([M]), vmin=0, vmax=3, cmap=my_map)
box_off(ax)
ax.axis('tight')
tmp.axes.get_yaxis().set_visible(False)
if irec > 0:
tmp.axes.get_xaxis().set_visible(False)
if irec == 0:
plt.xlabel('Time (%s)' % unit)
irec += 1
axes.append(ax)
if len(title) > 0:
plt.title(title)
max_dur = max(rec_len.values())
if tbin > 0:
xtick = np.arange(0, max_dur, tbin)
for (ax, rec) in zip(axes, recordings):
ax.set_xlim([0, max_dur])
if tbin > 0:
ax.set_xticks(xtick)
ax.text(max_dur+max_dur*0.01, 0.5, rec)
plt.show()
def plot_swa(ppath, name, delta_win, alpha, band=[0.5, 4.5], swa_yrange=[]):
"""
plot slow wave (delta) activity during NREM
The top plot shows the hynogram.
The middle plot shows the delta power (irrespective of brain state) as line plot
The bottom plot shows for consecutive $delta_win seconds long bins, the
median delta power (SWA) during NREM, if the ration of NREM during the
corresponding bin >= $alpha
Example call:
dm=plot_swa(ppath, name, 30, 0.5, swa_yrange=[0, 0.012])
:param ppath, name: basefolder, recording name
:param delta_win: plot median swa value for each consecutive $delta_win seconds long window, if
:param alpha: the ratio of NREM in this window is larger than alpha (value between 0 and 1)
:param swa_yrange: tuple, minimun and maximum value of yrange for SWA
:return df: pd.DataFrame with SWA time points and corresponding median SWA values
"""
r_delta = band
sr = get_snr(ppath, name)
nbin = int(np.round(2.5*sr))
dt = nbin*(1.0/sr)
M,_ = load_stateidx(ppath, name)
t = np.arange(0, len(M))*dt
P = so.loadmat(os.path.join(ppath, name, 'sp_%s.mat' % name), squeeze_me=True)
SP = P['SP']
freq = P['freq']
df = freq[1]-freq[0]
idelta = np.where((freq>=r_delta[0]) & (freq<=r_delta[1]))[0]
pow_delta = SP[idelta,:].sum(axis=0)*df
# get NREM sequences contributing points for fitting
iwin = int(delta_win/dt)
#seq = get_sequences(nrem_idx, ibreak=int((delta_win/dt)*0.1))
delta_med = []
for j in range(0, len(M)-iwin, iwin):
s = range(j, j+iwin)
sc = j+int(iwin/2)
Mcut = M[s]
if (1.0*len(np.where(Mcut==3)[0])) / len(s) >= alpha:
i = np.where(Mcut==3)[0]
i = i+s[0]
a = np.median(pow_delta[i])
delta_med.append((t[sc],a))
df = pd.DataFrame(columns=['time', 'pow'], data=delta_med)
# generate figure
# show brainstate
plt.ion()
plt.figure(figsize=(10, 4))
axes_brs = plt.axes([0.1, 0.85, 0.8, 0.1])
cmap = plt.cm.jet
my_map = cmap.from_list('brs', [[0, 0, 0], [0, 1, 1], [0.6, 0, 1], [0.8, 0.8, 0.8]], 4)
tmp = axes_brs.pcolorfast(t, [0, 1], np.array([M]), vmin=0, vmax=3)
tmp.set_cmap(my_map)
axes_brs.axis('tight')
axes_brs.axes.get_xaxis().set_visible(False)
axes_brs.axes.get_yaxis().set_visible(False)
axes_brs.spines["top"].set_visible(False)
axes_brs.spines["right"].set_visible(False)
axes_brs.spines["bottom"].set_visible(False)
axes_brs.spines["left"].set_visible(False)
# plot delta power as function of time
c = 1000**2
axes_tdelta = plt.axes([0.1, 0.55, 0.8, 0.2], sharex=axes_brs)
plt.plot(t, pow_delta/c, 'k')
box_off(axes_tdelta)
axes_tdelta.axes.get_xaxis().set_visible(False)
axes_tdelta.spines["bottom"].set_visible(False)
plt.ylabel('SWA (mV$\mathrm{^2}$)')
# plot delta power medians
axes_delta = plt.axes([0.1, 0.12, 0.8, 0.35], sharex=axes_brs)
for (s,delta) in delta_med:
plt.plot(s, delta/c, 'ko')
print(t)
plt.xlim((t[0], t[-1]))
box_off(axes_delta)
plt.xlabel('Time (s)')
plt.ylabel('NREM SWA (mV$\mathrm{^2}$)')
if swa_yrange == []:
ymax = df['pow'].max()/c
plt.ylim([0, ymax+0.1*ymax])
else:
plt.ylim(swa_yrange)
plt.show()
return df
def laser_triggered_eeg(ppath, name, pre, post, f_max, pnorm=2, pplot=False, psave=False, tstart=0, tend=-1,
peeg2=False, vm=2.5, prune_trials=True, mu=[10, 200], trig_state=0, harmcs=0, iplt_level=1):
"""
calculate laser triggered, averaged EEG and EMG spectrum
:param ppath: base folder containing mouse recordings
:param name: recording
:param pre: time before laser
:param post: time after laser
:param f_max: calculate/plot frequencies up to frequency f_max
:param pnorm: normalization,
pnorm = 0, no normalization
pnorm = 1, normalize each frequency band by its average power
pnorm = 2, normalize each frequency band by the average power
during the preceding baseline period
:param vm: float to set saturation level of colormap
:param pplot: plot figure yes=True, no=False
:param psave: save the figure, yes=True, no = False
:param tstart: float, starting time point. Only lasers trials after tstart will be considered
:param tend: float, only laser trials up to tend will be considered; if tend==-1, use whole recording
:param peeg2: if True, use EEG channel 2
:param prune_trials: if True, throw out trials with EEG or EMG artifacts
:param mu: tuple; range used for EMG amplitude calculation
:param trig_state: int; if > 0, only use trials where brain is at laser onset in brainstate trig_state
1=REM, 2=Wake, 3=NREM
:param harmcs: if >0, interpolate all frequencies corresponding to multiples of harmcs by the average power
of the two neighboring frequencies.
:param iplt_level: options - 1 or 2. If 1 only take one neighboring frequency above and below the harmonic;
if 2, take 2 neighbors above and below, respectively
"""
def _interpolate_harmonics(SP, freq, f_max, harmcs, iplt_level):
df = freq[2]-freq[1]
for h in np.arange(harmcs, f_max, harmcs):
i = np.argmin(np.abs(freq - h))
if np.abs(freq[i] - h) < df and h != 60:
if iplt_level == 2:
SP[i,:] = (SP[i-2:i,:] + SP[i+1:i+3,:]).mean(axis=0) * 0.5
else:
SP[i,:] = (SP[i-1,:] + SP[i+1,:]) * 0.5
return SP
SR = get_snr(ppath, name)
NBIN = np.round(2.5*SR)
lsr = load_laser(ppath, name)
idxs, idxe = laser_start_end(lsr)
laser_dur = np.mean((idxe-idxs)/SR)
print('%s: Average laser duration: %f; Number of trials %d' % (name, laser_dur, len(idxs)))
# downsample EEG time to spectrogram time
idxs = [int(i/NBIN) for i in idxs]
idxe = [int(i/NBIN) for i in idxe]
#load EEG and EMG
P = so.loadmat(os.path.join(ppath, name, 'sp_' + name + '.mat'))
Q = so.loadmat(os.path.join(ppath, name, 'msp_' + name + '.mat'))
if not peeg2:
SPEEG = np.squeeze(P['SP'])
else:
SPEEG = np.squeeze(P['SP2'])
SPEMG = np.squeeze(Q['mSP'])
freq = np.squeeze(P['freq'])
t = np.squeeze(P['t'])
dt = float(np.squeeze(P['dt']))
ifreq = np.where(freq<=f_max)[0]
ipre = int(np.round(pre/dt))
ipost = int(np.round(post/dt))
speeg_mean = SPEEG.mean(axis=1)
spemg_mean = SPEMG.mean(axis=1)
# interpolate frequencies corresponding to harmonics of $harmcs
if harmcs > 0:
SPEEG = _interpolate_harmonics(SPEEG, freq, f_max, harmcs)
SPEMG = _interpolate_harmonics(SPEMG, freq, f_max, harmcs)
if tend > -1:
i = np.where(( | np.array(idxs) | numpy.array |
import numpy as np
import matplotlib.pyplot as plt
from math import cos, sin, tan, pi
import math
import time
class DHparam:
"""DHパラメータ"""
def __init__(self, alpha, a, d, theta):
self.alpha = alpha
self.a = a
self.d = d
self.theta = theta
class HomogeneousTransformationMatrix:
"""同次変換行列"""
def __init__(self, DHparam=None, M=None):
self.update(DHparam, M)
return
def update(self, p, M):
"""情報を更新"""
if M is not None:
self.t = M # 同次変換行列
else:
self.t = np.array([
[cos(p.theta), -sin(p.theta), 0, p.a],
[sin(p.theta)*cos(p.alpha), cos(p.theta)*cos(p.alpha), -sin(p.alpha), -p.d*sin(p.alpha)],
[sin(p.theta)*sin(p.alpha), cos(p.theta)*sin(p.alpha), cos(p.alpha), p.d*cos(p.alpha)],
[0, 0, 0, 1],
]) # 同次変換行列
self.o = self.t[0:3, 3:4]
self.R = self.t[0:3, 0:3]
self.rx = self.t[0:3, 0:1]
self.ry = self.t[0:3, 1:2]
self.rz = self.t[0:3, 2:3]
return
def __mul__(self, other):
M = self.t @ other.t
return HomogeneousTransformationMatrix(DHparam=None, M=M)
# # H~クラスのテスト
# A = np.array([
# [1, 2, 3, 4],
# [5, 6, 7, 8],
# [9, 10, 11, 12],
# [13, 14, 15, 16],
# ])
# B = A + 1
# print(A @ B)
# A_ = HomogeneousTransformationMatrix(DHparam=None, M=A)
# B_ = HomogeneousTransformationMatrix(DHparam=None, M=B)
# C_ = A_ * B_
# print(C_.t)
# パラメータ
L = 278e-3
h = 64e-3
H = 1104e-3
L0 = 270.35e-3
L1 = 69e-3
L2 = 364.35e-3
L3 = 69e-3
L4 = 374.29e-3
L5 = 10e-3
L6 = 368.3e-3
q_neutral = np.array([[0, -31, 0, 43, 0, 72, 0]]).T * pi/180 # ニュートラルの姿勢
qr = q_neutral # 右手の関節角度ベクトル
ql = q_neutral # 左手の関節角度ベクトル
DHparams_r = [
DHparam(0, 0, 0, qr[0, 0]),
DHparam(-pi/2, L1, 0, qr[1, 0]+pi/2),
DHparam(pi/2, 0, L2, qr[2, 0]),
DHparam(-pi/2, L3, 0, qr[3, 0]),
DHparam(pi/2, 0, L4, qr[4, 0]),
DHparam(-pi/2, L5, 0, qr[5, 0]),
DHparam(pi/2, 0, 0, qr[6, 0]),
]
DHparams_l = [
DHparam(0, 0, 0, ql[0, 0]),
DHparam(-pi/2, L1, 0, ql[1, 0]+pi/2),
DHparam(pi/2, 0, L2, ql[2, 0]),
DHparam(-pi/2, L3, 0, ql[3, 0]),
DHparam(pi/2, 0, L4, ql[4, 0]),
DHparam(-pi/2, L5, 0, ql[5, 0]),
DHparam(pi/2, 0, 0, ql[6, 0]),
]
# 制御点のローカル座標
r_bar_1 = [
np.array([[0, L1/2, -L0/2, 1]]).T,
np.array([[0, -L1/2, -L0/2, 1]]).T,
np.array([[L1/2, 0, -L0/2, 1]]).T,
np.array([[-L1/2, 0, -L0/2, 1]]).T,
] # 1座標系からみた制御点位置
r_bar_2 = [
np.array([[0, 0, L3/2, 1]]).T,
np.array([[0, 0, -L3/2, 1]]).T,
]
r_bar_3 = [
np.array([[0, L3/2, -L2*2/3, 1]]).T,
np.array([[0, -L3/2, -L2*2/3, 1]]).T,
np.array([[L3/2, 0, -L2*2/3, 1]]).T,
np.array([[-L3/2, 0, -L2*2/3, 1]]).T,
np.array([[0, L3/2, -L2*1/3, 1]]).T,
np.array([[0, -L3/2, -L2*1/3, 1]]).T,
np.array([[L3/2, 0, -L2*1/3, 1]]).T,
np.array([[-L3/2, 0, -L2*1/3, 1]]).T,
]
r_bar_4 = [
np.array([[0, 0, L3/2, 1]]).T,
np.array([[0, 0, -L3/2, 1]]).T,
]
r_bar_5 = [
| np.array([[0, L5/2, -L4/2, 1]]) | numpy.array |
import math
import numpy as np
import sys
resolutionHor = 256
resolutionVert = 256
scale = 20
# fill cells for cell noise
cells0 = np.random.random_sample((scale , scale , scale , 3))
cells1 = np.random.random_sample((scale*2, scale*2, scale*2, 3))
cells2 = np.random.random_sample((scale*4, scale*4, scale*4, 3))
cells3 = np.random.random_sample((scale*8, scale*8, scale*8, 3))
# create 3d image
image = np.empty((resolutionHor, resolutionHor, resolutionVert, 4))
sys.stdout.write('slice 0/' + str(resolutionVert))
for x in range(resolutionHor):
for y in range(resolutionHor):
for z in range(resolutionVert):
refpos0 = ((np.array([x, y, z]) + 0.5) / resolutionHor) * scale
refpos1 = ((np.array([x, y, z]) + 0.5) / resolutionHor) * scale*2
refpos2 = ((np.array([x, y, z]) + 0.5) / resolutionHor) * scale*4
refpos3 = ((np.array([x, y, z]) + 0.5) / resolutionHor) * scale*8
posi0 = np.floor(refpos0)
posi1 = np.floor(refpos1)
posi2 = | np.floor(refpos2) | numpy.floor |
import logging
import calendar
import csv
import datetime
import logging
import os
import numpy as np
import pandas as pd
from mswh.tools.unit_converters import UnitConv
log = logging.getLogger(__name__)
class SourceAndSink(object):
"""Generates timeseries that are inputs to the simulation
model and are known prior to the simulation, such as
outdoor air temperature and end use load profiles.
Parameters:
input_dfs: a dict of pd dfs
Dictionary of input dataframes
as read in from the input db by the :func:`Sql <Sql>` class
(see example in :func:`test_source_and_sink.SourceAndSinkTests.setUp <test_source_and_sink.SourceAndSinkTests.setUp>`)
random_state: numpy random state object or an integer
numpy random state object : if there is a need
to maintain the same random seed throughout the
analysis.
integer : a new random state object gets
instanteated at init
log_level: None or python logger logging level,
Default: logging.DEBUG
This applies for a subset of the class functionality, mostly
used to deprecate logger messages for certain calculations.
For Example: log_level = logging.ERROR will only throw error
messages and ignore INFO, DEBUG and WARNING.
"""
def __init__(
self, input_dfs=None, random_state=123, log_level=logging.DEBUG
):
# log level (e.g. only partial functionality of the class
# is being used and one does not desire to see all infos)
self.log_level = log_level
logging.getLogger().setLevel(log_level)
self.data = input_dfs
# define the random state object which enbles random draw
# repeatability
if isinstance(random_state, int):
msg = (
"The user did not provide a numpy random state "
"object. Initiating one with a provided or default"
" seed value = {}."
)
log.info(msg.format(random_state))
self.random_state = np.random.RandomState(random_state)
else:
self.random_state = random_state
def irradiation_and_water_main(
self,
climate_zone,
collector_tilt="latitude",
tilt_standard_deviation=None,
collector_azimuth=0.0,
azimuth_standard_deviation=None,
location_ground_reflectance=0.16,
solar_constant_Wm2=1367.0,
method="isotropic diffuse",
weather_data_source="cec",
single_row_with_arrays=False,
):
"""Calculates the hourly total incident radiation on a tilted surface
for any climate zone in California. If weather data from the provided
database are passed as `input_dfs`, the user can specify a single
climate.
Two separate methods are available for use, with all equations
(along with the equation numbers provided in comments) as provided in
<NAME> and <NAME>, Solar engineering of thermal
processes, 3rd ed. Hoboken, N.J: Wiley, 2006.
Parameters:
climate_zone: string
String of two digits to indicate the CEC climate zone
being analyzed ('01' to '16').
collector_azimuth: float, default: 0.
The deviation of the projection on a horizontal
plane of the normal to the collector surface from
the local meridian, in degrees. Allowable values
are between +/- 180 degrees (inclusive). 0 degrees
corresponds to due south, east is negative, and west
is positive. Default value is 0 degrees (due south).
azimuth_standard_deviation: float, default: 'None'
Final collector azimuth is a value drawn using a normal
distribution around the collector_azimuth value
with a azimuth_standard_deviation standard deviation.
If set to 'None' the final collector azimuth
equals collector_azimuth
collector_tilt: float, default: 'latitude'
The angle between the plane of the collector and the
horizontal, in degrees. Allowable values are between
0 and 180 degrees (inclusive), and values greater than
90 degrees mean that the surface has a downward-facing
component. If a default flag is left unchanged, the code
will assign latitude value to the tilt as a good
approximation of a design collector or PV tilt.
tilt_standard_deviation: float, default: 'None'
Final collector tilt is a value drawn using a normal
distribution around the collector_tilt value
with a tilt_standard_deviation standard deviation.
If set to 'None' the final collector tilt
equals collector_tilt
location_ground_reflectance: float, default: 0.16
The degree of ground reflectance. Allowable
values are 0-1 (inclusive), with 0 meaning
no reflectance and 1 meaning very high
reflectance. For reference, fresh snow has
a high ground reflectance of ~ 0.7. Default
value is 0.16, which is the annual average surface
albedo averaged across the 16 CEC climate zones.
method: string, default: 'HDKR anisotropic sky'
Calculation method to use for estimating the total irradiance
on the tilted collector surface. See notes below. Default
value is 'HDKR anisotropic sky.'
solar_constant_Wm2: float, default: 1367.
Energy from the sun per unit time received on a unit
area of surface perpendicular to the direction of
propagation of the radiation at mean earth-sun distance
outside the atmosphere. Default value is 1367 W/m^2.
weather_data_source: string, default: 'cec'
The type of weather data being used to analyze the
climate zone for solar insolation. Allowable values
are 'cec' and 'tmy3.' Default value is 'cec.'
single_row_with_arrays : boolean
A flag to reformat the resulting dataframe in a row
of data where each resulting 8760 is stored as an
array
Returns:
data: pd df
Weather data frame with appended columns:
'global_tilt_radiation_Wm2', 'water_main_t_F',
'water_main_t_C', 'dry_bulb_C', 'wet_bulb_C', 'Tilt',
'Azimuth']
Notes:
The user can select one of two methods to use for
this calculation:
1) 'isotropic diffuse':
This model was derived by <NAME> Jordan (1963).
All diffuse radiation is assumed to be isotropic.
It is the simpler and more conservative model,
and it has been widely used.
2) 'HDKR anisotropic sky':
This model combined methods from Hay and Davies (1980),
Klucher (1979), and Reindl, et al. (1990).
Diffuse radiation in this model is represented in two
parts: isotropic and circumsolar. The model also accounts
for horizon brightening.
This is also a simple model, but it has been found to be
slightly more accurate (and less conservative) than the
'isotropic diffuse' model. For collectors tilted toward
the equator, this model is suggested.
"""
# Read in CEC weather data
# Ensure climate_zone is a string and has a leading '0,' if needed
climate_zone = str(climate_zone)
if len(climate_zone) == 1:
climate_zone = "0" + climate_zone
# There are only 16 climate zones in CA, so ensure a valid zone
# is provided.
try:
climate_zone_int = int(climate_zone)
except:
msg = (
"Climate zone value ({}) is not a number. Please"
" ensure the climate zone is a number from 1-16, represented"
" as a string."
)
log.error(msg.format(climate_zone))
raise ValueError
if (climate_zone_int > 16) | (climate_zone_int < 0):
msg = (
"Climate zone in CA must be a number from 1-16."
" Further available climate zone codes are: 0 "
" for Banja Luka, BIH."
)
log.error(msg)
raise ValueError
# draw azimuth value from a distribution if standard
# deviation provided
if azimuth_standard_deviation:
azimuth_mean = collector_azimuth
collector_azimuth = self.random_state.normal(
azimuth_mean, azimuth_standard_deviation
)
# Ensure collector_azimuth is between -180 (due east) and
# +180 (due west)
if (collector_azimuth > 180.0) | (collector_azimuth < -180.0):
msg = (
"Collector azimuth angle must be a number between"
" -180 degrees (due east) and +180 degrees (due west)."
)
log.error(msg)
raise ValueError
# Ensure location_ground_reflectance is between 0 and 1.
if (location_ground_reflectance > 1.0) | (
location_ground_reflectance < 0.0
):
msg = (
"The annual average location ground reflectance must"
" be a number between 0. (no reflectance) and 1 (perfect"
" reflectance)."
)
log.error(msg)
raise ValueError
# Ensure the provided solar constant is reasonable
if (solar_constant_Wm2 > 1450.0) | (solar_constant_Wm2 < 1300.0):
msg = (
"The accepted solar constant is near 1367. W/m^2."
" Please select a reasonable solar constant value that is"
" between 1300. and 1450. W/m^2."
)
log.error(msg)
raise ValueError
# Ensure selected method type is valid
if (method != "isotropic diffuse") & (
method != "HDKR anisotropic sky"
):
msg = (
"This model only calculated results for two models:"
" 'isotropic diffuse' and 'HDKR anisotropic sky'."
)
log.error(msg)
raise ValueError
# Read in header data to get latitude and longitude of given
# climate zone
if weather_data_source == "cec":
key = "CTZ" + climate_zone + "S13b"
header = pd.DataFrame(data=self.data[key].iloc[:20, :2])
header_data = pd.Series(
data=header.iloc[:, 1].values, index=header.iloc[:, 0]
)
# latitude in degrees, north = positive
latitude = float(header_data["Latitude"])
# longitude in degrees, west = positive
longitude = abs(float(header_data["Longitude"]))
elif weather_data_source == "tmy3":
# Map CEC climate zone to proper tmy3 weather file
climate_zone_to_tmy3 = {
# California, USA
"01": "725945",
"02": "724957",
"03": "724930",
"04": "724945",
"05": "723940",
"06": "722970",
"07": "722900",
"08": "722976",
"09": "722880",
"10": "722869",
"11": "725910",
"12": "724830",
"13": "723890",
"14": "723820",
"15": "722868",
"16": "725845",
# Banja Luka, BIH
"00": "145420",
}
key = climate_zone_to_tmy3[climate_zone] + "TY"
# latitude in degrees, north = positive
latitude = float(self.data[key].iloc[0, 4])
# longitude in degrees, west = positive
longitude = abs(float(self.data[key].iloc[0, 5]))
# set the tilt to latitude if no custom tilt got provided
if collector_tilt == "latitude":
collector_tilt = latitude
# check tilt data type
elif not isinstance(collector_tilt, float):
msg = (
"Collector tilt value ({}) is neither a float nor"
" 'latitude'. Please use an allowed value."
)
log.error(msg.format(collector_tilt))
raise ValueError
# draw tilt value from a distribution if standard deviation provided
if tilt_standard_deviation:
tilt_mean = collector_tilt
collector_tilt = self.random_state.normal(
tilt_mean, tilt_standard_deviation
)
# Read in actual weather data for the given climate zone
if weather_data_source == "cec":
key = "CTZ" + climate_zone + "S13b"
solar_data = pd.DataFrame(
data=self.data[key].iloc[26:, :].values,
columns=self.data[key].iloc[25, :],
)
solar_data.columns = [x.lower() for x in solar_data.columns]
# deal with data formats as needed
solar_data = solar_data.astype(float)
solar_data[solar_data.columns[:3]] = solar_data[
solar_data.columns[:3]
].astype(int)
# Rename solar columns
solar_data.rename(
columns={
"global horizontal radiation": "global_horizontal_radiation_Wm2",
"direct normal radiation": "direct_normal_radiation_Wm2",
"diffuse horiz radiation": "diffuse_horizontal_radiation_Wm2",
},
inplace=True,
)
# Convert solar units from Btu/hr/ft^2 to W/m^2
solar_data.global_horizontal_radiation_Wm2 *= 3.15459075
solar_data.direct_normal_radiation_Wm2 *= 3.15459075
solar_data.diffuse_horizontal_radiation_Wm2 *= 3.15459075
solar_data["climate_zone"] = climate_zone
# The hour data from the CEC is for the end of the hour;
# we're setting it to be the start of the hour
solar_data.hour -= 1
elif weather_data_source == "tmy3":
solar_data = self.data[key].iloc[2:, :]
solar_data = solar_data.apply(pd.to_numeric, errors="ignore")
solar_data.columns = self.data[key].iloc[1, :]
solar_data.columns = [x.lower() for x in solar_data.columns]
# Rename solar columns
solar_data.rename(
columns={
"etr (w/m^2)": "extraterrestrial_horizontal_radiation_Wm2",
"etrn (w/m^2)": "extraterrestrial_normal_radiation_Wm2",
"ghi (w/m^2)": "global_horizontal_radiation_Wm2",
"dni (w/m^2)": "direct_normal_radiation_Wm2",
"dhi (w/m^2)": "diffuse_horizontal_radiation_Wm2",
"alb (unitless)": "surface_albedo",
},
inplace=True,
)
solar_data["month"] = solar_data.apply(
lambda x: int(x["date (mm/dd/yyyy)"][:2]), axis=1
)
solar_data["day"] = solar_data.apply(
lambda x: int(x["date (mm/dd/yyyy)"][3:5]), axis=1
)
solar_data["hour"] = solar_data.apply(
lambda x: int(x["time (hh:mm)"][:2]) - 1, axis=1
)
# The TMY3 data contain surface albedo values that can be used
# Ensure missing values (coded as -9900) are replaced with the
# average of the available data
solar_data.surface_albedo = np.where(
solar_data.surface_albedo == -9900.0,
np.nan,
solar_data.surface_albedo,
)
solar_data.surface_albedo = np.where(
np.isnan(solar_data.surface_albedo),
solar_data.surface_albedo.mean(),
solar_data.surface_albedo,
)
location_ground_reflectance = solar_data.surface_albedo.values
solar_data["day_number_of_year"] = solar_data.apply(
lambda x: datetime.datetime(2018, x.month, x.day)
.timetuple()
.tm_yday,
axis=1,
)
solar_data = self._add_season_column(solar_data)
# Calculate solar time:
# Solar time - standard time [minutes]= 4 *
# (longitude_standard - longitude_location) + E
# where: longitude_standard = 15 * (PST-GMT),
# and PST-GMT is always -8 hours
# Calculate E (equation of time, in minutes)
B = (
(solar_data.day_number_of_year - 1) * 360.0 / 365.0
) # Equation 1.4.2
E_minutes = 229.2 * (
0.000075
+ (0.001868 * np.cos(B))
- (0.032077 * np.sin(B))
- (0.014615 * np.cos(2 * B))
- (0.04089 * np.sin(2 * B))
) # Equation 1.5.3
# REMEMBER: longitudes are in degrees West, meaning they should
# both be positive here for California!
minutes_to_add = (4.0 * ((15.0 * 8.0) - longitude)) + E_minutes
solar_time = solar_data.hour + minutes_to_add / 60.0 # in hours
# Calculate the hour angle
# hour_angle = 15 degrees per hour away from solar noon (12),
# with morning being negative
hour_angle_start = 15.0 * (solar_time - 12.0)
hour_angle_end = 15.0 * (solar_time + 1.0 - 12.0)
# Calculate the declination angle for the day (declination_angle)
declination_angle = (180.0 / np.pi) * (
0.006918
- (0.399912 * np.cos(np.radians(B)))
+ (0.070257 * np.sin(np.radians(B)))
- (0.006758 * np.cos(2 * np.radians(B)))
+ (0.000907 * np.sin(2 * np.radians(B)))
- (0.002697 * np.cos(3 * np.radians(B)))
+ (0.001480 * np.sin(3 * np.radians(B)))
) # Equation 1.6.1b
# Calculate the ratio of beam radiation to that on a horizontal
# surface for the collector, averaged over the hour of consideration
# (to avoid mathematical issues that can arise for hours in which
# sunrise or sunset occurs)
R_b_a = (
(
(
(
np.sin(np.radians(declination_angle))
* np.sin(np.radians(latitude))
* np.cos(np.radians(collector_tilt))
)
- (
np.sin(np.radians(declination_angle))
* np.cos(np.radians(latitude))
* np.sin(np.radians(collector_tilt))
* np.cos(np.radians(collector_azimuth))
)
)
* np.radians(hour_angle_end - hour_angle_start)
)
+ (
(
(
np.cos(np.radians(declination_angle))
* np.cos(np.radians(latitude))
* np.cos(np.radians(collector_tilt))
)
+ (
np.cos(np.radians(declination_angle))
* np.sin(np.radians(latitude))
* np.sin(np.radians(collector_tilt))
* np.cos(np.radians(collector_azimuth))
)
)
* (
np.sin(np.radians(hour_angle_end))
- np.sin(np.radians(hour_angle_start))
)
)
- (
np.cos(np.radians(declination_angle))
* np.sin(np.radians(collector_tilt))
* np.sin(np.radians(collector_azimuth))
* (
np.cos(np.radians(hour_angle_end))
- np.cos(np.radians(hour_angle_start))
)
)
)
R_b_b = (
(
np.cos(np.radians(latitude))
* np.cos(np.radians(declination_angle))
)
* (
np.sin(np.radians(hour_angle_end))
- np.sin(np.radians(hour_angle_start))
)
) + (
(
np.sin(np.radians(latitude))
* np.sin(np.radians(declination_angle))
)
* (np.radians(hour_angle_end - hour_angle_start))
)
R_b_ave = R_b_a / R_b_b # Equation 2.14.6
# Calculate horizontal radiation in absense of atmosphere
# (Equation 1.10.4, [J/m^2])
if weather_data_source == "cec":
extraterrestrial_horizontal_radiation_Jm2 = (
12.0
* 3600.0
/ np.pi
* solar_constant_Wm2
* (
1.0
+ 0.033
* np.cos(360.0 * solar_data.day_number_of_year / 365.0)
)
* (
(
np.cos(np.radians(latitude))
* np.cos(np.radians(declination_angle))
* (
np.sin(np.radians(hour_angle_end))
- np.sin(np.radians(hour_angle_start))
)
)
+ (
np.pi
/ 180.0
* (hour_angle_end - hour_angle_start)
* np.sin(np.radians(latitude))
* np.sin(np.radians(declination_angle))
)
)
)
# Convert to W/m^2 and ensure the values aren't less than 0.
solar_data["extraterrestrial_horizontal_radiation_Wm2"] = (
extraterrestrial_horizontal_radiation_Jm2 * 0.000277777778
)
solar_data.extraterrestrial_horizontal_radiation_Wm2 = np.where(
solar_data.extraterrestrial_horizontal_radiation_Wm2 < 0.0,
0.0,
solar_data.extraterrestrial_horizontal_radiation_Wm2,
)
# Calculate beam radiation on a horizontal plane
solar_data["beam_horizontal_radiation_Wm2"] = (
solar_data.global_horizontal_radiation_Wm2
- solar_data.diffuse_horizontal_radiation_Wm2
)
# Calculate total radiation on a tilted surface using the isotropic
# diffuse model.
if method == "isotropic diffuse":
solar_data["global_tilt_radiation_Wm2"] = (
(solar_data.beam_horizontal_radiation_Wm2 * R_b_ave)
+ (
solar_data.diffuse_horizontal_radiation_Wm2
* ((1 + np.cos(np.radians(collector_tilt))) / 2.0)
)
+ (
solar_data.global_horizontal_radiation_Wm2
* location_ground_reflectance
* ((1 - np.cos(np.radians(collector_tilt))) / 2.0)
)
)
# Equation 2.15.1
elif method == "HDKR anisotropic sky":
# Calculate the anisotropy index
anisotropy_index = (
solar_data.beam_horizontal_radiation_Wm2
/ solar_data.extraterrestrial_horizontal_radiation_Wm2
)
# Equation 2.16.3
# Calculate the modulating factor, f
f = (
solar_data.beam_horizontal_radiation_Wm2
/ solar_data.global_horizontal_radiation_Wm2
) ** 0.5
# Equation 2.16.6
solar_data["global_tilt_radiation_Wm2"] = (
(
(
solar_data.beam_horizontal_radiation_Wm2
+ (
solar_data.diffuse_horizontal_radiation_Wm2
* anisotropy_index
)
)
* R_b_ave
)
+ (
solar_data.diffuse_horizontal_radiation_Wm2
* (1 - anisotropy_index)
* ((1 + np.cos(np.radians(collector_tilt))) / 2.0)
* (
1
+ (f * (np.sin(np.radians(collector_tilt / 2.0)) ** 3))
)
)
+ (
solar_data.global_horizontal_radiation_Wm2
* location_ground_reflectance
* ((1 - np.cos(np.radians(collector_tilt))) / 2.0)
)
)
# Equation 2.16.7
# You can't get negative energy collection
# It's also probably unreasonable to expect > 2000 W/m^2
# In comparisons with PVWatts results, when our model predicts
# > 2000 W/m^2, it is due to a mathematical
# anomaly where the actual result should be closer to 0.
solar_data.global_tilt_radiation_Wm2 = np.where(
(solar_data.global_tilt_radiation_Wm2 < 0.0)
| (solar_data.global_tilt_radiation_Wm2 >= 2000.0),
0.0,
solar_data.global_tilt_radiation_Wm2,
)
# To avoid NaNs and other weird values, set the result to 0 if global
# and diffuse horizontal are both 0
solar_data.global_tilt_radiation_Wm2 = np.where(
(solar_data.global_horizontal_radiation_Wm2 == 0.0)
& (solar_data.diffuse_horizontal_radiation_Wm2 == 0.0),
0.0,
solar_data.global_tilt_radiation_Wm2,
)
# Read in water mains temperature data
# We only need one hour's worth of data for each month and location
# because the provided
# temperatures are equal for each hour of the day.
water_mains_data = self.data["Appendix_54B_Schedules_WaterMain"].iloc[
3:, 0:3
]
water_mains_data.columns = [
"climate_zone_water",
"month_abb",
"water_main_t_F",
]
# Fill the climate zone forward
# Only get water mains data for the climate zone we are analyzing
# for all climate zones is CA
if (climate_zone_int <= 16) and (climate_zone_int >= 1):
climate_zone_water_main = climate_zone
# for any additional climate zones of interest
elif climate_zone == "00":
climate_zone_water_main = "11"
water_mains_data = water_mains_data.fillna(method="ffill")
water_mains_data = water_mains_data.loc[
water_mains_data.climate_zone_water
== "WaterMainCZ" + climate_zone_water_main
]
# Convert calendar abbreviation to calendar number
water_mains_data["month_num"] = water_mains_data.apply(
lambda x: list(calendar.month_abbr).index(x.month_abb), axis=1
)
# Drop unused columns and merge with the weather data
data = pd.merge(
left=solar_data,
right=water_mains_data,
how="left",
left_on="month",
right_on="month_num",
)
# convert temperatures from F to C
data["water_main_t_C"] = UnitConv(data["water_main_t_F"]).degF_degC(
unit_in="degF"
)
if weather_data_source == "cec":
data["dry_bulb_C"] = UnitConv(data["dry bulb"]).degF_degC(
unit_in="degF"
)
data["wet_bulb_C"] = UnitConv(data["wet bulb"]).degF_degC(
unit_in="degF"
)
elif weather_data_source == "tmy3":
data["dry_bulb_C"] = data["dry-bulb (c)"]
# Derive wet bulb temperature from dry bulb temperature and
# relative humidity
data["wet_bulb_C"] = self._wet_bulb_approx(
data["dry_bulb_C"], data["rhum (%)"]
)
# add collector tilt value
data["Tilt"] = collector_tilt
data["Azimuth"] = collector_azimuth
data.drop(
columns=["climate_zone_water", "month_abb", "month_num"],
inplace=True,
)
if single_row_with_arrays:
data = self._pack_timeseries(data)
return data
@staticmethod
def _wet_bulb_approx(dry_bulb_C, rel_hum):
"""Converts dry bulb temperature to wet bulb by using an approximation
provided in this paper (<NAME>):
https://journals.ametsoc.org/doi/pdf/10.1175/JAMC-D-11-0143.1
The provided formula is designed for a pressure like at sea level
of 1013.25 hPa.
Parameters:
dry_bulb_C: pd df
Timeseries containing dry bulb temperature in Celsius [degC]
rel_hum: pd df
Timeseries containing relative Humidity in percent (0 - 100)
Returns:
wet_bulb_C: pd df
Timeseries containing wet bulb temperature in Celcius [degC]
"""
# Calculate wet bulb temperature
wet_bulb_C = (
dry_bulb_C
* np.arctan(0.151977 * np.power((rel_hum + 8.313659), 0.5))
+ np.arctan(dry_bulb_C + rel_hum)
- np.arctan(rel_hum - 1.676331)
+ 0.00391838
* np.power(rel_hum, 1.5)
* | np.arctan(0.023101 * rel_hum) | numpy.arctan |
# Copyright Contributors to the Pyro project.
# SPDX-License-Identifier: Apache-2.0
# lightly adapted from https://github.com/pyro-ppl/pyro/blob/dev/tests/nn/
import numpy as onp
from numpy.testing import assert_allclose, assert_array_equal
import pytest
from jax import jacfwd, random, vmap
import jax.numpy as np
from jax.experimental.stax import serial
from numpyro.contrib.nn import AutoregressiveNN, MaskedDense
from numpyro.contrib.nn.auto_reg_nn import create_mask
from numpyro.contrib.nn.block_neural_arn import BlockNeuralAutoregressiveNN
from numpyro.distributions.util import matrix_to_tril_vec
@pytest.mark.parametrize('input_dim', [5])
@pytest.mark.parametrize('param_dims', [[1], [1, 1], [2], [2, 3]])
@pytest.mark.parametrize('hidden_dims', [[8], [6, 7]])
@pytest.mark.parametrize('skip_connections', [True, False])
def test_auto_reg_nn(input_dim, hidden_dims, param_dims, skip_connections):
rng_key, rng_key_perm = random.split(random.PRNGKey(0))
perm = random.shuffle(rng_key_perm, onp.arange(input_dim))
arn_init, arn = AutoregressiveNN(input_dim, hidden_dims, param_dims=param_dims,
skip_connections=skip_connections, permutation=perm)
batch_size = 4
input_shape = (batch_size, input_dim)
_, init_params = arn_init(rng_key, input_shape)
output = arn(init_params, | onp.random.rand(*input_shape) | numpy.random.rand |
"""Molecular geometric feature representation based on numpy.
a loose collection of functions.
Modular functions to compute distance matrix, angles, coordinates, connectivity, etc.
Many functions are written for batches too. Ideally all functions are vectorized.
Note: All functions are supposed to work out of the box without any dependencies, i.e. do not depend on each other.
"""
import numpy as np
def coordinates_to_distancematrix(coord3d):
"""
Transform coordinates to distance matrix.
Will apply transformation on last dimension.
Changing of shape (...,N,3) -> (...,N,N)
Arg:
coord3d (np.array): Coordinates of shape (...,N,3) for cartesian coordinates (x,y,z)
and N the number of atoms or points. Coordinates are last dimension.
Returns:
np.array: distance matrix as numpy array with shape (...,N,N) where N is the number of atoms
"""
shape_3d = len(coord3d.shape)
a = np.expand_dims(coord3d, axis=shape_3d - 2)
b = np.expand_dims(coord3d, axis=shape_3d - 1)
c = b - a
d = np.sqrt(np.sum(np.square(c), axis=shape_3d))
return d
def invert_distance(d, nan=0, posinf=0, neginf=0):
"""
Invert distance array, e.g. distance matrix.
Inversion is done for all entries.
Keeping of shape (...,) -> (...,)
Args:
d (np.array): array of distance values of shape (...,)
nan (value): replacement for np.nan after division, default = 0
posinf (value): replacement for np.inf after division, default = 0
neginf (value): replacement for -np.inf after division, default = 0
Returns:
np.array: Inverted distance array as numpy array of identical shape (...,) and
replaces np.nan and np.inf with e.g. 0
"""
with np.errstate(divide='ignore', invalid='ignore'):
c = np.true_divide(1, d)
# c[c == np.inf] = 0
c = np.nan_to_num(c, nan=nan, posinf=posinf, neginf=neginf)
return c
def inversedistancematrix_to_coulombmatrix(dinv, proton_number):
"""
Calculate Coulombmatrix from inverse distance Matrix plus nuclear charges/proton number.
Transform shape as (...,N,N) + (...,N) -> (...,N,N)
Args:
dinv (np.array): Inverse distance matrix defined at last two axis.
Array of shape (...,N,N) with N number of atoms storing inverse distances.
proton_number (np.array): Nuclear charges given in last dimension.
Order must match entries in inverse distance matrix.
array of shape (...,N)
Returns:
np.array: Numpy array with Coulombmatrix at last two dimension (...,N,N).
Function multiplies Z_i*Z_j with 1/d_ij and set diagonal to 0.5*Z_ii^2.4
"""
shape_z = proton_number.shape
a = np.expand_dims(proton_number, axis=len(shape_z) - 1)
b = np.expand_dims(proton_number, axis=len(shape_z))
c = a * b
coul = dinv * c
indslie = np.arange(0, shape_z[-1])
coul[..., indslie, indslie] = np.power(proton_number, 2.4) * 0.5
return coul
def value_to_onehot(vals, compare):
"""
Convert array of values e.g. nuclear charge to one-hot representation thereof.
a dictionary of all possible values is required.
Expands shape from (...,) + (M,) -> (...,M)
Args:
vals (np.array): array of values to convert.
compare (np.array): 1D-numpy array with a list of possible values.
Returns:
np.array: a one-hot representation of vals input with expanded last dimension to match
the compare dictionary. Entries are 1.0 if vals == compare[i] and 0.0 else
"""
comp = np.array(compare, dtype=vals.dtype)
vals_shape = vals.shape
vals = np.expand_dims(vals, axis=-1)
comp = np.broadcast_to(comp, vals_shape + comp.shape) # shape (1,1,...,M)
out = np.array(vals == comp, dtype=np.float32)
return out
def coulombmatrix_to_inversedistance_proton(coulmat, unit_conversion=1):
"""Convert a coulomatrix back to inverse distancematrix + atomic number.
(...,N,N) -> (...,N,N) + (...,N)
Args:
coulmat (np.array): Full Coulombatrix of shape (...,N,N)
unit_conversion (float) : Whether to scale units for distance. Default is 1.
Returns:
tuple: [inv_dist,z]
- inv_dist(np.array): Inverse distance Matrix of shape (...,N,N)
- z(np.array): Atom Number corresponding diagonal as proton number.
"""
indslie = np.arange(0, coulmat.shape[-1])
z = coulmat[..., indslie, indslie]
z = np.power(2 * z, 1 / 2.4)
a = np.expand_dims(z, axis=len(z.shape) - 1)
b = np.expand_dims(z, axis=len(z.shape))
zz = a * b
c = coulmat / zz
c[..., indslie, indslie] = 0
c /= unit_conversion
z = np.array(np.round(z), dtype=np.int)
return c, z
def distance_to_gaussdistance(distance, bins=30, gauss_range=5.0, gauss_sigma=0.2):
"""Convert distance array to smooth one-hot representation using Gaussian functions.
Changes shape for gaussian distance (...,) -> (...,GBins)
The Default values match units in Angstroem.
Args:
distance (np.array): Array of distances of shape (...,)
bins (int): number of Bins to sample distance from, default = 30
gauss_range (value): maximum distance to be captured by bins, default = 5.0
gauss_sigma (value): sigma of the gaussian function, determining the width/sharpness, default = 0.2
Returns:
np.array: Numpy array of gaussian distance with expanded last axis (...,GBins)
"""
gamma = 1 / gauss_sigma / gauss_sigma * (-1) / 2
d_shape = distance.shape
edge_dist_grid = np.expand_dims(distance, axis=-1)
edge_gaus_bin = np.arange(0, bins, 1) / bins * gauss_range
edge_gaus_bin = np.broadcast_to(edge_gaus_bin, np.append(np.ones(len(d_shape), dtype=np.int32),
edge_gaus_bin.shape)) # shape (1,1,...,bins)
edge_gaus_bin = np.square(edge_dist_grid - edge_gaus_bin) * gamma # (N,M,...,1) - (1,1,...,bins)
edge_gaus_bin = np.exp(edge_gaus_bin)
return edge_gaus_bin
def sort_distmatrix(distance_matrix):
"""
Sort a flexible shaped distance matrix along last dimension.
Keeps shape (...,N,M) -> index (...,N,M) + sorted (...,N,M)
Args:
distance_matrix (np.array): Matrix of distances of shape (...,N,M)
Returns:
tuple: [sorting_index, sorted_distance]
- sorting_index (np.array): Indices of sorted last dimension entries. Shape (...,N,M)
- sorted_distance (np.array): Sorted distance Matrix, sorted at last dimension.
"""
sorting_index = np.argsort(distance_matrix, axis=-1)
sorted_distance = np.take_along_axis(distance_matrix, sorting_index, axis=-1)
return sorting_index, sorted_distance
def get_connectivity_from_inversedistancematrix(invdistmat, protons, radii_dict=None, k1=16.0, k2=4.0 / 3.0,
cutoff=0.85, force_bonds=True):
"""
Get connectivity table from inverse distance matrix defined at last dimensions (...,N,N) and
corresponding bond-radii.
Keeps shape with (...,N,N).
Covalent radii, from Pyykko and Atsumi, Che<NAME>. J. 15, 2009, 188-197.
Values for metals decreased by 10% according to <NAME>'s Sterimol implementation.
Partially based on code from <NAME>'s Sterimol script, which based this part on Grimme's D3 code
Args:
invdistmat (np.array): inverse distance matrix defined at last dimensions (...,N,N)
distances must be in Angstroem not in Bohr
protons (np.array): An array of atomic numbers matching the invdistmat (...,N),
for which the radii are to be computed.
radii_dict (np.array): covalent radii for each element. If default=None, stored values are used.
Otherwise array with covalent bonding radii.
example: np.array([0, 0.24, 0.46, 1.2, ...]) from {'H': 0.34, 'He': 0.46, 'Li': 1.2,
...}
k1 (value): default = 16
k2 (value): default = 4.0/3.0
cutoff (value): cutoff value to set values to Zero (no bond) default = 0.85
force_bonds (value): whether to force at least one bond in the bond table per atom (default = True)
Retruns:
np.array: Connectivity table with 1 for chemical bond and zero otherwise of shape (...,N,N) -> (...,N,N)
"""
# Dictionary of bond radii
# original_radii_dict = {'H': 0.34, 'He': 0.46, 'Li': 1.2, 'Be': 0.94, 'b': 0.77, 'C': 0.75, 'N': 0.71, 'O': 0.63,
# 'F': 0.64, 'Ne': 0.67, 'Na': 1.4, 'Mg': 1.25, 'Al': 1.13, 'Si': 1.04, 'P': 1.1, 'S': 1.02,
# 'Cl': 0.99, 'Ar': 0.96, 'K': 1.76, 'Ca': 1.54, 'Sc': 1.33, 'Ti': 1.22, 'V': 1.21,
# 'Cr': 1.1, 'Mn': 1.07, 'Fe': 1.04, 'Co': 1.0, 'Ni': 0.99, 'Cu': 1.01, 'Zn': 1.09,
# 'Ga': 1.12, 'Ge': 1.09, 'As': 1.15, 'Se': 1.1, 'Br': 1.14, 'Kr': 1.17, 'Rb': 1.89,
# 'Sr': 1.67, 'Y': 1.47, 'Zr': 1.39, 'Nb': 1.32, 'Mo': 1.24, 'Tc': 1.15, 'Ru': 1.13,
# 'Rh': 1.13, 'Pd': 1.19, 'Ag': 1.15, 'Cd': 1.23, 'In': 1.28, 'Sn': 1.26, 'Sb': 1.26,
# 'Te': 1.23, 'I': 1.32, 'Xe': 1.31, 'Cs': 2.09, 'Ba': 1.76, 'La': 1.62, 'Ce': 1.47,
# 'Pr': 1.58, 'Nd': 1.57, 'Pm': 1.56, 'Sm': 1.55, 'Eu': 1.51, 'Gd': 1.52, 'Tb': 1.51,
# 'Dy': 1.5, 'Ho': 1.49, 'Er': 1.49, 'Tm': 1.48, 'Yb': 1.53, 'Lu': 1.46, 'Hf': 1.37,
# 'Ta': 1.31, 'W': 1.23, 'Re': 1.18, 'Os': 1.16, 'Ir': 1.11, 'Pt': 1.12, 'Au': 1.13,
# 'Hg': 1.32, 'Tl': 1.3, 'Pb': 1.3, 'Bi': 1.36, 'Po': 1.31, 'At': 1.38, 'Rn': 1.42,
# 'Fr': 2.01, 'Ra': 1.81, 'Ac': 1.67, 'Th': 1.58, 'Pa': 1.52, 'U': 1.53, 'Np': 1.54,
# 'Pu': 1.55}
proton_raddi_dict = np.array(
[0, 0.34, 0.46, 1.2, 0.94, 0.77, 0.75, 0.71, 0.63, 0.64, 0.67, 1.4, 1.25, 1.13, 1.04, 1.1, 1.02, 0.99, 0.96,
1.76, 1.54, 1.33, 1.22, 1.21, 1.1, 1.07, 1.04, 1.0, 0.99, 1.01, 1.09, 1.12, 1.09, 1.15, 1.1, 1.14, 1.17, 1.89,
1.67, 1.47, 1.39, 1.32, 1.24, 1.15, 1.13, 1.13, 1.19, 1.15, 1.23, 1.28, 1.26, 1.26, 1.23, 1.32, 1.31, 2.09,
1.76, 1.62, 1.47, 1.58, 1.57, 1.56, 1.55, 1.51, 1.52, 1.51, 1.5, 1.49, 1.49, 1.48, 1.53, 1.46, 1.37, 1.31,
1.23, 1.18, 1.16, 1.11, 1.12, 1.13, 1.32, 1.3, 1.3, 1.36, 1.31, 1.38, 1.42, 2.01, 1.81, 1.67, 1.58, 1.52, 1.53,
1.54, 1.55])
if radii_dict is None:
radii_dict = proton_raddi_dict # index matches atom number
# Get Radii
protons = np.array(protons, dtype=np.int)
radii = radii_dict[protons]
# Calculate
shape_rad = radii.shape
r1 = np.expand_dims(radii, axis=len(shape_rad) - 1)
r2 = np.expand_dims(radii, axis=len(shape_rad))
rmat = r1 + r2
rmat = k2 * rmat
rr = rmat * invdistmat
damp = (1.0 + np.exp(-k1 * (rr - 1.0)))
damp = 1.0 / damp
if force_bonds: # Have at least one bond
maxvals = np.expand_dims(np.argmax(damp, axis=-1), axis=-1)
np.put_along_axis(damp, maxvals, 1, axis=-1)
# To make it symmetric transpose last two axis
damp = np.swapaxes(damp, -2, -1)
np.put_along_axis(damp, maxvals, 1, axis=-1)
damp = np.swapaxes(damp, -2, -1)
damp[damp < cutoff] = 0
bond_tab = np.round(damp)
return bond_tab
def get_indexmatrix(shape, flatten=False):
"""
Matrix of indices with a_ijk... = [i,j,k,..] for shape (N,M,...,len(shape)) with Indexlist being the last dimension.
Note: numpy indexing does not work this way but as indexlist per dimension
Args:
shape (list, int): list of target shape, e.g. (2,2)
flatten (bool): whether to flatten the output or keep inputshape, default=False
Returns:
np.array: Index array of shape (N,M,...,len(shape)) e.g. [[[0,0],[0,1]],[[1,0],[1,1]]]
"""
indarr = np.indices(shape)
re_order = np.append(np.arange(1, len(shape) + 1), 0)
indarr = indarr.transpose(re_order)
if flatten:
indarr = np.reshape(indarr, (np.prod(shape), len(shape)))
return indarr
def coordinates_from_distancematrix(distance, use_center=None, dim=3):
"""Compute list of coordinates from a distance matrix of shape (N,N).
Uses vectorized Alogrithm:
http://scripts.iucr.org/cgi-bin/paper?S0567739478000522
https://www.researchgate.net/publication/252396528_Stable_calculation_of_coordinates_from_distance_information
no check of positive semi-definite or possible k-dim >= 3 is done here
performs svd from numpy
may even wok for (...,N,N) but not tested
Args:
distance (np.array): distance matrix of shape (N,N) with Dij = abs(ri-rj)
use_center (int): which atom should be the center, dafault = None means center of mass
dim (int): the dimension of embedding, 3 is default
Return:
np.array: List of Atom coordinates [[x_1,x_2,x_3],[x_1,x_2,x_3],...]
"""
distance = np.array(distance)
dim_in = distance.shape[-1]
if use_center is None:
# Take Center of mass (slightly changed for vectorization assuming d_ii = 0)
di2 = np.square(distance)
di02 = 1 / 2 / dim_in / dim_in * (2 * dim_in * np.sum(di2, axis=-1) - np.sum(np.sum(di2, axis=-1), axis=-1))
mat_m = (np.expand_dims(di02, axis=-2) + | np.expand_dims(di02, axis=-1) | numpy.expand_dims |
"""
Many of these tests use the minimal test/data/gdc.bed file which has just
enough complexity to be useful in testing corner cases. When reading through
the tests, it's useful to have that file open to understand what's happening.
"""
import os
import metaseq
import multiprocessing
from metaseq.array_helpers import ArgumentError
import numpy as np
from nose.tools import assert_raises
from nose.plugins.skip import SkipTest
nan = np.nan
inf = np.inf
gs = {}
for kind in ['bed', 'bam', 'bigbed', 'bigwig']:
gs[kind] = metaseq.genomic_signal(metaseq.example_filename('gdc.%s' % kind), kind)
PROCESSES = int(os.environ.get("METASEQ_PROCESSES", multiprocessing.cpu_count()))
def test_tointerval():
assert metaseq.helpers.tointerval("chr2L:1-10[-]").strand == '-'
assert metaseq.helpers.tointerval("chr2L:1-10[+]").strand == '+'
assert metaseq.helpers.tointerval("chr2L:1-10").strand == '.'
def test_local_count():
def check(kind, coord, expected, stranded):
try:
result = gs[kind].local_count(coord, stranded=stranded)
except NotImplementedError:
raise SkipTest("Incompatible bx-python version for bigBed")
assert result == expected, (kind, coord, result)
for kind in ['bam', 'bigbed', 'bed']:
for coord, expected, stranded in (
('chr2L:1-80', 3, False), # easy case
('chr2L:1000-3000', 0, False), # above upper boundary
('chr2L:1-9', 0, False), # below lower boundary
('chr2L:71-73[-]', 2, False), # unstranded = 2
('chr2L:71-73[-]', 1, True), # stranded = 1
('chr2L:70-71', 2, False), # pathological corner case
# ('chr2L:75-76', 0, False), # pathological corner case
):
yield check, kind, coord, expected, stranded
def test_local_coverage_stranded():
def check(kind, coord, expected):
try:
result = gs[kind].local_coverage(coord)
except NotImplementedError:
raise SkipTest("Incompatible bx-python version for bigBed")
assert np.all(result[0] == expected[0]) and np.all(result[1] == expected[1]), (kind, coord, result)
for kind in ['bam', 'bigbed', 'bed', 'bigwig']:
for coord, expected in (
('chr2L:1-20[-]',
(
np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]),
| np.array([0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0.]) | numpy.array |
import numpy as np
from core_parallel.communicators import Communicators
from mpi4py import MPI
import scipy as sc
class LinearHelpers(Communicators):
def __init__(self):
Communicators.__init__(self)
def __next_alpha__(self, idx):
if idx + 1 < len(self.alphas) and self.time_intervals > 1:
idx += 1
return idx
def __get_v__(self, t_start):
v = np.zeros((self.rows_loc, self.cols_loc), dtype=complex)
shift = self.rank_row * self.cols_loc
# if we have spatial parallelization
if self.frac > 1:
for j in range(self.cols_loc):
for k in range(self.time_points):
v[:, j] += self.dt * self.Q[self.rank_subcol_alternating, k] * self.bpar(t_start + self.t[k] + (shift + j) * self.dt)
# case without spatial parallelization
else:
for i in range(self.Frac):
for j in range(self.cols_loc):
for k in range(self.time_points):
v[i * self.global_size_A:(i+1)*self.global_size_A, j] += self.dt * self.Q[i + self.Frac * self.rank_col, k] * self.bpar(t_start + self.t[k] + (shift + j) * self.dt)
return v
def __get_r__(self, v_loc):
r = 0
temp = 0
for j in range(self.cols_loc):
if self.rank_row == 0:
# with spatial parallelization
if self.frac is not 0:
temp = np.linalg.norm(v_loc[:, j] + self.u0_loc, np.infty)
# without spatial parallelization
else:
for i in range(self.Frac):
temp = max(temp, np.linalg.norm(v_loc[i * self.global_size_A:(i+1) * self.global_size_A, j] + self.u0_loc, np.infty))
else:
temp = np.linalg.norm(v_loc[:, j], np.infty)
r = max(r, temp)
if self.size > 1:
time_beg = MPI.Wtime()
temp = self.comm.allreduce(r, op=MPI.MAX)
self.communication_time += MPI.Wtime() - time_beg
return temp
else:
return r
# fft
def __get_fft__(self, w_loc, a):
if self.time_intervals == 1:
return w_loc, ['0']
g_loc = a ** (self.rank_row / self.time_intervals) / self.time_intervals * w_loc # scale
n = int(np.log2(self.time_intervals))
P = format(self.rank_row, 'b').zfill(n) # binary of the rank in string
R = P[::-1] # reversed binary in string, index that the proc will have after ifft
we = np.exp(-2 * np.pi * 1j / self.time_intervals)
# stages of butterfly
for k in range(n):
p = self.time_intervals // 2 ** (k + 1)
r = int(R, 2) % 2 ** (k + 1) - 2 ** k
scalar = we ** (r * p)
factor = 1
if P[k] == '1':
factor = -1
if scalar != 1: # multiply if the factor is != 1
g_loc *= scalar
# make a new string and an int from it, a proc to communicate with
comm_with = list(P)
if comm_with[k] == '1':
comm_with[k] = '0'
else:
comm_with[k] = '1'
comm_with = int(''.join(comm_with), 2)
# now communicate
time_beg = MPI.Wtime()
req = self.comm_row.isend(g_loc, dest=comm_with, tag=k)
gr = self.comm_row.recv(source=comm_with, tag=k)
req.Wait()
self.communication_time += MPI.Wtime() - time_beg
# glue the info
g_loc = gr + factor * g_loc
return g_loc, [R]
def __get_w__(self, a, v_loc, v1=None):
w_loc = v_loc.copy()
if v1 is not None:
# with spatial parallelization
if self.frac > 1:
w_loc[:, 0] = v1 + self.u0_loc - a * self.u_last_loc
# without spatial parallelization
else:
for i in range(self.Frac):
w_loc[i * self.global_size_A:(i+1) * self.global_size_A, 0] = self.u0_loc - a * self.u_last_loc
w_loc[:, 0] += v1
return w_loc
def __step1__(self, Zinv, g_loc):
h_loc = np.empty_like(g_loc, dtype=complex)
# case with spatial parallelization
if self.frac > 1:
for proc in range(self.size_subcol_alternating):
h_scaled = Zinv[proc, self.rank_subcol_alternating] * g_loc
time_beg = MPI.Wtime()
temp = self.comm_subcol_alternating.reduce(h_scaled, op=MPI.SUM, root=proc)
self.communication_time += MPI.Wtime() - time_beg
if proc == self.rank_subcol_alternating:
h_loc = temp.copy(order='C')
# case without spatial parallelization
else:
for proc in range(self.proc_col):
h_scaled = np.zeros_like(g_loc, dtype=complex, order='C')
for i in range(self.Frac):
for j in range(self.Frac):
h_scaled[i*self.global_size_A:(i+1)*self.global_size_A] += Zinv[i + proc * self.Frac, j + self.rank_col * self.Frac] * g_loc[j*self.global_size_A:(j+1)*self.global_size_A]
if self.size_col > 1:
time_beg = MPI.Wtime()
temp = self.comm_col.reduce(h_scaled, op=MPI.SUM, root=proc)
self.communication_time += MPI.Wtime() - time_beg
if proc == self.rank_col:
h_loc = temp.copy(order='C')
else:
return h_scaled
# self.comm.Barrier()
return h_loc
def __step2__(self, h_loc, D, x0, tol):
h1_loc = | np.empty_like(h_loc, dtype=complex, order='C') | numpy.empty_like |
# Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 (the "License").
# You may not use this file except in compliance with the License.
# A copy of the License is located at
# http://www.apache.org/licenses/LICENSE-2.0
# or in the "license" file accompanying this file. This file is distributed
# on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
# express or implied. See the License for the specific language governing
# permissions and limitations under the License.
"""Tests for individual operators"""
from __future__ import absolute_import
import unittest
import numpy as np
import numpy.testing as npt
from onnx import helper
from onnx_mxnet import backend as mxnet_backend
class TestLayers(unittest.TestCase):
"""Tests for different layers comparing output with numpy operators.
[WIP] More tests coming soon!"""
def _random_array(self, shape):
"""Generate random array according to input shape"""
return np.random.ranf(shape).astype("float32")
def test_abs(self):
"""Test for abs operator"""
node_def = helper.make_node("Abs", ["input1"], ["output"])
input1 = self._random_array([1, 1000])
output = mxnet_backend.run_node(node_def, [input1])[0]
npt.assert_almost_equal(output, np.abs(input1))
def test_add(self):
"""Test for add operator with/without broadcasting"""
node_def = helper.make_node("Add", ["input1", "input2"], ["output"], broadcast=1)
input1 = self._random_array([1, 1, 5, 5])
input2 = self._random_array([5])
output = mxnet_backend.run_node(node_def, [input1, input2])[0]
npt.assert_almost_equal(output, np.add(input1, input2))
node_def = helper.make_node("Add", ["input1", "input2"], ["output"])
input1 = self._random_array([1, 16, 16])
input2 = self._random_array([1, 16, 16])
output = mxnet_backend.run_node(node_def, [input1, input2])[0]
npt.assert_almost_equal(output, np.add(input1, input2))
def test_sum(self):
"""Test for sum operator"""
node_def = helper.make_node("Sum", ["input1", "input2"], ["output"])
input1 = self._random_array([1, 1, 16, 16])
input2 = self._random_array([1, 1, 16, 16])
output = mxnet_backend.run_node(node_def, [input1, input2])[0]
npt.assert_almost_equal(output, np.add(input1, input2))
def test_sub(self):
"""Test for sub operator with/without broadcasting"""
node_def = helper.make_node("Sub", ["input1", "input2"], ["output"], broadcast=1)
input1 = self._random_array([1, 1, 5, 5])
input2 = self._random_array([5])
output = mxnet_backend.run_node(node_def, [input1, input2])[0]
npt.assert_almost_equal(output, np.subtract(input1, input2))
node_def = helper.make_node("Sub", ["input1", "input2"], ["output"])
input1 = self._random_array([1, 1, 16, 16])
input2 = self._random_array([1, 1, 16, 16])
output = mxnet_backend.run_node(node_def, [input1, input2])[0]
npt.assert_almost_equal(output, np.subtract(input1, input2))
def test_mul(self):
"""Test for mul operator with/without broadcasting"""
node_def = helper.make_node("Mul", ["input1", "input2"], ["output"], broadcast=1)
input1 = self._random_array([1, 1, 5, 5])
input2 = self._random_array([5])
output = mxnet_backend.run_node(node_def, [input1, input2])[0]
npt.assert_almost_equal(output, np.multiply(input1, input2))
node_def = helper.make_node("Mul", ["input1", "input2"], ["output"])
input1 = self._random_array([1, 1, 16, 16])
input2 = self._random_array([1, 1, 16, 16])
output = mxnet_backend.run_node(node_def, [input1, input2])[0]
npt.assert_almost_equal(output, np.multiply(input1, input2))
def test_div(self):
"""Test for div operator with/without broadcasting"""
node_def = helper.make_node("Div", ["input1", "input2"], ["output"], broadcast=1)
input1 = self._random_array([1, 1, 5, 5])
input2 = self._random_array([5])
output = mxnet_backend.run_node(node_def, [input1, input2])[0]
npt.assert_almost_equal(output, np.divide(input1, input2))
node_def = helper.make_node("Div", ["input1", "input2"], ["output"])
input1 = self._random_array([1, 1, 16, 16])
input2 = self._random_array([1, 1, 16, 16])
output = mxnet_backend.run_node(node_def, [input1, input2])[0]
npt.assert_almost_equal(output, np.divide(input1, input2))
def test_relu(self):
"""Test for relu operator"""
node_def = helper.make_node("Relu", ["input1"], ["output"])
input1 = self._random_array([1, 256])
output = mxnet_backend.run_node(node_def, [input1])[0]
npt.assert_almost_equal(output, np.maximum(input1, 0))
def test_neg(self):
"""Test for neg operator"""
node_def = helper.make_node("Neg", ["input1"], ["output"])
input1 = self._random_array([1, 1000])
output = mxnet_backend.run_node(node_def, [input1])[0]
npt.assert_almost_equal(output, np.negative(input1))
def test_reciprocal(self):
"""Test for reciprocal operator"""
node_def = helper.make_node("Reciprocal", ["input1"], ["output"])
input1 = self._random_array([1, 1000])
output = mxnet_backend.run_node(node_def, [input1])[0]
npt.assert_almost_equal(output, np.reciprocal(input1))
def test_floor(self):
"""Test for floor operator"""
node_def = helper.make_node("Floor", ["input1"], ["output"])
input1 = self._random_array([1, 1000])
output = mxnet_backend.run_node(node_def, [input1])[0]
npt.assert_almost_equal(output, np.floor(input1))
def test_ceil(self):
"""Test for ceil operator"""
node_def = helper.make_node("Ceil", ["input1"], ["output"])
input1 = self._random_array([1, 1000])
output = mxnet_backend.run_node(node_def, [input1])[0]
npt.assert_almost_equal(output, np.ceil(input1))
def test_sqrt(self):
"""Test for sqrt operator"""
node_def = helper.make_node("Sqrt", ["input1"], ["output"])
input1 = self._random_array([1, 1000])
output = mxnet_backend.run_node(node_def, [input1])[0]
npt.assert_almost_equal(output, np.sqrt(input1))
def test_leaky_relu(self):
"""Test for LeakyRelu operator"""
node_def = helper.make_node("LeakyRelu", ["input1"], ["output"])
input1 = self._random_array([1, 10])
output = mxnet_backend.run_node(node_def, [input1])[0][0]
# default slope in leakyrelu is 0.25
numpy_output = [x if x > 0 else x*0.25 for x in input1[0]]
npt.assert_almost_equal(output, numpy_output)
def test_elu(self):
"""Test for elu operator"""
node_def = helper.make_node("Elu", ["input1"], ["output"])
input1 = self._random_array([1, 10])
output = mxnet_backend.run_node(node_def, [input1])[0][0]
# default slope in elu is 0.25
numpy_output = [x if x > 0 else (np.exp(x)-1)*0.25 for x in input1[0]]
npt.assert_almost_equal(output, numpy_output)
def test_exp(self):
"""Test for exp operator"""
node_def = helper.make_node("Exp", ["input1"], ["output"])
input1 = self._random_array([1, 10])
output = mxnet_backend.run_node(node_def, [input1])[0]
npt.assert_almost_equal(output, np.exp(input1))
def test_log(self):
"""Test for log operator"""
node_def = helper.make_node("Log", ["input1"], ["output"])
input1 = self._random_array([1, 10])
output = mxnet_backend.run_node(node_def, [input1])[0]
npt.assert_almost_equal(output, np.log(input1))
def test_tanh(self):
"""Test for tanh operator"""
node_def = helper.make_node("Tanh", ["input1"], ["output"])
input1 = self._random_array([1, 10])
output = mxnet_backend.run_node(node_def, [input1])[0]
npt.assert_almost_equal(output, np.tanh(input1))
def test_pow(self):
"""Test for pow operator"""
node_def = helper.make_node("Pow", ["input1", "input2"], ["output"])
input1 = self._random_array([1, 10])
input2 = self._random_array([1, 10])
output = mxnet_backend.run_node(node_def, [input1, input2])[0]
npt.assert_almost_equal(output, np.power(input1, input2))
def test_sigmoid(self):
"""Test for sigmoid operator"""
node_def = helper.make_node("Sigmoid", ["input1"], ["output"])
input1 = self._random_array([1, 10])
output = mxnet_backend.run_node(node_def, [input1])
np_output = [1/(1+np.exp(-input1))]
npt.assert_almost_equal(output, np_output)
def test_maximum(self):
"""Test for maximum operator"""
node_def = helper.make_node("Max", ["input1", "input2"], ["output"])
input1 = self._random_array([1, 10])
input2 = self._random_array([1, 10])
output = mxnet_backend.run_node(node_def, [input1, input2])[0]
npt.assert_almost_equal(output, np.maximum(input1, input2))
def test_minimum(self):
"""Test for minimum operator"""
node_def = helper.make_node("Min", ["input1", "input2"], ["output"])
input1 = self._random_array([1, 10])
input2 = self._random_array([1, 10])
output = mxnet_backend.run_node(node_def, [input1, input2])[0]
npt.assert_almost_equal(output, np.minimum(input1, input2))
def test_softmax(self):
"""Test for softmax operator"""
node_def = helper.make_node("Softmax", ["input1"], ["output"])
input1 = self._random_array([1, 10])
output = mxnet_backend.run_node(node_def, [input1])[0]
exp_score = np.exp(input1)
numpy_op = exp_score / exp_score.sum(0)
npt.assert_almost_equal(output, numpy_op)
def test_reduce_max(self):
"""Test for ReduceMax operator"""
node_def = helper.make_node("ReduceMax", ["input1"], ["output"], axes=[1, 0], keepdims=1)
input1 = self._random_array([3, 10])
output = mxnet_backend.run_node(node_def, [input1])[0]
numpy_op = np.max(input1, axis=(1, 0), keepdims=True)
npt.assert_almost_equal(output, numpy_op)
def test_reduce_min(self):
"""Test for ReduceMin operator"""
node_def = helper.make_node("ReduceMin", ["input1"], ["output"], axes=[1, 0], keepdims=1)
input1 = self._random_array([3, 10])
output = mxnet_backend.run_node(node_def, [input1])[0]
numpy_op = | np.min(input1, axis=(1, 0), keepdims=True) | numpy.min |
import numpy
import scipy.stats
import math
def one_hot(array, N):
"""
Convert an array of numbers to an array of one-hot vectors.
:param array: classes to convert
:type array: numpy.ndarray
:param N: number of classes
:type N: int
:return: one-hot vectors
:rtype: numpy.ndarray
"""
array = array.astype(int)
assert numpy.max(array) < N
assert numpy.min(array) >= 0
one_hot = numpy.zeros((array.shape[0], N))
one_hot[numpy.arange(array.shape[0]), array] = 1
return one_hot
def expand_as(array, array_as):
"""
Expands the tensor using view to allow broadcasting.
:param array: input tensor
:type array: numpy.ndarray
:param array_as: reference tensor
:type array_as: torch.Tensor or torch.autograd.Variable
:return: tensor expanded with singelton dimensions as tensor_as
:rtype: torch.Tensor or torch.autograd.Variable
"""
shape = list(array.shape)
for i in range(len(array.shape), len(array_as.shape)):
shape.append(1)
return array.reshape(shape)
def concatenate(array1, array2, axis=0):
"""
Basically a wrapper for numpy.concatenate, with the exception
that the array itself is returned if its None or evaluates to False.
:param array1: input array or None
:type array1: mixed
:param array2: input array
:type array2: numpy.ndarray
:param axis: axis to concatenate
:type axis: int
:return: concatenated array
:rtype: numpy.ndarray
"""
assert isinstance(array2, numpy.ndarray)
if array1 is not None:
assert isinstance(array1, numpy.ndarray)
return numpy.concatenate((array1, array2), axis=axis)
else:
return array2
def exponential_norm(batch_size, dim, epsilon=1, ord=2):
"""
Sample vectors uniformly by norm and direction separately.
:param batch_size: how many vectors to sample
:type batch_size: int
:param dim: dimensionality of vectors
:type dim: int
:param epsilon: epsilon-ball
:type epsilon: float
:param ord: norm to use
:type ord: int
:return: batch_size x dim tensor
:rtype: numpy.ndarray
"""
random = numpy.random.randn(batch_size, dim)
random /= numpy.repeat(numpy.linalg.norm(random, ord=ord, axis=1).reshape(-1, 1), axis=1, repeats=dim)
random *= epsilon
truncated_normal = scipy.stats.truncexpon.rvs(1, loc=0, scale=0.9, size=(batch_size, 1))
random *= numpy.repeat(truncated_normal, axis=1, repeats=dim)
return random
def uniform_norm(batch_size, dim, epsilon=1, ord=2):
"""
Sample vectors uniformly by norm and direction separately.
:param batch_size: how many vectors to sample
:type batch_size: int
:param dim: dimensionality of vectors
:type dim: int
:param epsilon: epsilon-ball
:type epsilon: float
:param ord: norm to use
:type ord: int
:return: batch_size x dim tensor
:rtype: numpy.ndarray
"""
random = numpy.random.randn(batch_size, dim)
random /= numpy.repeat(numpy.linalg.norm(random, ord=ord, axis=1).reshape(-1, 1), axis=1, repeats=dim)
random *= epsilon
uniform = numpy.random.uniform(0, 1, (batch_size, 1)) # exponent is only difference!
random *= numpy.repeat(uniform, axis=1, repeats=dim)
return random
def uniform_ball(batch_size, dim, epsilon=1, ord=2):
"""
Sample vectors uniformly in the n-ball.
See Harman et al., On decompositional algorithms for uniform sampling from n-spheres and n-balls.
:param batch_size: how many vectors to sample
:type batch_size: int
:param dim: dimensionality of vectors
:type dim: int
:param epsilon: epsilon-ball
:type epsilon: float
:param ord: norm to use
:type ord: int
:return: batch_size x dim tensor
:rtype: numpy.ndarray
"""
random = numpy.random.randn(batch_size, dim)
random /= numpy.repeat(numpy.linalg.norm(random, ord=ord, axis=1).reshape(-1, 1), axis=1, repeats=dim)
random *= epsilon
uniform = numpy.random.uniform(0, 1, (batch_size, 1)) ** (1. / dim)
random *= numpy.repeat(uniform, axis=1, repeats=dim)
return random
def uniform_sphere(batch_size, dim, epsilon=1, ord=2):
"""
Sample vectors uniformly on the n-sphere.
See Harman et al., On decompositional algorithms for uniform sampling from n-spheres and n-balls.
:param batch_size: how many vectors to sample
:type batch_size: int
:param dim: dimensionality of vectors
:type dim: int
:param epsilon: epsilon-ball
:type epsilon: float
:param ord: norm to use
:type ord: int
:return: batch_size x dim tensor
:rtype: numpy.ndarray
"""
random = numpy.random.randn(batch_size, dim)
random /= numpy.repeat(numpy.linalg.norm(random, ord=ord, axis=1).reshape(-1, 1), axis=1, repeats=dim)
random *= epsilon
return random
def truncated_normal(size, lower=-2, upper=2):
"""
Sample from truncated normal.
See https://stackoverflow.com/questions/18441779/how-to-specify-upper-and-lower-limits-when-using-numpy-random-normal.
:param size: size of vector
:type size: [int]
:param lower: lower bound
:type lower: float
:param upper: upper bound
:type upper: float
:return: batch_size x dim tensor
:rtype: numpy.ndarray
"""
return scipy.stats.truncnorm.rvs(lower, upper, size=size)
def project_simplex(v, s=1):
"""
Taken from https://gist.github.com/daien/1272551/edd95a6154106f8e28209a1c7964623ef8397246.
Compute the Euclidean projection on a positive simplex
Solves the optimisation problem (using the algorithm from [1]):
min_w 0.5 * || w - v ||_2^2 , s.t. \sum_i w_i = s, w_i >= 0
Parameters
----------
v: (n,) numpy array,
n-dimensional vector to project
s: int, optional, default: 1,
radius of the simplex
Returns
-------
w: (n,) numpy array,
Euclidean projection of v on the simplex
Notes
-----
The complexity of this algorithm is in O(n log(n)) as it involves sorting v.
Better alternatives exist for high-dimensional sparse vectors (cf. [1])
However, this implementation still easily scales to millions of dimensions.
References
----------
[1] Efficient Projections onto the .1-Ball for Learning in High Dimensions
<NAME>, <NAME>, <NAME>, and <NAME>.
International Conference on Machine Learning (ICML 2008)
http://www.cs.berkeley.edu/~jduchi/projects/DuchiSiShCh08.pdf
"""
assert s > 0, "Radius s must be strictly positive (%d <= 0)" % s
n, = v.shape # will raise ValueError if v is not 1-D
# check if we are already on the simplex
if v.sum() == s and numpy.alltrue(v >= 0):
# best projection: itself!
return v
# get the array of cumulative sums of a sorted (decreasing) copy of v
u = numpy.sort(v)[::-1]
cssv = numpy.cumsum(u)
# get the number of > 0 components of the optimal solution
rho = numpy.nonzero(u * numpy.arange(1, n+1) > (cssv - s))[0][-1]
# compute the Lagrange multiplier associated to the simplex constraint
theta = float(cssv[rho] - s) / rho
# compute the projection by thresholding v using theta
w = (v - theta).clip(min=0)
return w
def projection_simplex_sort(v, z=1):
n_features = v.shape[0]
u = numpy.sort(v)[::-1]
cssv = numpy.cumsum(u) - z
ind = numpy.arange(n_features) + 1
cond = u - cssv / ind > 0
rho = ind[cond][-1]
theta = cssv[cond][-1] / float(rho)
w = numpy.maximum(v - theta, 0)
return w
def projection_simplex_pivot(v, z=1, random_state=None):
rs = numpy.random.RandomState(random_state)
n_features = len(v)
U = numpy.arange(n_features)
s = 0
rho = 0
while len(U) > 0:
G = []
L = []
k = U[rs.randint(0, len(U))]
ds = v[k]
for j in U:
if v[j] >= v[k]:
if j != k:
ds += v[j]
G.append(j)
elif v[j] < v[k]:
L.append(j)
drho = len(G) + 1
if s + ds - (rho + drho) * v[k] < z:
s += ds
rho += drho
U = L
else:
U = G
theta = (s - z) / float(rho)
return numpy.maximum(v - theta, 0)
def projection_simplex_bisection(v, z=1, tau=0.0001, max_iter=1000):
lower = 0
upper = numpy.max(v)
current = numpy.inf
for it in xrange(max_iter):
if numpy.abs(current) / z < tau and current < 0:
break
theta = (upper + lower) / 2.0
w = numpy.maximum(v - theta, 0)
current = numpy.sum(w) - z
if current <= 0:
upper = theta
else:
lower = theta
return w
def project_ball(array, epsilon=1, ord=2):
"""
Compute the orthogonal projection of the input tensor (as vector) onto the L_ord epsilon-ball.
**Assumes the first dimension to be batch dimension, which is preserved.**
:param array: array
:type array: numpy.ndarray
:param epsilon: radius of ball.
:type epsilon: float
:param ord: order of norm
:type ord: int
:return: projected vector
:rtype: torch.autograd.Variable or torch.Tensor
"""
assert isinstance(array, numpy.ndarray), 'given tensor should be numpy.ndarray'
if ord == 0:
assert epsilon >= 1
size = array.shape
flattened_size = numpy.prod(numpy.array(size[1:]))
array = array.reshape(-1, flattened_size)
sorted = numpy.sort(array, axis=1)
k = int(math.ceil(epsilon))
thresholds = sorted[:, -k]
mask = (array >= expand_as(thresholds, array)).astype(float)
array *= mask
elif ord == 1:
size = array.shape
flattened_size = numpy.prod(numpy.array(size[1:]))
array = array.reshape(-1, flattened_size)
for i in range(array.shape[0]):
# compute the vector of absolute values
u = numpy.abs(array[i])
# check if v is already a solution
if u.sum() <= epsilon:
# L1-norm is <= s
continue
# v is not already a solution: optimum lies on the boundary (norm == s)
# project *u* on the simplex
#w = project_simplex(u, s=epsilon)
w = projection_simplex_sort(u, z=epsilon)
# compute the solution to the original problem on v
w *= numpy.sign(array[i])
array[i] = w
if len(size) == 4:
array = array.reshape(-1, size[1], size[2], size[3])
elif len(size) == 2:
array = array.reshape(-1, size[1])
elif ord == 2:
size = array.shape
flattened_size = numpy.prod(numpy.array(size[1:]))
array = array.reshape(-1, flattened_size)
clamped = numpy.clip(epsilon/numpy.linalg.norm(array, 2, axis=1), a_min=None, a_max=1)
clamped = clamped.reshape(-1, 1)
array = array * clamped
if len(size) == 4:
array = array.reshape(-1, size[1], size[2], size[3])
elif len(size) == 2:
array = array.reshape(-1, size[1])
elif ord == float('inf'):
array = numpy.clip(array, a_min=-epsilon, a_max=epsilon)
else:
raise NotImplementedError()
return array
def project_sphere(array, epsilon=1, ord=2):
"""
Compute the orthogonal projection of the input tensor (as vector) onto the L_ord epsilon-ball.
**Assumes the first dimension to be batch dimension, which is preserved.**
:param array: variable or tensor
:type array: torch.autograd.Variable or torch.Tensor
:param epsilon: radius of ball.
:type epsilon: float
:param ord: order of norm
:type ord: int
:return: projected vector
:rtype: torch.autograd.Variable or torch.Tensor
"""
assert isinstance(array, numpy.ndarray), 'given tensor should be numpy.ndarray'
size = array.shape
flattened_size = numpy.prod(numpy.array(size[1:]))
array = array.reshape(-1, flattened_size)
array = array/numpy.linalg.norm(array, axis=1, ord=ord).reshape(-1, 1)
array *= epsilon
if len(size) == 4:
array = array.reshape(-1, size[1], size[2], size[3])
elif len(size) == 2:
array = array.reshape(-1, size[1])
return array
def project_orthogonal(basis, vectors, rank=None):
"""
Project the given vectors on the basis using an orthogonal projection.
:param basis: basis vectors to project on
:type basis: numpy.ndarray
:param vectors: vectors to project
:type vectors: numpy.ndarray
:return: projection
:rtype: numpy.ndarray
"""
# The columns of Q are an orthonormal basis of the columns of basis
Q, R = numpy.linalg.qr(basis)
if rank is not None and rank > 0:
Q = Q[:, :rank]
# As Q is orthogonal, the projection is
beta = Q.T.dot(vectors)
projection = Q.dot(beta)
return projection
def project_lstsq(basis, vectors):
"""
Project using least squares.
:param basis: basis vectors to project on
:type basis: numpy.ndarray
:param vectors: vectors to project
:type vectors: numpy.ndarray
:return: projection
:rtype: numpy.ndarray
"""
x, _, _, _ = numpy.linalg.lstsq(basis, vectors)
projection = basis.dot(x)
return projection
def angles(vectors_a, vectors_b):
"""
Compute angle between two sets of vectors.
See https://people.eecs.berkeley.edu/~wkahan/Mindless.pdf.
:param vectors_a:
:param vectors_b:
:return:
"""
if len(vectors_b.shape) == 1:
vectors_b = vectors_b.reshape(-1, 1)
# Normalize vector
norms_a = numpy.linalg.norm(vectors_a, ord=2, axis=0)
norms_b = numpy.linalg.norm(vectors_b, ord=2, axis=0)
norms_a = numpy.repeat(norms_a.reshape(1, -1), vectors_a.shape[0], axis=0)
norms_b = numpy.repeat(norms_b.reshape(1, -1), vectors_b.shape[0], axis=0)
vectors_a /= norms_a
vectors_b /= norms_b
term_1 = numpy.multiply(vectors_a, norms_b) - numpy.multiply(vectors_b, norms_a)
term_1 = numpy.linalg.norm(term_1, ord=2, axis=0)
term_2 = numpy.multiply(vectors_a, norms_b) + numpy.multiply(vectors_b, norms_a)
term_2 = numpy.linalg.norm(term_2, ord=2, axis=0)
angles = 2* | numpy.arctan2(term_1, term_2) | numpy.arctan2 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.