prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
"""GNSS utility functions, mostly based on satellite ephemerides. Author: <NAME> """ try: import autograd.numpy as np except(ImportError): print("""Package 'autograd' not found. 'autograd.numpy' is necessary for coarse-time navigation via maximum-likelihood estimation. Falling back to 'numpy'.""") import numpy as np import pymap3d as pm try: import mkl_fft as fft_lib except(ImportError): print("""Package 'mkl_fft' not found. Consider installing 'mkl_fft' with 'conda install -c intel mkl_fft' for faster FFT and IFFT. Falling back to 'numpy.fft'.""") import numpy.fft as fft_lib def get_sat_pos_vel_acc(t, eph): """Calculate positions, velocities, and accelerations of satellites. Accepts arrays for t / eph, i.e., can calculate multiple points in time / multiple satellites at once. Does not interpolate GLONASS. Implemented according to <NAME>., et al. “Computing GPS Satellite Velocity and Acceleration from the Broadcast Navigation Message.” Annual of Navigation, vol. 66, no. 4, 2019, pp. 769–779. https://www.gps.gov/technical/icwg/meetings/2019/09/GPS-SV-velocity-and-acceleration.pdf Inputs: t - GPS time(s) [s] (ignored for SBAS) eph - Ephemeris as array(s) Outputs: positions - Satellite position(s) in ECEF XYZ as array(s) [m] velocities - Satellite velocity/ies in ECEF XYZ as array(s) [m/s] accelerations - Sat. acceleration(s) in ECEF XYZ as array(s) [m/s^2] Author: <NAME> """ if not np.isnan(eph[2]).any(): # No SBAS / GLONASS t = np.mod(t, 7 * 24 * 60 * 60) cic = eph[13] # "cic"] crs = eph[10] # "crs"] Omega0 = eph[15] # "Omega0"] Deltan = eph[4] # "Deltan"] cis = eph[14] # "cis"] M0 = eph[2] # "M0"] i0 = eph[11] # "i0"] cuc = eph[7] # "cuc"] crc = eph[9] # "crc"] e = eph[5] # "e"] Omega = eph[6] # "Omega"] cus = eph[8] # "cus"] OmegaDot = eph[16] # "OmegaDot"] sqrtA = eph[3] # "sqrtA"] IDOT = eph[12] # "IDOT"] toe = eph[20] # "toe"] # Broadcast Navigation User Equations # WGS 84 value of the earth’s gravitational constant for GPS user [m^3/s^2] mu = 3.986005e14 # WGS 84 value of the earth’s rotation rate [rad/s] OmegaeDot = 7.2921151467e-5 # Semi-major axis A = sqrtA ** 2 # Computed mean motion [rad/s] n0 = np.sqrt(mu / A ** 3) # Time from ephemeris reference epoch tk = np.array(t - toe) # t is GPS system time at time of transmission, i.e., GPS time corrected # for transit time (range/speed of light). Furthermore, tk shall be the # actual total time difference between the time t and the epoch time toe, # and must account for beginning or end of week crossovers. That is, if tk # is greater than 302,400 seconds, subtract 604,800 seconds from tk. If tk # is less than -302,400 seconds, add 604,800 seconds to tk. with np.nditer(tk, op_flags=["readwrite"]) as it: for tk_i in it: if tk_i > 302400: tk_i[...] = tk_i - 604800 elif tk_i < -302400: tk_i[...] = tk_i + 604800 # Corrected mean motion n = n0 + Deltan # Mean anomaly Mk = M0 + n * tk # Kepler’s equation (Mk = Ek - e*np.sin(Ek)) solved for eccentric anomaly # (Ek) by iteration: # Initial value [rad] Ek = Mk # Refined value, three iterations, (j = 0,1,2) for j in range(3): Ek = Ek + (Mk - Ek + e * np.sin(Ek)) / (1 - e * np.cos(Ek)) # True anomaly (unambiguous quadrant) nuk = 2 * np.arctan(np.sqrt((1 + e) / (1 - e)) * np.tan(Ek / 2)) # Argument of Latitude Phik = nuk + Omega # Argument of Latitude Correction deltauk = cus * np.sin(2 * Phik) + cuc * np.cos(2 * Phik) # Radius Correction deltark = crs * np.sin(2 * Phik) + crc * np.cos(2 * Phik) # Inclination Correction deltaik = cis * np.sin(2 * Phik) + cic * np.cos(2 * Phik) # Corrected Argument of Latitude uk = Phik + deltauk # Corrected Radius rk = A * (1 - e * np.cos(Ek)) + deltark # Corrected Inclination ik = i0 + deltaik + IDOT * tk # Positions in Orbital Plane xkDash = rk * np.cos(uk) ykDash = rk * np.sin(uk) # Corrected longitude of ascending node Omegak = Omega0 + (OmegaDot - OmegaeDot) * tk - OmegaeDot * toe # Earth-fixed coordinates xk = xkDash * np.cos(Omegak) - ykDash * np.cos(ik) * np.sin(Omegak) yk = xkDash * np.sin(Omegak) + ykDash * np.cos(ik) * np.cos(Omegak) zk = ykDash * np.sin(ik) # SV Velocity # Eccentric anomaly rate EkDot = n / (1 - e * np.cos(Ek)) # True anomaly rate nukDot = EkDot * np.sqrt(1 - e ** 2) / (1 - e * np.cos(Ek)) # Corrected Inclination rate dik_dt = IDOT + 2 * nukDot * ( cis * np.cos(2 * Phik) - cic * np.sin(2 * Phik) ) # Corrected Argument of Latitude rate ukDot = nukDot + 2 * nukDot * ( cus * np.cos(2 * Phik) - cuc * np.sin(2 * Phik) ) # Corrected Radius rate rkDot = e * A * EkDot * np.sin(Ek) + 2 * nukDot * ( crs * np.cos(2 * Phik) - crc * np.sin(2 * Phik) ) # Longitude of ascending node rate OmegakDot = OmegaDot - OmegaeDot # In-plane x velocity xkDashDot = rkDot * np.cos(uk) - rk * ukDot * np.sin(uk) # In-plane y velocity ykDashDot = rkDot * np.sin(uk) + rk * ukDot * np.cos(uk) # Earth-fixed x velocity [m/s] xkDot = ( -xkDash * OmegakDot * np.sin(Omegak) + xkDashDot * np.cos(Omegak) - ykDashDot * np.sin(Omegak) * np.cos(ik) - ykDash * ( OmegakDot * np.cos(Omegak) * np.cos(ik) - dik_dt * np.sin(Omegak) * np.sin(ik) ) ) # Earth-fixed y velocity [m/s] ykDot = ( xkDash * OmegakDot * np.cos(Omegak) + xkDashDot * np.sin(Omegak) + ykDashDot * np.cos(Omegak) * np.cos(ik) - ykDash * ( OmegakDot * np.sin(Omegak) * np.cos(ik) + dik_dt * np.cos(Omegak) * np.sin(ik) ) ) # Earth-fixed z velocity [m/s] zkDot = ykDash * dik_dt * np.cos(ik) + ykDashDot * np.sin(ik) # SV Acceleration # WGS 84 Earth equatorial radius [m] RE = 6378137.0 # Oblate Earth gravity coefficient J2 = 0.0010826262 # Oblate Earth acceleration factor F = -3 / 2 * J2 * mu / rk ** 2 * (RE / rk) ** 2 # Earth-fixed x acceleration [m/s^2] xkDotDot = ( -mu * xk / rk ** 3 + F * ((1 - 5 * (zk / rk) ** 2) * xk / rk) + 2 * ykDot * OmegaeDot + xk * OmegaeDot ** 2 ) # Earth-fixed y acceleration [m/s^2] ykDotDot = ( -mu * yk / rk ** 3 + F * ((1 - 5 * (zk / rk) ** 2) * yk / rk) - 2 * xkDot * OmegaeDot + yk * OmegaeDot ** 2 ) # Earth-fixed z acceleration [m/s^2] zkDotDot = -mu * zk / rk ** 3 + F * ((3 - 5 * (zk / rk) ** 2) * zk / rk) positions = np.array([xk, yk, zk]).T velocities = np.array([xkDot, ykDot, zkDot]).T accelerations = np.array([xkDotDot, ykDotDot, zkDotDot]).T else: # SBAS positions = 1.0e3 * np.array([eph[3], eph[6], eph[9]]).T velocities = 1.0e3 * np.array([eph[4], eph[7], eph[10]]).T accelerations = 1.0e3 * np.array([eph[5], eph[8], eph[11]]).T if isinstance(t, np.ndarray) and len(eph.shape) == 1: n_times = t.shape[0] positions = np.tile(positions, (n_times, 1)) velocities = np.tile(velocities, (n_times, 1)) accelerations = np.tile(accelerations, (n_times, 1)) return positions, velocities, accelerations def get_sat_pos_vel(t, eph): """Calculate positions and velocities of satellites. Accepts arrays for t / eph, i.e., can calculate multiple points in time / multiple satellites at once. Does not interpolate GLONASS. Implemented according to Thompson, <NAME>., et al. “Computing GPS Satellite Velocity and Acceleration from the Broadcast Navigation Message.” Annual of Navigation, vol. 66, no. 4, 2019, pp. 769–779. https://www.gps.gov/technical/icwg/meetings/2019/09/GPS-SV-velocity-and-acceleration.pdf Inputs: t - GPS time(s) [s] (ignored for SBAS) eph - Ephemeris as array(s) Outputs: positions - Satellite position(s) in ECEF XYZ as array(s) [m] velocities - Satellite velocity/ies in ECEF XYZ as array(s) [m/s] Author: <NAME> """ if not np.isnan(eph[2]).any(): # No SBAS / GLONASS t = np.mod(t, 7 * 24 * 60 * 60) cic = eph[13] # "cic"] crs = eph[10] # "crs"] Omega0 = eph[15] # "Omega0"] Deltan = eph[4] # "Deltan"] cis = eph[14] # "cis"] M0 = eph[2] # "M0"] i0 = eph[11] # "i0"] cuc = eph[7] # "cuc"] crc = eph[9] # "crc"] e = eph[5] # "e"] Omega = eph[6] # "Omega"] cus = eph[8] # "cus"] OmegaDot = eph[16] # "OmegaDot"] sqrtA = eph[3] # "sqrtA"] IDOT = eph[12] # "IDOT"] toe = eph[20] # "toe"] # Broadcast Navigation User Equations # WGS 84 value of the earth’s gravitational constant for GPS user [m^3/s^2] mu = 3.986005e14 # WGS 84 value of the earth’s rotation rate [rad/s] OmegaeDot = 7.2921151467e-5 # Semi-major axis A = sqrtA ** 2 # Computed mean motion [rad/s] n0 = np.sqrt(mu / A ** 3) # Time from ephemeris reference epoch tk = np.array(t - toe) # t is GPS system time at time of transmission, i.e., GPS time corrected # for transit time (range/speed of light). Furthermore, tk shall be the # actual total time difference between the time t and the epoch time toe, # and must account for beginning or end of week crossovers. That is, if tk # is greater than 302,400 seconds, subtract 604,800 seconds from tk. If tk # is less than -302,400 seconds, add 604,800 seconds to tk. with np.nditer(tk, op_flags=["readwrite"]) as it: for tk_i in it: if tk_i > 302400: tk_i[...] = tk_i - 604800 elif tk_i < -302400: tk_i[...] = tk_i + 604800 # Corrected mean motion n = n0 + Deltan # Mean anomaly Mk = M0 + n * tk # Kepler’s equation (Mk = Ek - e*np.sin(Ek)) solved for eccentric anomaly # (Ek) by iteration: # Initial value [rad] Ek = Mk # Refined value, three iterations, (j = 0,1,2) for j in range(3): Ek = Ek + (Mk - Ek + e * np.sin(Ek)) / (1 - e * np.cos(Ek)) # True anomaly (unambiguous quadrant) nuk = 2 * np.arctan(np.sqrt((1 + e) / (1 - e)) * np.tan(Ek / 2)) # Argument of Latitude Phik = nuk + Omega # Argument of Latitude Correction deltauk = cus * np.sin(2 * Phik) + cuc * np.cos(2 * Phik) # Radius Correction deltark = crs * np.sin(2 * Phik) + crc * np.cos(2 * Phik) # Inclination Correction deltaik = cis * np.sin(2 * Phik) + cic * np.cos(2 * Phik) # Corrected Argument of Latitude uk = Phik + deltauk # Corrected Radius rk = A * (1 - e * np.cos(Ek)) + deltark # Corrected Inclination ik = i0 + deltaik + IDOT * tk # Positions in Orbital Plane xkDash = rk * np.cos(uk) ykDash = rk * np.sin(uk) # Corrected longitude of ascending node Omegak = Omega0 + (OmegaDot - OmegaeDot) * tk - OmegaeDot * toe # Earth-fixed coordinates xk = xkDash * np.cos(Omegak) - ykDash * np.cos(ik) * np.sin(Omegak) yk = xkDash * np.sin(Omegak) + ykDash * np.cos(ik) * np.cos(Omegak) zk = ykDash * np.sin(ik) # SV Velocity # Eccentric anomaly rate EkDot = n / (1 - e * np.cos(Ek)) # True anomaly rate nukDot = EkDot * np.sqrt(1 - e ** 2) / (1 - e * np.cos(Ek)) # Corrected Inclination rate dik_dt = IDOT + 2 * nukDot * ( cis * np.cos(2 * Phik) - cic * np.sin(2 * Phik) ) # Corrected Argument of Latitude rate ukDot = nukDot + 2 * nukDot * ( cus * np.cos(2 * Phik) - cuc * np.sin(2 * Phik) ) # Corrected Radius rate rkDot = e * A * EkDot * np.sin(Ek) + 2 * nukDot * ( crs * np.cos(2 * Phik) - crc * np.sin(2 * Phik) ) # Longitude of ascending node rate OmegakDot = OmegaDot - OmegaeDot # In-plane x velocity xkDashDot = rkDot * np.cos(uk) - rk * ukDot * np.sin(uk) # In-plane y velocity ykDashDot = rkDot * np.sin(uk) + rk * ukDot * np.cos(uk) # Earth-fixed x velocity [m/s] xkDot = ( -xkDash * OmegakDot * np.sin(Omegak) + xkDashDot * np.cos(Omegak) - ykDashDot * np.sin(Omegak) * np.cos(ik) - ykDash * ( OmegakDot * np.cos(Omegak) * np.cos(ik) - dik_dt * np.sin(Omegak) * np.sin(ik) ) ) # Earth-fixed y velocity [m/s] ykDot = ( xkDash * OmegakDot * np.cos(Omegak) + xkDashDot * np.sin(Omegak) + ykDashDot * np.cos(Omegak) * np.cos(ik) - ykDash * ( OmegakDot * np.sin(Omegak) * np.cos(ik) + dik_dt * np.cos(Omegak) * np.sin(ik) ) ) # Earth-fixed z velocity [m/s] zkDot = ykDash * dik_dt * np.cos(ik) + ykDashDot * np.sin(ik) positions = np.array([xk, yk, zk]).T velocities = np.array([xkDot, ykDot, zkDot]).T else: # SBAS positions = 1.0e3 * np.array([eph[3], eph[6], eph[9]]).T velocities = 1.0e3 * np.array([eph[4], eph[7], eph[10]]).T if isinstance(t, np.ndarray) and len(eph.shape) == 1: n_times = t.shape[0] positions = np.tile(positions, (n_times, 1)) velocities = np.tile(velocities, (n_times, 1)) return positions, velocities def get_sat_pos(t, eph): """Calculate positions of satellites. Accepts arrays for t / eph, i.e., can calculate multiple points in time / multiple satellites at once. Does not interpolate GLONASS. Implemented according to Thompson, <NAME>., et al. “Computing GPS Satellite Velocity and Acceleration from the Broadcast Navigation Message.” Annual of Navigation, vol. 66, no. 4, 2019, pp. 769–779. https://www.gps.gov/technical/icwg/meetings/2019/09/GPS-SV-velocity-and-acceleration.pdf Inputs: t - GPS time(s) [s] (ignored for SBAS) eph - Ephemeris as array(s) Outputs: positions - Satellite position(s) in ECEF XYZ as array(s) [m] Author: <NAME> """ if not np.isnan(eph[2]).any(): # No SBAS / GLONASS t = np.mod(t, 7 * 24 * 60 * 60) cic = eph[13] # "cic"] crs = eph[10] # "crs"] Omega0 = eph[15] # "Omega0"] Deltan = eph[4] # "Deltan"] cis = eph[14] # "cis"] M0 = eph[2] # "M0"] i0 = eph[11] # "i0"] cuc = eph[7] # "cuc"] crc = eph[9] # "crc"] e = eph[5] # "e"] Omega = eph[6] # "Omega"] cus = eph[8] # "cus"] OmegaDot = eph[16] # "OmegaDot"] sqrtA = eph[3] # "sqrtA"] IDOT = eph[12] # "IDOT"] toe = eph[20] # "toe"] # Broadcast Navigation User Equations # WGS 84 value of the earth’s gravitational constant for GPS user [m^3/s^2] mu = 3.986005e14 # WGS 84 value of the earth’s rotation rate [rad/s] OmegaeDot = 7.2921151467e-5 # Semi-major axis A = sqrtA ** 2 # Computed mean motion [rad/s] n0 = np.sqrt(mu / A ** 3) # Time from ephemeris reference epoch tk = np.array(t - toe) # t is GPS system time at time of transmission, i.e., GPS time corrected # for transit time (range/speed of light). Furthermore, tk shall be the # actual total time difference between the time t and the epoch time toe, # and must account for beginning or end of week crossovers. That is, if tk # is greater than 302,400 seconds, subtract 604,800 seconds from tk. If tk # is less than -302,400 seconds, add 604,800 seconds to tk. try: with np.nditer(tk, op_flags=["readwrite"]) as it: for tk_i in it: if tk_i > 302400: tk_i[...] = tk_i - 604800 elif tk_i < -302400: tk_i[...] = tk_i + 604800 except TypeError: for idx in np.arange(tk.shape[0]): if tk[idx] > 302400: tk[idx] = tk[idx] - 604800 elif tk[idx] < -302400: tk[idx] = tk[idx] + 604800 # Corrected mean motion n = n0 + Deltan # Mean anomaly Mk = M0 + n * tk # Kepler’s equation (Mk = Ek - e*np.sin(Ek)) solved for eccentric anomaly # (Ek) by iteration: # Initial value [rad] Ek = Mk # Refined value, three iterations, (j = 0,1,2) for j in range(3): Ek = Ek + (Mk - Ek + e * np.sin(Ek)) / (1 - e * np.cos(Ek)) # True anomaly (unambiguous quadrant) nuk = 2 * np.arctan(np.sqrt((1 + e) / (1 - e)) * np.tan(Ek / 2)) # Argument of Latitude Phik = nuk + Omega # Argument of Latitude Correction deltauk = cus * np.sin(2 * Phik) + cuc * np.cos(2 * Phik) # Radius Correction deltark = crs * np.sin(2 * Phik) + crc * np.cos(2 * Phik) # Inclination Correction deltaik = cis * np.sin(2 * Phik) + cic * np.cos(2 * Phik) # Corrected Argument of Latitude uk = Phik + deltauk # Corrected Radius rk = A * (1 - e * np.cos(Ek)) + deltark # Corrected Inclination ik = i0 + deltaik + IDOT * tk # Positions in Orbital Plane xkDash = rk * np.cos(uk) ykDash = rk * np.sin(uk) # Corrected longitude of ascending node Omegak = Omega0 + (OmegaDot - OmegaeDot) * tk - OmegaeDot * toe # Earth-fixed coordinates xk = xkDash * np.cos(Omegak) - ykDash * np.cos(ik) * np.sin(Omegak) yk = xkDash * np.sin(Omegak) + ykDash * np.cos(ik) * np.cos(Omegak) zk = ykDash * np.sin(ik) positions = np.array([xk, yk, zk]).T else: # SBAS positions = 1.0e3 * np.array([eph[3], eph[6], eph[9]]).T if isinstance(t, np.ndarray) and len(eph.shape) == 1: n_times = t.shape[0] positions = np.tile(positions, (n_times, 1)) return positions def get_sat_pos_sp3(gps_time, sp3, sv_list, system=None): """Calculate positions of satellites from precise orbits (SP3 file). Inputs: gps_time - GPS times [s] as numpy array sp3 - Precise orbit supporting points as pandas.DataFrame from read_sp3 sv_list - Satellite indices (PRNs) system - Character representing satellite navigation system: 'G' - GPS 'S' - SBAS 'R' - GLONASS 'E' - Galileo 'C' - BeiDou 'J' - QZSS 'I' - NavIC None - Use character of 1st SP3 entry (default) Output: position - Satellite positions in ECEF XYZ as Nx3 array [m] Author: <NAME> Based on https://github.com/GNSSpy-Project/gnsspy/blob/fce079af37d585dc757c56539a98cc0dfe66f9de/gnsspy/position/interpolation.py """ def coord_interp(parameter): """ Interpolation of SP3 coordinates. Fit polynomial to 4 hours (14400 seconds) period of SP3 Cartesian coordinates and return to the interpolated coordinates. Input: parameter - Polynomial coefficients from numpy polyfit function (numpy array) Output: interp_coord - Interpolated coordinates (numpy array) """ epoch = 0.0 time = np.array([ epoch**deg for deg in range(len(parameter)-1, -1, -1) ]) return np.matmul(parameter, time) import pandas as pd # Degree of polynomial interpolation, lower than 11 not recommended, above # 16 not applicable for 15 minute intervals poly_degree = 16 # Convert time referenceDate = np.datetime64('1980-01-06') # GPS reference date utc = np.timedelta64(int((gps_time[0]) * 1e9), 'ns') + referenceDate # Check if numpy array has been passed for sv_list if isinstance(sv_list, np.ndarray): # Convert numpy array to list sv_list = sv_list.astype(int).tolist() # Check if system character must be read from SP3 if system is None: # Use system character of 1st entry system = sp3.index[0][1][0] # Convert sv_list to strings sv_list = [system + "{:02d}".format(sv) for sv in sv_list] # Get time stamps epoch_values = sp3.index.get_level_values("Epoch").unique() # Difference between 2 time stamps deltaT = epoch_values[1]-epoch_values[0] # Get 17 data points epoch_start = utc - np.timedelta64(2, 'h') epoch_stop = utc + np.timedelta64(2, 'h') + deltaT sp3_temp = sp3.loc[(slice(epoch_start, epoch_stop))].copy() sp3_temp = sp3_temp.reorder_levels(["SV", "Epoch"]) # Initialize result epoch_interp_List = np.zeros(shape=(len(sv_list), 3)) # Iterate over all satellites for svIndex, sv in enumerate(sv_list): fitTime = np.array([ (np.datetime64(t) - referenceDate) / np.timedelta64(1, 's') - gps_time[svIndex] for t in sp3_temp.loc[sv_list[0]].index.get_level_values("Epoch") ]) epoch_number = len(sp3_temp.loc[sv]) if epoch_number <= poly_degree: print("Warning: Not enough epochs to predict for satellite", sv, "| Epoch Count:", epoch_number, " - Polynomial Degree:", poly_degree) epoch_interp_List[svIndex, :] = np.full(shape=3, fill_value=None) continue # if epoch_number != 17: # fitTime = [(sp3_temp.loc[sv].index[t] # - sp3_temp.loc[sv].index[0]).seconds # for t in range(epoch_number)] # Fit sp3 coordinates to 16 deg polynomial fitX = np.polyfit(fitTime, sp3_temp.loc[sv].X.copy(), deg=poly_degree) fitY = np.polyfit(fitTime, sp3_temp.loc[sv].Y.copy(), deg=poly_degree) fitZ = np.polyfit(fitTime, sp3_temp.loc[sv].Z.copy(), deg=poly_degree) # sidereal_day = 0.99726956634 # period = sidereal_day # P0 = 2.0*np.pi / period # gps_day_sec = np.mod(gps_time, 24*60*60) # gps_rel_time = gps_day_sec / 86400.0 # Timei = fitTime + gps_day_sec # Timei = Timei / 86400.0 # Xi = sp3_temp.loc[sv].X.copy() # Yi = sp3_temp.loc[sv].Y.copy() # Zi = sp3_temp.loc[sv].Z.copy() # A = np.zeros((poly_degree+1, poly_degree+1)) # A[:, 0] = np.ones(poly_degree+1) # B = np.zeros(poly_degree+1) # B[0] = 1.0 # ND = np.int((poly_degree) / 2) # for i in np.arange(ND): # kk = 1 + i*2 # P = P0 * (i+1) # A[:, kk] = np.sin(P*Timei) # A[:, kk+1] = np.cos(P*Timei) # B[kk] = np.sin(P*gps_rel_time) # B[kk+1] = np.cos(P*gps_rel_time) # XCoeffs = np.linalg.lstsq(A, Xi, rcond=None)[0] # YCoeffs = np.linalg.lstsq(A, Yi, rcond=None)[0] # ZCoeffs = np.linalg.lstsq(A, Zi, rcond=None)[0] # epoch_interp_List[svIndex, :] = 1000.0*np.array( # [B@XCoeffs, B@YCoeffs, B@ZCoeffs] # ) # Interpolate coordinates x_interp = coord_interp(fitX) * 1000 # km to m # x_velocity = _np.array([(x_interp[i+1]-x_interp[i])/interval if (i+1)<len(x_interp) else 0 for i in range(len(x_interp))]) y_interp = coord_interp(fitY) * 1000 # km to m # y_velocity = _np.array([(y_interp[i+1]-y_interp[i])/interval if (i+1)<len(y_interp) else 0 for i in range(len(y_interp))]) z_interp = coord_interp(fitZ) * 1000 # km to m # z_velocity = _np.array([(z_interp[i+1]-z_interp[i])/interval if (i+1)<len(z_interp) else 0 for i in range(len(z_interp))]) sv_interp = np.vstack((x_interp, y_interp, z_interp)) epoch_interp_List[svIndex, :] = sv_interp[:, 0] # Restore original fitTime in case it has changed # fitTime = np.linspace(0.0, deltaT.seconds*16.0, 17) return epoch_interp_List def find_eph(eph, sv, time): """Find the proper column in ephemeris array. Inputs: eph - Ephemeris array sv - Satellite index (PRNs) time - GPS time of week [s] Output: icol - Column index, NaN if ephemeris does not contain satellite """ icol = 0 isat = np.where(eph[0] == sv)[0] n = isat.size if n == 0: return np.NaN icol = isat[0] dtmin = eph[20, icol] - time for t in isat: dt = eph[20, t] - time if dt < 0: if abs(dt) < abs(dtmin): icol = t dtmin = dt return icol def check_t(time): """Account for beginning or end of week crossover. Input: time - Time [s] Output: corrTime - Corrected time [s] """ half_week = 302400 # [s] corrTime = time if time > half_week: corrTime = time - 2 * half_week elif time < -half_week: corrTime = time + 2 * half_week return corrTime def check_t_vectorized(time): """Account for beginning or end of week crossover. Input: time - Time [s], numpy.ndarray Output: corrTime - Corrected time [s] """ half_week = 302400 # [s] corrTime = time corrTime[time > half_week] = time[time > half_week] - 2 * half_week corrTime[time < -half_week] = corrTime[time < -half_week] + 2 * half_week return corrTime def get_sat_clk_corr(transmit_time, prn, eph): """Compute satellite clock correction time. Without relativistic correction. Ephemeris provided as array. Inputs: transmit_time - Actual time when signal was transmitted [s] prn - Satellite's PRN index (array) eph - Ephemeris array Output: satClockCorr - Satellite clock corrections [s] Author: <NAME> """ # GPS time with respect to 1980 to time of week (TOW) transmit_time = np.mod(transmit_time, 7 * 24 * 60 * 60) # Get ephemerides (find column of ephemeris matrix that matches satellite # index and time) if eph.ndim > 1 and eph.shape[1] != prn.shape[0]: col = np.array([find_eph(eph, prn_i, transmit_time) for prn_i in prn]) eph = eph[:, col] # Extract column # Find initial satellite clock correction # Find time difference dt = np.array([check_t(transmit_time - eph_20) for eph_20 in eph[20]]) # Calculate clock correction satClkCorr = (eph[1] * dt + eph[19]) * dt + eph[19] # - eph.T_GD # Apply correction time = transmit_time - satClkCorr # Find time difference dt = np.array([check_t(t_eph_20) for t_eph_20 in time - eph[20]]) # Calculate clock correction return (eph[1] * dt + eph[19]) * dt + eph[18] # - eph.T_GD def get_sat_clk_corr_vectorized(transmit_time, prn, eph): """Compute satellite clock correction time. Without relativistic correction. Navigation data provided as 2D NumPy array; transmission time and PRNs provided as 1D NumPy array. Inputs: transmit_time - Actual times when signals were transmitted [s] (Nx1 array) prn - Satellite's PRN indices (Nx1 array) eph - Matching navigation data (21xN array) Output: sat_clock_corr - Satellite clock corrections [s] (Nx1 array) Author: <NAME> """ # GPS time with respect to 1980 to time of week (TOW) transmit_time = np.mod(transmit_time, 7 * 24 * 60 * 60) # Get ephemerides (find column of ephemeris matrix that matches satellite # index and time) if eph.shape[1] != prn.shape[0]: col = np.array([find_eph(eph, prn_i, transmit_time) for prn_i in prn]) eph = eph[:, col] # Extract column # Find initial satellite clock correction # Find time difference dt = check_t_vectorized(transmit_time - eph[20]) # Calculate clock correction satClkCorr = (eph[1] * dt + eph[19]) * dt + eph[19] # - eph.T_GD # Apply correction time = transmit_time - satClkCorr # Find time difference dt = check_t_vectorized(time - eph[20]) # Calculate clock correction return (eph[1] * dt + eph[19]) * dt + eph[18] # - eph.T_GD def get_visible_sats(ht, p, eph, elev_mask=0, prn_list=range(1, 33)): """Estimate set of visible satellites. Ephemeris provided as array. Inputs: ht - Receiver time hypothesis [s] p - Receiver position hypothesis (latitude, longitude, elevation) eph - Ephemeris as matrix elev_mask - [Optional] Elevation mask: minimum elevation for satellite to be considered to be visible [degrees], default 0 prn_list - [Optional] PRNs of satellites to search for, default 1-32 Output: visSat - Indices of visible satellites Author: <NAME> """ ht = np.mod(ht, 7 * 24 * 60 * 60) # Crude transmit time estimate [s] t = ht - 76.5e-3 # Empty array for result visSat = np.array([], dtype=int) # Loop over all satellite indices for prn in prn_list: col = find_eph(eph, prn, t) if not np.isnan(col): ephSat = eph[:, col] # Get satellite position at estimated transmit time satPos = get_sat_pos(t, ephSat) if not np.isnan(satPos).any(): az, elev, slantRange = pm.ecef2aer( satPos[0], satPos[1], satPos[2], p[0], p[1], p[2] ) # Satellites with elevation larger than threshold if elev > elev_mask: # Add satellite index to result visSat = np.append(visSat, prn) return visSat def get_doppler(ht, R, k, eph): """Calculate expected Doppler [Hz] for given time and position hypothesis. Inputs: ht - Time hypothesis (receiver) [s] R - Receiver position (ECEF) [m,m,m] k - Satellite index (PRN) eph - Ephemeris Output: D - Doppler shift frequency [Hz] Author: <NAME> """ # Speed of light [m/s] c = 299792458 # Crude transmit time estimate [s] t = ht - 76.5e-3 # GPS time with respect to 1980 to time of week (TOW) tow = np.mod(t, 7 * 24 * 60 * 60) # Find column of ephemeris matrix that matches satellite index and time col = find_eph(eph, k, tow) if np.isnan(col): return np.NaN else: # Extract column eph = eph[:, col] for it in range(2): # 2 iterations to refine transmit time estimate p = get_sat_pos(t, eph) # Satellite position estimate [m,m,m] d = np.linalg.norm(R - p) / c # Propagation delay estimate [s] t = ht - d # Transmit time estimate [s] L1 = 1575.42e6 # GPS signal frequency [Hz] P, V = get_sat_pos_vel(t, eph) # Satellite velocity [m/s,m/s,m/s] lambd = c / L1 # Wave length of transmitted signal # Doppler shift (cf. 'Cycle slip detection in single frequency GPS carrier # phase observations using expected Doppler shift') return (np.dot((R - P) / np.linalg.norm(R - P), V) / lambd) def generate_ca_code(PRN): """Generate one of the GPS, EGNOS, or WAAS satellite C/A codes. Input: PRN - PRN number of the sequence Output: CAcode - Array containing the desired C/A code sequence (chips) Author: <NAME> """ # Make the code shift array; the shift depends on the PRN number # The g2s vector holds the appropriate shift of the g2 code to generate # the C/A code (ex. for SV#19 - use a G2 shift of g2s(19) = 471) g2s = [ 5, 6, 7, 8, 17, 18, 139, 140, 141, 251, 252, 254, 255, 256, 257, 258, 469, 470, 471, 472, 473, 474, 509, 512, 513, 514, 515, 516, 859, 860, 861, 862, # End of shifts for GPS satellites 145, 175, 52, 21, 237, 235, 886, 657, 634, 762, 355, 1012, 176, 603, 130, 359, 595, 68, 386 # End of shifts for EGNOS and WAAS satellites ] # For EGNOS and WAAS, subtract 87 from the PRN # Adjust EGNOS and WAAS PRNs if PRN >= 120: PRN = PRN - 87 if PRN > len(g2s): raise Exception( "Provided PRN out of range. Only 1-32 and 120-139 supported.") # Pick right shift for the given PRN number g2shift = g2s[PRN - 1] # Generate G1 code # Initialize g1 output to speed up the function g1 = np.zeros(1023) # Load shift register reg = -1 * np.ones(10) # Generate all G1 signal chips based on the G1 feedback polynomial ----- for i in range(1023): g1[i] = reg[9] saveBit = reg[2] * reg[9] reg[1:10] = reg[0:9] reg[0] = saveBit # Generate G2 code # Initialize g2 output to speed up the function g2 = np.zeros(1023) # Load shift register reg = -1 * np.ones(10) # Generate all G2 signal chips based on the G2 feedback polynomial for i in range(1023): g2[i] = reg[9] saveBit = reg[1] * reg[2] * reg[5] * reg[7] * reg[8] * reg[9] reg[1:10] = reg[0:9] reg[0] = saveBit # Shift G2 code # The idea: g2 = concatenate[ g2_right_part, g2_left_part ] g2 = np.concatenate((g2[1023 - g2shift: 1023], g2[0: 1023 - g2shift])) # Form single sample C/A code by multiplying G1 and G2 return -(g1 * g2) def generate_e1_code(prn, fs, pilot=False): """Generate and sample Galileo signal that is transmitted in E1 band. Inputs: prn - Index of satellite (1-50) fs - Sampling rate [Hz] pilot - Flag if data component E1B (pilot=False) or primary pilot component E1C (pilot=True) is returned, default=False. Output: replica - Binary sampled E1 Open Service data signal Author: <NAME> """ # chip_rate = 1023000 # Number of samples per code sequence n = fs * 4e-3 # Number of chips per code sequence code_length = 4092.0 # Distance in chips between two samples (increment) incr = code_length / n if not pilot: # Obtain E1B (data) code c = e1b(prn) else: # Obtain primary E1C (pilot) code c = e1c(prn) # Find indices of samples in E1-B / E1-C code idx = incr * np.arange(int(n)) idx = np.floor(idx) idx = np.mod(idx, code_length).astype('int') # Sample E1-B code x = c[idx] e1_code = - 1.0 + 2.0 * x # Obtain sampled BOC(1,1) boc = boc11(incr, int(n)) # Multiply both signals return e1_code * boc def boc11(incr, n): """Generate and sample binary offset carrier (BOC) of Galileo satellite. Inputs: incr - Increment; difference in chips between two consecutive samples n - Number of samples per code sequence Output: boc - Sampled binary offset carrier Adapted by <NAME> from https://github.com/pmonta/GNSS-DSP-tools/blob/master/gnsstools/nco.py written by <NAME>. """ c = np.array([-1, 1]) boc11_length = 2 idx = incr * np.arange(n) idx = idx * 2 idx = np.floor(idx).astype('int') idx = np.mod(idx, boc11_length) return c[idx] e1b_codes = {} def e1b(prn): """Generate unsampled E1B code of Galileo satellite. Input: prn - Index of satellite Output: y - E1B code Adapted by <NAME> from https://github.com/pmonta/GNSS-DSP-tools/blob/master/gnsstools/galileo/e1b.py written by <NAME>. """ import e1_strings as es if prn not in e1b_codes: s = es.e1b_strings[prn] n = 4092 y = np.zeros(n) for i in range(n): nib = i // 4 bit = 3 - (i % 4) y[i] = (int(s[nib], 16) >> bit) & 1 e1b_codes[prn] = y return e1b_codes[prn] e1c_codes = {} def e1c(prn): """Generate unsampled E1C code of Galileo satellite. Neglect secondary code. Input: prn - Index of satellite Output: y - E1C code Adapted by <NAME> from https://github.com/pmonta/GNSS-DSP-tools/blob/master/gnsstools/galileo/e1c.py written by <NAME>. """ # secondary_code = np.array([0,0,1,1,1,0,0,0,0,0,0,0,1,0,1,0,1,1,0,1,1,0,0,1,0]) # secondary_code = 1.0 - 2.0*secondary_code import e1_strings as es if prn not in e1c_codes: s = es.e1c_strings[prn] n = 4092 y = np.zeros(n) for i in range(n): nib = i // 4 bit = 3 - (i % 4) y[i] = (int(s[nib], 16) >> bit) & 1 e1c_codes[prn] = y return e1c_codes[prn] def generate_b1c_code(prn, fs, pilot=False): """Generate and sample BeiDou signal that is transmitted in B1C band. Inputs: prn - Index of satellite (1-63) fs - Sampling rate [Hz] pilot - Flag if data component (pilot=False) or primary pilot component (pilot=True) is returned, default=False. Output: s_b1c - B1C signal, length of 10230 chips at 1.023 MHz chip rate Author: <NAME> """ # Number of samples per code sequence n = fs * 10.0e-3 # Number of chips per code sequence code_length = 10230.0 # Distance in chips between two samples (increment) incr = code_length / n if not pilot: # Obtain B1C_data code c = b1c_data(prn) else: # Obtain primary B1C_pilot code c = b1c_pilot(prn) # Find indices of samples in B1C_data code idx = incr * np.arange(int(n)) idx = np.floor(idx) idx = np.mod(idx, code_length).astype('int') # Sample B1C_data code x = c[idx] b1c_code = - 1.0 + 2.0 * x # Obtain sampled BOC boc = boc11(incr, int(n)) # Multiply both signals return b1c_code * boc b1cd_codes = {} def b1c_data(prn): """Generate unsampled BeiDou B1C_data signal. Input: prn - Index of satellite (1-63) Output: y - B1C_data, length of 10230 chips at 1.023 MHz chip rate Adapted by <NAME> from https://github.com/pmonta/GNSS-DSP-tools/blob/master/gnsstools/beidou/b1cd.py written by <NAME>. """ from sympy.ntheory import legendre_symbol if prn not in b1cd_codes: # chip_rate = 1023000 code_length = 10230 b1cd_params = { 1: (2678,699), 2: (4802,694), 3: (958,7318), 4: (859,2127), 5: (3843,715), 6: (2232,6682), 7: (124,7850), 8: (4352,5495), 9: (1816,1162), 10: (1126,7682), 11: (1860,6792), 12: (4800,9973), 13: (2267,6596), 14: (424,2092), 15: (4192,19), 16: (4333,10151), 17: (2656,6297), 18: (4148,5766), 19: (243,2359), 20: (1330,7136), 21: (1593,1706), 22: (1470,2128), 23: (882,6827), 24: (3202,693), 25: (5095,9729), 26: (2546,1620), 27: (1733,6805), 28: (4795,534), 29: (4577,712), 30: (1627,1929), 31: (3638,5355), 32: (2553,6139), 33: (3646,6339), 34: (1087,1470), 35: (1843,6867), 36: (216,7851), 37: (2245,1162), 38: (726,7659), 39: (1966,1156), 40: (670,2672), 41: (4130,6043), 42: (53,2862), 43: (4830,180), 44: (182,2663), 45: (2181,6940), 46: (2006,1645), 47: (1080,1582), 48: (2288,951), 49: (2027,6878), 50: (271,7701), 51: (915,1823), 52: (497,2391), 53: (139,2606), 54: (3693,822), 55: (2054,6403), 56: (4342,239), 57: (3342,442), 58: (2592,6769), 59: (1007,2560), 60: (310,2502), 61: (4203,5072), 62: (455,7268), 63: (4318,341), } N = 10243 L = np.array([legendre_symbol(i, N) for i in range(N)]) L[L == -1] = 0 L[0] = 0 w, p = b1cd_params[prn] W = np.array([L[k] ^ L[(k+w) % N] for k in range(N)]) c = np.array([W[(n+p-1) % N] for n in range(code_length)]) b1cd_codes[prn] = c return b1cd_codes[prn] b1cp_codes = {} b1cp_secondary_codes = {} def b1c_pilot(prn, secondary=False): """Generate unsampled BeiDou B1C_pilot signal. Input: prn - Index of satellite (1-63) secondary - Flag if primary code (secondary=False) or secondary code (secondary=True) is returned, default=False Output: y - Primary or secondary B1C_pilot, length of 10230 chips at 1.023 MHz chip rate and length of 1800 at xxx chip rate, respectively. Adapted by <NAME> from https://github.com/pmonta/GNSS-DSP-tools/blob/master/gnsstools/beidou/b1cp.py written by <NAME>. """ from sympy.ntheory import legendre_symbol if not secondary: if prn not in b1cp_codes: # chip_rate = 1023000 code_length = 10230 b1cp_params = { 1: (796,7575), 2: (156,2369), 3: (4198,5688), 4: (3941,539), 5: (1374,2270), 6: (1338,7306), 7: (1833,6457), 8: (2521,6254), 9: (3175,5644), 10: (168,7119), 11: (2715,1402), 12: (4408,5557), 13: (3160,5764), 14: (2796,1073), 15: (459,7001), 16: (3594,5910), 17: (4813,10060), 18: (586,2710), 19: (1428,1546), 20: (2371,6887), 21: (2285,1883), 22: (3377,5613), 23: (4965,5062), 24: (3779,1038), 25: (4547,10170), 26: (1646,6484), 27: (1430,1718), 28: (607,2535), 29: (2118,1158), 30: (4709,526), 31: (1149,7331), 32: (3283,5844), 33: (2473,6423), 34: (1006,6968), 35: (3670,1280), 36: (1817,1838), 37: (771,1989), 38: (2173,6468), 39: (740,2091), 40: (1433,1581), 41: (2458,1453), 42: (3459,6252), 43: (2155,7122), 44: (1205,7711), 45: (413,7216), 46: (874,2113), 47: (2463,1095), 48: (1106,1628), 49: (1590,1713), 50: (3873,6102), 51: (4026,6123), 52: (4272,6070), 53: (3556,1115), 54: (128,8047), 55: (1200,6795), 56: (130,2575), 57: (4494,53), 58: (1871,1729), 59: (3073,6388), 60: (4386,682), 61: (4098,5565), 62: (1923,7160), 63: (1176,2277), } N = 10243 L = np.array([legendre_symbol(i, N) for i in range(N)]) L[L == -1] = 0 L[0] = 0 w, p = b1cp_params[prn] W = np.array([L[k] ^ L[(k+w) % N] for k in range(N)]) c = np.array([W[(n+p-1) % N] for n in range(code_length)]) b1cp_codes[prn] = c return b1cp_codes[prn] else: if prn not in b1cp_secondary_codes: b1cp_secondary_params = { 1: (269,1889), 2: (1448,1268), 3: (1028,1593), 4: (1324,1186), 5: (822,1239), 6: (5,1930), 7: (155,176), 8: (458,1696), 9: (310,26), 10: (959,1344), 11: (1238,1271), 12: (1180,1182), 13: (1288,1381), 14: (334,1604), 15: (885,1333), 16: (1362,1185), 17: (181,31), 18: (1648,704), 19: (838,1190), 20: (313,1646), 21: (750,1385), 22: (225,113), 23: (1477,860), 24: (309,1656), 25: (108,1921), 26: (1457,1173), 27: (149,1928), 28: (322,57), 29: (271,150), 30: (576,1214), 31: (1103,1148), 32: (450,1458), 33: (399,1519), 34: (241,1635), 35: (1045,1257), 36: (164,1687), 37: (513,1382), 38: (687,1514), 39: (422,1), 40: (303,1583), 41: (324,1806), 42: (495,1664), 43: (725,1338), 44: (780,1111), 45: (367,1706), 46: (882,1543), 47: (631,1813), 48: (37,228), 49: (647,2871), 50: (1043,2884), 51: (24,1823), 52: (120,75), 53: (134,11), 54: (136,63), 55: (158,1937), 56: (214,22), 57: (335,1768), 58: (340,1526), 59: (661,1402), 60: (889,1445), 61: (929,1680), 62: (1002,1290), 63: (1149,1245), } sec_N = 3607 sec_L = np.array([legendre_symbol(i, sec_N) for i in range(sec_N)]) sec_L[sec_L == -1] = 0 sec_L[0] = 0 sec_code_length = 1800 w, p = b1cp_secondary_params[prn] W = np.array([sec_L[k] ^ sec_L[(k+w) % sec_N] for k in range(sec_N)]) c = np.array([W[(n+p-1) % sec_N] for n in range(sec_code_length)]) b1cp_secondary_codes[prn] = c return b1cp_secondary_codes[prn] def generate_l1c_code(prn, fs, pilot=False): """Generate and sample GPS signal that is transmitted in L1C band. Inputs: prn - Index of satellite (1-210) fs - Sampling rate [Hz] pilot - Flag if data component (pilot=False) or primary pilot component (pilot=True) is returned, default=False. Output: s_l1c - L1C signal, length of 10230 chips at 1.023 MHz chip rate Author: <NAME> """ # Number of samples per code sequence n = fs * 10.0e-3 # Number of chips per code sequence code_length = 10230.0 # Distance in chips between two samples (increment) incr = code_length / n if not pilot: # Obtain L1C_data code c = l1c_data(prn) else: # Obtain L1C_pilot code c = l1c_pilot(prn) # Find indices of samples in L1C_data code idx = incr * np.arange(int(n)) idx = np.floor(idx) idx = np.mod(idx, code_length).astype('int') # Sample L1C_data code x = c[idx] l1c_code = - 1.0 + 2.0 * x # Obtain sampled BOC boc = boc11(incr, int(n)) # Multiply both signals return l1c_code * boc l1cd_codes = {} def l1c_data(prn): """Generate unsampled GPS L1C_data signal. Input: prn - Index of satellite (1-210) Output: y - L1C_data, length of 10230 chips at 1.023 MHz chip rate Adapted by <NAME> from https://github.com/pmonta/GNSS-DSP-tools/blob/master/gnsstools/gps/l1cd.py written by <NAME>. """ from sympy.ntheory import legendre_symbol if prn not in l1cd_codes: # chip_rate = 1023000 # code_length = 10230 l1cd_params = { 1: (5097,181), 2: (5110,359), 3: (5079,72), 4: (4403,1110), 5: (4121,1480), 6: (5043,5034), 7: (5042,4622), 8: (5104,1), 9: (4940,4547), 10: (5035,826), 11: (4372,6284), 12: (5064,4195), 13: (5084,368), 14: (5048,1), 15: (4950,4796), 16: (5019,523), 17: (5076,151), 18: (3736,713), 19: (4993,9850), 20: (5060,5734), 21: (5061,34), 22: (5096,6142), 23: (4983,190), 24: (4783,644), 25: (4991,467), 26: (4815,5384), 27: (4443,801), 28: (4769,594), 29: (4879,4450), 30: (4894,9437), 31: (4985,4307), 32: (5056,5906), 33: (4921,378), 34: (5036,9448), 35: (4812,9432), 36: (4838,5849), 37: (4855,5547), 38: (4904,9546), 39: (4753,9132), 40: (4483,403), 41: (4942,3766), 42: (4813,3), 43: (4957,684), 44: (4618,9711), 45: (4669,333), 46: (4969,6124), 47: (5031,10216), 48: (5038,4251), 49: (4740,9893), 50: (4073,9884), 51: (4843,4627), 52: (4979,4449), 53: (4867,9798), 54: (4964,985), 55: (5025,4272), 56: (4579,126), 57: (4390,10024), 58: (4763,434), 59: (4612,1029), 60: (4784,561), 61: (3716,289), 62: (4703,638), 63: (4851,4353), 64: (4955,9899), 65: (5018,4629), 66: (4642,669), 67: (4840,4378), 68: (4961,4528), 69: (4263,9718), 70: (5011,5485), 71: (4922,6222), 72: (4317,672), 73: (3636,1275), 74: (4884,6083), 75: (5041,5264), 76: (4912,10167), 77: (4504,1085), 78: (4617,194), 79: (4633,5012), 80: (4566,4938), 81: (4702,9356), 82: (4758,5057), 83: (4860,866), 84: (3962,2), 85: (4882,204), 86: (4467,9808), 87: (4730,4365), 88: (4910,162), 89: (4684,367), 90: (4908,201), 91: (4759,18), 92: (4880,251), 93: (4095,10167), 94: (4971,21), 95: (4873,685), 96: (4561,92), 97: (4588,1057), 98: (4773,3), 99: (4997,5756), 100: (4583,14), 101: (4900,9979), 102: (4574,9569), 103: (4629,515), 104: (4676,753), 105: (4181,1181), 106: (5057,9442), 107: (4944,669), 108: (4401,4834), 109: (4586,541), 110: (4699,9933), 111: (3676,6683), 112: (4387,4828), 113: (4866,9710), 114: (4926,10170), 115: (4657,9629), 116: (4477,260), 117: (4359,86), 118: (4673,5544), 119: (4258,923), 120: (4447,257), 121: (4570,507), 122: (4486,4572), 123: (4362,4491), 124: (4481,341), 125: (4322,130), 126: (4668,79), 127: (3967,1142), 128: (4374,448), 129: (4553,875), 130: (4641,555), 131: (4215,1272), 132: (3853,5198), 133: (4787,9529), 134: (4266,4459), 135: (4199,10019), 136: (4545,9353), 137: (4208,9780), 138: (4485,375), 139: (3714,503), 140: (4407,4507), 141: (4182,875), 142: (4203,1246), 143: (3788,1), 144: (4471,4534), 145: (4691,8), 146: (4281,9549), 147: (4410,6240), 148: (3953,22), 149: (3465,5652), 150: (4801,10069), 151: (4278,4796), 152: (4546,4980), 153: (3779,27), 154: (4115,90), 155: (4193,9788), 156: (3372,715), 157: (3786,9720), 158: (3491,301), 159: (3812,5450), 160: (3594,5215), 161: (4028,13), 162: (3652,1147), 163: (4224,4855), 164: (4334,1190), 165: (3245,1267), 166: (3921,1302), 167: (3840,1), 168: (3514,5007), 169: (2922,549), 170: (4227,368), 171: (3376,6300), 172: (3560,5658), 173: (4989,4302), 174: (4756,851), 175: (4624,4353), 176: (4446,9618), 177: (4174,9652), 178: (4551,1232), 179: (3972,109), 180: (4399,10174), 181: (4562,6178), 182: (3133,1851), 183: (4157,1299), 184: (5053,325), 185: (4536,10206),186: (5067,9968), 187: (3905,10191), 188: (3721,5438), 189: (3787,10080),190: (4674,219), 191: (3436,758), 192: (2673,2140), 193: (4834,9753), 194: (4456,4799), 195: (4056,10126), 196: (3804,241), 197: (3672,1245), 198: (4205,1274), 199: (3348,1456), 200: (4152,9967), 201: (3883,235), 202: (3473,512), 203: (3669,1078), 204: (3455,1078), 205: (2318,953), 206: (2945,5647), 207: (2947,669), 208: (3220,1311), 209: (4052,5827), 210: (2953,15), } N = 10243 L = np.array([legendre_symbol(i, N) for i in range(N)]) L[L == -1] = 0 L[0] = 0 w, p = l1cd_params[prn] W = np.array([L[k] ^ L[(k+w) % N] for k in range(N)]) expansion = np.array([0, 1, 1, 0, 1, 0, 0]) c = np.concatenate((W[0:p-1], expansion, W[p-1:N])) l1cd_codes[prn] = c return l1cd_codes[prn] l1cp_codes = {} l1cp_secondary_codes = {} def l1c_pilot(prn, secondary=False): """Generate unsampled GPS L1C_pilot signal. Input: prn - Index of satellite (1-210) secondary - Flag if primary code (secondary=False) or secondary code (secondary=True) is returned, default=False Output: y - Primary or secondary B1C_pilot, length of 10230 chips at 1.023 MHz chip rate and length of 1800 at xxx chip rate, respectively. Adapted by <NAME> from https://github.com/pmonta/GNSS-DSP-tools/blob/master/gnsstools/gps/l1cp.py written by <NAME>. """ from sympy.ntheory import legendre_symbol if not secondary: if prn not in l1cp_codes: # chip_rate = 1023000 # code_length = 10230 l1cp_params = { 1: (5111,412), 2: (5109,161), 3: (5108,1), 4: (5106,303), 5: (5103,207), 6: (5101,4971), 7: (5100,4496), 8: (5098,5), 9: (5095,4557), 10: (5094,485), 11: (5093,253), 12: (5091,4676), 13: (5090,1), 14: (5081,66), 15: (5080,4485), 16: (5069,282), 17: (5068,193), 18: (5054,5211), 19: (5044,729), 20: (5027,4848), 21: (5026,982), 22: (5014,5955), 23: (5004,9805), 24: (4980,670), 25: (4915,464), 26: (4909,29), 27: (4893,429), 28: (4885,394), 29: (4832,616), 30: (4824,9457), 31: (4591,4429), 32: (3706,4771), 33: (5092,365), 34: (4986,9705), 35: (4965,9489), 36: (4920,4193), 37: (4917,9947), 38: (4858,824), 39: (4847,864), 40: (4790,347), 41: (4770,677), 42: (4318,6544), 43: (4126,6312), 44: (3961,9804), 45: (3790,278), 46: (4911,9461), 47: (4881,444), 48: (4827,4839), 49: (4795,4144), 50: (4789,9875), 51: (4725,197), 52: (4675,1156), 53: (4539,4674), 54: (4535,10035), 55: (4458,4504), 56: (4197,5), 57: (4096,9937), 58: (3484,430), 59: (3481,5), 60: (3393,355), 61: (3175,909), 62: (2360,1622), 63: (1852,6284), 64: (5065,9429), 65: (5063,77), 66: (5055,932), 67: (5012,5973), 68: (4981,377), 69: (4952,10000), 70: (4934,951), 71: (4932,6212), 72: (4786,686), 73: (4762,9352), 74: (4640,5999), 75: (4601,9912), 76: (4563,9620), 77: (4388,635), 78: (3820,4951), 79: (3687,5453), 80: (5052,4658), 81: (5051,4800), 82: (5047,59), 83: (5039,318), 84: (5015,571), 85: (5005,565), 86: (4984,9947), 87: (4975,4654), 88: (4974,148), 89: (4972,3929), 90: (4962,293), 91: (4913,178), 92: (4907,10142), 93: (4903,9683), 94: (4833,137), 95: (4778,565), 96: (4721,35), 97: (4661,5949), 98: (4660,2), 99: (4655,5982), 100: (4623,825), 101: (4590,9614), 102: (4548,9790), 103: (4461,5613), 104: (4442,764), 105: (4347,660), 106: (4259,4870), 107: (4256,4950), 108: (4166,4881), 109: (4155,1151), 110: (4109,9977), 111: (4100,5122), 112: (4023,10074),113: (3998,4832), 114: (3979,77), 115: (3903,4698), 116: (3568,1002), 117: (5088,5549), 118: (5050,9606), 119: (5020,9228), 120: (4990,604), 121: (4982,4678), 122: (4966,4854), 123: (4949,4122), 124: (4947,9471), 125: (4937,5026), 126: (4935,272), 127: (4906,1027), 128: (4901,317), 129: (4872,691), 130: (4865,509), 131: (4863,9708), 132: (4818,5033), 133: (4785,9938), 134: (4781,4314), 135: (4776,10140), 136: (4775,4790), 137: (4754,9823), 138: (4696,6093), 139: (4690,469), 140: (4658,1215), 141: (4607,799), 142: (4599,756), 143: (4596,9994), 144: (4530,4843), 145: (4524,5271), 146: (4451,9661), 147: (4441,6255), 148: (4396,5203), 149: (4340,203), 150: (4335,10070),151: (4296,30), 152: (4267,103), 153: (4168,5692), 154: (4149,32), 155: (4097,9826), 156: (4061,76), 157: (3989,59), 158: (3966,6831), 159: (3789,958), 160: (3775,1471), 161: (3622,10070), 162: (3523,553), 163: (3515,5487), 164: (3492,55), 165: (3345,208), 166: (3235,645), 167: (3169,5268), 168: (3157,1873), 169: (3082,427), 170: (3072,367), 171: (3032,1404), 172: (3030,5652), 173: (4582,5), 174: (4595,368), 175: (4068,451), 176: (4871,9595), 177: (4514,1030), 178: (4439,1324), 179: (4122,692), 180: (4948,9819), 181: (4774,4520), 182: (3923,9911), 183: (3411,278), 184: (4745,642), 185: (4195,6330), 186: (4897,5508), 187: (3047,1872), 188: (4185,5445), 189: (4354,10131), 190: (5077,422), 191: (4042,4918), 192: (2111,787), 193: (4311,9864), 194: (5024,9753), 195: (4352,9859), 196: (4678,328), 197: (5034,1), 198: (5085,4733), 199: (3646,164), 200: (4868,135), 201: (3668,174), 202: (4211,132), 203: (2883,538), 204: (2850,176), 205: (2815,198), 206: (2542,595), 207: (2492,574), 208: (2376,321), 209: (2036,596), 210: (1920,491), } N = 10223 L = np.array([legendre_symbol(i, N) for i in range(N)]) L[L == -1] = 0 L[0] = 0 w, p = l1cp_params[prn] W = np.array([L[k] ^ L[(k+w) % N] for k in range(N)]) expansion = np.array([0, 1, 1, 0, 1, 0, 0]) c = np.concatenate((W[0:p-1], expansion, W[p-1:N])) l1cp_codes[prn] = c return l1cp_codes[prn] else: if prn not in l1cp_secondary_codes: l1cp_secondary_params = { 1: (0o5111,0o3266), 2: (0o5421,0o2040), 3: (0o5501,0o1527), 4: (0o5403,0o3307), 5: (0o6417,0o3756), 6: (0o6141,0o3026), 7: (0o6351,0o0562), 8: (0o6501,0o0420), 9: (0o6205,0o3415), 10: (0o6235,0o0337), 11: (0o7751,0o0265), 12: (0o6623,0o1230), 13: (0o6733,0o2204), 14: (0o7627,0o1440), 15: (0o5667,0o2412), 16: (0o5051,0o3516), 17: (0o7665,0o2761), 18: (0o6325,0o3750), 19: (0o4365,0o2701), 20: (0o4745,0o1206), 21: (0o7633,0o1544), 22: (0o6747,0o1774), 23: (0o4475,0o0546), 24: (0o4225,0o2213), 25: (0o7063,0o3707), 26: (0o4423,0o2051), 27: (0o6651,0o3650), 28: (0o4161,0o1777), 29: (0o7237,0o3203), 30: (0o4473,0o1762), 31: (0o5477,0o2100), 32: (0o6163,0o0571), 33: (0o7223,0o3710), 34: (0o6323,0o3535), 35: (0o7125,0o3110), 36: (0o7035,0o1426), 37: (0o4341,0o0255), 38: (0o4353,0o0321), 39: (0o4107,0o3124), 40: (0o5735,0o0572), 41: (0o6741,0o1736), 42: (0o7071,0o3306), 43: (0o4563,0o1307), 44: (0o5755,0o3763), 45: (0o6127,0o1604), 46: (0o4671,0o1021), 47: (0o4511,0o2624), 48: (0o4533,0o0406), 49: (0o5357,0o0114), 50: (0o5607,0o0077), 51: (0o6673,0o3477), 52: (0o6153,0o1000), 53: (0o7565,0o3460), 54: (0o7107,0o2607), 55: (0o6211,0o2057), 56: (0o4321,0o3467), 57: (0o7201,0o0706), 58: (0o4451,0o2032), 59: (0o5411,0o1464), 60: (0o5141,0o0520), 61: (0o7041,0o1766), 62: (0o6637,0o3270), 63: (0o4577,0o0341), 64: (0o5111,0o1740,0o3035), 65: (0o5111,0o3664,0o1557), 66: (0o5111,0o1427,0o0237), 67: (0o5111,0o2627,0o2527), 68: (0o5111,0o0701,0o3307), 69: (0o5111,0o3460,0o1402), 70: (0o5111,0o1373,0o1225), 71: (0o5111,0o2540,0o0607), 72: (0o5111,0o2004,0o0351), 73: (0o5111,0o2274,0o3724), 74: (0o5111,0o1340,0o1675), 75: (0o5111,0o0602,0o2625), 76: (0o5111,0o2502,0o1030), 77: (0o5111,0o0327,0o1443), 78: (0o5111,0o2600,0o3277), 79: (0o5111,0o0464,0o1132), 80: (0o5111,0o3674,0o0572), 81: (0o5111,0o3040,0o1241), 82: (0o5111,0o1153,0o0535), 83: (0o5111,0o0747,0o1366), 84: (0o5111,0o1770,0o0041), 85: (0o5111,0o3772,0o0561), 86: (0o5111,0o1731,0o0122), 87: (0o5111,0o1672,0o1205), 88: (0o5111,0o1333,0o3753), 89: (0o5111,0o2705,0o2543), 90: (0o5111,0o2713,0o3031), 91: (0o5111,0o3562,0o2260), 92: (0o5111,0o3245,0o3773), 93: (0o5111,0o3770,0o3156), 94: (0o5111,0o3202,0o2215), 95: (0o5111,0o3521,0o0146), 96: (0o5111,0o3250,0o2413), 97: (0o5111,0o2117,0o2564), 98: (0o5111,0o0530,0o3310), 99: (0o5111,0o3021,0o2267), 100: (0o5421,0o2511,0o3120), 101: (0o5421,0o1562,0o0064), 102: (0o5421,0o1067,0o1042), 103: (0o5421,0o0424,0o0476), 104: (0o5421,0o3402,0o1020), 105: (0o5421,0o1326,0o0431), 106: (0o5421,0o2142,0o0216), 107: (0o5421,0o0733,0o2736), 108: (0o5421,0o0504,0o2527), 109: (0o5421,0o1611,0o2431), 110: (0o5421,0o2724,0o1013), 111: (0o5421,0o0753,0o0524), 112: (0o5421,0o3724,0o0726), 113: (0o5421,0o2652,0o1042), 114: (0o5421,0o1743,0o3362), 115: (0o5421,0o0013,0o1364), 116: (0o5421,0o3464,0o3354), 117: (0o5421,0o2300,0o0623), 118: (0o5421,0o1334,0o0145), 119: (0o5421,0o2175,0o0214), 120: (0o5421,0o2564,0o0223), 121: (0o5421,0o3075,0o0151), 122: (0o5421,0o3455,0o2405), 123: (0o5421,0o3627,0o2522), 124: (0o5421,0o0617,0o3235), 125: (0o5421,0o1324,0o0452), 126: (0o5421,0o3506,0o2617), 127: (0o5421,0o2231,0o1300), 128: (0o5421,0o1110,0o1430), 129: (0o5421,0o1271,0o0773), 130: (0o5421,0o3740,0o0772), 131: (0o5421,0o3652,0o3561), 132: (0o5421,0o1644,0o0607), 133: (0o5421,0o3635,0o0420), 134: (0o5421,0o3436,0o0527), 135: (0o5421,0o3076,0o3770), 136: (0o5421,0o0434,0o2536), 137: (0o5421,0o3340,0o2233), 138: (0o5421,0o0054,0o3366), 139: (0o5403,0o2446,0o3766), 140: (0o5403,0o0025,0o3554), 141: (0o5403,0o0150,0o2060), 142: (0o5403,0o2746,0o2070), 143: (0o5403,0o2723,0o0713), 144: (0o5403,0o2601,0o3366), 145: (0o5403,0o3440,0o3247), 146: (0o5403,0o1312,0o2776), 147: (0o5403,0o0544,0o1244), 148: (0o5403,0o2062,0o2102), 149: (0o5403,0o0176,0o1712), 150: (0o5403,0o3616,0o1245), 151: (0o5403,0o1740,0o3344), 152: (0o5403,0o3777,0o1277), 153: (0o5403,0o0432,0o0165), 154: (0o5403,0o2466,0o2131), 155: (0o5403,0o1667,0o3623), 156: (0o5403,0o3601,0o0141), 157: (0o5403,0o2706,0o0421), 158: (0o5403,0o2022,0o3032), 159: (0o5403,0o1363,0o2065), 160: (0o5403,0o2331,0o3024), 161: (0o5403,0o3556,0o2663), 162: (0o5403,0o2205,0o2274), 163: (0o5403,0o3734,0o2114), 164: (0o5403,0o2115,0o1664), 165: (0o5403,0o0010,0o0413), 166: (0o5403,0o2140,0o1512), 167: (0o5403,0o3136,0o0135), 168: (0o5403,0o0272,0o2737), 169: (0o5403,0o3264,0o1015), 170: (0o5403,0o2017,0o1075), 171: (0o5403,0o2505,0o1255), 172: (0o5403,0o3532,0o3473), 173: (0o5403,0o0647,0o2716), 174: (0o5403,0o1542,0o0101), 175: (0o5403,0o2154,0o1105), 176: (0o5403,0o3734,0o1407), 177: (0o5403,0o2621,0o3407), 178: (0o5403,0o2711,0o1046), 179: (0o5403,0o0217,0o3237), 180: (0o5403,0o3503,0o0154), 181: (0o5403,0o3457,0o3010), 182: (0o5403,0o3750,0o2245), 183: (0o5403,0o2525,0o2051), 184: (0o5403,0o0113,0o2144), 185: (0o5403,0o0265,0o1743), 186: (0o5403,0o1711,0o2511), 187: (0o5403,0o0552,0o3410), 188: (0o5403,0o0675,0o1414), 189: (0o5403,0o1706,0o1275), 190: (0o5403,0o3513,0o2257), 191: (0o5403,0o1135,0o2331), 192: (0o5403,0o0566,0o0276), 193: (0o5403,0o0500,0o3261), 194: (0o5403,0o0254,0o1760), 195: (0o5403,0o3445,0o0430), 196: (0o5403,0o2542,0o3477), 197: (0o5403,0o1257,0o1676), 198: (0o6501,0o0211,0o1636), 199: (0o6501,0o0534,0o2411), 200: (0o6501,0o1420,0o1473), 201: (0o6501,0o3401,0o2266), 202: (0o6501,0o0714,0o2104), 203: (0o6501,0o0613,0o2070), 204: (0o6501,0o2475,0o1766), 205: (0o6501,0o2572,0o0711), 206: (0o6501,0o3265,0o2533), 207: (0o6501,0o1250,0o0353), 208: (0o6501,0o1711,0o1744), 209: (0o6501,0o2704,0o0053), 210: (0o6501,0o0135,0o2222), } sec_code_length = 1800 def int2list(x, n): y = [] for i in range(n): y.append((x >> i) & 1) return y def xorprod(a, b): t = 0 for x, y in zip(a, b): t = t ^ (x*y) return t def s_shift(x, p): return [xorprod(x, p)] + x[0:-1] p, init = l1cp_secondary_params[prn] p = int2list(p//2, 11) x = int2list(init, 11) c = np.zeros(sec_code_length) for i in range(sec_code_length): c[i] = x[10] x = s_shift(x, p) l1cp_secondary_codes[prn] = c return l1cp_secondary_codes[prn] glonass_l1_code = {} def generate_ca_code_glonass(): """Generate GLONASS signal that is transmitted in L1 band. Inputs: prn - Index of satellite (1-210) fs - Sampling rate [Hz] pilot - Flag if data component (pilot=False) or primary pilot component (pilot=True) is returned, default=False. Output: glonass_l1_code - L1 C/A code, length of 511 chips at 0.511 MHz chip rate Adapted by <NAME> from https://github.com/pmonta/GNSS-DSP-tools/blob/master/gnsstools/glonass/ca.py written by <NAME>. """ global glonass_l1_code # Check if C/A code must be generated if len(glonass_l1_code) == 0: # chip_rate = 511000 code_length = 511 x = [1, 1, 1, 1, 1, 1, 1, 1, 1] glonass_l1_code = np.zeros(code_length) for i in range(code_length): glonass_l1_code[i] = x[6] x = [x[8] ^ x[4]] + x[0:8] return glonass_l1_code def rinexe(ephemerisfile, system=None): """Read a RINEX Navigation Message file and reformat the data. Reformat the data into a 2D NumPy array with 21 rows and a column for each satellite. Units are either seconds, meters, or radians Typical calls: rinexe("brdc1310.20n") rinexe("BRDC00IGS_R_20203410000_01D_MN.rnx", system='S') Inputs: ephemerisfile - Path to RINEX Navigation Message file system - Character of system to consider, only in RINEX version 3. 'G' - GPS 'S' - SBAS 'R' - GLONASS 'E' - Galileo 'C' - BeiDou 'J' - QZSS 'I' - NavIC None - Only one GNSS is assumed to be present (default) Author: <NAME> """ with open(ephemerisfile, "r") as fide: try: line = fide.readline() version = int(line[5]) except ValueError: raise ValueError('Could not find RINEX version in first line of file.') head_lines = 1 answer = -1 leap_seconds = 18 # Use default leap seconds if they are not in header while answer < 0: # Skip header head_lines = head_lines + 1 line = fide.readline() if line.find("LEAP SECONDS") >= 0 and (system == 'S' or system == 'R'): # Read leap seconds for SBAS or GLONASS leap_seconds = int(line[4:6]) leap_seconds = np.timedelta64(leap_seconds, 's') answer = line.find("END OF HEADER") line = "init" if version == 2: noeph = -1 while not line == "": noeph = noeph + 1 line = fide.readline() # if not sbas: noeph = int(noeph / 8) # else: # noeph = int(noeph / 4) elif version == 3: noeph = 0 while not line == "": line = fide.readline() if not line == "" and not line[0] == " " and ( system is None or line[0] == system): noeph = noeph + 1 else: raise ValueError("Found unsupported RINEX version, use 2 or 3.xx.") fide.seek(0) for i in range(head_lines): line = fide.readline() # Set aside memory for the input svprn = np.zeros(noeph) # weekno = np.zeros(noeph) # t0c = np.zeros(noeph) # tgd = np.zeros(noeph) # aodc = np.zeros(noeph) toe = np.zeros(noeph) af2 = np.zeros(noeph) af1 = np.zeros(noeph) af0 = np.zeros(noeph) # aode = np.zeros(noeph) deltan = np.zeros(noeph) M0 = np.zeros(noeph) ecc =
np.zeros(noeph)
numpy.zeros
""" List of functions intended to support the Jupyter Notebooks, encapsulating code that the user don't need to access in a normal view. Set of functions invoked in OpenSignals Tools Notebooks to present some graphical results. These function are only designed for a single end, but we made them available to the user if he want to explore graphical functionalities with practical examples. Bokeh is the base package of this module, ensuring an interactive and attractive data plotting integrable in web pages and applications like our Jupyter Notebooks. Available Functions ------------------- [Public] css_style_apply Function that apply the css configurations to the Jupyter Notebook pages. plot_compare_act_config With this function is generated a gridplot showing the differences in muscular activation detection results when the input arguments of detect_emg_activations function are changed. plot_median_freq_evol Representation of a plot that shows the median power frequency evolution time series of an acquired EMG signal. plot_sample_rate_compare Gridplot showing differences in ECG signal morphology as a consequence of changing the acquisition sampling rate. acquire_subsamples_gp1 [Old Version] Graphical function that shows the differences in ECG signals accordingly to the chosen sampling rate. plot_resp_slow Function invoked in order to present the RIP signal together the rectangular signal that identifies the inhalation and exhalation stages. plot_resp_diff Similar do plot_resp_slow but in this particular case is presented the 1st derivative of RIP signal instead of the orignal acquired data. Available Functions ------------------- [Private] _inhal_exhal_segments Auxiliary function for determination of the RIP sensor samples where inhalation and exhalation periods start and end. Observations/Comments --------------------- None /\ """ from os.path import exists as pathexist import numpy import requests import os # import novainstrumentation as ni from .process import smooth, plotfft, lowpass from .visualise import plot, opensignals_kwargs, opensignals_color_pallet, opensignals_style from .detect import detect_emg_activations from .aux_functions import _generate_bokeh_file from IPython.core.display import HTML from bokeh.plotting import figure, show, save from bokeh.models.annotations import Title from bokeh.io import output_notebook from bokeh.layouts import gridplot from bokeh.models import BoxAnnotation, Arrow, VeeHead, Range1d, LinearAxis output_notebook(hide_banner=True) def css_style_apply(): """ ----- Brief ----- Function that apply the css configurations to the Jupyter Notebook pages. ----------- Description ----------- Taking into consideration that, ultimately, biosignalsnotebooks Jupyter Notebooks are web pages, then a CSS file with the style options for customization of biosignalsnotebooks environment become particularly important. With CSS, the Jupyter Notebook template can be adapted in order to acquire the opensignals format, by changing background color, color pallet, font style... This function simply injects an HTML statement containing the style configurations. Returns ------- out : IPython.core.display.HTML An IPython object that contains style information to be applied in the web page. """ path = "styles/theme_style.css" if pathexist(path): style = open(path, "r").read() else: style = open("../../" + path, "r").read() print(".................... CSS Style Applied to Jupyter Notebook .........................") return HTML("<div id='style_import'>" + style + "</div>") # ///////////////////////////////////////////////////////////////////////////////////////////////// # ///////////////////////////////// Plotting Auxiliary Functions ////////////////////////////////// # ///////////////////////////////////////////////////////////////////////////////////////////////// # ================================================================================================= # =================================== Acquire Category ============================================ # ================================================================================================= # %%%%%%%%%%%%%%%%%%%%%%%%%% sampling_rate_and_aliasing.ipynb %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% def plot_sample_rate_compare(data_dict, file_name=None): """ ----- Brief ----- Is a plotting function that shows a sequence of ECG plots, demonstrating the relevance of choosing a wright sampling rate. ----------- Description ----------- Function intended to generate a Bokeh figure with Nx2 format, being N the number of keys of 'data_dict' - one for each sampling rate (10, 100, 1000 Hz). At the first column is plotted a 10 seconds segment of the ECG signal at a specific sampling rate, while in the second column it will be presented a zoomed section of the ECG signal with 1 second, in order to the see the effect of choosing a specific sampling rate. Applied in the Notebook titled "Problems of a smaller sampling rate (aliasing)". ---------- Parameters ---------- data_dict : dict Dictionary that contains the data to be plotted ({"<sampling_rate_1>": {"time": <time_axis_1>, "data": <data_1>}, "<sampling_rate_2>": {"time": <time_axis_2>, "data": <data_2>}, ...}) file_name : str Path containing the destination folder where the Bokeh figure will be stored. """ # Generation of the HTML file where the plot will be stored. #file_name = _generate_bokeh_file(file_name) nbr_rows = len(list(data_dict.keys())) # List that store the figure handler. list_figures = plot([[]] * nbr_rows * 2, [[]] * nbr_rows * 2, y_axis_label="Raw Data", x_axis_label="Time (s)", grid_lines=nbr_rows, grid_columns=2, grid_plot=True, get_fig_list=True, show_plot=False) # Generation of Bokeh Figures. grid_list = [] for iter, sample_rate in enumerate(list(data_dict.keys())): # List of figures in a valid gridplot format (each entry will define a row and each # subentry a column of the gridplot) grid_list += [[]] # Plotting of 10 seconds segment. # [Figure tile] title_unzoom = Title() title_unzoom.text = 'Sampling Rate: ' + sample_rate + " Hz" list_figures[2 * iter].title = title_unzoom # [Plot generation] list_figures[2 * iter].line(data_dict[sample_rate]["time"][:10 * int(sample_rate)], data_dict[sample_rate]["data"][:10 * int(sample_rate)], **opensignals_kwargs("line")) # Storage of customized figure. grid_list[-1] += [list_figures[2 * iter]] # Plotting of a zoomed section with 1 second. # [Figure tile] title_zoom = Title() title_zoom.text = 'Zoomed section @ ' + sample_rate + " Hz" list_figures[2 * iter + 1].title = title_zoom # [Plot generation] list_figures[2 * iter + 1].line(data_dict[sample_rate]["time"][:int(sample_rate)], data_dict[sample_rate]["data"][:int(sample_rate)], **opensignals_kwargs("line")) # Storage of customized figure. grid_list[-1] += [list_figures[2 * iter + 1]] # Organisation of figures in a gridplot. grid_plot_1 = gridplot(grid_list, **opensignals_kwargs("gridplot")) # Show representations. show(grid_plot_1) #HTML('<iframe width=100% height=350 src="generated_plots/' + file_name + '"></iframe>') # [Old Version to be removed] def acquire_subsamples_gp1(input_data, file_name=None): """ Function invoked for plotting a grid-plot with 3x2 format, showing the differences in ECG signals accordingly to the chosen sampling frequency. Applied in the cell with tag "subsampling_grid_plot_1". ---------- Parameters ---------- input_data : dict Dictionary with ECG signal to present. file_name : str Path containing the destination folder where the Bokeh figure will be stored. """ # Generation of the HTML file where the plot will be stored. #file_name = _generate_bokeh_file(file_name) # Number of acquired samples (Original sample_rate = 4000 Hz) fs_orig = 4000 nbr_samples_orig = len(input_data) data_interp = {"4000": {}} data_interp["4000"]["data"] = input_data data_interp["4000"]["time"] = numpy.linspace(0, nbr_samples_orig / fs_orig, nbr_samples_orig) # Constants time_orig = data_interp["4000"]["time"] data_orig = data_interp["4000"]["data"] # ============ Interpolation of data accordingly to the desired sampling frequency ============ # sample_rate in [3000, 1000, 500, 200, 100] - Some of the available sample frequencies at Plux # acquisition systems # sample_rate in [50, 20] - Non-functional sampling frequencies (Not available at Plux devices # because of their limited application) for sample_rate in [3000, 1000, 500, 200, 100, 50, 20]: fs_str = str(sample_rate) nbr_samples_interp = int((nbr_samples_orig * sample_rate) / fs_orig) data_interp[fs_str] = {} data_interp[fs_str]["time"] = numpy.linspace(0, nbr_samples_orig / fs_orig, nbr_samples_interp) data_interp[fs_str]["data"] = numpy.interp(data_interp[fs_str]["time"], time_orig, data_orig) # List that store the figure handler. list_figures = [] # Generation of Bokeh Figures. for iter_nbr, sample_rate in enumerate(["4000", "3000", "1000", "500", "200", "100"]): # If figure number is a multiple of 3 or if we are generating the first figure... if iter_nbr == 0 or iter_nbr % 2 == 0: list_figures.append([]) # Plotting phase. list_figures[-1].append(figure(x_axis_label='Time (s)', y_axis_label='Raw Data', title="Sampling Frequency: " + sample_rate + " Hz", **opensignals_kwargs("figure"))) list_figures[-1][-1].line(data_interp[sample_rate]["time"][:int(sample_rate)], data_interp[sample_rate]["data"][:int(sample_rate)], **opensignals_kwargs("line")) # ================================================================================================= # ==================================== Detect Category ============================================ # ================================================================================================= # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% r_peaks.ipynb %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% def plot_ecg_pan_tompkins_steps(time, orig_ecg, pre_process_ecg, sampling_rate, titles): """ ----- Brief ----- With this plotting function it will be possible to plot simultaneously (in pairs) "Original"/ "Filtered"/"Differentiated"/"Rectified"/"Integrated" ECG signals used at "Pan-Tompkins R Peaks Detection Algorithm". ----------- Description ----------- Function intended to generate a Bokeh figure with 1x2 format, being 1 the of rows and 2 the number of columns. At the first column is plotted the ECG signal resulting from pre-process step i while in the second column it is presented the ECG signal resulting from pre-process step i+1. Applied in the Notebook titled "Event Detection - R Peaks (ECG)". ---------- Parameters ---------- time : list List containing the time-axis sequence of values. orig_ecg : list Sequence of sampled values (Original ECG). pre_process_ecg : list Sequence of sampled values (Pre-Processed ECG). sampling_rate : int Acquisition sampling rate (Hz) titles : list List containing the title of each subplot. """ if len(titles) == 2: # Representation of the output of Step 1 of Pan-Tompkins R-Peak Detection Algorithm. # List that store the figure handler list_figures_1 = [[]] # Plotting of Original Signal list_figures_1[-1].append(figure(x_axis_label='Time (s)', y_axis_label='Raw Data', title=titles[0], **opensignals_kwargs("figure"))) list_figures_1[-1][-1].line(time[:sampling_rate], orig_ecg[:sampling_rate], **opensignals_kwargs("line")) # Plotting of Filtered Signal list_figures_1[-1].append(figure(x_axis_label='Time (s)', y_axis_label='Raw Data', title=titles[1], **opensignals_kwargs("figure"))) list_figures_1[-1][-1].line(time[:sampling_rate], pre_process_ecg[:sampling_rate], **opensignals_kwargs("line")) # Grid-Plot. opensignals_style([item for sublist in list_figures_1 for item in sublist]) grid_plot_1 = gridplot(list_figures_1, **opensignals_kwargs("gridplot")) show(grid_plot_1) else: raise RuntimeError("The field 'title' must be a list of strings with size 2 !") def plot_ecg_pan_tompkins_peaks(time, orig_ecg, integrated_ecg, sampling_rate, possible_peaks, probable_peaks, definitive_peaks): """ ----- Brief ----- With this plotting function it will be possible to demonstrate which "peaks" are being detected in each stage of Pan-Tompkins Algorithm (possible, probable, definitive). ----------- Description ----------- Function intended to generate a Bokeh figure containing all peaks detected in a temporal segment (of ECG integrated signal) with 2 seconds. "Possible Peaks" are marked with the smallest circle while "Probable Peaks" and "Definitive Peaks" are highlighted with medium and large size circles. Applied in the Notebook titled "Event Detection - R Peaks (ECG)". ---------- Parameters ---------- time : list List containing the time-axis sequence of values. orig_ecg : list Sequence of sampled values (Original ECG). integrated_ecg : list Sequence of sampled values (Integrated ECG). sampling_rate : int Acquisition sampling rate (Hz) possible_peaks : list List containing all "Possible Peaks" detected from Pan-Tompkins R Peak Detection Algorithm. probable_peaks : list List containing all "Probable Peaks" detected from Pan-Tompkins R Peak Detection Algorithm. definitive_peaks : list List containing all "Definitive Peaks" detected from Pan-Tompkins R Peak Detection Algorithm. """ # List that store the figure handler list_figures = [] # Plotting of a signal segment with 2 seconds segment_data = numpy.array(orig_ecg[:2 * sampling_rate]) segment_int = numpy.array(integrated_ecg[:2 * sampling_rate]) segment_time = numpy.array(time[:2 * sampling_rate]) # Peaks list for the 2 seconds window possible_peaks_wind = numpy.array(possible_peaks)[numpy.array(possible_peaks) < len(segment_int)] probable_peaks_wind = numpy.array(probable_peaks)[numpy.array(probable_peaks) < len(segment_int)] definitive_peaks_wind = numpy.array(definitive_peaks)[numpy.array(definitive_peaks) < len(segment_int)] list_figures.append(figure(x_axis_label='Time (s)', y_axis_label='Raw Data', **opensignals_kwargs("figure"))) list_figures[-1].line(segment_time, segment_int, **opensignals_kwargs("line")) list_figures[-1].circle(segment_time[definitive_peaks_wind], segment_int[definitive_peaks_wind], size=30, color="#00893E", legend="Definitive Peaks") list_figures[-1].circle(segment_time[probable_peaks_wind], segment_int[probable_peaks_wind], size=20, color="#009EE3", legend="Probable Peaks") list_figures[-1].circle(segment_time[possible_peaks_wind], segment_int[possible_peaks_wind], size=10, color="#302683", legend="Possible Peaks") # Show figure. opensignals_style(list_figures) show(list_figures[-1]) # ================================================================================================= # ==================================== Extract Category =========================================== # ================================================================================================= # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% emg_parameters.ipynb %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% def plot_emg_graphical_durations(max_time, min_time, avg_time, std_time): """ ----- Brief ----- This plotting function ensures a graphical representation of maximum, minimum and average time durations of the muscular activation periods. ----------- Description ----------- Function intended to generate a single Bokeh figure graphically describing and identifying some statistical parameters related with the time duration of the muscular activation periods that compose the input EMG signal. Applied in the Notebook titled "EMG Analysis - Time and Frequency Parameters". ---------- Parameters ---------- max_time : float Time duration of the longest EMG muscular activation. min_time : float Time duration of the shortest EMG muscular activation. avg_time : float Average time duration of the EMG muscular activation set. std_time : int Standard deviation of the muscular activation time duration relatively to avg_time. """ # List that store the figure handler list_figures_1 = [] color_1 = "#009EE3" color_2 = "#00893E" color_3 = "#E84D0E" color_4 = "#CF0272" # Plotting of Burst duration distribution list_figures_1.append(figure(x_axis_label='Time (s)', **opensignals_kwargs("figure"), x_range=[0, max_time], y_range=[0, 1])) box_annotation_max = BoxAnnotation(left=0, right=max_time, top=0.33, bottom=0, fill_color=color_1, fill_alpha=0.5) list_figures_1[-1].rect(0, 0, width=0, height=0, fill_color=color_1, fill_alpha=0.5, legend="Maximum Burst Time") list_figures_1[-1].add_layout(box_annotation_max) box_annotation_avg = BoxAnnotation(left=0, right=avg_time, top=0.66, bottom=0.33, fill_color=color_2, fill_alpha=0.5) list_figures_1[-1].rect(0, 0, width=0, height=0, fill_color=color_2, fill_alpha=0.5, legend="Average Burst Time") list_figures_1[-1].add_layout(box_annotation_avg) box_annotation_min = BoxAnnotation(left=0, right=min_time, top=1, bottom=0.66, fill_color=color_3, fill_alpha=0.5) list_figures_1[-1].rect(0, 0, width=0, height=0, fill_color=color_3, fill_alpha=0.5, legend="Minimum Burst Time") list_figures_1[-1].add_layout(box_annotation_min) box_annotation_std = BoxAnnotation(left=avg_time, right=avg_time + std_time, top=0.55, bottom=0.44, fill_color=color_4, fill_alpha=0.5) list_figures_1[-1].rect(0, 0, width=0, height=0, fill_color=color_4, fill_alpha=0.5, legend="Average + Standard Deviation Time") list_figures_1[-1].add_layout(box_annotation_std) # Show figure. opensignals_style(list_figures_1) show(list_figures_1[-1]) def plot_emg_graphical_statistical(time, signal, max_sample_value, min_sample_value, avg_sample_value, std_sample_value): """ ----- Brief ----- This plotting function ensures a graphical representation of maximum, minimum and average sample values registered on the entire EMG acquisition. ----------- Description ----------- Function intended to generate a single Bokeh figure with graphically describing and identifying some statistical parameters extracted from the analysis of the entire electromyographic (EMG) signal. Applied in the Notebook titled "EMG Analysis - Time and Frequency Parameters". ---------- Parameters ---------- time : list Time-axis linked to the acquired EMG signal samples. signal : list Acquired EMG signal samples. max_sample_value : float Maximum value registered in the acquired EMG samples. min_sample_value: float Minimum value registered in the acquired EMG samples. avg_sample_value : float Average value registered in the acquired EMG samples. std_sample_value : int Standard deviation of the acquired EMG sample values relatively to avg_sample_value. """ # List that store the figure handler list_figures = [] # Plotting of EMG. list_figures.append(figure(x_axis_label='Time (s)', y_axis_label='Electric Tension (mV)', x_range=(0, time[-1] + 0.50 * time[-1]), y_range=[-1.10, 1], **opensignals_kwargs("figure"))) list_figures[-1].line(time, signal, legend="EMG Signal", **opensignals_kwargs("line")) # Representation of EMG and the determined parameters parameter_list = ["Maximum", "Minimum", "Average", "Standard Deviation"] for parameter in parameter_list: find_time_max = numpy.array(time)[numpy.where(numpy.array(signal) == max_sample_value)] find_time_min = numpy.array(time)[numpy.where(numpy.array(signal) == min_sample_value)] if parameter == "Maximum": list_figures[-1].circle(find_time_max, max_sample_value, radius = 0.5, fill_color=opensignals_color_pallet(), legend=parameter + " EMG") elif parameter == "Minimum": list_figures[-1].circle(find_time_min, min_sample_value, radius=0.5, fill_color=opensignals_color_pallet(), legend=parameter + " EMG") elif parameter == "Average": list_figures[-1].line([0, time[-1]], [avg_sample_value, avg_sample_value], legend=parameter + " EMG Sample", **opensignals_kwargs("line")) elif parameter == "Standard Deviation": box_annotation = BoxAnnotation(left=0, right=time[-1], top=avg_sample_value + std_sample_value, bottom=avg_sample_value - std_sample_value, fill_color="black", fill_alpha=0.3) list_figures[-1].rect(find_time_min, std_sample_value, width=0, height=0, fill_color="black", fill_alpha=0.3, legend="Average + Standard Deviation Zone") list_figures[-1].add_layout(box_annotation) # Show figure. opensignals_style(list_figures) show(list_figures[-1]) def plot_emg_rms_area(time, signal, rms, area): """ ----- Brief ----- With the current function it will be plotted the EMG signals together with RMS line and the time-series that describes the evolution of the cumulative area. ----------- Description ----------- Function intended to generate a single Bokeh figure graphically describing and identifying Root Mean Square and Area parameters extracted from the analysis of the entire electromyographic (EMG) signal. Applied in the Notebook titled "EMG Analysis - Time and Frequency Parameters". ---------- Parameters ---------- time : list Time-axis linked to the acquired EMG signal samples. signal : list Acquired EMG signal samples. rms : float Root Mean Square value (amplitude estimator for the EMG signal under analysis). area : list List containing the sequential cumulative values of the area under the EMG signal curve. """ # List that store the figure handler list_figures = [] # Plotting of EMG area and RMS line list_figures.append( figure(x_axis_label='Frequency (Hz)', y_axis_label='Electric Tension (mV)', x_range=[0, time[-1]], y_range=[-1, 1], **opensignals_kwargs("figure"))) list_figures[-1].line(time, signal, **opensignals_kwargs("line")) list_figures[-1].line([time[0], time[-1]], [rms, rms], legend="RMS Value", **opensignals_kwargs("line")) # Setting the second y axis range name and range list_figures[-1].extra_y_ranges = {"Area": Range1d(start=0, end=area[-1])} # Adding the second axis to the plot list_figures[-1].add_layout(LinearAxis(y_range_name="Area", axis_label='Area (mV.s)'), 'right') list_figures[-1].line(time[1:], area, legend="Area along time (cumulative)", y_range_name="Area", **opensignals_kwargs("line")) # Show figure. opensignals_style(list_figures) show(list_figures[-1]) def plot_emg_spect_freq(freq_axis, power_axis, max_freq, median_freq): """ ----- Brief ----- A plot with frequency power spectrum of the input EMG signal is presented graphically, highlighting maximum and median power frequency. ----------- Description ----------- Function intended to generate a single Bokeh figure graphically describing and identifying maximum and median power frequency on Power Spectrum. Applied in the Notebook titled "EMG Analysis - Time and Frequency Parameters". ---------- Parameters ---------- freq_axis : list List with the values of power spectrum frequency axis. power_axis : list List with the values of power spectrum y axis (relative weight of the frequency component on signal reconstruction. max_freq : float Frequency value registered when the maximum power is reached on the spectrum. median_freq : float Frequency value registered when the half of the total power is reached on the cumulative power spectrum. """ # List that store the figure handler list_figures = [] # Plotting of EMG Power Spectrum list_figures.append( figure(x_axis_label='Frequency (Hz)', y_axis_label='Relative Power (a.u.)', **opensignals_kwargs("figure"))) list_figures[-1].line(freq_axis, power_axis, legend="Power Spectrum", **opensignals_kwargs("line")) list_figures[-1].patch(list(freq_axis) + list(freq_axis)[::-1], list(power_axis) + list(numpy.zeros(len(power_axis))), fill_color=opensignals_color_pallet(), fill_alpha=0.5, line_alpha=0, legend="Area Under Curve") list_figures[-1].line([median_freq, median_freq], [0, power_axis[numpy.where(freq_axis == median_freq)[0][0]]], legend="Median Frequency", **opensignals_kwargs("line")) list_figures[-1].line([max_freq, max_freq], [0, power_axis[numpy.where(freq_axis == max_freq)[0][0]]], legend="Maximum Power Frequency", **opensignals_kwargs("line")) # Show figure. opensignals_style(list_figures) show(list_figures[-1]) # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% eeg_extract_alphaband.ipynb %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% def plot_eeg_signal_wind(time, signal, time_range, time_windows_evt_1, time_windows_evt_2, y_axis_label="Electric Voltage", legend=["Eyes Opened", "Eyes Closed"]): """ ----- Brief ----- Function intended to generate a single Bokeh figure that presents a graphical representation of an EEG signal, highlighting a set of time-windows (segments). ----------- Description ----------- The current function was mainly created to support "eeg_extract_alphaband" Jupyter Notebook, ensuring a graphical representation of an EEG signal segmented into time windows (of two types: eyes opened and eyes closed). Applied in the Notebook titled "EEG - Alpha Band Extraction". ---------- Parameters ---------- time : list List containing the time-axis linked to the acquired EEG data samples. signal : list List containing the acquired data samples. time_range : list A tuple containing the start and ending times of the visualisation window (start, end). time_windows_evt_1 : list tuples Each entry of this list will contain a tuple (start, end) identifying the start and ending points of the temporal segment under analysis [Event 1 - Eyes Opened]. time_windows_evt_2 : list tuples Each entry of this list will contain a tuple (start, end) identifying the start and ending points of the temporal segment under analysis [Event 2 - Eyes Closed]. y_axis_label : str A string where it is specified the label of the y axis. """ # Range of the visualisation window. x_range = (time_range[0], time_range[1]) # Get the list of beginning and ending points of the time windows [Eyes Opened] eyes_open_begin = [] eyes_open_end = [] for tuple in time_windows_evt_1: eyes_open_begin.append(tuple[0]) eyes_open_end.append(tuple[1]) # Get the list of beginning and ending points of the time windows [Eyes Closed] eyes_closed_begin = [] eyes_closed_end = [] for tuple in time_windows_evt_2: eyes_closed_begin.append(tuple[0]) eyes_closed_end.append(tuple[1]) list_figures = plot(time, signal, y_axis_label=y_axis_label, get_fig_list=True, show_plot=False, x_range=x_range) # Highlighting "Eyes Opened" and "Eyes Closed" bands. color_open_eyes = opensignals_color_pallet() color_closed_eyes = opensignals_color_pallet() # ["Eyes Opened"] box_annotations = [] for i in range(0, len(eyes_open_begin)): box_annotations.append(BoxAnnotation(left=eyes_open_begin[i], right=eyes_open_end[i], fill_color=color_open_eyes, fill_alpha=0.1)) list_figures[-1].add_layout(box_annotations[-1]) list_figures[-1].circle([-100], [0], fill_color=color_open_eyes, fill_alpha=0.1, legend=legend[0]) if len(time_windows_evt_2) != 0: # ["Eyes Closed"] for i in range(0, len(eyes_closed_begin)): box_annotations.append( BoxAnnotation(left=eyes_closed_begin[i], right=eyes_closed_end[i], fill_color=color_closed_eyes, fill_alpha=0.1)) list_figures[-1].add_layout(box_annotations[-1]) list_figures[-1].circle([-100], [0], fill_color=color_closed_eyes, fill_alpha=0.1, legend=legend[1]) # Show figure. show(list_figures[-1]) def plot_eeg_alpha_band(freq_axis_evt1, power_axis_evt1, freq_axis_evt2, power_axis_evt2, freq_range): """ ----- Brief ----- Function intended to generate a single Bokeh figure graphically describing and identifying the alpha band linked with EEG researches and studies. ----------- Description ----------- The current function was mainly created to support "eeg_extract_alphaband" Jupyter Notebook, ensuring a graphical representation of an EEG signal segmented into time windows (of two types) and also the generation of the power spectrum where the alpha bands are highlighted. Applied in the Notebook titled "EEG - Alpha Band Extraction". ---------- Parameters ---------- freq_axis_evt1 : list Frequency axis of the power spectrum belonging to a "Eyes Opened" time window. power_axis_evt1 : list Power axis of the power spectrum belonging to a "Eyes Opened" time window. freq_axis_evt2 : list Frequency axis of the power spectrum belonging to a "Eyes Closed" time window. power_axis_evt2 : list Power axis of the power spectrum belonging to a "Eyes Closed" time window. freq_range : list List defining the range of frequencies to be presented on the visualisation window of our spectrum. """ # Rename variables. freq_axis_eyes_closed = freq_axis_evt2 freq_axis_eyes_opened = freq_axis_evt1 power_spect_eyes_closed = power_axis_evt2 power_spect_eyes_opened = power_axis_evt1 # List that store the figure handler list_figures = plot([freq_axis_eyes_closed, freq_axis_eyes_opened], [power_spect_eyes_closed, power_spect_eyes_opened], title=["Estimated Power Spectral Density - Closed Eyes", "Estimated Power Spectral Density - Opened Eyes"], legend=["Bandpass Filtered Freq. Band", "Bandpass Filtered Freq. Band"], x_axis_label="Frequency (Hz)", y_axis_label="PSD (uV^2/Hz)", grid_plot=True, grid_lines=1, grid_columns=2, x_range=freq_range, show_plot=False, get_fig_list=True) # Indexes of Alpha Band. alpha_band_indexes_eyes_closed = numpy.where((numpy.array(freq_axis_eyes_closed) >= 8) & (numpy.array(freq_axis_eyes_closed) <= 12))[0] alpha_band_indexes_eyes_opened = numpy.where((numpy.array(freq_axis_eyes_opened) >= 8) & (numpy.array(freq_axis_eyes_opened) <= 12))[0] # Maximum Spectrum value. maxPower = numpy.max((numpy.max(power_spect_eyes_closed), numpy.max(power_spect_eyes_opened))) # Plotting of Alpha Band [Eyes Closed] list_figures[0].y_range = Range1d(0, 1.2 * maxPower) list_figures[0].patch(list(freq_axis_eyes_closed[alpha_band_indexes_eyes_closed]) + list( freq_axis_eyes_closed[alpha_band_indexes_eyes_closed])[::-1], list(power_spect_eyes_closed[alpha_band_indexes_eyes_closed]) + list( numpy.zeros(len(power_spect_eyes_closed[alpha_band_indexes_eyes_closed]))), fill_color=opensignals_color_pallet(), fill_alpha=0.5, line_alpha=0, legend="Alpha Band 8-12 Hz") # Plotting of Alpha Band [Eyes Opened] list_figures[1].y_range = Range1d(0, 1.2 * maxPower) list_figures[1].patch(list(freq_axis_eyes_opened[alpha_band_indexes_eyes_opened]) + list( freq_axis_eyes_opened[alpha_band_indexes_eyes_opened])[::-1], list(power_spect_eyes_opened[alpha_band_indexes_eyes_opened]) + list( numpy.zeros(len(power_spect_eyes_opened[alpha_band_indexes_eyes_opened]))), fill_color=opensignals_color_pallet(), fill_alpha=0.5, line_alpha=0, legend="Alpha Band 8-12 Hz") # Show figure. grid_plot_ref = gridplot([[list_figures[0], list_figures[1]]], **opensignals_kwargs("gridplot")) show(grid_plot_ref) # ================================================================================================= # ================================ Pre-Process Category =========================================== # ================================================================================================= # %%%%%%%%%%%%%%%%%%%%%%% emg_fatigue_evaluation_median_freq.ipynb %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% def plot_compare_act_config(signal, sample_rate, file_name=None): """ ----- Brief ----- By invoking this function, a gridplot will be presented, in order to show the effect in muscular activation detection, when some input parameters of the algorithm are changed. ----------- Description ----------- It will be generated a Bokeh figure with 3x2 format, comparing the results of muscular activation algorithm when his input parameters are changed. At the first column are presented three plot zones, each plot zone is formed by an EMG signal, the smoothed signal and the muscular activation detection threshold. The smoothing level (SL) and threshold (TH) are customizable parameters, so, between these three figures, at least one of the parameters changed (each row of the gridplot shows graphical results obtained through the use of a specific set of algorithm parameter values [SL, TH] = [20, 10]% or [20, 50]% or [70, 10]%). At the second column is shown the result of applying muscular activation detection algorithm with the original EMG signal and a rectangular signal defining the start and end of each muscular activation period. Applied in the Notebook "Fatigue Evaluation - Evolution of Median Power Frequency". ---------- Parameters ---------- signal : list List with EMG signal to present. sample_rate : int Acquisitions sampling rate. file_name : str Path containing the destination folder where the Bokeh figure will be stored. """ # Generation of the HTML file where the plot will be stored. #file_name = _generate_bokeh_file(file_name) time = numpy.linspace(0, len(signal) / sample_rate, len(signal))[0:14000] signal = numpy.array(signal[0:14000]) - numpy.average(signal[0:14000]) # Muscular Activation Detection. muscular_activation_begin_20_10, muscular_activation_end_20_10, smooth_signal_20_10, \ threshold_level_20_10 = detect_emg_activations(list(signal), sample_rate, smooth_level=20, threshold_level=10) threshold_level_20_10 = (numpy.max(signal) * threshold_level_20_10) / \ numpy.max(smooth_signal_20_10) smooth_signal_20_10 = (numpy.max(signal) * numpy.array(smooth_signal_20_10)) / \ numpy.max(smooth_signal_20_10) activation_20_10 = numpy.zeros(len(time)) for activation in range(0, len(muscular_activation_begin_20_10)): activation_20_10[muscular_activation_begin_20_10[activation]: muscular_activation_end_20_10[activation]] = numpy.max(signal) muscular_activation_begin_20_50, muscular_activation_end_20_50, smooth_signal_20_50, \ threshold_level_20_50 = detect_emg_activations(list(signal), sample_rate, smooth_level=20, threshold_level=50) threshold_level_20_50 = (numpy.max(signal) * threshold_level_20_50) / \ numpy.max(smooth_signal_20_50) smooth_signal_20_50 = (numpy.max(signal) * numpy.array(smooth_signal_20_50)) / \ numpy.max(smooth_signal_20_50) activation_20_50 = numpy.zeros(len(time)) for activation in range(0, len(muscular_activation_begin_20_50)): activation_20_50[muscular_activation_begin_20_50[activation]: muscular_activation_end_20_50[activation]] = numpy.max(signal) muscular_activation_begin_70_10, muscular_activation_end_70_10, smooth_signal_70_10, \ threshold_level_70_10 = detect_emg_activations(list(signal), sample_rate, smooth_level=70, threshold_level=10) threshold_level_70_10 = (numpy.max(signal) * threshold_level_70_10) / \ numpy.max(smooth_signal_70_10) smooth_signal_70_10 = (numpy.max(signal) * numpy.array(smooth_signal_70_10)) / \ numpy.max(smooth_signal_70_10) activation_70_10 = numpy.zeros(len(time)) for activation in range(0, len(muscular_activation_begin_70_10)): activation_70_10[muscular_activation_begin_70_10[activation]: muscular_activation_end_70_10[activation]] = numpy.max(signal) # Plotting of data in a 3x2 gridplot format. plot_list = plot([list([]), list([]), list([]), list([]), list([]), list([])], [list([]), list([]), list([]), list([]), list([]), list([])], grid_lines=3, grid_columns=2, grid_plot=True, get_fig_list=True, show_plot=False) combination = ["Smooth Level: 20 % Threshold Level: 10 %", "Smooth Level: 20 % " "Threshold Level: 50 %", "Smooth Level: 70 % Threshold Level: 10 %"] detect_dict = {"Smooth Level: 20 % Threshold Level: 10 %": [smooth_signal_20_10, threshold_level_20_10, activation_20_10], "Smooth Level: 20 % Threshold Level: 50 %": [smooth_signal_20_50, threshold_level_20_50, activation_20_50], "Smooth Level: 70 % Threshold Level: 10 %": [smooth_signal_70_10, threshold_level_70_10, activation_70_10]} for plot_aux in range(0, len(plot_list)): title = Title() combination_temp = combination[int(plot_aux / 2)] plot_list[plot_aux].line(time, signal, **opensignals_kwargs("line")) if plot_aux % 2 == 0: title.text = combination_temp plot_list[plot_aux].line(time, detect_dict[combination_temp][0], **opensignals_kwargs("line")) plot_list[plot_aux].line(time, detect_dict[combination_temp][1], **opensignals_kwargs("line")) plot_list[plot_aux].yaxis.axis_label = "Raw Data" else: title.text = "Result for " + combination_temp plot_list[plot_aux].line(time, detect_dict[combination_temp][2], **opensignals_kwargs("line")) # x axis labels. if plot_aux in [4, 5]: plot_list[plot_aux].xaxis.axis_label = "Time (s)" plot_list[plot_aux].title = title grid_plot_ref = gridplot([[plot_list[0], plot_list[1]], [plot_list[2], plot_list[3]], [plot_list[4], plot_list[5]]], **opensignals_kwargs("gridplot")) show(grid_plot_ref) #HTML('<iframe width=100% height=350 src="generated_plots/' + file_name + '"></iframe>') def plot_median_freq_evol(time_signal, signal, time_median_freq, median_freq, activations_begin, activations_end, sample_rate, file_name=None): """ ----- Brief ----- Graphical representation of the EMG median power frequency evolution time series. ----------- Description ----------- Function intended to generate a Bokeh figure with 2x1 format, where each muscular activation period is identified through a colored box and the plot that shows the median frequency evolution is also presented. In the first cell is presented the EMG signal, highlighting each muscular activation. The second cell has the same time scale as the first one (the two plots are synchronized), being plotted the evolution time series of EMG median frequency. Per muscular activation period is extracted a Median Power Frequency value (sample), so, our window is a muscular activation period. Median power frequency is a commonly used parameter for evaluating muscular fatigue. It is widely accepted that this parameter decreases as fatigue sets in. Applied in the Notebook "Fatigue Evaluation - Evolution of Median Power Frequency". ---------- Parameters ---------- time_signal : list List with the time axis samples of EMG signal. signal : list List with EMG signal to present. time_median_freq : list List with the time axis samples of the median frequency evolution time-series. median_freq : list List with the Median Frequency samples. activations_begin : list List with the samples where each muscular activation period starts. activations_end : list List with the samples where each muscular activation period ends. sample_rate : int Sampling rate of acquisition. file_name : str Path containing the destination folder where the Bokeh figure will be stored. """ # Generation of the HTML file where the plot will be stored. #file_name = _generate_bokeh_file(file_name) list_figures_1 = plot([list(time_signal), list(time_median_freq)], [list(signal), list(median_freq)], title=["EMG Acquisition highlighting muscular activations", "Median Frequency Evolution"], grid_plot=True, grid_lines=2, grid_columns=1, open_signals_style=True, x_axis_label="Time (s)", yAxisLabel=["Raw Data", "Median Frequency (Hz)"], x_range=[0, 125], get_fig_list=True, show_plot=False) # Highlighting of each processing window for activation in range(0, len(activations_begin)): color = opensignals_color_pallet() box_annotation = BoxAnnotation(left=activations_begin[activation] / sample_rate, right=activations_end[activation] / sample_rate, fill_color=color, fill_alpha=0.1) box_annotation_copy = BoxAnnotation(left=activations_begin[activation] / sample_rate, right=activations_end[activation] / sample_rate, fill_color=color, fill_alpha=0.1) list_figures_1[0].add_layout(box_annotation) list_figures_1[1].add_layout(box_annotation_copy) gridplot_1 = gridplot([[list_figures_1[0]], [list_figures_1[1]]], **opensignals_kwargs("gridplot")) show(gridplot_1) #HTML('<iframe width=100% height=350 src="generated_plots/' + file_name + '"></iframe>') # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% digital_filtering.ipynb %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% def plot_informational_band(freqs, power, signal, sr, band_begin, band_end, legend="Signal Power Spectrum", x_lim=[], y_lim=[], show_plot=False, file_name=None): """ ----- Brief ----- With this function it is possible to present a plot containing the FFT Power Spectrum of an ECG signal, highlighting the informative frequency band. ----------- Description ----------- The FFT Power Spectrum, of an input signal, can be generated through plotfft function of novainstrumentation package (or periogram function of scipy package). The x axis (freqs) represents the frequency components of the signal, after decomposition was achieved by applying the Fourier Transform. The y axis (power) defines the relative weight of each frequency component (sinusoidal function) in the process of reconstructing the signal by re-summing of decomposition components. Additionally, it is also graphically presented a rectangular box showing which are the frequency components with relevant information for studying our input physiological signal. Note that each physiological signal has its own "informational band", whose limits should be specified in the input arguments "band_begin" and "band_end". Applied in the Notebook "Digital Filtering - A Fundamental Pre-Processing Step". ---------- Parameters ---------- freqs : list Frequency axis of power spectrum, defining which frequency components were used during the Fourier decomposition. power : list Power axis of power spectrum, defining the relative weight that each frequency component, inside "freqs", will have during the signal reconstruction. signal : list List containing the acquired signal samples. sr : int Sampling rate. band_begin : float Lower frequency inside the signal informational band. band_end : float Higher frequency inside the signal informational band. legend : str A string containing the legend that defines the power spectrum, for example: "ECG Power Spectrum". x_lim : list A list with length equal to 2, defining the first and last x value that should be presented. y_lim : list A list with length equal to 2, defining the first and last y value that should be presented. show_plot : bool If True then the generated figure/plot will be shown to the user. file_name : str Path containing the destination folder where the Bokeh figure will be stored. Returns ------- out : bokeh figure Bokeh figure presenting the signal power spectrum and highlighting the informational band. """ # Generation of the HTML file where the plot will be stored. #file_name = _generate_bokeh_file(file_name) # ----------------------------- Verification procedure ----------------------------------------- # Check if list is the type of input arguments x_lim and y_lim. if type(x_lim) is list and type(y_lim) is list: if len(x_lim) == 2 and len(y_lim) == 2: if len(x_lim) == 0: x_lim = [freqs[0], freqs[-1]] if len(y_lim) == 0: y_lim = [power[0], power[-1]] else: raise RuntimeError("The inputs arguments 'x_lim' and 'y_lim', when explicitly specified, " "must be formed by two elements (defining the lower and upper limits " "of the x and y axis).") else: raise RuntimeError("At least one of the input arguments (x_lim or y_lim) does not have a valid" " type. The inputs must be lists.") # List that store the figure handler list_figures = [] # Plotting of power spectrum list_figures.append(figure(x_axis_label='Frequency (Hz)', y_axis_label='Relative Weight', x_range=(x_lim[0], x_lim[-1]), y_range=(y_lim[0], y_lim[1]), **opensignals_kwargs("figure"))) list_figures[-1].line(freqs, power, legend=legend, **opensignals_kwargs("line")) # Highlighting of informational band color = opensignals_color_pallet() box_annotation = BoxAnnotation(left=band_begin, right=band_end, fill_color=color, fill_alpha=0.1) list_figures[-1].circle([-100], [0], fill_color=color, fill_alpha=0.1, legend="Informational Band") list_figures[-1].add_layout(box_annotation) # # Determination of the maximum frequency # max_freq = max_frequency(signal, sr) # # # Rejection band(above maximum frequency) # color = "black" # box_annotations = BoxAnnotation(left=max_freq, right=max_freq + 5, fill_color=color, # fill_alpha=0.1) # # # Show of the plots with the rejection band # list_figures[-1].circle([-100], [0], fill_color=color, fill_alpha=0.1, legend="Rejected Band") # list_figures[-1].add_layout(box_annotations) # list_figures[-1].add_layout(Arrow(end=VeeHead(size=15, line_color=color, fill_color=color, # fill_alpha=0.1), line_color=color, # x_start=max_freq + 5, y_start=y_lim[1]/2, # x_end=max_freq + 15, y_end=y_lim[1]/2)) # Apply opensignals style. if len(numpy.shape(list_figures)) != 1: flat_list = [item for sublist in list_figures for item in sublist] opensignals_style(flat_list) else: opensignals_style(list_figures) # Present the generated plots. if show_plot is True: show(list_figures[-1]) #HTML('<iframe width=100% height=350 src="generated_plots/' + file_name + '"></iframe>') return list_figures[-1] def plot_before_after_filter(signal, sr, band_begin, band_end, order=1, x_lim=[], y_lim=[], orientation="hor", show_plot=False, file_name=None): """ ----- Brief ----- The use of the current function is very useful for comparing two power spectrum's (before and after filtering the signal). This function invokes "plot_informational_band" in order to get the power spectrum before applying the signal to the lowpass filter. ----------- Description ----------- The FFT Power Spectrum, of an input signal, can be generated through plotfft function of novainstrumentation package (or periogram function of scipy package). The x axis (freqs) represents the frequency components of the signal, after decomposition was achieved by applying the Fourier Transform. The y axis (power) defines the relative weight of each frequency component (sinusoidal function) in the process of reconstructing the signal by re-summing of decomposition components. It is presented a 1x2 gridplot for compaing the differences in frequency composition of the signal under analysis (before and after filtering). Additionally, it is also graphically presented a rectangular box showing which are the frequency components with relevant information for studying our input physiological signal. Applied in the Notebook "Digital Filtering - A Fundamental Pre-Processing Step". ---------- Parameters ---------- signal : list List containing the acquired signal samples. sr : int Sampling rate. band_begin : float Lower frequency inside the signal informational band. band_end : float Higher frequency inside the signal informational band. order : int Filter order. x_lim : list A list with length equal to 2, defining the first and last x value that should be presented. y_lim : list A list with length equal to 2, defining the first and last y value that should be presented. orientation : str If "hor" then the generated figures will be joined together in an horizontal gridplot. When "vert" the gridplot will be a vertical grid and when "same" the plots are generated at the same figure. show_plot : bool If True then the generated figure/plot will be shown to the user. file_name : str Path containing the destination folder where the Bokeh figure will be stored. Returns ------- out : list List of Bokeh figures that compose the generated gridplot. """ # Generation of the HTML file where the plot will be stored. #file_name = _generate_bokeh_file(file_name) # Generation of FFT power spectrum accordingly to the filter order. for i in range(0, order + 1): # Initialisation and appending of data to the figures list. if i == 0: # Power spectrum freqs_after, power_after = plotfft(signal, sr) figure_after = plot_informational_band(freqs_after, power_after, signal, sr, band_begin, band_end, legend="Signal Power Spectrum", x_lim=x_lim, y_lim=y_lim) # List that store the figure handler list_figures = [[figure_after]] else: filter_signal = lowpass(signal, f=band_end, order=i, fs=sr) # Power spectrum freqs_after, power_after = plotfft(filter_signal, sr) if orientation != "same": figure_after = plot_informational_band(freqs_after, power_after, filter_signal, sr, band_begin, band_end, legend="Filtered FFT (Order " + str(i) + ")", x_lim=x_lim, y_lim=y_lim) # Append data accordingly to the desired direction of representation. if orientation == "hor": # Append to the figure list the power spectrum of the signal after filtering. list_figures[-1].append(figure_after) elif orientation == "vert": list_figures.append([figure_after]) else: list_figures[-1][0].line(freqs_after, power_after, legend="Filtered FFT (Order " + str(i) + ")", **opensignals_kwargs("line")) # Show gridplot. grid_plot_1 = gridplot(list_figures, **opensignals_kwargs("gridplot")) if show_plot is True: show(grid_plot_1) return list_figures def plot_low_pass_filter_response(show_plot=False, file_name=None): """ ----- Brief ----- Taking into consideration the generic transfer function that defines the frequency response of a low-pass filter (|H|=1/(sqrt(1+(f/fc)^2n), where fc is the corner frequency and n is the filter order), the current function will generate a figure for comparing the frequency response accordingly to the filter order. ----------- Description ----------- In digital and analogical systems, a filter defines a system capable of attenuating specific frequency components of the signal that is applied to it. The filter behaviour can be mathematically defined through a transfer function, showing precisely the stop- and pass-bands. In the case of a low-pass filter, a structural parameter is the corner frequency (where the attenuation begins). Like the name suggests, all signal components with frequency below the corner frequency will be outputted without changes (they "pass" the filter), while components with frequency above the corner frequency suffers an attenuation (the bigger the difference between the frequency of the component and the corner frequency the bigger the attenuation). It is shown (in the same figure) the low-pass filter response for different order (1, 2, 3, 4, 5, 6). Applied in the Notebook "Digital Filtering - A Fundamental Pre-Processing Step". ---------- Parameters ---------- show_plot : bool If True then the generated figure/plot will be shown to the user. file_name : str Path containing the destination folder where the Bokeh figure will be stored. Returns ------- out : list List of Bokeh figures that compose the generated gridplot. """ # Generation of the HTML file where the plot will be stored. #file_name = _generate_bokeh_file(file_name) # Frequency list. freqs = numpy.linspace(1, 1200, 100000) cutoff_freq = 40 # Generation of filter response. gain_functions = [] legend_strs = [] for order in range(1, 7): gain = 20*numpy.log10(1 / (numpy.sqrt(1 + (freqs / cutoff_freq)**(2*order)))) # Storage of the determined gain values. gain_functions.append(gain) if order == 1: legend_strs.append("1st order filter") elif order == 2: legend_strs.append("2nd order filter") elif order == 3: legend_strs.append("3rd order filter") else: legend_strs.append(str(order) + "th order filter") # Generation of a Bokeh figure with the opensignals style. fig_list = plot([freqs / cutoff_freq]*len(gain_functions), gain_functions, legend=legend_strs, title="Filter Response", x_axis_label="Normalized Frequency", y_axis_label="Gain (dB)", x_axis_type="log", x_range=(0.1, 40), y_range=(-120, 5), show_plot=True, get_fig_list=True) # Inclusion of a colored region showing the ideal behaviour. color=opensignals_color_pallet() box_annotation = BoxAnnotation(left=0.1, right=1, top=0, bottom=-120, fill_color=color, fill_alpha=0.3) fig_list[0].circle([-100], [0], fill_color=color, fill_alpha=0.3, legend="Ideal Filter Response") fig_list[0].add_layout(box_annotation) # Show figure. if show_plot is True: show(fig_list[0]) #HTML('<iframe width=100% height=350 src="generated_plots/' + file_name + '"></iframe>') # ================================================================================================= # ===================================== Record Category =========================================== # ================================================================================================= # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% resolution.ipynb %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% def plot_compare_resolutions(time, signal_res_1, signal_res_2, sampling_rate): """ ----- Brief ----- With the current function it will be presented a gridplot with 2 rows, where three plots are graphically represented ----------- Description ----------- Acquiring data with a right resolution ensures that posterior conclusions will be more reliable and effective. The current function is intended to generate a Bokeh figure with 2 rows. In the first row is shown a plot containing two synchronized signals acquired with different resolutions. The second gridplot row is divided into 2 cells, showing each one the previously presented multi resolution signals but in separate subfigures and in a zoomed format. Applied in the Notebook titled "Resolution - The difference between smooth and abrupt variations". ---------- Parameters ---------- time : list Time-axis linked to the acquired signal samples. signal_res_1 : list Acquired signal samples for the smallest resolution. signal_res_2 : list Acquired signal samples for the biggest resolution. sampling_rate : int Sampling rate of the acquisition. """ # Figure with the two plots figure_8_16 = figure(x_axis_label='Time (s)', y_axis_label="Temperature (ºC)", **opensignals_kwargs("figure")) figure_8_16.line(time, signal_res_1, legend="8 Bits Acquisition", **opensignals_kwargs("line")) figure_8_16.line(time, signal_res_2, legend="16 Bits Acquisition", **opensignals_kwargs("line")) # Zoom window wind_start = sampling_rate * 110 # 110 seconds wind_end = sampling_rate * 150 # 150 seconds # Figure with 8 bits zoom figure_8 = figure(x_axis_label='Time (s)', y_axis_label="Temperature (ºC)", title="8 Bits Acquisition", y_range=[38, 40.5], **opensignals_kwargs("figure")) figure_8.line(time[wind_start:wind_end], signal_res_1[wind_start:wind_end], **opensignals_kwargs("line")) # Figure with 16 bits zoom figure_16 = figure(x_axis_label='Time (s)', y_axis_label="Temperature (ºC)", title="16 Bits Acquisition", y_range=[38, 40.5], **opensignals_kwargs("figure")) figure_16.line(time[wind_start:wind_end], signal_res_2[wind_start:wind_end], **opensignals_kwargs("line")) # Show gridplot. opensignals_style([figure_8, figure_16, figure_8_16]) grid_plot = gridplot([[figure_8_16], [figure_8, figure_16]], **opensignals_kwargs("gridplot")) show(grid_plot) # ================================================================================================= # =================================== Explain Category ============================================ # ================================================================================================= # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% respiration_slow.ipynb %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # We stop here at 13h51m of 2nd October of 2018 :) def plot_resp_slow(signal, rect_signal, sample_rate): """ ----- Brief ----- Figure intended to represent the acquired RIP signal together with a rectangular signal defining inhalation and exhalation periods. ----------- Description ----------- Function design to generate a Bokeh figure containing the evolution of RIP signal, when slow respiration cycles occur, and the rectangular signal that defines the stages of inhalation and exhalation. Applied in the Notebook "Particularities of Inductive Respiration (RIP) Sensor ". ---------- Parameters ---------- signal : list List with the acquired RIP signal. rect_signal : list Data samples of the rectangular signal that identifies inhalation and exhalation segments. sample_rate : int Sampling rate of acquisition. """ signal = numpy.array(signal) - numpy.average(signal) rect_signal = numpy.array(rect_signal) time = numpy.linspace(0, len(signal) / sample_rate, len(signal)) # Inhalation and Exhalation time segments. # [Signal Binarisation] rect_signal_rev = rect_signal - numpy.average(rect_signal) inhal_segments = numpy.where(rect_signal_rev >= 0)[0] exhal_segments = numpy.where(rect_signal_rev < 0)[0] rect_signal_rev[inhal_segments] =
numpy.max(rect_signal_rev)
numpy.max
__author__ = "<NAME>" """ The aim of this class is to produce an implementation of Boson Sampling algorithm as in [2], but for uniform losses. This would allow us to apply the losses to the k non-approximated particles and, by that, use generalized Cliffords strategy on the non-lossy interferometer. We won't need to expand the matrix into 2m x 2m! """ from .simulation_strategy_interface import SimulationStrategyInterface from .generalized_cliffords_b_simulation_strategy import ( GeneralizedCliffordsBSimulationStrategy, BSPermanentCalculatorInterface, ) from numpy import ( ndarray, hstack, zeros_like, complex128, eye, pi, ones, exp, diag, arange, ) from numpy.random import choice, rand, shuffle from typing import List from scipy.special import binom from ..boson_sampling_utilities.boson_sampling_utilities import generate_lossy_inputs from multiprocessing import cpu_count import multiprocessing from concurrent.futures import ProcessPoolExecutor as Pool from copy import deepcopy from ..quantum_computations_utilities import compute_qft_matrix class LossyStateApproximationSimulationStrategy(SimulationStrategyInterface): def __init__( self, bs_permanent_calculator: BSPermanentCalculatorInterface, uniform_transmissivity: float, hierarchy_level: int, threads_number: int = -1, ): # Required for lossy approximated state preparation self._approximated_input_state_part_possibilities = None self._approximated_input_state_part_possibilities_weights = None self._not_approximated_lossy_mixed_state_parts = None self._not_approximated_lossy_mixed_state_parts_weights = None # Required for general simulation self._hierarchy_level = hierarchy_level self._uniform_transmissivity = uniform_transmissivity self._threads_number = self._get_proper_threads_number(threads_number) self._permanent_calculator = ( bs_permanent_calculator # Should contain an UNITARY (no losses here!) ) self._qft_matrix = self._get_qft_matrix() @staticmethod def _get_proper_threads_number(threads_number: int) -> int: if threads_number < 1 or threads_number > cpu_count(): return cpu_count() else: return threads_number def simulate(self, input_state: ndarray, samples_number: int = 1) -> List[ndarray]: if samples_number < 1: return [] self._prepare_not_approximated_lossy_mixed_state( input_state[: self._hierarchy_level] # Not approximated state part ) self._prepare_approximated_input_state( input_state[self._hierarchy_level :] # Approximated state part ) number_of_samples_for_each_thread = self._compute_number_of_samples_for_each_thread( samples_number ) # Context is required on Linux systems, as the default (fork) produces undesired results! Spawn is default # on osX and Windows and works as expected. multiprocessing_context = multiprocessing.get_context("spawn") with Pool(mp_context=multiprocessing_context) as p: samples_lists = p.map( self._simulate_in_parallel, number_of_samples_for_each_thread ) samples = [sample for samples_list in samples_lists for sample in samples_list] return samples def _prepare_not_approximated_lossy_mixed_state( self, not_approximated_input_state_part: ndarray ) -> None: self._prepare_not_approximated_lossy_mixed_state_parts( not_approximated_input_state_part ) self._prepare_not_approximated_lossy_mixed_state_parts_weights() def _prepare_not_approximated_lossy_mixed_state_parts( self, not_approximated_input_state_part: ndarray ) -> None: self._not_approximated_lossy_mixed_state_parts = [] for number_of_particles_left in range( sum(not_approximated_input_state_part) + 1 ): self._not_approximated_lossy_mixed_state_parts.extend( generate_lossy_inputs( not_approximated_input_state_part, number_of_particles_left ) ) def _prepare_not_approximated_lossy_mixed_state_parts_weights(self) -> None: # Do note that this method HAS TO be called after lossy mixed state parts are # computed. possible_weights = self._get_possible_lossy_inputs_weights( # Last part is always whole (not approximated) input state part self._not_approximated_lossy_mixed_state_parts[-1] ) self._not_approximated_lossy_mixed_state_parts_weights = [] n = sum(self._not_approximated_lossy_mixed_state_parts[-1]) for state_part in self._not_approximated_lossy_mixed_state_parts: self._not_approximated_lossy_mixed_state_parts_weights.append( possible_weights[int(sum(state_part))] / binom(n, sum(state_part)) ) def _get_possible_lossy_inputs_weights(self, input_state: ndarray) -> List[float]: weights = [] # I'll use the same notation as in [1], for readability. n = int(sum(input_state)) # Initial number of particles. eta = self._uniform_transmissivity for l in range(n + 1): # l denotes number of particles left in the state weights.append(binom(n, l) * eta ** l * (1 - eta) ** (n - l)) return weights def _prepare_approximated_input_state( self, approximated_input_state_part: ndarray ) -> None: # Assume exact simulation if hierarchy level is not specified. if not 0 <= self._hierarchy_level < self._permanent_calculator.matrix.shape[0]: self._approximated_input_state_part_possibilities = [[]] self._approximated_input_state_part_possibilities_weights = [1] return self._prepare_approximated_input_state_parts(approximated_input_state_part) self._prepare_approximated_input_state_parts_weights() def _prepare_approximated_input_state_parts( self, approximated_input_state_part: ndarray ) -> None: self._approximated_input_state_part_possibilities = [] for number_of_particles_left in range( int(sum(approximated_input_state_part)) + 1 ): state_part_possibility = zeros_like(approximated_input_state_part) state_part_possibility[0] = number_of_particles_left self._approximated_input_state_part_possibilities.append( state_part_possibility ) def _prepare_approximated_input_state_parts_weights(self): self._approximated_input_state_part_possibilities_weights = self._get_possible_lossy_inputs_weights( # Last part contains all possible particles. self._approximated_input_state_part_possibilities[-1] ) @staticmethod def _distribute_uniformly(val: int, bins: int) -> List[int]: # TODO TR: Might be but in a more general file. distributed_values = [] for v in range(bins): distributed_values.append(val // bins) for i in range(val % bins): distributed_values[i] += 1 return distributed_values def _compute_number_of_samples_for_each_thread( self, samples_number: int ) -> List[int]: return self._distribute_uniformly(samples_number, self._threads_number) def _simulate_in_parallel(self, samples_number: int = 1) -> List[ndarray]: """ This method produces given number of samples from lossy approximated (separable) state. It's meant to be run in parallel. """ samples = [] helper_strategy = GeneralizedCliffordsBSimulationStrategy( deepcopy(self._permanent_calculator) ) for _ in range(samples_number): lossy_input = self._get_input_state_for_sampling() approximate_sampling_matrix = self._get_matrix_for_approximate_sampling() helper_strategy.set_new_matrix(approximate_sampling_matrix) samples.append(helper_strategy.simulate(lossy_input)[0]) return samples def _get_input_state_for_sampling(self): approximated_part = self._approximated_input_state_part_possibilities[ choice( range(len(self._approximated_input_state_part_possibilities)), p=self._approximated_input_state_part_possibilities_weights, ) ] not_approximated_part = self._not_approximated_lossy_mixed_state_parts[ choice( range(len(self._not_approximated_lossy_mixed_state_parts)), p=self._not_approximated_lossy_mixed_state_parts_weights, ) ] return
hstack([not_approximated_part, approximated_part])
numpy.hstack
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import paddle import paddle.fluid as fluid from paddle.fluid import compiler, Program, program_guard, core from paddle.fluid.tests.unittests.op_test import OpTest class TestSplitSectionsOneDNNOp(OpTest): def init_data(self): self.x = np.random.random((4, 5, 6)).astype("float32") self.axis = 1 self.sections = [2, 1, 2] indices_or_sections = [2, 3] # sections np_sections = [2, 3] self.out = np.split(self.x, np_sections, self.axis) def setUp(self): self.op_type = "split" self.axis_tensor = None self.sections_tensor_list = None self.num = 0 self.init_data() self.inputs = {'X': self.x} self.attrs = {'use_mkldnn': True, 'num': self.num} if self.axis is not None: self.attrs['axis'] = self.axis if self.sections is not None: self.attrs['sections'] = self.sections if self.axis_tensor is not None: self.inputs['AxisTensor'] = self.axis_tensor if self.sections_tensor_list is not None: self.inputs['SectionsTensorList'] = self.sections_tensor_list self.outputs = {'Out': [('out%d' % i, self.out[i]) \ for i in range(len(self.out))]} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], ['out0', 'out1', 'out2']) # test with attr(num) class TestSplitNumOneDNNOp(TestSplitSectionsOneDNNOp): def init_data(self): self.x = np.random.random((4, 8, 5, 3)).astype("float32") self.axis = 1 self.sections = [] self.num = 4 indices_or_sections = 4 #indices self.out = np.split(self.x, indices_or_sections, self.axis) def test_check_grad(self): self.check_grad(['X'], ['out0', 'out1', 'out2', 'out3']) class TestSplitNumAxisTensorOneDNNOp(TestSplitSectionsOneDNNOp): def init_data(self): self.x = np.random.random((4, 5, 6)).astype("float32") self.axis = None self.sections = [] self.num = 3 indices_or_sections = 3 #indices self.axis_tensor = np.array([2]).astype("int32") self.out =
np.split(self.x, indices_or_sections, 2)
numpy.split
# Copyright (c) 2014, <NAME>. # Licensed under the BSD 3-clause license (see LICENSE.txt) import numpy as np from scipy.special import wofz from .kern import Kern from ...core.parameterization import Param from ...core.parameterization.transformations import Logexp from ...util.caching import Cache_this class EQ_ODE2(Kern): """ Covariance function for second order differential equation driven by an exponentiated quadratic covariance. This outputs of this kernel have the form .. math:: \frac{\text{d}^2y_j(t)}{\text{d}^2t} + C_j\frac{\text{d}y_j(t)}{\text{d}t} + B_jy_j(t) = \sum_{i=1}^R w_{j,i} u_i(t) where :math:`R` is the rank of the system, :math:`w_{j,i}` is the sensitivity of the :math:`j`th output to the :math:`i`th latent function, :math:`d_j` is the decay rate of the :math:`j`th output and :math:`f_i(t)` and :math:`g_i(t)` are independent latent Gaussian processes goverened by an exponentiated quadratic covariance. :param output_dim: number of outputs driven by latent function. :type output_dim: int :param W: sensitivities of each output to the latent driving function. :type W: ndarray (output_dim x rank). :param rank: If rank is greater than 1 then there are assumed to be a total of rank latent forces independently driving the system, each with identical covariance. :type rank: int :param C: damper constant for the second order system. :type C: array of length output_dim. :param B: spring constant for the second order system. :type B: array of length output_dim. """ #This code will only work for the sparseGP model, due to limitations in models for this kernel def __init__(self, input_dim=2, output_dim=1, rank=1, W=None, lengthscale=None, C=None, B=None, active_dims=None, name='eq_ode2'): #input_dim should be 1, but kern._slice_X is not returning index information required to evaluate kernels assert input_dim == 2, "only defined for 1 input dims" super(EQ_ODE2, self).__init__(input_dim=input_dim, active_dims=active_dims, name=name) self.rank = rank self.output_dim = output_dim if lengthscale is None: lengthscale = .5+np.random.rand(self.rank) else: lengthscale = np.asarray(lengthscale) assert lengthscale.size in [1, self.rank], "Bad number of lengthscales" if lengthscale.size != self.rank: lengthscale = np.ones(self.input_dim)*lengthscale if W is None: #W = 0.5*np.random.randn(self.output_dim, self.rank)/np.sqrt(self.rank) W = np.ones((self.output_dim, self.rank)) else: assert W.shape == (self.output_dim, self.rank) if C is None: C = np.ones(self.output_dim) if B is None: B = np.ones(self.output_dim) self.C = Param('C', C, Logexp()) self.B = Param('B', B, Logexp()) self.lengthscale = Param('lengthscale', lengthscale, Logexp()) self.W = Param('W', W) self.link_parameters(self.lengthscale, self.C, self.B, self.W) @Cache_this(limit=2) def K(self, X, X2=None): #This way is not working, indexes are lost after using k._slice_X #index = np.asarray(X, dtype=np.int) #index = index.reshape(index.size,) if hasattr(X, 'values'): X = X.values index = np.int_(X[:, 1]) index = index.reshape(index.size,) X_flag = index[0] >= self.output_dim if X2 is None: if X_flag: #Calculate covariance function for the latent functions index -= self.output_dim return self._Kuu(X, index) else: raise NotImplementedError else: #This way is not working, indexes are lost after using k._slice_X #index2 = np.asarray(X2, dtype=np.int) #index2 = index2.reshape(index2.size,) if hasattr(X2, 'values'): X2 = X2.values index2 = np.int_(X2[:, 1]) index2 = index2.reshape(index2.size,) X2_flag = index2[0] >= self.output_dim #Calculate cross-covariance function if not X_flag and X2_flag: index2 -= self.output_dim return self._Kfu(X, index, X2, index2) #Kfu else: index -= self.output_dim return self._Kfu(X2, index2, X, index).T #Kuf #Calculate the covariance function for diag(Kff(X,X)) def Kdiag(self, X): #This way is not working, indexes are lost after using k._slice_X #index = np.asarray(X, dtype=np.int) #index = index.reshape(index.size,) if hasattr(X, 'values'): X = X.values index = np.int_(X[:, 1]) index = index.reshape(index.size,) #terms that move along t t = X[:, 0].reshape(X.shape[0], 1) d = np.unique(index) #Output Indexes B = self.B.values[d] C = self.C.values[d] S = self.W.values[d, :] #Index transformation indd = np.arange(self.output_dim) indd[d] = np.arange(d.size) index = indd[index] #Check where wd becomes complex wbool = C*C >= 4.*B B = B.reshape(B.size, 1) C = C.reshape(C.size, 1) alpha = .5*C C2 = C*C wbool2 = wbool[index] ind2t = np.where(wbool2) ind3t = np.where(np.logical_not(wbool2)) #Terms that move along q lq = self.lengthscale.values.reshape(1, self.lengthscale.size) S2 = S*S kdiag = np.empty((t.size, )) indD = np.arange(B.size) #(1) When wd is real if np.any(np.logical_not(wbool)): #Indexes of index and t related to (2) t1 = t[ind3t] ind = index[ind3t] d = np.asarray(np.where(np.logical_not(wbool))[0]) #Selection of outputs indd = indD.copy() indd[d] = np.arange(d.size) ind = indd[ind] #Dx1 terms S2lq = S2[d]*(.5*lq) c0 = S2lq*np.sqrt(np.pi) w = .5*np.sqrt(4.*B[d] - C2[d]) alphad = alpha[d] w2 = w*w gam = alphad + 1j*w gamc = alphad - 1j*w c1 = .5/(alphad*w2) c2 = .5/(gam*w2) c = c1 - c2 #DxQ terms nu = lq*(gam*.5) K01 = c0*c #Nx1 terms gamt = -gam[ind]*t1 gamct = -gamc[ind]*t1 egamt = np.exp(gamt) ec = egamt*c2[ind] - np.exp(gamct)*c1[ind] #NxQ terms t_lq = t1/lq # Upsilon Calculations # Using wofz wnu = wofz(1j*nu) lwnu = np.log(wnu) t2_lq2 = -t_lq*t_lq upm = wnu[ind] - np.exp(t2_lq2 + gamt + np.log(wofz(1j*(t_lq + nu[ind])))) upm[t1[:, 0] == 0, :] = 0. nu2 = nu*nu z1 = nu[ind] - t_lq indv1 = np.where(z1.real >= 0.) indv2 = np.where(z1.real < 0.) upv = -np.exp(lwnu[ind] + gamt) if indv1[0].shape > 0: upv[indv1] += np.exp(t2_lq2[indv1] + np.log(wofz(1j*z1[indv1]))) if indv2[0].shape > 0: upv[indv2] += np.exp(nu2[ind[indv2[0]], indv2[1]] + gamt[indv2[0], 0] + np.log(2.))\ - np.exp(t2_lq2[indv2] + np.log(wofz(-1j*z1[indv2]))) upv[t1[:, 0] == 0, :] = 0. #Covariance calculation kdiag[ind3t] = np.sum(np.real(K01[ind]*upm), axis=1) kdiag[ind3t] += np.sum(np.real((c0[ind]*ec)*upv), axis=1) #(2) When w_d is complex if np.any(wbool): t1 = t[ind2t] ind = index[ind2t] #Index transformation d = np.asarray(np.where(wbool)[0]) indd = indD.copy() indd[d] = np.arange(d.size) ind = indd[ind] #Dx1 terms S2lq = S2[d]*(lq*.25) c0 = S2lq*np.sqrt(np.pi) w = .5*np.sqrt(C2[d] - 4.*B[d]) alphad = alpha[d] gam = alphad - w gamc = alphad + w w2 = -w*w c1 = .5/(alphad*w2) c21 = .5/(gam*w2) c22 = .5/(gamc*w2) c = c1 - c21 c2 = c1 - c22 #DxQ terms K011 = c0*c K012 = c0*c2 nu = lq*(.5*gam) nuc = lq*(.5*gamc) #Nx1 terms gamt = -gam[ind]*t1 gamct = -gamc[ind]*t1 egamt = np.exp(gamt) egamct = np.exp(gamct) ec = egamt*c21[ind] - egamct*c1[ind] ec2 = egamct*c22[ind] - egamt*c1[ind] #NxQ terms t_lq = t1/lq #Upsilon Calculations using wofz t2_lq2 = -t_lq*t_lq #Required when using wofz wnu = wofz(1j*nu).real lwnu = np.log(wnu) upm = wnu[ind] - np.exp(t2_lq2 + gamt + np.log(wofz(1j*(t_lq + nu[ind])).real)) upm[t1[:, 0] == 0., :] = 0. nu2 = nu*nu z1 = nu[ind] - t_lq indv1 = np.where(z1 >= 0.) indv2 = np.where(z1 < 0.) upv = -np.exp(lwnu[ind] + gamt) if indv1[0].shape > 0: upv[indv1] += np.exp(t2_lq2[indv1] + np.log(wofz(1j*z1[indv1]).real)) if indv2[0].shape > 0: upv[indv2] += np.exp(nu2[ind[indv2[0]], indv2[1]] + gamt[indv2[0], 0] + np.log(2.))\ - np.exp(t2_lq2[indv2] + np.log(wofz(-1j*z1[indv2]).real)) upv[t1[:, 0] == 0, :] = 0. wnuc = wofz(1j*nuc).real lwnuc = np.log(wnuc) upmc = wnuc[ind] - np.exp(t2_lq2 + gamct + np.log(wofz(1j*(t_lq + nuc[ind])).real)) upmc[t1[:, 0] == 0., :] = 0. nuc2 = nuc*nuc z1 = nuc[ind] - t_lq indv1 = np.where(z1 >= 0.) indv2 = np.where(z1 < 0.) upvc = - np.exp(lwnuc[ind] + gamct) if indv1[0].shape > 0: upvc[indv1] += np.exp(t2_lq2[indv1] + np.log(wofz(1j*z1[indv1]).real)) if indv2[0].shape > 0: upvc[indv2] += np.exp(nuc2[ind[indv2[0]], indv2[1]] + gamct[indv2[0], 0] + np.log(2.))\ - np.exp(t2_lq2[indv2] + np.log(wofz(-1j*z1[indv2]).real)) upvc[t1[:, 0] == 0, :] = 0. #Covariance calculation kdiag[ind2t] = np.sum(K011[ind]*upm + K012[ind]*upmc + (c0[ind]*ec)*upv + (c0[ind]*ec2)*upvc, axis=1) return kdiag def update_gradients_full(self, dL_dK, X, X2 = None): #index = np.asarray(X, dtype=np.int) #index = index.reshape(index.size,) if hasattr(X, 'values'): X = X.values self.B.gradient = np.zeros(self.B.shape) self.C.gradient = np.zeros(self.C.shape) self.W.gradient = np.zeros(self.W.shape) self.lengthscale.gradient = np.zeros(self.lengthscale.shape) index = np.int_(X[:, 1]) index = index.reshape(index.size,) X_flag = index[0] >= self.output_dim if X2 is None: if X_flag: #Kuu or Kmm index -= self.output_dim tmp = dL_dK*self._gkuu_lq(X, index) for q in np.unique(index): ind = np.where(index == q) self.lengthscale.gradient[q] = tmp[np.ix_(ind[0], ind[0])].sum() else: raise NotImplementedError else: #Kfu or Knm #index2 = np.asarray(X2, dtype=np.int) #index2 = index2.reshape(index2.size,) if hasattr(X2, 'values'): X2 = X2.values index2 = np.int_(X2[:, 1]) index2 = index2.reshape(index2.size,) X2_flag = index2[0] >= self.output_dim if not X_flag and X2_flag: index2 -= self.output_dim else: dL_dK = dL_dK.T #so we obtaing dL_Kfu indtemp = index - self.output_dim Xtemp = X X = X2 X2 = Xtemp index = index2 index2 = indtemp glq, gSdq, gB, gC = self._gkfu(X, index, X2, index2) tmp = dL_dK*glq for q in np.unique(index2): ind = np.where(index2 == q) self.lengthscale.gradient[q] = tmp[:, ind].sum() tmpB = dL_dK*gB tmpC = dL_dK*gC tmp = dL_dK*gSdq for d in np.unique(index): ind = np.where(index == d) self.B.gradient[d] = tmpB[ind, :].sum() self.C.gradient[d] = tmpC[ind, :].sum() for q in np.unique(index2): ind2 = np.where(index2 == q) self.W.gradient[d, q] = tmp[np.ix_(ind[0], ind2[0])].sum() def update_gradients_diag(self, dL_dKdiag, X): #index = np.asarray(X, dtype=np.int) #index = index.reshape(index.size,) if hasattr(X, 'values'): X = X.values self.B.gradient = np.zeros(self.B.shape) self.C.gradient = np.zeros(self.C.shape) self.W.gradient = np.zeros(self.W.shape) self.lengthscale.gradient = np.zeros(self.lengthscale.shape) index = np.int_(X[:, 1]) index = index.reshape(index.size,) glq, gS, gB, gC = self._gkdiag(X, index) tmp = dL_dKdiag.reshape(index.size, 1)*glq self.lengthscale.gradient = tmp.sum(0) #TODO: Avoid the reshape by a priori knowing the shape of dL_dKdiag tmpB = dL_dKdiag*gB.reshape(dL_dKdiag.shape) tmpC = dL_dKdiag*gC.reshape(dL_dKdiag.shape) tmp = dL_dKdiag.reshape(index.size, 1)*gS for d in np.unique(index): ind = np.where(index == d) self.B.gradient[d] = tmpB[ind].sum() self.C.gradient[d] = tmpC[ind].sum() self.W.gradient[d, :] = tmp[ind].sum(0) def gradients_X(self, dL_dK, X, X2=None): #index = np.asarray(X, dtype=np.int) #index = index.reshape(index.size,) if hasattr(X, 'values'): X = X.values index = np.int_(X[:, 1]) index = index.reshape(index.size,) X_flag = index[0] >= self.output_dim #If input_dim == 1, use this #gX = np.zeros((X.shape[0], 1)) #Cheat to allow gradient for input_dim==2 gX = np.zeros(X.shape) if X2 is None: #Kuu or Kmm if X_flag: index -= self.output_dim gX[:, 0] = 2.*(dL_dK*self._gkuu_X(X, index)).sum(0) return gX else: raise NotImplementedError else: #Kuf or Kmn #index2 = np.asarray(X2, dtype=np.int) #index2 = index2.reshape(index2.size,) if hasattr(X2, 'values'): X2 = X2.values index2 = np.int_(X2[:, 1]) index2 = index2.reshape(index2.size,) X2_flag = index2[0] >= self.output_dim if X_flag and not X2_flag: #gradient of Kuf(Z, X) wrt Z index -= self.output_dim gX[:, 0] = (dL_dK*self._gkfu_z(X2, index2, X, index).T).sum(1) return gX else: raise NotImplementedError #---------------------------------------# # Helper functions # #---------------------------------------# #Evaluation of squared exponential for LFM def _Kuu(self, X, index): index = index.reshape(index.size,) t = X[:, 0].reshape(X.shape[0],) lq = self.lengthscale.values.reshape(self.rank,) lq2 = lq*lq #Covariance matrix initialization kuu = np.zeros((t.size, t.size)) #Assign 1. to diagonal terms kuu[np.diag_indices(t.size)] = 1. #Upper triangular indices indtri1, indtri2 = np.triu_indices(t.size, 1) #Block Diagonal indices among Upper Triangular indices ind = np.where(index[indtri1] == index[indtri2]) indr = indtri1[ind] indc = indtri2[ind] r = t[indr] - t[indc] r2 = r*r #Calculation of covariance function kuu[indr, indc] = np.exp(-r2/lq2[index[indr]]) #Completation of lower triangular part kuu[indc, indr] = kuu[indr, indc] return kuu #Evaluation of cross-covariance function def _Kfu(self, X, index, X2, index2): #terms that move along t t = X[:, 0].reshape(X.shape[0], 1) d = np.unique(index) #Output Indexes B = self.B.values[d] C = self.C.values[d] S = self.W.values[d, :] #Index transformation indd = np.arange(self.output_dim) indd[d] = np.arange(d.size) index = indd[index] #Check where wd becomes complex wbool = C*C >= 4.*B #Output related variables must be column-wise C = C.reshape(C.size, 1) B = B.reshape(B.size, 1) C2 = C*C #Input related variables must be row-wise z = X2[:, 0].reshape(1, X2.shape[0]) lq = self.lengthscale.values.reshape((1, self.rank)) #print np.max(z), np.max(z/lq[0, index2]) alpha = .5*C wbool2 = wbool[index] ind2t = np.where(wbool2) ind3t = np.where(np.logical_not(wbool2)) kfu = np.empty((t.size, z.size)) indD = np.arange(B.size) #(1) when wd is real if np.any(np.logical_not(wbool)): #Indexes of index and t related to (2) t1 = t[ind3t] ind = index[ind3t] #Index transformation d = np.asarray(np.where(np.logical_not(wbool))[0]) indd = indD.copy() indd[d] = np.arange(d.size) ind = indd[ind] #Dx1 terms w = .5*np.sqrt(4.*B[d] - C2[d]) alphad = alpha[d] gam = alphad - 1j*w #DxQ terms Slq = (S[d]/w)*(.5*lq) c0 = Slq*np.sqrt(np.pi) nu = gam*(.5*lq) #1xM terms z_lq = z/lq[0, index2] #NxQ terms t_lq = t1/lq #NxM terms zt_lq = z_lq - t_lq[:, index2] # Upsilon Calculations #Using wofz tz = t1-z fullind = np.ix_(ind, index2) zt_lq2 = -zt_lq*zt_lq z_lq2 = -z_lq*z_lq gamt = -gam[ind]*t1 upsi = - np.exp(z_lq2 + gamt + np.log(wofz(1j*(z_lq + nu[fullind])))) z1 = zt_lq + nu[fullind] indv1 = np.where(z1.real >= 0.) indv2 = np.where(z1.real < 0.) if indv1[0].shape > 0: upsi[indv1] += np.exp(zt_lq2[indv1] + np.log(wofz(1j*z1[indv1]))) if indv2[0].shape > 0: nua2 = nu[ind[indv2[0]], index2[indv2[1]]]**2 upsi[indv2] += np.exp(nua2 - gam[ind[indv2[0]], 0]*tz[indv2] + np.log(2.))\ - np.exp(zt_lq2[indv2] + np.log(wofz(-1j*z1[indv2]))) upsi[t1[:, 0] == 0., :] = 0. #Covariance calculation kfu[ind3t] = c0[fullind]*upsi.imag #(2) when wd is complex if np.any(wbool): #Indexes of index and t related to (2) t1 = t[ind2t] ind = index[ind2t] #Index transformation d = np.asarray(np.where(wbool)[0]) indd = indD.copy() indd[d] = np.arange(d.size) ind = indd[ind] #Dx1 terms w = .5*np.sqrt(C2[d] - 4.*B[d]) alphad = alpha[d] gam = alphad - w gamc = alphad + w #DxQ terms Slq = S[d]*(lq*.25) c0 = -Slq*(np.sqrt(np.pi)/w) nu = gam*(lq*.5) nuc = gamc*(lq*.5) #1xM terms z_lq = z/lq[0, index2] #NxQ terms t_lq = t1/lq[0, index2] #NxM terms zt_lq = z_lq - t_lq # Upsilon Calculations tz = t1-z z_lq2 = -z_lq*z_lq zt_lq2 = -zt_lq*zt_lq gamt = -gam[ind]*t1 gamct = -gamc[ind]*t1 fullind = np.ix_(ind, index2) upsi = np.exp(z_lq2 + gamt + np.log(wofz(1j*(z_lq + nu[fullind])).real))\ - np.exp(z_lq2 + gamct + np.log(wofz(1j*(z_lq + nuc[fullind])).real)) z1 = zt_lq + nu[fullind] indv1 = np.where(z1 >= 0.) indv2 = np.where(z1 < 0.) if indv1[0].shape > 0: upsi[indv1] -= np.exp(zt_lq2[indv1] + np.log(wofz(1j*z1[indv1]).real)) if indv2[0].shape > 0: nua2 = nu[ind[indv2[0]], index2[indv2[1]]]**2 upsi[indv2] -= np.exp(nua2 - gam[ind[indv2[0]], 0]*tz[indv2] + np.log(2.))\ - np.exp(zt_lq2[indv2] + np.log(wofz(-1j*z1[indv2]).real)) z1 = zt_lq + nuc[fullind] indv1 = np.where(z1 >= 0.) indv2 = np.where(z1 < 0.) if indv1[0].shape > 0: upsi[indv1] += np.exp(zt_lq2[indv1] + np.log(wofz(1j*z1[indv1]).real)) if indv2[0].shape > 0: nuac2 = nuc[ind[indv2[0]], index2[indv2[1]]]**2 upsi[indv2] += np.exp(nuac2 - gamc[ind[indv2[0]], 0]*tz[indv2] + np.log(2.))\ - np.exp(zt_lq2[indv2] + np.log(wofz(-1j*z1[indv2]).real)) upsi[t1[:, 0] == 0., :] = 0. kfu[ind2t] = c0[np.ix_(ind, index2)]*upsi return kfu #Gradient of Kuu wrt lengthscale def _gkuu_lq(self, X, index): t = X[:, 0].reshape(X.shape[0],) index = index.reshape(X.shape[0],) lq = self.lengthscale.values.reshape(self.rank,) lq2 = lq*lq #Covariance matrix initialization glq =
np.zeros((t.size, t.size))
numpy.zeros
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(130, 'P 4/n c c :2', transformations) space_groups[130] = sg space_groups['P 4/n c c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(131, 'P 42/m m c', transformations) space_groups[131] = sg space_groups['P 42/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(132, 'P 42/m c m', transformations) space_groups[132] = sg space_groups['P 42/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(133, 'P 42/n b c :2', transformations) space_groups[133] = sg space_groups['P 42/n b c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(134, 'P 42/n n m :2', transformations) space_groups[134] = sg space_groups['P 42/n n m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(135, 'P 42/m b c', transformations) space_groups[135] = sg space_groups['P 42/m b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(136, 'P 42/m n m', transformations) space_groups[136] = sg space_groups['P 42/m n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(137, 'P 42/n m c :2', transformations) space_groups[137] = sg space_groups['P 42/n m c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(138, 'P 42/n c m :2', transformations) space_groups[138] = sg space_groups['P 42/n c m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(139, 'I 4/m m m', transformations) space_groups[139] = sg space_groups['I 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(140, 'I 4/m c m', transformations) space_groups[140] = sg space_groups['I 4/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(141, 'I 41/a m d :2', transformations) space_groups[141] = sg space_groups['I 41/a m d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(142, 'I 41/a c d :2', transformations) space_groups[142] = sg space_groups['I 41/a c d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(143, 'P 3', transformations) space_groups[143] = sg space_groups['P 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(144, 'P 31', transformations) space_groups[144] = sg space_groups['P 31'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(145, 'P 32', transformations) space_groups[145] = sg space_groups['P 32'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(146, 'R 3 :H', transformations) space_groups[146] = sg space_groups['R 3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(147, 'P -3', transformations) space_groups[147] = sg space_groups['P -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(148, 'R -3 :H', transformations) space_groups[148] = sg space_groups['R -3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(149, 'P 3 1 2', transformations) space_groups[149] = sg space_groups['P 3 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(150, 'P 3 2 1', transformations) space_groups[150] = sg space_groups['P 3 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(151, 'P 31 1 2', transformations) space_groups[151] = sg space_groups['P 31 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(152, 'P 31 2 1', transformations) space_groups[152] = sg space_groups['P 31 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(153, 'P 32 1 2', transformations) space_groups[153] = sg space_groups['P 32 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(154, 'P 32 2 1', transformations) space_groups[154] = sg space_groups['P 32 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(155, 'R 3 2 :H', transformations) space_groups[155] = sg space_groups['R 3 2 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(156, 'P 3 m 1', transformations) space_groups[156] = sg space_groups['P 3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(157, 'P 3 1 m', transformations) space_groups[157] = sg space_groups['P 3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(158, 'P 3 c 1', transformations) space_groups[158] = sg space_groups['P 3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(159, 'P 3 1 c', transformations) space_groups[159] = sg space_groups['P 3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(160, 'R 3 m :H', transformations) space_groups[160] = sg space_groups['R 3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(161, 'R 3 c :H', transformations) space_groups[161] = sg space_groups['R 3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(162, 'P -3 1 m', transformations) space_groups[162] = sg space_groups['P -3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(163, 'P -3 1 c', transformations) space_groups[163] = sg space_groups['P -3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(164, 'P -3 m 1', transformations) space_groups[164] = sg space_groups['P -3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(165, 'P -3 c 1', transformations) space_groups[165] = sg space_groups['P -3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(166, 'R -3 m :H', transformations) space_groups[166] = sg space_groups['R -3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(167, 'R -3 c :H', transformations) space_groups[167] = sg space_groups['R -3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(168, 'P 6', transformations) space_groups[168] = sg space_groups['P 6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(169, 'P 61', transformations) space_groups[169] = sg space_groups['P 61'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(170, 'P 65', transformations) space_groups[170] = sg space_groups['P 65'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(171, 'P 62', transformations) space_groups[171] = sg space_groups['P 62'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(172, 'P 64', transformations) space_groups[172] = sg space_groups['P 64'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(173, 'P 63', transformations) space_groups[173] = sg space_groups['P 63'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(174, 'P -6', transformations) space_groups[174] = sg space_groups['P -6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(175, 'P 6/m', transformations) space_groups[175] = sg space_groups['P 6/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(176, 'P 63/m', transformations) space_groups[176] = sg space_groups['P 63/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(177, 'P 6 2 2', transformations) space_groups[177] = sg space_groups['P 6 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(178, 'P 61 2 2', transformations) space_groups[178] = sg space_groups['P 61 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(179, 'P 65 2 2', transformations) space_groups[179] = sg space_groups['P 65 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(180, 'P 62 2 2', transformations) space_groups[180] = sg space_groups['P 62 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(181, 'P 64 2 2', transformations) space_groups[181] = sg space_groups['P 64 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(182, 'P 63 2 2', transformations) space_groups[182] = sg space_groups['P 63 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(183, 'P 6 m m', transformations) space_groups[183] = sg space_groups['P 6 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(184, 'P 6 c c', transformations) space_groups[184] = sg space_groups['P 6 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(185, 'P 63 c m', transformations) space_groups[185] = sg space_groups['P 63 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(186, 'P 63 m c', transformations) space_groups[186] = sg space_groups['P 63 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(187, 'P -6 m 2', transformations) space_groups[187] = sg space_groups['P -6 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(188, 'P -6 c 2', transformations) space_groups[188] = sg space_groups['P -6 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(189, 'P -6 2 m', transformations) space_groups[189] = sg space_groups['P -6 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(190, 'P -6 2 c', transformations) space_groups[190] = sg space_groups['P -6 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(191, 'P 6/m m m', transformations) space_groups[191] = sg space_groups['P 6/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(192, 'P 6/m c c', transformations) space_groups[192] = sg space_groups['P 6/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(193, 'P 63/m c m', transformations) space_groups[193] = sg space_groups['P 63/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(194, 'P 63/m m c', transformations) space_groups[194] = sg space_groups['P 63/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(195, 'P 2 3', transformations) space_groups[195] = sg space_groups['P 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(196, 'F 2 3', transformations) space_groups[196] = sg space_groups['F 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(197, 'I 2 3', transformations) space_groups[197] = sg space_groups['I 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(198, 'P 21 3', transformations) space_groups[198] = sg space_groups['P 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(199, 'I 21 3', transformations) space_groups[199] = sg space_groups['I 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(200, 'P m -3', transformations) space_groups[200] = sg space_groups['P m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(201, 'P n -3 :2', transformations) space_groups[201] = sg space_groups['P n -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(202, 'F m -3', transformations) space_groups[202] = sg space_groups['F m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(203, 'F d -3 :2', transformations) space_groups[203] = sg space_groups['F d -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(204, 'I m -3', transformations) space_groups[204] = sg space_groups['I m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(205, 'P a -3', transformations) space_groups[205] = sg space_groups['P a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(206, 'I a -3', transformations) space_groups[206] = sg space_groups['I a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(207, 'P 4 3 2', transformations) space_groups[207] = sg space_groups['P 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(208, 'P 42 3 2', transformations) space_groups[208] = sg space_groups['P 42 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(209, 'F 4 3 2', transformations) space_groups[209] = sg space_groups['F 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(210, 'F 41 3 2', transformations) space_groups[210] = sg space_groups['F 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(211, 'I 4 3 2', transformations) space_groups[211] = sg space_groups['I 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(212, 'P 43 3 2', transformations) space_groups[212] = sg space_groups['P 43 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(213, 'P 41 3 2', transformations) space_groups[213] = sg space_groups['P 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(214, 'I 41 3 2', transformations) space_groups[214] = sg space_groups['I 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(215, 'P -4 3 m', transformations) space_groups[215] = sg space_groups['P -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(216, 'F -4 3 m', transformations) space_groups[216] = sg space_groups['F -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(217, 'I -4 3 m', transformations) space_groups[217] = sg space_groups['I -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(218, 'P -4 3 n', transformations) space_groups[218] = sg space_groups['P -4 3 n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(219, 'F -4 3 c', transformations) space_groups[219] = sg space_groups['F -4 3 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(220, 'I -4 3 d', transformations) space_groups[220] = sg space_groups['I -4 3 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(221, 'P m -3 m', transformations) space_groups[221] = sg space_groups['P m -3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(222, 'P n -3 n :2', transformations) space_groups[222] = sg space_groups['P n -3 n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(223, 'P m -3 n', transformations) space_groups[223] = sg space_groups['P m -3 n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(224, 'P n -3 m :2', transformations) space_groups[224] = sg space_groups['P n -3 m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den =
N.array([2,2,1])
numpy.array
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest from decorator_helper import prog_scope import paddle.fluid as fluid import numpy as np import six class TestMathOpPatchesVarBase(unittest.TestCase): def setUp(self): self.shape = [10, 10] self.dtype = np.float32 def test_add(self): a_np = np.random.random(self.shape).astype(self.dtype) b_np = np.random.random(self.shape).astype(self.dtype) with fluid.dygraph.guard(): a = fluid.dygraph.to_variable(a_np) b = fluid.dygraph.to_variable(b_np) res = a + b self.assertTrue(np.array_equal(res.numpy(), a_np + b_np)) def test_sub(self): a_np = np.random.random(self.shape).astype(self.dtype) b_np = np.random.random(self.shape).astype(self.dtype) with fluid.dygraph.guard(): a = fluid.dygraph.to_variable(a_np) b = fluid.dygraph.to_variable(b_np) res = a - b self.assertTrue(np.array_equal(res.numpy(), a_np - b_np)) def test_mul(self): a_np = np.random.random(self.shape).astype(self.dtype) b_np = np.random.random(self.shape).astype(self.dtype) with fluid.dygraph.guard(): a = fluid.dygraph.to_variable(a_np) b = fluid.dygraph.to_variable(b_np) res = a * b self.assertTrue(np.array_equal(res.numpy(), a_np * b_np)) def test_div(self): a_np = np.random.random(self.shape).astype(self.dtype) b_np = np.random.random(self.shape).astype(self.dtype) with fluid.dygraph.guard(): a = fluid.dygraph.to_variable(a_np) b = fluid.dygraph.to_variable(b_np) res = a / b self.assertTrue(np.array_equal(res.numpy(), a_np / b_np)) def test_add_scalar(self): a_np = np.random.random(self.shape).astype(self.dtype) with fluid.dygraph.guard(): a = fluid.dygraph.to_variable(a_np) b = 0.1 res = a + b self.assertTrue(np.array_equal(res.numpy(), a_np + b)) def test_add_scalar_reverse(self): a_np = np.random.random(self.shape).astype(self.dtype) with fluid.dygraph.guard(): a = fluid.dygraph.to_variable(a_np) b = 0.1 res = b + a self.assertTrue(np.array_equal(res.numpy(), b + a_np)) def test_sub_scalar(self): a_np = np.random.random(self.shape).astype(self.dtype) with fluid.dygraph.guard(): a = fluid.dygraph.to_variable(a_np) b = 0.1 res = a - b self.assertTrue(np.array_equal(res.numpy(), a_np - b)) def test_sub_scalar_reverse(self): a_np = np.random.random(self.shape).astype(self.dtype) with fluid.dygraph.guard(): a = fluid.dygraph.to_variable(a_np) b = 0.1 res = b - a self.assertTrue(np.array_equal(res.numpy(), b - a_np)) def test_mul_scalar(self): a_np = np.random.random(self.shape).astype(self.dtype) with fluid.dygraph.guard(): a = fluid.dygraph.to_variable(a_np) b = 0.1 res = a * b self.assertTrue(np.array_equal(res.numpy(), a_np * b)) # div_scalar, not equal def test_div_scalar(self): a_np = np.random.random(self.shape).astype(self.dtype) with fluid.dygraph.guard(): a = fluid.dygraph.to_variable(a_np) b = 0.1 res = a / b self.assertTrue(np.allclose(res.numpy(), a_np / b)) # pow of float type, not equal def test_pow(self): a_np = np.random.random(self.shape).astype(self.dtype) b_np = np.random.random(self.shape).astype(self.dtype) with fluid.dygraph.guard(): a = fluid.dygraph.to_variable(a_np) b = fluid.dygraph.to_variable(b_np) res = a**b self.assertTrue(np.allclose(res.numpy(), a_np**b_np)) def test_floor_div(self): a_np = np.random.randint(1, 100, size=self.shape) b_np = np.random.randint(1, 100, size=self.shape) with fluid.dygraph.guard(): a = fluid.dygraph.to_variable(a_np) b = fluid.dygraph.to_variable(b_np) res = a // b self.assertTrue(np.array_equal(res.numpy(), a_np // b_np)) def test_mod(self): a_np = np.random.randint(1, 100, size=self.shape) b_np = np.random.randint(1, 100, size=self.shape) with fluid.dygraph.guard(): a = fluid.dygraph.to_variable(a_np) b = fluid.dygraph.to_variable(b_np) res = a % b self.assertTrue(np.array_equal(res.numpy(), a_np % b_np)) # for logical compare def test_equal(self): a_np = np.asarray([1, 2, 3, 4, 5]) b_np = np.asarray([1, 2, 3, 4, 5]) c_np = np.asarray([1, 2, 2, 4, 5]) with fluid.dygraph.guard(): a = fluid.dygraph.to_variable(a_np) b = fluid.dygraph.to_variable(b_np) c = fluid.dygraph.to_variable(c_np) res1 = (a == b) res2 = (a == c) self.assertTrue(np.array_equal(res1.numpy(), a_np == b_np)) self.assertTrue(np.array_equal(res2.numpy(), a_np == c_np)) def test_not_equal(self): a_np = np.asarray([1, 2, 3, 4, 5]) b_np = np.asarray([1, 2, 3, 4, 5]) c_np = np.asarray([1, 2, 2, 4, 5]) with fluid.dygraph.guard(): a = fluid.dygraph.to_variable(a_np) b = fluid.dygraph.to_variable(b_np) c = fluid.dygraph.to_variable(c_np) res1 = (a != b) res2 = (a != c) self.assertTrue(np.array_equal(res1.numpy(), a_np != b_np)) self.assertTrue(np.array_equal(res2.numpy(), a_np != c_np)) def test_less_than(self): a_np = np.random.random(self.shape).astype(self.dtype) b_np = np.random.random(self.shape).astype(self.dtype) with fluid.dygraph.guard(): a = fluid.dygraph.to_variable(a_np) b = fluid.dygraph.to_variable(b_np) res = (a < b) self.assertTrue(np.array_equal(res.numpy(), a_np < b_np)) def test_less_equal(self): a_np = np.random.random(self.shape).astype(self.dtype) b_np = np.random.random(self.shape).astype(self.dtype) with fluid.dygraph.guard(): a = fluid.dygraph.to_variable(a_np) b = fluid.dygraph.to_variable(b_np) res = (a <= b) self.assertTrue(np.array_equal(res.numpy(), a_np <= b_np)) def test_greater_than(self): a_np = np.random.random(self.shape).astype(self.dtype) b_np = np.random.random(self.shape).astype(self.dtype) with fluid.dygraph.guard(): a = fluid.dygraph.to_variable(a_np) b = fluid.dygraph.to_variable(b_np) res = (a > b) self.assertTrue(np.array_equal(res.numpy(), a_np > b_np)) def test_greater_equal(self): a_np = np.random.random(self.shape).astype(self.dtype) b_np =
np.random.random(self.shape)
numpy.random.random
# -*- coding: utf-8 -*- # Copyright 2017, IBM. # # This source code is licensed under the Apache License, Version 2.0 found in # the LICENSE.txt file in the root directory of this source tree. # pylint: disable=invalid-name,missing-docstring from test.python.common import QiskitTestCase import json import unittest import numpy as np from numpy.linalg import norm import qiskit import qiskit._compiler from qiskit import ClassicalRegister from qiskit import QuantumCircuit from qiskit import QuantumJob from qiskit import QuantumRegister from qiskit.backends.local.qasm_simulator_cpp import (QasmSimulatorCpp, cx_error_matrix, x90_error_matrix) class TestLocalQasmSimulatorCpp(QiskitTestCase): """ Test job_processor module. """ def setUp(self): self.seed = 88 self.qasm_filename = self._get_resource_path('qasm/example.qasm') with open(self.qasm_filename, 'r') as qasm_file: self.qasm_text = qasm_file.read() self.qasm_ast = qiskit.qasm.Qasm(data=self.qasm_text).parse() self.qasm_be = qiskit.unroll.CircuitBackend(['u1', 'u2', 'u3', 'id', 'cx']) self.qasm_circ = qiskit.unroll.Unroller(self.qasm_ast, self.qasm_be).execute() qr = QuantumRegister(2, 'q') cr = ClassicalRegister(2, 'c') qc = QuantumCircuit(qr, cr) qc.h(qr[0]) qc.measure(qr[0], cr[0]) self.qc = qc # create qobj compiled_circuit1 = qiskit._compiler.compile_circuit(self.qc, format='json') compiled_circuit2 = qiskit._compiler.compile_circuit(self.qasm_circ, format='json') self.qobj = {'id': 'test_qobj', 'config': { 'max_credits': 3, 'shots': 2000, 'backend_name': 'local_qasm_simulator_cpp', 'seed': 1111 }, 'circuits': [ { 'name': 'test_circuit1', 'compiled_circuit': compiled_circuit1, 'basis_gates': 'u1,u2,u3,cx,id', 'layout': None, }, { 'name': 'test_circuit2', 'compiled_circuit': compiled_circuit2, 'basis_gates': 'u1,u2,u3,cx,id', 'layout': None, } ]} # Simulator backend try: self.backend = QasmSimulatorCpp() except FileNotFoundError as fnferr: raise unittest.SkipTest( 'cannot find {} in path'.format(fnferr)) self.q_job = QuantumJob(self.qobj, backend=self.backend, preformatted=True) def test_x90_coherent_error_matrix(self): X90 = np.array([[1, -1j], [-1j, 1]]) / np.sqrt(2) U = x90_error_matrix(0., 0.).dot(X90) target = X90 self.assertAlmostEqual(norm(U - target), 0.0, places=10, msg="identity error matrix") U = x90_error_matrix(np.pi / 2., 0.).dot(X90) target = -1j * np.array([[0, 1], [1, 0]]) self.assertAlmostEqual(norm(U - target), 0.0, places=10) U = x90_error_matrix(0., np.pi / 2.).dot(X90) target = np.array([[1., -1], [1, 1.]]) / np.sqrt(2.) self.assertAlmostEqual(norm(U - target), 0.0, places=10) U = x90_error_matrix(np.pi / 2, np.pi / 2.).dot(X90) target = np.array([[0., -1], [1, 0.]]) self.assertAlmostEqual(norm(U - target), 0.0, places=10) U = x90_error_matrix(0.02, -0.03) self.assertAlmostEqual(norm(U.dot(U.conj().T) - np.eye(2)), 0.0, places=10, msg="Test error matrix is unitary") def test_cx_coherent_error_matrix(self): CX = np.array([[1, 0, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0]]) U = cx_error_matrix(0., 0.).dot(CX) target = CX self.assertAlmostEqual(norm(U - target), 0.0, places=10, msg="identity error matrix") U = cx_error_matrix(np.pi / 2., 0.).dot(CX) target = np.array([[1, 0, 1j, 0], [0, -1j, 0, 1], [1j, 0, 1, 0], [0, 1, 0, -1j]]) / np.sqrt(2) self.assertAlmostEqual(norm(U - target), 0.0, places=10) U = cx_error_matrix(0.03, -0.04) self.assertAlmostEqual(norm(U.dot(U.conj().T) - np.eye(4)), 0.0, places=10, msg="Test error matrix is unitary") def test_run_qobj(self): result = self.backend.run(self.q_job).result() shots = self.qobj['config']['shots'] threshold = 0.04 * shots counts = result.get_counts('test_circuit2') target = {'100 100': shots / 8, '011 011': shots / 8, '101 101': shots / 8, '111 111': shots / 8, '000 000': shots / 8, '010 010': shots / 8, '110 110': shots / 8, '001 001': shots / 8} self.assertDictAlmostEqual(counts, target, threshold) def test_qobj_measure_opt(self): filename = self._get_resource_path('qobj/cpp_measure_opt.json') with open(filename, 'r') as file: q_job = QuantumJob(json.load(file), backend=self.backend, preformatted=True) result = self.backend.run(q_job).result() shots = q_job.qobj['config']['shots'] expected_data = { 'measure (opt)': { 'deterministic': True, 'counts': {'00': shots}, 'statevector': np.array([1, 0, 0, 0])}, 'x0 measure (opt)': { 'deterministic': True, 'counts': {'01': shots}, 'statevector':
np.array([0, 1, 0, 0])
numpy.array
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(130, 'P 4/n c c :2', transformations) space_groups[130] = sg space_groups['P 4/n c c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(131, 'P 42/m m c', transformations) space_groups[131] = sg space_groups['P 42/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(132, 'P 42/m c m', transformations) space_groups[132] = sg space_groups['P 42/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(133, 'P 42/n b c :2', transformations) space_groups[133] = sg space_groups['P 42/n b c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(134, 'P 42/n n m :2', transformations) space_groups[134] = sg space_groups['P 42/n n m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(135, 'P 42/m b c', transformations) space_groups[135] = sg space_groups['P 42/m b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(136, 'P 42/m n m', transformations) space_groups[136] = sg space_groups['P 42/m n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(137, 'P 42/n m c :2', transformations) space_groups[137] = sg space_groups['P 42/n m c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(138, 'P 42/n c m :2', transformations) space_groups[138] = sg space_groups['P 42/n c m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(139, 'I 4/m m m', transformations) space_groups[139] = sg space_groups['I 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(140, 'I 4/m c m', transformations) space_groups[140] = sg space_groups['I 4/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(141, 'I 41/a m d :2', transformations) space_groups[141] = sg space_groups['I 41/a m d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(142, 'I 41/a c d :2', transformations) space_groups[142] = sg space_groups['I 41/a c d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(143, 'P 3', transformations) space_groups[143] = sg space_groups['P 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(144, 'P 31', transformations) space_groups[144] = sg space_groups['P 31'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(145, 'P 32', transformations) space_groups[145] = sg space_groups['P 32'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(146, 'R 3 :H', transformations) space_groups[146] = sg space_groups['R 3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(147, 'P -3', transformations) space_groups[147] = sg space_groups['P -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(148, 'R -3 :H', transformations) space_groups[148] = sg space_groups['R -3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(149, 'P 3 1 2', transformations) space_groups[149] = sg space_groups['P 3 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(150, 'P 3 2 1', transformations) space_groups[150] = sg space_groups['P 3 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(151, 'P 31 1 2', transformations) space_groups[151] = sg space_groups['P 31 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(152, 'P 31 2 1', transformations) space_groups[152] = sg space_groups['P 31 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(153, 'P 32 1 2', transformations) space_groups[153] = sg space_groups['P 32 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(154, 'P 32 2 1', transformations) space_groups[154] = sg space_groups['P 32 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(155, 'R 3 2 :H', transformations) space_groups[155] = sg space_groups['R 3 2 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(156, 'P 3 m 1', transformations) space_groups[156] = sg space_groups['P 3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(157, 'P 3 1 m', transformations) space_groups[157] = sg space_groups['P 3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(158, 'P 3 c 1', transformations) space_groups[158] = sg space_groups['P 3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(159, 'P 3 1 c', transformations) space_groups[159] = sg space_groups['P 3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(160, 'R 3 m :H', transformations) space_groups[160] = sg space_groups['R 3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(161, 'R 3 c :H', transformations) space_groups[161] = sg space_groups['R 3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(162, 'P -3 1 m', transformations) space_groups[162] = sg space_groups['P -3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(163, 'P -3 1 c', transformations) space_groups[163] = sg space_groups['P -3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(164, 'P -3 m 1', transformations) space_groups[164] = sg space_groups['P -3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(165, 'P -3 c 1', transformations) space_groups[165] = sg space_groups['P -3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(166, 'R -3 m :H', transformations) space_groups[166] = sg space_groups['R -3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(167, 'R -3 c :H', transformations) space_groups[167] = sg space_groups['R -3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(168, 'P 6', transformations) space_groups[168] = sg space_groups['P 6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(169, 'P 61', transformations) space_groups[169] = sg space_groups['P 61'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(170, 'P 65', transformations) space_groups[170] = sg space_groups['P 65'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(171, 'P 62', transformations) space_groups[171] = sg space_groups['P 62'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(172, 'P 64', transformations) space_groups[172] = sg space_groups['P 64'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(173, 'P 63', transformations) space_groups[173] = sg space_groups['P 63'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(174, 'P -6', transformations) space_groups[174] = sg space_groups['P -6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(175, 'P 6/m', transformations) space_groups[175] = sg space_groups['P 6/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(176, 'P 63/m', transformations) space_groups[176] = sg space_groups['P 63/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(177, 'P 6 2 2', transformations) space_groups[177] = sg space_groups['P 6 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(178, 'P 61 2 2', transformations) space_groups[178] = sg space_groups['P 61 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(179, 'P 65 2 2', transformations) space_groups[179] = sg space_groups['P 65 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(180, 'P 62 2 2', transformations) space_groups[180] = sg space_groups['P 62 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(181, 'P 64 2 2', transformations) space_groups[181] = sg space_groups['P 64 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(182, 'P 63 2 2', transformations) space_groups[182] = sg space_groups['P 63 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(183, 'P 6 m m', transformations) space_groups[183] = sg space_groups['P 6 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(184, 'P 6 c c', transformations) space_groups[184] = sg space_groups['P 6 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(185, 'P 63 c m', transformations) space_groups[185] = sg space_groups['P 63 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(186, 'P 63 m c', transformations) space_groups[186] = sg space_groups['P 63 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(187, 'P -6 m 2', transformations) space_groups[187] = sg space_groups['P -6 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(188, 'P -6 c 2', transformations) space_groups[188] = sg space_groups['P -6 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(189, 'P -6 2 m', transformations) space_groups[189] = sg space_groups['P -6 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(190, 'P -6 2 c', transformations) space_groups[190] = sg space_groups['P -6 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(191, 'P 6/m m m', transformations) space_groups[191] = sg space_groups['P 6/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(192, 'P 6/m c c', transformations) space_groups[192] = sg space_groups['P 6/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(193, 'P 63/m c m', transformations) space_groups[193] = sg space_groups['P 63/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(194, 'P 63/m m c', transformations) space_groups[194] = sg space_groups['P 63/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(195, 'P 2 3', transformations) space_groups[195] = sg space_groups['P 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(196, 'F 2 3', transformations) space_groups[196] = sg space_groups['F 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(197, 'I 2 3', transformations) space_groups[197] = sg space_groups['I 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(198, 'P 21 3', transformations) space_groups[198] = sg space_groups['P 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(199, 'I 21 3', transformations) space_groups[199] = sg space_groups['I 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(200, 'P m -3', transformations) space_groups[200] = sg space_groups['P m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(201, 'P n -3 :2', transformations) space_groups[201] = sg space_groups['P n -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(202, 'F m -3', transformations) space_groups[202] = sg space_groups['F m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(203, 'F d -3 :2', transformations) space_groups[203] = sg space_groups['F d -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(204, 'I m -3', transformations) space_groups[204] = sg space_groups['I m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(205, 'P a -3', transformations) space_groups[205] = sg space_groups['P a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(206, 'I a -3', transformations) space_groups[206] = sg space_groups['I a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(207, 'P 4 3 2', transformations) space_groups[207] = sg space_groups['P 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(208, 'P 42 3 2', transformations) space_groups[208] = sg space_groups['P 42 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num =
N.array([1,0,1])
numpy.array
from __future__ import division, absolute_import __copyright__ = """ Copyright (C) 2013 <NAME> Copyright (C) 2018 <NAME> Copyright (C) 2018 <NAME> """ __license__ = """ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ __doc__ = """ This module helps predict the running time of each step of FMM :class:`FMMTranslationCostModel` describes the translation or evaluation cost of a single operation. For example, *m2p* describes the cost for translating a single multipole expansion to a single target. :class:`AbstractFMMCostModel` uses :class:`FMMTranslationCostModel` and calibration parameter to compute the total cost of each step of FMM in each box. There is an :class:`AbstractFMMCostModel`, implemented by :class:`FMMCostModel`. :file:`examples/cost_model.py` demostrates how the calibration and evaluation are performed. A similar module in *pytential* extends the functionality of his module to incorporate QBX-specific operations. Translation Cost of a Single Operation ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. autoclass:: FMMTranslationCostModel .. autofunction:: make_pde_aware_translation_cost_model .. autofunction:: make_taylor_translation_cost_model Cost Model Classes ^^^^^^^^^^^^^^^^^^ .. autoclass:: AbstractFMMCostModel .. autoclass:: FMMCostModel """ import numpy as np import pyopencl as cl import pyopencl.array # noqa: F401 from pyopencl.elementwise import ElementwiseKernel from pyopencl.tools import dtype_to_ctype from mako.template import Template from functools import partial from pymbolic import var, evaluate from pytools import memoize_method import sys if sys.version_info >= (3, 0): Template = partial(Template, strict_undefined=True) else: Template = partial(Template, strict_undefined=True, disable_unicode=True) if sys.version_info >= (3, 4): from abc import ABC, abstractmethod else: from abc import ABCMeta, abstractmethod ABC = ABCMeta("ABC", (), {}) # {{{ FMMTranslationCostModel class FMMTranslationCostModel(object): """Provides modeled costs for individual translations or evaluations. .. note:: Current implementation assumes the calibration parameters are linear in the modeled cost. For example, `var("c_p2l") * self.ncoeffs_fmm_by_level[level]` is valid, but `var("c_p2l") ** 2 * self.ncoeffs_fmm_by_level[level]` is not. """ def __init__(self, ncoeffs_fmm_by_level, uses_point_and_shoot): self.ncoeffs_fmm_by_level = ncoeffs_fmm_by_level self.uses_point_and_shoot = uses_point_and_shoot @staticmethod def direct(): return var("c_p2p") def p2l(self, level): return var("c_p2l") * self.ncoeffs_fmm_by_level[level] def l2p(self, level): return var("c_l2p") * self.ncoeffs_fmm_by_level[level] def p2m(self, level): return var("c_p2m") * self.ncoeffs_fmm_by_level[level] def m2p(self, level): return var("c_m2p") * self.ncoeffs_fmm_by_level[level] def m2m(self, src_level, tgt_level): return var("c_m2m") * self.e2e_cost( self.ncoeffs_fmm_by_level[src_level], self.ncoeffs_fmm_by_level[tgt_level]) def l2l(self, src_level, tgt_level): return var("c_l2l") * self.e2e_cost( self.ncoeffs_fmm_by_level[src_level], self.ncoeffs_fmm_by_level[tgt_level]) def m2l(self, src_level, tgt_level): return var("c_m2l") * self.e2e_cost( self.ncoeffs_fmm_by_level[src_level], self.ncoeffs_fmm_by_level[tgt_level]) def e2e_cost(self, nsource_coeffs, ntarget_coeffs): if self.uses_point_and_shoot: return ( # Rotate the coordinate system to be z axis aligned. nsource_coeffs ** (3 / 2) # Translate the expansion along the z axis. + nsource_coeffs ** (1 / 2) * ntarget_coeffs # Rotate the coordinate system back. + ntarget_coeffs ** (3 / 2)) return nsource_coeffs * ntarget_coeffs # }}} # {{{ translation cost model factories def make_pde_aware_translation_cost_model(dim, nlevels): """Create a cost model for FMM translation operators that make use of the knowledge that the potential satisfies a PDE. For example, this factory is used for complex Taylor and Fourier-Bessel expansions in 2D, and spherical harmonics (with point-and-shoot) in 3D. """ p_fmm = np.array([var("p_fmm_lev%d" % i) for i in range(nlevels)]) ncoeffs_fmm = (p_fmm + 1) ** (dim - 1) if dim == 3: uses_point_and_shoot = True else: uses_point_and_shoot = False return FMMTranslationCostModel( ncoeffs_fmm_by_level=ncoeffs_fmm, uses_point_and_shoot=uses_point_and_shoot ) def make_taylor_translation_cost_model(dim, nlevels): """Create a cost model for FMM translation based on Taylor expansions in Cartesian coordinates. """ p_fmm = np.array([var("p_fmm_lev%d" % i) for i in range(nlevels)]) ncoeffs_fmm = (p_fmm + 1) ** dim return FMMTranslationCostModel( ncoeffs_fmm_by_level=ncoeffs_fmm, uses_point_and_shoot=False ) # }}} # {{{ AbstractFMMCostModel class AbstractFMMCostModel(ABC): """An interface to obtain both FMM operation counts and calibrated (e.g. in seconds) cost estimates. * To obtain operation counts only, use :meth:`get_unit_calibration_params` with :meth:`cost_per_stage` or :meth:`cost_per_box`. * To calibrate the model, pass operation counts together with timing data to :meth:`estimate_calibration_params`. * To evaluate the calibrated models, pass the calibration parameters from :meth:`estimate_calibration_params` to :meth:`cost_per_stage` or :meth:`cost_per_box`. .. ------------------------------------------------------------------------ .. rubric:: Evaluation .. ------------------------------------------------------------------------ .. automethod:: cost_per_box .. automethod:: cost_per_stage .. ------------------------------------------------------------------------ .. rubric:: Calibration .. ------------------------------------------------------------------------ .. automethod:: estimate_calibration_params .. ------------------------------------------------------------------------ .. rubric:: Utilities .. ------------------------------------------------------------------------ .. automethod:: aggregate_over_boxes .. automethod:: get_unit_calibration_params .. automethod:: get_ndirect_sources_per_target_box """ def __init__( self, translation_cost_model_factory=make_pde_aware_translation_cost_model): """ :arg translation_cost_model_factory: a function, which takes tree dimension and the number of tree levels as arguments, returns an object of :class:`FMMTranslationCostModel`. """ self.translation_cost_model_factory = translation_cost_model_factory @abstractmethod def process_form_multipoles(self, queue, traversal, p2m_cost): """Cost for forming multipole expansions of each box. :arg queue: a :class:`pyopencl.CommandQueue` object. :arg traversal: a :class:`boxtree.traversal.FMMTraversalInfo` object. :arg p2m_cost: a :class:`numpy.ndarray` or :class:`pyopencl.array.Array` of shape (nlevels,) representing the cost of forming the multipole expansion of one source at each level. :return: a :class:`numpy.ndarray` or :class:`pyopencl.array.Array` of shape (nsource_boxes,), with each entry represents the cost of the box. """ pass @abstractmethod def process_coarsen_multipoles(self, queue, traversal, m2m_cost): """Cost for upward propagation. :arg queue: a :class:`pyopencl.CommandQueue` object. :arg traversal: a :class:`boxtree.traversal.FMMTraversalInfo` object. :arg m2m_cost: a :class:`numpy.ndarray` or :class:`pyopencl.array.Array` of shape (nlevels-1,), where the ith entry represents the multipole-to-multipole cost from source level i+1 to target level i. :return: a :class:`float`, the overall cost of upward propagation. .. note:: This method returns a number instead of an array, because it is not immediate clear how per-box cost of upward propagation will be useful for distributed load balancing. """ pass @abstractmethod def get_ndirect_sources_per_target_box(self, queue, traversal): """Collect the number of direct evaluation sources (list 1, list 3 close and list 4 close) for each target box. :arg queue: a :class:`pyopencl.CommandQueue` object. :arg traversal: a :class:`boxtree.traversal.FMMTraversalInfo` object. :return: a :class:`numpy.ndarray` or :class:`pyopencl.array.Array` of shape (ntarget_boxes,), with each entry representing the number of direct evaluation sources for that target box. """ pass @abstractmethod def process_direct(self, queue, traversal, ndirect_sources_by_itgt_box, p2p_cost, box_target_counts_nonchild=None): """Direct evaluation cost of each target box of *traversal*. :arg queue: a :class:`pyopencl.CommandQueue` object. :arg traversal: a :class:`boxtree.traversal.FMMTraversalInfo` object. :arg ndirect_sources_by_itgt_box: a :class:`numpy.ndarray` or :class:`pyopencl.array.Array` of shape (ntarget_boxes,), with each entry representing the number of direct evaluation sources for that target box. :arg p2p_cost: a constant representing the cost of one point-to-point evaluation. :arg box_target_counts_nonchild: a :class:`numpy.ndarray` or :class:`pyopencl.array.Array` of shape (nboxes,), the number of targets using direct evaluation in this box. For example, this is useful in QBX by specifying the number of non-QBX targets. If None, all targets in boxes are considered. :return: a :class:`numpy.ndarray` or :class:`pyopencl.array.Array` of shape (ntarget_boxes,), with each entry represents the cost of the box. """ pass @abstractmethod def process_list2(self, queue, traversal, m2l_cost): """ :arg queue: a :class:`pyopencl.CommandQueue` object. :arg traversal: a :class:`boxtree.traversal.FMMTraversalInfo` object. :arg m2l_cost: a :class:`numpy.ndarray` or :class:`pyopencl.array.Array` of shape (nlevels,) representing the translation cost of each level. :return: a :class:`numpy.ndarray` or :class:`pyopencl.array.Array` of shape (ntarget_or_target_parent_boxes,), with each entry representing the cost of multipole-to-local translations to this box. """ pass @abstractmethod def process_list3(self, queue, traversal, m2p_cost, box_target_counts_nonchild=None): """ :arg queue: a :class:`pyopencl.CommandQueue` object. :arg traversal: a :class:`boxtree.traversal.FMMTraversalInfo` object. :arg m2p_cost: a :class:`numpy.ndarray` or :class:`pyopencl.array.Array` of shape (nlevels,) where the ith entry represents the evaluation cost from multipole expansion at level i to a point. :arg box_target_counts_nonchild: a :class:`numpy.ndarray` or :class:`pyopencl.array.Array` of shape (nboxes,), the number of targets using multiple-to-point translations in this box. For example, this is useful in QBX by specifying the number of non-QBX targets. If None, all targets in boxes are considered. :return: a :class:`numpy.ndarray` or :class:`pyopencl.array.Array` of shape (nboxes,), with each entry representing the cost of evaluating all targets inside this box from multipole expansions of list-3 boxes. """ pass @abstractmethod def process_list4(self, queue, traversal, p2l_cost): """ :arg queue: a :class:`pyopencl.CommandQueue` object. :arg traversal: a :class:`boxtree.traversal.FMMTraversalInfo` object. :arg p2l_cost: a :class:`numpy.ndarray` or :class:`pyopencl.array.Array` of shape (nlevels,) where the ith entry represents the translation cost from a point to the local expansion at level i. :return: a :class:`numpy.ndarray` or :class:`pyopencl.array.Array` of shape (ntarget_or_target_parent_boxes,), with each entry representing the cost of point-to-local translations to this box. """ pass @abstractmethod def process_eval_locals(self, queue, traversal, l2p_cost, box_target_counts_nonchild=None): """ :arg queue: a :class:`pyopencl.CommandQueue` object. :arg traversal: a :class:`boxtree.traversal.FMMTraversalInfo` object. :arg l2p_cost: a :class:`numpy.ndarray` or :class:`pyopencl.array.Array` of shape (nlevels,) where the ith entry represents the cost of evaluating the potential of a target in a box of level i using the box's local expansion. :arg box_target_counts_nonchild: a :class:`numpy.ndarray` or :class:`pyopencl.array.Array` of shape (nboxes,), the number of targets which need evaluation. For example, this is useful in QBX by specifying the number of non-QBX targets. If None, use traversal.tree.box_target_counts_nonchild. :return: a :class:`numpy.ndarray` or :class:`pyopencl.array.Array` of shape (ntarget_boxes,), the cost of evaluating the potentials of all targets inside this box from its local expansion. """ pass @abstractmethod def process_refine_locals(self, queue, traversal, l2l_cost): """Cost of downward propagation. :arg queue: a :class:`pyopencl.CommandQueue` object. :arg traversal: a :class:`boxtree.traversal.FMMTraversalInfo` object. :arg l2l_cost: a :class:`numpy.ndarray` or :class:`pyopencl.array.Array` of shape (nlevels-1,), where the ith entry represents the cost of tranlating local expansion from level i to level i+1. :return: a :class:`float`, the overall cost of downward propagation. .. note:: This method returns a number instead of an array, because it is not immediate clear how per-box cost of downward propagation will be useful for distributed load balancing. """ pass @abstractmethod def aggregate_over_boxes(self, per_box_result): """Sum all entries of *per_box_result* into a number. :arg per_box_result: an object of :class:`numpy.ndarray` or :class:`pyopencl.array.Array`, the result to be sumed. :return: a :class:`float`, the result of the sum. """ pass @staticmethod def cost_factors_to_dev(cost_factors, queue): cost_factors_dev = {} for name in cost_factors: if not isinstance(cost_factors[name], np.ndarray): cost_factors_dev[name] = cost_factors[name] continue cost_factors_dev[name] = cl.array.to_device( queue, cost_factors[name] ).with_queue(None) return cost_factors_dev def fmm_cost_factors_for_kernels_from_model( self, queue, nlevels, xlat_cost, context): """Evaluate translation cost factors from symbolic model. The result of this function can be used for process_* methods in this class. :arg queue: If not None, the cost factor arrays will be transferred to device using this queue. :arg nlevels: the number of tree levels. :arg xlat_cost: a :class:`FMMTranslationCostModel`. :arg context: a :class:`dict` of parameters passed as context when evaluating symbolic expressions in *xlat_cost*. :return: a :class:`dict`, the translation cost of each step in FMM. """ cost_factors = { "p2m_cost": np.array([ evaluate(xlat_cost.p2m(ilevel), context=context) for ilevel in range(nlevels) ], dtype=np.float64), "m2m_cost": np.array([ evaluate(xlat_cost.m2m(ilevel+1, ilevel), context=context) for ilevel in range(nlevels-1) ], dtype=np.float64), "c_p2p": evaluate(xlat_cost.direct(), context=context), "m2l_cost": np.array([ evaluate(xlat_cost.m2l(ilevel, ilevel), context=context) for ilevel in range(nlevels) ], dtype=np.float64), "m2p_cost": np.array([ evaluate(xlat_cost.m2p(ilevel), context=context) for ilevel in range(nlevels) ], dtype=np.float64), "p2l_cost": np.array([ evaluate(xlat_cost.p2l(ilevel), context=context) for ilevel in range(nlevels) ], dtype=np.float64), "l2l_cost": np.array([ evaluate(xlat_cost.l2l(ilevel, ilevel+1), context=context) for ilevel in range(nlevels-1) ], dtype=np.float64), "l2p_cost": np.array([ evaluate(xlat_cost.l2p(ilevel), context=context) for ilevel in range(nlevels) ], dtype=np.float64) } if queue: cost_factors = self.cost_factors_to_dev(cost_factors, queue) return cost_factors @abstractmethod def zero_cost_per_box(self, queue, nboxes): """Helper function for returning the per-box cost filled with 0. :arg queue: a :class:`pyopencl.CommandQueue` object. :param nboxes: the number of boxes :return: a :class:`numpy.ndarray` or :class:`pyopencl.array.Array` of shape (*nboxes*,), representing the zero per-box cost. """ pass def cost_per_box(self, queue, traversal, level_to_order, calibration_params, ndirect_sources_per_target_box=None, box_target_counts_nonchild=None): """Predict the per-box costs of a new traversal object. :arg queue: a :class:`pyopencl.CommandQueue` object. :arg traversal: a :class:`boxtree.traversal.FMMTraversalInfo` object. :arg level_to_order: a :class:`numpy.ndarray` of shape (traversal.tree.nlevels,) representing the expansion orders of different levels. :arg calibration_params: a :class:`dict` of calibration parameters. These parameters can be obtained via :meth:`estimate_calibration_params` or :meth:`get_unit_calibration_params`. :arg ndirect_sources_per_target_box: a :class:`numpy.ndarray` or :class:`pyopencl.array.Array` of shape (ntarget_boxes,), the number of direct evaluation sources (list 1, list 3 close, list 4 close) for each target box. You may find :meth:`get_ndirect_sources_per_target_box` helpful. This argument is useful because the same result can be reused for p2p, p2qbxl and tsqbx. :arg box_target_counts_nonchild: a :class:`numpy.ndarray` or :class:`pyopencl.array.Array` of shape (nboxes,), the number of targets which need evaluation. For example, this is useful in QBX by specifying the number of non-QBX targets. If None, all targets are considered, namely traversal.tree.box_target_counts_nonchild. :return: a :class:`numpy.ndarray` or :class:`pyopencl.array.Array` of shape (nboxes,), where the ith entry represents the cost of all stages for box i. """ if ndirect_sources_per_target_box is None: ndirect_sources_per_target_box = ( self.get_ndirect_sources_per_target_box(queue, traversal) ) tree = traversal.tree nboxes = tree.nboxes source_boxes = traversal.source_boxes target_boxes = traversal.target_boxes target_or_target_parent_boxes = traversal.target_or_target_parent_boxes result = self.zero_cost_per_box(queue, nboxes) for ilevel in range(tree.nlevels): calibration_params["p_fmm_lev%d" % ilevel] = level_to_order[ilevel] xlat_cost = self.translation_cost_model_factory( tree.dimensions, tree.nlevels ) translation_cost = self.fmm_cost_factors_for_kernels_from_model( queue, tree.nlevels, xlat_cost, calibration_params ) if box_target_counts_nonchild is None: box_target_counts_nonchild = traversal.tree.box_target_counts_nonchild result[source_boxes] += self.process_form_multipoles( queue, traversal, translation_cost["p2m_cost"] ) result[target_boxes] += self.process_direct( queue, traversal, ndirect_sources_per_target_box, translation_cost["c_p2p"], box_target_counts_nonchild=box_target_counts_nonchild ) result[target_or_target_parent_boxes] += self.process_list2( queue, traversal, translation_cost["m2l_cost"] ) result += self.process_list3( queue, traversal, translation_cost["m2p_cost"], box_target_counts_nonchild=box_target_counts_nonchild ) result[target_or_target_parent_boxes] += self.process_list4( queue, traversal, translation_cost["p2l_cost"] ) result[target_boxes] += self.process_eval_locals( queue, traversal, translation_cost["l2p_cost"], box_target_counts_nonchild=box_target_counts_nonchild ) return result def cost_per_stage(self, queue, traversal, level_to_order, calibration_params, ndirect_sources_per_target_box=None, box_target_counts_nonchild=None): """Predict the per-stage costs of a new traversal object. :arg queue: a :class:`pyopencl.CommandQueue` object. :arg traversal: a :class:`boxtree.traversal.FMMTraversalInfo` object. :arg level_to_order: a :class:`numpy.ndarray` of shape (traversal.tree.nlevels,) representing the expansion orders of different levels. :arg calibration_params: a :class:`dict` of calibration parameters. These parameters can be obtained via :meth:`estimate_calibration_params` or :meth:`get_unit_calibration_params`. :arg ndirect_sources_per_target_box: a :class:`numpy.ndarray` or :class:`pyopencl.array.Array` of shape (ntarget_boxes,), the number of direct evaluation sources (list 1, list 3 close, list 4 close) for each target box. You may find :func:`get_ndirect_sources_per_target_box` helpful. This argument is useful because the same result can be reused for p2p, p2qbxl and tsqbx. :arg box_target_counts_nonchild: a :class:`numpy.ndarray` or :class:`pyopencl.array.Array` of shape (nboxes,), the number of targets which need evaluation. For example, this is useful in QBX by specifying the number of non-QBX targets. If None, all targets are considered, namely traversal.tree.box_target_counts_nonchild. :return: a :class:`dict`, mapping FMM stage names to cost numbers. """ if ndirect_sources_per_target_box is None: ndirect_sources_per_target_box = ( self.get_ndirect_sources_per_target_box(queue, traversal) ) tree = traversal.tree result = {} for ilevel in range(tree.nlevels): calibration_params["p_fmm_lev%d" % ilevel] = level_to_order[ilevel] xlat_cost = self.translation_cost_model_factory( tree.dimensions, tree.nlevels ) translation_cost = self.fmm_cost_factors_for_kernels_from_model( queue, tree.nlevels, xlat_cost, calibration_params ) if box_target_counts_nonchild is None: box_target_counts_nonchild = traversal.tree.box_target_counts_nonchild result["form_multipoles"] = self.aggregate_over_boxes( self.process_form_multipoles( queue, traversal, translation_cost["p2m_cost"] ) ) result["coarsen_multipoles"] = self.process_coarsen_multipoles( queue, traversal, translation_cost["m2m_cost"] ) result["eval_direct"] = self.aggregate_over_boxes( self.process_direct( queue, traversal, ndirect_sources_per_target_box, translation_cost["c_p2p"], box_target_counts_nonchild=box_target_counts_nonchild ) ) result["multipole_to_local"] = self.aggregate_over_boxes( self.process_list2(queue, traversal, translation_cost["m2l_cost"]) ) result["eval_multipoles"] = self.aggregate_over_boxes( self.process_list3( queue, traversal, translation_cost["m2p_cost"], box_target_counts_nonchild=box_target_counts_nonchild ) ) result["form_locals"] = self.aggregate_over_boxes( self.process_list4(queue, traversal, translation_cost["p2l_cost"]) ) result["refine_locals"] = self.process_refine_locals( queue, traversal, translation_cost["l2l_cost"] ) result["eval_locals"] = self.aggregate_over_boxes( self.process_eval_locals( queue, traversal, translation_cost["l2p_cost"], box_target_counts_nonchild=box_target_counts_nonchild ) ) return result @staticmethod def get_unit_calibration_params(): return dict( c_l2l=1.0, c_l2p=1.0, c_m2l=1.0, c_m2m=1.0, c_m2p=1.0, c_p2l=1.0, c_p2m=1.0, c_p2p=1.0, ) _FMM_STAGE_TO_CALIBRATION_PARAMETER = { "form_multipoles": "c_p2m", "coarsen_multipoles": "c_m2m", "eval_direct": "c_p2p", "multipole_to_local": "c_m2l", "eval_multipoles": "c_m2p", "form_locals": "c_p2l", "refine_locals": "c_l2l", "eval_locals": "c_l2p" } def estimate_calibration_params(self, model_results, timing_results, time_field_name="wall_elapsed", additional_stage_to_param_names=()): """ :arg model_results: a :class:`list` of the modeled cost for each step of FMM, returned by :func:`cost_per_stage` with unit calibration parameters (from :meth:`get_unit_calibration_params`) :arg timing_results: a :class:`list` of the same length as *model_results*. Each entry is a :class:`dict` filled with timing data returned by *boxtree.fmm.drive_fmm* :arg time_field_name: a :class:`str`, the field name from the timing result. Usually this can be "wall_elapsed" or "process_elapsed". :arg additional_stage_to_param_names: a :class:`dict` for mapping stage names to parameter names. This is useful for supplying additional stages of QBX. :return: a :class:`dict` of calibration parameters. If there is no model result for a particular stage, the estimated calibration parameter for that stage is NaN. """ nresults = len(model_results) assert len(timing_results) == nresults stage_to_param_names = self._FMM_STAGE_TO_CALIBRATION_PARAMETER.copy() stage_to_param_names.update(additional_stage_to_param_names) params = set(stage_to_param_names.values()) uncalibrated_times = {} actual_times = {} for param in params: uncalibrated_times[param] = np.zeros(nresults) actual_times[param] =
np.zeros(nresults)
numpy.zeros
import os import itertools #import cv2 import torch import random import numpy as np import matplotlib.pyplot as plt import torchvision.transforms as transforms from sklearn.manifold import TSNE from torch.utils.data import DataLoader from matplotlib.pyplot import cm # import model from resnet18 import resnet18 # import datasets from datasets import TransformedDataset from datasets import ADPDataset from datasets import BCSSDataset # defined in image_transformed/custom_augmentations.py transformed_norm_weights = { 'AIDPATH_transformed': {'mean': [0.6032, 0.3963, 0.5897], 'std': [0.1956, 0.2365, 0.1906]}, 'AJ-Lymph_transformed': {'mean': [0.4598, 0.3748, 0.4612], 'std': [0.1406, 0.1464, 0.1176]}, 'BACH_transformed': {'mean': [0.6880, 0.5881, 0.8209], 'std': [0.1632, 0.1841, 0.1175]}, 'CRC_transformed': {'mean': [0.6976, 0.5340, 0.6687], 'std': [0.2272, 0.2697, 0.2247]}, 'GlaS_transformed': {'mean': [0.7790, 0.5002, 0.7765], 'std': [0.1638, 0.2418, 0.1281]}, 'MHIST_transformed': {'mean': [0.7361, 0.6469, 0.7735], 'std': [0.1812, 0.2303, 0.1530]}, 'OSDataset_transformed': {'mean': [0.8414, 0.6492, 0.7377], 'std': [0.1379, 0.2508, 0.1979]}, 'PCam_transformed': {'mean': [0.6970, 0.5330, 0.6878], 'std': [0.2168, 0.2603, 0.1933]}, 'ADP': {'mean': [0.81233799, 0.64032477, 0.81902153], 'std': [0.18129702, 0.25731668, 0.16800649]}, 'BCSS_transformed': {'mean': [0.7107, 0.4878, 0.6726], 'std': [0.1788, 0.2152, 0.1615]}, 'ImageNet': {'mean': [0.485, 0.456, 0.406], 'std': [0.229, 0.224, 0.225]}} def fix_random_seeds(): seed = 10 random.seed(seed) torch.manual_seed(seed) np.random.seed(seed) def get_features(dataset_name, split, path_to_root, path_to_pth): # move the input and model to GPU for speed if available if torch.cuda.is_available(): device = 'cuda' else: device = 'cpu' dist = False # read the dataset and initialize the data loader transform_train = transforms.Compose([ transforms.ToTensor(), transforms.Normalize( mean=transformed_norm_weights[dataset_name]["mean"], std=transformed_norm_weights[dataset_name]["std"])]) train_set = TransformedDataset(transform=transform_train, root=os.path.join(path_to_root, dataset_name), split=split) if len(train_set.samples) > 500: random.shuffle(train_set.samples) train_set.samples = train_set.samples[0:500] train_sampler = torch.utils.data.distributed.DistributedSampler( train_set) if dist else None train_loader = torch.utils.data.DataLoader( train_set, batch_size=mini_batch_size, shuffle=(train_sampler is None), pin_memory=True, num_workers=num_workers, sampler=train_sampler) print("load data successfully") text_label = train_loader.dataset.class_to_idx # initialize our implementation of ResNet num_classes = len(train_loader.dataset.class_to_idx.items()) model = resnet18(path_to_pth, pretrained=True, device=device, num_classes=num_classes) model.to(device) # moving model to compute device model.eval() print("load the model successfully") # we'll store the features as NumPy array of size num_images x feature_size features = None tgts = None with torch.no_grad(): for i, (X, y) in enumerate(train_loader): X = X.to(device, non_blocking=True) y = y.to(device, non_blocking=True) if dataset_name == "PCam_transformed": y = y.type(torch.LongTensor) y = y.flatten() y = y.to(device, non_blocking=True) output = model(X) current_features = output.cpu().numpy() if features is not None: features = np.concatenate((features, current_features)) else: features = current_features curr_labels = y.detach().cpu().numpy() if tgts is not None: tgts =
np.concatenate((tgts, curr_labels))
numpy.concatenate
""" tests functionality """ import sliding_window_processor as dp import numpy as np import pandas as pd def load_test_data(): "loads test data of 100 rows" df = pd.read_csv("./testing_frame.csv", converters={"EventSequence": eval}) return df def test_windower(): """ creates test sequence and then windows and tests output """ test_sequence = ["E{}".format(str(x)) for x in range(0, 256)] window_size = 32 output = dp.windower(test_sequence, window_size) for item in output: assert len(item) == window_size assert len(output) == (256 - 32 + 1) counter = 0 for returned in output: expected = ["E{}".format(str(x)) for x in range(counter, window_size + counter)] assert (returned == expected).all() counter += 1 window_size = 16 output = dp.windower(test_sequence, window_size) for item in output: assert len(item) == window_size assert len(output) == (256 - 16 + 1) counter = 0 for returned in output: expected = ["E{}".format(str(x)) for x in range(counter, window_size + counter)] assert (returned == expected).all() counter += 1 def test_sequence_padder(): """ tests function for correct length and correct values """ test_data = np.array([1, 1, 2, 3]) required_length = 32 returned = dp.sequence_padder(test_data, required_length) assert len(returned) == 32 expected = np.concatenate((test_data, np.array([0] * 28))) assert np.array_equal(returned, expected) returned = dp.sequence_padder(test_data, 100) assert len(returned) == 100 expected = np.concatenate((test_data, np.array([0] * 96))) assert np.array_equal(returned, expected) returned = dp.sequence_padder(test_data, 2) assert len(returned) == 4 expected = np.array([1, 1, 2, 3]) assert np.array_equal(returned, expected) def test_fit_transfom(): """ tests output of fit_transform """ data = load_test_data() events = data["EventSequence"].values fe = dp.FeatureExtractor() X = fe.fit_transform(events, length_percentile=100, window_size=32) assert X.shape == (100, 218, 14) X = fe.fit_transform(events, length_percentile=100, window_size=2) assert X.shape == (100, 248, 14) X = fe.fit_transform(events, length_percentile=100, window_size=7) assert X.shape == (100, 249 - 7 + 1, 14) test_sequence = [["E1", "E2", "E3"] * 10, ["E1", "E3"] * 5] X = fe.fit_transform(test_sequence, length_percentile=50, window_size=2) assert X.shape == (2, 20 - 2 + 1, 3) X = fe.fit_transform( events, length_percentile=100, window_size=32, term_weighting="tf-idf" ) assert X.shape == (100, 218, 14) def test_transform(): """ tests output of transform """ data = load_test_data() events = data["EventSequence"].values fe = dp.FeatureExtractor() # test fit_transform and transform change the same data in the same way X = fe.fit_transform(events, length_percentile=100, window_size=32) assert X.shape == (100, 218, 14) X_t = fe.transform(events) assert X_t.shape == (100, 218, 14) assert
np.array_equal(X, X_t)
numpy.array_equal
# -*- coding: utf-8 -*- """ Created on Wed Jul 31 13:41:32 2019 @author: s146959 """ # ========================================================================== # # ========================================================================== # from __future__ import absolute_import, with_statement, absolute_import, \ division, print_function, unicode_literals # ========================================================================== # # ========================================================================== # import numpy as _np import os as _os import matplotlib.pyplot as _plt #import scipy.signal.correlate as xcorr from scipy import signal as _sig from FFT.fft_analysis import fftanal, ccf from pybaseutils.plt_utils import savefig from FFT.fft_analysis import butter_lowpass from FFT.notch_filter import iirnotch _plt.close("all") datafolder = _os.path.abspath(_os.path.join('..','..','..','..', 'Workshop')) #datafolder = _os.path.join('/homea','weir','bin') #print(datafolder) #data options minFreq=10e3 intb = [15e3, 25e3] # original #intb = [50e3, 400e3] # broadband fluctuations # intb = [400e3, 465e3] # high frequency mode #window options Navr=100 windowoverlap=0.5 #input options df=20e3 #frequency of sine wave ampRF = 0.10 ampRFN= 1.0 ampIF = 0.10 ampIFN= 1.0 delay_ph=-0.*_np.pi #time delay in phase shift delay_t=delay_ph/(2.0*_np.pi*(df)) #time delay in seconds _np.random.seed() n_s=20001 periods=1000.0 tt=_np.linspace(0,periods/df,n_s) tb = [tt[0], tt[-1]] #some way or another he does not like tt[-1] in the fftanal fs=1/(((tt[len(tt)-1]-tt[0])/(len(tt)-1))) tmpRF = ampRF*_np.sin(2.0*_np.pi*(df)*tt) #tmpRF += 1.00*ampRF*_np.random.standard_normal( size=(tt.shape[0],) ) # there was an error here tmpRF += ampRFN*_np.random.uniform( low=-1, high=1, size=(tt.shape[0],) ) tmpIF = ampIF*_np.sin(2.0*_np.pi*(df)*(tt)+delay_ph) #tmpIF += 1.00*ampIF*_np.random.standard_normal( size=(tt.shape[0],) ) tmpIF += ampIFN*_np.random.uniform( low=-1, high=1, size=(tt.shape[0],) ) _plt.figure() _plt.plot(tt, tmpRF) _plt.plot(tt, tmpIF) _plt.title('raw data') #calculate window parameters nsig=len(tmpRF) nwins=int(_np.floor(nsig*1.0/(Navr-Navr*windowoverlap + windowoverlap))) noverlap=int(_np.ceil(nwins*windowoverlap)) ist=_np.arange(Navr)*(nwins-noverlap) #Not actually using 1000 windows due to side effects? #calculate maximum and minimum discernible frequencies MaxFreq=fs/2.0 MinFreq=2.0*fs/nwins #2*fr print('Maximal frequency: '+str(MaxFreq)+' Hz') print('Minimal frequency: '+str(MinFreq)+' Hz') #create empty matrices to fill up Pxxd_seg = _np.zeros((Navr, nwins), dtype=_np.complex128) Pyyd_seg = _np.zeros((Navr, nwins), dtype=_np.complex128) Pxyd_seg = _np.zeros((Navr, nwins), dtype=_np.complex128) Xfft = _np.zeros((Navr, nwins), dtype=_np.complex128) Yfft = _np.zeros((Navr, nwins), dtype=_np.complex128) for i in range(Navr): istart=ist[i] iend=ist[i]+nwins xtemp=tmpRF[istart:iend+1] ytemp=tmpIF[istart:iend+1] win=_np.hanning(len(xtemp)) xtemp=xtemp*win ytemp=ytemp*win Xfft[i,:nwins]=_np.fft.fft(xtemp,nwins,axis=0) Yfft[i,:nwins]=_np.fft.fft(ytemp,nwins,axis=0) fr=1/(tt[iend]-tt[istart]) #Calculate Power spectral denisty and Cross power spectral density per segment Pxxd_seg[:Navr,:nwins]=(Xfft*_np.conj(Xfft)) Pyyd_seg[:Navr,:nwins]=(Yfft*_np.conj(Yfft)) Pxyd_seg[:Navr,:nwins]=(Yfft*_np.conj(Xfft)) freq = _np.fft.fftfreq(nwins, 1.0/fs) Nnyquist = nwins//2 #take one sided frequency band and double the energy as it was split over #total frequency band freq = freq[:Nnyquist] # [Hz] Pxx_seg = Pxxd_seg[:, :Nnyquist] Pyy_seg = Pyyd_seg[:, :Nnyquist] Pxy_seg = Pxyd_seg[:, :Nnyquist] Pxx_seg[:, 1:-1] = 2*Pxx_seg[:, 1:-1] # [V^2/Hz], Pyy_seg[:, 1:-1] = 2*Pyy_seg[:, 1:-1] # [V^2/Hz], Pxy_seg[:, 1:-1] = 2*Pxy_seg[:, 1:-1] # [V^2/Hz], if nwins%2: # Odd Pxx_seg[:, -1] = 2*Pxx_seg[:, -1] Pyy_seg[:, -1] = 2*Pyy_seg[:, -1] Pxy_seg[:, -1] = 2*Pxy_seg[:, -1] #Normalise to RMS by removing gain S1=_np.sum(win) Pxx_seg = Pxx_seg/(S1**2) Pyy_seg = Pyy_seg/(S1**2) Pxy_seg = Pxy_seg/(S1**2) #Normalise to true value S2=_np.sum(win**2) Pxx_seg = Pxx_seg/(fs*S2/S1**2) Pyy_seg = Pyy_seg/(fs*S2/S1**2) Pxy_seg = Pxy_seg/(fs*S2/S1**2) #Average the different windows Pxx=_np.mean(Pxx_seg, axis=0) Pyy=_np.mean(Pyy_seg, axis=0) Pxy=_np.mean(Pxy_seg, axis=0) _plt.figure() _plt.plot(freq/1000,_np.abs(Pxy)) _plt.xlabel('frequency [kHz]') _plt.title('Pxy') f1=max((MinFreq, intb[0])) f2=min((MaxFreq, intb[1])) if1 = _np.where(freq>=f1)[0] if2 = _np.where(freq>=f2)[0] if1 = 0 if len(if1) == 0 else if1[0] if2 = len(freq) if len(if2) == 0 else if2[0] ifreqs = _np.asarray(range(if1, if2), dtype=int) integralfreqs=freq[_np.where(freq>=f1)[0][0]:_np.where(freq>=f2)[0][0]] cc2i = (_np.trapz(Pxy[ifreqs],integralfreqs) / _np.sqrt(_np.trapz(_np.abs(Pxx[ifreqs]),integralfreqs)*_np.trapz(_np.abs(Pyy[ifreqs]),integralfreqs))) _plt.figure() _ax1 = _plt.subplot(3,1,1) _ax2 = _plt.subplot(3,1,2, sharex=_ax1) _ax3 = _plt.subplot(3,1,3, sharex=_ax1) _ax1.plot(1e-3*freq,10*_np.log10(_np.abs(Pxy))) _ax1.set_ylabel(r'P$_{xy}$ [dB/Hz]') _ax2.plot(1e-3*freq,10*_np.log10(_np.abs(Pxx))) _ax2.set_ylabel(r'P$_{xx}$ [dB/Hz]') _ax3.plot(1e-3*freq,10*_np.log10(_np.abs(Pyy))) _ax3.set_ylabel(r'P$_{yy}$ [dB/Hz]') _ax3.set_xlabel('f [KHz]') _ylims = _ax1.get_ylim() _ax1.axvline(x=1e-3*freq[ifreqs[0]], ymin=_ylims[0], ymax=10*_np.log10(_np.abs(Pxy))[ifreqs[0]]/_ylims[1], linewidth=0.5, linestyle='--', color='black') _ax1.axvline(x=1e-3*freq[ifreqs[-1]], ymin=_ylims[0], ymax=10*_np.log10(_np.abs(Pxy))[ifreqs[-1]]/_ylims[1], linewidth=0.5, linestyle='--', color='black') #calculate cross coherence, background mean and uncertainty cc=Pxy/_np.sqrt(Pxx*Pyy) ccbg=_np.mean(cc[-int(_np.ceil(len(cc)/5)):]) sigmacc=_np.sqrt((1-_np.abs(cc)**2)**2/(2*Navr)) _plt.figure() _plt.plot(freq/1000,cc) _plt.plot(freq/1000,_np.real(cc-ccbg)) _plt.plot(freq/1000,2*sigmacc,'--',color='red') _plt.ylabel(r'Re($\gamma$-$\gamma_{bg}$)') _plt.xlabel('frequency [kHz]') _plt.title('Real part of CC and background subtracted CC') _plt.axvline(MinFreq/1000, color='k') integrand=(_np.real(cc-ccbg)/(1-_np.real(cc-ccbg)))[_np.where(freq>=f1)[0][0]:_np.where(freq>=f2)[0][0]] integral=_np.trapz(integrand,integralfreqs) Bvid=0.5e6 Bif=200e6 sqrtNs = _np.sqrt(2*Bvid*(tb[-1]-tb[0])) sens = _np.sqrt(2*Bvid/Bif/sqrtNs) Tfluct=_np.sqrt(2*integral/Bif) sigmaTfluct=_np.sqrt(_np.sum((sigmacc*fr)**2))/(Bif*Tfluct) msg = u'Tfluct/T=%2.3f\u00B1%2.3f%%'%(100*Tfluct, 100*sigmaTfluct) print(msg) #Perform the same analysis using fftanal sig_anal = fftanal(tt.copy(), tmpRF.copy(), tmpIF.copy(), windowfunction='hanning', onesided=True, windowoverlap=windowoverlap, Navr=Navr, plotit=False) sig_anal.fftpwelch() _nwins = sig_anal.nwins _fs = sig_anal.Fs _fr = fs/float(nwins) _Navr = sig_anal.Navr _freq = sig_anal.freq.copy() _Pxy = sig_anal.Pxy.copy() _Pxx = sig_anal.Pxx.copy() _Pyy = sig_anal.Pyy.copy() _MaxFreq=fs/2. _MinFreq=2.0*fs/nwins #2*fr print('Maximal frequency: '+str(_MaxFreq)+' Hz') print('Minimal frequency: '+str(_MinFreq)+' Hz') _plt.figure() _plt.plot(_freq/1000,_Pxy) _plt.xlabel('frequency [kHz]') _plt.title('Pxy fftanal') _siglags = sig_anal.fftinfo.lags.copy() _sigcorrcoef = sig_anal.fftinfo.corrcoef.copy() # integration frequencies _f1=max((_MinFreq, intb[0])) _f2=min((_MaxFreq, intb[1])) _if1 = _np.where(_freq>=_f1)[0] _if2 = _np.where(_freq>=_f2)[0] _if1 = 0 if len(_if1) == 0 else _if1[0] _if2 = len(freq) if len(_if2) == 0 else _if2[0] _ifreqs = _np.asarray(range(_if1, _if2), dtype=int) _integralfreqs=_freq[_np.where(_freq>=_f1)[0][0]:_np.where(_freq>=_f2)[0][0]] _cc2i = (_np.trapz(_Pxy[_ifreqs],_integralfreqs) / _np.sqrt(_np.trapz(_np.abs(_Pxx[_ifreqs]),_integralfreqs)*_np.trapz(_np.abs(_Pyy[_ifreqs]),_integralfreqs))) _plt.figure() _ax1 = _plt.subplot(3,1,1) _ax2 = _plt.subplot(3,1,2, sharex=_ax1) _ax3 = _plt.subplot(3,1,3, sharex=_ax1) _ax1.plot(1e-3*_freq,10*_np.log10(_np.abs(_Pxy))) _ax1.set_ylabel(r'P$_{xy}$ [dB/Hz]') _ax2.plot(1e-3*_freq,10*_np.log10(_np.abs(_Pxx))) _ax2.set_ylabel(r'P$_{xx}$ [dB/Hz]') _ax3.plot(1e-3*_freq,10*_np.log10(_np.abs(_Pyy))) _ax3.set_ylabel(r'P$_{yy}$ [dB/Hz]') _ax3.set_xlabel('f [KHz]') _ylims = _ax1.get_ylim() _ax1.axvline(x=1e-3*_freq[_ifreqs[0]], ymin=_ylims[0], ymax=10*_np.log10(_np.abs(_Pxy))[_ifreqs[0]]/_ylims[1], linewidth=0.5, linestyle='--', color='black') _ax1.axvline(x=1e-3*_freq[_ifreqs[-1]], ymin=_ylims[0], ymax=10*_np.log10(_np.abs(_Pxy))[_ifreqs[-1]]/_ylims[1], linewidth=0.5, linestyle='--', color='black') _cc=_Pxy/_np.sqrt(_Pxx*_Pyy) _ccbg=_np.mean(_cc[-int(_np.ceil(len(_cc)/5)):]) _sigmacc=_np.sqrt((1-_np.abs(_cc)**2)**2/(2*_Navr)) _plt.figure() _plt.plot(_freq/1000,_cc) _plt.plot(_freq/1000,_np.real(_cc-_ccbg)) _plt.plot(_freq/1000,2*_sigmacc,'--',color='red') _plt.ylabel(r'Re($\gamma$-$\gamma_{bg}$)') _plt.xlabel('frequency [kHz]') _plt.title('Real part of CC and background subtracted CC fftanal') _plt.axvline(_MinFreq/1000, color='k') _integrand=(_np.real(_cc-_ccbg)/(1-_np.real(_cc-_ccbg)))[_np.where(_freq>=_f1)[0][0]:_np.where(_freq>=_f2)[0][0]] _integral=_np.trapz(_integrand,_integralfreqs) _Bvid=0.5e6 _Bif=200e6 _sqrtNs = _np.sqrt(2*_Bvid*(tb[-1]-tb[0])) _sens = _np.sqrt(2*_Bvid/Bif/_sqrtNs) _Tfluct=_np.sqrt(2*_integral/_Bif) _sigmaTfluct=_np.sqrt(_np.sum((_sigmacc*_fr)**2))/(_Bif*_Tfluct) _msg = u'Tfluct/T=%2.3f\u00B1%2.3f%%'%(100*_Tfluct, 100*_sigmaTfluct) print(_msg) _plt.figure('RMS Coherence') _plt.plot(df*1e-3, _np.abs(cc2i), 'o' ) _plt.axhline(y=1.0/_np.sqrt(Navr), linestyle='--') _plt.xlabel('freq [kHz]') _plt.ylabel(r'RMS Coherence') _plt.figure('RMS Coherence') _plt.plot(df*1e-3, _np.abs(_cc2i), 'o' ) _plt.axhline(1.0/_np.sqrt(_Navr), linestyle='--') _plt.xlabel('freq [kHz]') _plt.ylabel(r'RMS Coherence') _plt.figure('Tfluct') _plt.errorbar(df*1e-3, Tfluct, yerr=sigmaTfluct, fmt='o-',capsize=5) _plt.axhline(sens, linestyle='--') _plt.xlabel('freq [kHz]') _plt.ylabel(r'$\tilde{T}_e/<T_e>$') _plt.figure('Tfluct') _plt.errorbar(df*1e-3, _Tfluct, yerr=_sigmaTfluct, fmt='o',capsize=5) _plt.axhline(_sens, linestyle='--') _plt.xlabel('freq [kHz]') _plt.ylabel(r'$\tilde{T}_e/<T_e>$') _plt.figure() _plt.plot(_freq/1000,_np.real(cc-ccbg)) _plt.plot(_freq/1000,_np.real(_cc-_ccbg)) _plt.plot(_freq/1000,2*_sigmacc,'--',color='red') _plt.ylabel(r'Re($\gamma$-$\gamma_{bg}$)') _plt.xlabel('frequency [kHz]') _plt.title('Homemade and fftanal complex coherance') _plt.axvline(_MinFreq/1000, color='k') _plt.figure() _plt.plot(_freq/1000,
_np.real(cc-ccbg)
numpy.real
import json import numpy as np import pkg_resources import pickle from excursion.utils import mgrid, mesh2points import torch import sklearn.preprocessing datafile = pkg_resources.resource_filename( "excursion", "testcases/data/checkmate_dense.json" ) def modify(zv): return np.log(zv) - np.log(0.05) truthX, truthy_obs, truthy_exp = [], [], [] for p, _, result in json.load(open(datafile))["precomputed"]: if p[0] < p[1] + 200: continue truthX.append(p) truthy_obs.append( max(float(result[1]["observed_CLs"]), 0.001) if result[1] else 0.001 ) truthy_exp.append( max(float(result[1]["expected_CLs"]), 0.001) if result[1] else 0.001 ) truthX =
np.array(truthX)
numpy.array
import numpy as np from scipy.optimize import minimize import scipy.stats import pickle, os, random, time import matplotlib.pyplot as plt from pathos.multiprocessing import ProcessingPool as Pool from sklearn.metrics import mean_squared_error import logging def set_cons(a_max_n_boundary=[0.1, 2.5], desired_V_n_boundary=[1, 40], a_comf_n_boundary=[0.1, 5], S_jam_boundary=[0.1, 10], desired_T_n_boundary=[0.1, 5], beta_boundary=[4, 4]): # constraints: eq or ineq a_max_n_boundary = a_max_n_boundary desired_V_n_boundary = desired_V_n_boundary a_comf_n_boundary = a_comf_n_boundary S_jam_boundary = S_jam_boundary desired_T_n_boundary = desired_T_n_boundary beta_boundary = beta_boundary cons = ({'type': 'ineq', 'fun': lambda x: x[0] - a_max_n_boundary[0]}, \ {'type': 'ineq', 'fun': lambda x: -x[0] + a_max_n_boundary[1]}, \ {'type': 'ineq', 'fun': lambda x: x[1] - desired_V_n_boundary[0]}, \ {'type': 'ineq', 'fun': lambda x: -x[1] + desired_V_n_boundary[1]}, \ {'type': 'ineq', 'fun': lambda x: x[2] - a_comf_n_boundary[0]}, \ {'type': 'ineq', 'fun': lambda x: -x[2] + a_comf_n_boundary[1]}, \ {'type': 'ineq', 'fun': lambda x: x[3] - S_jam_boundary[0]}, \ {'type': 'ineq', 'fun': lambda x: -x[3] + S_jam_boundary[1]}, \ {'type': 'ineq', 'fun': lambda x: x[4] - desired_T_n_boundary[0]}, \ {'type': 'ineq', 'fun': lambda x: -x[4] + desired_T_n_boundary[1]}, \ {'type': 'ineq', 'fun': lambda x: x[5] - beta_boundary[0]}, \ {'type': 'ineq', 'fun': lambda x: -x[5] + beta_boundary[1]}) return cons def initialize(a_max_n_boundary=[0.1, 2.5], desired_V_n_boundary=[1, 40], a_comf_n_boundary=[0.1, 5], S_jam_boundary=[0.1, 10], \ desired_T_n_boundary=[0.1, 5], beta_boundary=[4, 4]): # a_max_n, desired_V_n, a_comf_n, S_jam_n, desired_T_n, beta x0 = (random.uniform(a_max_n_boundary[0], a_max_n_boundary[1]), random.uniform(desired_V_n_boundary[0], desired_V_n_boundary[1]), \ random.uniform(a_comf_n_boundary[0], a_comf_n_boundary[1]), random.uniform(S_jam_boundary[0], S_jam_boundary[1]), \ random.uniform(desired_T_n_boundary[0], desired_T_n_boundary[1]), 4) return x0 def IDM_cf_model(delta_V_n_t, S_n_t, V_n_t, a_max_n, desired_V_n, a_comf_n, S_jam_n, desired_T_n, beta): def desired_space_hw(S_jam_n, V_n_t, desired_T_n, delta_V_n_t, a_max_n, a_comf_n): # if a_max_n * a_comf_n <= 0: # print("a_max_n", a_max_n, "a_comf_n", a_comf_n) item1 = S_jam_n item2 = V_n_t * desired_T_n item3 = (V_n_t * delta_V_n_t) / (2 * np.sqrt(a_max_n * a_comf_n)) # if V_n_t * desired_T_n - (V_n_t * delta_V_n_t) / (2 * np.sqrt(a_max_n * a_comf_n)) > 0: # item2 = V_n_t * desired_T_n - (V_n_t * delta_V_n_t) / (2 * np.sqrt(a_max_n * a_comf_n)) # else: # item2 = 0 return item1 + max(0, item2 + item3) a_n_t = [] for i in range(len(delta_V_n_t)): desired_S_n = desired_space_hw(S_jam_n, V_n_t[i], desired_T_n, delta_V_n_t[i], a_max_n, a_comf_n) a_n_t.append(a_max_n * (1 - (V_n_t[i] / desired_V_n) ** beta - (desired_S_n / S_n_t[i]) ** 2)) return np.array(a_n_t) def tv_IDM_cf_model(delta_V_n_t, S_n_t, V_n_t, a_max_n, desired_V_n, a_comf_n, S_jam_n, desired_T_n, beta): def desired_space_hw(S_jam_n, V_n_t, desired_T_n, delta_V_n_t, a_max_n, a_comf_n): # if a_max_n * a_comf_n <= 0: # print("a_max_n", a_max_n, "a_comf_n", a_comf_n) item1 = S_jam_n item2 = V_n_t * desired_T_n item3 = (V_n_t * delta_V_n_t) / (2 * np.sqrt(a_max_n * a_comf_n)) # if V_n_t * desired_T_n - (V_n_t * delta_V_n_t) / (2 * np.sqrt(a_max_n * a_comf_n)) > 0: # item2 = V_n_t * desired_T_n - (V_n_t * delta_V_n_t) / (2 * np.sqrt(a_max_n * a_comf_n)) # else: # item2 = 0 return item1 + max(0, item2 + item3) a_n_t = [] for i in range(len(delta_V_n_t)): desired_S_n = desired_space_hw(S_jam_n[i], V_n_t[i], desired_T_n[i], delta_V_n_t[i], a_max_n[i], a_comf_n[i]) a_n_t.append(a_max_n[i] * (1 - (V_n_t[i] / desired_V_n[i]) ** beta - (desired_S_n / S_n_t[i]) ** 2)) return np.array(a_n_t) def IDM_cf_model_for_p(delta_V_n_t, S_n_t, V_n_t, a_max_n, desired_V_n, a_comf_n, S_jam_n, desired_T_n, beta): def desired_space_hw(S_jam_n, V_n_t, desired_T_n, delta_V_n_t, a_max_n, a_comf_n): item1 = S_jam_n item2 = V_n_t * desired_T_n item3 = (V_n_t * delta_V_n_t) / (2 * np.sqrt(a_max_n * a_comf_n)) # if V_n_t * desired_T_n - (V_n_t * delta_V_n_t) / (2 * np.sqrt(a_max_n * a_comf_n)) > 0: # item2 = V_n_t * desired_T_n - (V_n_t * delta_V_n_t) / (2 * np.sqrt(a_max_n * a_comf_n)) # else: # item2 = 0 return item1 + max(0, item2 + item3) desired_S_n = desired_space_hw(S_jam_n, V_n_t, desired_T_n, delta_V_n_t, a_max_n, a_comf_n) a_n_t = a_max_n * (1 - (V_n_t / desired_V_n) ** beta - (desired_S_n / S_n_t) ** 2) return a_n_t def obj_func(args): a, delta_V_n_t, S_n_t, V_n_t = args # x[0:6]: a_max_n, desired_V_n, a_comf_n, S_jam_n, desired_T_n, beta # err = lambda x: np.sqrt( np.sum( ( (a - IDM_cf_model(delta_V_n_t, S_n_t, V_n_t, x[0], x[1], x[2], x[3], x[4], x[5])) / a ) ** 2) / len(a) ) # err = lambda x: np.sqrt( np.sum((a - IDM_cf_model(delta_V_n_t, S_n_t, V_n_t, x[0], x[1], x[2], x[3], x[4], x[5])) ** 2) / np.sum(a**2)) err = lambda x: np.sqrt( np.sum((a - IDM_cf_model(delta_V_n_t, S_n_t, V_n_t, x[0], x[1], x[2], x[3], x[4], x[5])) ** 2) / len(a)) return err a_max_n_boundary = [0.1, 2.5] desired_V_n_boundary = [1, 40] a_comf_n_boundary = [0.1, 5] S_jam_n_boundary = [0.1, 10] desired_T_n_boundary = [0.1, 5] boundary = [a_max_n_boundary, desired_V_n_boundary, a_comf_n_boundary, S_jam_n_boundary, desired_T_n_boundary] def save_pkl_file(file, var): pkl_file = open(file, 'wb') pickle.dump(var, pkl_file) pkl_file.close() def read_pkl_file(file): pkl_file = open(file, 'rb') var = pickle.load(pkl_file) pkl_file.close() return var def context_target_split(b_x, b_y, num_context, num_extra_target): """Given inputs x and their value y, return random subsets of points for context and target. Note that following conventions from "Empirical Evaluation of Neural Process Objectives" the context points are chosen as a subset of the target points. Parameters ---------- x : torch.Tensor Shape (batch_size, num_points, x_dim) y : torch.Tensor Shape (batch_size, num_points, y_dim) num_context : int Number of context points. num_extra_target : int Number of additional target points. """ x_context = [] y_context = [] x_target = [] y_target = [] for i in range(len(b_x)): x = np.array(b_x[i]) y = np.array(b_y[i]).reshape(len(b_y[i]), 1) # print(x.shape, y.shape) num_points = x.shape[0] # Sample locations of context and target points # print(num_points, num_context, num_extra_target, num_context + num_extra_target) if num_context + num_extra_target < num_points: locations = np.random.choice(num_points, size=num_context + num_extra_target, replace=False) else: locations = np.random.choice(num_points, size=num_context + num_extra_target, replace=True) for j in range(len(locations)): if locations[j] > num_points: while True: new_loc = np.random.choice(locations, size=1) if new_loc < num_points: locations[j] = new_loc break x_context.append(x[locations[:num_context], :]) y_context.append(y[locations[:num_context], :]) x_target.append(x[locations, :]) y_target.append(y[locations, :]) x_context = np.array(x_context) y_context = np.array(y_context) x_target = np.array(x_target) y_target = np.array(y_target) # print(x_context.shape, y_context.shape, x_target.shape, y_target.shape) return x_context, y_context, x_target, y_target import torch from torch import nn from torch.nn import functional as F from torch.distributions import Normal from random import randint from torch.distributions.kl import kl_divergence class DeterministicEncoder(nn.Module): """Maps an (x_i, y_i) pair to a representation r_i. Parameters ---------- x_dim : int Dimension of x values. y_dim : int Dimension of y values. h_dim : int Dimension of hidden layer. r_dim : int Dimension of output representation r. """ def __init__(self, x_dim, y_dim, h_dim, r_dim): super(DeterministicEncoder, self).__init__() self.x_dim = x_dim self.y_dim = y_dim self.h_dim = h_dim self.r_dim = r_dim layers = [nn.Linear(x_dim + y_dim, h_dim), nn.ReLU(inplace=True), nn.Linear(h_dim, h_dim), nn.ReLU(inplace=True), nn.Linear(h_dim, r_dim)] self.input_to_hidden = nn.Sequential(*layers) def forward(self, x, y): """ x : torch.Tensor Shape (batch_size, x_dim) y : torch.Tensor Shape (batch_size, y_dim) """ input_pairs = torch.cat((x, y), dim=1) return self.input_to_hidden(input_pairs) class LatentEncoder(nn.Module): """ Maps a representation r to mu and sigma which will define the normal distribution from which we sample the latent variable z. Parameters ---------- r_dim : int Dimension of output representation r. z_dim : int Dimension of latent variable z. """ def __init__(self, x_dim, y_dim, r_dim, z_dim): super(LatentEncoder, self).__init__() self.x_dim = x_dim self.y_dim = y_dim self.r_dim = r_dim self.z_dim = z_dim self.xy_to_hidden = nn.Linear(x_dim + y_dim, r_dim) self.hidden_to_mu = nn.Linear(r_dim, z_dim) self.hidden_to_sigma = nn.Linear(r_dim, z_dim) def forward(self, x, y, batch_size, num_points): """ x : torch.Tensor Shape (batch_size, x_dim) y : torch.Tensor Shape (batch_size, y_dim) """ input_pairs = torch.cat((x, y), dim=1) hidden = torch.relu(self.xy_to_hidden(input_pairs)) hidden = hidden.view(batch_size, num_points, self.r_dim) hidden = torch.mean(hidden, dim=1) mu = torch.relu(self.hidden_to_mu(hidden)) # Define sigma following convention in "Empirical Evaluation of Neural # Process Objectives" and "Attentive Neural Processes" sigma = 0.1 + 0.9 * torch.sigmoid(self.hidden_to_sigma(hidden)) return mu, sigma # constrained output class activation(nn.Module): def __init__(self, a_max_n_boundary = [-5.0, 5.0]): super().__init__() self.a_max_n_boundary = a_max_n_boundary def forward(self, inputs): for i in range(len(inputs)): if inputs[i] < self.a_max_n_boundary[0]: inputs[i] = self.a_max_n_boundary[0] elif inputs[i] > self.a_max_n_boundary[1]: inputs[i] = self.a_max_n_boundary[1] return inputs class Decoder(nn.Module): """ Maps target input x_target and samples z (encoding information about the context points) to predictions y_target. Parameters ---------- x_dim : int Dimension of x values. z_dim : int Dimension of latent variable z. h_dim : int Dimension of hidden layer. y_dim : int Dimension of y values. r_dim : int Dimension of output representation r. """ def __init__(self, x_dim, z_dim, h_dim, y_dim, r_dim): super(Decoder, self).__init__() self.x_dim = x_dim self.z_dim = z_dim self.h_dim = h_dim self.y_dim = y_dim self.r_dim = r_dim layers = [nn.Linear(x_dim + z_dim + r_dim, h_dim), nn.ReLU(inplace=True), nn.Linear(h_dim, h_dim), nn.ReLU(inplace=True), nn.Linear(h_dim, h_dim), nn.ReLU(inplace=True)] self.xz_to_hidden = nn.Sequential(*layers) self.hidden_to_mu = nn.Linear(h_dim, y_dim) self.hidden_to_sigma = nn.Linear(h_dim, y_dim) self.constrain_output = activation() def forward(self, x, z, r): """ x : torch.Tensor Shape (batch_size, num_points, x_dim) z : torch.Tensor Shape (batch_size, z_dim) r : torch.Tensor Shape (batch_size, r_dim) Returns ------- Returns mu and sigma for output distribution. Both have shape (batch_size, num_points, y_dim). """ batch_size, num_points, _ = x.size() # Repeat z, so it can be concatenated with every x. This changes shape # from (batch_size, z_dim) to (batch_size, num_points, z_dim) z = z.unsqueeze(1).repeat(1, num_points, 1) r = r.unsqueeze(1).repeat(1, num_points, 1) # Flatten x, z, and r to fit with linear layer x_flat = x.view(batch_size * num_points, self.x_dim) z_flat = z.view(batch_size * num_points, self.z_dim) r_flat = r.view(batch_size * num_points, self.r_dim) # print(x_flat.size(), z_flat.size(), r_flat.size()) # Input is concatenation of z with every row of x input_pairs = torch.cat((x_flat, z_flat, r_flat), dim=1) hidden = self.xz_to_hidden(input_pairs) mu = self.hidden_to_mu(hidden) mu = self.constrain_output(mu) pre_sigma = self.hidden_to_sigma(hidden) # Reshape output into expected shape mu = mu.view(batch_size, num_points, self.y_dim) pre_sigma = pre_sigma.view(batch_size, num_points, self.y_dim) # Define sigma following convention in "Empirical Evaluation of Neural # Process Objectives" and "Attentive Neural Processes" sigma = 0.1 + 0.9 * F.softplus(pre_sigma) return mu, sigma class NeuralProcess(nn.Module): """ Implements Neural Process for functions of arbitrary dimensions. Parameters ---------- x_dim : int Dimension of x values. y_dim : int Dimension of y values. r_dim : int Dimension of output representation r. z_dim : int Dimension of latent variable z. h_dim : int Dimension of hidden layer in encoder and decoder. """ def __init__(self, x_dim, y_dim, r_dim, z_dim, h_dim): super(NeuralProcess, self).__init__() self.x_dim = x_dim self.y_dim = y_dim self.r_dim = r_dim self.z_dim = z_dim self.h_dim = h_dim # self.training = training # Initialize networks self.deterministic_encoder = DeterministicEncoder(x_dim, y_dim, h_dim, r_dim) self.latent_encoder = LatentEncoder(x_dim, y_dim, r_dim, z_dim) self.decoder = Decoder(x_dim, z_dim, h_dim, y_dim, r_dim) def aggregate(self, r_i): """ Aggregates representations for every (x_i, y_i) pair into a single representation. Parameters ---------- r_i : torch.Tensor Shape (batch_size, num_points, r_dim) """ return torch.mean(r_i, dim=1) def deterministic_rep(self, x, y): """ Maps (x, y) pairs into the mu and sigma parameters defining the normal distribution of the latent variables z. Parameters ---------- x : torch.Tensor Shape (batch_size, num_points, x_dim) y : torch.Tensor Shape (batch_size, num_points, y_dim) """ batch_size, num_points, _ = x.size() # Flatten tensors, as encoder expects one dimensional inputs x_flat = x.view(batch_size * num_points, self.x_dim) y_flat = y.contiguous().view(batch_size * num_points, self.y_dim) # Encode each point into a representation r_i r_i_flat = self.deterministic_encoder(x_flat, y_flat) # Reshape tensors into batches r_i = r_i_flat.view(batch_size, num_points, self.r_dim) # print("deterministic encoder r_i size", r_i.size()) # Aggregate representations r_i into a single representation r r = self.aggregate(r_i) # Return deterministic representation return r def latent_rep(self, x, y): """ Maps (x, y) pairs into the mu and sigma parameters defining the normal distribution of the latent variables z. Parameters ---------- x : torch.Tensor Shape (batch_size, num_points, x_dim) y : torch.Tensor Shape (batch_size, num_points, y_dim) """ batch_size, num_points, _ = x.size() # Flatten tensors, as encoder expects one dimensional inputs x_flat = x.view(batch_size * num_points, self.x_dim) y_flat = y.contiguous().view(batch_size * num_points, self.y_dim) # Return parameters of latent representation mu, sigma = self.latent_encoder(x_flat, y_flat, batch_size, num_points) return mu, sigma def forward(self, x_context, y_context, x_target, y_target=None, given_r=None): """ Given context pairs (x_context, y_context) and target points x_target, returns a distribution over target points y_target. Parameters ---------- x_context : torch.Tensor Shape (batch_size, num_context, x_dim). Note that x_context is a subset of x_target. y_context : torch.Tensor Shape (batch_size, num_context, y_dim) x_target : torch.Tensor Shape (batch_size, num_target, x_dim) y_target : torch.Tensor or None Shape (batch_size, num_target, y_dim). Only used during training. Note ---- We follow the convention given in "Empirical Evaluation of Neural Process Objectives" where context is a subset of target points. This was shown to work best empirically. """ # Infer quantities from tensor dimensions batch_size, num_context, x_dim = x_context.size() _, num_target, _ = x_target.size() _, _, y_dim = y_context.size() if self.training: # Encode target and context (context needs to be encoded to # calculate kl term) mu_target, sigma_target = self.latent_rep(x_target, y_target) mu_context, sigma_context = self.latent_rep(x_context, y_context) # Sample from encoded distribution using reparameterization trick q_target = Normal(mu_target, sigma_target) q_context = Normal(mu_context, sigma_context) z_sample = q_target.rsample() r = self.deterministic_rep(x_context, y_context) # Get parameters of output distribution # print("x_target size", x_target.size()) # print("z_sample size", z_sample.size()) # print("r size", r.size()) y_pred_mu, y_pred_sigma = self.decoder(x_target, z_sample, r) p_y_pred = Normal(y_pred_mu, y_pred_sigma) return p_y_pred, q_target, q_context, y_pred_mu else: # At testing time, encode only context mu_context, sigma_context = self.latent_rep(x_context, y_context) # Sample from distribution based on context q_context = Normal(mu_context, sigma_context) z_sample = q_context.rsample() r = self.deterministic_rep(x_context, y_context) # Predict target points based on context if given_r is None: y_pred_mu, y_pred_sigma = self.decoder(x_target, z_sample, r) else: y_pred_mu, y_pred_sigma = self.decoder(x_target, z_sample, given_r) p_y_pred = Normal(y_pred_mu, y_pred_sigma) return p_y_pred, y_pred_mu, y_pred_sigma, r, mu_context, sigma_context class NeuralProcessTrainer(): """ Class to handle training of Neural Processes for functions and images. Parameters ---------- device : torch.device neural_process : neural_process.NeuralProcess or NeuralProcessImg instance optimizer : one of torch.optim optimizers num_context_range : tuple of ints Number of context points will be sampled uniformly in the range given by num_context_range. num_extra_target_range : tuple of ints Number of extra target points (as we always include context points in target points, i.e. context points are a subset of target points) will be sampled uniformly in the range given by num_extra_target_range. print_freq : int Frequency with which to print loss information during training. """ def __init__(self, device, neural_process, optimizer, num_context_range, num_extra_target_range, print_freq=10): self.device = device self.neural_process = neural_process self.optimizer = optimizer self.num_context_range = num_context_range self.num_extra_target_range = num_extra_target_range self.print_freq = print_freq self.steps = 0 self.epoch_loss_history = [] def train(self, data_loader, epochs): """ Trains Neural Process. Parameters ---------- dataloader : torch.utils.DataLoader instance epochs : int Number of epochs to train for. """ for epoch in range(epochs): epoch_loss = 0. epoch_loss_n = 0 for i, data in data_loader.items(): for _ in range(1): # try with different number of context points self.optimizer.zero_grad() # Sample number of context and target points num_context = randint(*self.num_context_range) num_extra_target = randint(*self.num_extra_target_range) # Create context and target points and apply neural process x, y = data # print(np.array(x).shape, np.array(y).shape) x_context, y_context, x_target, y_target = context_target_split(x, y, num_context, num_extra_target) x_context = torch.from_numpy(x_context).type(torch.FloatTensor) y_context = torch.from_numpy(y_context).type(torch.FloatTensor) x_target = torch.from_numpy(x_target).type(torch.FloatTensor) y_target = torch.from_numpy(y_target).type(torch.FloatTensor) p_y_pred, q_target, q_context, y_pred_mu = self.neural_process(x_context, y_context, x_target, y_target) loss = self._loss(p_y_pred, y_target, q_target, q_context, y_pred_mu) loss.backward() self.optimizer.step() epoch_loss += loss.item() epoch_loss_n += 1 self.steps += 1 # if self.steps % self.print_freq == 0: batch_size, num_points, _ = y_pred_mu.size() y_pred_mu = y_pred_mu.view(batch_size * num_points, ) y_target = y_target.view(batch_size * num_points, ) print(y_pred_mu.size(), y_target.size()) print("iteration {} | loss {:.3f} | train accuracy {:.3f}".format(self.steps, loss.item(), mean_squared_error(y_pred_mu.detach().numpy(), y_target.detach().numpy()))) logging.info("iteration {} | loss {:.3f} | train accuracy {:.3f}".format(self.steps, loss.item(), mean_squared_error(y_pred_mu.detach().numpy(), y_target.detach().numpy()))) logging.info("Avg_loss: {}".format(epoch_loss / epoch_loss_n)) self.epoch_loss_history.append(epoch_loss / epoch_loss_n) print("Epoch: {}, Avg_loss: {}, Min_loss: {}".format(epoch, epoch_loss / epoch_loss_n, min(self.epoch_loss_history))) return epoch_loss / epoch_loss_n def _loss(self, p_y_pred, y_target, q_target, q_context, y_pred_mu): """ Computes Neural Process loss. Parameters ---------- p_y_pred : one of torch.distributions.Distribution Distribution over y output by Neural Process. y_target : torch.Tensor Shape (batch_size, num_target, y_dim) q_target : one of torch.distributions.Distribution Latent distribution for target points. q_context : one of torch.distributions.Distribution Latent distribution for context points. """ # Log likelihood has shape (batch_size, num_target, y_dim). Take mean # over batch and sum over number of targets and dimensions of y log_likelihood = p_y_pred.log_prob(y_target).mean(dim=0).mean() # KL has shape (batch_size, r_dim). Take mean over batch and sum over # r_dim (since r_dim is dimension of normal distribution) kl = kl_divergence(q_target, q_context).mean(dim=0).mean() # reconstruction error batch_size, num_points, _ = y_pred_mu.size() y_pred_mu = y_pred_mu.view(batch_size * num_points, ) y_target = y_target.view(batch_size * num_points, ) recon = mean_squared_error(y_pred_mu.detach().numpy(), y_target.detach().numpy(), squared=False) * 10 return -log_likelihood + kl + recon def get_data_with_pos(): f = open('all_data_for_cf_model_w_t_pre_info_pos_1101.pkl', 'rb') all_data_for_cf_model = pickle.load(f) f.close() next_vs = [] v_ids = [] all_cf_datas = [] next_v = 1 segs_info = [] for v_id, all_cf_data in all_data_for_cf_model.items(): print("-------------------------------------------------------------------------------------------------") print(str(next_v) + 'th vehicle with id ' + str(v_id)) next_vs.append(next_v) v_ids.append(v_id) next_v += 1 # [delta_v_l, space_hw_l, ego_v_l, a_l] delta_V_n_t = np.array(all_cf_data[0]) S_n_t = np.array(all_cf_data[1]) V_n_t = np.array(all_cf_data[2]) a = np.array(all_cf_data[3]) t = np.array(all_cf_data[4]) pre_v = np.array(all_cf_data[5]) pre_tan_acc = np.array(all_cf_data[6]) pre_lat_acc = np.array(all_cf_data[7]) pre_v_id = np.array(all_cf_data[8]) ego_x = np.array(all_cf_data[9]) ego_y = np.array(all_cf_data[10]) pre_x = np.array(all_cf_data[11]) pre_y = np.array(all_cf_data[12]) print(len(a), np.mean(np.abs(a))) print(len(pre_v), np.mean(pre_v)) print(len(pre_tan_acc), np.mean(np.abs(pre_tan_acc))) print(len(pre_lat_acc), np.mean(np.abs(pre_lat_acc))) data_array = np.array([delta_V_n_t, S_n_t, V_n_t, a, ego_x, ego_y, pre_x, pre_y, pre_v, pre_tan_acc, pre_lat_acc, pre_v_id, t]).T data_array = data_array[data_array[:, -1].argsort()] t = np.array(data_array[:, -1]) # data_array = data_array[:, 0:-1] segs = [] this_seg = [] this_seg_info = [] for i in range(len(data_array) - 1): current_t = data_array[i][-1] next_t = data_array[i + 1][-1] current_pre_v_id = data_array[i][-2] next_pre_v_id = data_array[i + 1][-2] if np.abs(next_t - current_t - 0.04) < 0.0001 and np.abs(current_pre_v_id - next_pre_v_id) < 0.0001: this_seg.append(np.append(data_array[i], i)) if i == len(data_array) - 2: this_seg.append(np.append(data_array[i + 1], i + 1)) this_seg = np.array(this_seg) if len(this_seg) > 1: this_seg_info.append(this_seg.shape) print(this_seg.shape) segs.append(this_seg) break continue else: this_seg.append(np.append(data_array[i], i)) this_seg = np.array(this_seg) if len(this_seg) > 1: this_seg_info.append(this_seg.shape) print(this_seg.shape) segs.append(this_seg) this_seg = [] print(len(segs)) segs_info.append(this_seg_info) new_delta_V_n_t = [] new_S_n_t = [] check_S_n_t = [] new_V_n_t = [] new_S_n_t_y = [] new_ego_x = [] new_ego_y = [] new_next_pre_x = [] new_next_pre_y = [] new_frame_id = [] sim_S_n_t_y = [] new_a = [] new_pre_v = [] new_pre_tan_acc = [] new_pre_lat_acc = [] # clean_a = [] diff_s = [] # diff_a = [] # delta_V_n_t, S_n_t, V_n_t, a, ego_x, ego_y, pre_x, pre_y, pre_v, pre_tan_acc, pre_lat_acc, pre_v_id, t for seg in segs: for i in range(len(seg) - 1): new_delta_V_n_t.append(seg[i][0]) new_S_n_t.append(seg[i][1]) check_S_n_t.append(np.sqrt((seg[i][6] - seg[i][4]) ** 2 + (seg[i][7] - seg[i][5]) ** 2)) new_V_n_t.append(seg[i][2]) new_a.append(seg[i][3]) sim_spacing = sim_new_spacing(seg[i + 1][6], seg[i + 1][7], seg[i][4], seg[i][5], seg[i][2], seg[i][3]) # cal_a = cal_new_a(seg[i + 1][6], seg[i + 1][7], seg[i][4], seg[i][5], seg[i][2], seg[i + 1][1]) sim_S_n_t_y.append(sim_spacing) # clean_a.append(cal_a) new_S_n_t_y.append(seg[i + 1][1]) new_ego_x.append(seg[i][4]) new_ego_y.append(seg[i][5]) new_next_pre_x.append(seg[i + 1][6]) new_next_pre_y.append(seg[i + 1][7]) diff_s.append(np.abs(seg[i + 1][1] - sim_spacing)) # diff_a.append(np.abs(seg[i][3] - cal_a)) new_frame_id.append(seg[i][-1]) new_pre_v.append(seg[i][8]) new_pre_tan_acc.append(seg[i][9]) new_pre_lat_acc.append(seg[i][10]) if not data_array.shape[0] - 2 == new_frame_id[-1]: print("error", data_array.shape, new_frame_id[-1]) time.sleep(5) data_array = np.array( [new_delta_V_n_t, new_S_n_t, new_V_n_t, new_a, new_S_n_t_y, new_ego_x, new_ego_y, new_next_pre_x, new_next_pre_y, new_pre_v, new_pre_tan_acc, new_pre_lat_acc, new_frame_id]).T # print("spacing", np.mean(new_S_n_t_y), np.mean(new_S_n_t), np.mean(check_S_n_t), # np.mean(np.array(new_S_n_t_y) - np.array(new_S_n_t)), # np.mean(diff_s), np.mean(diff_a)) print(data_array.shape) all_cf_datas.append(data_array) return next_vs, v_ids, all_cf_datas, segs_info def cal_ttc(next_v, v_id, all_cf_data): # S_n_t_1, delta_V_n_t, S_n_t, V_n_t, next_pre_x, next_pre_y, ego_x, ego_y = args if os.path.exists('0803_mop_space_dist_param/' + str(int(v_id)) + '/using_all_data.txt'): res_param = np.loadtxt('0803_mop_space_dist_param/' + str(int(v_id)) + '/using_all_data.txt') else: return False, False, False fix_a_max = res_param[0] fix_desired_V = res_param[1] fix_a_comf = res_param[2] fix_S_jam = res_param[3] fix_desired_T = res_param[4] tv_params_mean = np.loadtxt('0803_mop_space_dist_param/' + str(int(v_id)) + '/tv_params_mean.txt') for i in range(1, len(all_cf_data)): previous_frame = all_cf_data[i - 1] current_frame = all_cf_data[i] if current_frame[9] - previous_frame[9] != 1: p_delta_V_n_t = current_frame[0] p_S_n_t = current_frame[1] p_V_n_t = current_frame[2] p_a_n_t = current_frame[3] p_next_S_n_t = current_frame[4] p_ego_x = current_frame[5] p_ego_y = current_frame[6] p_next_pre_x = current_frame[7] p_next_pre_y = current_frame[8] continue delta_V_n_t = current_frame[0] S_n_t = current_frame[1] V_n_t = current_frame[2] a_n_t = current_frame[3] next_S_n_t = current_frame[4] ego_x = current_frame[5] ego_y = current_frame[6] next_pre_x = current_frame[7] next_pre_y = current_frame[8] pre_V_n_t = V_n_t - delta_V_n_t if i == 1: p_delta_V_n_t = previous_frame[0] p_S_n_t = previous_frame[1] p_V_n_t = previous_frame[2] p_a_n_t = previous_frame[3] p_next_S_n_t = previous_frame[4] p_ego_x = previous_frame[5] p_ego_y = previous_frame[6] p_next_pre_x = previous_frame[7] p_next_pre_y = previous_frame[8] tv_params = tv_params_mean[i] a_max, desired_V, a_comf, S_jam, desired_T = tv_params[0], tv_params[1], tv_params[2], tv_params[3], tv_params[ 4] a_n_t_hat = IDM_cf_model_for_p(p_delta_V_n_t, p_S_n_t, p_V_n_t, a_max, desired_V, a_comf, S_jam, desired_T, 4) tv_sim_V_n_t = p_V_n_t + a_n_t_hat * 0.04 fix_a_n_t_hat = IDM_cf_model_for_p(p_delta_V_n_t, p_S_n_t, p_V_n_t, fix_a_max, fix_desired_V, fix_a_comf, fix_S_jam, fix_desired_T, 4) fix_sim_V_n_t = p_V_n_t + fix_a_n_t_hat * 0.04 tv_V_n_t_1 = V_n_t ttc = S_n_t / delta_V_n_t # fix_ttc = # tv_ttc = i += 1 def sim_new_spacing(new_pre_x, new_pre_y, old_ego_x, old_ego_y, V_n_t, a_n_t, delta_t=0.04): return np.sqrt((new_pre_x - old_ego_x) ** 2 + (new_pre_y - old_ego_y) ** 2) - (2 * V_n_t + a_n_t * delta_t) / 2 * delta_t train_x = [] train_y = [] test_x = [] test_y = [] all_x = [] all_y = [] train = np.random.choice(range(1, 277), 256, replace=False) next_v = 1 all_a = [] next_vs, v_ids, all_cf_datas, segs_info = get_data_with_pos() for i in range(len(v_ids)): v_id = v_ids[i] all_cf_data = all_cf_datas[i].T # print("------------------------------------------------------------------------------------------------------") # print(str(next_v) + 'th vehicle with id ' + str(v_id)) # delta_V_n_t, S_n_t, V_n_t, a, S_n_t_y, ego_x, ego_y, next_pre_x, next_pre_y, pre_v, pre_tan_acc, pre_lat_acc, frame_id delta_V_n_t = np.array(all_cf_data[0]) S_n_t = np.array(all_cf_data[1]) V_n_t = np.array(all_cf_data[2]) a = np.array(all_cf_data[3]) S_n_t_y = np.array(all_cf_data[4]) ego_x = np.array(all_cf_data[5]) ego_y = np.array(all_cf_data[6]) next_pre_x = np.array(all_cf_data[7]) next_pre_y = np.array(all_cf_data[8]) pre_v = np.array(all_cf_data[9]) pre_tan_acc = np.array(all_cf_data[10]) pre_lat_acc = np.array(all_cf_data[11]) frame_id = np.array(all_cf_data[12]) v_id = [v_id] * len(a) data_array = np.array([v_id, delta_V_n_t, S_n_t, V_n_t, pre_v, pre_tan_acc, pre_lat_acc, S_n_t_y, ego_x, ego_y, next_pre_x, next_pre_y, frame_id, a]).T print(data_array.shape) if not next_v in train: test_x.append(data_array[:, 0:-1]) test_y.append(data_array[:, -1]) all_x.append(data_array[:, 0:-1]) all_y.append(data_array[:, -1]) print(test_x[-1].shape, test_y[-1].shape) else: train_x.append(data_array[:, 0:-1]) train_y.append(data_array[:, -1]) all_x.append(data_array[:, 0:-1]) all_y.append(data_array[:, -1]) print(train_x[-1].shape, train_y[-1].shape) next_v += 1 print(len(train_x), len(train_y)) print(len(test_x), len(test_y)) from torch.utils.data import Dataset, DataLoader from torch.autograd import Variable from time import strftime def get_test_dataloader(x, y): # v_id, delta_V_n_t, S_n_t, V_n_t, pre_v, pre_tan_acc, pre_lat_acc, S_n_t_y, ego_x, ego_y, next_pre_x, next_pre_y, frame_id, a data_loader = {} for i in range(len(x)): v_id = x[i][0][0] print(v_id) for_sim_spacing = x[i].T[7::].T x[i] = x[i].T[1:7].T data_loader[v_id] = ([x[i]], [for_sim_spacing], [y[i]]) return data_loader # device = torch.device("cuda" if torch.cuda.is_available() else "cpu") device = "cpu" # Create a folder to store experiment results # timestamp = strftime("%Y-%m-%d") # directory = "neural_processes_results_{}".format(timestamp) # if not os.path.exists(directory): # os.makedirs(directory) batch_size = 1 x_dim = 6 y_dim = 1 r_dim = 5 h_dim = 128 z_dim = 1 num_context_range = (300, 500) num_extra_target_range = (100, 200) epochs = 2000 lr = 0.001 data_loader = get_test_dataloader(all_x, all_y) print(len(data_loader)) cf_np = NeuralProcess(x_dim, y_dim, r_dim, z_dim, h_dim) cf_np.load_state_dict(torch.load("NP_model.pt")) print(cf_np) cf_np.training = False print(cf_np.training) # logging.basicConfig(filename=directory + '/test.log', # format='%(asctime)s : %(message)s', # datefmt='%Y-%m-%d %H:%M:%S %p', # level=10) def simulate_agg(): all_rmse = [] all_r_c = [] n = 1 sim_ttc = [] sim_spacing = [] sim_speed = [] ttc = [] spacing = [] speed = [] a_err = [] new_seg = False direction = 0.9712041389105396 non_existed_r_c = np.loadtxt("/root/AAAI2022_neuma/0714_dist_param/new_ds_cf_model/new_ds.txt") new_con_r = torch.tensor(non_existed_r_c[0]).type(torch.FloatTensor) new_agg_r = torch.tensor(non_existed_r_c[1]).type(torch.FloatTensor) response_time = 1.5 safe_decel = -5 for i, data in data_loader.items(): r_l = [] rmse_l = [] n += 1 x, for_sim_spacing, y = data print(i) for j in range(1, len(x[0])): current_frame = x[0][j] current_for_sim_spacing = for_sim_spacing[0][j] previous_frame = x[0][j - 1] previous_for_sim_spacing = for_sim_spacing[0][j - 1] if current_for_sim_spacing[-1] - previous_for_sim_spacing[-1] != 1: new_seg = True break # Sample number of context and target points # num_context = randint(*num_context_range) # num_extra_target = randint(*num_extra_target_range) # num_points = num_context + num_extra_target # Create context and target points and apply neural process num_context = len(x[0]) num_extra_target = 1 num_points = len(x[0]) # x_context, y_context, x_target, y_target = context_target_split(x, y, num_context, num_extra_target) # x: delta_V_n_t, S_n_t, V_n_t, pre_v, pre_tan_acc, pre_lat_acc # for sim spacing: S_n_t_y, ego_x, ego_y, next_pre_x, next_pre_y if j == 1 or new_seg: previous_delta_V_n_t = previous_frame[0] previous_S_n_t = previous_frame[1] previous_V_n_t = previous_frame[2] previous_pre_v = previous_frame[3] previous_pre_tan_acc = previous_frame[4] previous_pre_lat_acc = previous_frame[5] else: previous_delta_V_n_t = sim_previous_frame[0] previous_S_n_t = sim_previous_frame[1] previous_V_n_t = sim_previous_frame[2] previous_pre_v = sim_previous_frame[3] previous_pre_tan_acc = sim_previous_frame[4] previous_pre_lat_acc = sim_previous_frame[5] x_target = np.array([[previous_delta_V_n_t, previous_S_n_t, previous_V_n_t, previous_pre_v, previous_pre_tan_acc, previous_pre_lat_acc]]) fix_x_target = np.array([previous_frame]) x_context, y_context = np.array(x), np.array([y]) x_context = torch.from_numpy(x_context).type(torch.FloatTensor) y_context = torch.from_numpy(y_context).type(torch.FloatTensor) x_target = torch.from_numpy(x_target).type(torch.FloatTensor).view(1, 1, x_dim) fix_x_target = torch.from_numpy(fix_x_target).type(torch.FloatTensor).view(1, 1, x_dim) # predict acceleration # p_y_pred, y_pred_mu, y_pred_sigma, r, mu_context, sigma_context = cf_np(x_context, y_context, x_target, None) p_y_pred, y_pred_mu, y_pred_sigma, r, mu_context, sigma_context = cf_np(x_context, y_context, x_target, None, new_agg_r) # new ds cf model # a_n_t = y_pred_mu.detach().numpy().reshape(batch_size * num_points, 1)[0] a_n_t = y_pred_mu.detach().numpy().reshape(1,)[0] p_y_pred, y_pred_mu, y_pred_sigma, r, mu_context, sigma_context = cf_np(x_context, y_context, fix_x_target, None) fix_a_n_t = y_pred_mu.detach().numpy().reshape(1, )[0] a_err.append((fix_a_n_t - y[0][j - 1]) ** 2) # update velocity safe_distance = previous_V_n_t * response_time if previous_S_n_t < safe_distance: a_n_t = safe_decel print(a_n_t, fix_a_n_t, y[0][j - 1]) V_n_t = previous_V_n_t + a_n_t * 0.04 # calculate heading direction # previous_ego_x = previous_for_sim_spacing[1] # previous_ego_y = previous_for_sim_spacing[2] # ego_x = current_for_sim_spacing[1] # ego_y = current_for_sim_spacing[2] # direction = np.arctan((ego_y - previous_ego_y) / (previous_ego_x - ego_x)) # update the ego vehicle's position if j == 1 or new_seg: previous_ego_x = previous_for_sim_spacing[1] previous_ego_y = previous_for_sim_spacing[2] ego_x = previous_ego_x - np.cos(direction) * V_n_t * 0.04 ego_y = previous_ego_y + np.sin(direction) * V_n_t * 0.04 else: ego_x = sim_previous_ego_x - np.cos(direction) * V_n_t * 0.04 ego_y = sim_previous_ego_y + np.sin(direction) * V_n_t * 0.04 pre_x = previous_for_sim_spacing[3] pre_y = previous_for_sim_spacing[4] print("leading v pos", pre_x, pre_y) print("sim ego pos", ego_x, ego_y) print("ego pos", current_for_sim_spacing[1], current_for_sim_spacing[2]) # update the traffic condition previous_delta_V_n_t = V_n_t - current_frame[3] previous_S_n_t = np.sqrt((pre_y - ego_y) ** 2 + (pre_x - ego_x) ** 2) previous_V_n_t = V_n_t previous_pre_v = current_frame[3] previous_pre_tan_acc = current_frame[4] previous_pre_lat_acc = current_frame[5] sim_previous_frame = np.array([previous_delta_V_n_t, previous_S_n_t, previous_V_n_t, previous_pre_v, previous_pre_tan_acc, previous_pre_lat_acc]) sim_previous_ego_x = ego_x sim_previous_ego_y = ego_y print("sim ttc", previous_S_n_t, previous_delta_V_n_t) print("gt ttc", current_frame[1], current_frame[0]) sim_ttc.append(previous_S_n_t/previous_delta_V_n_t) sim_spacing.append(previous_S_n_t) sim_speed.append(previous_V_n_t) ttc.append(current_frame[1]/current_frame[0]) spacing.append(current_frame[1]) speed.append(current_frame[2]) # print(mu_context, sigma_context, r) # r_l.append(r.detach().numpy()) # print(n, i, mean_squared_error(y_pred_mu.detach().numpy().reshape(batch_size*num_points, 1), # y_target.detach().numpy().reshape(batch_size*num_points, 1))) # rmse_l.append(mean_squared_error(y_pred_mu.detach().numpy().reshape(batch_size*num_points, 1), # y_target.detach().numpy().reshape(batch_size*num_points, 1))) # r_l = np.array(r_l).reshape(20, 5) # print(r_l.shape) # print(np.mean(r_l, axis=0), np.std(r_l, axis=0)) # all_r_c.append(np.mean(r_l, axis=0)) # all_rmse.append(np.mean(rmse_l)) break print(len(sim_ttc)) print("ttc:", np.mean(sim_ttc), np.mean(ttc)) print("spacing:", np.mean(sim_spacing), np.mean(spacing)) print("speed:", np.mean(sim_speed), np.mean(speed)) print(np.sqrt(np.mean(a_err))) np.savetxt("/root/AAAI2022_neuma/0714_dist_param/new_ds_cf_model/agg_index_5_sim_ttc.txt", sim_ttc) np.savetxt("/root/AAAI2022_neuma/0714_dist_param/new_ds_cf_model/agg_index_5_sim_spacing.txt", sim_spacing) np.savetxt("/root/AAAI2022_neuma/0714_dist_param/new_ds_cf_model/agg_index_5_sim_speed.txt", sim_speed) np.savetxt("/root/AAAI2022_neuma/0714_dist_param/new_ds_cf_model/gt_ttc.txt", ttc) np.savetxt("/root/AAAI2022_neuma/0714_dist_param/new_ds_cf_model/gt_spacing.txt", spacing) np.savetxt("/root/AAAI2022_neuma/0714_dist_param/new_ds_cf_model/gt_speed.txt", speed) def simulate_con(): all_rmse = [] all_r_c = [] n = 1 sim_ttc = [] sim_spacing = [] sim_speed = [] ttc = [] spacing = [] speed = [] a_err = [] new_seg = False direction = 0.9712041389105396 non_existed_r_c = np.loadtxt("/root/AAAI2022_neuma/0714_dist_param/new_ds_cf_model/new_ds.txt") new_con_r = torch.tensor(non_existed_r_c[0]).type(torch.FloatTensor) new_agg_r = torch.tensor(non_existed_r_c[1]).type(torch.FloatTensor) response_time = 2.0 safe_decel = -5 for i, data in data_loader.items(): r_l = [] rmse_l = [] n += 1 x, for_sim_spacing, y = data print(i) for j in range(1, len(x[0])): current_frame = x[0][j] current_for_sim_spacing = for_sim_spacing[0][j] previous_frame = x[0][j - 1] previous_for_sim_spacing = for_sim_spacing[0][j - 1] if current_for_sim_spacing[-1] - previous_for_sim_spacing[-1] != 1: new_seg = True break # Sample number of context and target points # num_context = randint(*num_context_range) # num_extra_target = randint(*num_extra_target_range) # num_points = num_context + num_extra_target # Create context and target points and apply neural process num_context = len(x[0]) num_extra_target = 1 num_points = len(x[0]) # x_context, y_context, x_target, y_target = context_target_split(x, y, num_context, num_extra_target) # x: delta_V_n_t, S_n_t, V_n_t, pre_v, pre_tan_acc, pre_lat_acc # for sim spacing: S_n_t_y, ego_x, ego_y, next_pre_x, next_pre_y if j == 1 or new_seg: previous_delta_V_n_t = previous_frame[0] previous_S_n_t = previous_frame[1] previous_V_n_t = previous_frame[2] previous_pre_v = previous_frame[3] previous_pre_tan_acc = previous_frame[4] previous_pre_lat_acc = previous_frame[5] else: previous_delta_V_n_t = sim_previous_frame[0] previous_S_n_t = sim_previous_frame[1] previous_V_n_t = sim_previous_frame[2] previous_pre_v = sim_previous_frame[3] previous_pre_tan_acc = sim_previous_frame[4] previous_pre_lat_acc = sim_previous_frame[5] x_target = np.array([[previous_delta_V_n_t, previous_S_n_t, previous_V_n_t, previous_pre_v, previous_pre_tan_acc, previous_pre_lat_acc]]) fix_x_target = np.array([previous_frame]) x_context, y_context = np.array(x), np.array([y]) x_context = torch.from_numpy(x_context).type(torch.FloatTensor) y_context = torch.from_numpy(y_context).type(torch.FloatTensor) x_target = torch.from_numpy(x_target).type(torch.FloatTensor).view(1, 1, x_dim) fix_x_target = torch.from_numpy(fix_x_target).type(torch.FloatTensor).view(1, 1, x_dim) # predict acceleration # p_y_pred, y_pred_mu, y_pred_sigma, r, mu_context, sigma_context = cf_np(x_context, y_context, x_target, None) p_y_pred, y_pred_mu, y_pred_sigma, r, mu_context, sigma_context = cf_np(x_context, y_context, x_target, None, new_con_r) # new ds cf model # a_n_t = y_pred_mu.detach().numpy().reshape(batch_size * num_points, 1)[0] a_n_t = y_pred_mu.detach().numpy().reshape(1, )[0] p_y_pred, y_pred_mu, y_pred_sigma, r, mu_context, sigma_context = cf_np(x_context, y_context, fix_x_target, None) fix_a_n_t = y_pred_mu.detach().numpy().reshape(1, )[0] a_err.append((fix_a_n_t - y[0][j - 1]) ** 2) # update velocity safe_distance = previous_V_n_t * response_time if previous_S_n_t < safe_distance: a_n_t = safe_decel print(a_n_t, fix_a_n_t, y[0][j - 1]) V_n_t = previous_V_n_t + a_n_t * 0.04 # calculate heading direction # previous_ego_x = previous_for_sim_spacing[1] # previous_ego_y = previous_for_sim_spacing[2] # ego_x = current_for_sim_spacing[1] # ego_y = current_for_sim_spacing[2] # direction = np.arctan((ego_y - previous_ego_y) / (previous_ego_x - ego_x)) # update the ego vehicle's position if j == 1 or new_seg: previous_ego_x = previous_for_sim_spacing[1] previous_ego_y = previous_for_sim_spacing[2] ego_x = previous_ego_x - np.cos(direction) * V_n_t * 0.04 ego_y = previous_ego_y + np.sin(direction) * V_n_t * 0.04 else: ego_x = sim_previous_ego_x - np.cos(direction) * V_n_t * 0.04 ego_y = sim_previous_ego_y + np.sin(direction) * V_n_t * 0.04 pre_x = previous_for_sim_spacing[3] pre_y = previous_for_sim_spacing[4] print("leading v pos", pre_x, pre_y) print("sim ego pos", ego_x, ego_y) print("ego pos", current_for_sim_spacing[1], current_for_sim_spacing[2]) # update the traffic condition previous_delta_V_n_t = V_n_t - current_frame[3] previous_S_n_t = np.sqrt((pre_y - ego_y) ** 2 + (pre_x - ego_x) ** 2) previous_V_n_t = V_n_t previous_pre_v = current_frame[3] previous_pre_tan_acc = current_frame[4] previous_pre_lat_acc = current_frame[5] sim_previous_frame = np.array( [previous_delta_V_n_t, previous_S_n_t, previous_V_n_t, previous_pre_v, previous_pre_tan_acc, previous_pre_lat_acc]) sim_previous_ego_x = ego_x sim_previous_ego_y = ego_y print("sim ttc", previous_S_n_t, previous_delta_V_n_t) print("gt ttc", current_frame[1], current_frame[0]) sim_ttc.append(previous_S_n_t / previous_delta_V_n_t) sim_spacing.append(previous_S_n_t) sim_speed.append(previous_V_n_t) ttc.append(current_frame[1] / current_frame[0]) spacing.append(current_frame[1]) speed.append(current_frame[2]) # print(mu_context, sigma_context, r) # r_l.append(r.detach().numpy()) # print(n, i, mean_squared_error(y_pred_mu.detach().numpy().reshape(batch_size*num_points, 1), # y_target.detach().numpy().reshape(batch_size*num_points, 1))) # rmse_l.append(mean_squared_error(y_pred_mu.detach().numpy().reshape(batch_size*num_points, 1), # y_target.detach().numpy().reshape(batch_size*num_points, 1))) # r_l = np.array(r_l).reshape(20, 5) # print(r_l.shape) # print(np.mean(r_l, axis=0), np.std(r_l, axis=0)) # all_r_c.append(np.mean(r_l, axis=0)) # all_rmse.append(np.mean(rmse_l)) break print(len(sim_ttc)) print("ttc:", np.mean(sim_ttc), np.mean(ttc)) print("spacing:", np.mean(sim_spacing), np.mean(spacing)) print("speed:", np.mean(sim_speed), np.mean(speed)) print(np.sqrt(np.mean(a_err))) np.savetxt("/root/AAAI2022_neuma/0714_dist_param/new_ds_cf_model/con_index_5_sim_ttc.txt", sim_ttc) np.savetxt("/root/AAAI2022_neuma/0714_dist_param/new_ds_cf_model/con_index_5_sim_spacing.txt", sim_spacing) np.savetxt("/root/AAAI2022_neuma/0714_dist_param/new_ds_cf_model/con_index_5_sim_speed.txt", sim_speed) np.savetxt("/root/AAAI2022_neuma/0714_dist_param/new_ds_cf_model/gt_ttc.txt", ttc) np.savetxt("/root/AAAI2022_neuma/0714_dist_param/new_ds_cf_model/gt_spacing.txt", spacing) np.savetxt("/root/AAAI2022_neuma/0714_dist_param/new_ds_cf_model/gt_speed.txt", speed) simulate_agg() simulate_con() exit() plt.figure() plt.hist(spacing, color="lightcoral") plt.hist(sim_spacing, alpha=0.6, color="skyblue") plt.savefig("/root/AAAI2022_neuma/0803_mop_space_dist_param/"+str(int(i))+"/comp_spacing.png") plt.figure() plt.hist(ttc, color="lightcoral", range=(-50, 50)) plt.hist(sim_ttc, alpha=0.6, color="skyblue", range=(-50, 50)) plt.savefig("/root/AAAI2022_neuma/0803_mop_space_dist_param/"+str(int(i))+"/comp_ttc.png") plt.figure() plt.hist(speed, color="lightcoral") plt.hist(sim_speed, alpha=0.6, color="skyblue") plt.savefig("/root/AAAI2022_neuma/0803_mop_space_dist_param/"+str(int(i))+"/comp_speed.png") exit() print(np.mean(all_rmse), np.std(all_rmse)) all_r_c =
np.array(all_r_c)
numpy.array
# Copyright (C) 2021 Members of the Simons Observatory collaboration. # Please refer to the LICENSE file in the root of this repository. import os import ref import numpy as np import matplotlib.pyplot as plt import matplotlib.transforms as mtransforms import matplotlib.colors as colors import matplotlib.cm as cm from scipy.stats import chisquare from waferscreen.data_io.explore_io import flagged_data, wafer_str_to_num, res_num_to_str, band_num_to_str,\ chip_id_str_to_chip_id_tuple from waferscreen.data_io.s21_io import read_s21, ri_to_magphase from waferscreen.analyze.lambfit import f0_of_I from waferscreen.data_io.explore_io import CalcMetadataAtNeg95dbm, CalcMetadataAtNeg75dbm report_markers = ["*", "v", "s", "<", "X", "p", "^", "D", ">", "P"] report_colors = ["seagreen", "crimson", "darkgoldenrod", "deepskyblue", "mediumblue", "rebeccapurple"] def criteria_flagged_summary(flag_table_info, criteria_name, res_numbers, too_low=True): for res_label in res_numbers: summary_str = F"Criteria Flag: {criteria_name}" if too_low: summary_str += " too low." else: summary_str += " too high." # if the resonator was flagged already for another reason we need to add a new line to the summary. if res_label in flag_table_info: flag_table_info[res_label] += "\n" + summary_str else: flag_table_info[res_label] = summary_str return flag_table_info def chi_squared_plot(ax, f_ghz_mean, chi_squared_for_resonators, res_nums_int, color, markersize, alpha, x_label, y_label, x_ticks_on, max_chi_squared=None): # calculate when the values are outside of the acceptance range if max_chi_squared is None: upper_bound = float("inf") else: upper_bound = float(max_chi_squared) res_nums_too_high_chi_squared = set() # turn on/off tick marks if not x_ticks_on: ax.tick_params(axis="x", labelbottom=False) # loop to plot data one point at a time (add a identifying marker for each data point) counter = 0 for f_ghz, chi_squared in zip(f_ghz_mean, chi_squared_for_resonators): res_num = res_nums_int[counter] marker = report_markers[res_num % len(report_markers)] ax.plot(f_ghz, chi_squared.statistic, color=color, ls='None', marker=marker, markersize=markersize, alpha=alpha) if upper_bound < chi_squared.statistic: res_nums_too_high_chi_squared.add(res_num_to_str(res_num)) ax.plot(f_ghz, chi_squared.statistic, color="black", ls='None', marker="x", markersize=markersize + 2, alpha=1.0) counter += 1 # boundary and average lines if max_chi_squared is not None: ax.axhline(y=max_chi_squared, xmin=0, xmax=1, color='red', linestyle='dashdot') # tick marks and axis labels if x_label is None: if x_ticks_on: ax.set_xlabel("Average Resonator Center Frequency (GHz)") else: ax.set_xlabel(x_label) if y_label is not None: ax.set_ylabel(y_label) # grid on major tick marks ax.grid(b=True) ax.set_yscale("log") return ax, res_nums_too_high_chi_squared def error_bar_report_plot(ax, xdata, ydata, yerr, res_nums_int, color="black", ls='None', markersize=10, alpha=0.7, x_label=None, y_label=None, x_ticks_on=True, min_y=None, max_y=None, average_y=None): # calculate when the values are outside of the acceptance range if min_y is None: lower_bound = float("-inf") else: lower_bound = float(min_y) if max_y is None: upper_bound = float("inf") else: upper_bound = float(max_y) res_nums_too_low = set() res_nums_too_high = set() # turn on/off tick marks if not x_ticks_on: ax.tick_params(axis="x", labelbottom=False) # loop to plot data one point at a time (add a identifying marker for each data point) counter = 0 for x_datum, y_datum, y_datum_err in zip(xdata, ydata, yerr): res_num = res_nums_int[counter] marker = report_markers[res_num % len(report_markers)] ax.errorbar(x_datum, y_datum, yerr=y_datum_err, color=color, ls=ls, marker=marker, markersize=markersize, alpha=alpha) if y_datum < lower_bound: res_nums_too_low.add(res_num_to_str(res_num)) ax.plot(x_datum, y_datum, color="black", ls=ls, marker="x", markersize=markersize + 2, alpha=1.0) elif upper_bound < y_datum: res_nums_too_high.add(res_num_to_str(res_num)) ax.plot(x_datum, y_datum, color="black", ls=ls, marker="x", markersize=markersize + 2, alpha=1.0) counter += 1 # boundary and average lines if min_y is not None: ax.axhline(y=min_y, xmin=0, xmax=1, color='red', linestyle='dashed') if average_y is not None: ax.axhline(y=average_y, xmin=0, xmax=1, color='green', linestyle='dotted') if max_y is not None: ax.axhline(y=max_y, xmin=0, xmax=1, color='red', linestyle='dashdot') # tick marks and axis labels if x_label is None: if x_ticks_on: ax.set_xlabel("Average Resonator Center Frequency (GHz)") else: ax.set_xlabel(x_label) if y_label is not None: ax.set_ylabel(y_label) # grid on major tick marks ax.grid(b=True) return ax, res_nums_too_low, res_nums_too_high def hist_report_plot(ax, data, bins=10, color="blue", x_label=None, y_label=None, alpha=0.5): ax.tick_params(axis="y", labelleft=False) ax.tick_params(axis="x", labelbottom=False) ax.hist(data, bins=bins, color=color, orientation='horizontal', alpha=alpha) if x_label is not None: ax.set_xlabel(x_label) if y_label is not None: ax.set_ylabel(y_label) ax.tick_params(axis='x', # changes apply to the x-axis which='both', # both major and minor ticks are affected bottom=False, # ticks along the bottom edge are off top=False, # ticks along the top edge are off labelbottom=False) return ax def rug_plot(ax, xdata, y_min, y_max, color="blue", f_ghz_residuals_for_res_plot_shifted=None, ua_arrays_for_resonators=None): # Lambda fit Residuals zen plot (the lines are reminiscent of the waves in a zen rock garden) if f_ghz_residuals_for_res_plot_shifted is not None: norm = colors.Normalize(vmin=0.0, vmax=0.01) cmap = plt.get_cmap('gist_ncar_r') scalar_map = cm.ScalarMappable(norm=norm, cmap=cmap) y_span = y_max - y_min # # the background color of the plot is an indicator that this feature is triggered. # ax.set_facecolor("black") # get the x axis limits prior to this plot x_min, x_max = ax.get_xlim() for f_ghz_plot_residuals, ua_array in zip(f_ghz_residuals_for_res_plot_shifted, ua_arrays_for_resonators): ua_min = np.min(ua_array) ua_max = np.max(ua_array) ua_span = ua_max - ua_min ua_array_normalized_for_plot = (((ua_array - ua_min) / ua_span) * y_span) + y_min f_ghz_residuals_span = np.max(f_ghz_plot_residuals) - np.min(f_ghz_plot_residuals) color_val = scalar_map.to_rgba(f_ghz_residuals_span) ax.plot(f_ghz_plot_residuals, ua_array_normalized_for_plot, color=color_val, linewidth=0.5) # reset the x limits, do not let the residuals dictate the x limits of this plot ax.set_xlim((x_min, x_max)) # 'threads' of the rug plot ax.tick_params(axis="y", labelleft=False) for f_centers in xdata: f_len = len(f_centers) alpha = min(25.0 / f_len, 1.0) for f_center in list(f_centers): ax.plot((f_center, f_center), (y_min, y_max), ls='solid', linewidth=0.1, color=color, alpha=alpha) ax.set_ylim(bottom=0, top=1) ax.tick_params(axis='y', # changes apply to the x-axis which='both', # both major and minor ticks are affected left=False, # ticks along the bottom edge are off right=False, # ticks along the top edge are off labelleft=False) ax.tick_params(axis='x', # changes apply to the x-axis which='both', # both major and minor ticks are affected bottom=False, # ticks along the bottom edge are off top=True, # ticks along the top edge are off labelbottom=False, labeltop=True) ax.xaxis.tick_top() ax.set_xlabel('X LABEL') ax.set_xlabel(F"Frequency (GHz)") ax.xaxis.set_label_position('top') return ax def band_plot(ax, f_ghz, mag_dbm, f_centers_ghz_all, res_nums, band_str): # data math mag_dbm_mean = np.mean(mag_dbm) plot_s21_mag = mag_dbm - mag_dbm_mean plot_mag_min = np.min(plot_s21_mag) plot_mag_max = np.max(plot_s21_mag) ave_f_centers = [np.mean(f_centers) for f_centers in f_centers_ghz_all] # band boundary calculations band_dict = ref.band_params[band_str] trans = mtransforms.blended_transform_factory(ax.transData, ax.transAxes) in_band = [band_dict['min_GHz'] <= one_f <= band_dict['max_GHz'] for one_f in f_ghz] left_of_band = [one_f < band_dict['min_GHz'] for one_f in f_ghz] right_of_band = [band_dict['max_GHz'] < one_f for one_f in f_ghz] ax.fill_between((band_dict['min_GHz'], band_dict['max_GHz']), 0, 1, facecolor='cornflowerblue', alpha=0.5, transform=trans) # the smurf keep out zones for keepout_min, keepout_max in ref.smurf_keepout_zones_ghz: ax.fill_between((keepout_min, keepout_max), 0, 1, facecolor='black', alpha=0.5, transform=trans) # the spectrum part of the plot ax.plot(f_ghz[in_band], plot_s21_mag[in_band], color="darkorchid", linewidth=1) ax.plot(f_ghz[left_of_band], plot_s21_mag[left_of_band], color="black", linewidth=1) ax.plot(f_ghz[right_of_band], plot_s21_mag[right_of_band], color="black", linewidth=1) # Key markers and labels res_labels = [res_num.replace("Res", " ") for res_num in res_nums] res_nums_int = [int(res_num.replace("Res", "")) for res_num in res_nums] counter_f_ghz = 0 counter_ave_centers = 0 while counter_ave_centers < len(ave_f_centers) and counter_f_ghz < len(f_ghz): single_f_ghz = f_ghz[counter_f_ghz] single_f_center = ave_f_centers[counter_ave_centers] if single_f_center < single_f_ghz: # the point is trigger to plot the when the above is true marker = report_markers[res_nums_int[counter_ave_centers] % len(report_markers)] ax.plot(single_f_center, 0.0, color='black', alpha=0.5, marker=marker, markersize=10) ax.text(single_f_center, plot_mag_min, res_labels[counter_ave_centers], color='black', rotation=300, horizontalalignment='center', verticalalignment='bottom', fontsize=8) counter_ave_centers += 1 else: counter_f_ghz += 1 # plot details ax.tick_params(axis="x", labelbottom=False) ax.set_ylabel("dB") ax.tick_params(axis='x', # changes apply to the x-axis which='both', # both major and minor ticks are affected bottom=False, # ticks along the bottom edge are off top=False, # ticks along the top edge are off labelbottom=False) ax.set_ylim(bottom=None, top=plot_mag_max) return ax def report_key(ax, leglines, leglabels, summary_info, res_flags=None): ax.tick_params(axis='x', # changes apply to the x-axis which='both', # both major and minor ticks are affected bottom=False, # ticks along the bottom edge are off top=False, # ticks along the top edge are off labelbottom=False) ax.tick_params(axis='y', # changes apply to the x-axis which='both', # both major and minor ticks are affected left=False, # ticks along the bottom edge are off right=False, # ticks along the top edge are off labelleft=False) ax.text(0.5, 1, summary_info, color='black', horizontalalignment='center', verticalalignment='top', multialignment='left', fontsize=10) ax.set_xlim(left=0, right=1) ax.set_ylim(bottom=0, top=1) # ax.set_title("KEY") ax.legend(leglines, leglabels, loc=8, numpoints=5, handlelength=3, fontsize=10) if res_flags is not None: omitted_res = [] for res_flag in res_flags: omitted_res.append([res_num_to_str(res_flag.seed_res_num), res_flag.type]) ax.table(omitted_res, loc='center', fontsize=10) return ax def report_plot_init(num_of_scatter_hist_x=3, num_of_scatter_hist_y=2): """ Three Major Regions 1) Top: Frequency Rug Plot 2) Middle: Resonator Spectrum 3) Bottom: Scatter plots with side histograms definitions for the axes :param num_of_scatter_hist_x: int :param num_of_scatter_hist_y: int :return: """ left = 0.05 bottom = 0.05 right = 0.99 top = 0.95 major12_region_spacing = 0.000 major32_region_spacing = 0.001 major_regions_y = (0.50, top - 0.15) key_margin_x = 0.85 key_space = 0.003 scatter_hist_little_space = 0.005 scatter_hist_bigger_vspace = 0.005 scatter_hist_bigger_hspace = 0.060 scatter_to_hist_ratio = 1.6 # 0) A plot used as a Key key_top = top key_bottom = major_regions_y[0] + major32_region_spacing key_height = key_top - key_bottom key_left = key_margin_x + key_space key_right = right key_width = key_right - key_left key_cood = [key_left, key_bottom, key_width, key_height] # 1) Top: Frequency Rug Plot rug_top = top rug_bottom = major_regions_y[1] + major12_region_spacing rug_height = rug_top - rug_bottom rug_left = left rug_right = key_margin_x - key_space rug_width = rug_right - rug_left rug_cood = [rug_left, rug_bottom, rug_width, rug_height] # 2) Middle: Resonator Spectrum res_spec_top = major_regions_y[1] - major12_region_spacing res_spec_bottom = major_regions_y[0] + major32_region_spacing res_spec_height = res_spec_top - res_spec_bottom res_spec_left = left res_spec_right = key_margin_x - key_space res_spec_width = res_spec_right - res_spec_left res_spec_cood = [res_spec_left, res_spec_bottom, res_spec_width, res_spec_height] # 3) Bottom:Scatter plots with side histograms shist_top = major_regions_y[0] - major32_region_spacing available_plot_y_per_histogram = (((shist_top - bottom) - ((num_of_scatter_hist_y - 1) * scatter_hist_bigger_vspace)) / num_of_scatter_hist_y) available_plot_x_per_histogram = (((right - left) - ((num_of_scatter_hist_x - 1) * scatter_hist_bigger_hspace)) / num_of_scatter_hist_x) - scatter_hist_little_space scat_width = available_plot_x_per_histogram * scatter_to_hist_ratio / (scatter_to_hist_ratio + 1.0) hist_width = available_plot_x_per_histogram - scat_width hist_coords = [] scatter_coords = [] for yhist_index in range(num_of_scatter_hist_y): shist_bottom = shist_top - available_plot_y_per_histogram shist_height = shist_top - shist_bottom scat_left = left for xhist_index in range(num_of_scatter_hist_x): hist_left = scat_left + scat_width + scatter_hist_little_space scatter_coords.append([scat_left, shist_bottom, scat_width, shist_height]) hist_coords.append([hist_left, shist_bottom, hist_width, shist_height]) scat_left = hist_left + hist_width + scatter_hist_bigger_hspace shist_top = shist_bottom - scatter_hist_bigger_vspace # initialize the plot fig = plt.figure(figsize=(25, 10)) ax_key = fig.add_axes(key_cood, frameon=False) ax_res_spec = fig.add_axes(res_spec_cood, frameon=False) ax_rug = fig.add_axes(rug_cood, sharex=ax_res_spec, frameon=False) axes_scatter = [fig.add_axes(scatter_cood, sharex=ax_res_spec, frameon=False) for scatter_cood in scatter_coords] axes_hist = [fig.add_axes(hist_coord, sharey=ax_scatter, frameon=False) for hist_coord, ax_scatter in zip(hist_coords, axes_scatter)] axes_shist = [(ax_scatter, ax_hist) for ax_scatter, ax_hist in zip(axes_scatter, axes_hist)] return fig, ax_key, ax_res_spec, ax_rug, axes_shist def f_ghz_from_lambda_fit(lambda_fit, ua_array): def lamb_fit_these_params(ua): f_ghz = f0_of_I(ramp_current_amps=ua * 1.0e-6, ramp_current_amps_0=lambda_fit.i0fit, m=lambda_fit.mfit, f2=lambda_fit.f2fit, P=lambda_fit.pfit, lamb=lambda_fit.lambfit) return f_ghz return np.fromiter(map(lamb_fit_these_params, ua_array), dtype=float) def single_lamb_to_report_plot(axes, res_set, color, leglines, leglabels, band_str, flag_table_info, ordered_res_strs, markersize=8, alpha=0.5): summary_info = {} # check to make sure we have date for all the requested resonator numbers for res_str in list(ordered_res_strs): if not hasattr(res_set, res_str): ordered_res_strs.remove(res_str) if "lost_res_nums" in summary_info.keys(): summary_info["lost_res_nums"].add(res_str) else: summary_info["lost_res_nums"] = {res_str} # do some data analysis lamb_values = np.array([res_set.__getattribute__(res_str).lamb_fit.lambfit for res_str in ordered_res_strs]) lamb_value_errs = np.array([res_set.__getattribute__(res_str).lamb_fit.lambfit_err for res_str in ordered_res_strs]) flux_ramp_pp_khz = np.array([res_set.__getattribute__(res_str).lamb_fit.pfit * 1.0e6 for res_str in ordered_res_strs]) flux_ramp_pp_khz_errs = np.array([res_set.__getattribute__(res_str).lamb_fit.pfit_err * 1.0e6 for res_str in ordered_res_strs]) conversion_factor = (ref.phi_0 / (2.0 * np.pi)) * 1.0e12 fr_squid_mi_pH = np.array([res_set.__getattribute__(res_str).lamb_fit.mfit * conversion_factor for res_str in ordered_res_strs]) fr_squid_mi_pH_err = np.array([res_set.__getattribute__(res_str).lamb_fit.mfit_err * conversion_factor for res_str in ordered_res_strs]) port_powers_dbm = np.array([res_set.__getattribute__(res_str).metadata["port_power_dbm"] for res_str in ordered_res_strs]) # This should be a real calibration not this hacky one size fits all subtraction, I hate that I wrote this at_res_power_dbm = [] for res_str, port_power_dbm in zip(ordered_res_strs, port_powers_dbm): wafer_num = res_set.__getattribute__(res_str).metadata["wafer"] if wafer_num < 12.5: # with warm 20 dBm attenuator that make the VNA output unleveled at_res_power_dbm.append(port_power_dbm - 75.0) else: # no warm 20 dBm attenuator on the input at_res_power_dbm.append(port_power_dbm - 55.0) at_res_power_dbm_mean =
np.mean(at_res_power_dbm)
numpy.mean
import torch import numpy as np from torch.autograd import Variable # Module to compute and evaluate the Taylor approximate loss in the paper on larger-scale tasks # - Standard Taylor, global order 2 (eq. 12) # - Our Taylor, up to order 2 for each \epsilon and \delta (eq. 4) # --- Note that for cross entropy loss, this only amounts to adding an # \epsilon\delta^2 term # (equation refs are taken from "On Mixup Regularization"): # https://arxiv.org/pdf/2006.06049.pdf ### some modules for computing the necessary covariances, approximately with SVD as needed ### # takes images and one-hot target vectors as input and computes the means and covariances of the data that are necessary to compute Taylor-approximate loss def compute_moments(data, targets): assert(data.shape[0] == targets.shape[0]) num = data.shape[0] num_classes = targets.shape[1] x = data.reshape((num, -1)) y = targets.reshape((num, -1)) x_dim = x.shape[1] xbar = x.mean(axis=0) xcent = x - xbar ybar = y.mean(axis=0) ycent = y - ybar xxcov = 1/num * torch.matmul(torch.transpose(xcent, 0, 1), xcent) xycov = 1/num * torch.matmul(torch.transpose(xcent, 0, 1), ycent) T = torch.zeros((num_classes, x_dim, x_dim)).cuda() for i in range(num_classes): # xcent is (num by x_dim) # T[i,:,:] = E_j(y'_j(c) x'_j x'_j^T) T[i,:,:] = (1/num)*xcent.t() @ (xcent * ycent[:,i].reshape((num, 1))) return xbar, ybar, xxcov, xycov, T # takes a covariance matrix X as input # and returns U, S, V such that X ~ U * diag(S) * V^T def decomposition(cov, n_components): U, S, V = torch.svd(cov) return U[:, :n_components], S[:n_components], V[:, :n_components] # manual cross_entropy for single model output x (not necessarily distribution) # and one-hot encoded label y, each a vector-Pytorch tensor # needed for hvp (see below) # X and Y are (N x x/y_dim) matrices, batch size N # NOTE: changed to natural logarithm by Seyoon def cross_entropy_manual(X, Y): # note X.shape[0] is the batch size X_softmax = X.exp() / X.exp().sum(axis=1).reshape((X.shape[0], 1)) # TODO: check pytorch uses base 2 return -(Y * torch.log(X_softmax)).sum() # given a pytorch function loss(x_i, y_i) (twice differentiable) # and a neural network 'model', # compute matrix-vector products of the form: # (\nabla_{x1 x2}^2 loss(model(x), y)) @ v # data_shape is the original shape of the batch tensor (non-flattened # iamges) # X is a tensor of size (N, data_dim), where N is the size of the batch, # and data_dim is the dimension of the input data (flattened) # Y is a tensor of size (N, c), where c is the number of classes. Each # row is a Euclidean basis vector corresponding to the true label # x1 and x2 are strings, either 'x' or 'y' # --- these indicate which variables to take derivatives w.r.t. # v is vector to get Hessian's action on ### v should have same dimension as x1, and must be a row vector # TODO: deal w/ fact that zero hessian returns None object def hvp(loss, model, data_shape, X, Y, x1, x2, v): # setting up pytorch stuff to prepare for backprop vvar = Variable(v, requires_grad=True) # extract batch size N = X.shape[0] Xvar = Variable(X, requires_grad=True) Yvar = Variable(Y, requires_grad=True) model_eval = model(Xvar.reshape(data_shape)) # xvar = Variable(X[i,:], requires_grad=True) # yvar = Variable(Y[i,:], requires_grad=True) # choose which variable x1var corresponds to x1var = Xvar if x1=='x' else Yvar x2var = Xvar if x2=='x' else Yvar score = loss(model_eval, Yvar) # gradient w.r.t. entire batch grad, = torch.autograd.grad(score, x1var, create_graph=True) # sum over batch elements (avg. at end) total = torch.sum(grad.sum(axis=0) * vvar) if Xvar.grad: Xvar.grad.data.zero_() if Yvar.grad: Yvar.grad.data.zero_() grad2, = torch.autograd.grad(total, x2var, create_graph=True, allow_unused=True) # sum over rows (different elements in batch) hvprod = (1/N)*grad2.sum(axis=0) return hvprod # computes quadratics of the form \sum w_i H(x_i, y_i) v_i over a batch, where H is a Hessian # w.r.t. loss # suppose the batch size is N # X is a (N by x_dim) matrix, where x_dim is the dimensionality of the data # Y is a (N by num_classes) matrix # x1 is a string: 'x' to take the 1st derivative w.r.t. X, 'y' for 1st derivative # w.r.t. Y # x2 is a string: "" "" 2nd derivative w.r.t. X, 'y' for 2st derivative # w.r.t. Y # V has the same shape as the variable corresponding to x1 # W has the same shape as the variable corresponding to x2 # see comments over hvp for further details def hess_quadratic(loss, model, data_shape, X, Y, x1, x2, V, W): # setting up pytorch stuff to prepare for backprop Vvar = Variable(V, requires_grad=True) Wvar = Variable(W, requires_grad=True) # extract batch size N = X.shape[0] Xvar = Variable(X, requires_grad=True) Yvar = Variable(Y, requires_grad=True) model_eval = model(Xvar.reshape(data_shape)) # choose which variable x1var corresponds to x1var = Xvar if x1=='x' else Yvar x2var = Xvar if x2=='x' else Yvar score = loss(model_eval, Yvar) # gradient w.r.t. entire batch grad, = torch.autograd.grad(score, x1var, create_graph=True) # sum over batch elements (avg. at end) total = torch.sum(grad * Vvar) if Xvar.grad: Xvar.grad.data.zero_() if Yvar.grad: Yvar.grad.data.zero_() # NOTE: THIS WILL NOT ALLOW FURTHER BACKPROP, BRING create_graph=True BACK TO ALLOW THIS grad2, = torch.autograd.grad(total, x2var, create_graph=False, allow_unused=True) # sum over rows (different elements in batch) wHv = torch.sum(W * grad2) return (1/N)*wHv # Computes a quadratic of the form w^T \sum_i H(x_i, y_i) v, where H is a Hessian w.r.t. loss # v, w are vectors that come from an SVD. # # v has the same dimension as what x1 corresponds to (x_dim if 'x', num_classes if 'y') # w has the same dimension as what x2 corresponds to def hess_svd(loss, model, data_shape, X, Y, x1, x2, v, w): # setting up pytorch stuff to prepare for backprop vvar = Variable(v, requires_grad=True) wvar = Variable(w, requires_grad=True) # extract batch size N = X.shape[0] Xvar = Variable(X, requires_grad=True) Yvar = Variable(Y, requires_grad=True) model_eval = model(Xvar.reshape(data_shape)) # choose which variable x1var corresponds to x1var = Xvar if x1=='x' else Yvar x2var = Xvar if x2=='x' else Yvar score = loss(model_eval, Yvar) # gradient w.r.t. entire batch grad, = torch.autograd.grad(score, x1var, create_graph=True) # sum over batch elements (avg. at end) total = torch.sum(grad.sum(axis=0) * vvar) if Xvar.grad: Xvar.grad.data.zero_() if Yvar.grad: Yvar.grad.data.zero_() # NOTE: THIS WILL NOT ALLOW FURTHER BACKPROP, BRING create_graph=True BACK TO ALLOW THIS grad2, = torch.autograd.grad(total, x2var, create_graph=False, allow_unused=True) # sum over rows (different elements in batch) wHv = torch.sum(grad2.sum(axis=0) * wvar) return (1/N)*wHv # the equivalent Hessian quadratic form for the epsilon delta^2 terms: # computes \delta^T (1/N) \sum_i \nabla_{x_ix_i}^2(log(S(model(x_i))_{class_val})) \delta # See project overleaf for details. # inputs identical to hess_svd, except for class_val # class_val indicates which corresponding class the current matrix inner product # is being taken w.r.t. def hess_svd_ed2(class_val, model, data_shape, X, Y, x1, x2, v, w): # setting up pytorch stuff to prepare for backprop vvar = Variable(v, requires_grad=True) wvar = Variable(w, requires_grad=True) # extract batch size N = X.shape[0] Xvar = Variable(X, requires_grad=True) Yvar = Variable(Y, requires_grad=True) model_eval = model(Xvar.reshape(data_shape)) # here is where we take only the class_val component model_eval_softmax = model_eval[:,class_val].exp().reshape((N,1)) / model_eval.exp().sum(axis=1).reshape((N, 1)) # choose which variable x1var corresponds to x1var = Xvar if x1=='x' else Yvar x2var = Xvar if x2=='x' else Yvar f_val = torch.log(model_eval_softmax).sum() # gradient w.r.t. entire batch grad, = torch.autograd.grad(f_val, x1var, create_graph=True) # sum over batch elements (avg. at end) total = torch.sum(grad.sum(axis=0) * vvar) if Xvar.grad: Xvar.grad.data.zero_() if Yvar.grad: Yvar.grad.data.zero_() # NOTE: THIS WILL NOT ALLOW FURTHER BACKPROP, BRING create_graph=True BACK TO ALLOW THIS grad2, = torch.autograd.grad(total, x2var, create_graph=False, allow_unused=True) # sum over rows (different elements in batch) wHv = torch.sum(grad2.sum(axis=0) * wvar) return (1/N)*wHv # theta_bar is 3/4 # images and labels are not scaled down/flattened # returns regularization (non-loss) terms def taylor_loss(images, labels, model, mu_img, mu_y, Uxx, Sxx, Vxx, Uxy, Sxy, Vxy, T_U, T_S, T_V): # extract batch size N = images.shape[0] # extract number of total pixels for images img_size = int(images.numel() / N) # extract original batch shape batch_shape = images.shape # flatten input images images_flat = images.reshape((N, img_size)) mu_img_flat = mu_img.reshape((1, img_size)) num_classes = labels.max() + 1 # Y is a stack of rows, where each row is the one_hot version # of the correct label Y = torch.zeros((N, num_classes)).cuda() Y[np.arange(N), labels] = 1 # COMPUTE raw tilde loss (term 1) # we assume uniform distribution theta_bar = 0.75*torch.ones((1)).cuda() # matrix form for x_theta over whole batch Xt = (1 - theta_bar)*mu_img_flat + theta_bar*images_flat # same for y_tilde Yt = (1 - theta_bar)*mu_y + theta_bar*Y # torch.save(Xt, 'Xt.pt') # torch.save(Yt, 'Yt.pt') loss = (1/N)*cross_entropy_manual(model(Xt.reshape(batch_shape)), Yt) # COMPUTE delta delta term (term 2) # first compute the data-dependent part. V = (images_flat - mu_img_flat).detach().clone() # compute the data dependent component of inner product data_dependent = hess_quadratic( lambda x, y : cross_entropy_manual(x, y), model, batch_shape, Xt, Yt, 'x', 'x', V, V) # extract number of singular values extracted from global covariance matrix num_components = Sxx.numel() data_independent = torch.zeros((1)).cuda() for i in range(num_components): data_independent += hess_svd( lambda x, y : cross_entropy_manual(x, y), model, batch_shape, Xt, Yt, 'x', 'x', Sxx[i]*Uxx[:,i].reshape((1, img_size)), Vxx[:,i].reshape((1, img_size))) var_half_mixup = 0.5**2 / 12 gamma_squared = var_half_mixup + (1 - theta_bar)**2 ddterm = 0.5*(var_half_mixup*data_dependent + gamma_squared * data_independent) # COMPUTE epsilon delta "cross-term" (term 3) # first compute the data-dependent part. W = (Y - mu_y).detach().clone() # compute the data dependent component of inner product data_dependent_cross = hess_quadratic( lambda x, y : cross_entropy_manual(x, y), model, batch_shape, Xt, Yt, 'x', 'y', V, W) # extract number of singular values extracted from global covariance matrix num_components = Sxy.numel() data_independent_cross = torch.zeros((1)).cuda() for i in range(num_components): data_independent_cross += hess_svd( lambda x, y : cross_entropy_manual(x, y), model, batch_shape, Xt, Yt, 'x', 'y', Sxy[i]*Uxy[:,i].reshape((1, img_size)), Vxy[:,i].reshape((1, num_classes))) edterm = var_half_mixup*data_dependent_cross + gamma_squared * data_independent_cross # update num components num_components = T_S[0,:].numel() # COMPUTE epsilon delta delta "3-term" (term 4, new) hess_quad_innerprod = torch.zeros((1)).cuda() # sum over classes for i in range(num_classes): # sum over all compoments we take from T_a matrices for j in range(num_components): hess_quad_innerprod += hess_svd_ed2( i, model, batch_shape, Xt, Xt, 'x', 'x', T_S[i, j]*T_U[i, :, j].reshape((1, img_size)), T_V[i,:,j].reshape((1, img_size))) eddterm = -0.5 * ((1-theta_bar)**3) * hess_quad_innerprod return loss, ddterm, edterm, eddterm # returns regularization (non-loss) terms def taylor_loss_base(images, labels, model, mu_img, mu_y, Uxx, Sxx, Vxx, Uxy, Sxy, Vxy, T_U, T_S, T_V): # extract batch size N = images.shape[0] # extract number of total pixels for images img_size = int(images.numel() / N) # extract original batch shape batch_shape = images.shape # flatten input images images_flat = images.reshape((N, img_size)) mu_img_flat = mu_img.reshape((1, img_size)) num_classes = labels.max() + 1 # Y is a stack of rows, where each row is the one_hot version # of the correct label Y = torch.zeros((N, num_classes)).cuda() Y[np.arange(N), labels] = 1 # COMPUTE raw tilde loss (term 1) # we assume uniform distribution theta_bar = 0.75*torch.ones((1)).cuda() # matrix form for x_theta over whole batch Xt = (1 - theta_bar)*mu_img_flat + theta_bar*images_flat # same for y_tilde Yt = (1 - theta_bar)*mu_y + theta_bar*Y # torch.save(Xt, 'Xt.pt') # torch.save(Yt, 'Yt.pt') return (1/N)*cross_entropy_manual(model(Xt.reshape(batch_shape)), Yt) # returns regularization (non-loss) terms def taylor_loss_d2(images, labels, model, mu_img, mu_y, Uxx, Sxx, Vxx, Uxy, Sxy, Vxy, T_U, T_S, T_V): # extract batch size N = images.shape[0] # extract number of total pixels for images img_size = int(images.numel() / N) # extract original batch shape batch_shape = images.shape # flatten input images images_flat = images.reshape((N, img_size)) mu_img_flat = mu_img.reshape((1, img_size)) num_classes = labels.max() + 1 # Y is a stack of rows, where each row is the one_hot version # of the correct label Y = torch.zeros((N, num_classes)).cuda() Y[
np.arange(N)
numpy.arange
# Author: <NAME> <<EMAIL>> """PySurfer Brain subclass to embed in Eelbrain""" from collections import OrderedDict from distutils.version import LooseVersion from functools import partial import os import sys from tempfile import mkdtemp from time import time, sleep from warnings import warn from matplotlib.colors import ListedColormap, Colormap, to_rgb, to_rgba from matplotlib.image import imsave from mne.io.constants import FIFF import numpy as np from .._data_obj import NDVar, SourceSpace, asndvar from .._text import ms from .._utils import LazyProperty from ..fmtxt import Image from ..mne_fixes import reset_logger from ._base import CONFIG, TimeSlicer, do_autorun, find_axis_params_data, find_fig_cmaps, find_fig_vlims, fix_vlim_for_cmap, use_inline_backend from ._color_luts import p_lut from ._colors import ColorBar, ColorList, colors_for_oneway # Traits-GUI related imports # -------------------------- # - Set ETS toolkit before importing traits-GUI # - Readthedocs does not support mayavi import, so we can't use surfer # - if this is the first surfer import, lower screen logging level first_import = 'surfer' not in sys.modules INLINE_DISPLAY = False try: from traits.trait_base import ETSConfig if use_inline_backend() or not CONFIG['eelbrain']: INLINE_DISPLAY = True else: ETSConfig.toolkit = 'wx' import surfer except ImportError as exception: from . import _mock_surfer as surfer warn("Error importing PySurfer: %s" % exception) else: if first_import: reset_logger(surfer.utils.logger) del first_import HEMI_ID_TO_STR = {FIFF.FIFFV_MNE_SURF_LEFT_HEMI: 'lh', FIFF.FIFFV_MNE_SURF_RIGHT_HEMI: 'rh'} OTHER_HEMI = {'lh': 'rh', 'rh': 'lh'} # default size BRAIN_H = 250 BRAIN_W = 300 def assert_can_save_movies(): if LooseVersion(surfer.__version__) < LooseVersion('0.6'): raise ImportError("Saving movies requires PySurfer 0.6") def get_source_dim(ndvar): if isinstance(ndvar, SourceSpace): return ndvar elif isinstance(ndvar, NDVar): for source in ndvar.dims: if isinstance(source, SourceSpace): return source raise ValueError("ndvar has no SourceSpace dimension") else: raise TypeError("ndvar=%r; needs to be NDVar or SourceSpace") class Brain(TimeSlicer, surfer.Brain): """PySurfer :class:`Brain` subclass returned by :mod:`plot.brain` functions PySurfer :class:`surfer.Brain` subclass adding Eelbrain GUI integration and methods to visualize data in :class:`NDVar` format. Parameters ---------- subject : str Subject name. hemi : 'lh' | 'rh' | 'both' | 'split' 'both': both hemispheres are shown in the same window; 'split': hemispheres are displayed side-by-side in different viewing panes. surf : str Freesurfer surface mesh name (ie 'white', 'inflated', etc.). title : str Title for the window. cortex : str, tuple, dict, or None Specifies how the cortical surface is rendered. Options: 1. The name of one of the preset cortex styles: ``'classic'`` (default), ``'high_contrast'``, ``'low_contrast'``, or ``'bone'``. 2. A color-like argument to render the cortex as a single color, e.g. ``'red'`` or ``(0.1, 0.4, 1.)``. Setting this to ``None`` is equivalent to ``(0.5, 0.5, 0.5)``. 3. The name of a colormap used to render binarized curvature values, e.g., ``Grays``. 4. A list of colors used to render binarized curvature values. Only the first and last colors are used. E.g., ['red', 'blue'] or [(1, 0, 0), (0, 0, 1)]. 5. A container with four entries for colormap (string specifiying the name of a colormap), vmin (float specifying the minimum value for the colormap), vmax (float specifying the maximum value for the colormap), and reverse (bool specifying whether the colormap should be reversed. E.g., ``('Greys', -1, 2, False)``. 6. A dict of keyword arguments that is passed on to the call to surface. alpha : float in [0, 1] Alpha level to control opacity of the cortical surface. background, foreground : matplotlib colors color of the background and foreground of the display window subjects_dir : str | None If not None, this directory will be used as the subjects directory instead of the value set using the SUBJECTS_DIR environment variable. views : list | str views to use offset : bool If True, aligs origin with medial wall. Useful for viewing inflated surface where hemispheres typically overlap (Default: True) show_toolbar : bool If True, toolbars will be shown for each view. offscreen : bool If True, rendering will be done offscreen (not shown). Useful mostly for generating images or screenshots, but can be buggy. Use at your own risk. interaction : str Can be "trackball" (default) or "terrain", i.e. a turntable-style camera. w, h : int Figure width and height. axw, axh : int Width and height of the individual viewing panes. name : str Window title (alternative to ``title`` for consistency with other Eelbrian figures). pos : tuple of int Position of the new window on the screen. show : bool Currently meaningless due to limitation in VTK that does not allow hidden plots. run : bool Run the Eelbrain GUI app (default is True for interactive plotting and False in scripts). Notes ----- The documentation lists only the methods that Eelbrain adds to or overrides from the PySurfer :class:`~surfer.Brain` super-class. For complete PySurfer functionality see te PySurfer documentation. """ _display_time_in_frame_title = True def __init__(self, subject, hemi, surf='inflated', title=None, cortex="classic", alpha=1.0, background="white", foreground="black", subjects_dir=None, views='lat', offset=True, show_toolbar=False, offscreen=False, interaction='trackball', w=None, h=None, axw=None, axh=None, name=None, pos=None, source_space=None, show=True, run=None): from ._wx_brain import BrainFrame self.__data = [] self.__annot = None self.__labels = OrderedDict() # {name: color} self.__time_index = 0 self.__source_space = source_space if isinstance(views, str): views = [views] elif not isinstance(views, list): views = list(views) n_rows = len(views) if hemi == 'split': n_columns = 2 elif hemi in ('lh', 'rh', 'both'): n_columns = 1 else: raise ValueError("hemi=%r" % (hemi,)) # layout if w is None and axw is None: if h is None and axh is None: axw = BRAIN_W axh = BRAIN_H else: if axh is None: axh = int(round(h / n_rows)) axw = int(round(axh * (BRAIN_W / BRAIN_H))) elif h is None and axh is None: if axw is None: axw = int(round(w / n_columns)) axh = int(round(axw * (BRAIN_H / BRAIN_W))) if w is None: w = axw * n_columns if h is None: h = axh * n_rows if title is None: if name is None: title = subject elif isinstance(name, str): title = name else: raise TypeError("name=%r (str required)" % (name,)) elif not isinstance(title, str): raise TypeError("title=%r (str required)" % (title,)) if foreground is None: foreground = 'black' if background is None: background = 'white' if INLINE_DISPLAY: self._frame = figure = None self._png_repr_meta = {'height': h, 'width': w} else: self._frame = BrainFrame(None, self, title, w, h, n_rows, n_columns, surf, pos) figure = self._frame.figure self._png_repr_meta = None if subjects_dir is not None: subjects_dir = os.path.expanduser(subjects_dir) surfer.Brain.__init__(self, subject, hemi, surf, '', cortex, alpha, (w, h), background, foreground, figure, subjects_dir, views, offset, show_toolbar, offscreen, interaction) TimeSlicer.__init__(self) if self._frame and CONFIG['show'] and show: self._frame.Show() if CONFIG['eelbrain'] and do_autorun(run): from .._wxgui import run as run_gui # lazy import for docs run_gui() def __repr__(self): args = [self.subject_id, self._hemi, self.surf] if self.n_times: args.append(f"{self.n_times} time points {ms(self._time_dim.tmin)}-{ms(self._time_dim.tstop)} ms") return f"<plot.brain.Brain: {', '.join(args)}>" def _asfmtext(self): return self.image() # pysurfer 0.10 def _ipython_display_(self): """Called by Jupyter notebook to display a brain.""" if use_inline_backend(): import IPython.display IPython.display.display(self.image()) else: print(repr(self)) def _check_source_space(self, source): "Make sure SourceSpace is compatible" source = get_source_dim(source) if source.subject != self.subject_id: raise ValueError( "Trying to plot NDVar from subject %s on Brain from subject " "%s" % (source.subject, self.subject_id)) elif self._hemi == 'lh' and source.lh_n == 0: raise ValueError("Trying to add NDVar without lh data to plot of lh") elif self._hemi == 'rh' and source.rh_n == 0: raise ValueError("Trying to add NDVar without rh data to plot of rh") return source def add_label(self, label, color=None, alpha=1, scalar_thresh=None, borders=False, hemi=None, subdir=None): surfer.Brain.add_label(self, label, color, alpha, scalar_thresh, borders, hemi, subdir) if color is None: color = getattr(label, 'color', None) or "crimson" name = label if isinstance(label, str) else label.name self.__labels[name] = color def add_mask(self, source, color=(0, 0, 0, 0.5), smoothing_steps=None, alpha=None, subjects_dir=None): """Add a mask shading areas that are not included in an NDVar Parameters ---------- source : SourceSpace SourceSpace. color : matplotlib color Mask color, can include alpha (defauls is black with alpha=0.5: ``(0, 0, 0, 0.5)``). smoothing_steps : scalar (optional) Smooth transition at the mask's border. If smoothing, the mask is added as data layer, otherwise it is added as label. alpha : scalar Alpha for the mask (supercedes alpha in ``color``). subjects_dir : str Use this directory as the subjects directory. """ source = self._check_source_space(source) color = to_rgba(color, alpha) if smoothing_steps is not None: # generate LUT lut = np.repeat(np.reshape(color, (1, 4)), 256, 0) lut[:, 3] = np.linspace(color[-1], 0, 256) np.clip(lut, 0, 1, lut) lut *= 255 lut = np.round(lut).astype(np.uint8) # generate mask Label mask_ndvar = source._mask_ndvar(subjects_dir) self.add_ndvar(mask_ndvar, lut, 0., 1., smoothing_steps, False, None, False) else: lh, rh = source._mask_label(subjects_dir) if self._hemi == 'lh': rh = None elif self._hemi == 'rh': lh = None if source.lh_n and lh: self.add_label(lh, color[:3], color[3]) self.labels_dict['mask-lh'][0].actor.property.lighting = False if source.rh_n and rh: self.add_label(rh, color[:3], color[3]) self.labels_dict['mask-rh'][0].actor.property.lighting = False def add_ndvar(self, ndvar, cmap=None, vmin=None, vmax=None, smoothing_steps=None, colorbar=False, time_label='ms', lighting=False, contours=None, remove_existing=False): """Add data layer form an NDVar Parameters ---------- ndvar : NDVar ([case,] source[, time]) NDVar with SourceSpace dimension and optional time dimension. If it contains a :class:`Case` dimension, the average over cases is displayed. Values outside of the source-space, as well as masked values are set to 0, assuming a colormap in which 0 is transparent. cmap : str | list of matplotlib colors | array Colormap. Can be the name of a matplotlib colormap, a list of colors, or a custom lookup table (an n x 4 array with RBGA values between 0 and 255). vmin, vmax : scalar Endpoints for the colormap. Need to be set explicitly if ``cmap`` is a LUT array. smoothing_steps : None | int Number of smoothing steps if data is spatially undersampled (PySurfer ``Brain.add_data()`` argument). colorbar : bool Add a colorbar to the figure (use ``.plot_colorbar()`` to plot a colorbar separately). time_label : str | callable Label to show time point. Use ``'ms'`` or ``'s'`` to display time in milliseconds or in seconds, or supply a custom formatter for time values in seconds (default is ``'ms'``). lighting : bool The data overlay is affected by light sources (default ``False``, i.e. data overlays appear luminescent). contours : bool | sequence of scalar Draw contour lines instead of a solid overlay. Set to a list of contour levels or ``True`` for automatic contours. remove_existing : bool Remove data layers that have been added previously (default False). """ ndvar = asndvar(ndvar) # check input data and dimensions source = self._check_source_space(ndvar) # find ndvar time axis if ndvar.ndim == 1 + ndvar.has_case: if ndvar.has_case: ndvar = ndvar.mean('case') time_dim = times = None data_dims = (source.name,) elif ndvar.ndim != 2: raise ValueError(f"{ndvar}: must be one- or two dimensional") elif ndvar.has_dim('time'): time_dim = ndvar.time times = ndvar.time.times data_dims = (source.name, 'time') if time_label == 'ms': time_label = lambda x: '%s ms' % int(round(x * 1000)) elif time_label == 's': time_label = '%.3f s' elif time_label is False: time_label = None else: data_dims = ndvar.get_dimnames((source.name, None)) time_dim = ndvar.get_dim(data_dims[1]) times = np.arange(len(time_dim)) time_label = None # remove existing data before modifying attributes if remove_existing: self.remove_data() # make sure time axis is compatible with existing data if time_dim is not None: if self._time_dim is None: self._set_time_dim(time_dim) elif time_dim != self._time_dim: raise ValueError(f"The brain already displays an NDVar with incompatible time dimension (current: {self._time_dim}; new: {time_dim})") # find colormap parameters meas = ndvar.info.get('meas') if cmap is None or isinstance(cmap, (str, Colormap)): epochs = ((ndvar,),) cmaps = find_fig_cmaps(epochs, cmap, alpha=True) vlims = find_fig_vlims(epochs, vmax, vmin, cmaps) vmin, vmax = vlims[meas] # colormap if contours is not None: if cmap is None: cmap = ('w', 'w') elif isinstance(cmap, str) and len(cmap) > 1: cmap = cmaps[meas] else: contour_color = to_rgb(cmap) cmap = (contour_color, contour_color) elif cmap is None or isinstance(cmap, str): cmap = cmaps[meas] # general PySurfer data args alpha = 1 if smoothing_steps is None and source.kind == 'ico': smoothing_steps = source.grade + 1 # determine which hemi we're adding data to if self._hemi in ('lh', 'rh'): data_hemi = self._hemi elif not source.lh_n: data_hemi = 'rh' elif not source.rh_n: data_hemi = 'lh' else: data_hemi = 'both' # remember where to find data_dict dict_hemi = 'rh' if data_hemi == 'rh' else 'lh' data_index = len(self._data_dicts[dict_hemi]) # add data new_surfaces = [] if data_hemi != 'rh': if self._hemi == 'lh': colorbar_ = colorbar colorbar = False time_label_ = time_label time_label = None else: colorbar_ = False time_label_ = None src_hemi = ndvar.sub(**{source.name: 'lh'}) data = src_hemi.get_data(data_dims, 0) vertices = source.lh_vertices self.add_data(data, vmin, vmax, None, cmap, alpha, vertices, smoothing_steps, times, time_label_, colorbar_, 'lh') new_surfaces.extend(self.data_dict['lh']['surfaces']) if data_hemi != 'lh': src_hemi = ndvar.sub(**{source.name: 'rh'}) data = src_hemi.get_data(data_dims, 0) vertices = source.rh_vertices self.add_data(data, vmin, vmax, None, cmap, alpha, vertices, smoothing_steps, times, time_label, colorbar, 'rh') new_surfaces.extend(self.data_dict['rh']['surfaces']) # update surfaces for surface in new_surfaces: if contours is not None: surface.enable_contours = True # http://code.enthought.com/projects/files/ets_api/enthought.mayavi.components.contour.Contour.html surface.contour.auto_update_range = False # surface.contour.maximum_contour = ndvar.max() # surface.contour.minimum_contour = ndvar.min() if contours is not True: surface.contour.contours = contours surface.contour.auto_contours = False if not lighting: surface.actor.property.lighting = False self.__data.append({ 'hemi': data_hemi, 'data': ndvar, 'dict_hemi': dict_hemi, 'dict_index': data_index, 'cmap': cmap, 'vmin': vmin, 'vmax': vmax, }) def add_ndvar_annotation(self, ndvar, colors=None, borders=True, alpha=1, lighting=True): """Add annotation from labels in an NDVar Parameters ---------- ndvar : NDVar of int NDVar in which each unique integer indicates a label. By default, ``0`` is interpreted as unlabeled, but this can be overridden by providing a ``colors`` dictionary that contains an entry for ``0``. colors : dict Dictionary mapping label IDs to colors. borders : bool | int Show label borders (instead of solid labels). If int, specify the border width. alpha : scalar [0, 1] Opacity of the labels (default 1). lighting : bool Labels are affected by lights (default True). """ source = self._check_source_space(ndvar) x = ndvar.get_data(source.name) if x.dtype.kind not in 'iu': raise TypeError("Need NDVar of integer type, not %r" % (x.dtype,)) # determine colors label_values = np.unique(x) if colors is None: colors = plot_colors = colors_for_oneway([v for v in label_values if v]) elif 0 in colors and 0 in label_values: x = x + 1 label_values += 1 try: plot_colors = {k: colors[k - 1] for k in label_values} except KeyError: raise ValueError( "The following values of ndvar are missing from colors: %s" % ', '.join(set(label_values - 1).difference(colors))) colors = {k - 1: v for k, v in plot_colors.items()} else: try: colors = plot_colors = {k: colors[k] for k in label_values if k} except KeyError: raise ValueError( "The following values of ndvar are missing from colors: %s" % ', '.join(set(label_values).difference(colors).difference((0,)))) # generate color table ctab = np.zeros((len(label_values), 5), int) ctab[:, 4] = label_values for i, v in enumerate(label_values): if v == 0: continue ctab[i, :4] = [int(round(c * 255.)) for c in to_rgba(plot_colors[v])] # generate annotation sss = source.get_source_space() indexes = (slice(None, source.lh_n), slice(source.lh_n, None)) annot = [] has_annot = [] for ss, vertices, index in zip(sss, source.vertices, indexes): hemi = HEMI_ID_TO_STR[ss['id']] if self._hemi == OTHER_HEMI[hemi]: continue # expand to full source space ss_map = np.zeros(ss['nuse'], int) ss_map[np.in1d(ss['vertno'], vertices)] = x[index] # select only the used colors; Mayavi resets the range of the data- # to-LUT mapping to the extrema of the data at various points, so it # is safer to restrict the LUT to used colors ctab_index = np.in1d(ctab[:, 4], ss_map) hemi_ctab = ctab[ctab_index] if np.any(hemi_ctab): # expand to full brain full_map = ss_map[ss['nearest']] annot.append((full_map, hemi_ctab)) has_annot.append(hemi) if len(annot) == 0: return elif len(annot) == 1: annot = annot[0] hemi = has_annot[0] else: hemi = None self.add_annotation(annot, borders, alpha, hemi) self.__annot = colors if not lighting: for annot in self.annot_list: annot['surface'].actor.property.lighting = False def add_ndvar_label(self, ndvar, color=(1, 0, 0), borders=False, name=None, alpha=None, lighting=False): """Draw a boolean NDVar as label. Parameters ---------- ndvar : NDVar Boolean NDVar. color : matplotlib-style color | None anything matplotlib accepts: string, RGB, hex, etc. (default "crimson") borders : bool | int Show only label borders. If int, specify the number of steps (away from the true border) along the cortical mesh to include as part of the border definition. name : str Name for the label (for display in legend). alpha : float in [0, 1] alpha level to control opacity lighting : bool Whether label should be affected by lighting (default False). Notes ----- To remove previously added labels, run Brain.remove_labels(). """ source = self._check_source_space(ndvar) x = ndvar.get_data(source.name) if x.dtype.kind != 'b': raise ValueError("Require NDVar of type bool, got %r" % (x.dtype,)) if name is None: name = str(ndvar.name) color = to_rgba(color, alpha) lh_vertices = source.lh_vertices[x[:source.lh_n]] rh_vertices = source.rh_vertices[x[source.lh_n:]] lh, rh = source._label((lh_vertices, rh_vertices), name, color[:3]) if lh and self._hemi != 'rh': while lh.name in self.labels_dict: lh.name += '_' self.add_label(lh, color[:3], color[3], borders=borders) self.labels_dict[lh.name][0].actor.property.lighting = lighting if rh and self._hemi != 'lh': while rh.name in self.labels_dict: rh.name += '_' self.add_label(rh, color[:3], color[3], borders=borders) self.labels_dict[rh.name][0].actor.property.lighting = lighting self.__labels[name] = color def add_ndvar_p_map(self, p_map, param_map=None, p0=0.05, p1=0.01, p0alpha=0.5, *args, **kwargs): """Add a map of p-values as data-layer Parameters ---------- p_map : NDVar | NDTest Map of p values, or test result. param_map : NDVar Statistical parameter covering the same data points as p_map. Only the sign is used, for incorporating the directionality of the effect into the plot. p0 : scalar Highest p-value that is visible. p1 : scalar P-value where the colormap changes from ramping alpha to ramping color. p0alpha : 1 >= float >= 0 Alpha at ``p0``. Set to 0 for a smooth transition, or a larger value to clearly delineate significant regions (default 0.5). ... Other parameters for :meth:`.add_ndvar`. """ from .._stats.testnd import NDTest, MultiEffectNDTest if isinstance(p_map, NDTest): if isinstance(p_map, MultiEffectNDTest): raise NotImplementedError(f"plot.brain.p_map for {p_map.__class__.__name__}") elif param_map is not None: raise TypeError(f"param_map={param_map!r} when p_map is NDTest result") res = p_map p_map = res.p param_map = res._statistic_map p_map, lut, vmax = p_lut(p_map, param_map, p0, p1, p0alpha) self.add_ndvar(p_map, lut, -vmax, vmax, *args, **kwargs) def close(self): "Close the figure window" if self._frame: self._frame.Close() else: self._surfer_close() @property def closed(self): return self._figures[0][0] is None def _surfer_close(self): surfer.Brain.close(self) def copy_screenshot(self): "Copy the currently shown image to the clipboard" from .._wxgui import wx tempdir = mkdtemp() tempfile = os.path.join(tempdir, "brain.png") self.save_image(tempfile, 'rgba', True) bitmap = wx.Bitmap(tempfile, wx.BITMAP_TYPE_PNG) bitmap_obj = wx.BitmapDataObject(bitmap) if not wx.TheClipboard.IsOpened(): open_success = wx.TheClipboard.Open() if open_success: wx.TheClipboard.SetData(bitmap_obj) wx.TheClipboard.Close() wx.TheClipboard.Flush() def _get_cmap_params(self, layer=0, label=True): """Return parameters required to plot a colorbar""" data = self.__data[layer] data_dict = self._data_dicts[data['dict_hemi']][data['dict_index']] colormap = ListedColormap(data_dict['orig_ctable'] / 255., label) return colormap, data_dict['fmin'], data_dict['fmax'] def _has_annot(self): return bool(self.__annot) def _has_data(self): return bool(self.__data) def _has_labels(self): return bool(self.__labels) def _enable_selecting_vertex(self, color='red'): """Find source space vertex numbers by clicking on the brain After enabling this functionality, each right-click on the brain will cause the vertex number of the closest source space vertex to be printed in the terminal. Parameters ---------- color : mayavi color Color for the vertex marker. Example ------- Load a source space and plot it to be able to select vertices:: ss = SourceSpace.from_file('directory/mri_subjects', 'fsaverage', 'ico-4') brain = plot.brain.brain(ss) brain._enable_selecting_vertex() """ if self.__source_space is None: raise RuntimeError("Can't enable vertex selection for brian without source space") for brain in self.brains: func = partial(self._select_nearest_source, hemi=brain.hemi, color=color) brain._f.on_mouse_pick(func, button="Right") @LazyProperty def _tris_lh(self): return self.__source_space._read_surf('lh')[1] @LazyProperty def _tris_rh(self): return self.__source_space._read_surf('rh')[1] def _select_nearest_source(self, vertex, hemi, color='red'): if not isinstance(vertex, int): vertex = vertex.point_id ss_vertices = self.__source_space.vertices[hemi == 'rh'] if vertex not in ss_vertices: tris = self._tris_lh if hemi == 'lh' else self._tris_rh selected = np.any(tris == vertex, 1) for i in range(7): selected_v = np.unique(tris[selected]) index = np.in1d(ss_vertices, selected_v) if index.any(): vertex = ss_vertices[index][0] break for v in selected_v: selected |=
np.any(tris == v, 1)
numpy.any
#!/usr/bin/env python # ------------------------------------------------------------------------------------------------------% # Created by "<NAME>" at 08:58, 16/03/2020 % # % # Email: <EMAIL> % # Homepage: https://www.researchgate.net/profile/Thieu_Nguyen6 % # Github: https://github.com/thieu1995 % # ------------------------------------------------------------------------------------------------------% import numpy as np from math import gamma from copy import deepcopy from mealpy.utils.history import History from mealpy.problem import Problem from mealpy.utils.termination import Termination import concurrent.futures as parallel import time class Optimizer: """ This is base class of all Algorithms """ ## Assumption the A solution with format: [position, [target, [obj1, obj2, ...]]] ID_POS = 0 # Index of position/location of solution/agent ID_FIT = 1 # Index of fitness value of solution/agent ID_TAR = 0 # Index of target (the final fitness) in fitness ID_OBJ = 1 # Index of objective list in fitness EPSILON = 10E-10 def __init__(self, problem, kwargs): """ Args: problem: Design your problem based on the format of the Problem class Examples: problem = { "obj_func": your objective function, "lb": list of value "ub": list of value "minmax": "min" or "max" "verbose": True or False "n_dims": int (Optional) "batch_idea": True or False (Optional) "batch_size": int (Optional, smaller than population size) "obj_weight": list weights for all your objectives (Optional, default = [1, 1, ...1]) } """ super(Optimizer, self).__init__() self.epoch, self.pop_size, self.solution = None, None, None self.mode = "sequential" self.pop, self.g_best = None, None self.history = History() if not isinstance(problem, Problem): problem = Problem(problem) self.problem = problem self.verbose = problem.verbose self.termination_flag = False # Check if exist object or not if "termination" in kwargs: termination = kwargs["termination"] if not isinstance(termination, Termination): print("Please create and input your Termination object!") exit(0) else: self.termination = termination self.termination_flag = True self.nfe_per_epoch = self.pop_size self.sort_flag = False def termination_start(self): if self.termination_flag: if self.termination.mode == 'TB': self.count_terminate = time.time() elif self.termination.mode == 'ES': self.count_terminate = 0 elif self.termination.mode == 'MG': self.count_terminate = self.epoch else: # number of function evaluation (NFE) self.count_terminate = self.pop_size # First out of loop else: pass def initialization(self): self.pop = self.create_population(self.pop_size) if self.sort_flag: self.pop, self.g_best = self.get_global_best_solution(self.pop) # We sort the population else: _, self.g_best = self.get_global_best_solution(self.pop) # We don't sort the population def before_evolve(self, epoch): pass def after_evolve(self, epoch): pass def solve(self, mode='sequential'): """ Args: mode (str): 'sequential', 'thread', 'process' + 'sequential': recommended for simple and small task (< 10 seconds for calculating objective) + 'thread': recommended for IO bound task, or small computing task (< 2 minutes for calculating objective) + 'process': recommended for hard and big task (> 2 minutes for calculating objective) Returns: [position, fitness value] """ self.mode = mode self.termination_start() self.initialization() self.history.save_initial_best(self.g_best) for epoch in range(0, self.epoch): time_epoch = time.time() ## Call before evolve function self.before_evolve(epoch) ## Evolve method will be called in child class self.evolve(epoch) ## Call after evolve function self.after_evolve(epoch) # update global best position if self.sort_flag: self.pop, self.g_best = self.update_global_best_solution(self.pop) # We sort the population else: _, self.g_best = self.update_global_best_solution(self.pop) # We don't sort the population ## Additional information for the framework time_epoch = time.time() - time_epoch self.history.list_epoch_time.append(time_epoch) self.history.list_population.append(deepcopy(self.pop)) self.print_epoch(epoch + 1, time_epoch) if self.termination_flag: if self.termination.mode == 'TB': if time.time() - self.count_terminate >= self.termination.quantity: self.termination.logging(self.verbose) break elif self.termination.mode == 'FE': self.count_terminate += self.nfe_per_epoch if self.count_terminate >= self.termination.quantity: self.termination.logging(self.verbose) break elif self.termination.mode == 'MG': if epoch >= self.termination.quantity: self.termination.logging(self.verbose) break else: # Early Stopping temp = self.count_terminate + self.history.get_global_repeated_times(self.ID_FIT, self.ID_TAR, self.EPSILON) if temp >= self.termination.quantity: self.termination.logging(self.verbose) break ## Additional information for the framework self.save_optimization_process() return self.solution[self.ID_POS], self.solution[self.ID_FIT][self.ID_TAR] def evolve(self, epoch): pass def create_solution(self): """ Returns: The position position with 2 element: index of position/location and index of fitness wrapper The general format: [position, [target, [obj1, obj2, ...]]] ## To get the position, fitness wrapper, target and obj list ## A[self.ID_POS] --> Return: position ## A[self.ID_FIT] --> Return: [target, [obj1, obj2, ...]] ## A[self.ID_FIT][self.ID_TAR] --> Return: target ## A[self.ID_FIT][self.ID_OBJ] --> Return: [obj1, obj2, ...] """ position = np.random.uniform(self.problem.lb, self.problem.ub) fitness = self.get_fitness_position(position=position) return [position, fitness] def create_population(self, pop_size=None): """ Args: mode (str): processing mode, it can be "sequential", "thread" or "process" pop_size (int): number of solutions Returns: population: list of solutions/agents """ if pop_size is None: pop_size = self.pop_size pop = [] if self.mode == "thread": with parallel.ThreadPoolExecutor() as executor: list_executors = [executor.submit(self.create_solution) for _ in range(pop_size)] # This method yield the result everytime a thread finished their job (not by order) for f in parallel.as_completed(list_executors): pop.append(f.result()) elif self.mode == "process": with parallel.ProcessPoolExecutor() as executor: list_executors = [executor.submit(self.create_solution) for _ in range(pop_size)] # This method yield the result everytime a cpu finished their job (not by order). for f in parallel.as_completed(list_executors): pop.append(f.result()) else: pop = [self.create_solution() for _ in range(0, pop_size)] return pop def update_fitness_population(self, pop=None): """ Args: mode (str): processing mode, it can be "sequential", "thread" or "process" pop (list): the population Returns: population: with updated fitness value """ if self.mode == "thread": with parallel.ThreadPoolExecutor() as executor: list_results = executor.map(self.get_fitness_solution, pop) # Return result not the future object for idx, fit in enumerate(list_results): pop[idx][self.ID_FIT] = fit elif self.mode == "process": with parallel.ProcessPoolExecutor() as executor: list_results = executor.map(self.get_fitness_solution, pop) # Return result not the future object for idx, fit in enumerate(list_results): pop[idx][self.ID_FIT] = fit else: for idx, agent in enumerate(pop): pop[idx][self.ID_FIT] = self.get_fitness_solution(agent) return pop def get_fitness_position(self, position=None): """ Args: position (nd.array): 1-D numpy array Returns: [target, [obj1, obj2, ...]] """ objs = self.problem.obj_func(position) if not self.problem.obj_is_list: objs = [objs] fit = np.dot(objs, self.problem.obj_weight) return [fit, objs] def get_fitness_solution(self, solution=None): """ Args: solution (list): A solution with format [position, [target, [obj1, obj2, ...]]] Returns: [target, [obj1, obj2, ...]] """ return self.get_fitness_position(solution[self.ID_POS]) def get_global_best_solution(self, pop: list): """ Sort population and return the sorted population and the best solution Args: pop (list): The population of pop_size individuals Returns: Sorted population and global best solution """ sorted_pop = sorted(pop, key=lambda agent: agent[self.ID_FIT][self.ID_TAR]) # Already returned a new sorted list if self.problem.minmax == "min": return sorted_pop, deepcopy(sorted_pop[0]) else: return sorted_pop, deepcopy(sorted_pop[-1]) def get_better_solution(self, agent1: list, agent2: list): """ Args: agent1 (list): A solution agent2 (list): Another solution Returns: The better solution between them """ if self.problem.minmax == "min": if agent1[self.ID_FIT][self.ID_TAR] < agent2[self.ID_FIT][self.ID_TAR]: return deepcopy(agent1) return deepcopy(agent2) else: if agent1[self.ID_FIT][self.ID_TAR] < agent2[self.ID_FIT][self.ID_TAR]: return deepcopy(agent2) return deepcopy(agent1) def compare_agent(self, agent_a: list, agent_b: list): """ Args: agent_a (list): Solution a agent_b (list): Solution b Returns: boolean: Return True if solution a better than solution b and otherwise """ if self.problem.minmax == "min": if agent_a[self.ID_FIT][self.ID_TAR] < agent_b[self.ID_FIT][self.ID_TAR]: return True return False else: if agent_a[self.ID_FIT][self.ID_TAR] < agent_b[self.ID_FIT][self.ID_TAR]: return False return True def get_special_solutions(self, pop=None, best=3, worst=3): """ Args: pop (list): The population best (int): Top k1 best solutions, default k1=3, it can be None worst (int): Top k2 worst solutions, default k2=3, it can be None Returns: sorted_population, k1 best solutions and k2 worst solutions """ if self.problem.minmax == "min": pop = sorted(pop, key=lambda agent: agent[self.ID_FIT][self.ID_TAR]) else: pop = sorted(pop, key=lambda agent: agent[self.ID_FIT][self.ID_TAR], reverse=True) if best is None: if worst is None: exit(0) else: return pop, None, deepcopy(pop[:-worst]) else: if worst is None: return pop, deepcopy(pop[:best]), None else: return pop, deepcopy(pop[:best]), deepcopy(pop[:-worst]) def get_special_fitness(self, pop=None): """ Args: pop (list): The population Returns: Total fitness, best fitness, worst fitness """ total_fitness = np.sum([agent[self.ID_FIT][self.ID_TAR] for agent in pop]) if self.problem.minmax == "min": pop = sorted(pop, key=lambda agent: agent[self.ID_FIT][self.ID_TAR]) else: pop = sorted(pop, key=lambda agent: agent[self.ID_FIT][self.ID_TAR], reverse=True) return total_fitness, pop[0][self.ID_FIT][self.ID_TAR], pop[-1][self.ID_FIT][self.ID_TAR] def update_global_best_solution(self, pop=None, save=True): """ Update the global best solution saved in variable named: self.history_list_g_best Args: pop (list): The population of pop_size individuals save (bool): True if you want to add new current global best and False if you just want update the current one. Returns: Sorted population and the global best solution """ if self.problem.minmax == "min": sorted_pop = sorted(pop, key=lambda agent: agent[self.ID_FIT][self.ID_TAR]) else: sorted_pop = sorted(pop, key=lambda agent: agent[self.ID_FIT][self.ID_TAR], reverse=True) current_best = sorted_pop[0] # self.history_list_c_best.append(current_best) # better = self.get_better_solution(current_best, self.history_list_g_best[-1]) # self.history_list_g_best.append(better) if save: self.history.list_current_best.append(current_best) better = self.get_better_solution(current_best, self.history.list_global_best[-1]) self.history.list_global_best.append(better) return deepcopy(sorted_pop), deepcopy(better) else: local_better = self.get_better_solution(current_best, self.history.list_current_best[-1]) self.history.list_current_best[-1] = local_better global_better = self.get_better_solution(current_best, self.history.list_global_best[-1]) self.history.list_global_best[-1] = global_better return deepcopy(sorted_pop), deepcopy(global_better) def print_epoch(self, epoch, runtime): """ Print out the detailed information of training process Args: epoch (int): current iteration runtime (float): the runtime for current iteration """ if self.verbose: print(f"> Epoch: {epoch}, Current best: {self.history.list_current_best[-1][self.ID_FIT][self.ID_TAR]}, " f"Global best: {self.history.list_global_best[-1][self.ID_FIT][self.ID_TAR]}, Runtime: {runtime:.5f} seconds") def save_optimization_process(self): """ Detail: Save important data for later use such as: + history_list_g_best_fit + history_list_c_best_fit + history_list_div + history_list_explore + history_list_exploit """ # self.history_list_g_best_fit = [agent[self.ID_FIT][self.ID_TAR] for agent in self.history_list_g_best] # self.history_list_c_best_fit = [agent[self.ID_FIT][self.ID_TAR] for agent in self.history_list_c_best] # # # Draw the exploration and exploitation line with this data # self.history_list_div = np.ones(self.epoch) # for idx, pop in enumerate(self.history_list_pop): # pos_matrix = np.array([agent[self.ID_POS] for agent in pop]) # div = np.mean(abs((np.median(pos_matrix, axis=0) - pos_matrix)), axis=0) # self.history_list_div[idx] = np.mean(div, axis=0) # div_max = np.max(self.history_list_div) # self.history_list_explore = 100 * (self.history_list_div / div_max) # self.history_list_exploit = 100 - self.history_list_explore self.history.epoch = len(self.history.list_global_best) self.history.list_global_best_fit = [agent[self.ID_FIT][self.ID_TAR] for agent in self.history.list_global_best] self.history.list_current_best_fit = [agent[self.ID_FIT][self.ID_TAR] for agent in self.history.list_current_best] # Draw the exploration and exploitation line with this data self.history.list_diversity = np.ones(self.history.epoch) for idx, pop in enumerate(self.history.list_population): pos_matrix = np.array([agent[self.ID_POS] for agent in pop]) div = np.mean(abs((np.median(pos_matrix, axis=0) - pos_matrix)), axis=0) self.history.list_diversity[idx] = np.mean(div, axis=0) div_max = np.max(self.history.list_diversity) self.history.list_exploration = 100 * (self.history.list_diversity / div_max) self.history.list_exploitation = 100 - self.history.list_exploration self.solution = self.history.list_global_best[-1] ## Crossover techniques def get_index_roulette_wheel_selection(self, list_fitness: np.array): """ This method can handle min/max problem, and negative or positive fitness value. Args: list_fitness (nd.array): 1-D numpy array Returns: Index of selected solution """ scaled_fitness = (list_fitness - np.min(list_fitness)) / (np.ptp(list_fitness) + self.EPSILON) if self.problem.minmax == "min": final_fitness = 1.0 - scaled_fitness else: final_fitness = scaled_fitness total_sum = sum(final_fitness) r = np.random.uniform(low=0, high=total_sum) for idx, f in enumerate(final_fitness): r = r + f if r > total_sum: return idx return np.random.choice(range(0, len(list_fitness))) def get_solution_kway_tournament_selection(self, pop: list, k_way=0.2, output=2): if 0 < k_way < 1: k_way = int(k_way * len(pop)) k_way = round(k_way) list_id = np.random.choice(range(len(pop)), k_way, replace=False) list_parents = [pop[i] for i in list_id] list_parents = sorted(list_parents, key=lambda agent: agent[self.ID_FIT][self.ID_TAR]) if self.problem.minmax == "min": return list_parents[:output] else: return list_parents[-output:] def get_levy_flight_step(self, beta=1.0, multiplier=0.001, case=0): """ Parameters ---------- multiplier (float, optional): 0.01 beta: [0-2] + 0-1: small range --> exploit + 1-2: large range --> explore case: 0, 1, -1 + 0: return multiplier * s * np.random.uniform() + 1: return multiplier * s * np.random.normal(0, 1) + -1: return multiplier * s """ # u and v are two random variables which follow np.random.normal distribution # sigma_u : standard deviation of u sigma_u = np.power(gamma(1 + beta) * np.sin(np.pi * beta / 2) / (gamma((1 + beta) / 2) * beta *
np.power(2, (beta - 1) / 2)
numpy.power
import numpy as np import torch import torch.nn as nn import warnings from typing import Iterable from datetime import datetime, timedelta import ptan import ptan.ignite as ptan_ignite from ignite.engine import Engine from ignite.metrics import RunningAverage from ignite.contrib.handlers import tensorboard_logger as tb_logger @torch.no_grad() def calc_values_of_states(states, net, device="cpu"): mean_vals = [] for batch in np.array_split(states, 64): states_v = torch.tensor(batch).to(device) action_values_v = net(states_v) best_action_values_v = action_values_v.max(1)[0] mean_vals.append(best_action_values_v.mean().item()) return
np.mean(mean_vals)
numpy.mean
''' Author: <NAME> E-mail: <EMAIL> Here is a implementation of an autoencoder with 4 encoder and decoder layers, based on the Restricted Boltzmann Machine (RBM) in TensorFlow according to Hinton's: [1] <NAME>* and <NAME>. "Reducing the Dimensionality of Data with Neural Networks" Science 28 Jul 2006: Vol. 313, Issue 5786, pp. 504-507. ''' from RBM import RBM import numpy as np import tensorflow as tf from numpy import genfromtxt class RBM_Weights: def __init__(self, weights, visBias, hidBias): self.weights = weights self.visBias = visBias self.hidBias = hidBias def getWeights(self): return self.weights def getVisBias(self): return self.visBias def getHidBias(self): return self.hidBias class AE_RBM: nEncoderLayers = 4 # number of encoder layers of the autoencoder sEncoderLayers = None # size of the encoder layers def __init__ (self, sEncoderLayers): if(self.nEncoderLayers != sEncoderLayers.shape[0]): print('Invalid number of size layers') raise Exception('Autoencoder constructor ERROR !!!') self.sEncoderLayers = sEncoderLayers def train(self, trainingData): rbmList = [] # list RBM's weights tempData = trainingData # start RBM's training and get the respective weights for n in range(self.nEncoderLayers): if(n==0 or n==(self.nEncoderLayers-1)): rbm = RBM(tempData, self.sEncoderLayers[n], rbmType='GBRBM') else: rbm = RBM(tempData, self.sEncoderLayers[n], rbmType='BBRBM') print('Start %d RBM training' % (n+1) ) rbm.train(batchSize=100) [weights, visBias, hidBias] = rbm.getWeights() rbmList.append(RBM_Weights(weights, visBias, hidBias)) data = tf.convert_to_tensor( tempData, dtype=tf.float32, name='data') probHid = tf.sigmoid( tf.matmul( data, weights) + hidBias) hid = tf.cast( tf.greater( probHid, tf.random_uniform( tf.shape(probHid), minval=0, maxval=1, dtype=tf.float32)), dtype=tf.float32) with tf.Session() as sess: if((self.nEncoderLayers-1) == n): tempData = sess.run(probHid) else: tempData = sess.run(hid) # start the fine tuning process return self.fineTuning( rbmList, trainingData) def fineTuning(self, rbmList, trainingData): # create the weight variables layer_01_Weights = tf.Variable(rbmList[0].getWeights(), dtype=tf.float32, name='layer_01_Weights') layer_01_VisBias = tf.Variable(rbmList[0].getVisBias(), dtype=tf.float32, name='layer_01_VisBias') layer_01_HidBias = tf.Variable(rbmList[0].getHidBias(), dtype=tf.float32, name='layer_01_HidBias') layer_02_Weights = tf.Variable(rbmList[1].getWeights(), dtype=tf.float32, name='layer_02_Weights') layer_02_VisBias = tf.Variable(rbmList[1].getVisBias(), dtype=tf.float32, name='layer_02_VisBias') layer_02_HidBias = tf.Variable(rbmList[1].getHidBias(), dtype=tf.float32, name='layer_02_HidBias') layer_03_Weights = tf.Variable(rbmList[2].getWeights(), dtype=tf.float32, name='layer_03_Weights') layer_03_VisBias = tf.Variable(rbmList[2].getVisBias(), dtype=tf.float32, name='layer_03_VisBias') layer_03_HidBias = tf.Variable(rbmList[2].getHidBias(), dtype=tf.float32, name='layer_03_HidBias') layer_04_Weights = tf.Variable(rbmList[3].getWeights(), dtype=tf.float32, name='layer_04_Weights') layer_04_VisBias = tf.Variable(rbmList[3].getVisBias(), dtype=tf.float32, name='layer_04_VisBias') layer_04_HidBias = tf.Variable(rbmList[3].getHidBias(), dtype=tf.float32, name='layer_04_HidBias') # create some placeholders for the model probHid_01 = tf.placeholder(dtype=tf.float32, name='probHid_01') hid_01 = tf.placeholder(dtype=tf.float32, name='hid_01') probHid_02 = tf.placeholder(dtype=tf.float32, name='probHid_02') hid_02 = tf.placeholder(dtype=tf.float32, name='hid_02') probHid_03 = tf.placeholder(dtype=tf.float32, name='probHid_03') probHid_04 = tf.placeholder(dtype=tf.float32, name='probHid_04') hid_04 = tf.placeholder(dtype=tf.float32, name='hid_04') recons_04 = tf.placeholder(dtype=tf.float32, name='recons_04') recons_03 = tf.placeholder(dtype=tf.float32, name='recons_03') recons_02 = tf.placeholder(dtype=tf.float32, name='recons_02') recons_01 = tf.placeholder(dtype=tf.float32, name='recons_01') data = tf.convert_to_tensor( trainingData, dtype=tf.float32, name='visRecs_01') # W1_Encoder probHid_01 = tf.sigmoid( tf.matmul( data, layer_01_Weights) + layer_01_HidBias) hid_01 = tf.cast( tf.greater( probHid_01, tf.random_uniform( tf.shape(probHid_01), minval=0, maxval=1, dtype=tf.float32)), dtype=tf.float32) # W2_Encoder probHid_02 = tf.sigmoid( tf.matmul( hid_01, layer_02_Weights) + layer_02_HidBias) hid_02 = tf.cast( tf.greater( probHid_02, tf.random_uniform( tf.shape(probHid_02), minval=0, maxval=1, dtype=tf.float32)), dtype=tf.float32) # W3_Encoder probHid_03 = tf.sigmoid( tf.matmul( hid_02, layer_03_Weights) + layer_03_HidBias) # W4_Encoder probHid_04 = tf.sigmoid( tf.matmul( probHid_03, layer_04_Weights) + layer_04_HidBias) hid_04 = tf.cast( tf.greater( probHid_04, tf.random_uniform( tf.shape(probHid_04), minval=0, maxval=1, dtype=tf.float32)), dtype=tf.float32) # W4_Decoder recons_04 = tf.sigmoid( tf.matmul(hid_04, layer_04_Weights, False, True) + layer_04_VisBias) # W3_Decoder recons_03 = tf.sigmoid( tf.matmul(recons_04, layer_03_Weights, False, True) + layer_03_VisBias) # W2_Decoder recons_02 = tf.sigmoid( tf.matmul(recons_03, layer_02_Weights, False, True) + layer_02_VisBias) # W1_Decoder recons_01 = tf.matmul( recons_02, layer_01_Weights, False, True) + layer_01_VisBias # cost function error = tf.losses.mean_squared_error(trainingData, recons_01) # some tensorflow optimizers #train_op = tf.train.AdagradOptimizer(0.1).minimize(error) train_op = tf.train.AdadeltaOptimizer(1).minimize(error) #train_op = tf.train.GradientDescentOptimizer(0.1).minimize(error) errorArray = np.array([]) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for i in range(1000): _, auxError = sess.run([train_op, error]) errorArray =
np.append(errorArray, auxError)
numpy.append
import pandas, pcap, os, json, sys import numpy as np import os.path as osp from datetime import datetime from socket import inet_ntop, AF_INET from kaitaistruct import KaitaiStream, BytesIO from common.pcap import EthernetFrame from scapy.all import rdpcap, wrpcap, Ether, IP, TCP, UDP, Raw, Padding from collections import deque def find_data_files(dir): data_files = [] data_dirs = [] for d in os.listdir(dir): dp = osp.join(dir, d) if osp.isdir(dp): data_dirs.append(d) data_files.append([]) for f in os.listdir(dp): fp = osp.join(dp, f) if osp.isfile(fp): data_files[-1].append(f) return data_dirs, data_files def label_cicids17_short(timestamp, src_ip, dst_ip, src_port=None, dst_port=None): timestamp = datetime.fromtimestamp(timestamp) date = timestamp.strftime('%d%m') if (src_ip == '172.16.31.10' or dst_ip == '172.16.31.10' or src_ip == '192.168.127.12' or dst_ip == '192.168.127.12') and date == '1502': label = 1 description = 'App-DoS' elif (src_ip == '172.16.31.10' or dst_ip == '172.16.31.10') and date in ['2202', '2302']: label = 2 description = 'BruteForce-Web' elif (src_ip == '172.16.17.32' or dst_ip == '172.16.17.32') and date in ['2802', '0103']: label = 3 description = 'Infiltration' elif (src_ip == '172.16.31.10' or dst_ip == '172.16.31.10') and date == '0203': label = 4 description = 'Botnet attack' else: label = 0 description = 'Normal traffic' return label, description def label_cicids17(timestamp, src_ip, dst_ip, src_port=None, dst_port=None): timestamp = datetime.fromtimestamp(timestamp) date = timestamp.strftime('%d%m') loic = [ '172.16.31.10', '172.16.31.10', '172.16.58.3', '192.168.127.12', '192.168.127.12', '172.16.31.10', '172.16.31.10', '172.16.31.10', '172.16.58.3', '192.168.127.12' ] if (src_ip == '172.16.58.3' or dst_ip == '172.16.58.3') and date == '1402': label = 1 description = 'FTP bruteforce' elif (src_ip == '192.168.127.12' or dst_ip == '192.168.127.12') and date == '1402': label = 2 description = 'SSH bruteforce' elif (src_ip == '172.16.31.10' or dst_ip == '172.16.31.10') and date == '1502': label = 3 description = 'DoS-GoldenEye' elif (src_ip == '192.168.127.12' or dst_ip == '192.168.127.12') and date == '1502': label = 4 description = 'DoS-Slowloris' elif (src_ip == '172.16.31.10' or dst_ip == '172.16.31.10') and date == '1602': label = 5 description = 'DoS-Hulk' elif (src_ip in loic or dst_ip in loic) and date in ['2002', '2102']: label = 6 description = 'DoS-LOIC/HOIC' elif (src_ip == '172.16.31.10' or dst_ip == '172.16.31.10') and date in ['2202', '2302']: label = 7 description = 'BruteForce-Web' elif (src_ip == '172.16.17.32' or dst_ip == '172.16.17.32') and date in ['2802', '0103']: label = 8 description = 'Infiltration' elif (src_ip == '172.16.31.10' or dst_ip == '172.16.31.10') and date == '0203': label = 9 description = 'Botnet attack' else: label = 0 description = 'Normal traffic' return label, description def decode_tcp_flags_value(value, nflags): b = '{0:b}'.format(value)[::-1] l = len(b) positions = [b[i] for i in range(nflags) if i < l] + ['0' for _ in range(nflags - l)] return ','.join(positions) def read_tcp_packet(body, nflags): src_port = body.body.body.src_port dst_port = body.body.body.dst_port payload = [str(b) for b in body.body.body.body] flags = body.body.body.b13 window = body.body.body.window_size return src_port, dst_port, len(payload), decode_tcp_flags_value(flags, nflags), window def read_udp_packet(body): src_port = body.body.body.src_port dst_port = body.body.body.dst_port payload = [str(b) for b in body.body.body.body] return src_port, dst_port, len(payload) def read_ip_pkt(body, nflags=8, faster=False): src_ip = inet_ntop(AF_INET, body.src_ip_addr) dst_ip = inet_ntop(AF_INET, body.dst_ip_addr) read_size = body.read_len proto = body.protocol tos = body.b2 print(tos) if faster: src_port = body.body.body.src_port dst_port = body.body.body.dst_port plen = 0 flags = ','.join(['0'] * nflags) window = 0 else: if proto == 6: src_port, dst_port, plen, flags, window = read_tcp_packet(body, nflags) elif proto == 17: src_port, dst_port, plen, = read_udp_packet(body) flags = ','.join(['0'] * nflags) window = 0 else: src_port = 0 dst_port = 0 plen = 0 flags = ','.join(['0'] * nflags) window = 0 return src_ip, dst_ip, src_port, dst_port, proto, read_size, plen, flags, window, tos def read_pkt(raw): id = None features = None flags = None tos = None try: pkt = EthernetFrame(KaitaiStream(BytesIO(raw))) if pkt.ether_type.value == 2048: frame_size = len(raw) src_ip, dst_ip, src_port, dst_port, proto, read_size, payload_size, flags, window, tos = read_ip_pkt(pkt.body) header_size = 14 + read_size - payload_size id = [src_ip, src_port, dst_ip, dst_port, proto] features = [frame_size, header_size, payload_size, window] flags = [int(item) for item in flags.split(',')] elif pkt.ether_type.value == 2054: raise NotImplemented except: pass return id, features, flags, tos def read_pkt_faster(raw): id = None features = None flags = None tos = None try: pkt = EthernetFrame(KaitaiStream(BytesIO(raw))) if pkt.ether_type.value == 2048: frame_size = len(raw) src_ip, dst_ip, src_port, dst_port, proto, read_size, payload_size, flags, window, tos = read_ip_pkt(pkt.body, faster=True) header_size = 14 + read_size - payload_size id = [src_ip, src_port, dst_ip, dst_port, proto] features = [frame_size, header_size, payload_size, window] flags = [int(item) for item in flags.split(',')] elif pkt.ether_type.value == 2054: raise NotImplemented except: pass return id, features, flags, tos class Flow(): def __init__(self, ts, id, features, flags, blk_thr=1.0, idl_thr=5.0): # lists self.id = id self.pkts = [[ts, *features]] self.flags = [flags] self.directions = [1] # thresholds self.blk_thr = blk_thr self.idl_thr = idl_thr # zero features self.fl_dur = 0 self.tot_bw_pk = 0 self.fw_pkt_l_std = 0 self.bw_pkt_l_max = 0 self.bw_pkt_l_min = 0 self.bw_pkt_l_avg = 0 self.bw_pkt_l_std = 0 self.fl_byt_s = 0 self.fl_pkt_s = 0 self.fl_iat_avg = 0 self.fl_iat_std = 0 self.fl_iat_max = 0 self.fl_iat_min = 0 self.fw_iat_tot = 0 self.fw_iat_avg = 0 self.fw_iat_std = 0 self.fw_iat_max = 0 self.fw_iat_min = 0 self.bw_iat_tot = 0 self.bw_iat_avg = 0 self.bw_iat_std = 0 self.bw_iat_max = 0 self.bw_iat_min = 0 self.fw_psh_flag = 0 self.bw_psh_flag = 0 self.fw_urg_flag = 0 self.bw_urg_flag = 0 self.bw_hdr_len = 0 self.fw_pkt_s = 0 self.bw_pkt_s = 0 self.pkt_len_std = 0 self.down_up_ratio = 0 self.fw_byt_blk_avg = 0 self.fw_pkt_blk_avg = 0 self.fw_blk_rate_avg = 0 self.bw_byt_blk_avg = 0 self.bw_pkt_blk_avg = 0 self.bw_blk_rate_avg = 0 self.fw_pkt_sub_avg = 0 self.fw_byt_sub_avg = 0 self.bw_pkt_sub_avg = 0 self.bw_byt_sub_avg = 0 self.bw_win_byt = 0 self.atv_avg = 0 self.atv_std = 0 self.atv_max = 0 self.atv_min = 0 self.idl_avg = 0 self.idl_std = 0 self.idl_max = 0 self.idl_min = 0 self.flag_counts = [0 for _ in range(5)] # features self.is_tcp = 0 self.is_udp = 0 if id[4] == 6: self.is_tcp = 1 elif id[4] == 17: self.is_udp = 1 for i in range(len(self.flag_counts)): self.flag_counts[i] = 1 if flags[i] == 1 else 0 self.tot_fw_pk = 1 psize = features[0] self.tot_l_fw_pkt = psize self.fw_pkt_l_max = psize self.fw_pkt_l_min = psize self.fw_pkt_l_avg = psize self.fw_hdr_len = psize self.pkt_len_min = psize self.pkt_len_max = psize self.pkt_len_avg = psize self.subfl_fw_pk = 1 self.subfl_fw_byt = psize self.fw_win_byt = psize self.fw_act_pkt = 1 if features[2] > 0 else 0 # is active self.is_active = True def append(self, ts, features, flags, direction): self.pkts.append([ts, *features]) self.flags.append(flags) self.directions.append(direction) if flags[0] == 1 or flags[2] == 1: self.is_active = False def get_features(self): # recalculate features npkts = len(self.pkts) fw_pkts = np.array([pkt for pkt, d in zip(self.pkts, self.directions) if d > 0]) bw_pkts = np.array([pkt for pkt, d in zip(self.pkts, self.directions) if d < 0]) fw_flags = np.array([f for f, d in zip(self.flags, self.directions) if d > 0]) bw_flags = np.array([f for f, d in zip(self.flags, self.directions) if d < 0]) # forward and backward bulks if len(fw_pkts) > 1: fwt = np.zeros(len(fw_pkts)) fwt[1:] = fw_pkts[1:, 0] - fw_pkts[:-1, 0] fw_blk_idx = np.where(fwt <= self.blk_thr)[0] fw_bulk = fw_pkts[fw_blk_idx, :] fw_blk_dur = np.sum(fwt[fw_blk_idx]) elif len(fw_pkts) == 1: fw_bulk = [fw_pkts[0, :]] fw_blk_dur = 0 else: fw_bulk = [] fw_blk_dur = 0 fw_bulk = np.array(fw_bulk) if len(bw_pkts) > 1: bwt = np.zeros(len(bw_pkts)) bwt[1:] = bw_pkts[1:, 0] - bw_pkts[:-1, 0] bw_blk_idx = np.where(bwt <= self.blk_thr)[0] bw_bulk = bw_pkts[bw_blk_idx, :] bw_blk_dur = np.sum(bwt[bw_blk_idx]) elif len(bw_pkts) == 1: bw_bulk = [bw_pkts[0, :]] bw_blk_dur = 0 else: bw_bulk = [] bw_blk_dur = 0 bw_bulk = np.array(bw_bulk) pkts = np.array(self.pkts) flags = np.array(self.flags) if npkts > 1: iat = pkts[1:, 0] - pkts[:-1, 0] self.fl_dur = pkts[-1, 0] - pkts[0, 0] self.tot_fw_pk = len(fw_pkts) self.tot_bw_pk = len(bw_pkts) self.tot_l_fw_pkt =
np.sum(fw_pkts[:, 1])
numpy.sum
# coding=utf-8 import numpy as np import scipy.sparse as sparse from hyperg.hyperg import HyperG def test_hyperg(): edge_idx = np.array([0, 0, 1, 1, 2, 2, 2]) node_idx = np.array([0, 1, 2, 3, 0, 1, 4]) val =
np.array([0.1, 0.3, 0.2, 0.5, 0.6, 0.1, 0.3])
numpy.array
''' Tools to compute STRF Copyright (c) <NAME>, <NAME> All rights reserved Implementation using a light implementation of the Matlab NLS toolbox by TODO ''' import numpy as np import math from scipy import signal from ext import utils def spectrum2scaletime(stft, num_channels, num_ch_oct, sr_time, nfft_rate, nfft_scale, KIND): ''' spectrum2scaletime ''' lgt_time = stft.shape[0] mod_scale = np.zeros((lgt_time, nfft_scale), dtype=complex) phase_scale = np.zeros((lgt_time, nfft_scale)) # perform a FFT for each time slice for i in range(lgt_time): mod_scale[i, :] = np.fft.fft(stft[i, :], nfft_scale) phase_scale[i, :] = utils.angle(mod_scale[i, :]) mod_scale = np.abs(mod_scale) # modulus of the fft scales = np.linspace(0, nfft_scale + 1, num_ch_oct) times = np.linspace(0, mod_scale.shape[1] + 1, int(lgt_time / sr_time)) return mod_scale, phase_scale, times, scales def scaletime2scalerate(mod_scale, num_channels, num_ch_oct, sr_time, nfft_rate, nfft_scale, KIND): ''' scaletime2scalerate ''' lgt_scale = mod_scale.shape[1] scale_rate = np.zeros((nfft_rate, lgt_scale), dtype=complex) phase_scale_rate = np.zeros((nfft_rate, lgt_scale)) for i in range(lgt_scale): scale_rate[:, i] = np.fft.fft(mod_scale[:, i], nfft_rate) phase_scale_rate[:, i] = utils.angle(scale_rate[:, i]) scale_rate = np.abs(scale_rate) rates = np.linspace(0, nfft_rate + 1, sr_time) scales = np.linspace(0, nfft_scale + 1, num_ch_oct) return scale_rate, phase_scale_rate, rates, scales def scalerate2cortical(stft, scaleRate, phase_scale_rate, scales, rates, num_channels, num_ch_oct, sr_time, nfft_rate, nfft_scale, KIND): LgtRateVector = len(rates) LgtScaleVector = len(scales) # length scale vector LgtFreq = stft.shape[1] LgtTime = stft.shape[0] cortical_rep = np.zeros( (LgtTime, LgtFreq, LgtScaleVector, LgtRateVector), dtype=complex) for j in range(LgtRateVector): fc_rate = rates[j] t = np.arange(nfft_rate / 2) / sr_time * abs(fc_rate) h = np.sin(2 * math.pi * t) * np.power(t, 2) * np.exp( -3.5 * t) * abs(fc_rate) h = h - np.mean(h) STRF_rate0 = np.fft.fft(h, nfft_rate) A = utils.angle(STRF_rate0[:nfft_rate // 2]) A[0] = 0.0 # instead of pi STRF_rate =
np.absolute(STRF_rate0[:nfft_rate // 2])
numpy.absolute
import numpy as np import matplotlib.pyplot as plt from matplotlib import widgets from matplotlib import animation from .visualization import Visualization class VisualizationSingleParticle1D(Visualization): def __init__(self,eigenstates): self.eigenstates = eigenstates def plot_eigenstate(self, k, xlim = None): eigenstates_array = self.eigenstates.array energies = self.eigenstates.energies plt.style.use("dark_background") fig = plt.figure(figsize=(16/9 *5.804 * 0.9,5.804)) grid = plt.GridSpec(2, 2, width_ratios=[4.5, 1], height_ratios=[1, 1] , hspace=0.1, wspace=0.2) ax1 = fig.add_subplot(grid[0:2, 0:1]) ax2 = fig.add_subplot(grid[0:2, 1:2]) ax1.set_xlabel("x [Å]") ax2.set_title('E Level') ax2.set_facecolor('black') ax2.set_ylabel('$E_N$ (Relative to $E_{1}$)') ax2.set_xticks(ticks=[]) if xlim != None: ax1.set_xlim(xlim) E0 = energies[0] x = np.linspace(-self.eigenstates.extent/2, self.eigenstates.extent/2, self.eigenstates.N) ax1.plot(x, eigenstates_array[k]) for E in energies: ax2.plot([0,1], [E/E0, E/E0], color='gray', alpha=0.5) ax2.plot([0,1], [energies[k]/E0, energies[k]/E0], color='yellow', lw = 3) plt.show() def slider_plot(self, xlim = None): plt.style.use("dark_background") eigenstates_array = self.eigenstates.array energies = self.eigenstates.energies fig = plt.figure(figsize=(16/9 *5.804 * 0.9,5.804)) grid = plt.GridSpec(2, 2, width_ratios=[5, 1], height_ratios=[1, 1] , hspace=0.1, wspace=0.2) ax1 = fig.add_subplot(grid[0:2, 0:1]) ax2 = fig.add_subplot(grid[0:2, 1:2]) ax1.set_xlabel("x [Å]") ax2.set_title('E Level') ax2.set_facecolor('black') ax2.set_ylabel('$E_N$ (Relative to $E_{1}$)') ax2.set_xticks(ticks=[]) if xlim != None: ax1.set_xlim(xlim) E0 = energies[0] for E in energies: ax2.plot([0,1], [E/E0, E/E0], color='gray', alpha=0.5) x = np.linspace(-self.eigenstates.extent/2, self.eigenstates.extent/2, self.eigenstates.N) eigenstate_plot, = ax1.plot(x, eigenstates_array[1]) eigenstate_plot.set_data = eigenstate_plot.set_ydata line = ax2.plot([0,1], [energies[1]/E0, energies[1]/E0], color='yellow', lw = 3) plt.subplots_adjust(bottom=0.2) from matplotlib.widgets import Slider slider_ax = plt.axes([0.2, 0.05, 0.7, 0.05]) slider = Slider(slider_ax, # the axes object containing the slider 'state', # the name of the slider parameter 0, # minimal value of the parameter len(eigenstates_array)-1, # maximal value of the parameter valinit = 0, # initial value of the parameter valstep = 1, color = '#5c05ff' ) def update(state): state = int(state) eigenstate_plot.set_data(eigenstates_array[state]) line[0].set_ydata([energies[state]/E0, energies[state]/E0]) slider.on_changed(update) plt.show() def animate(self, seconds_per_eigenstate = 0.5, fps = 20, max_states = None, xlim = None, save_animation = False): if max_states == None: max_states = len(self.eigenstates.energies) frames_per_eigenstate = fps * seconds_per_eigenstate total_time = max_states * seconds_per_eigenstate total_frames = int(fps * total_time) eigenstates_array = self.eigenstates.array energies = self.eigenstates.energies plt.style.use("dark_background") fig = plt.figure(figsize=(16/9 *5.804 * 0.9,5.804)) grid = plt.GridSpec(2, 2, width_ratios=[5, 1], height_ratios=[1, 1] , hspace=0.1, wspace=0.2) ax1 = fig.add_subplot(grid[0:2, 0:1]) ax2 = fig.add_subplot(grid[0:2, 1:2]) ax1.set_xlabel("[Å]") ax2.set_title('E Level') ax2.set_facecolor('black') ax2.set_ylabel('$E_N$ (Relative to $E_{1}$)') ax2.set_xticks(ticks=[]) if xlim != None: ax1.set_xlim(xlim) E0 = energies[0] for E in energies: ax2.plot([0,1], [E/E0, E/E0], color='gray', alpha=0.5) x = np.linspace(-self.eigenstates.extent/2, self.eigenstates.extent/2, self.eigenstates.N) eigenstate_plot, = ax1.plot(x, eigenstates_array[1]) eigenstate_plot.set_data = eigenstate_plot.set_ydata line, = ax2.plot([0,1], [energies[1]/E0, energies[1]/E0], color='yellow', lw = 3) plt.subplots_adjust(bottom=0.2) import matplotlib.animation as animation animation_data = {'n': 0.0} def func_animation(*arg): animation_data['n'] = (animation_data['n'] + 0.1) % len(energies) state = int(animation_data['n']) if (animation_data['n'] % 1.0) > 0.5: transition_time = (animation_data['n'] - int(animation_data['n']) - 0.5) eigenstate_plot.set_data(np.cos(np.pi*transition_time)*eigenstates_array[state] + np.sin(np.pi*transition_time)* eigenstates_array[(state + 1) % len(energies)]) E_N = energies[state]/E0 E_M = energies[(state + 1) % len(energies)]/E0 E = E_N*np.cos(np.pi*transition_time)**2 + E_M*np.sin(np.pi*transition_time)**2 line.set_ydata([E, E]) else: line.set_ydata([energies[state]/E0, energies[state]/E0]) eigenstate_plot.set_data(eigenstates_array[int(state)]) return eigenstate_plot, line a = animation.FuncAnimation(fig, func_animation, blit=True, frames=total_frames, interval= 1/fps * 1000) if save_animation == True: Writer = animation.writers['ffmpeg'] writer = Writer(fps=fps, metadata=dict(artist='Me'), bitrate=1800) a.save('animation.mp4', writer=writer) else: plt.show() def superpositions(self, states, fps = 30, total_time = 20, **kw): """ Visualize the time evolution of a superposition of energy eigenstates. The circle widgets control the relative phase of each of the eigenstates. These widgets are inspired by the circular phasors from the quantum mechanics applets by <NAME>: https://www.falstad.com/qm1d/ """ total_frames = fps * total_time from .complex_slider_widget import ComplexSliderWidget eigenstates = self.eigenstates.array coeffs = None get_norm_factor = lambda psi: 1.0/np.sqrt(np.sum(psi*np.conj(psi))) animation_data = {'ticks': 0, 'norm': get_norm_factor(eigenstates[0]), 'is_paused': False} psi0 = eigenstates[0]*get_norm_factor(eigenstates[0]) if isinstance(states, int) or isinstance(states, float): coeffs = np.array([1.0 if i == 0 else 0.0 for i in range(states)], dtype=np.complex128) eigenstates = eigenstates[0: states] else: coeffs = states eigenstates = eigenstates[0: len(states)] states = len(states) psi0 = np.tensordot(coeffs, eigenstates, 1) animation_data['norm'] = get_norm_factor(psi0) psi0 *= animation_data['norm'] energies = self.eigenstates.energies params = {'dt': 0.001, 'xlim': [-self.eigenstates.extent/2.0, self.eigenstates.extent/2.0], 'save_animation': False, 'frames': 120 } for k in kw.keys(): params[k] = kw[k] plt.style.use("dark_background") fig = plt.figure(figsize=(16/9 *5.804 * 0.9,5.804)) grid = plt.GridSpec(5, states) ax = fig.add_subplot(grid[0:3, 0:states]) ax.set_xlabel("[Å]") x = np.linspace(-self.eigenstates.extent/2.0, self.eigenstates.extent/2.0, len(eigenstates[0])) ax.set_yticks([]) ax.set_xlim(params['xlim']) line1, = ax.plot(x, np.real(eigenstates[0]), label='$Re|\psi(x)|$') line2, = ax.plot(x, np.imag(eigenstates[0]), label='$Im|\psi(x)|$') line3, = ax.plot(x, np.abs(eigenstates[0]), label='$|\psi(x)|$', color='white') ax.set_ylim(-1.7*np.amax(np.abs(psi0)), 1.7*np.amax(np.abs(psi0))) ax.legend() def make_update(n): def update(phi, r): animation_data['is_paused'] = True coeffs[n] = r*np.exp(1.0j*phi) psi = np.tensordot(coeffs, eigenstates, 1) animation_data['norm'] = get_norm_factor(psi) line1.set_ydata(np.real(psi)) line2.set_ydata(
np.imag(psi)
numpy.imag
import torch import numpy as np from visdom import Visdom class VisdomWriter(object): def __init__(self, title, xlabel='Epoch', ylabel='Loss'): """Extended Visdom Writer""" self.vis = Visdom() assert self.vis.check_connection() self.title = title self.xlabel = xlabel self.ylabel = ylabel self.x = 0 self.win = None def update_text(self, text): """Text Memo (usually used to note hyperparameter-configurations)""" self.vis.text(text) def update(self, y): """Update loss (X: Step (Epoch) / Y: loss)""" self.x += 1 if self.win is None: self.win = self.vis.line( X=np.array([self.x]), Y=
np.array([y])
numpy.array
#!/usr/bin/env python # Copyright 2013-2019 <NAME>, <NAME> (<EMAIL>, <EMAIL>) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Revision History # 16/07/13 01:00AM - original version # 20/06/17 12:07AM - np.asarray replaced by .toarray() # - minor bug fix in initializing q(Z) # - minor bug fix in ELBO calculation # - few more optimizations # 03/10/19 02:27PM - speaker regularization coefficient Fb added # import numpy as np from scipy.sparse import coo_matrix import scipy.linalg as spl import numexpr as ne # the dependency on this modul can be avoided by replacing # logsumexp_ne and exp_ne with logsumexp and np.exp #[gamma pi Li] = def VB_diarization(X, m, invSigma, w, V, pi=None, gamma=None, maxSpeakers = 10, maxIters = 10, epsilon = 1e-4, loopProb = 0.99, statScale = 1.0, alphaQInit = 1.0, downsample = None, VtinvSigmaV = None, ref=None, plot=False, sparsityThr=0.001, llScale=1.0, minDur=1, Fa=1.0, Fb=1.0): """ This a generalized version of speaker diarization described in: <NAME>., <NAME>., <NAME>., <NAME>. Analysis of Speaker Diarization based on Bayesian HMM with Eigenvoice Priors Variable names and equation numbers refer to those used the paper Inputs: X - T x D array, where columns are D dimensional feature vectors for T frames m - C x D array of GMM component means invSigma - C x D array of GMM component inverse covariance matrix diagonals w - C dimensional column vector of GMM component weights V - R x C x D array of eigenvoices maxSpeakers - maximum number of speakers expected in the utterance maxIters - maximum number of algorithm iterations epsilon - stop iterating, if obj. fun. improvement is less than epsilon loopProb - probability of not switching speakers between frames statScale - deprecated, use Fa instead Fa - scale sufficient statiscits collected using UBM Fb - speaker regularization coefficient Fb (controls final # of speaker) llScale - scale UBM likelihood (i.e. llScale < 1.0 make atribution of frames to UBM componets more uncertain) sparsityThr - set occupations smaller that this threshold to 0.0 (saves memory as the posteriors are represented by sparse matrix) alphaQInit - Dirichlet concentraion parameter for initializing gamma downsample - perform diarization on input downsampled by this factor VtinvSigmaV - C x (R**2+R)/2 matrix normally calculated by VB_diarization when VtinvSigmaV is None. However, it can be pre-calculated using function precalculate_VtinvSigmaV(V) and used across calls of VB_diarization. minDur - minimum number of frames between speaker turns imposed by linear chains of HMM states corresponding to each speaker. All the states in a chain share the same output distribution ref - T dim. integer vector with reference speaker ID (0:maxSpeakers) per frame plot - if set to True, plot per-frame speaker posteriors. Outputs: gamma - S x T matrix of posteriors attribution each frame to one of S possible speakers, where S is given by opts.maxSpeakers pi - S dimensional column vector of ML learned speaker priors. Ideally, these should allow to estimate # of speaker in the utterance as the probabilities of the redundant speaker should converge to zero. Li - values of auxiliary function (and DER and frame cross-entropy between gamma and reference if 'ref' is provided) over iterations. """ # The references to equations corresponds to # <NAME>., <NAME>., <NAME>., <NAME>. # Analysis of Speaker Diarization based on Bayesian HMM with Eigenvoice Priors D=X.shape[1] # feature dimensionality C=len(w) # number of mixture components R=V.shape[0] # subspace rank nframes=X.shape[0] if VtinvSigmaV is None: VtinvSigmaV = precalculate_VtinvSigmaV(V, invSigma) V = V.reshape(V.shape[0],-1) if pi is None: pi = np.ones(maxSpeakers)/maxSpeakers else: maxSpeakers = len(pi) if gamma is None: # initialize gamma from flat Dirichlet prior with concentration parameter alphaQInit gamma = np.random.gamma(alphaQInit, size=(nframes, maxSpeakers)) gamma = gamma / gamma.sum(1, keepdims=True) # calculate UBM mixture frame posteriors (i.e. per-frame zero order statistics) ll = (X**2).dot(-0.5*invSigma.T) + X.dot(invSigma.T*m.T)-0.5*((invSigma * m**2 - np.log(invSigma)).sum(1) - 2*np.log(w) + D*np.log(2*np.pi)) ll *= llScale G = logsumexp_ne(ll, axis=1) zeta = exp_ne(ll - G[:,np.newaxis]) zeta[zeta<sparsityThr] = 0.0 zeta = zeta * statScale G = G * statScale #Kx = np.sum(zeta * (np.log(w) - np.log(zeta)), 1) zeta = coo_matrix(zeta) # represent zero-order stats using sparse matrix print('Sparsity: ', len(zeta.row), float(len(zeta.row))/np.prod(zeta.shape)) LL = np.sum(G) # total log-likelihod as calculated using UBM mixture_sum = coo_matrix((np.ones(C*D), (np.repeat(range(C),D), range(C*D)))) #G = np.sum((zeta.multiply(ll - np.log(w))).toarray(), 1) + Kx # from eq. (30) # Aleready calculated above # Calculate per-frame first order statistics projected into the R-dim. subspace # V^T \Sigma^{-1} F_m F_s =coo_matrix((((X[zeta.row]-m[zeta.col])*zeta.data[:,np.newaxis]).flat, (zeta.row.repeat(D), zeta.col.repeat(D)*D+np.tile(range(D), len(zeta.col))))) rho = F_s.tocsr().dot((invSigma.flat * V).T) ; del F_s ## The code above is only efficient implementation of the following comented code #rho = 0; #for ii in range(C): # rho = rho + V[ii*D:(ii+1)*D,:].T.dot(zeta[ii,:] * invSigma[:,[ii]] * (X - m[:,[ii]])) if downsample is not None: # Downsample zeta, rho, G and gamma by summing the statistic over 'downsample' frames # This speeds-up diarization for the price of lowering its frame resolution #downsampler = coo_matrix((np.ones(nframes), (np.ceil(np.arange(nframes)/downsample).astype(int), np.arange(nframes)))) downsampler = coo_matrix((
np.ones(nframes)
numpy.ones
import lmdb import os import io import numpy as np from utils import * from tqdm import tqdm import torch import pandas as pd import json import argparse parser = argparse.ArgumentParser() parser.add_argument( "-c", "--city", default="BERLIN", type=str, ) args = parser.parse_args() city = args.city.upper() cfg = get_cfg() cfg.merge_from_file('./config/v3-hrnet-8-day.yaml') test_slots = "./processed_data/test_slots.json" with open(test_slots) as f: test_json = json.load(f) test_json = {list(d.keys())[0]:list(d.values())[0] for d in test_json} test_json = {pd.to_datetime(k).dayofyear:v for k,v in test_json.items()} val_dates = "./processed_data/val_dates.json" with open(val_dates) as f: valid_json = json.load(f) valid_json = [pd.to_datetime(k).dayofyear for k in valid_json] cipt_map = {'BERLIN':int(5e10),'ISTANBUL':int(1e11),'MOSCOW':int(2e11)} env = lmdb.open(os.path.join(cfg.DATASET.DATA_PATH, city.upper()),map_size = cipt_map[city]) def process(dayofyear): all_data = [] for idx in range((dayofyear-1)*288,dayofyear*288): idx = str(idx).encode("ascii") with env.begin() as txn: data = txn.get(idx) data = np.load(io.BytesIO(data)) x = np.zeros(495 * 436 * 9, dtype=np.uint8) x[data["x"]] = data["y"] x = x.reshape([495, 436, 9]) x = np.moveaxis(x, -1, 0) all_data.append(x.copy()) all_data = np.stack(all_data) if dayofyear<=181: for rand_idx in range(50): idx_num = np.random.choice(range(1, 6), p=[0.02, 0.23, 0.5, 0.23, 0.02]) idx = np.random.randint(0, 60, [5]) + np.arange(0, 288, 60) idx = np.clip(idx, 0, 276) idx = np.random.choice(idx, idx_num) idx.sort() idx = np.array([i+j for i in idx for j in range(12)]) value = torch.clamp(torch.round(torch.tensor(all_data[idx]).float().mean(0)),0,255).cpu().numpy() d = value.astype(np.uint8) d = d.reshape(-1) str_id = f"dayofyear/{dayofyear}/{rand_idx}" s = io.BytesIO() np.savez(s,x=
np.where(d!=0)
numpy.where
import pyglet from pyglet.gl import * from .globs import * from .constants import * from . import config import ctypes import math from .colors import _getColor, color, blue try: import numpy npy = True numpy.seterr(divide='ignore') except: npy = False # exports __all__ = ['PImage', 'loadImage', 'image', 'get', 'setScreen', 'save', 'createImage', 'loadPixels', 'updatePixels', 'screenFilter', 'blend'] # the PImage class class PImage(object): """This basically wraps pyglet's AbstractImage with a Processing-like syntax.""" img = None # this is the actual AbstractImage def __init__(self, *args): """Either creates a new image from scratch or wraps an AbstractImage. Arguments are of the form PImage() PImage(width,height) PImage(width,height,format) PImage(img) """ if len(args) == 1 and isinstance(args[0], pyglet.image.AbstractImage): # Wraps an AbstractImage self.img = args[0] elif len(args) in (2, 3): # Creates an ImageData from width, height and type if len(args) == 2: # default w, h = args format = ARGB else: w, h, format = args data = create_string_buffer(w * h * len(format)) self.img = pyglet.image.ImageData(w, h, format, data.raw) else: assert (len(args) == 0) # Do an initial loading of the pixels[] array self.loadPixels() self.updatePixels() def loadPixels(self): """Gets the pixel data as an array of integers.""" n = self.width * self.height self.buf = self.img.get_image_data().get_data('BGRA', -self.width * 4) if npy: self.pixels = numpy.fromstring(self.buf, dtype=ctypes.c_uint) else: self.pixels = ctypes.cast(self.buf, ctypes.POINTER(ctypes.c_uint)) def filter(self, mode, *args): """Applies a filter to the image. The existant filters are: GRAY, INVERT, OPAQUE, THRESHOLD, POSTERIZE, ERODE, DILATE and BLUR. This method requires numpy.""" if not npy: raise ImportError("Numpy is required") if mode == GRAY: # Gray value = (77*(n>>16&0xff) + 151*(n>>8&0xff) + 28*(n&0xff)) >> 8 # Where n is the ARGB color of the pixel lum1 = numpy.multiply( numpy.bitwise_and(numpy.right_shift(self.pixels, 16), 0xff), 77) lum2 = numpy.multiply( numpy.bitwise_and(numpy.right_shift(self.pixels, 8), 0xff), 151) lum3 = numpy.multiply(numpy.bitwise_and(self.pixels, 0xff), 28) lum = numpy.right_shift(numpy.add(numpy.add(lum1, lum2), lum3), 8) self.pixels = numpy.bitwise_and(self.pixels, 0xff000000) self.pixels = numpy.bitwise_or(self.pixels, numpy.left_shift(lum, 16)) self.pixels = numpy.bitwise_or(self.pixels, numpy.left_shift(lum, 8)) self.pixels = numpy.bitwise_or(self.pixels, lum) elif mode == INVERT: # This is the same as applying an exclusive or with the maximum value self.pixels = numpy.bitwise_xor(self.pixels, 0xffffff) elif mode == BLUR: if not args: args = [3] # Makes the image square by adding zeros. # This avoids the convolution (via fourier transform multiplication) # from jumping to another extreme of the image when a border is reached if self.width > self.height: dif = self.width - self.height updif = numpy.zeros(self.width * dif / 2, dtype=numpy.uint32) downdif = numpy.zeros(self.width * (dif - dif / 2), dtype=numpy.uint32) self.pixels = numpy.concatenate((updif, self.pixels, downdif)) size = self.width elif self.width < self.height: dif = self.height - self.width leftdif = numpy.zeros(self.height * dif / 2, dtype=numpy.uint32) rightdif = numpy.zeros(self.height * (dif - dif / 2), dtype=numpy.uint32) self.pixels = self.pixels.reshape(self.height, self.width) self.pixels = numpy.transpose(self.pixels) self.pixels = self.pixels.reshape(self.width * self.height) self.pixels = numpy.concatenate( (leftdif, self.pixels, rightdif)) self.pixels = self.pixels.reshape(self.height, self.height) self.pixels = numpy.transpose(self.pixels) self.pixels = self.pixels.reshape(self.height * self.height) size = self.height else: size = self.height # Creates a gaussian kernel of the image's size _createKernel2d(args[0], size) # Divides the image's R, G and B channels, reshapes them # to square matrixes and applies two dimensional fourier transforms red = numpy.bitwise_and(numpy.right_shift(self.pixels, 16), 0xff) red = numpy.reshape(red, (size, size)) red = numpy.fft.fft2(red) green = numpy.bitwise_and(numpy.right_shift(self.pixels, 8), 0xff) green = numpy.reshape(green, (size, size)) green = numpy.fft.fft2(green) blue = numpy.bitwise_and(self.pixels, 0xff) blue = numpy.reshape(blue, (size, size)) blue = numpy.fft.fft2(blue) # Does a element-wise multiplication of each channel matrix # and the fourier transform of the kernel matrix kernel = numpy.fft.fft2(weights) red = numpy.multiply(red, kernel) green = numpy.multiply(green, kernel) blue = numpy.multiply(blue, kernel) # Reshapes them back to arrays and converts to unsigned integers red = numpy.reshape(numpy.fft.ifft2(red).real, size * size) green = numpy.reshape(numpy.fft.ifft2(green).real, size * size) blue = numpy.reshape(numpy.fft.ifft2(blue).real, size * size) red = red.astype(numpy.uint32) green = green.astype(numpy.uint32) blue = blue.astype(numpy.uint32) self.pixels = numpy.bitwise_or(numpy.left_shift(green, 8), blue) self.pixels = numpy.bitwise_or(numpy.left_shift(red, 16), self.pixels) # Crops out the zeros added if self.width > self.height: self.pixels = self.pixels[ self.width * dif / 2:size * size - self.width * ( dif - dif / 2)] elif self.width < self.height: self.pixels = numpy.reshape(self.pixels, (size, size)) self.pixels = numpy.transpose(self.pixels) self.pixels = numpy.reshape(self.pixels, size * size) self.pixels = self.pixels[ self.height * dif / 2:size * size - self.height * ( dif - dif / 2)] self.pixels = numpy.reshape(self.pixels, (self.width, self.height)) self.pixels = numpy.transpose(self.pixels) self.pixels = numpy.reshape(self.pixels, self.height * self.width) elif mode == OPAQUE: # This is the same as applying an bitwise or with the maximum value self.pixels = numpy.bitwise_or(self.pixels, 0xff000000) elif mode == THRESHOLD: # Maximum = max((n & 0xff0000) >> 16, max((n & 0xff00)>>8, (n & 0xff))) # Broken down to Maximum = max(aux,aux2) # The pixel will be white if its maximum is greater than the threshold # value, and black if not. This was implemented via a boolean matrix # multiplication. if not args: args = [0.5] thresh = args[0] * 255 aux = numpy.right_shift(numpy.bitwise_and(self.pixels, 0xff00), 8) aux = numpy.maximum(aux, numpy.bitwise_and(self.pixels, 0xff)) aux2 = numpy.right_shift(numpy.bitwise_and(self.pixels, 0xff0000), 16) boolmatrix = numpy.greater_equal(numpy.maximum(aux, aux2), thresh) self.pixels.fill(0xffffff) self.pixels = numpy.multiply(self.pixels, boolmatrix) elif mode == POSTERIZE: # New channel = ((channel*level)>>8)*255/(level-1) if not args: args = [8] levels1 = args[0] - 1 rlevel = numpy.bitwise_and(numpy.right_shift(self.pixels, 16), 0xff) glevel = numpy.bitwise_and(numpy.right_shift(self.pixels, 8), 0xff) blevel = numpy.bitwise_and(self.pixels, 0xff) rlevel = numpy.right_shift(numpy.multiply(rlevel, args[0]), 8) rlevel = numpy.divide(numpy.multiply(rlevel, 255), levels1) glevel = numpy.right_shift(numpy.multiply(glevel, args[0]), 8) glevel = numpy.divide(numpy.multiply(glevel, 255), levels1) blevel = numpy.right_shift(numpy.multiply(blevel, args[0]), 8) blevel = numpy.divide(numpy.multiply(blevel, 255), levels1) self.pixels = numpy.bitwise_and(self.pixels, 0xff000000) self.pixels = numpy.bitwise_or(self.pixels, numpy.left_shift(rlevel, 16)) self.pixels = numpy.bitwise_or(self.pixels, numpy.left_shift(glevel, 8)) self.pixels = numpy.bitwise_or(self.pixels, blevel) elif mode == ERODE: # Checks the pixels directly above, under and to the left and right # of each pixel of the image. If it has a greater luminosity, then # the center pixel receives its color colorOrig = numpy.array(self.pixels) colOut = numpy.array(self.pixels) colLeft = numpy.roll(colorOrig, 1) colRight = numpy.roll(colorOrig, -1) colUp = numpy.roll(colorOrig, self.width) colDown = numpy.roll(colorOrig, -self.width) currLum1 = numpy.bitwise_and(numpy.right_shift(colorOrig, 16), 0xff) currLum1 = numpy.multiply(currLum1, 77) currLum2 = numpy.bitwise_and(numpy.right_shift(colorOrig, 8), 0xff) currLum2 = numpy.multiply(currLum2, 151) currLum3 = numpy.multiply(numpy.bitwise_and(colorOrig, 0xff), 28) currLum = numpy.add(numpy.add(currLum1, currLum2), currLum3) lumLeft1 = numpy.bitwise_and(numpy.right_shift(colLeft, 16), 0xff) lumLeft1 = numpy.multiply(lumLeft1, 77) lumLeft2 = numpy.bitwise_and(numpy.right_shift(colLeft, 8), 0xff) lumLeft2 = numpy.multiply(lumLeft2, 151) lumLeft3 = numpy.multiply(numpy.bitwise_and(colLeft, 0xff), 28) lumLeft = numpy.add(numpy.add(lumLeft1, lumLeft2), lumLeft3) lumRight1 = numpy.bitwise_and(numpy.right_shift(colRight, 16), 0xff) lumRight1 = numpy.multiply(lumRight1, 77) lumRight2 = numpy.bitwise_and(numpy.right_shift(colRight, 8), 0xff) lumRight2 = numpy.multiply(lumRight2, 151) lumRight3 = numpy.multiply(numpy.bitwise_and(colRight, 0xff), 28) lumRight = numpy.add(numpy.add(lumRight1, lumRight2), lumRight3) lumDown1 = numpy.bitwise_and(numpy.right_shift(colDown, 16), 0xff) lumDown1 = numpy.multiply(lumDown1, 77) lumDown2 = numpy.bitwise_and(numpy.right_shift(colDown, 8), 0xff) lumDown2 = numpy.multiply(lumDown2, 151) lumDown3 = numpy.multiply(numpy.bitwise_and(colDown, 0xff), 28) lumDown = numpy.add(numpy.add(lumDown1, lumDown2), lumDown3) lumUp1 = numpy.bitwise_and(numpy.right_shift(colUp, 16), 0xff) lumUp1 = numpy.multiply(lumUp1, 77) lumUp2 = numpy.bitwise_and(numpy.right_shift(colUp, 8), 0xff) lumUp2 = numpy.multiply(lumUp2, 151) lumUp3 = numpy.multiply(numpy.bitwise_and(colUp, 0xff), 28) lumUp = numpy.add(numpy.add(lumUp1, lumUp2), lumUp3) numpy.putmask(colOut, lumLeft > currLum, colLeft) numpy.putmask(currLum, lumLeft > currLum, lumLeft) numpy.putmask(colOut, lumRight > currLum, colRight) numpy.putmask(currLum, lumRight > currLum, lumRight) numpy.putmask(colOut, lumUp > currLum, colUp) numpy.putmask(currLum, lumUp > currLum, lumUp) numpy.putmask(colOut, lumDown > currLum, colDown) numpy.putmask(currLum, lumDown > currLum, lumDown) self.pixels = colOut elif mode == DILATE: # Checks the pixels directly above, under and to the left and right # of each pixel of the image. If it has a lesser luminosity, then # the center pixel receives its color colorOrig = numpy.array(self.pixels) colOut = numpy.array(self.pixels) colLeft = numpy.roll(colorOrig, 1) colRight = numpy.roll(colorOrig, -1) colUp = numpy.roll(colorOrig, self.width) colDown = numpy.roll(colorOrig, -self.width) currLum1 = numpy.bitwise_and(numpy.right_shift(colorOrig, 16), 0xff) currLum1 = numpy.multiply(currLum1, 77) currLum2 = numpy.bitwise_and(numpy.right_shift(colorOrig, 8), 0xff) currLum2 = numpy.multiply(currLum2, 151) currLum3 = numpy.multiply(numpy.bitwise_and(colorOrig, 0xff), 28) currLum = numpy.add(numpy.add(currLum1, currLum2), currLum3) lumLeft1 = numpy.bitwise_and(numpy.right_shift(colLeft, 16), 0xff) lumLeft1 = numpy.multiply(lumLeft1, 77) lumLeft2 = numpy.bitwise_and(numpy.right_shift(colLeft, 8), 0xff) lumLeft2 = numpy.multiply(lumLeft2, 151) lumLeft3 = numpy.multiply(numpy.bitwise_and(colLeft, 0xff), 28) lumLeft = numpy.add(numpy.add(lumLeft1, lumLeft2), lumLeft3) lumRight1 = numpy.bitwise_and(numpy.right_shift(colRight, 16), 0xff) lumRight1 = numpy.multiply(lumRight1, 77) lumRight2 = numpy.bitwise_and(numpy.right_shift(colRight, 8), 0xff) lumRight2 = numpy.multiply(lumRight2, 151) lumRight3 = numpy.multiply(numpy.bitwise_and(colRight, 0xff), 28) lumRight = numpy.add(numpy.add(lumRight1, lumRight2), lumRight3) lumDown1 = numpy.bitwise_and(numpy.right_shift(colDown, 16), 0xff) lumDown1 = numpy.multiply(lumDown1, 77) lumDown2 = numpy.bitwise_and(numpy.right_shift(colDown, 8), 0xff) lumDown2 = numpy.multiply(lumDown2, 151) lumDown3 = numpy.multiply(numpy.bitwise_and(colDown, 0xff), 28) lumDown = numpy.add(numpy.add(lumDown1, lumDown2), lumDown3) lumUp1 = numpy.bitwise_and(numpy.right_shift(colUp, 16), 0xff) lumUp1 = numpy.multiply(lumUp1, 77) lumUp2 = numpy.bitwise_and(numpy.right_shift(colUp, 8), 0xff) lumUp2 = numpy.multiply(lumUp2, 151) lumUp3 = numpy.multiply(numpy.bitwise_and(colUp, 0xff), 28) lumUp = numpy.add(numpy.add(lumUp1, lumUp2), lumUp3) numpy.putmask(colOut, lumLeft < currLum, colLeft) numpy.putmask(currLum, lumLeft < currLum, lumLeft) numpy.putmask(colOut, lumRight < currLum, colRight) numpy.putmask(currLum, lumRight < currLum, lumRight) numpy.putmask(colOut, lumUp < currLum, colUp) numpy.putmask(currLum, lumUp < currLum, lumUp) numpy.putmask(colOut, lumDown < currLum, colDown) numpy.putmask(currLum, lumDown < currLum, lumDown) self.pixels = colOut self.updatePixels() def mask(self, image): """Uses the image passed as parameter as alpha mask.""" if npy: aux1 = numpy.bitwise_and(self.pixels, 0xffffff) aux2 = numpy.bitwise_and(image.pixels, 0xff000000) self.pixels = numpy.bitwise_or(aux1, aux2) return for i in range(self.width): for j in range(self.height): n = self.get(i, j) m = image.get(i, j) new = ((m & 0xff000000) << 24) | (n & 0xffffff) self.set(i, j, new) def updatePixels(self): """Saves the pixel data.""" if npy: self.buf = self.pixels.tostring() self.img.get_image_data().set_data('BGRA', -self.width * 4, self.buf) def set(self, x, y, color): """Sets the pixel at x,y with the given color.""" self.pixels[y * self.width + x] = color self.updatePixels() def get(self, *args): """Returns a copy, a part or a pixel of this image. Arguments are of the form: get() get(x,y) get(x,y,width,height) """ if len(args) in (0, 4): # the result is an image if len(args) == 0: x, y, width, height = 0, 0, self.width, self.height else: x, y, width, height = args assert (x >= 0 and x < self.width and y >= 0 and y < self.height and width > 0 and height > 0 and x + width <= self.width and y + height <= self.height) if width != self.width or height != self.height: source = self.img.get_region(x, self.height - y - height, width, height) else: source = self.img result = PImage(width, height, self.img.format) # print source._current_pitch # print result.img._current_pitch # buf = source.get_data ('BGRA',result.img._current_pitch) # result.img.set_data ('BGRA', result.img._current_pitch, buf) result.img.get_texture().blit_into(source, 0, 0, 0) return result else: # result is a pixel x, y = args assert (x >= 0 and x < self.width and y >= 0 and y < self.height) return self.pixels[y * self.width + x] def save(self, filename): """Saves this image as a file of the proper format.""" self.img.save(filename) def __getWidth(self): """Getter for the width property.""" return self.img.width width = property(__getWidth) def __getHeight(self): """Getter for the height property.""" return self.img.height height = property(__getHeight) # Image functions def screenFilter(mode, *args): """Applies a filter to the current drawing canvas. This method requires numpy.""" if not npy: raise ImportError("Numpy is required") new = createImage(width, height, 'RGBA') loadPixels() new.pixels = numpy.array(screen.pixels) new.filter(mode, *args) new.updatePixels() image(new, 0, 0) def mix(a, b, f): return a + (((b - a) * f) >> 8); def _mix(a, b, f): # Used for the blend function (mixes colors according to their alpha values) c = numpy.multiply(numpy.subtract(b, a), f) return numpy.add(numpy.right_shift(c, 8), a) def _high(a, b): # Used for the blend function (returns the matrix with the maximum bitwise values) c = numpy.multiply(a.__le__(b), b) d = numpy.multiply(a.__gt__(b), a) return numpy.add(c, d) def _low(a, b): # Used for the blend function (returns the matrix with the minimum bitwise values) c = numpy.multiply(a.__ge__(b), b) d = numpy.multiply(a.__lt__(b), a) return numpy.add(c, d) def _peg(a): # Used for the blend function (returns the matrix with constrained values) b = numpy.multiply(a.__ge__(0), a) c = numpy.multiply(b.__le__(255), b) d = numpy.multiply(b.__gt__(255), 255) return numpy.add(c, d) def _sub(a, b): # Used for the blend function (mimics an unsigned subtraction with signed arrays) aux = a aux1 = numpy.multiply(aux.__ge__(b), b) aux2 = numpy.multiply(b.__gt__(aux), aux) b = numpy.add(aux1, aux2) return numpy.subtract(aux, b) def blend(source, x, y, swidth, sheight, dx, dy, dwidth, dheight, mode): """Blends a region of pixels from one image into another.""" if not npy: raise ImportError("Numpy is required") loadPixels() a = screen.pixels.reshape((height, width)) a = a[dy:dy + dheight, dx:dx + dwidth] a = a.reshape(a.shape[1] * a.shape[0]) b = source.pixels.reshape((source.height, source.width)) b = b[y:y + sheight, x:x + swidth] b = b.reshape(b.shape[1] * b.shape[0]) f = numpy.right_shift(numpy.bitwise_and(b, 0xff000000), 24) a.dtype = "int32" b.dtype = "int32" # BLEND Mode if mode == 0: alpha = numpy.right_shift(numpy.bitwise_and(a, 0xff000000), 24) alpha = numpy.left_shift(_low(numpy.add(alpha, f), 0xff), 24) red = _mix(numpy.bitwise_and(a, 0xff0000), numpy.bitwise_and(b, 0xff0000), f) red = numpy.bitwise_and(red, 0xff0000) green = _mix(numpy.bitwise_and(a, 0xff00), numpy.bitwise_and(b, 0xff00), f) green = numpy.bitwise_and(green, 0xff00) blue = _mix(numpy.bitwise_and(a, 0xff), numpy.bitwise_and(b, 0xff), f) # ADD Mode elif mode == 1: alpha = numpy.right_shift(
numpy.bitwise_and(a, 0xff000000)
numpy.bitwise_and
from ai_ct_scans import data_loading import torch from ai_ct_scans import models from tqdm import tqdm import matplotlib.pyplot as plt import numpy as np from cv2 import blur from ai_ct_scans import phase_correlation_image_processing from ai_ct_scans.data_writing import ndarray_to_memmap plt.ion() if torch.cuda.is_available(): dev = torch.device("cuda") else: dev = "cpu" def det(tensor): """Detach a torch Tensor to a cpu numpy version Args: tensor (torch.Tensor): A tensor to be detached and turned into an ndarray Returns: (ndarray): The same data as an ndarray """ return tensor.cpu().detach().numpy() def debug_plot(model_out, batch, index=0): """Plot the original image, the masked image, and the infilled version. Useful during debugging. Args: model_out: The infilled image stack from an Infiller model batch (dict of tensors): A dictionary with torch Tensors 'labels' and 'input_images' index (int): The index of the model's output to compare to the original image and masked version, [0-batch size] """ out = det(model_out) ims = det(batch["labels"]) inputs = det(batch["input_images"]) f, axes = plt.subplots(1, 3) axes = np.ravel(axes) axes[0].imshow(ims[index, 0, :, :]) axes[0].set_title("original image") axes[1].imshow(inputs[index, 0, :, :]) axes[1].set_title("masked inputs") axes[2].imshow(out[index, 0, :, :]) axes[2].set_title("output") class InfillTrainer: """A class for training an ai_ct_scans.models.Infiller network""" def __init__( self, axial_width=256, coronal_width=256, sagittal_width=256, batch_size=8, batch_width=256, batch_height=256, blank_width=64, num_encoder_convs=3, encoder_filts_per_layer=10, neurons_per_dense=512, num_dense_layers=3, decoder_filts_per_layer=10, num_decoder_convs=3, kernel_size=3, learning_rate=1e-5, save_dir=None, clear_previous_memmaps=False, save_freq=200, blur_kernel=None, show_outline=False, ): """Initialises the network and dataset handling, gets the trainer ready for run self.train_for_iterations() Args: axial_width (int): How wide the model will expect views taken from the axial plane to be in pixels coronal_width (int): How wide the model will expect views taken from the coronal plane to be in pixels sagittal_width (int):How wide the model will expect views taken from the sagittal plane to be in pixels batch_size (int): How many random views to take for a single training iteration (typically 1-8 trialled) batch_width (int): How wide the views should be at the point of input to the model in pixels batch_height (int): How high the views should be at the point of input to the model in pixels blank_width (int): Square size of the centre masked region to be applied in the middle of each view before input to network num_encoder_convs (int): How many convolution-maxpool steps to build into the model in the encoder encoder_filts_per_layer (int): How many filters to include in the first convolution layer (to be doubled at each subsequent layer Unet style) neurons_per_dense (int): (currently disconnected) How many neurons in each dense layer that connects the convolutional layers in the encoder to the convolutional layers in the decoder num_dense_layers (int): (currently disconnected) How many layers of dense neurons to use to connect the convolutional encoder and decoder layers decoder_filts_per_layer (int): (currently must be same as encoder filts_per_layer) num_decoder_convs (int): How many upsample-convolutional layers to include in the decoder, currently throws an error if not equal to num_encoder_convs to fit Unet style of the network kernel_size (int or tuple of two ints): 2D size of kernels used in Conv2D layers learning_rate (float): parameter to control the rate at which the model learns, typically <1e-4 save_dir (pathlib Path): A directory in which to save the model during training clear_previous_memmaps (bool): Whether to re-initialise the dataset (i.e. rebuild memmaps off of original DICOM data) save_freq (int): How often to save the model, every save_freq iterations blur_kernel (None or tuple of ints): If not None, apply a blur to the input views before masking and feeding into the network. This is theorised to prevent the model getting stuck due to attemptin to recreate high frequency random noise show_outline (bool): Whether to perform an edge detection and expose these edges in the masked region. This helps the model to get the correct shapes at output, without showing it much about the intensity/texture it should aim for. """ self.multi_patient_loader = data_loading.MultiPatientLoader() # Included just abdo due to simplicity of focusing on one body part # Mentioned twice in the array to preserve the index for testing for multiple body parts # self.body_parts = ['abdo', 'thorax'] self.body_parts = ["abdo", "abdo"] self.scan_nums = ["scan_1", "scan_2"] for patient in self.multi_patient_loader.patients: for body_part in self.body_parts: for scan_num in self.scan_nums: if clear_previous_memmaps is True: patient.__getattribute__(body_part).__getattribute__( scan_num ).delete_memmap() patient.__getattribute__(body_part).__getattribute__( scan_num ).load_memmap_and_clear_scan() self.blur_kernel = blur_kernel self.show_outline = show_outline self.axial_width = axial_width self.coronal_width = coronal_width self.sagittal_width = sagittal_width self.batch_width = batch_width self.batch_height = batch_height self.batch_size = batch_size self.blank_width = blank_width self.loss_weighting_width = int(self.blank_width * 1.5) self.slicers = [ self.random_axial_slicer, self.random_coronal_slicer, self.random_sagittal_slicer, ] self.plane_masks = self.plane_mask_builder() self.edge_detection_pad = 3 self.edge_window_width = 2 * self.edge_detection_pad + self.blank_width self.edge_detection_mask = np.logical_not( self.plane_mask_builder(blank_width=self.edge_window_width)[0] ) self.inv_plane_mask = np.logical_not(self.plane_masks[0]) self.loss_masks = self.plane_mask_builder(self.loss_weighting_width) self.loss_masks = self._convert_loss_masks_to_tensor() self.label_masks = [ np.logical_not(plane_mask) for plane_mask in self.plane_masks ] self.patient_indices = list(range(len(self.multi_patient_loader.patients))) self.model = models.Infiller( input_height=self.batch_height, input_width=self.batch_width, output_height=self.blank_width, output_width=self.blank_width, num_encoder_convs=num_encoder_convs, encoder_filts_per_layer=encoder_filts_per_layer, neurons_per_dense=neurons_per_dense, num_dense_layers=num_dense_layers, decoder_filts_per_layer=decoder_filts_per_layer, num_decoder_convs=num_decoder_convs, kernel_size=kernel_size, ) self.optimiser = torch.optim.AdamW(self.model.parameters(), lr=learning_rate) if save_dir is None: save_dir = data_loading.data_root_directory().parent / "infiller" save_dir.mkdir(exist_ok=True, parents=True) self.save_dir = save_dir self.iteration = 0 self.last_n_losses = [] self.loss_num_to_ave_over = 100 self.latest_loss = np.inf self.save_freq = save_freq self.input_stack = np.zeros( [self.batch_size, 1, self.batch_height, self.batch_width], dtype="float64" ) self.plane_mask_stack = np.zeros_like(self.input_stack) self.error_weighting = ( self.loss_weighting_width ** 2 / self.axial_width ** 2 + 1 ) self.best_loss = np.inf def _convert_loss_masks_to_tensor(self): """Convert existing loss masks, used to reweight the central masked region in the loss function, to tensors Returns: (tensor): A stack of tensors that are 1 in the central and border regions around the mask, and 0 elsewhere """ return torch.Tensor(self.loss_masks).to(dev) def loss(self, model_out, batch): """Defines a custom loss function for the network. Weights the loss such that reproduction of the masked region (and a small border area around it) contributes to the overall loss on the same order of magnitude as all other pixels that were predicted Args: model_out (torch Tensor): Stack of images that the model has predicted batch (dict as built by self.build_batch): The batch that was used for the iteration, which should include at least a 'labels' stack of Tensor images of the same shape as model_out Returns: (torch Tensor): the MSE error in the output prediction after reweighting masked region of prediction """ error = model_out - batch["labels"] squared_error = error ** 2 weighted_error = squared_error * (self.error_weighting - self.loss_masks[0]) mse = torch.mean(weighted_error) return mse def train_step(self): """Build a single batch, do a single forward and backward pass.""" batch = self.build_batch() self.optimiser.zero_grad() out = self.model(batch) loss = self.loss(out, batch) loss.backward() self.optimiser.step() detached_loss = loss.cpu().detach().numpy() if len(self.last_n_losses) == self.loss_num_to_ave_over: self.last_n_losses.pop(0) self.last_n_losses.append(detached_loss) else: self.last_n_losses.append(detached_loss) self.iteration += 1 if self.iteration % 5000 == 0: print(f"{self.iteration} iterations complete") def train_for_iterations(self, iterations): """Train the model for a set number of iterations Args: iterations (int): Number of iterations to train for """ self.model.train() progress_bar = tqdm(range(iterations)) for _ in progress_bar: self.train_step() progress_bar.set_description(f"Average loss {np.mean(self.last_n_losses)}") if (self.iteration % self.save_freq) == 0: self.save_model(self.save_dir) def save_model(self, directory, bypass_loss_check=False): """Save the model. If it has achieved the best loss, save to 'model.pth' within directory, otherwise save to 'latest_model.pth' Args: directory (pathlib Path): A directory in which to save the model """ directory.mkdir(exist_ok=True, parents=True) curr_loss = np.mean(self.last_n_losses) if curr_loss < self.best_loss or bypass_loss_check: torch.save( { "iteration": self.iteration, "model_state_dict": self.model.state_dict(), "optimiser_state_dict": self.optimiser.state_dict(), "loss": curr_loss, "running_loss": self.last_n_losses, }, str(directory / "model.pth"), ) self.best_loss = curr_loss else: torch.save( { "iteration": self.iteration, "model_state_dict": self.model.state_dict(), "optimiser_state_dict": self.optimiser.state_dict(), "loss": curr_loss, "running_loss": self.last_n_losses, }, str(directory / "latest_model.pth"), ) self.best_loss = curr_loss def load_model(self, directory, model="model.pth"): """Load a pretrained model, optimiser state, loss at time of saving, iteration at time of saving Args: directory (pathlib Path): Directory in which the model is saved model (str): Model filename, defaults to 'model.pth' """ checkpoint = torch.load(str(directory / model)) self.model.load_state_dict(checkpoint["model_state_dict"]) self.optimiser.load_state_dict(checkpoint["optimiser_state_dict"]) self.latest_loss = checkpoint["loss"] self.iteration = checkpoint["iteration"] self.last_n_losses = checkpoint["running_loss"] self.best_loss = checkpoint["loss"] def plane_mask_builder(self, blank_width=None): """Get a list of logical ndarrays that can be used to mask out the central region of an input image, and extract that local region for a 'label' array at output of the model Returns: (list of 2D ndarrays): A set of masks to apply to the axial, coronal and sagittal views taken during building of a batch """ if blank_width is None: blank_width = self.blank_width axial_mask = np.ones([self.coronal_width, self.sagittal_width], dtype=bool) coronal_mask = np.ones([self.axial_width, self.sagittal_width], dtype=bool) sagittal_mask = np.ones([self.axial_width, self.coronal_width], dtype=bool) for mask in [axial_mask, coronal_mask, sagittal_mask]: row_start = int(np.floor(mask.shape[0] / 2) - blank_width / 2) col_start = int(np.floor(mask.shape[1] / 2) - blank_width / 2) mask[ row_start : row_start + blank_width, col_start : col_start + blank_width ] = False # for mask, border_mask in zip([axial_mask, coronal_mask, sagittal_mask], self.border_masks): # mask *= border_mask return [axial_mask, coronal_mask, sagittal_mask] def border_mask_builder(self): """Get a list of logical ndarrays that can be used to mask out the border region of an input image, and extract that local region for a 'label' array at output of the model. Applying these should help with aliasing effects at the edges of cnn output Returns: (list of 2D ndarrays): A set of masks to apply to the axial, coronal and sagittal views taken during building of a batch """ axial_mask = np.ones([self.coronal_width, self.sagittal_width], dtype=bool) coronal_mask = np.ones([self.axial_width, self.sagittal_width], dtype=bool) sagittal_mask = np.ones([self.axial_width, self.coronal_width], dtype=bool) for mask in [axial_mask, coronal_mask, sagittal_mask]: mask[: self.border_width] = False mask[-self.border_width :] = False mask[:, : self.border_width] = False mask[:, -self.border_width :] = False return [axial_mask, coronal_mask, sagittal_mask] @staticmethod def _rand_nd_ints(high, low=0): return np.random.randint(low, high) def random_coronal_slicer(self, arr, indices=None, allow_off_edge=False): """Takes a random crop from a random coronal plane of 3D array arr Args: allow_off_edge (bool): optional, defaults to False. Whether to allow indices which will take the view off the edges of arr indices (list of 3 ints): Coordinates at which to take the slice from. 0th and 2nd indices define a top left corner of the view, 1st index defines the coronal slice arr (ndarray): 3D volume Returns: (ndarray): 2D image """ if indices is None: indices = self._rand_nd_ints( high=[ arr.shape[0] - self.axial_width, arr.shape[1], arr.shape[2] - self.sagittal_width, ] ) if allow_off_edge: out_arr = np.zeros([self.axial_width, self.sagittal_width]) new_out_start_inds = [] new_out_end_inds = [] new_arr_start_inds = [] new_arr_end_inds = [] non_coronal_inds = [indices[0], indices[2]] for ind, width, arr_width in zip( non_coronal_inds, [self.axial_width, self.sagittal_width], [arr.shape[0], arr.shape[2]], ): if ind < 0: new_out_start_inds.append(-ind) else: new_out_start_inds.append(0) new_arr_start_inds.append(max(ind, 0)) remaining_width = width - new_out_start_inds[-1] if new_arr_start_inds[-1] + remaining_width > arr_width: new_arr_end_inds.append(arr_width) else: new_arr_end_inds.append(new_arr_start_inds[-1] + remaining_width) curr_width = new_arr_end_inds[-1] - new_arr_start_inds[-1] new_out_end_inds.append(new_out_start_inds[-1] + curr_width) out_arr[ new_out_start_inds[0] : new_out_end_inds[0], new_out_start_inds[1] : new_out_end_inds[1], ] = arr[ new_arr_start_inds[0] : new_arr_end_inds[0], indices[1], new_arr_start_inds[1] : new_arr_end_inds[1], ] else: out_arr = arr[ indices[0] : indices[0] + self.axial_width, indices[1], indices[2] : indices[2] + self.sagittal_width, ] return out_arr, indices def random_sagittal_slicer(self, arr, indices=None, allow_off_edge=False): """Takes a random crop from a random sagittal plane of 3D array arr Args: allow_off_edge (bool): optional, defaults to False. Whether to allow indices which will take the view off the edges of arr indices (list of 3 ints): Coordinates at which to take the slice from. 0th and 1st indices define a top left corner of the view, 0th index defines the sagittal slice arr (ndarray): 3D volume Returns: (ndarray): 2D image """ if indices is None: indices = self._rand_nd_ints( high=[ arr.shape[0] - self.axial_width, arr.shape[1] - self.coronal_width, arr.shape[2], ] ) if allow_off_edge: out_arr = np.zeros([self.axial_width, self.coronal_width]) new_out_start_inds = [] new_out_end_inds = [] new_arr_start_inds = [] new_arr_end_inds = [] for ind, width, arr_width in zip( indices[:2], [self.axial_width, self.coronal_width], [arr.shape[0], arr.shape[1]], ): if ind < 0: new_out_start_inds.append(-ind) else: new_out_start_inds.append(0) new_arr_start_inds.append(max(ind, 0)) remaining_width = width - new_out_start_inds[-1] if new_arr_start_inds[-1] + remaining_width > arr_width: new_arr_end_inds.append(arr_width) else: new_arr_end_inds.append(new_arr_start_inds[-1] + remaining_width) curr_width = new_arr_end_inds[-1] - new_arr_start_inds[-1] new_out_end_inds.append(new_out_start_inds[-1] + curr_width) out_arr[ new_out_start_inds[0] : new_out_end_inds[0], new_out_start_inds[1] : new_out_end_inds[1], ] = arr[ new_arr_start_inds[0] : new_arr_end_inds[0], new_arr_start_inds[1] : new_arr_end_inds[1], indices[2], ] else: out_arr = arr[ indices[0] : indices[0] + self.axial_width, indices[1] : indices[1] + self.coronal_width, indices[2], ] return out_arr, indices def random_axial_slicer(self, arr, indices=None, allow_off_edge=False): """Takes a random crop from a random axial plane of 3D array arr Args: allow_off_edge (bool): optional, defaults to False. Whether to allow indices which will take the view off the edges of arr indices (list of 3 ints): Coordinates at which to take the slice from. 1st and 2nd indices define a top left corner of the view, 0th index defines the axial slice arr (ndarray): 3D volume Returns: (ndarray): 2D image """ if indices is None: indices = self._rand_nd_ints( high=[ arr.shape[0], arr.shape[1] - self.coronal_width, arr.shape[2] - self.sagittal_width, ] ) if allow_off_edge: out_arr = np.zeros([self.coronal_width, self.sagittal_width]) new_out_start_inds = [] new_out_end_inds = [] new_arr_start_inds = [] new_arr_end_inds = [] for ind, width, arr_width in zip( indices[1:], [self.coronal_width, self.sagittal_width], [arr.shape[1], arr.shape[2]], ): if ind < 0: new_out_start_inds.append(-ind) else: new_out_start_inds.append(0) new_arr_start_inds.append(max(ind, 0)) remaining_width = width - new_out_start_inds[-1] if new_arr_start_inds[-1] + remaining_width > arr_width: new_arr_end_inds.append(arr_width) else: new_arr_end_inds.append(new_arr_start_inds[-1] + remaining_width) curr_width = new_arr_end_inds[-1] - new_arr_start_inds[-1] new_out_end_inds.append(new_out_start_inds[-1] + curr_width) out_arr[ new_out_start_inds[0] : new_out_end_inds[0], new_out_start_inds[1] : new_out_end_inds[1], ] = arr[ indices[0], new_arr_start_inds[0] : new_arr_end_inds[0], new_arr_start_inds[1] : new_arr_end_inds[1], ] else: out_arr = arr[ indices[0], indices[1] : indices[1] + self.coronal_width, indices[2] : indices[2] + self.sagittal_width, ] return out_arr, indices def build_batch( self, patient_indices=None, body_part_indices=None, plane_indices=None, scan_num_indices=None, coords_input_array=None, batch_size=None, require_above_thresh=True, allow_off_edge=False, ): """Get a batch of inputs and labels for a ai_ct_scans.models. Args: patient_indices (optional, ndarray of type int): The indices of patients to access for each batch element, with zero-indexing (i.e. patient 1 will be at 0). Should be length equal to batch_size, if batch_size used body_part_indices (optional, ndarray of type int): Indices of body parts to use to build each batch element, 0 for abdomen, 1 for thorax plane_indices (optional, ndarray of type int): Indices of plane to view the batch element from, 0 for axial, 1 for coronal, 2 for sagittal scan_num_indices (optional, ndarray of type int): Indices of which sequential scan from each patient to use, 0 for first scan, 1 for second scan coords_input_array (optional, list of lendth 3 1D ndarrays of type int): The coordinates to use when building each batch element. The coordinate corresponding to the plane_index will be the slice along that index, while the other two coordinates will define the top left coordinate of the rectangle extracted from that plane batch_size (optional, int): How many slices to return for a batch require_above_thresh (bool): Whether to reject random slices that do not have any elements above self.threshold and seek out new slices until one is found allow_off_edge (bool): Whether to allow coords_input_array to cause the output slice to overlap the edges of the original scans - useful to ensure that it is possible for every part of a scan to occur at the central masked region Returns: (dict of torch.Tensors): 'input_images': a stack of 2d axial, coronal and sagittal slices 'input_planes': a stack of one hot vectors, that correspond to which view the slice was taken from. Shape [batch size, 3] 'input_body_part': a stack of one hot vectors, that correspond to the body part the slice was taken from. Shape [batch size, 2] 'input_coords': a stack of 1D vectors describing the original xyz location of the slice taken 'labels': a stack of 2D axial, coronal and sagittal slices, representing the data that was masked at the centre of each element of input_images """ coords_sets = [] labels = [] if batch_size is None: batch_size = self.batch_size if batch_size != self.batch_size: # if batch size for evaluation is different to what was used originally for the trainer, resize the input # stack and reset batch size self.input_stack = np.zeros( [batch_size, 1, self.batch_height, self.batch_width] ) self.batch_size = batch_size if patient_indices is None: patient_indices = np.random.choice(self.patient_indices, batch_size) if plane_indices is None: plane_indices = np.random.randint(0, 3, batch_size) plane_one_hots = [] if body_part_indices is None: body_part_indices = np.random.randint(0, 2, batch_size) body_part_one_hots = [] if scan_num_indices is None: scan_num_indices = np.random.randint(0, 2, batch_size) if coords_input_array is None: coords_input_array = [None for _ in range(batch_size)] for i in range(batch_size): filled = False first_attempt = True while not filled: if first_attempt: patient_index = patient_indices[i] plane_index = plane_indices[i] body_part_index = body_part_indices[i] scan_index = scan_num_indices[i] else: patient_index = np.random.choice(self.patient_indices, 1)[0] plane_index = np.random.randint(0, 3, 1)[0] body_part_index = np.random.randint(0, 2, 1)[0] scan_index = np.random.randint(0, 2, 1)[0] plane_array = np.zeros(3) plane_array[plane_indices[i]] = 1 body_part_array = np.zeros(2) body_part_array[body_part_indices[i]] = 1 if plane_indices[i] == 2: if coords_input_array[i] is not None: coords_input_array[i][1], coords_input_array[i][2] = ( coords_input_array[i][2], coords_input_array[i][1], ) curr_slice, coords = self.slicers[plane_index - 1]( self.multi_patient_loader.patients[patient_index] .__getattribute__(self.body_parts[body_part_index]) .__getattribute__(self.scan_nums[scan_index]) .transpose_memmap, indices=coords_input_array[i], allow_off_edge=allow_off_edge, ) # switch coords 1 and 2 because the view is taken from the transpose scan coords[1], coords[2] = coords[2], coords[1] else: curr_slice, coords = self.slicers[plane_index]( self.multi_patient_loader.patients[patient_index] .__getattribute__(self.body_parts[body_part_index]) .__getattribute__(self.scan_nums[scan_index]) .full_memmap, indices=coords_input_array[i], allow_off_edge=allow_off_edge, ) if curr_slice.max() >= 0.05 or not require_above_thresh: filled = True else: first_attempt = False continue if self.blur_kernel is not None: blurred_slice = blur(curr_slice, self.blur_kernel) else: blurred_slice = curr_slice self.input_stack[i, 0][:] = blurred_slice[:] labels.append(blurred_slice) coords_sets.append(coords) plane_one_hots.append(plane_array) body_part_one_hots.append(body_part_array) if self.show_outline is True: for im_i, im in enumerate(self.input_stack): edges = im[0][self.edge_detection_mask].reshape( [self.edge_window_width, self.edge_window_width] ) edge_weight = np.mean(edges) edges = phase_correlation_image_processing.lmr( edges, radius=self.edge_detection_pad ) edges = edges[ self.edge_detection_pad : -self.edge_detection_pad, self.edge_detection_pad : -self.edge_detection_pad, ] edges = phase_correlation_image_processing.zero_crossings( edges, thresh="auto" ) self.input_stack[im_i, 0] *= self.plane_masks[0] self.input_stack[im_i, 0][self.inv_plane_mask] += ( edges.reshape(-1) * edge_weight ) else: self.input_stack *= self.plane_masks[0] labels = np.stack(labels) labels = labels.reshape([labels.shape[0], 1, *labels.shape[1:]]) out_dict = { "input_images": torch.Tensor(self.input_stack).to(dev), "input_planes": torch.Tensor(np.stack(plane_one_hots)).to(dev), "input_body_part": torch.Tensor(np.stack(body_part_one_hots)).to(dev), "input_coords": torch.Tensor(np.stack(coords_sets)).to(dev), "plane_mask": torch.Tensor(self.plane_masks[0]).to(dev), "labels": torch.Tensor(labels).to(dev), } return out_dict def process_full_scan( self, patient_index, body_part_index, plane_index, scan_index, batch_size, overlap=1, save_path=None, allow_off_edge=True, ): """Run a single scan through the model in batches along a chosen axis, patching the prediction of the masked region together and subtracting from the real scan to form an 'anomaly scan'. Args: patient_index (int): The index of a patient as stored in ai_ct_scans.data_loading.MultiPatientLoader, ie Patient 1 at 0 index, Patient 2 at 1 etc body_part_index (int): Index of a body part, 0 for abdomen, 1 for thorax currently supported plane_index (int): Index of plane to stack inputs from, 0 for axial, 1 for coronal, 2 for sagittal scan_index (int): 0 for scan 1, 1 for scan 2 batch_size (int): How many layers to take along the plane_index stack for each batch, 24 with image sizes 256x256 seems to work fine with 8GB of VRAM overlap (int): Number of times to overlap the masked regions to build up an average predicted view. The remainder of self.blank_width and overlap should be 0 for well-stitched output save_path (pathlib Path): File path at which to save the anomaly scan as a memmap (shape will be appended into the filename for ease of reloading with ai_ct_scans.data_loading.load_memmap) allow_off_edge (bool): Whether to allow the model input to move off the edge of the scans, so that the stitched central blank regions can cover the entire scan. If False, the central square column of masked regions will be returned Returns: (ndarray): 3D volume of input - predicted output """ self.model.eval() with torch.inference_mode(): torch.no_grad() if allow_off_edge: pad_sizes = ( ( np.array( [self.axial_width, self.coronal_width, self.sagittal_width] ) - self.blank_width ) / 2 ).astype("int") pad_sizes[plane_index] = 0 else: pad_sizes = np.zeros(3) mask = torch.Tensor(self.inv_plane_mask).to(dev) blank_inds =
np.ones(batch_size, dtype=int)
numpy.ones
# -*- coding: utf-8 -*- import numpy as np import cv2 def mosic(image, bboxes, labels, image2, bboxes2, labels2, image3, bboxes3, labels3, image4, bboxes4, labels4, min_offset=0.3): h, w = image.shape[0], image.shape[1] mix_img = np.zeros(shape=(h, w, 3), dtype='uint8') cut_x = np.random.randint(w * min_offset, w * (1 - min_offset)) cut_y = np.random.randint(h * min_offset, h * (1 - min_offset)) # s = (cut_x * cut_y) / (w * h) # s2 = ((w - cut_x) * cut_y) / (w * h) # s3 = (cut_x * (h - cut_y)) / (w * h) # s4 = ((w - cut_x) * (h - cut_y)) / (w * h) mix_img[:cut_y, :cut_x] = image[:cut_y, :cut_x] mix_img[:cut_y, cut_x:] = image2[:cut_y, cut_x:] mix_img[cut_y:, :cut_x] = image3[cut_y:, :cut_x] mix_img[cut_y:, cut_x:] = image4[cut_y:, cut_x:] keep_idx, bboxes = clip_bbox(bboxes, (0, 0, cut_x, cut_y)) keep_idx2, bboxes2 = clip_bbox(bboxes2, (cut_x, 0, w, cut_y)) keep_idx3, bboxes3 = clip_bbox(bboxes3, (0, cut_y, cut_x, h)) keep_idx4, bboxes4 = clip_bbox(bboxes4, (cut_x, cut_y, w, h)) mix_bboxes = np.vstack((bboxes, bboxes2, bboxes3, bboxes4)) mix_labels = np.vstack((labels[keep_idx], labels2[keep_idx2], labels3[keep_idx3], labels4[keep_idx4])) return mix_img, mix_bboxes, mix_labels def clip_bbox(bboxes, target_bbox): tx1, ty1, tx2, ty2 = target_bbox x1 = np.maximum(bboxes[..., 0], tx1) y1 = np.maximum(bboxes[..., 1], ty1) x2 = np.minimum(bboxes[..., 2], tx2) y2 = np.minimum(bboxes[..., 3], ty2) new_bbox = np.stack([x1, y1, x2, y2], axis=-1) v_ioa = ioa(new_bbox, bboxes) keep_idx = v_ioa > 0.2 return keep_idx, new_bbox[keep_idx] def ioa(bboxes, target_bboxes): w = np.maximum(bboxes[..., 2] - bboxes[..., 0], 0) h = np.maximum(bboxes[..., 3] - bboxes[..., 1], 0) tw = np.maximum(target_bboxes[..., 2] - target_bboxes[..., 0], 0) th = np.maximum(target_bboxes[..., 3] - target_bboxes[..., 1], 0) ioa = w * h / np.maximum(tw * th, 1e-8) return ioa # def keep_bbox_within(bboxes, target_bbox): # tx1, ty1, tx2, ty2 = target_bbox # # if not isinstance(bboxes, np.ndarray): # bboxes = np.asarray(bboxes) # # x1 = np.maximum(bboxes[..., 0], tx1) # y1 = np.maximum(bboxes[..., 1], ty1) # x2 = np.minimum(bboxes[..., 2], tx2) # y2 = np.minimum(bboxes[..., 3], ty2) # # int_w = np.maximum(x2 - x1, 0) # int_h = np.maximum(y2 - y1, 0) # int_area = int_w * int_h # # bboxes = np.stack([x1, y1, x2, y2], axis=-1) # # keep_idx = np.any(np.not_equal(bboxes, 0), axis=-1) # keep_idx = int_area > 0 # # return keep_idx, bboxes[keep_idx] # def cut_mix(image, bboxes, labels, image2, bboxes2, labels2, beta=1): # """ # CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features # """ # # def rand_bbox(W, H, lambd): # cut_rat = np.sqrt(1. - lambd) # cut_w = np.int(W * cut_rat) # cut_h = np.int(H * cut_rat) # # # uniform # x1 = np.random.randint(0, W - cut_w) # y1 = np.random.randint(0, H - cut_h) # x2 = x1 + cut_w # y2 = y1 + cut_h # # return x1, y1, x2, y2 # # H, W = image.shape[0], image.shape[1] # lambd = np.random.beta(beta, beta) # min, max = 0.3, 0.8 # lambd = min + (max - min) * lambd # # x1, y1, x2, y2 = rand_bbox(W, H, lambd) # mix_img = image.copy() # mix_img[x1:x2, y1:y2] = image2[x1:x2, y1:y2] # # adjust lambda to exactly match pixel ratio # lambd = 1 - ((x2 - x1) * (y2 - y1) / (W * H)) # # mix_bboxes = np.vstack((bboxes, bboxes2)) # mix_labels = np.vstack((labels, labels2)) # mix_weights = np.hstack((np.full(len(labels), lambd), # np.full(len(labels2), (1. - lambd)))) # # return mix_img, mix_bboxes, mix_labels, mix_weights def mix_up(image, bboxes, labels, image2, bboxes2, labels2, alpha=None, beta=None): if alpha is None or beta is None: # Yolo use fixed 0.5 lambd = 0.5 else: lambd = np.random.beta(beta, beta) H = max(image.shape[0], image2.shape[0]) W = max(image.shape[1], image2.shape[1]) mix_img = np.zeros(shape=(H, W, 3), dtype='float32') mix_img[:image.shape[0], :image.shape[1], :] = image.astype('float32') * lambd mix_img[:image2.shape[0], :image2.shape[1], :] += image2.astype('float32') * (1. - lambd) mix_img = mix_img.astype(np.uint8) mix_bboxes = np.vstack((bboxes, bboxes2)) mix_labels = np.vstack((labels, labels2)) mix_weights = np.hstack((np.full(len(labels), lambd), np.full(len(labels2), (1. - lambd)))) return mix_img, mix_bboxes, mix_labels, mix_weights def onehot(labels, num_classes, smoothing): bboxes_class = np.asarray(labels, dtype=np.int64) labels = np.eye(num_classes, dtype=np.float32) labels = labels[bboxes_class] if smoothing: uniform_distribution = np.full(num_classes, 1.0 / num_classes) delta = 0.1 labels = labels * (1 - delta) + uniform_distribution * delta return labels def random_grayscale(image, alpha=(0.0, 1.0)): alpha = alpha[0] + np.random.uniform() * (alpha[1] - alpha[0]) img_gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) img_gray = np.expand_dims(img_gray, axis=-1) img_gray = np.tile(img_gray, (1, 1, 3)) img_gray = img_gray.astype(np.float32) img = image.astype(np.float32) img = img + alpha * (img_gray - img) img = np.clip(img, 0., 255.) image = img.astype(np.uint8) return image def random_distort(image, hue=18, saturation=1.5, exposure=1.5): # determine scale factors dhue = np.random.uniform(-hue, hue) dsat = np.random.uniform(1. / saturation, saturation) dexp = np.random.uniform(1. / exposure, exposure) # convert RGB space to HSV space image = cv2.cvtColor(image, cv2.COLOR_RGB2HSV).astype('float') # change satuation and exposure image[:, :, 1] *= dsat image[:, :, 2] *= dexp # change hue image[:, :, 0] += dhue image[:, :, 0] = np.clip(image[:, :, 0], 0., 179.) image[:, :, 1] = np.clip(image[:, :, 1], 0., 255.) image[:, :, 2] = np.clip(image[:, :, 2], 0., 255.) # convert back to RGB from HSV return cv2.cvtColor(image.astype('uint8'), cv2.COLOR_HSV2RGB) def random_rotate(image, bboxes, angle=7.): angle = np.random.uniform(-angle, angle) h, w, _ = image.shape m = cv2.getRotationMatrix2D((w / 2, h / 2), angle, 1) image = cv2.warpAffine(image, m, (w, h), borderValue=(127, 127, 127)) if len(bboxes) != 0: top_left = bboxes[..., [0, 1]] top_right = bboxes[..., [2, 1]] bottom_left = bboxes[..., [0, 3]] bottom_right = bboxes[..., [2, 3]] # N, 4, 2 points = np.stack([top_left, top_right, bottom_left, bottom_right], axis=-2) points_3d = np.ones(points.shape[:-1] + (3,), np.float32) points_3d[..., :2] = points # points = m @ points_3d[0].T points = map(lambda x: m @ x.T, points_3d) points = np.array(list(points)) points = np.transpose(points, [0, 2, 1]) bboxes[..., 0] = np.min(points[..., 0], axis=-1) bboxes[..., 1] = np.min(points[..., 1], axis=-1) bboxes[..., 2] = np.max(points[..., 0], axis=-1) bboxes[..., 3] = np.max(points[..., 1], axis=-1) bboxes[:, [0, 2]] = np.clip(bboxes[:, [0, 2]], 0, w) bboxes[:, [1, 3]] = np.clip(bboxes[:, [1, 3]], 0, h) return image, bboxes def random_flip_lr(image, bboxes): if np.random.randint(2): h, w, _ = image.shape image = image[:, ::-1, :] bboxes[:, [0, 2]] = w - bboxes[:, [2, 0]] return image, bboxes def random_crop_and_zoom(image, bboxes, labels, size, jitter=0.3): net_w, net_h = size h, w, _ = image.shape dw = w * jitter dh = h * jitter rate = (w + np.random.uniform(-dw, dw)) / (h + np.random.uniform(-dh, dh)) scale =
np.random.uniform(1 / 1.5, 1.5)
numpy.random.uniform
import logging from collections import deque import numpy as np import torch from scipy.optimize import minimize from torchays.modules.base import AysBaseModule from torchays.utils.minfunc import func, funcJac, conFunc, conFunc1, conJac, boundFun, boundJac, cfunc, jacCcfunc, ccfunc, jacCfunc # TODO: 使用递归来进行一种迭代算法。简单来说就是暴力搜索每种节点,然后继续向下搜索下一个区域的方式。 # 搜索不到子节点就停止。不考虑Bound以外的数据,确保训练数据在一个bound以内。例如图像是每个像素点是(0-255) # 优化1:减少递归使用;x # 优化2:增加下一个区域的搜索,取消暴力循环历遍。(大幅度减少搜索时间);√ # 优化3:尝试区域内点的搜索方式,改进条件约束的计算方式,减少点计算时间;x class WapperArea(object): """ Get the area(sign) of the funtion list. * 1 : f(x) >= 0 * -1 : f(x) < 0 """ def __init__(self): self.sRSign = torch.Tensor().type(torch.int8) self.area = deque() def __iter__(self): return self def __next__(self): try: self._updateList() while self.checkArea(self.output): self._updateList() except: raise StopIteration return self.output def _updateList(self): self.output = self.area.popleft() def registArea(self, areaSign): if not self.checkArea(areaSign): self.area.append(areaSign) def registAreas(self, areaSigns: torch.Tensor): for area in areaSigns: self.registArea(area) def updateIndex(self, areaSign): if self.checkArea(areaSign): return self.sRSign = torch.cat([self.sRSign, areaSign.view(1, -1)], dim=0) def checkArea(self, area: torch.Tensor): try: a = ((self.sRSign.abs() * area) - self.sRSign).abs().sum(dim=1) return (0 in a) except: return False class AnalysisReLUNetUtils(object): """ AnalysisReLUNetUtils needs to ensure that the net has the function: >>> def forward_graph_Layer(*args, layer=layerNum): >>> ''' layer is a 'int' before every ReLU module. 'Layer' can get the layer weight and bias graph.''' >>> if layer == num: >>> return output args: device: torch.device GPU or CPU to get the graph from the network; logger: def info(...) print the information (Default: print in console)(logger.info(...)). """ def __init__(self, device=torch.device('cpu'), logger=None): self.device = device self.one = torch.ones(1).double() if logger is None: self.logger = logging.getLogger("AnalysisReLUNetUtils-Console") self.logger.setLevel(level=logging.INFO) formatter = logging.Formatter('[%(asctime)s] - %(name)s : %(message)s') console = logging.StreamHandler() console.setLevel(logging.INFO) console.setFormatter(formatter) self.logger.addHandler(console) else: self.logger = logger def _getFuncList(self, point, layerNum): """ Get the list of the linear function before ReLU layer. """ point = torch.from_numpy(point).float() point = point.to(self.device).unsqueeze(dim=0) with torch.no_grad(): _, graph = self.net.forward_graph_Layer(point, layer=layerNum) # (1, *output.size(), *input.size()) weight_graph, bias_graph = graph['weight_graph'], graph['bias_graph'] # (output.num, input.num) weight_graph = weight_graph.reshape(-1, point.size()[1:].numel()) # self.logger.info(weight_graph.size()) # (output.num, 1) bias_graph = bias_graph.reshape(-1, 1) # self.logger.info(bias_graph.size()) # (output.num, input.num + 1) return torch.cat([weight_graph, bias_graph], dim=1) def _calulateR(self, funcList, point): """ Calculate the max radius of the insphere in the region to make the radius less than the distance of the insphere center to the all functions which can express a liner region. maximizing the following function. * max_{x,r} r * s.t. (AX+B-r||A|| >= 0) To minimize: * min_{x,r} (-r) * s.t. (AX+B-r||A|| >= 0) """ cons = [] normA = np.linalg.norm(funcList[:, :-1], ord=2, axis=1) for i in range(funcList.shape[0]): con = { 'type': 'ineq', 'fun': cfunc(funcList[i], normA[i]), 'jac': jacCfunc(funcList[i], normA[i]), } cons.append(con) cons.extend(self.con) function = ccfunc(funcList[0]) res = minimize(function, point, method='SLSQP', constraints=cons, jac=jacCcfunc(funcList[0]), tol=1e-10, options={"maxiter": 100}) x, r = res.x[:-1], res.x[-1] return x, r def _calulateAreaPoint(self, cFuncList, cArea, pFuncList, pArea, point, layerNum): """ * min_{x} (aX + b); * s.t. AX + B >= 0; """ funcList, area = torch.cat([cFuncList, pFuncList], dim=0), torch.cat([cArea, pArea], dim=0) conFuncs = area.view(-1, 1) * funcList funcList, conFuncs, area = funcList.numpy(), conFuncs.numpy(), area.numpy() conArea = np.ones_like(area) nextFuncList, nextArea, funcPoints = [], [], [] # ================================================== r = np.random.uniform(0, self.bound) if layerNum == 0: point = np.random.uniform(-self.bound, self.bound, [conFuncs[0].shape[0] - 1, ]) point =
np.append(point, r)
numpy.append
"""Script for computing linear transforms from all frames to frame 1""" import numpy as np from scipy.io import loadmat, savemat from otimage.imagereg import ot_reg_linear_1 # Zimmer #MP_FPATH = '/home/mn2822/Desktop/WormOT/data/zimmer/mp_components/mp_0000_0050.mat' #OUT_FPATH = '/home/mn2822/Desktop/WormOT/data/zimmer/registration/reg2_0003_0008.mat' # Vivek MP_FPATH = '/home/mn2822/Desktop/WormOT/data/vivek/0930_tail_01/mp_components/mp_0000_0900.mat' OUT_FPATH = '/home/mn2822/Desktop/WormOT/data/vivek/0930_tail_01/registration/reg3_0000_0900.mat' N_FRAMES = 899 N_MPS = 400 def main(): print(f'Loading MP data from {MP_FPATH}...') mp_data = loadmat(MP_FPATH) pts = mp_data['means'][1:N_FRAMES+1, :, :] wts = mp_data['weights'][1:N_FRAMES+1, :, :] cov = mp_data['cov'] print('Computing transformations...') # Points and weights for first frame pts_0 = pts[1, 0:N_MPS, :] wts_0 = wts[1, 0:N_MPS, 0] wts_unif = np.ones(N_MPS) / N_MPS f_alpha = [None] * N_FRAMES f_beta = [None] * N_FRAMES p_mtx = [None] * N_FRAMES f_alpha[0] =
np.array([0, 0, 0])
numpy.array
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import json import collections import copy as cp import math from collections import OrderedDict import os.path import numpy as np import time import operator import sys import pickle import os import random from datetime import datetime from .Node import Node from .utils import latin_hypercube, from_unit_cube # from torch.quasirandom import SobolEngine # import torch class MCTS: ############################################# def __init__( self, space, sample_latent_bounds, dims, split_latent_converter, sample_latent_converter, split_latent_dims, sample_latent_dims, C_p=10, sample_per_inner_alg=1, split_metric: str = 'max', kernel_type="rbf", solver='cmaes', # solver_options={}, cmaes_sigma_mult=1., use_gpr=True, gamma_type="auto", treeify_freq=1, init_within_leaf='mean', leaf_size=20, splitter_type='kmeans', normalize=True, rng=np.random.RandomState(42), split_use_predict=True, verbose=False, **kwargs): ''' ::solver: type=str, default='cmaes', choices=['cmaes'], help='leaf solver' ::init_within_leaf: type=str, default='mean', choices=['mean', 'random', 'max'], help='how to choose initial value within leaf for cmaes and gradient' ::leaf_size: type=int, default=20, help='min leaf size before splitting' ::split_type: type=str, default='kmeans', choices=['kmeans', 'linreg', 'value'], help='how to split nodes for LaMCTS. value = just split in half based on value' ''' self.space = space # = args self.split_latent_converter = split_latent_converter self.sample_latent_converter = sample_latent_converter self.dims = dims self.split_metric = split_metric self.solver_type = solver # ub, lb = sample_latent_bounds.ub, sample_latent_bounds.lb self.cmaes_sigma_mult = cmaes_sigma_mult self.use_gpr = use_gpr self.treeify_freq = treeify_freq self.init_within_leaf = init_within_leaf # self.leaf_size = leaf_size # self.split_type = split_type # self.split_latent_dims = func.split_latent_converter.latent_dim if func.split_latent_converter is not None else dims # self.sample_latent_dims = func.sample_latent_converter.latent_dim if args.latent_samples else dims self.split_latent_dims = split_latent_dims self.sample_latent_dims = sample_latent_dims self.sample_latent_bounds = sample_latent_bounds self.rng = rng self.samples = [] self.f_samples = [] self.nodes = [] self.C_p = C_p self.sample_per_inner_alg = sample_per_inner_alg self.sample_per_inner_alg_count = 0 # self.lb = lb # self.ub = ub # self.ninits = ninits # self.func = func # self.curt_best_value = float("inf") # self.curt_best_sample = None self.best_value_trace = [] # self.sample_counter = 0 self.visualization = False self.LEAF_SAMPLE_SIZE = leaf_size self.kernel_type = kernel_type self.gamma_type = gamma_type # self.cmaes_sigma_mult = args.cmaes_sigma_mult # self.solver_type = args.solver #solver can be 'bo' or 'turbo' self.normalize = normalize self.splitter_type = splitter_type self.verbose = verbose if self.verbose: print("gamma_type:", gamma_type) self.kwargs = kwargs #we start the most basic form of the tree, 3 nodes and height = 1 self.split_use_predict = split_use_predict root = Node( parent=None, sample_dims=self.sample_latent_dims, split_dims=self.split_latent_dims, true_dims=self.dims, reset_id=True, kernel_type=self.kernel_type, cmaes_sigma_mult=self.cmaes_sigma_mult, leaf_size=self.LEAF_SAMPLE_SIZE, splitter_type=self.splitter_type, split_metric=self.split_metric, use_gpr=self.use_gpr, gamma_type=self.gamma_type, normalize=self.normalize, verbose=self.verbose, rng=self.rng, split_use_predict=split_use_predict, **kwargs) self.nodes.append(root) self.ROOT = root self.CURT = self.ROOT # self.init_train() self.iterations_since_treeify = 0 def populate_training_data(self): #only keep root self.ROOT.obj_counter = 0 for node in self.nodes: node.clear_data() self.nodes.clear() new_root = Node( parent=None, sample_dims=self.sample_latent_dims, split_dims=self.split_latent_dims, true_dims=self.dims, reset_id=True, kernel_type=self.kernel_type, cmaes_sigma_mult=self.cmaes_sigma_mult, leaf_size=self.LEAF_SAMPLE_SIZE, splitter_type=self.splitter_type, split_metric=self.split_metric, use_gpr=self.use_gpr, gamma_type=self.gamma_type, normalize=self.normalize, verbose=self.verbose, rng=self.rng, split_use_predict=self.split_use_predict, **self.kwargs) self.nodes.append(new_root) self.ROOT = new_root self.CURT = self.ROOT self.ROOT.update_bag(self.latent_samples, self.split_vectors, self.samples, self.f_samples) def get_leaf_status(self): status = [] for node in self.nodes: if node.is_leaf() == True and len( node.sample_X ) > self.LEAF_SAMPLE_SIZE and node.is_svm_splittable == True: status.append(True) else: status.append(False) return np.array(status) def get_split_idx(self): split_by_samples = np.argwhere( self.get_leaf_status() == True).reshape(-1) return split_by_samples def is_splitable(self): status = self.get_leaf_status() if True in status: return True else: return False def dynamic_treeify(self): # we bifurcate a node once it contains over 20 samples # the node will bifurcate into a good and a bad kid self.populate_training_data() assert len(self.ROOT.sample_X) == len(self.samples) assert len(self.nodes) == 1 while self.is_splitable(): to_split = self.get_split_idx() #print("==>to split:", to_split, " total:", len(self.nodes) ) for nidx in to_split: parent = self.nodes[ nidx] # parent check if the boundary is splittable by svm assert len(parent.sample_X) >= self.LEAF_SAMPLE_SIZE assert parent.is_svm_splittable == True # print("spliting node:", parent.get_name(), len(parent.bag)) good_kid_data, bad_kid_data = parent.train_and_split() #creat two kids, assign the data, and push into lists # children's lb and ub will be decided by its parent assert len(good_kid_data[0]) + len(bad_kid_data[0]) == len( parent.sample_X) assert len(good_kid_data[0]) > 0 assert len(bad_kid_data[0]) > 0 good_kid = Node( parent=parent, sample_dims=self.sample_latent_dims, split_dims=self.split_latent_dims, true_dims=self.dims, reset_id=False, kernel_type=self.kernel_type, cmaes_sigma_mult=self.cmaes_sigma_mult, leaf_size=self.LEAF_SAMPLE_SIZE, splitter_type=self.splitter_type, split_metric=self.split_metric, use_gpr=self.use_gpr, gamma_type=self.gamma_type, normalize=self.normalize, verbose=self.verbose, rng=self.rng, split_use_predict=self.split_use_predict, **self.kwargs) bad_kid = Node( parent=parent, sample_dims=self.sample_latent_dims, split_dims=self.split_latent_dims, true_dims=self.dims, reset_id=False, kernel_type=self.kernel_type, cmaes_sigma_mult=self.cmaes_sigma_mult, leaf_size=self.LEAF_SAMPLE_SIZE, splitter_type=self.splitter_type, split_metric=self.split_metric, use_gpr=self.use_gpr, gamma_type=self.gamma_type, normalize=self.normalize, verbose=self.verbose, rng=self.rng, split_use_predict=self.split_use_predict, **self.kwargs) good_kid.update_bag(good_kid_data[0], good_kid_data[1], good_kid_data[2], good_kid_data[3]) bad_kid.update_bag(bad_kid_data[0], bad_kid_data[1], bad_kid_data[2], bad_kid_data[3]) parent.update_kids(good_kid=good_kid, bad_kid=bad_kid) self.nodes.append(good_kid) self.nodes.append(bad_kid) #print("continue split:", self.is_splitable()) if self.verbose: self.print_tree() # def collect_samples(self, sample, value=None, split_info=None, final_obs=None): # #TODO: to perform some checks here # if value == None: # value, split_info, final_obs = self.func(sample, return_final_obs=True) # value *= -1 # if value > self.curt_best_value: # self.curt_best_value = value # self.curt_best_sample = sample # self.best_value_trace.append( (value, self.sample_counter) ) # self.sample_counter += 1 # self.samples.append( (sample, value, split_info, final_obs )) # # self.samples.append( (sample, value, self.func.env.get_obs(), split_info, final_obs )) # return value # def init_train(self): # if init_file is not None: # with open(init_file, 'rb') as rf: # init = pickle.load(rf) # random.shuffle(init) # init_points = [ip[0].ravel() for ip in init[:self.ninits]] # else: # std = init_sigma_mult # init_points = std * np.random.randn(self.ninits, self.dims) # for point in init_points: # v = self.collect_samples(point) # if self.verbose: # print("="*10 + 'collect '+ str(len(self.samples) ) +' points for initializing MCTS'+"="*10) # print("lb:", self.lb) # print("ub:", self.ub) # print("Cp:", self.C_p) # print("inits:", self.ninits) # print("dims:", self.dims) # print("="*58) def print_tree(self): print('-' * 100) for node in self.nodes: print(node) print('-' * 100) def reset_to_root(self): self.CURT = self.ROOT def load_agent(self): node_path = 'mcts_agent' if os.path.isfile(node_path) == True: with open(node_path, 'rb') as json_data: self = pickle.load(json_data) if self.verbose: print("=====>loads:", len(self.samples), " samples") def dump_agent(self): node_path = 'mcts_agent' if self.verbose: print("dumping the agent.....") with open(node_path, "wb") as outfile: pickle.dump(self, outfile) def dump_samples(self): sample_path = 'samples_' + str(self.sample_counter) with open(sample_path, "wb") as outfile: pickle.dump(self.samples, outfile) def dump_trace(self): trace_path = 'best_values_trace' final_results_str = json.dumps(self.best_value_trace) with open(trace_path, "a") as f: f.write(final_results_str + '\n') def greedy_select(self): self.reset_to_root() curt_node = self.ROOT path = [] if self.visualization == True: curt_node.plot_samples_and_boundary(self.func) while curt_node.is_leaf() == False: UCT = [] for i in curt_node.kids: UCT.append(i.get_xbar()) choice = self.rng.choice( np.argwhere(UCT == np.amax(UCT)).reshape(-1), 1)[0] path.append((curt_node, choice)) curt_node = curt_node.kids[choice] if curt_node.is_leaf() == False and self.visualization == True: curt_node.plot_samples_and_boundary(self.func) if self.verbose: print("=>", curt_node.get_name(), end=' ') if self.verbose: print("") return curt_node, path def select(self): self.reset_to_root() curt_node = self.ROOT path = [] while curt_node.is_leaf() == False: UCT = [] for i in curt_node.kids: UCT.append(i.get_uct(self.C_p)) choice = self.rng.choice( np.argwhere(UCT == np.amax(UCT)).reshape(-1), 1)[0] path.append((curt_node, choice)) curt_node = curt_node.kids[choice] if self.verbose: print("=>", curt_node.get_name(), end=' ') if self.verbose: print("") # print([n[1] for n in path]) return curt_node, path def no_tree_select(self): # select the best leaf regardless of tree path self.reset_to_root() best_node, best_UCT = None, -1e8 for node in self.nodes: if node.is_leaf(): uct = node.get_uct(self.C_p) if uct > best_UCT: best_node, best_UCT = node, uct return node, None # no path; should be unused def locate_x(self, x): # used for debugging/inspection self.reset_to_root() curt_node = self.ROOT path = [] while curt_node.is_leaf() == False: if self.splitter_type == 'kmeans': choice = curt_node.classifier.svm.predict([x])[0] elif self.splitter_type == 'linreg': choice = 0 if curt_node.classifier.regressor.predict( [x])[0] <= curt_node.classifier.regressor_threshold else 1 path.append((curt_node, choice)) curt_node = curt_node.kids[choice] if self.verbose: print("=>", curt_node.get_name(), end=' ') if self.verbose: print("") return curt_node, path def backpropogate(self, leaf, latent_sample, true_sample, acc): curt_node = leaf while curt_node is not None: assert curt_node.n > 0 if self.split_metric == 'mean': curt_node.x_bar = (curt_node.x_bar * curt_node.n + acc) / (curt_node.n + 1) else: curt_node.x_bar = max(curt_node.x_bar, acc) curt_node.n += 1 curt_node.sample_X = np.concatenate( [curt_node.sample_X, latent_sample.reshape((1, -1))], axis=0) # curt_node.split_X = np.concatenate([curt_node.split_X, split_vector.reshape((1, -1))], axis=0) # don't need to update this until new treeify curt_node.true_X = np.concatenate( [curt_node.true_X, true_sample.reshape((1, -1))], axis=0) curt_node.fX = np.concatenate( [curt_node.fX, np.array([acc])], axis=0) curt_node.classifier.sample_X = np.concatenate([ curt_node.classifier.sample_X, latent_sample.reshape((1, -1)) ], axis=0) # curt_node.classifier.split_X = np.concatenate([curt_node.classifier.split_X, split_vector.reshape((1, -1))], axis=0) curt_node.classifier.true_X = np.concatenate( [curt_node.classifier.true_X, true_sample.reshape((1, -1))], axis=0) curt_node.classifier.fX = np.concatenate( [curt_node.classifier.fX,
np.array([acc])
numpy.array
from __future__ import annotations from typing import Any, List import numpy as np def_rng = np.random.default_rng() seed_seq = np.random.SeedSequence() mt19937 = np.random.MT19937() pcg64 = np.random.PCG64() sfc64 = np.random.SFC64() philox = np.random.Philox() seedless_seq = np.random.bit_generator.SeedlessSeedSequence() reveal_type(def_rng) # E: numpy.random._generator.Generator reveal_type(mt19937) # E: numpy.random._mt19937.MT19937 reveal_type(pcg64) # E: numpy.random._pcg64.PCG64 reveal_type(sfc64) # E: numpy.random._sfc64.SFC64 reveal_type(philox) # E: numpy.random._philox.Philox reveal_type(seed_seq) # E: numpy.random.bit_generator.SeedSequence reveal_type(seedless_seq) # E: numpy.random.bit_generator.SeedlessSeedSequence mt19937_jumped = mt19937.jumped() mt19937_jumped3 = mt19937.jumped(3) mt19937_raw = mt19937.random_raw() mt19937_raw_arr = mt19937.random_raw(5) reveal_type(mt19937_jumped) # E: numpy.random._mt19937.MT19937 reveal_type(mt19937_jumped3) # E: numpy.random._mt19937.MT19937 reveal_type(mt19937_raw) # E: int reveal_type(mt19937_raw_arr) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] reveal_type(mt19937.lock) # E: threading.Lock pcg64_jumped = pcg64.jumped() pcg64_jumped3 = pcg64.jumped(3) pcg64_adv = pcg64.advance(3) pcg64_raw = pcg64.random_raw() pcg64_raw_arr = pcg64.random_raw(5) reveal_type(pcg64_jumped) # E: numpy.random._pcg64.PCG64 reveal_type(pcg64_jumped3) # E: numpy.random._pcg64.PCG64 reveal_type(pcg64_adv) # E: numpy.random._pcg64.PCG64 reveal_type(pcg64_raw) # E: int reveal_type(pcg64_raw_arr) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] reveal_type(pcg64.lock) # E: threading.Lock philox_jumped = philox.jumped() philox_jumped3 = philox.jumped(3) philox_adv = philox.advance(3) philox_raw = philox.random_raw() philox_raw_arr = philox.random_raw(5) reveal_type(philox_jumped) # E: numpy.random._philox.Philox reveal_type(philox_jumped3) # E: numpy.random._philox.Philox reveal_type(philox_adv) # E: numpy.random._philox.Philox reveal_type(philox_raw) # E: int reveal_type(philox_raw_arr) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] reveal_type(philox.lock) # E: threading.Lock sfc64_raw = sfc64.random_raw() sfc64_raw_arr = sfc64.random_raw(5) reveal_type(sfc64_raw) # E: int reveal_type(sfc64_raw_arr) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] reveal_type(sfc64.lock) # E: threading.Lock reveal_type(seed_seq.pool) # numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]] reveal_type(seed_seq.entropy) # E:Union[None, int, Sequence[int]] reveal_type(seed_seq.spawn(1)) # E: list[numpy.random.bit_generator.SeedSequence] reveal_type(seed_seq.generate_state(8, "uint32")) # E: numpy.ndarray[Any, numpy.dtype[Union[numpy.unsignedinteger[numpy.typing._32Bit], numpy.unsignedinteger[numpy.typing._64Bit]]]] reveal_type(seed_seq.generate_state(8, "uint64")) # E: numpy.ndarray[Any, numpy.dtype[Union[numpy.unsignedinteger[numpy.typing._32Bit], numpy.unsignedinteger[numpy.typing._64Bit]]]] def_gen: np.random.Generator = np.random.default_rng() D_arr_0p1: np.ndarray[Any, np.dtype[np.float64]] = np.array([0.1]) D_arr_0p5: np.ndarray[Any, np.dtype[np.float64]] = np.array([0.5]) D_arr_0p9: np.ndarray[Any, np.dtype[np.float64]] = np.array([0.9]) D_arr_1p5: np.ndarray[Any, np.dtype[np.float64]] = np.array([1.5]) I_arr_10: np.ndarray[Any, np.dtype[np.int_]] = np.array([10], dtype=np.int_) I_arr_20: np.ndarray[Any, np.dtype[np.int_]] = np.array([20], dtype=np.int_) D_arr_like_0p1: List[float] = [0.1] D_arr_like_0p5: List[float] = [0.5] D_arr_like_0p9: List[float] = [0.9] D_arr_like_1p5: List[float] = [1.5] I_arr_like_10: List[int] = [10] I_arr_like_20: List[int] = [20] D_2D_like: List[List[float]] = [[1, 2], [2, 3], [3, 4], [4, 5.1]] D_2D: np.ndarray[Any, np.dtype[np.float64]] = np.array(D_2D_like) S_out: np.ndarray[Any, np.dtype[np.float32]] = np.empty(1, dtype=np.float32) D_out: np.ndarray[Any, np.dtype[np.float64]] = np.empty(1) reveal_type(def_gen.standard_normal()) # E: float reveal_type(def_gen.standard_normal(dtype=np.float32)) # E: float reveal_type(def_gen.standard_normal(dtype="float32")) # E: float reveal_type(def_gen.standard_normal(dtype="double")) # E: float reveal_type(def_gen.standard_normal(dtype=np.float64)) # E: float reveal_type(def_gen.standard_normal(size=None)) # E: float reveal_type(def_gen.standard_normal(size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] reveal_type(def_gen.standard_normal(size=1, dtype=np.float32)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._32Bit]]] reveal_type(def_gen.standard_normal(size=1, dtype="f4")) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._32Bit]]] reveal_type(def_gen.standard_normal(size=1, dtype="float32", out=S_out)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._32Bit]]] reveal_type(def_gen.standard_normal(dtype=np.float32, out=S_out)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._32Bit]]] reveal_type(def_gen.standard_normal(size=1, dtype=np.float64)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] reveal_type(def_gen.standard_normal(size=1, dtype="float64")) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] reveal_type(def_gen.standard_normal(size=1, dtype="f8")) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] reveal_type(def_gen.standard_normal(out=D_out)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] reveal_type(def_gen.standard_normal(size=1, dtype="float64")) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] reveal_type(def_gen.standard_normal(size=1, dtype="float64", out=D_out)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] reveal_type(def_gen.random()) # E: float reveal_type(def_gen.random(dtype=np.float32)) # E: float reveal_type(def_gen.random(dtype="float32")) # E: float reveal_type(def_gen.random(dtype="double")) # E: float reveal_type(def_gen.random(dtype=np.float64)) # E: float reveal_type(def_gen.random(size=None)) # E: float reveal_type(def_gen.random(size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] reveal_type(def_gen.random(size=1, dtype=np.float32)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._32Bit]]] reveal_type(def_gen.random(size=1, dtype="f4")) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._32Bit]]] reveal_type(def_gen.random(size=1, dtype="float32", out=S_out)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._32Bit]]] reveal_type(def_gen.random(dtype=np.float32, out=S_out)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._32Bit]]] reveal_type(def_gen.random(size=1, dtype=np.float64)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] reveal_type(def_gen.random(size=1, dtype="float64")) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] reveal_type(def_gen.random(size=1, dtype="f8")) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] reveal_type(def_gen.random(out=D_out)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] reveal_type(def_gen.random(size=1, dtype="float64")) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] reveal_type(def_gen.random(size=1, dtype="float64", out=D_out)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] reveal_type(def_gen.standard_cauchy()) # E: float reveal_type(def_gen.standard_cauchy(size=None)) # E: float reveal_type(def_gen.standard_cauchy(size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.standard_exponential()) # E: float reveal_type(def_gen.standard_exponential(method="inv")) # E: float reveal_type(def_gen.standard_exponential(dtype=np.float32)) # E: float reveal_type(def_gen.standard_exponential(dtype="float32")) # E: float reveal_type(def_gen.standard_exponential(dtype="double")) # E: float reveal_type(def_gen.standard_exponential(dtype=np.float64)) # E: float reveal_type(def_gen.standard_exponential(size=None)) # E: float reveal_type(def_gen.standard_exponential(size=None, method="inv")) # E: float reveal_type(def_gen.standard_exponential(size=1, method="inv")) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] reveal_type(def_gen.standard_exponential(size=1, dtype=np.float32)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._32Bit]]] reveal_type(def_gen.standard_exponential(size=1, dtype="f4", method="inv")) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._32Bit]]] reveal_type(def_gen.standard_exponential(size=1, dtype="float32", out=S_out)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._32Bit]]] reveal_type(def_gen.standard_exponential(dtype=np.float32, out=S_out)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._32Bit]]] reveal_type(def_gen.standard_exponential(size=1, dtype=np.float64, method="inv")) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] reveal_type(def_gen.standard_exponential(size=1, dtype="float64")) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] reveal_type(def_gen.standard_exponential(size=1, dtype="f8")) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] reveal_type(def_gen.standard_exponential(out=D_out)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] reveal_type(def_gen.standard_exponential(size=1, dtype="float64")) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] reveal_type(def_gen.standard_exponential(size=1, dtype="float64", out=D_out)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] reveal_type(def_gen.zipf(1.5)) # E: int reveal_type(def_gen.zipf(1.5, size=None)) # E: int reveal_type(def_gen.zipf(1.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.zipf(D_arr_1p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.zipf(D_arr_1p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.zipf(D_arr_like_1p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.zipf(D_arr_like_1p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.weibull(0.5)) # E: float reveal_type(def_gen.weibull(0.5, size=None)) # E: float reveal_type(def_gen.weibull(0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.weibull(D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.weibull(D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.weibull(D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.weibull(D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.standard_t(0.5)) # E: float reveal_type(def_gen.standard_t(0.5, size=None)) # E: float reveal_type(def_gen.standard_t(0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.standard_t(D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.standard_t(D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.standard_t(D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.standard_t(D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.poisson(0.5)) # E: int reveal_type(def_gen.poisson(0.5, size=None)) # E: int reveal_type(def_gen.poisson(0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.poisson(D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.poisson(D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.poisson(D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.poisson(D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.power(0.5)) # E: float reveal_type(def_gen.power(0.5, size=None)) # E: float reveal_type(def_gen.power(0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.power(D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.power(D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.power(D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.power(D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.pareto(0.5)) # E: float reveal_type(def_gen.pareto(0.5, size=None)) # E: float reveal_type(def_gen.pareto(0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.pareto(D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.pareto(D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.pareto(D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.pareto(D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.chisquare(0.5)) # E: float reveal_type(def_gen.chisquare(0.5, size=None)) # E: float reveal_type(def_gen.chisquare(0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.chisquare(D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.chisquare(D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.chisquare(D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.chisquare(D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.exponential(0.5)) # E: float reveal_type(def_gen.exponential(0.5, size=None)) # E: float reveal_type(def_gen.exponential(0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.exponential(D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.exponential(D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.exponential(D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.exponential(D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.geometric(0.5)) # E: int reveal_type(def_gen.geometric(0.5, size=None)) # E: int reveal_type(def_gen.geometric(0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.geometric(D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.geometric(D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.geometric(D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.geometric(D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.logseries(0.5)) # E: int reveal_type(def_gen.logseries(0.5, size=None)) # E: int reveal_type(def_gen.logseries(0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.logseries(D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.logseries(D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.logseries(D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.logseries(D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.rayleigh(0.5)) # E: float reveal_type(def_gen.rayleigh(0.5, size=None)) # E: float reveal_type(def_gen.rayleigh(0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.rayleigh(D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.rayleigh(D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.rayleigh(D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.rayleigh(D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.standard_gamma(0.5)) # E: float reveal_type(def_gen.standard_gamma(0.5, size=None)) # E: float reveal_type(def_gen.standard_gamma(0.5, dtype="float32")) # E: float reveal_type(def_gen.standard_gamma(0.5, size=None, dtype="float32")) # E: float reveal_type(def_gen.standard_gamma(0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] reveal_type(def_gen.standard_gamma(D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] reveal_type(def_gen.standard_gamma(D_arr_0p5, dtype="f4")) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._32Bit]]] reveal_type(def_gen.standard_gamma(0.5, size=1, dtype="float32", out=S_out)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._32Bit]]] reveal_type(def_gen.standard_gamma(D_arr_0p5, dtype=np.float32, out=S_out)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._32Bit]]] reveal_type(def_gen.standard_gamma(D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] reveal_type(def_gen.standard_gamma(D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] reveal_type(def_gen.standard_gamma(D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] reveal_type(def_gen.standard_gamma(0.5, out=D_out)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] reveal_type(def_gen.standard_gamma(D_arr_like_0p5, out=D_out)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] reveal_type(def_gen.standard_gamma(D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] reveal_type(def_gen.standard_gamma(D_arr_like_0p5, size=1, out=D_out, dtype=np.float64)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] reveal_type(def_gen.vonmises(0.5, 0.5)) # E: float reveal_type(def_gen.vonmises(0.5, 0.5, size=None)) # E: float reveal_type(def_gen.vonmises(0.5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.vonmises(D_arr_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.vonmises(0.5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.vonmises(D_arr_0p5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.vonmises(0.5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.vonmises(D_arr_like_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.vonmises(0.5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.vonmises(D_arr_0p5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.vonmises(D_arr_like_0p5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.vonmises(D_arr_0p5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.vonmises(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.wald(0.5, 0.5)) # E: float reveal_type(def_gen.wald(0.5, 0.5, size=None)) # E: float reveal_type(def_gen.wald(0.5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.wald(D_arr_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.wald(0.5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.wald(D_arr_0p5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.wald(0.5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.wald(D_arr_like_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.wald(0.5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.wald(D_arr_0p5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.wald(D_arr_like_0p5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.wald(D_arr_0p5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.wald(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.uniform(0.5, 0.5)) # E: float reveal_type(def_gen.uniform(0.5, 0.5, size=None)) # E: float reveal_type(def_gen.uniform(0.5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.uniform(D_arr_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.uniform(0.5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.uniform(D_arr_0p5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.uniform(0.5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.uniform(D_arr_like_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.uniform(0.5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.uniform(D_arr_0p5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.uniform(D_arr_like_0p5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.uniform(D_arr_0p5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.uniform(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.beta(0.5, 0.5)) # E: float reveal_type(def_gen.beta(0.5, 0.5, size=None)) # E: float reveal_type(def_gen.beta(0.5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.beta(D_arr_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.beta(0.5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.beta(D_arr_0p5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.beta(0.5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.beta(D_arr_like_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.beta(0.5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.beta(D_arr_0p5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.beta(D_arr_like_0p5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.beta(D_arr_0p5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.beta(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.f(0.5, 0.5)) # E: float reveal_type(def_gen.f(0.5, 0.5, size=None)) # E: float reveal_type(def_gen.f(0.5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.f(D_arr_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.f(0.5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.f(D_arr_0p5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.f(0.5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.f(D_arr_like_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.f(0.5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.f(D_arr_0p5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.f(D_arr_like_0p5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.f(D_arr_0p5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.f(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.gamma(0.5, 0.5)) # E: float reveal_type(def_gen.gamma(0.5, 0.5, size=None)) # E: float reveal_type(def_gen.gamma(0.5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.gamma(D_arr_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.gamma(0.5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.gamma(D_arr_0p5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.gamma(0.5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.gamma(D_arr_like_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.gamma(0.5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.gamma(D_arr_0p5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.gamma(D_arr_like_0p5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.gamma(D_arr_0p5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.gamma(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.gumbel(0.5, 0.5)) # E: float reveal_type(def_gen.gumbel(0.5, 0.5, size=None)) # E: float reveal_type(def_gen.gumbel(0.5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.gumbel(D_arr_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.gumbel(0.5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.gumbel(D_arr_0p5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.gumbel(0.5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.gumbel(D_arr_like_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.gumbel(0.5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.gumbel(D_arr_0p5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.gumbel(D_arr_like_0p5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.gumbel(D_arr_0p5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.gumbel(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.laplace(0.5, 0.5)) # E: float reveal_type(def_gen.laplace(0.5, 0.5, size=None)) # E: float reveal_type(def_gen.laplace(0.5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.laplace(D_arr_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.laplace(0.5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.laplace(D_arr_0p5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.laplace(0.5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.laplace(D_arr_like_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.laplace(0.5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.laplace(D_arr_0p5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.laplace(D_arr_like_0p5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.laplace(D_arr_0p5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.laplace(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.logistic(0.5, 0.5)) # E: float reveal_type(def_gen.logistic(0.5, 0.5, size=None)) # E: float reveal_type(def_gen.logistic(0.5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.logistic(D_arr_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.logistic(0.5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.logistic(D_arr_0p5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.logistic(0.5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.logistic(D_arr_like_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.logistic(0.5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.logistic(D_arr_0p5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.logistic(D_arr_like_0p5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.logistic(D_arr_0p5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.logistic(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.lognormal(0.5, 0.5)) # E: float reveal_type(def_gen.lognormal(0.5, 0.5, size=None)) # E: float reveal_type(def_gen.lognormal(0.5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.lognormal(D_arr_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.lognormal(0.5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.lognormal(D_arr_0p5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.lognormal(0.5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.lognormal(D_arr_like_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.lognormal(0.5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.lognormal(D_arr_0p5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.lognormal(D_arr_like_0p5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.lognormal(D_arr_0p5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.lognormal(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.noncentral_chisquare(0.5, 0.5)) # E: float reveal_type(def_gen.noncentral_chisquare(0.5, 0.5, size=None)) # E: float reveal_type(def_gen.noncentral_chisquare(0.5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.noncentral_chisquare(D_arr_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.noncentral_chisquare(0.5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.noncentral_chisquare(D_arr_0p5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.noncentral_chisquare(0.5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.noncentral_chisquare(D_arr_like_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.noncentral_chisquare(0.5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.noncentral_chisquare(D_arr_0p5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.noncentral_chisquare(D_arr_like_0p5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.noncentral_chisquare(D_arr_0p5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.noncentral_chisquare(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.normal(0.5, 0.5)) # E: float reveal_type(def_gen.normal(0.5, 0.5, size=None)) # E: float reveal_type(def_gen.normal(0.5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.normal(D_arr_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.normal(0.5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.normal(D_arr_0p5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.normal(0.5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.normal(D_arr_like_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.normal(0.5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.normal(D_arr_0p5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.normal(D_arr_like_0p5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.normal(D_arr_0p5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.normal(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.triangular(0.1, 0.5, 0.9)) # E: float reveal_type(def_gen.triangular(0.1, 0.5, 0.9, size=None)) # E: float reveal_type(def_gen.triangular(0.1, 0.5, 0.9, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.triangular(D_arr_0p1, 0.5, 0.9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.triangular(0.1, D_arr_0p5, 0.9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.triangular(D_arr_0p1, 0.5, D_arr_like_0p9, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.triangular(0.1, D_arr_0p5, 0.9, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.triangular(D_arr_like_0p1, 0.5, D_arr_0p9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.triangular(0.5, D_arr_like_0p5, 0.9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.triangular(D_arr_0p1, D_arr_0p5, 0.9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.triangular(D_arr_like_0p1, D_arr_like_0p5, 0.9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.triangular(D_arr_0p1, D_arr_0p5, D_arr_0p9, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.triangular(D_arr_like_0p1, D_arr_like_0p5, D_arr_like_0p9, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.noncentral_f(0.1, 0.5, 0.9)) # E: float reveal_type(def_gen.noncentral_f(0.1, 0.5, 0.9, size=None)) # E: float reveal_type(def_gen.noncentral_f(0.1, 0.5, 0.9, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.noncentral_f(D_arr_0p1, 0.5, 0.9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.noncentral_f(0.1, D_arr_0p5, 0.9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.noncentral_f(D_arr_0p1, 0.5, D_arr_like_0p9, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.noncentral_f(0.1, D_arr_0p5, 0.9, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.noncentral_f(D_arr_like_0p1, 0.5, D_arr_0p9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.noncentral_f(0.5, D_arr_like_0p5, 0.9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.noncentral_f(D_arr_0p1, D_arr_0p5, 0.9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.noncentral_f(D_arr_like_0p1, D_arr_like_0p5, 0.9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.noncentral_f(D_arr_0p1, D_arr_0p5, D_arr_0p9, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.noncentral_f(D_arr_like_0p1, D_arr_like_0p5, D_arr_like_0p9, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] reveal_type(def_gen.binomial(10, 0.5)) # E: int reveal_type(def_gen.binomial(10, 0.5, size=None)) # E: int reveal_type(def_gen.binomial(10, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.binomial(I_arr_10, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.binomial(10, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.binomial(I_arr_10, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.binomial(10, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.binomial(I_arr_like_10, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.binomial(10, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.binomial(I_arr_10, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.binomial(I_arr_like_10, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.binomial(I_arr_10, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.binomial(I_arr_like_10, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.negative_binomial(10, 0.5)) # E: int reveal_type(def_gen.negative_binomial(10, 0.5, size=None)) # E: int reveal_type(def_gen.negative_binomial(10, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.negative_binomial(I_arr_10, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.negative_binomial(10, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.negative_binomial(I_arr_10, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.negative_binomial(10, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.negative_binomial(I_arr_like_10, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.negative_binomial(10, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.negative_binomial(I_arr_10, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.negative_binomial(I_arr_like_10, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.negative_binomial(I_arr_10, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.negative_binomial(I_arr_like_10, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.hypergeometric(20, 20, 10)) # E: int reveal_type(def_gen.hypergeometric(20, 20, 10, size=None)) # E: int reveal_type(def_gen.hypergeometric(20, 20, 10, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.hypergeometric(I_arr_20, 20, 10)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.hypergeometric(20, I_arr_20, 10)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.hypergeometric(I_arr_20, 20, I_arr_like_10, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.hypergeometric(20, I_arr_20, 10, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.hypergeometric(I_arr_like_20, 20, I_arr_10)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.hypergeometric(20, I_arr_like_20, 10)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.hypergeometric(I_arr_20, I_arr_20, 10)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.hypergeometric(I_arr_like_20, I_arr_like_20, 10)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.hypergeometric(I_arr_20, I_arr_20, I_arr_10, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.hypergeometric(I_arr_like_20, I_arr_like_20, I_arr_like_10, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] I_int64_100: np.ndarray[Any, np.dtype[np.int64]] = np.array([100], dtype=np.int64) reveal_type(def_gen.integers(0, 100)) # E: int reveal_type(def_gen.integers(100)) # E: int reveal_type(def_gen.integers([100])) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.integers(0, [100])) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] I_bool_low: np.ndarray[Any, np.dtype[np.bool_]] = np.array([0], dtype=np.bool_) I_bool_low_like: List[int] = [0] I_bool_high_open: np.ndarray[Any, np.dtype[np.bool_]] = np.array([1], dtype=np.bool_) I_bool_high_closed: np.ndarray[Any, np.dtype[np.bool_]] = np.array([1], dtype=np.bool_) reveal_type(def_gen.integers(2, dtype=bool)) # E: builtins.bool reveal_type(def_gen.integers(0, 2, dtype=bool)) # E: builtins.bool reveal_type(def_gen.integers(1, dtype=bool, endpoint=True)) # E: builtins.bool reveal_type(def_gen.integers(0, 1, dtype=bool, endpoint=True)) # E: builtins.bool reveal_type(def_gen.integers(I_bool_low_like, 1, dtype=bool, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_] reveal_type(def_gen.integers(I_bool_high_open, dtype=bool)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_] reveal_type(def_gen.integers(I_bool_low, I_bool_high_open, dtype=bool)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_] reveal_type(def_gen.integers(0, I_bool_high_open, dtype=bool)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_] reveal_type(def_gen.integers(I_bool_high_closed, dtype=bool, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_] reveal_type(def_gen.integers(I_bool_low, I_bool_high_closed, dtype=bool, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_] reveal_type(def_gen.integers(0, I_bool_high_closed, dtype=bool, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_] reveal_type(def_gen.integers(2, dtype=np.bool_)) # E: builtins.bool reveal_type(def_gen.integers(0, 2, dtype=np.bool_)) # E: builtins.bool reveal_type(def_gen.integers(1, dtype=np.bool_, endpoint=True)) # E: builtins.bool reveal_type(def_gen.integers(0, 1, dtype=np.bool_, endpoint=True)) # E: builtins.bool reveal_type(def_gen.integers(I_bool_low_like, 1, dtype=np.bool_, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_] reveal_type(def_gen.integers(I_bool_high_open, dtype=np.bool_)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_] reveal_type(def_gen.integers(I_bool_low, I_bool_high_open, dtype=np.bool_)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_] reveal_type(def_gen.integers(0, I_bool_high_open, dtype=np.bool_)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_] reveal_type(def_gen.integers(I_bool_high_closed, dtype=np.bool_, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_] reveal_type(def_gen.integers(I_bool_low, I_bool_high_closed, dtype=np.bool_, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_] reveal_type(def_gen.integers(0, I_bool_high_closed, dtype=np.bool_, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_] I_u1_low: np.ndarray[Any, np.dtype[np.uint8]] = np.array([0], dtype=np.uint8) I_u1_low_like: List[int] = [0] I_u1_high_open: np.ndarray[Any, np.dtype[np.uint8]] = np.array([255], dtype=np.uint8) I_u1_high_closed: np.ndarray[Any, np.dtype[np.uint8]] = np.array([255], dtype=np.uint8) reveal_type(def_gen.integers(256, dtype="u1")) # E: int reveal_type(def_gen.integers(0, 256, dtype="u1")) # E: int reveal_type(def_gen.integers(255, dtype="u1", endpoint=True)) # E: int reveal_type(def_gen.integers(0, 255, dtype="u1", endpoint=True)) # E: int reveal_type(def_gen.integers(I_u1_low_like, 255, dtype="u1", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]] reveal_type(def_gen.integers(I_u1_high_open, dtype="u1")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]] reveal_type(def_gen.integers(I_u1_low, I_u1_high_open, dtype="u1")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]] reveal_type(def_gen.integers(0, I_u1_high_open, dtype="u1")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]] reveal_type(def_gen.integers(I_u1_high_closed, dtype="u1", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]] reveal_type(def_gen.integers(I_u1_low, I_u1_high_closed, dtype="u1", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]] reveal_type(def_gen.integers(0, I_u1_high_closed, dtype="u1", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]] reveal_type(def_gen.integers(256, dtype="uint8")) # E: int reveal_type(def_gen.integers(0, 256, dtype="uint8")) # E: int reveal_type(def_gen.integers(255, dtype="uint8", endpoint=True)) # E: int reveal_type(def_gen.integers(0, 255, dtype="uint8", endpoint=True)) # E: int reveal_type(def_gen.integers(I_u1_low_like, 255, dtype="uint8", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]] reveal_type(def_gen.integers(I_u1_high_open, dtype="uint8")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]] reveal_type(def_gen.integers(I_u1_low, I_u1_high_open, dtype="uint8")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]] reveal_type(def_gen.integers(0, I_u1_high_open, dtype="uint8")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]] reveal_type(def_gen.integers(I_u1_high_closed, dtype="uint8", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]] reveal_type(def_gen.integers(I_u1_low, I_u1_high_closed, dtype="uint8", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]] reveal_type(def_gen.integers(0, I_u1_high_closed, dtype="uint8", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]] reveal_type(def_gen.integers(256, dtype=np.uint8)) # E: int reveal_type(def_gen.integers(0, 256, dtype=np.uint8)) # E: int reveal_type(def_gen.integers(255, dtype=np.uint8, endpoint=True)) # E: int reveal_type(def_gen.integers(0, 255, dtype=np.uint8, endpoint=True)) # E: int reveal_type(def_gen.integers(I_u1_low_like, 255, dtype=np.uint8, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]] reveal_type(def_gen.integers(I_u1_high_open, dtype=np.uint8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]] reveal_type(def_gen.integers(I_u1_low, I_u1_high_open, dtype=np.uint8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]] reveal_type(def_gen.integers(0, I_u1_high_open, dtype=np.uint8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]] reveal_type(def_gen.integers(I_u1_high_closed, dtype=np.uint8, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]] reveal_type(def_gen.integers(I_u1_low, I_u1_high_closed, dtype=np.uint8, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]] reveal_type(def_gen.integers(0, I_u1_high_closed, dtype=np.uint8, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]] I_u2_low: np.ndarray[Any, np.dtype[np.uint16]] = np.array([0], dtype=np.uint16) I_u2_low_like: List[int] = [0] I_u2_high_open: np.ndarray[Any, np.dtype[np.uint16]] = np.array([65535], dtype=np.uint16) I_u2_high_closed: np.ndarray[Any, np.dtype[np.uint16]] = np.array([65535], dtype=np.uint16) reveal_type(def_gen.integers(65536, dtype="u2")) # E: int reveal_type(def_gen.integers(0, 65536, dtype="u2")) # E: int reveal_type(def_gen.integers(65535, dtype="u2", endpoint=True)) # E: int reveal_type(def_gen.integers(0, 65535, dtype="u2", endpoint=True)) # E: int reveal_type(def_gen.integers(I_u2_low_like, 65535, dtype="u2", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]] reveal_type(def_gen.integers(I_u2_high_open, dtype="u2")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]] reveal_type(def_gen.integers(I_u2_low, I_u2_high_open, dtype="u2")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]] reveal_type(def_gen.integers(0, I_u2_high_open, dtype="u2")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]] reveal_type(def_gen.integers(I_u2_high_closed, dtype="u2", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]] reveal_type(def_gen.integers(I_u2_low, I_u2_high_closed, dtype="u2", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]] reveal_type(def_gen.integers(0, I_u2_high_closed, dtype="u2", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]] reveal_type(def_gen.integers(65536, dtype="uint16")) # E: int reveal_type(def_gen.integers(0, 65536, dtype="uint16")) # E: int reveal_type(def_gen.integers(65535, dtype="uint16", endpoint=True)) # E: int reveal_type(def_gen.integers(0, 65535, dtype="uint16", endpoint=True)) # E: int reveal_type(def_gen.integers(I_u2_low_like, 65535, dtype="uint16", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]] reveal_type(def_gen.integers(I_u2_high_open, dtype="uint16")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]] reveal_type(def_gen.integers(I_u2_low, I_u2_high_open, dtype="uint16")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]] reveal_type(def_gen.integers(0, I_u2_high_open, dtype="uint16")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]] reveal_type(def_gen.integers(I_u2_high_closed, dtype="uint16", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]] reveal_type(def_gen.integers(I_u2_low, I_u2_high_closed, dtype="uint16", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]] reveal_type(def_gen.integers(0, I_u2_high_closed, dtype="uint16", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]] reveal_type(def_gen.integers(65536, dtype=np.uint16)) # E: int reveal_type(def_gen.integers(0, 65536, dtype=np.uint16)) # E: int reveal_type(def_gen.integers(65535, dtype=np.uint16, endpoint=True)) # E: int reveal_type(def_gen.integers(0, 65535, dtype=np.uint16, endpoint=True)) # E: int reveal_type(def_gen.integers(I_u2_low_like, 65535, dtype=np.uint16, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]] reveal_type(def_gen.integers(I_u2_high_open, dtype=np.uint16)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]] reveal_type(def_gen.integers(I_u2_low, I_u2_high_open, dtype=np.uint16)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]] reveal_type(def_gen.integers(0, I_u2_high_open, dtype=np.uint16)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]] reveal_type(def_gen.integers(I_u2_high_closed, dtype=np.uint16, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]] reveal_type(def_gen.integers(I_u2_low, I_u2_high_closed, dtype=np.uint16, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]] reveal_type(def_gen.integers(0, I_u2_high_closed, dtype=np.uint16, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]] I_u4_low: np.ndarray[Any, np.dtype[np.uint32]] = np.array([0], dtype=np.uint32) I_u4_low_like: List[int] = [0] I_u4_high_open: np.ndarray[Any, np.dtype[np.uint32]] = np.array([4294967295], dtype=np.uint32) I_u4_high_closed: np.ndarray[Any, np.dtype[np.uint32]] = np.array([4294967295], dtype=np.uint32) reveal_type(def_gen.integers(4294967296, dtype=np.int_)) # E: int reveal_type(def_gen.integers(0, 4294967296, dtype=np.int_)) # E: int reveal_type(def_gen.integers(4294967295, dtype=np.int_, endpoint=True)) # E: int reveal_type(def_gen.integers(0, 4294967295, dtype=np.int_, endpoint=True)) # E: int reveal_type(def_gen.integers(I_u4_low_like, 4294967295, dtype=np.int_, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] reveal_type(def_gen.integers(I_u4_high_open, dtype=np.int_)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] reveal_type(def_gen.integers(I_u4_low, I_u4_high_open, dtype=np.int_)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] reveal_type(def_gen.integers(0, I_u4_high_open, dtype=np.int_)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] reveal_type(def_gen.integers(I_u4_high_closed, dtype=np.int_, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] reveal_type(def_gen.integers(I_u4_low, I_u4_high_closed, dtype=np.int_, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] reveal_type(def_gen.integers(0, I_u4_high_closed, dtype=np.int_, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] reveal_type(def_gen.integers(4294967296, dtype="u4")) # E: int reveal_type(def_gen.integers(0, 4294967296, dtype="u4")) # E: int reveal_type(def_gen.integers(4294967295, dtype="u4", endpoint=True)) # E: int reveal_type(def_gen.integers(0, 4294967295, dtype="u4", endpoint=True)) # E: int reveal_type(def_gen.integers(I_u4_low_like, 4294967295, dtype="u4", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]] reveal_type(def_gen.integers(I_u4_high_open, dtype="u4")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]] reveal_type(def_gen.integers(I_u4_low, I_u4_high_open, dtype="u4")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]] reveal_type(def_gen.integers(0, I_u4_high_open, dtype="u4")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]] reveal_type(def_gen.integers(I_u4_high_closed, dtype="u4", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]] reveal_type(def_gen.integers(I_u4_low, I_u4_high_closed, dtype="u4", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]] reveal_type(def_gen.integers(0, I_u4_high_closed, dtype="u4", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]] reveal_type(def_gen.integers(4294967296, dtype="uint32")) # E: int reveal_type(def_gen.integers(0, 4294967296, dtype="uint32")) # E: int reveal_type(def_gen.integers(4294967295, dtype="uint32", endpoint=True)) # E: int reveal_type(def_gen.integers(0, 4294967295, dtype="uint32", endpoint=True)) # E: int reveal_type(def_gen.integers(I_u4_low_like, 4294967295, dtype="uint32", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]] reveal_type(def_gen.integers(I_u4_high_open, dtype="uint32")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]] reveal_type(def_gen.integers(I_u4_low, I_u4_high_open, dtype="uint32")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]] reveal_type(def_gen.integers(0, I_u4_high_open, dtype="uint32")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]] reveal_type(def_gen.integers(I_u4_high_closed, dtype="uint32", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]] reveal_type(def_gen.integers(I_u4_low, I_u4_high_closed, dtype="uint32", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]] reveal_type(def_gen.integers(0, I_u4_high_closed, dtype="uint32", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]] reveal_type(def_gen.integers(4294967296, dtype=np.uint32)) # E: int reveal_type(def_gen.integers(0, 4294967296, dtype=np.uint32)) # E: int reveal_type(def_gen.integers(4294967295, dtype=np.uint32, endpoint=True)) # E: int reveal_type(def_gen.integers(0, 4294967295, dtype=np.uint32, endpoint=True)) # E: int reveal_type(def_gen.integers(I_u4_low_like, 4294967295, dtype=np.uint32, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]] reveal_type(def_gen.integers(I_u4_high_open, dtype=np.uint32)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]] reveal_type(def_gen.integers(I_u4_low, I_u4_high_open, dtype=np.uint32)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]] reveal_type(def_gen.integers(0, I_u4_high_open, dtype=np.uint32)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]] reveal_type(def_gen.integers(I_u4_high_closed, dtype=np.uint32, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]] reveal_type(def_gen.integers(I_u4_low, I_u4_high_closed, dtype=np.uint32, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]] reveal_type(def_gen.integers(0, I_u4_high_closed, dtype=np.uint32, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]] reveal_type(def_gen.integers(4294967296, dtype=np.uint)) # E: int reveal_type(def_gen.integers(0, 4294967296, dtype=np.uint)) # E: int reveal_type(def_gen.integers(4294967295, dtype=np.uint, endpoint=True)) # E: int reveal_type(def_gen.integers(0, 4294967295, dtype=np.uint, endpoint=True)) # E: int reveal_type(def_gen.integers(I_u4_low_like, 4294967295, dtype=np.uint, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[{uint}]] reveal_type(def_gen.integers(I_u4_high_open, dtype=np.uint)) # E: numpy.ndarray[Any, numpy.dtype[{uint}]] reveal_type(def_gen.integers(I_u4_low, I_u4_high_open, dtype=np.uint)) # E: numpy.ndarray[Any, numpy.dtype[{uint}]] reveal_type(def_gen.integers(0, I_u4_high_open, dtype=np.uint)) # E: numpy.ndarray[Any, numpy.dtype[{uint}]] reveal_type(def_gen.integers(I_u4_high_closed, dtype=np.uint, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[{uint}]] reveal_type(def_gen.integers(I_u4_low, I_u4_high_closed, dtype=np.uint, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[{uint}]] reveal_type(def_gen.integers(0, I_u4_high_closed, dtype=np.uint, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[{uint}]] I_u8_low: np.ndarray[Any, np.dtype[np.uint64]] = np.array([0], dtype=np.uint64) I_u8_low_like: List[int] = [0] I_u8_high_open: np.ndarray[Any, np.dtype[np.uint64]] = np.array([18446744073709551615], dtype=np.uint64) I_u8_high_closed: np.ndarray[Any, np.dtype[np.uint64]] = np.array([18446744073709551615], dtype=np.uint64) reveal_type(def_gen.integers(18446744073709551616, dtype="u8")) # E: int reveal_type(def_gen.integers(0, 18446744073709551616, dtype="u8")) # E: int reveal_type(def_gen.integers(18446744073709551615, dtype="u8", endpoint=True)) # E: int reveal_type(def_gen.integers(0, 18446744073709551615, dtype="u8", endpoint=True)) # E: int reveal_type(def_gen.integers(I_u8_low_like, 18446744073709551615, dtype="u8", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.integers(I_u8_high_open, dtype="u8")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.integers(I_u8_low, I_u8_high_open, dtype="u8")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.integers(0, I_u8_high_open, dtype="u8")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.integers(I_u8_high_closed, dtype="u8", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.integers(I_u8_low, I_u8_high_closed, dtype="u8", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.integers(0, I_u8_high_closed, dtype="u8", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.integers(18446744073709551616, dtype="uint64")) # E: int reveal_type(def_gen.integers(0, 18446744073709551616, dtype="uint64")) # E: int reveal_type(def_gen.integers(18446744073709551615, dtype="uint64", endpoint=True)) # E: int reveal_type(def_gen.integers(0, 18446744073709551615, dtype="uint64", endpoint=True)) # E: int reveal_type(def_gen.integers(I_u8_low_like, 18446744073709551615, dtype="uint64", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.integers(I_u8_high_open, dtype="uint64")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.integers(I_u8_low, I_u8_high_open, dtype="uint64")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.integers(0, I_u8_high_open, dtype="uint64")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.integers(I_u8_high_closed, dtype="uint64", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.integers(I_u8_low, I_u8_high_closed, dtype="uint64", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.integers(0, I_u8_high_closed, dtype="uint64", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.integers(18446744073709551616, dtype=np.uint64)) # E: int reveal_type(def_gen.integers(0, 18446744073709551616, dtype=np.uint64)) # E: int reveal_type(def_gen.integers(18446744073709551615, dtype=np.uint64, endpoint=True)) # E: int reveal_type(def_gen.integers(0, 18446744073709551615, dtype=np.uint64, endpoint=True)) # E: int reveal_type(def_gen.integers(I_u8_low_like, 18446744073709551615, dtype=np.uint64, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.integers(I_u8_high_open, dtype=np.uint64)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.integers(I_u8_low, I_u8_high_open, dtype=np.uint64)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.integers(0, I_u8_high_open, dtype=np.uint64)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.integers(I_u8_high_closed, dtype=np.uint64, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.integers(I_u8_low, I_u8_high_closed, dtype=np.uint64, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] reveal_type(def_gen.integers(0, I_u8_high_closed, dtype=np.uint64, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] I_i1_low: np.ndarray[Any, np.dtype[np.int8]] = np.array([-128], dtype=np.int8) I_i1_low_like: List[int] = [-128] I_i1_high_open: np.ndarray[Any, np.dtype[np.int8]] = np.array([127], dtype=np.int8) I_i1_high_closed: np.ndarray[Any, np.dtype[np.int8]] = np.array([127], dtype=np.int8) reveal_type(def_gen.integers(128, dtype="i1")) # E: int reveal_type(def_gen.integers(-128, 128, dtype="i1")) # E: int reveal_type(def_gen.integers(127, dtype="i1", endpoint=True)) # E: int reveal_type(def_gen.integers(-128, 127, dtype="i1", endpoint=True)) # E: int reveal_type(def_gen.integers(I_i1_low_like, 127, dtype="i1", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]] reveal_type(def_gen.integers(I_i1_high_open, dtype="i1")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]] reveal_type(def_gen.integers(I_i1_low, I_i1_high_open, dtype="i1")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]] reveal_type(def_gen.integers(-128, I_i1_high_open, dtype="i1")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]] reveal_type(def_gen.integers(I_i1_high_closed, dtype="i1", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]] reveal_type(def_gen.integers(I_i1_low, I_i1_high_closed, dtype="i1", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]] reveal_type(def_gen.integers(-128, I_i1_high_closed, dtype="i1", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]] reveal_type(def_gen.integers(128, dtype="int8")) # E: int reveal_type(def_gen.integers(-128, 128, dtype="int8")) # E: int reveal_type(def_gen.integers(127, dtype="int8", endpoint=True)) # E: int reveal_type(def_gen.integers(-128, 127, dtype="int8", endpoint=True)) # E: int reveal_type(def_gen.integers(I_i1_low_like, 127, dtype="int8", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]] reveal_type(def_gen.integers(I_i1_high_open, dtype="int8")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]] reveal_type(def_gen.integers(I_i1_low, I_i1_high_open, dtype="int8")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]] reveal_type(def_gen.integers(-128, I_i1_high_open, dtype="int8")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]] reveal_type(def_gen.integers(I_i1_high_closed, dtype="int8", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]] reveal_type(def_gen.integers(I_i1_low, I_i1_high_closed, dtype="int8", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]] reveal_type(def_gen.integers(-128, I_i1_high_closed, dtype="int8", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]] reveal_type(def_gen.integers(128, dtype=np.int8)) # E: int reveal_type(def_gen.integers(-128, 128, dtype=np.int8)) # E: int reveal_type(def_gen.integers(127, dtype=np.int8, endpoint=True)) # E: int reveal_type(def_gen.integers(-128, 127, dtype=np.int8, endpoint=True)) # E: int reveal_type(def_gen.integers(I_i1_low_like, 127, dtype=np.int8, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]] reveal_type(def_gen.integers(I_i1_high_open, dtype=np.int8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]] reveal_type(def_gen.integers(I_i1_low, I_i1_high_open, dtype=np.int8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]] reveal_type(def_gen.integers(-128, I_i1_high_open, dtype=np.int8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]] reveal_type(def_gen.integers(I_i1_high_closed, dtype=np.int8, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]] reveal_type(def_gen.integers(I_i1_low, I_i1_high_closed, dtype=np.int8, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]] reveal_type(def_gen.integers(-128, I_i1_high_closed, dtype=np.int8, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]] I_i2_low: np.ndarray[Any, np.dtype[np.int16]] = np.array([-32768], dtype=np.int16) I_i2_low_like: List[int] = [-32768] I_i2_high_open: np.ndarray[Any, np.dtype[np.int16]] = np.array([32767], dtype=np.int16) I_i2_high_closed: np.ndarray[Any, np.dtype[np.int16]] = np.array([32767], dtype=np.int16) reveal_type(def_gen.integers(32768, dtype="i2")) # E: int reveal_type(def_gen.integers(-32768, 32768, dtype="i2")) # E: int reveal_type(def_gen.integers(32767, dtype="i2", endpoint=True)) # E: int reveal_type(def_gen.integers(-32768, 32767, dtype="i2", endpoint=True)) # E: int reveal_type(def_gen.integers(I_i2_low_like, 32767, dtype="i2", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]] reveal_type(def_gen.integers(I_i2_high_open, dtype="i2")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]] reveal_type(def_gen.integers(I_i2_low, I_i2_high_open, dtype="i2")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]] reveal_type(def_gen.integers(-32768, I_i2_high_open, dtype="i2")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]] reveal_type(def_gen.integers(I_i2_high_closed, dtype="i2", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]] reveal_type(def_gen.integers(I_i2_low, I_i2_high_closed, dtype="i2", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]] reveal_type(def_gen.integers(-32768, I_i2_high_closed, dtype="i2", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]] reveal_type(def_gen.integers(32768, dtype="int16")) # E: int reveal_type(def_gen.integers(-32768, 32768, dtype="int16")) # E: int reveal_type(def_gen.integers(32767, dtype="int16", endpoint=True)) # E: int reveal_type(def_gen.integers(-32768, 32767, dtype="int16", endpoint=True)) # E: int reveal_type(def_gen.integers(I_i2_low_like, 32767, dtype="int16", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]] reveal_type(def_gen.integers(I_i2_high_open, dtype="int16")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]] reveal_type(def_gen.integers(I_i2_low, I_i2_high_open, dtype="int16")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]] reveal_type(def_gen.integers(-32768, I_i2_high_open, dtype="int16")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]] reveal_type(def_gen.integers(I_i2_high_closed, dtype="int16", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]] reveal_type(def_gen.integers(I_i2_low, I_i2_high_closed, dtype="int16", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]] reveal_type(def_gen.integers(-32768, I_i2_high_closed, dtype="int16", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]] reveal_type(def_gen.integers(32768, dtype=np.int16)) # E: int reveal_type(def_gen.integers(-32768, 32768, dtype=np.int16)) # E: int reveal_type(def_gen.integers(32767, dtype=np.int16, endpoint=True)) # E: int reveal_type(def_gen.integers(-32768, 32767, dtype=np.int16, endpoint=True)) # E: int reveal_type(def_gen.integers(I_i2_low_like, 32767, dtype=np.int16, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]] reveal_type(def_gen.integers(I_i2_high_open, dtype=np.int16)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]] reveal_type(def_gen.integers(I_i2_low, I_i2_high_open, dtype=np.int16)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]] reveal_type(def_gen.integers(-32768, I_i2_high_open, dtype=np.int16)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]] reveal_type(def_gen.integers(I_i2_high_closed, dtype=np.int16, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]] reveal_type(def_gen.integers(I_i2_low, I_i2_high_closed, dtype=np.int16, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]] reveal_type(def_gen.integers(-32768, I_i2_high_closed, dtype=np.int16, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]] I_i4_low: np.ndarray[Any, np.dtype[np.int32]] = np.array([-2147483648], dtype=np.int32) I_i4_low_like: List[int] = [-2147483648] I_i4_high_open: np.ndarray[Any, np.dtype[np.int32]] = np.array([2147483647], dtype=np.int32) I_i4_high_closed: np.ndarray[Any, np.dtype[np.int32]] = np.array([2147483647], dtype=np.int32) reveal_type(def_gen.integers(2147483648, dtype="i4")) # E: int reveal_type(def_gen.integers(-2147483648, 2147483648, dtype="i4")) # E: int reveal_type(def_gen.integers(2147483647, dtype="i4", endpoint=True)) # E: int reveal_type(def_gen.integers(-2147483648, 2147483647, dtype="i4", endpoint=True)) # E: int reveal_type(def_gen.integers(I_i4_low_like, 2147483647, dtype="i4", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]] reveal_type(def_gen.integers(I_i4_high_open, dtype="i4")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]] reveal_type(def_gen.integers(I_i4_low, I_i4_high_open, dtype="i4")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]] reveal_type(def_gen.integers(-2147483648, I_i4_high_open, dtype="i4")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]] reveal_type(def_gen.integers(I_i4_high_closed, dtype="i4", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]] reveal_type(def_gen.integers(I_i4_low, I_i4_high_closed, dtype="i4", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]] reveal_type(def_gen.integers(-2147483648, I_i4_high_closed, dtype="i4", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]] reveal_type(def_gen.integers(2147483648, dtype="int32")) # E: int reveal_type(def_gen.integers(-2147483648, 2147483648, dtype="int32")) # E: int reveal_type(def_gen.integers(2147483647, dtype="int32", endpoint=True)) # E: int reveal_type(def_gen.integers(-2147483648, 2147483647, dtype="int32", endpoint=True)) # E: int reveal_type(def_gen.integers(I_i4_low_like, 2147483647, dtype="int32", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]] reveal_type(def_gen.integers(I_i4_high_open, dtype="int32")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]] reveal_type(def_gen.integers(I_i4_low, I_i4_high_open, dtype="int32")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]] reveal_type(def_gen.integers(-2147483648, I_i4_high_open, dtype="int32")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]] reveal_type(def_gen.integers(I_i4_high_closed, dtype="int32", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]] reveal_type(def_gen.integers(I_i4_low, I_i4_high_closed, dtype="int32", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]] reveal_type(def_gen.integers(-2147483648, I_i4_high_closed, dtype="int32", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]] reveal_type(def_gen.integers(2147483648, dtype=np.int32)) # E: int reveal_type(def_gen.integers(-2147483648, 2147483648, dtype=np.int32)) # E: int reveal_type(def_gen.integers(2147483647, dtype=np.int32, endpoint=True)) # E: int reveal_type(def_gen.integers(-2147483648, 2147483647, dtype=np.int32, endpoint=True)) # E: int reveal_type(def_gen.integers(I_i4_low_like, 2147483647, dtype=np.int32, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]] reveal_type(def_gen.integers(I_i4_high_open, dtype=np.int32)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]] reveal_type(def_gen.integers(I_i4_low, I_i4_high_open, dtype=np.int32)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]] reveal_type(def_gen.integers(-2147483648, I_i4_high_open, dtype=np.int32)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]] reveal_type(def_gen.integers(I_i4_high_closed, dtype=np.int32, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]] reveal_type(def_gen.integers(I_i4_low, I_i4_high_closed, dtype=np.int32, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]] reveal_type(def_gen.integers(-2147483648, I_i4_high_closed, dtype=np.int32, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]] I_i8_low: np.ndarray[Any, np.dtype[np.int64]] = np.array([-9223372036854775808], dtype=np.int64) I_i8_low_like: List[int] = [-9223372036854775808] I_i8_high_open: np.ndarray[Any, np.dtype[np.int64]] = np.array([9223372036854775807], dtype=np.int64) I_i8_high_closed: np.ndarray[Any, np.dtype[np.int64]] =
np.array([9223372036854775807], dtype=np.int64)
numpy.array
import os,sys,glob,time import obspy import scipy import pycwt import pyasdf import datetime import numpy as np import pandas as pd from obspy.signal.invsim import cosine_taper from obspy.signal.regression import linear_regression from scipy.fftpack import fft,ifft,next_fast_len from seisgo import stacking as stack from seisgo.types import CorrData, FFTData from seisgo import utils ##### ######################################################## ################ CROSS-CORRELATE FUNCTIONS ################## ######################################################## def cc_memory(inc_hours,sps,nsta,ncomp,cc_len,cc_step): """ Estimates the memory usage with given correlation parameters, assuming float 32. """ nseg_chunk = int(np.floor((3600*inc_hours-cc_len)/cc_step))+1 npts_chunk = int(nseg_chunk*cc_len*sps) memory_size = nsta*npts_chunk*4/1024/1024/1024**ncomp return memory_size def compute_fft(trace,win_len,step,stainv=None, freqmin=None,freqmax=None,time_norm='no',freq_norm='no', smooth=20,smooth_spec=None,misc=dict(),taper_frac=0.05,df=None): """ Call FFTData to build the object. This is an alternative of directly call FFTData(). The motivation of this function is to provide an user interface to build FFTData object. """ return FFTData(trace=trace,win_len=win_len,step=step, stainv=stainv,freqmin=freqmin,freqmax=freqmax,time_norm=time_norm, freq_norm=freq_norm,smooth=smooth,smooth_spec=smooth_spec,misc=misc, taper_frac=taper_frac,df=df) #assemble FFT with given asdf file name def assemble_fft(sfile,win_len,step,freqmin=None,freqmax=None, time_norm='no',freq_norm='no',smooth=20,smooth_spec=20, taper_frac=0.05,df=None,exclude_chan=[None],v=True): #only deal with ASDF format for now. # retrive station information ds=pyasdf.ASDFDataSet(sfile,mpi=False,mode='r') sta_list = ds.waveforms.list() nsta=len(sta_list) print('found %d stations in total'%nsta) fftdata_all=[] if nsta==0: print('no data in %s'%sfile); return fftdata_all # loop through all stations print('working on file: '+sfile.split('/')[-1]) for ista in sta_list: # get station and inventory try: inv1 = ds.waveforms[ista]['StationXML'] except Exception as e: print('abort! no stationxml for %s in file %s'%(ista,sfile)) continue # get days information: works better than just list the tags all_tags = ds.waveforms[ista].get_waveform_tags() if len(all_tags)==0:continue #----loop through each stream---- for itag in all_tags: if v:print("FFT for station %s and trace %s" % (ista,itag)) # read waveform data source = ds.waveforms[ista][itag] if len(source)==0:continue # channel info comp = source[0].stats.channel if comp[-1] =='U': comp.replace('U','Z') #exclude some channels in the exclude_chan list. if comp in exclude_chan: print(comp+" is in the exclude_chan list. Skip it!") continue fftdata=FFTData(source,win_len,step,stainv=inv1, time_norm=time_norm,freq_norm=freq_norm, smooth=smooth,freqmin=freqmin,freqmax=freqmax, smooth_spec=smooth_spec,taper_frac=taper_frac,df=df) if fftdata.data is not None: fftdata_all.append(fftdata) #### return fftdata_all def smooth_source_spect(fft1,cc_method,sn): ''' this function smoothes amplitude spectrum of the 2D spectral matrix. (used in S1) PARAMETERS: --------------------- cc_para: dictionary containing useful cc parameters fft1: source spectrum matrix RETURNS: --------------------- sfft1: complex numpy array with normalized spectrum ''' smoothspect_N = sn #cc_para['smoothspect_N'] N=fft1.shape[0] Nfft2=fft1.shape[1] fft1=fft1.reshape(fft1.size) if cc_method == 'deconv': #-----normalize single-station cc to z component----- temp = utils.moving_ave(np.abs(fft1),smoothspect_N) try: sfft1 = fft1/temp**2 except Exception: raise ValueError('smoothed spectrum has zero values') elif cc_method == 'coherency': temp = utils.moving_ave(np.abs(fft1),smoothspect_N) try: sfft1 = fft1/temp except Exception: raise ValueError('smoothed spectrum has zero values') elif cc_method == 'xcorr': sfft1 = fft1 else: raise ValueError('no correction correlation method is selected at L59') return sfft1.reshape(N,Nfft2) # def do_correlation(sfile,win_len,step,maxlag,cc_method='xcorr',acorr_only=False, xcorr_only=False,substack=False,substack_len=None,smoothspect_N=20, maxstd=10,freqmin=None,freqmax=None,time_norm='no',freq_norm='no', smooth_N=20,exclude_chan=[None],outdir='.',v=True): """ Wrapper for computing correlation functions. It includes two key steps: 1) compute and assemble the FFT of all data in the sfile, into a list of FFTData objects; 2) loop through the FFTData object list and do correlation (auto or xcorr) for each source-receiver pair. ====RETURNS==== ndata: the number of station-component pairs in the sfile, that have been processed. """ if win_len in [1,2,3]: print("!!!WARNING: you may call do_correlation() in the old way with the 2nd argument as the ncomp info.") print(" This may cause errors with arguments getting the wrong values. In this version and later,") print(" ncomp is deprecated. No change for other arguments. This warning will be removed in") print(" versions v0.7.x and later.") if acorr_only and xcorr_only: raise ValueError('acorr_only and xcorr_only CAN NOT all be True.') tname = sfile.split('/')[-1] tmpfile = os.path.join(outdir,tname.split('.')[0]+'.tmp') if not os.path.isdir(outdir):os.makedirs(outdir) #file to store CC results. outfile=os.path.join(outdir,tname) # check whether time chunk been processed or not if os.path.isfile(tmpfile): ftemp = open(tmpfile,'r') alines = ftemp.readlines() if len(alines) and alines[-1] == 'done': return 0 else: ftemp.close() os.remove(tmpfile) if os.path.isfile(outfile): os.remove(outfile) ftmp = open(tmpfile,'w') ##############compute FFT############# fftdata=assemble_fft(sfile,win_len,step,freqmin=freqmin,freqmax=freqmax, time_norm=time_norm,freq_norm=freq_norm,smooth=smooth_N,exclude_chan=exclude_chan) ndata=len(fftdata) #############PERFORM CROSS-CORRELATION################## if v: print(tname) iend=ndata for iiS in range(ndata): # get index right for auto/cross correlation istart=iiS; src=fftdata[iiS].net+"."+fftdata[iiS].sta # if acorr_only:iend=np.minimum(iiS+ncomp,ndata) # if xcorr_only:istart=np.minimum(iiS+ncomp,ndata) #-----------now loop III for each receiver B---------- for iiR in range(istart,iend): # if v:print('receiver: %s %s' % (fftdata[iiR].net,fftdata[iiR].sta)) rcv=fftdata[iiR].net+"."+fftdata[iiR].sta if (acorr_only and src==rcv) or (xcorr_only and src != rcv) or (not acorr_only and not xcorr_only): if fftdata[iiS].data is not None and fftdata[iiR].data is not None: if v:print('receiver: %s %s' % (fftdata[iiR].net,fftdata[iiR].sta)) corrdata=correlate(fftdata[iiS],fftdata[iiR],maxlag,method=cc_method,substack=substack, smoothspect_N=smoothspect_N,substack_len=substack_len, maxstd=maxstd) if corrdata.data is not None: corrdata.to_asdf(file=outfile) # create a stamp to show time chunk being done ftmp.write('done') ftmp.close() return ndata def correlate(fftdata1,fftdata2,maxlag,method='xcorr',substack=False, substack_len=None,smoothspect_N=20,maxstd=10,terror=0.01): ''' this function does the cross-correlation in freq domain and has the option to keep sub-stacks of the cross-correlation if needed. it takes advantage of the linear relationship of ifft, so that stacking is performed in spectrum domain first to reduce the total number of ifft. PARAMETERS: --------------------- fftdata1: FFTData for the source station fftdata2: FFTData of the receiver station maxlag: maximum lags to keep in the cross correlation method: cross-correlation methods selected by the user terror: 0-1 fraction of timing error in searching for overlapping. The timing error = terror*dt RETURNS: --------------------- corrdata: CorrData object of cross-correlation functions in time domain ''' corrdata=CorrData() #check overlapping timestamps before any other processing #this step is required when there are gaps in the data. ind1,ind2=utils.check_overlap(fftdata1.time,fftdata2.time,error=terror*fftdata1.dt) if not len(ind1): print('no overlapped timestamps in the data.') return corrdata #---------- check the existence of earthquakes by std of the data.---------- source_std = fftdata1.std[ind1] sou_ind = np.where((source_std<maxstd)&(source_std>0)&(np.isnan(source_std)==0))[0] if not len(sou_ind): return corrdata receiver_std = fftdata2.std[ind2] rec_ind = np.where((receiver_std<maxstd)&(receiver_std>0)&(np.isnan(receiver_std)==0))[0] if not len(rec_ind): return corrdata bb=np.intersect1d(sou_ind,rec_ind) if len(bb)==0:return corrdata bb_data1=[ind1[i] for i in bb] bb_data2=[ind2[i] for i in bb] #----load paramters---- dt = fftdata1.dt cc_len = fftdata1.win_len cc_step = fftdata1.step if substack_len is None: substack_len=cc_len Nfft = fftdata1.Nfft Nfft2 = Nfft//2 fft1=np.conj(fftdata1.data[bb_data1,:Nfft2]) #get the conjugate of fft1 nwin = fft1.shape[0] fft2=fftdata2.data[bb_data2,:Nfft2] timestamp=fftdata1.time[bb_data1] if method != "xcorr": fft1 = smooth_source_spect(fft1,method,smoothspect_N) #------convert all 2D arrays into 1D to speed up-------- corr = np.zeros(nwin*Nfft2,dtype=np.complex64) corr = fft1.reshape(fft1.size,)*fft2.reshape(fft2.size,) if method == "coherency": temp = utils.moving_ave(np.abs(fft2.reshape(fft2.size,)),smoothspect_N) corr /= temp corr = corr.reshape(nwin,Nfft2) if substack: if substack_len == cc_len: # choose to keep all fft data for a day s_corr = np.zeros(shape=(nwin,Nfft),dtype=np.float32) # stacked correlation ampmax = np.zeros(nwin,dtype=np.float32) n_corr = np.zeros(nwin,dtype=np.int16) # number of correlations for each substack t_corr = timestamp # timestamp crap = np.zeros(Nfft,dtype=np.complex64) for i in range(nwin): n_corr[i]= 1 crap[:Nfft2] = corr[i,:] crap[:Nfft2] = crap[:Nfft2]-np.mean(crap[:Nfft2]) # remove the mean in freq domain (spike at t=0) crap[-(Nfft2)+1:] = np.flip(np.conj(crap[1:(Nfft2)]),axis=0) crap[0]=complex(0,0) s_corr[i,:] = np.real(np.fft.ifftshift(scipy.fftpack.ifft(crap, Nfft, axis=0))) # remove abnormal data ampmax = np.max(s_corr,axis=1) tindx = np.where( (ampmax<20*np.median(ampmax)) & (ampmax>0))[0] s_corr = s_corr[tindx,:] t_corr = t_corr[tindx] n_corr = n_corr[tindx] else: # get time information Ttotal = timestamp[-1]-timestamp[0] # total duration of what we have now tstart = timestamp[0] nstack = int(np.round(Ttotal/substack_len)) ampmax = np.zeros(nstack,dtype=np.float32) s_corr = np.zeros(shape=(nstack,Nfft),dtype=np.float32) n_corr = np.zeros(nstack,dtype=np.int) t_corr = np.zeros(nstack,dtype=np.float) crap = np.zeros(Nfft,dtype=np.complex64) for istack in range(nstack): # find the indexes of all of the windows that start or end within itime = np.where( (timestamp >= tstart) & (timestamp < tstart+substack_len) )[0] if len(itime)==0:tstart+=substack_len;continue crap[:Nfft2] = np.mean(corr[itime,:],axis=0) # linear average of the correlation crap[:Nfft2] = crap[:Nfft2]-np.mean(crap[:Nfft2]) # remove the mean in freq domain (spike at t=0) crap[-(Nfft2)+1:]=np.flip(np.conj(crap[1:(Nfft2)]),axis=0) crap[0]=complex(0,0) s_corr[istack,:] = np.real(np.fft.ifftshift(scipy.fftpack.ifft(crap, Nfft, axis=0))) n_corr[istack] = len(itime) # number of windows stacks t_corr[istack] = tstart # save the time stamps tstart += substack_len #print('correlation done and stacked at time %s' % str(t_corr[istack])) # remove abnormal data ampmax = np.max(s_corr,axis=1) tindx = np.where( (ampmax<20*np.median(ampmax)) & (ampmax>0))[0] s_corr = s_corr[tindx,:] t_corr = t_corr[tindx] n_corr = n_corr[tindx] else: # average daily cross correlation functions ampmax = np.max(corr,axis=1) tindx = np.where( (ampmax<20*np.median(ampmax)) & (ampmax>0))[0] n_corr = nwin s_corr = np.zeros(Nfft,dtype=np.float32) t_corr = timestamp[0] crap = np.zeros(Nfft,dtype=np.complex64) crap[:Nfft2] = np.mean(corr[tindx],axis=0) crap[:Nfft2] = crap[:Nfft2]-np.mean(crap[:Nfft2],axis=0) crap[-(Nfft2)+1:]=np.flip(np.conj(crap[1:(Nfft2)]),axis=0) s_corr = np.real(np.fft.ifftshift(scipy.fftpack.ifft(crap, Nfft, axis=0))) # trim the CCFs in [-maxlag maxlag] t = np.arange(-Nfft2+1, Nfft2)*dt ind = np.where(np.abs(t) <= maxlag)[0] if s_corr.ndim==1: s_corr = s_corr[ind] elif s_corr.ndim==2: s_corr = s_corr[:,ind] ### call CorrData to build the object cc_comp= fftdata1.chan[-1]+fftdata2.chan[-1] dist,azi,baz = obspy.geodetics.base.gps2dist_azimuth(fftdata1.lat,fftdata1.lon,fftdata2.lat,fftdata2.lon) corrdata=CorrData(net=[fftdata1.net,fftdata2.net],sta=[fftdata1.sta,fftdata2.sta],\ loc=[fftdata1.loc,fftdata2.loc],chan=[fftdata1.chan,fftdata2.chan],\ lon=[fftdata1.lon,fftdata2.lon],lat=[fftdata1.lat,fftdata2.lat],\ ele=[fftdata1.ele,fftdata2.ele],cc_comp=cc_comp,lag=maxlag,\ dt=fftdata1.dt,cc_len=cc_len,cc_step=cc_step,dist=dist/1000,az=azi,\ baz=baz,time=t_corr,data=s_corr,substack=substack,\ side="A",misc={"cc_method":method,"dist_unit":"km"}) return corrdata def do_stacking(ccfiles,pairlist=None,outdir='./STACK',method=['linear'], rotation=False,correctionfile=None,flag=False,keep_substack=False, to_egf=False): # source folder if pairlist is None: pairlist,netsta_all=get_stationpairs(ccfiles,False) if len(ccfiles)==0: raise IOError('Abort! no available CCF data for stacking') for s in netsta_all: tmp = os.path.join(outdir,s) if not os.path.isdir(tmp):os.mkdir(tmp) if isinstance(pairlist,str):pairlist=[pairlist] if not os.path.isdir(outdir):os.makedirs(outdir) if rotation: enz_system = ['EE','EN','EZ','NE','NN','NZ','ZE','ZN','ZZ'] rtz_components = ['ZR','ZT','ZZ','RR','RT','RZ','TR','TT','TZ'] for pair in pairlist: ttr = pair.split('_') snet,ssta = ttr[0].split('.') rnet,rsta = ttr[1].split('.') idir = ttr[0] # continue when file is done toutfn = os.path.join(outdir,idir+'/'+pair+'.tmp') if os.path.isfile(toutfn):continue if flag:print('assembling all corrdata ...') t0=time.time() corrdict_all=dict() #all components for the single station pair txtract=np.zeros(len(ccfiles),dtype=np.float32) tmerge=np.zeros(len(ccfiles),dtype=np.float32) tparameters=None for i,ifile in enumerate(ccfiles): # tt00=time.time() corrdict=extract_corrdata(ifile,pair=pair) # txtract[i]=time.time()-tt00 if len(list(corrdict.keys()))>0: comp_list=list(corrdict[pair].keys()) if len(comp_list)==0: continue elif len(comp_list) >9: print(comp_list) raise ValueError('more than 9 cross-component exists for %s %s! please double check'%(ifile,pair)) ### merge same component corrdata. # tt11=time.time() for c in comp_list: #convert corrdata to empirical Green's functions by #taking the negative time derivative. See types.CorrData.to_egf() for details. if to_egf: corrdict[pair][c].to_egf() if tparameters is None:tparameters=corrdict[pair][c].misc if c in list(corrdict_all.keys()): corrdict_all[c].merge(corrdict[pair][c]) else:corrdict_all[c]=corrdict[pair][c] # tmerge[i]=time.time()-tt11 # # if flag:print('extract time:'+str(np.sum(txtract))) # if flag:print('merge time:'+str(np.sum(tmerge))) t1=time.time() if flag:print('finished assembling in %6.2fs ...'%(t1-t0)) #get length info from anyone of the corrdata, assuming all corrdata having the same length. cc_comp=list(corrdict_all.keys()) #final check on number of keys after merging all data. if len(cc_comp)==0: if flag:print('continue! no cross components for %s'%(pair)) continue elif len(cc_comp)<9 and rotation: if flag:print('continue! not enough cross components for %s to do rotation'%(pair)) continue elif len(cc_comp) >9: print(cc_comp) raise ValueError('more than 9 cross-component exists for %s! please double check'%(pair)) #save data. outfn = pair+'.h5' if flag:print('ready to output to %s'%(outfn)) t2=time.time() # loop through cross-component for stacking if isinstance(method,str):method=[method] tparameters['station_source']=ssta tparameters['station_receiver']=rsta if rotation: #need to order the components according to enz_system list. if corrdict_all[cc_comp[0]].substack: npts_segmt = corrdict_all[cc_comp[0]].data.shape[1] else: npts_segmt = corrdict_all[cc_comp[0]].data.shape[0] bigstack=np.zeros(shape=(9,npts_segmt),dtype=np.float32) if flag:print('applying stacking and rotation ...') stack_h5 = os.path.join(outdir,idir+'/'+outfn) ds=pyasdf.ASDFDataSet(stack_h5,mpi=False) #codes for ratation option. for m in method: data_type = 'Allstack_'+m bigstack=np.zeros(shape=(9,npts_segmt),dtype=np.float32) for icomp in range(9): comp = enz_system[icomp] indx =
np.where(cc_comp==comp)
numpy.where
#!/usr/bin/env python # -*- coding: utf-8 -* """ tools module """ __author__ = 'Dr. <NAME>, University of Bristol, UK' __maintainer__ = 'Dr. <NAME>' __email__ = '<EMAIL>' __status__ = 'Development' import sys import os import copy import numpy as np try: import opt_einsum as oe OE_AVAILABLE = True except ImportError: OE_AVAILABLE = False from subprocess import Popen, PIPE from pyscf import gto, scf, dft, symm, lib from pyscf import tools as pyscf_tools from typing import Tuple, List, Dict, Union MAX_CYCLE = 100 NATORB_THRES = 1.e-12 class Logger(object): """ this class pipes all write statements to both stdout and output_file """ def __init__(self, output_file, both=True) -> None: """ init Logger """ self.terminal = sys.stdout self.log = open(output_file, 'a') self.both = both def write(self, message) -> None: """ define write """ self.log.write(message) if self.both: self.terminal.write(message) def flush(self) -> None: """ define flush """ pass def git_version() -> str: """ this function returns the git revision as a string """ def _minimal_ext_cmd(cmd): env = {} for k in ['SYSTEMROOT', 'PATH', 'HOME']: v = os.environ.get(k) if v is not None: env[k] = v # LANGUAGE is used on win32 env['LANGUAGE'] = 'C' env['LANG'] = 'C' env['LC_ALL'] = 'C' out = Popen(cmd, stdout=PIPE, env=env, \ cwd=os.path.dirname(__file__)).communicate()[0] return out try: out = _minimal_ext_cmd(['git', 'rev-parse', 'HEAD']) GIT_REVISION = out.strip().decode('ascii') except OSError: GIT_REVISION = "Unknown" return GIT_REVISION def dim(mo_occ: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """ determine molecular dimensions """ return np.where(np.abs(mo_occ[0]) > 0.)[0], np.where(np.abs(mo_occ[1]) > 0.)[0] def mf_info(mf: Union[scf.hf.SCF, dft.rks.KohnShamDFT]) -> Tuple[Tuple[np.ndarray, np.ndarray], \ Tuple[np.ndarray, np.ndarray]]: """ retrieve mf information (mo coefficients & occupations) """ # mo occupations if np.asarray(mf.mo_occ).ndim == 1: mo_occ = (np.ones(np.count_nonzero(0. < mf.mo_occ)), np.ones(np.count_nonzero(1. < mf.mo_occ))) else: mo_occ = (mf.mo_occ[0][np.nonzero(mf.mo_occ[0])], mf.mo_occ[1][
np.nonzero(mf.mo_occ[1])
numpy.nonzero
import warnings import pytest import numpy as np import os,sys,inspect currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) parentdir = os.path.dirname(currentdir) sys.path.insert(0,parentdir) from ADPYNE.AutoDiff import AutoDiff, vectorize import ADPYNE.elemFunctions as ef # helper function tests def test_convertNonArray_array(): AD = AutoDiff(np.array([[1,2]]),1) assert np.all(np.equal(AD.val, np.array([[1,2]]))) def test_convertNonArray_num(): AD = AutoDiff(1,1) assert np.all(np.equal(AD.val, np.array([[1]]))) def test_calcJacobian_array(): AD = AutoDiff(1,2) assert np.all(np.equal(AD.jacobian, np.array([[1]]))) def test_calcJacobian_array_withJ(): AD = AutoDiff(1,1,1,0,np.array([[1]])) assert np.all(np.equal(AD.jacobian, np.array([[1]]))) def test_calcJacobian_vector(): AD = AutoDiff(4, np.array([[2, 1]]).T, n=2, k=1) assert np.all(np.equal(AD.jacobian, np.array([[1, 0]]))) AD = AutoDiff(3, np.array([[1, 2]]).T, n=2, k=2) assert np.all(np.equal(AD.jacobian, np.array([[0, 1]]))) def test_calcDerivative(): AD = AutoDiff(4, 2, n=4, k=3) assert np.all(np.equal(AD.der, np.array([[0, 0, 2, 0]]))) # addition tests def test_add_ad_results(): # single input cases # positive numbers x = AutoDiff(5, 2) f = x + x assert f.val == 10 assert f.der == 4 assert f.jacobian == 2 # negative numbers y = AutoDiff(-5, 2) f = y + y assert f.val == -10 assert f.der == 4 assert f.jacobian == 2 def test_add_vector_results(): x = AutoDiff(np.array([[3],[1]]), np.array([[2, 1]]).T, 2, 1) y = AutoDiff(np.array([[2],[-3]]), np.array([[3, 2]]).T, 2, 2) f = x + y assert np.all(f.val == np.array([[5], [-2]])) assert np.all(f.der == np.array([[2, 3], [1, 2]])) assert np.all(f.jacobian == np.array([[1, 1], [1, 1]])) def test_add_constant_results(): # single input case # positive numbers x = AutoDiff(5, 2) f = x + 3 assert f.val == 8 assert f.der == 2 assert f.jacobian == 1 # negative numbers x = AutoDiff(-5, 2) f = x + 3 assert f.val == -2 assert f.der == 2 assert f.jacobian == 1 def test_add_constant_vector_results(): x = AutoDiff(np.array([[1, 3]]).T, np.array([[2, 1]]).T, 2, 1) f = x + 3 assert np.all(f.val == np.array([[4, 6]]).T) assert np.all(f.der == np.array([[2, 0], [1, 0]])) assert np.all(f.jacobian == np.array([[1, 0], [1, 0]])) # reverse addition tests def test_radd_constant_results(): # single input case # positive numbers x = AutoDiff(5, 2) f = 3 + x assert f.val == 8 assert f.der == 2 assert f.jacobian == 1 # negative numbers x = AutoDiff(-5, 2) f = 3 + x assert f.val == -2 assert f.der == 2 assert f.jacobian == 1 def test_radd_constant_vector_results(): x = AutoDiff(np.array([[1, 3]]).T, np.array([[2, 1]]).T, 2, 1) f = 3 + x assert np.all(f.val == np.array([[4, 6]]).T) assert np.all(f.der == np.array([[2, 0], [1, 0]])) assert np.all(f.jacobian == np.array([[1, 0], [1, 0]])) # subtraction tests def test_sub_ad_results(): # single input cases # positive numbers x = AutoDiff(5, 2) f = x - x assert f.val == 0 assert f.der == 0 assert f.jacobian == 0 # negative numbers y = AutoDiff(-5, 2) f = y - y assert f.val == 0 assert f.der == 0 assert f.jacobian == 0 def test_sub_vector_results(): x = AutoDiff([3, 1], [2, 1], 2, 1) y = AutoDiff([2, -3], [3, 2], 2, 2) f = x - y assert np.all(f.val == np.array([[1], [4]])) assert np.all(f.der == np.array([[2, -3], [1, -2]])) assert np.all(f.jacobian == np.array([[1, -1], [1, -1]])) def test_sub_constant_results(): # single input case # positive numbers x = AutoDiff(5, 2) f = x - 3 assert f.val == 2 assert f.der == 2 assert f.jacobian == 1 # negative numbers x = AutoDiff(-5, 2) f = x - 3 assert f.val == -8 assert f.der == 2 assert f.jacobian == 1 def test_sub_constant_vector_results(): x = AutoDiff([1, 3], [2, 1], 2, 1) f = x - 3 assert np.all(f.val == np.array([[-2, 0]]).T) assert np.all(f.der == np.array([[2, 0], [1, 0]])) assert np.all(f.jacobian == np.array([[1, 0], [1, 0]])) # reverse subtraction tests def test_rsub_constant_results(): # single input case # positive numbers x = AutoDiff(5, 2) f = 3 - x assert f.val == -2 assert f.der == 2 assert f.jacobian == 1 # negative numbers x = AutoDiff(-5, 2) f = 3 - x assert f.val == 8 assert f.der == 2 assert f.jacobian == 1 def test_rsub_constant_vector_results(): x = AutoDiff([1, 3], [2, 1], 2, 1) f = 3 - x assert np.all(f.val == np.array([[2, 0]]).T) assert np.all(f.der == np.array([[2, 0], [1, 0]])) assert np.all(f.jacobian == np.array([[1, 0], [1, 0]])) # multiplication tests def test_mul_ad_results(): # single input case # positive numbers x = AutoDiff(5, 2) f = x * x assert f.val == 25 assert f.der == 20 assert f.jacobian == 10 # negative numbers x = AutoDiff(-5, 2) f = x * x assert f.val == 25 assert f.der == -20 assert f.jacobian == -10 def test_mul_vector_results(): x = AutoDiff([3, 1], [2, 1], 2, 1) y = AutoDiff([2, -3], [1, 2], 2, 2) f = x*y assert np.all(f.val == np.array([[6, -3]]).T) assert np.all(f.der == np.array([[4, 3], [-3, 2]])) assert np.all(f.jacobian == np.array([[2, 3], [-3, 1]])) def test_mul_constant_results(): # single input case # positive numbers x = AutoDiff(5, 2) f = x * 3 assert f.val == 15 assert f.der == 6 assert f.jacobian == 3 # negative numbers x = AutoDiff(-5, 2) f = x * 3 assert f.val == -15 assert f.der == 6 assert f.jacobian == 3 def test_mul_constant_vector_results(): x = AutoDiff([3, 1], [2, 1], 2, 1) f = x * 3 assert np.all(f.val == np.array([[9, 3]]).T) assert np.all(f.der == np.array([[6, 0], [3, 0]])) assert np.all(f.jacobian == np.array([[3, 0], [3, 0]])) # reverse multiplication tests def test_rmul_constant_results(): # single input case # positive numbers x = AutoDiff(5, 2) f = 3 * x assert f.val == 15 assert f.der == 6 assert f.jacobian == 3 # negative numbers x = AutoDiff(-5, 2) f = 3 * x assert f.val == -15 assert f.der == 6 assert f.jacobian == 3 def test_rmul_constant_vector_results(): x = AutoDiff([3, 1], [2, 1], 2, 1) f = 3 * x assert np.all(f.val == np.array([[9, 3]]).T) assert np.all(f.der == np.array([[6, 0], [3, 0]])) assert np.all(f.jacobian == np.array([[3, 0], [3, 0]])) # division tests def test_truediv_ad_results(): # single input case # positive numbers x = AutoDiff(5, 2) f = x / x assert f.val == 1 assert f.der == 0 assert f.jacobian == 0 # negative numbers x = AutoDiff(-5, 2) f = x / x assert f.val == 1 assert f.der == 0 assert f.jacobian == 0 def test_truediv_vector_results(): x = AutoDiff([3, 1], [2, 1], 2, 1) y = AutoDiff([2, -3], [1, 2], 2, 2) f = x/y assert np.all(f.val == np.array([[3/2, -1/3]]).T) assert np.all(f.der == np.array([[1, -0.75], [-1/3, -2/9]])) assert np.all(f.jacobian == np.array([[0.5, -0.75], [-1/3, -1/9]])) def test_truediv_constant_results(): # single input case # positive numbers x = AutoDiff(9, 6) f = x / 3 assert f.val == 3 assert f.der == 2 assert f.jacobian == (1/3) # negative numbers x = AutoDiff(-9, 6) f = x / 3 assert f.val == -3 assert f.der == 2 assert f.jacobian == (1/3) def test_truediv_constant_vector_results(): x = AutoDiff([-9, 3], [2, 1], 2, 1) f = x / 3 assert np.all(f.val == np.array([[-3, 1]]).T) assert np.all(f.der == np.array([[2/3, 0], [1/3, 0]])) assert np.all(f.jacobian == np.array([[1/3, 0], [1/3, 0]])) # reverse division tests def test_rtruediv_constant_results(): # single input case # positive numbers x = AutoDiff(3, 2) f = 6 / x assert f.val == 2 assert f.der == -4/3 assert f.jacobian == -2/3 # negative numbers x = AutoDiff(-3, 2) f = 6 / x assert f.val == -2 assert f.der == -4/3 assert f.jacobian == -2/3 def test_rtruediv_constant_vector_results(): x = AutoDiff([-9, 3], [2, 1], 1, 1) f = 3 / x assert np.all(f.val == np.array([[-1/3, 1]]).T) assert np.all(f.der == np.array([[-3*((-9)**(-2))*2], [-3*((3)**(-2))*1]])) assert np.all(f.jacobian == np.array([[-3*((-9)**(-2))*1], [-3*((3)**(-2))*1]])) # power tests def test_pow_ad_results(): x = AutoDiff(2, 1) f = x**x assert f.val == 4 assert f.der == 4 + np.log(16) assert f.jacobian == 4 + np.log(16) def test_rpow_vector_results(): x = AutoDiff([4, 3], [2, 1], 2, 1) y = AutoDiff([2, 1], [1, 3], 2, 2) f = x**y assert np.all(f.val == np.array([[4**2, 3**1]]).T) assert np.all(f.der == np.array([[2*(4**(2-1))*2, (4**2) * np.log(4) * 1], [1*(3**(1-1))*1, (3**1) * np.log(3)*3]])) assert np.all(f.jacobian == np.array([[2*(4**(2-1))*1, (4**2) * np.log(4) * 1], [1*(3**(1-1))*1, (3**1) * np.log(3)*1]])) def test_pow_constant_results(): # positive numbers x = AutoDiff(5, 2) f = x**3 assert f.val == 125 assert f.der == 150 assert f.jacobian == 75 # negative numbers x = AutoDiff(-5, 2) f = x**3 assert f.val == -125 assert f.der == 150 assert f.jacobian == 75 def test_pow_constant_vector_results(): x = AutoDiff([4, 3], [2, 1], 1, 1) f = x**3 assert np.all(f.val == np.array([[4**3, 3**3]]).T) assert np.all(f.der == np.array([[3*(4**2)*2], [3*(3**2)*1]])) assert np.all(f.jacobian == np.array([[3*(4**2)*1], [3*(3**2)*1]])) # reverse power tests def test_rpow_constant_results(): x = AutoDiff(5, 2) f = 3**x assert f.val == 243 assert f.der == 486 * np.log(3) assert f.jacobian == 243 * np.log(3) def test_rpow_constant_vector_results(): x = AutoDiff([4, 3], [2, 1], 1, 1) f = 3**x assert np.all(f.val == np.array([[3**(4), 3**3]]).T) assert np.all(f.der == np.array([[(3**(4))*2 * np.log(3)], [(3**(3))*1 * np.log(3)]])) assert np.all(f.jacobian == np.array([[(3**(4))*1 * np.log(3)], [(3**(3))*1 * np.log(3)]])) # positive tests def test_pos_results(): # positive numbers x = AutoDiff(5, 2) f = + x assert f.val == 5 assert f.der == 2 assert f.jacobian == 1 # negative numbers y = AutoDiff(-5, 2) f = + y assert f.val == -5 assert f.der == 2 assert f.jacobian == 1 def test_pos_vector_results(): x = AutoDiff([4, 3], [2, 1], 1, 1) f = + x assert np.all(f.val == np.array([[4, 3]]).T) assert np.all(f.der == np.array([[2], [1]])) assert np.all(f.jacobian == np.array([[1], [1]])) y = AutoDiff([-4, -3], [2, 1], 1, 1) g = + y assert np.all(g.val == np.array([[-4, -3]]).T) assert np.all(g.der == np.array([[2], [1]])) assert np.all(g.jacobian == np.array([[1], [1]])) # negation tests def test_neg_results(): # positive numbers x = AutoDiff(5, 2) f = - x assert f.val == -5 assert f.der == -2 assert f.jacobian == -1 # negative numbers y = AutoDiff(-5, 2) f = - y assert f.val == 5 assert f.der == -2 assert f.jacobian == -1 def test_neg_vector_results(): x = AutoDiff([4, 3], [2, 1], 1, 1) f = - x assert np.all(f.val == np.array([[-4, -3]]).T) assert np.all(f.der == np.array([[-2], [-1]])) assert np.all(f.jacobian == np.array([[-1], [-1]])) y = AutoDiff([-4, -3], [2, 1], 1, 1) g = - y assert np.all(g.val == np.array([[4, 3]]).T) assert np.all(g.der == np.array([[-2], [-1]])) assert np.all(g.jacobian == np.array([[-1], [-1]])) def test_neg_constant_results(): x = 3 f = - x assert f == -3 # absolute value tests def test_abs_results(): # positive numbers x = AutoDiff(5, 2) f = abs(x) assert f.val == 5 assert f.der == 2 assert f.jacobian == 1 # negative numbers y = AutoDiff(-5, 2) f = abs(y) assert f.val == 5 assert f.der == -2 assert f.jacobian == -1 def test_abs_vector_results(): x = AutoDiff([4, 3], [2, 1], 1, 1) f = abs(x) assert np.all(f.val == np.array([[4, 3]]).T) assert np.all(f.der == np.array([[2], [1]])) assert np.all(f.jacobian == np.array([[1], [1]])) y = AutoDiff([-4, -3], [2, 1], 1, 1) g = abs(y) assert np.all(g.val == np.array([[4, 3]]).T) assert np.all(g.der == np.array([[-2], [-1]])) assert np.all(g.jacobian == np.array([[-1], [-1]])) def test_abs_constant_results(): x = -3 f = abs(x) assert f == 3 # Comparison tests def test_eq_results(): x = AutoDiff(5, 2) y = AutoDiff(5, 2) z = AutoDiff(5, 1) assert x == y assert (x == z) == False def test_eq_vector_results(): w = AutoDiff([4, 5], [2, 1], 1, 1) x = AutoDiff([4, 3], [2, 1], 1, 1) y = AutoDiff([4, 3], [2, 1], 1, 1) z = AutoDiff([4, 5], [2, 1], 1, 1) assert np.all(x == y) assert np.all(x==z) == False assert np.all(w==x) == False def test_eq_constant(): x = AutoDiff(5, 2) assert (x == 5) == False def test_ne_results(): x = AutoDiff(5, 2) y = AutoDiff(5, 2) z = AutoDiff(5, 1) assert x != z assert (x != y) == False def test_neq_vector_results(): w = AutoDiff([4, 5], [2, 1], 1, 1) x = AutoDiff([4, 3], [2, 1], 1, 1) y = AutoDiff([4, 3], [2, 1], 1, 1) z = AutoDiff([4, 5], [2, 1], 1, 1) assert np.all(x != y) == False assert np.all(x!=z) assert np.all(w!=x) def test_ne_constant(): x = AutoDiff(5, 2) assert x != 5 def test_vectorize(): x = AutoDiff(3, np.array([[2]]), n=3, k=1) y = AutoDiff(2, np.array([[2]]), n=3, k=2) z = AutoDiff(-1, np.array([[2]]), n=3, k=3) fs = [3*x + 2*y + 4*z, x - y + z, x/2, 2*x - 2*y] f = vectorize(fs, 3) assert np.all(f.val == np.array([[9],[0],[1.5],[2]])) assert np.all(f.der == np.array([[6, 4, 8], [2, -2, 2], [1, 0, 0], [4, -4, 0]])) assert np.all(f.jacobian ==
np.array([[3, 2, 4], [1, -1, 1], [0.5, 0, 0], [2, -2, 0]])
numpy.array
# [1] import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # [2] import cv2 import matplotlib.pyplot as plt import seaborn as sns import os from PIL import Image from keras.preprocessing.image import img_to_array from keras.preprocessing.image import load_img from keras.utils import np_utils # [3] parasitized_data = os.listdir('../input/cell_images/cell_images/Parasitized/') print(parasitized_data[:10]) #the output we get are the .png files uninfected_data = os.listdir('../input/cell_images/cell_images/Uninfected/') print('\n') print(uninfected_data[:10]) # [4] plt.figure(figsize = (12,12)) for i in range(4): plt.subplot(1, 4, i+1) img = cv2.imread('../input/cell_images/cell_images/Parasitized' + "/" + parasitized_data[i]) plt.imshow(img) plt.title('PARASITIZED : 1') plt.tight_layout() plt.show() # [5] plt.figure(figsize = (12,12)) for i in range(4): plt.subplot(1, 4, i+1) img = cv2.imread('../input/cell_images/cell_images/Uninfected' + "/" + uninfected_data[i+1]) plt.imshow(img) plt.title('UNINFECTED : 0') plt.tight_layout() plt.show() # [6] data = [] labels = [] for img in parasitized_data: try: img_read = plt.imread('../input/cell_images/cell_images/Parasitized/' + "/" + img) img_resize = cv2.resize(img_read, (50, 50)) img_array = img_to_array(img_resize) data.append(img_array) labels.append(1) except: None for img in uninfected_data: try: img_read = plt.imread('../input/cell_images/cell_images/Uninfected' + "/" + img) img_resize = cv2.resize(img_read, (50, 50)) img_array = img_to_array(img_resize) data.append(img_array) labels.append(0) except: None # [7] plt.imshow(data[0]) plt.show() # [8] image_data = np.array(data) labels =
np.array(labels)
numpy.array
import random from typing import List import numpy as np import prettytable random.seed(43) class _SimplexTable: """ A table that provides a convenient interface for the operation of the Simplex method. """ DECIMALS_FOR_AROUND = 3 def __init__(self, func_vec: np.ndarray, conditions_matrix: np.ndarray, constraints_vec: np.ndarray, var_tag: str, func_tag: str): """ Initialization of an object of the "Simplex table" class. :param func_vec: Coefficients of the equation. :param conditions_matrix: The left part of the restriction system. :param constraints_vec: The right part of the restriction system. :param var_tag: The name of the variables, default is "x". :param func_tag: The name of the function, default is "F". """ self.table: np.ndarray = NotImplemented self.var_tag = var_tag self.func_tag = func_tag self.column_tags: List[str] = NotImplemented self.row_tags: List[str] = NotImplemented self.column_indices: List[int] = NotImplemented self.row_indices: List[int] = NotImplemented self._has_optimal_solution = True self._was_solved = False self._set_table(func_vec, conditions_matrix, constraints_vec) def _set_table(self, c_vec: np.ndarray, a_matrix: np.ndarray, b_vec: np.ndarray) -> None: """ Filling the class object with data. :param c_vec: Coefficients of the equation. :param a_matrix: The left part of the restriction system. :param b_vec: The right part of the restriction system. :return: None. """ # 1. Check shapes of data. self._check_input_data(c_vec, a_matrix, b_vec) # 2. Set simplex-table. self.table = np.zeros([size + 1 for size in a_matrix.shape], dtype=np.float64) self.table[:-1, 1:] = a_matrix self.table[:-1, 0] = b_vec self.table[-1, 1:] = c_vec # 3. Set tags for print-ability. self.column_indices = [i for i in range(self.table.shape[1])] self.column_tags = [f"{self.var_tag}{i}" for i in self.column_indices] self.column_tags[0] = "S0" self.row_indices = [i + self.table.shape[1] for i in range(self.table.shape[0])] self.row_tags = [f"{self.var_tag}{i}" for i in self.row_indices] self.row_tags[-1] = self.func_tag @staticmethod def _check_input_data(c_vec: np.ndarray, a_matrix: np.ndarray, b_vec: np.ndarray) -> None: """ Checking the dimensions of the input data for errors. :param c_vec: Coefficients of the equation. :param a_matrix: The left part of the restriction system. :param b_vec: The right part of the restriction system. :return: None. """ if len(b_vec.shape) > 1: raise ValueError("The shape of constraints-vector must be of the form (m,).") if len(c_vec.shape) > 1: raise ValueError("The shape of function-vector must be of the form (n,).") if b_vec.shape[0] != a_matrix.shape[0]: raise ValueError("The shape of constraints-vector must be of the form (m,); " "the shape of conditions-matrix must be of the form (m, n).") if c_vec.shape[0] != a_matrix.shape[1]: raise ValueError("The shape of function-vector must be of the form (n,); " "the shape of conditions-matrix must be of the form (m, n).") def get_index_of_pivot_column(self) -> int: """ Searches for a pivot column in the simplex table. :return: Index of a pivot column. """ index_of_pivot_column = NotImplemented # 1. Поиск индекса разрешающего столбца в столбце пересечений S0 со строками с переменными. column_s0 = self.table[:-1, 0] for row_index, item_s0 in enumerate(column_s0): if item_s0 < 0: row_without_s0 = self.table[row_index, 1:] if row_without_s0.min() >= 0: # System hasn't optimal solution. self._has_optimal_solution = False return -1 if item_s0 == column_s0.min(): index_of_pivot_column = row_without_s0.argmin() + 1 if index_of_pivot_column is not NotImplemented: return index_of_pivot_column # 2. Поиск индекса разрешающего столбца в строке пересечений F со столбцами с переменными. row_func = self.table[-1, 1:] if row_func.max() > 0: # find index of minimal positive value in row_func. index_of_min: np.ndarray = np.where(row_func == [min(row_func[row_func > 0])])[0] return int(index_of_min[0]) + 1 # Optimal solution was found. self._was_solved = True return -1 def get_index_of_pivot_row(self, i_pc: int) -> int: """ Searches for a pivot row in the simplex table. :param i_pc: Index of a pivot column. :return: Index of a pivot row. """ targets_of_rows = np.zeros((self.table.shape[0] - 1,), dtype=np.float64) for index, row in enumerate(self.table[:-1]): if row[i_pc] and row[0] / row[i_pc] > 0: targets_of_rows[index] = row[0] / row[i_pc] else: targets_of_rows[index] = np.inf indices_of_mins = np.where(targets_of_rows == np.amin(targets_of_rows))[0] return random.choice(indices_of_mins) def recalculate(self, i_pr: int, i_pc: int) -> None: """ Performs one iteration of the recalculation of the simplex table for a pivot element. :param i_pr: Index of a pivot row. :param i_pc: Index of a pivot column. :return: None. """ self.column_tags[i_pc], self.row_tags[i_pr] = self.row_tags[i_pr], self.column_tags[i_pc] self.column_indices[i_pc], self.row_indices[i_pr] = self.row_indices[i_pr], self.column_indices[i_pc] central_item = self.table[i_pr, i_pc] new_table = np.copy(self.table) for i_r, column in enumerate(self.table): for i_c, item in enumerate(column): if i_r == i_pr and i_c == i_pc: new_table[i_r, i_c] = 1 / central_item elif i_r == i_pr: new_table[i_r, i_c] = item / central_item elif i_c == i_pc: new_table[i_r, i_c] = -item / central_item else: new_table[i_r, i_c] = item - self.table[i_pr, i_c] * self.table[i_r, i_pc] / central_item self.table = new_table def __str__(self) -> str: """ Returns a beautiful representation of a simplex table for printing. :return: Simplex table for print. """ table_for_print = prettytable.PrettyTable(field_names=["", *self.column_tags]) row_tags = np.array(self.row_tags).reshape((len(self.row_tags), 1)) data =
np.around(self.table, decimals=_SimplexTable.DECIMALS_FOR_AROUND)
numpy.around
import numpy as np import matplotlib.pyplot as plt import pandas as pd import pickle import os os.chdir('/export/home/tape/profile_depths/') from netsurfp2 import accuracy from plot_accuracies import * import sys sys.path[0] = '/export/home/tape' from tape.utils import * with open('cb513_netsurf.pkl', 'rb') as handle: predictions = pickle.load(handle) profiles = np.load('netsurfp2/CB513_HHblits.npz') ids = profiles['pdbids'] predictions['q3'].shape accuracies = accuracy(predictions['labels'], predictions['q3']) index_sorted = np.argsort(accuracies) sorted_inputs = profiles['data'][index_sorted] sorted_predictions = predictions['q3'][index_sorted] plt.scatter(np.arange(len(index_sorted)), accuracies[index_sorted]) sorted_inputs.shape mean_first = np.sum(sorted_inputs[:, :, 47], axis=1) / np.sum(sorted_inputs[:, :, 47] != 0.0, axis=1) mean_second = np.sum(sorted_inputs[:, :, 48], axis=1) / np.sum(sorted_inputs[:, :, 48] != 0.0, axis=1) mean_third = np.sum(sorted_inputs[:, :, 49], axis=1) / np.sum(sorted_inputs[:, :, 49] != 0.0, axis=1) plt.scatter(mean_first, accuracies[index_sorted]) plt.scatter(mean_second, accuracies[index_sorted]) plt.scatter(mean_third, accuracies[index_sorted]) protein_lengths = np.sum(sorted_inputs[:, :, 50], axis=-1) sparsity_pattern = np.sum(sorted_inputs[:, :, 20:40] != 0.0, axis=(1, 2)) / protein_lengths plt.scatter(protein_lengths, accuracies[index_sorted]) plt.scatter(sparsity_pattern, accuracies[index_sorted]) reconstructed_netsurf_predictions = np.load('cb513_uniclust30_netsurf.npz')['q3'] reconstructed_netsurf_keys = list(sorted(list(set(ids)))) reconstructed_netsurf_dict = dict(zip(reconstructed_netsurf_keys, range(len(reconstructed_netsurf_keys)))) reconstructed_netsurf_predictions = np.stack([reconstructed_netsurf_predictions[reconstructed_netsurf_dict[id]] for id in ids], axis=0) reconstructed_netsurf_accuracies = accuracy(predictions['labels'], reconstructed_netsurf_predictions) plt.scatter(accuracies, reconstructed_netsurf_accuracies) stats = [] for id in ids: file_name = f'cb513_uniclust30/{id}/{id}_PROFILE.hhm' stat = get_stats(file_name) stats.append(stat) ids[0] stats[0] plt.scatter([stat['neff'] for stat in stats], reconstructed_netsurf_accuracies, c=[stat['lower'] for stat in stats]) plt.scatter([stat['num_seq'] for stat in stats], reconstructed_netsurf_accuracies, c=[stat['lower'] for stat in stats]) plt.scatter(np.linspace(2, 6, 100), [np.mean(reconstructed_netsurf_accuracies[[stat['neff'] < x for stat in stats]]) for x in np.linspace(2, 6, 100)]) plt.scatter(np.linspace(5, 1000, 1000), [np.mean(reconstructed_netsurf_accuracies[[stat['num_seq'] < x for stat in stats]]) for x in np.linspace(5, 1000, 1000)]) np.mean(reconstructed_netsurf_accuracies[[stat['num_seq'] < 40 for stat in stats]]) transformer_accuracies = [accuracy_single(batch) for batch in transformer_results] transformer_ids = [a['id'].decode() for a in dataset.data] transformer_dict = dict(zip(transformer_ids, transformer_accuracies)) with open('/export/home/tape/results/epoch34/secondary_structure_profile_prediction_transformer_full/cb513.pkl', 'rb') as handle: transformer_results = pickle.load(handle) transformer_results = transformer_results[1] dataset = setup_dataset(task='secondary_structure', data_dir='/export/home/tape/data', split='cb513') transformer_accuracies = [accuracy_single(batch) for batch in transformer_results] transformer_ids = [a['id'].decode() for a in dataset.data] transformer_dict = dict(zip(transformer_ids, transformer_accuracies)) transformer_accuracies = [transformer_dict[id] for id in ids] transformer_accuracies = np.array(transformer_accuracies) plt.scatter(
np.linspace(2, 6, 100)
numpy.linspace
# %% import numpy as np from parameters import * # %% wxyz_all = () # the tuple that stores all the wannier xyz Oxyz_all = () # the tuple that stores all the Oxygen xyz Hxyz_all = () # the tuple that stores all the Hydrogen xyz fO_all = () fH_all = () boxlength_all = () # the tuple that stores all the boxlengths for ifolder in folder_names: for iconfig in test_configs: # 801 is the number of Config folders we have print(ifolder, iconfig) fxyz_name = ifolder + "/Config" + str(iconfig) + "/W64-bulk-HOMO_centers_s1-1_0.xyz" # this files stores the nucleus and wannier xyz fxyz = open(fxyz_name, "r") lines_all = fxyz.readlines() # read in all the lines for the fxyz file nxyz_lines = int(lines_all[0].split()[0]) # the total number of lines that stores xyz data of nuclues and wannier center # read in the coordinates of the nucleus lines_nucleus_start_index = 2 # start from the third line nucleus_xyz =
np.zeros((natoms, 3))
numpy.zeros
from scipy.spatial import cKDTree from sklearn.decomposition import PCA import numpy as np from .utils.descriptors import normalize def is_gt_match_3D(query_poses, ref_poses, distance_thresh, angle_thresh): distances = np.linalg.norm(np.expand_dims(query_poses['pos'], axis=1) - np.expand_dims(ref_poses['pos'], axis=0), axis=-1) angle_errors = np.arccos( (np.trace( np.matmul(np.expand_dims(np.linalg.inv(query_poses['rot']), axis=1), np.expand_dims(ref_poses['rot'], axis=0)), axis1=2, axis2=3) - 1)/2) return np.logical_and(distances < distance_thresh, angle_errors < angle_thresh) def is_gt_match_2D(query_poses, ref_poses, distance_thresh, angle_thresh): distances = np.linalg.norm( np.expand_dims([query_poses['x'], query_poses['y']], axis=2) - np.expand_dims([ref_poses['x'], ref_poses['y']], axis=1), axis=0) angle_errors = np.abs(np.mod(np.expand_dims(query_poses['angle'], axis=1) - np.expand_dims(ref_poses['angle'], axis=0) + np.pi, 2*np.pi) - np.pi) # bring it in [-pi,+pi] return
np.logical_and(distances < distance_thresh, angle_errors < angle_thresh)
numpy.logical_and
def get_image_parameters( particle_center_x_list=lambda : [0, ], particle_center_y_list=lambda : [0, ], particle_radius_list=lambda : [3, ], particle_bessel_orders_list=lambda : [[1, ], ], particle_intensities_list=lambda : [[.5, ], ], particle_speed_list = lambda : [10, ], particle_direction_list = lambda : [0, ], image_size=lambda : 128, image_background_level=lambda : .5, signal_to_noise_ratio=lambda : 30, gradient_intensity=lambda : .2, gradient_direction=lambda : 0, ellipsoidal_orientation=lambda : [0, ], ellipticity=lambda : 1): """Get image parameters. Inputs: particle_center_x_list: x-centers of the particles [px, list of real numbers] particle_center_y_list: y-centers of the particles [px, list of real numbers] particle_radius_list: radii of the particles [px, list of real numbers] particle_bessel_orders_list: Bessel orders of the particles [list (of lists) of positive integers] particle_intensities_list: intensities of the particles [list (of lists) of real numbers, normalized to 1] image_size: size of the image in pixels [px, positive integer] image_background_level: background level [real number normalized to 1] signal_to_noise_ratio: signal to noise ratio [positive real number] gradient_intensity: gradient intensity [real number normalized to 1] gradient_direction: gradient angle [rad, real number] ellipsoidal_orientation: Orientation of elliptical particles [rad, real number] ellipticity: shape of the particles, from spherical to elliptical [real number] Note: particle_center_x, particle_center_x, particle_radius, particle_bessel_order, particle_intensity, ellipsoidal_orientation must have the same length. Output: image_parameters: list with the values of the image parameters in a dictionary: image_parameters['Particle Center X List'] image_parameters['Particle Center Y List'] image_parameters['Particle Radius List'] image_parameters['Particle Bessel Orders List'] image_parameters['Particle Intensities List'] image_parameters['Image Size'] image_parameters['Image Background Level'] image_parameters['Signal to Noise Ratio'] image_parameters['Gradient Intensity'] image_parameters['Gradient Direction'] image_parameters['Ellipsoid Orientation'] image_parameters['Ellipticity'] """ image_parameters = {} image_parameters['Particle Center X List'] = particle_center_x_list() image_parameters['Particle Center Y List'] = particle_center_y_list() image_parameters['Particle Radius List'] = particle_radius_list() image_parameters['Particle Bessel Orders List'] = particle_bessel_orders_list() image_parameters['Particle Intensities List'] = particle_intensities_list() image_parameters['Particle Speed List'] = particle_speed_list() image_parameters['Particle Direction List'] = particle_direction_list() image_parameters['Image Size'] = image_size() image_parameters['Image Background Level'] = image_background_level() image_parameters['Signal to Noise Ratio'] = signal_to_noise_ratio() image_parameters['Gradient Intensity'] = gradient_intensity() image_parameters['Gradient Direction'] = gradient_direction() image_parameters['Ellipsoid Orientation'] = ellipsoidal_orientation() image_parameters['Ellipticity'] = ellipticity() return image_parameters def get_image_parameters_preconfig(image_size = 256): from numpy.random import uniform, randint from math import pi particle_number= randint(5, 6) particle_radius_list = list(uniform(0.25, 3, particle_number)) (particle_center_x_list, particle_center_y_list) = get_particle_positions(particle_radius_list,image_size) particle_bessel_orders_list= [] particle_intensities_list= [] for i in range(particle_number): particle_bessel_orders_list.append([1,]) particle_intensities_list.append([uniform(0.1,0.5),]) image_parameters = get_image_parameters( particle_center_x_list= lambda : particle_center_x_list, particle_center_y_list= lambda : particle_center_y_list, particle_radius_list=lambda : particle_radius_list, particle_bessel_orders_list= lambda: particle_bessel_orders_list, particle_intensities_list= lambda : particle_intensities_list, particle_speed_list= lambda : list(uniform(1,5,particle_number)), particle_direction_list= lambda : list(uniform(pi*0.9,pi*1.1,particle_number)), image_size=lambda : image_size, image_background_level=lambda : uniform(.2, .5), signal_to_noise_ratio=lambda : 100, gradient_intensity=lambda : uniform(0.25, 0.75), gradient_direction=lambda : uniform(-pi, pi), ellipsoidal_orientation=lambda : list(uniform(-pi, pi, particle_number)), ellipticity= lambda: 1) return image_parameters def get_image_parameters_film(image_parameters_prev, image_size = 256): from numpy.random import uniform, randint from math import pi, cos, sin max_move = 10 particle_centers = [] for (radius, x, y, speed, direction, index) in zip(image_parameters_prev['Particle Radius List'], image_parameters_prev['Particle Center X List'], image_parameters_prev['Particle Center Y List'], image_parameters_prev['Particle Speed List'], image_parameters_prev['Particle Direction List'], range(len(image_parameters_prev['Particle Radius List']))): for i in range(100): r = 0#uniform(0, max_move) theta = uniform(0, 2*pi) (x_new, y_new) = (x+r*cos(theta)+speed*cos(direction), y+r*sin(theta)+speed*sin(direction)) if all(((x_new - coord[0]) ** 2 + (y_new - coord[1]) ** 2) ** 0.5 > radius for coord in particle_centers): if (not (radius < x_new < image_size-radius)) or (not (radius < y_new < image_size-radius)): del image_parameters_prev['Particle Radius List'][index] del image_parameters_prev['Particle Bessel Orders List'][index] del image_parameters_prev['Particle Intensities List'][index] del image_parameters_prev['Particle Speed List'][index] del image_parameters_prev['Particle Direction List'][index] del image_parameters_prev['Ellipsoid Orientation'][index] else: particle_centers.append([x_new, y_new]) break elif i==99: raise Exception("Couldn't place out another particle after 100 tries") particle_centers_x=[] particle_centers_y=[] for coordinates in particle_centers: particle_centers_x.append(coordinates[0]) particle_centers_y.append(coordinates[1]) image_parameters_prev['Particle Center X List'] = particle_centers_x image_parameters_prev['Particle Center Y List'] = particle_centers_y if uniform(0,1) < 0.5: image_parameters_prev['Particle Center X List'].append(image_size-10) image_parameters_prev['Particle Center Y List'].append(uniform(10,image_size)) image_parameters_prev['Particle Radius List'].append(uniform(0.25,3)) image_parameters_prev['Particle Bessel Orders List'].append([1,]) image_parameters_prev['Particle Intensities List'].append([uniform(0.1,0.5),]) image_parameters_prev['Particle Speed List'].append(uniform(1,5)) image_parameters_prev['Particle Direction List'].append(uniform(pi*0.9,pi*1.1)) image_parameters_prev['Ellipsoid Orientation'].append(uniform(-pi,pi)) return image_parameters_prev def get_aug_parameters(): return dict(rotation_range=0.2, width_shift_range=0.05, height_shift_range=0.05, shear_range=0.05, zoom_range=0.05, horizontal_flip=True, fill_mode='nearest') def get_particle_positions(particle_radius_list = [], image_size = 128): """Generates multiple particle x- and y-coordinates with respect to each other. Inputs: particle_number: number of particles to generate coordinates for first_particle_range: allowed x- and y-range of the centermost particle other_particle_range: allowed x- and y-range for all other particles particle_distance: particle interdistance Output: particles_center_x: list of x-coordinates for the particles particles_center_y: list of y-coordinates for the particles """ from numpy.random import uniform from numpy import reshape particle_centers=[] for radius in particle_radius_list: #print('X is: ' + str(x) + ". Y is: " + str(y) + ". Radius is: " + str(radius) + ". Image size is: " + str(image_size) + '.') for i in range(100): (x, y) = (uniform(radius, image_size - radius), uniform(radius, image_size - radius)) if all(((x - coord[0]) ** 2 + (y - coord[1]) ** 2) ** 0.5 > radius for coord in particle_centers): particle_centers.append([x, y]) break elif i==99: raise Exception("Couldn't place out another particle after 100 tries") particle_centers_x=[] particle_centers_y=[] for coordinates in particle_centers: particle_centers_x.append(coordinates[0]) particle_centers_y.append(coordinates[1]) return (particle_centers_x,particle_centers_y) def get_image(image_parameters, use_gpu=False): """Generate image with particles. Input: image_parameters: list with the values of the image parameters in a dictionary: image_parameters['Particle Center X List'] image_parameters['Particle Center Y List'] image_parameters['Particle Radius List'] image_parameters['Particle Bessel Orders List'] image_parameters['Particle Intensities List'] image_parameters['Image Size'] image_parameters['Image Background Level'] image_parameters['Signal to Noise Ratio'] image_parameters['Gradient Intensity'] image_parameters['Gradient Direction'] image_parameters['Ellipsoid Orientation'] image_parameters['Ellipticity'] Note: image_parameters is typically obained from the function get_image_parameters() Output: image: image of the particle [2D numpy array of real numbers betwen 0 and 1] """ from numpy import meshgrid, arange, ones, zeros, sin, cos, sqrt, clip, array from numpy.random import poisson as poisson particle_center_x_list = image_parameters['Particle Center X List'] particle_center_y_list = image_parameters['Particle Center Y List'] particle_radius_list = image_parameters['Particle Radius List'] particle_bessel_orders_list = image_parameters['Particle Bessel Orders List'] particle_intensities_list = image_parameters['Particle Intensities List'] image_size = image_parameters['Image Size'] image_background_level = image_parameters['Image Background Level'] signal_to_noise_ratio = image_parameters['Signal to Noise Ratio'] gradient_intensity = image_parameters['Gradient Intensity'] gradient_direction = image_parameters['Gradient Direction'] ellipsoidal_orientation_list = image_parameters['Ellipsoid Orientation'] ellipticity = image_parameters['Ellipticity'] ### CALCULATE BACKGROUND # initialize the image at the background level image_background = ones((image_size, image_size)) * image_background_level # calculate matrix coordinates from the center of the image image_coordinate_x, image_coordinate_y = meshgrid(arange(0, image_size),
arange(0, image_size)
numpy.arange
import numpy as np def fnmtf(X, k, l, num_iter=100, norm=False, orthogonal_strategy=False): m, n = X.shape U = np.random.rand(m, k) S = np.random.rand(k, l) V = np.random.rand(n, l) error_best = np.inf error = error_best if norm: X = Normalizer().fit_transform(X) for _ in xrange(num_iter): S = np.linalg.pinv(U.T.dot(U)).dot(U.T).dot(X).dot(V).dot(np.linalg.pinv(V.T.dot(V))) # solve subproblem to update V U_tilde = U.dot(S) V_new = np.zeros(n*l).reshape(n, l) for j in xrange(n): errors = np.zeros(l) for col_clust_ind in xrange(l): errors[col_clust_ind] = ((X[:][:, j] - U_tilde[:][:, col_clust_ind])**2).sum() ind = np.argmin(errors) V_new[j][ind] = 1 V = V_new if orthogonal_strategy: while np.linalg.det(V.T.dot(V)) <= 0: if np.isnan(np.sum(V)): break erros = (X - U.dot(S).dot(V.T)) ** 2 erros = np.sum(erros.dot(V), axis=0) / np.sum(V, axis=0) erros[np.where(np.sum(V, axis=0) <= 1)] = -np.inf quantidade = np.sum(V, axis=0) indexMin = np.argmin(quantidade) indexMax = np.argmax(erros) indexes = np.nonzero(V[:, indexMax])[0] end = len(indexes) indexes_p = np.random.permutation(end) V[indexes[indexes_p[0:np.floor(end/2.0)]], indexMax] = 0.0 V[indexes[indexes_p[0:np.floor(end/2.0)]], indexMin] = 1.0 # solve subproblem to update U V_tilde = S.dot(V.T) U_new = np.zeros(m*k).reshape(m, k) for i in xrange(m): errors = np.zeros(k) for row_clust_ind in xrange(k): errors[row_clust_ind] = ((X[i][:] - V_tilde[row_clust_ind][:])**2).sum() ind = np.argmin(errors) U_new[i][ind] = 1 U = U_new if orthogonal_strategy: while np.linalg.det(U.T.dot(U)) <= 0: if np.isnan( np.sum(U) ): break erros = (X - U.dot(V_tilde)) ** 2 erros = np.sum(U.T.dot(erros), axis=1) / np.sum(U, axis=0) erros[np.where(
np.sum(U, axis=0)
numpy.sum
import mobula import mobula.layers as L import numpy as np def go_eltwise(op): a = np.array([1,0,6]).astype(np.float) b = np.array([4,5,3]).astype(np.float) print ("a: ", a) print ("b: ", b) data1 = L.Data(a) data2 = L.Data(b) coeffs = np.array([-1.0,1.2]) l = L.Eltwise([data1,data2], op = op, coeffs = coeffs) l.reshape() l.forward() print ("Y: ", l.Y) dY = np.array([7, 8, 9]).astype(np.float) l.dY = dY print ("dY: ", l.dY) l.backward() print ("dX: ", l.dX[0], l.dX[1]) c0, c1 = coeffs if op == L.Eltwise.SUM: Y = c0 * a + c1 * b dX0 = c0 * dY dX1 = c1 * dY elif op == L.Eltwise.PROD: Y = a * b * c0 * c1 dX0 = b * dY * c0 * c1 dX1 = a * dY * c0 * c1 elif op == L.Eltwise.MAX: Y =
np.max([c0*a,c1*b], 0)
numpy.max
import torch import torch.nn as nn import torch.optim as optim from torch.autograd import Variable import pandas as pd import numpy as np from torch.utils.data import DataLoader, TensorDataset class BottomModelA(nn.Module): def __init__(self): super(BottomModelA, self).__init__() self.layer1 = nn.Sequential(nn.Linear(5, 10), nn.ReLU(True)) self.layer2 = nn.Sequential(nn.Linear(10, 20), nn.ReLU(True)) def forward(self, x): x = self.layer1(x) x = self.layer2(x) return x class BottomModelB(nn.Module): def __init__(self): super(BottomModelB, self).__init__() self.layer1 = nn.Sequential(nn.Linear(5, 10), nn.ReLU(True)) self.layer2 = nn.Sequential(nn.Linear(10, 20), nn.ReLU(True)) def forward(self, x): x = self.layer1(x) x = self.layer2(x) return x class Interactive(nn.Module): def __init__(self): super(Interactive, self).__init__() self.layerA = nn.Sequential(nn.Linear(20, 10)) self.layerB = nn.Sequential(nn.Linear(20, 10)) self.activation = nn.ReLU(True) def forward(self, a, b): a = self.layerA(a) b = self.layerB(b) x = self.activation(a + b) return x class TopModel(nn.Module): def __init__(self): super(TopModel, self).__init__() self.layer1 = nn.Sequential(nn.Linear(10, 15), nn.ReLU(True)) self.layer2 = nn.Sequential(nn.Linear(15, 20), nn.ReLU(True)) self.layer3 = nn.Linear(20, 2) def forward(self, x): x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) return x if __name__ == '__main__': bottom_model_A = BottomModelA() bottom_model_B = BottomModelB() interactive = Interactive() top_model = TopModel() criterion = torch.nn.CrossEntropyLoss() optimizer1 = optim.SGD(top_model.parameters(), lr=0.01, momentum=0.9) optimizer2 = optim.SGD(interactive.parameters(), lr=0.01, momentum=0.9) optimizer3 = optim.SGD(bottom_model_A.parameters(), lr=0.01, momentum=0.9) optimizer4 = optim.SGD(bottom_model_B.parameters(), lr=0.01, momentum=0.9) guest_data = pd.read_csv('give_credit_a.csv', usecols=['x0', 'x1', 'x2', 'x3', 'x4']) guest_data = torch.from_numpy(np.array(guest_data, dtype='float32')) host_data = pd.read_csv('give_credit_b.csv', usecols=['x0', 'x1', 'x2', 'x3', 'x4']) host_data = torch.from_numpy(np.array(host_data, dtype='float32')) label = pd.read_csv('give_credit_b.csv', usecols=['y']) label =
np.array(label)
numpy.array
import os import cv2 import matplotlib.pyplot as plt import numpy as np import pymunk from matplotlib.collections import PatchCollection from matplotlib.colors import to_rgba from matplotlib.patches import Circle, Polygon from pymunk.vec2d import Vec2d from utils import rand_float, rand_int, calc_dis, norm class Engine(object): def __init__(self, dt, state_dim, action_dim, param_dim): self.dt = dt self.state_dim = state_dim self.action_dim = action_dim self.param_dim = param_dim self.state = None self.action = None self.param = None self.init() def init(self): pass def get_param(self): return self.param.copy() def set_param(self, param): self.param = param.copy() def get_state(self): return self.state.copy() def set_state(self, state): self.state = state.copy() def get_scene(self): return self.state.copy(), self.param.copy() def set_scene(self, state, param): self.state = state.copy() self.param = param.copy() def get_action(self): return self.action.copy() def set_action(self, action): self.action = action.copy() def d(self, state, t, param): # time derivative pass def step(self): pass def render(self, state, param): pass def clean(self): pass class RopeEngine(Engine): def __init__(self, dt, state_dim, action_dim, param_dim, num_mass_range=[4, 8], k_range=[500., 1500.], gravity_range=[-2., -8.], position_range=[-0.6, 0.6], bihop=True): # state_dim = 4 # action_dim = 1 # param_dim = 5 # param [n_ball, init_x, k, damping, gravity] self.radius = 0.06 self.mass = 1. self.num_mass_range = num_mass_range self.k_range = k_range self.gravity_range = gravity_range self.position_range = position_range self.bihop = bihop super(RopeEngine, self).__init__(dt, state_dim, action_dim, param_dim) def init(self, param=None): if param is None: self.n_ball, self.init_x, self.k, self.damping, self.gravity = [None] * 5 else: self.n_ball, self.init_x, self.k, self.damping, self.gravity = param self.n_ball = int(self.n_ball) num_mass_range = self.num_mass_range position_range = self.position_range if self.n_ball is None: self.n_ball = rand_int(num_mass_range[0], num_mass_range[1]) if self.init_x is None: self.init_x = np.random.rand() * (position_range[1] - position_range[0]) + position_range[0] if self.k is None: self.k = rand_float(self.k_range[0], self.k_range[1]) if self.damping is None: self.damping = self.k / 20. if self.gravity is None: self.gravity = rand_float(self.gravity_range[0], self.gravity_range[1]) self.param = np.array([self.n_ball, self.init_x, self.k, self.damping, self.gravity]) # print('Env Rope param: n_ball=%d, init_x=%.4f, k=%.4f, damping=%.4f, gravity=%.4f' % ( # self.n_ball, self.init_x, self.k, self.damping, self.gravity)) self.space = pymunk.Space() self.space.gravity = (0., self.gravity) self.height = 1.0 self.rest_len = 0.3 self.add_masses() self.add_rels() self.state_prv = None @property def num_obj(self): return self.n_ball def add_masses(self): inertia = pymunk.moment_for_circle(self.mass, 0, self.radius, (0, 0)) x = self.init_x y = self.height self.balls = [] for i in range(self.n_ball): body = pymunk.Body(self.mass, inertia) body.position = Vec2d(x, y) shape = pymunk.Circle(body, self.radius, (0, 0)) if i == 0: # fix the first mass to a specific height move_joint = pymunk.GrooveJoint(self.space.static_body, body, (-2, y), (2, y), (0, 0)) self.space.add(body, shape, move_joint) else: self.space.add(body, shape) self.balls.append(body) y -= self.rest_len def add_rels(self): give = 1. + 0.075 # add springs over adjacent balls for i in range(self.n_ball - 1): c = pymunk.DampedSpring( self.balls[i], self.balls[i + 1], (0, 0), (0, 0), rest_length=self.rest_len * give, stiffness=self.k, damping=self.damping) self.space.add(c) # add bihop springs if self.bihop: for i in range(self.n_ball - 2): c = pymunk.DampedSpring( self.balls[i], self.balls[i + 2], (0, 0), (0, 0), rest_length=self.rest_len * give * 2, stiffness=self.k * 0.5, damping=self.damping) self.space.add(c) def add_impulse(self): impulse = (self.action[0], 0) self.balls[0].apply_impulse_at_local_point(impulse=impulse, point=(0, 0)) def get_param(self): return self.n_ball, self.init_x, self.k, self.damping, self.gravity def get_state(self): state = np.zeros((self.n_ball, 4)) for i in range(self.n_ball): ball = self.balls[i] state[i] = np.array([ball.position[0], ball.position[1], ball.velocity[0], ball.velocity[1]]) vel_dim = self.state_dim // 2 if self.state_prv is None: state[:, vel_dim:] = 0 else: state[:, vel_dim:] = (state[:, :vel_dim] - self.state_prv[:, :vel_dim]) / self.dt return state def step(self): self.add_impulse() self.state_prv = self.get_state() self.space.step(self.dt) def render(self, states, actions=None, param=None, video=True, image=False, path=None, act_scale=None, draw_edge=True, lim=(-2.5, 2.5, -2.5, 2.5), states_gt=None, count_down=False, gt_border=False): if video: video_path = path + '.avi' fourcc = cv2.VideoWriter_fourcc('M', 'J', 'P', 'G') print('Save video as %s' % video_path) out = cv2.VideoWriter(video_path, fourcc, 25, (640, 480)) if image: image_path = path + '_img' print('Save images to %s' % image_path) os.system('mkdir -p %s' % image_path) c = ['royalblue', 'tomato', 'limegreen', 'orange', 'violet', 'chocolate', 'lightsteelblue'] time_step = states.shape[0] n_ball = states.shape[1] if actions is not None and actions.ndim == 3: '''get the first ball''' actions = actions[:, 0, :] for i in range(time_step): fig, ax = plt.subplots(1) plt.xlim(lim[0], lim[1]) plt.ylim(lim[2], lim[3]) plt.axis('off') if draw_edge: cnt = 0 for x in range(n_ball - 1): plt.plot([states[i, x, 0], states[i, x + 1, 0]], [states[i, x, 1], states[i, x + 1, 1]], '-', color=c[1], lw=2, alpha=0.5) circles = [] circles_color = [] for j in range(n_ball): circle = Circle((states[i, j, 0], states[i, j, 1]), radius=self.radius * 5 / 4) circles.append(circle) circles_color.append(c[0]) pc = PatchCollection(circles, facecolor=circles_color, linewidth=0, alpha=1.) ax.add_collection(pc) if states_gt is not None: circles = [] circles_color = [] for j in range(n_ball): circle = Circle((states_gt[i, j, 0], states_gt[i, j, 1]), radius=self.radius * 5 / 4) circles.append(circle) circles_color.append('orangered') pc = PatchCollection(circles, facecolor=circles_color, linewidth=0, alpha=1.) ax.add_collection(pc) if actions is not None: F = actions[i, 0] / 4 normF = norm(F) if normF < 1e-10: pass else: ax.arrow(states[i, 0, 0] + F / normF * 0.1, states[i, 0, 1], F, 0., fc='Orange', ec='Orange', width=0.04, head_width=0.2, head_length=0.2) ax.set_aspect('equal') font = {'family': 'serif', 'color': 'darkred', 'weight': 'normal', 'size': 16} if count_down: plt.text(-2.5, 1.5, 'CountDown: %d' % (time_step - i - 1), fontdict=font) plt.tight_layout() if video: fig.canvas.draw() frame = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='') frame = frame.reshape(fig.canvas.get_width_height()[::-1] + (3,)) frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR) out.write(frame) if i == time_step - 1: for _ in range(5): out.write(frame) if image: plt.savefig(os.path.join(image_path, 'fig_%s.png' % i), bbox_inches='tight') plt.close() if video: out.release() # =================================================================== ''' For Soft and Swim ''' def get_init_p_fish_8(): init_p = np.zeros((8, 3)) init_p[0, :] = np.array([0, 0, 2]) init_p[1, :] = np.array([0, 1, 0]) init_p[2, :] = np.array([0, 2, 2]) init_p[3, :] = np.array([0, 3, 0]) init_p[4, :] = np.array([1, 0, 2]) init_p[5, :] = np.array([1, 1, 0]) init_p[6, :] = np.array([1, 2, 2]) init_p[7, :] = np.array([1, 3, 0]) return init_p def sample_init_p_flight(n_box, shape_type=None, aug=False, train=False, min_offset=False, max_offset=False): assert 5 <= n_box < 10 c_box_dict = { 5: [[1, 3, 1], [2, 1, 2]], 6: [[3, 3], [2, 2, 2]], 7: [[2, 3, 2], [1, 2, 1, 2, 1], [2, 1, 1, 1, 2]], 8: [[2, 2, 2, 2], [1, 2, 2, 2, 1], [2, 1, 2, 1, 2], [3, 2, 3]], 9: [[2, 2, 1, 2, 2], [1, 2, 3, 2, 1], [2, 1, 3, 1, 2], [3, 3, 3]], } if shape_type is None: shape_type = rand_int(0, len(c_box_dict[n_box])) else: shape_type = shape_type % len(c_box_dict[n_box]) c_box = c_box_dict[n_box][shape_type] init_p = np.zeros((n_box, 3)) y_offset = np.zeros(len(c_box)) for i in range(1, (len(c_box) + 1) // 2): left = c_box[i - 1] right = c_box[i] y_offset[i] = rand_int(1 - right, left) if min_offset: y_offset[i] = 1 - right if max_offset: y_offset[i] = left y_offset[len(c_box) - i] = - y_offset[i] assert len(c_box) - i > i y = np.zeros(len(c_box)) for i in range(1, len(c_box)): y[i] = y[i - 1] + y_offset[i] y -= y.min() # print('y_offset', y_offset, 'y', y) while True: idx = 0 for i, c in enumerate(c_box): for j in range(c): # if not train: if False: material = 2 if j < c - 1 or c == 1 else 0 else: r = np.random.rand() if c == 1: r_actuated, r_soft, r_rigid = 0.25, 0.25, 0.5 elif j == 0: r_actuated, r_soft, r_rigid = 0.0, 0.5, 0.5 elif j == c - 1: r_actuated, r_soft, r_rigid = 0.75, 0.25, 0.0 else: r_actuated, r_soft, r_rigid = 0.4, 0.2, 0.4 if r < r_actuated: material = 0 elif r < r_actuated + r_soft: material = 1 else: material = 2 init_p[idx, :] = np.array([i, y[i] + j, material]) idx += 1 if (init_p[:, 2] == 0).sum() >= 2: break # print('init_p', init_p) if aug: if np.random.rand() > 0.5: '''flip y''' init_p[:, 1] = -init_p[:, 1] if np.random.rand() > 0.5: '''flip x''' init_p[:, 0] = -init_p[:, 0] if np.random.rand() > 0.5: '''swap x and y''' x, y = init_p[:, 0], init_p[:, 1] init_p[:, 0], init_p[:, 1] = y.copy(), x.copy() # print('init_p', init_p) return init_p def sample_init_p_regular(n_box, shape_type=None, aug=False): print('sample_init_p') init_p = np.zeros((n_box, 3)) if shape_type is None: shape_type = rand_int(0, 4) print('shape_type', shape_type) if shape_type == 0: # 0 or u shape init_p[0, :] = np.array([0, 0, 2]) init_p[1, :] = np.array([-1, 0, 2]) init_p[2, :] = np.array([1, 0, 2]) idx = 3 y = 0 x = [-1, 0, 1] res = n_box - 3 while res > 0: y += 1 if res == 3: i_list = [0, 1, 2] else: i_list = [0, 2] material = [0, 1][int(np.random.rand() < 0.5 and res > 3)] for i in i_list: init_p[idx, :] = np.array([x[i], y, material]) idx += 1 res -= 1 elif shape_type == 1: # 1 shape init_p[0, :] = np.array([0, 0, 2]) for i in range(1, n_box): material = [0, 1][int(np.random.rand() < 0.5 and i < n_box - 1)] init_p[i, :] = np.array([0, i, material]) elif shape_type == 2: # I shape if n_box < 7: init_p[0, :] = np.array([0, 0, 2]) for i in range(1, n_box - 3): material = [0, 1][int(np.random.rand() < 0.5 and i < n_box - 1)] init_p[i, :] = np.array([0, i, material]) init_p[n_box - 1, :] = np.array([-1, n_box - 3, 0]) init_p[n_box - 2, :] = np.array([0, n_box - 3, 0]) init_p[n_box - 3, :] = np.array([1, n_box - 3, 0]) else: init_p[0, :] = np.array([-1, 0, 2]) init_p[1, :] =
np.array([0, 0, 2])
numpy.array
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Mar 15 12:16:01 2018 @author: <NAME> <<EMAIL>> """ import numpy as np import os from glob import glob import h5py import matplotlib.pyplot as plt import matplotlib.dates as mdates import matplotlib.colors as colors from pyGnss import gnssUtils as gu #from sdomask import mask2d from sunrise import sunrise from scipy import ndimage import datetime def getNeighbours(image,i,j): """ Return an array of <=9 neighbour pixel of an image with a center at (i,j) """ nbg = [] for k in np.arange(i-1, i+2): for l in np.arange(j-1, j+2): try: nbg.append(image[k,l]) except Exception as e: pass return np.array(nbg) def fillPixels(im, N=1): """ Fill in the dead pixels. If a dead pixel has a least 4 finite neighbour pixel, than replace the center pixel with a mean valuse of the neighbours """ for n in range(N): for i in np.arange(0,im.shape[0]): for j in
np.arange(0,im.shape[1])
numpy.arange
import numpy import fc2dpy from scipy import special from matplotlib import pyplot from matplotlib.animation import FuncAnimation fc2dpy.array_dtype=numpy.complex256 resolution = 256 # 512 4096 order = 128 # 128 PD = fc2dpy.polydisk(0.0 + 0.0j, 0.0 + -0.1j, 15.0, numpy.pi, resolution=resolution) #cos #PD = fc2dpy.polydisk(0.0 + 1j, 1.5 + -1j, 15.0, 5.0, resolution=resolution) PD.set_parameterization(1.0 + 0.0j, 1.0 + 0.0j) def encoding(a): # return fc2dpy.Gamma(a + 1) ####-------- NICE --------#### # return 1.0/fc2dpy.Gamma(-a + 1) ####-------- NICE --------#### # beta = -numpy.pi/2 # return (a)**beta return numpy.cos(a) + numpy.tan(a) # cos # return numpy.exp(-1/(a**3)) # nice def Log(x, a, order=None): return (x**a*(
numpy.log(x)
numpy.log
#%% import numpy as np import cv2 import glob import matplotlib.pyplot as plt import matplotlib.image as mpimg def abs_sobel_thresh(img, orient='x', thresh_min=0, thresh_max=255, kernel=3): # Apply the following steps to img # 1) Convert to grayscale # 2) Take the derivative in x or y given orient = 'x' or 'y' # 3) Take the absolute value of the derivative or gradient # 4) Scale to 8-bit (0 - 255) then convert to type = np.uint8 # 5) Create a mask of 1's where the scaled gradient magnitude # is > thresh_min and < thresh_max # 6) Return this mask as your binary_output image gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) if orient == 'x': abs_sobel = np.absolute(cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=kernel)) if orient == 'y': abs_sobel = np.absolute(cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=kernel)) scaled_sobel = np.uint8(255*abs_sobel/np.max(abs_sobel)) binary_output = np.zeros_like(scaled_sobel) binary_output[(scaled_sobel >= thresh_min) & (scaled_sobel <= thresh_max)] = 1 return binary_output def mag_threshold(img, sobel_kernel=3, mag_thresh=(0, 255)): # Apply the following steps to img # 1) Convert to grayscale gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) # 2) Take the gradient in x and y separately sobelX = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel) sobelY = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel) # 3) Calculate the magnitude gradmag = np.sqrt(sobelX**2 + sobelY**2) # 4) Scale to 8-bit (0 - 255) and convert to type = np.uint8 scale_factor = np.max(gradmag)/255 gradmag = (gradmag/scale_factor).astype(np.uint8) # 5) Create a binary mask where mag thresholds are met binary_output = np.zeros_like(gradmag) binary_output[(gradmag >= mag_thresh[0]) & (gradmag <= mag_thresh[1])] = 1 # 6) Return this mask as your binary_output image return binary_output def dir_threshold(img, sobel_kernel=3, thresh=(0, np.pi/2)): # Apply the following steps to img # 1) Convert to grayscale gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) # 2) Take the gradient in x and y separately sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel) sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel) # 3) Take the absolute value of the x and y gradients # 4) Use np.arctan2(abs_sobely, abs_sobelx) to calculate the direction of the gradient absgraddir = np.arctan2(np.absolute(sobely),
np.absolute(sobelx)
numpy.absolute
from dataclasses import dataclass import numpy as np from .utils import bool_bernoulli, categorical @dataclass class Case: category: int covid: bool symptomatic: bool day_noticed_symptoms: int inf_profile: list def __init__(self, category, covid, symptomatic, day_noticed_symptoms, inf_profile): self.category = category self.covid = covid self.symptomatic = symptomatic self.day_noticed_symptoms = day_noticed_symptoms self.inf_profile = inf_profile def to_dict(self): return dict( category=self.category, covid=self.covid, symptomatic=self.symptomatic, day_noticed_symptoms=self.day_noticed_symptoms, inf_profile=self.inf_profile, ) @dataclass class CaseFactors: wfh: bool has_app: bool report_app: bool report_manual: bool @classmethod def simulate_from(cls, rng, case, app_cov, go_to_school_prob, wfh_prob, compliance): """Simulate case factors Args: rng: case: app_cov: go_to_school_prob: wfh_prob: compliance: Returns: """ p = (1 - go_to_school_prob) if (case.category==1 or case.category==2) else wfh_prob wfh = bool_bernoulli(p, rng) has_app = bool_bernoulli(app_cov, rng) does_report = case.symptomatic and bool_bernoulli(compliance, rng) report_app = does_report and has_app report_manual = does_report and not has_app return cls( wfh=wfh, has_app=has_app, report_app=report_app, report_manual=report_manual ) def simulate_case( rng, p_for_categories_continued, p_for_categories, infection_proportions, p_day_noticed_symptoms, inf_profile ): """simulate_case Args: rng (np.random.RandomState): random number generator. p_under18 (float): Probability of case being under 18 infection_proportions (dict): Probs of being symp covid neg, symp covid pos, asymp covid pos The only required key is 'dist', which contains list of the named probs, in that order. p_day_noticed_symptoms (np.array[float]): Distribution of day on which case notices their symptoms. (In our model this is same as reporting symptoms.) Conditional on being symptomatic. inf_profile (list[float]): Distribution of initial exposure of positive secondary cases relative to start of primary case's infectious period. Returns (Case): case with attributes populated. """ if(p_for_categories_continued != []): p_for_categories = p_for_categories_continued ( p_symptomatic_covid_neg, p_symptomatic_covid_pos, p_asymptomatic_covid_pos, ) = infection_proportions["dist"] category = rng.choice(range(7), p = p_for_categories) illness_pvals = [ p_asymptomatic_covid_pos, p_symptomatic_covid_neg, p_symptomatic_covid_pos, ] illness = categorical(illness_pvals, rng).item() if illness == 0: return Case( covid=True, symptomatic=False, category=category, day_noticed_symptoms=-1, inf_profile=
np.array(inf_profile)
numpy.array
from fypy.model.levy.LevyModel import LevyModel from fypy.model.FourierModel import Cumulants from fypy.termstructures.ForwardCurve import ForwardCurve from fypy.termstructures.DiscountCurve import DiscountCurve import numpy as np from scipy.special import gamma from typing import List, Tuple, Optional, Union class CMGY(LevyModel): def __init__(self, forwardCurve: ForwardCurve, discountCurve: DiscountCurve, C: float = 0.02, G: float = 5., M: float = 15., Y: float = 1.2): """ Carr-Geman-Madan-Yor (CGMY) model. When Y=0, this model reduces to VG :param forwardCurve: ForwardCurve term structure :param C: float, viewed as a measure of the overall level of activity, and influences kurtosis :param G: float, rate of exponential decay on the right tail :param M: float, rate of exponential decay on the left tail. Typically for equities G < M, ie the left tail is then heavier than the right (more down risk) :param Y: float, controls the "fine structure" of the process """ super().__init__(forwardCurve=forwardCurve, discountCurve=discountCurve, params=
np.asarray([C, G, M, Y])
numpy.asarray
#!/usr/bin/env python3 import numpy as np import matplotlib.pyplot as plt import argparse def plot_reward( time_steps: np.ndarray, avg_rewards: np.ndarray, save_path: str = None ) -> None: """ Plot avg_reward of #episodes per evaluation step against time steps """ fig, ax = plt.subplots() ax.plot(time_steps, avg_rewards, marker='o') ax.plot(time_steps, np.full(avg_rewards.shape, 25),'g--') ax.set(xlabel='timesteps', ylabel='avg reward of #episodes', title='Average Reward') ax.grid() if save_path is not None: fig.savefig(save_path) plt.show() if __name__ == '__main__': parser = argparse.ArgumentParser(description='Visualize results') parser.add_argument('--log_dir', dest='log_dir', \ required=False, help='full path for location to .npz file', \ default='./logs/RAND/results/evaluations.npz') args = parser.parse_args() npz_data = np.load(args.log_dir) time_steps = npz_data['timesteps'] avg_rewards =
np.mean(npz_data['results'], axis=1)
numpy.mean
""" Implements a Masked Autoregressive MLP, where carefully constructed binary masks over weights ensure the autoregressive property. Copied from https://github.com/karpathy/pytorch-made. """ import numpy as np import torch from torch import nn class MaskedLinear(nn.Linear): """A dense layer with a configurable mask on the weights.""" def __init__(self, n_in, n_out, bias=True): super().__init__(n_in, n_out, bias) self.register_buffer("mask", torch.ones(n_in, n_out)) def set_mask(self, mask): self.mask.data.copy_(torch.from_numpy(mask)) def forward(self, x): return x @ (self.weight.T * self.mask) + self.bias class MADE(nn.Sequential): def __init__(self, n_in, hidden_sizes, n_out, num_masks=1, natural_ordering=False): """ n_in (int): number of inputs hidden sizes (list of ints): number of units in hidden layers n_out (int): number of outputs, which usually collectively parameterize some 1D distribution. Note: if n_out is e.g. 2x larger than n_in (perhaps the mean and std), then the first n_in will be all the means and the second n_in will be the std. devs. Make sure to deconstruct this correctly downstream. num_masks: can be used to train ensemble over orderings/connections natural_ordering: retain ordering of inputs, don't use random permutations """ assert n_out % n_in == 0, "n_out must be integer multiple of n_in" self.n_in = n_in self.n_out = n_out self.hidden_sizes = hidden_sizes # define a simple MLP neural net layers = [] hs = [n_in] + hidden_sizes + [n_out] for h0, h1 in zip(hs, hs[1:]): layers.extend([MaskedLinear(h0, h1), nn.ReLU()]) super().__init__(*layers[:-1]) # drop last ReLU) # seeds for orders/connectivities of the model ensemble self.natural_ordering = natural_ordering self.num_masks = num_masks self.seed = 0 # for cycling through num_masks orderings self.m = {} self.update_masks() # builds the initial self.m connectivity # note, we could also precompute the masks and cache them, but this # could get memory expensive for large number of masks. def update_masks(self): if self.m and self.num_masks == 1: return # only a single seed, skip for efficiency # fetch the next seed and construct a random stream rng =
np.random.RandomState(self.seed)
numpy.random.RandomState
import random import time from dataclasses import dataclass from typing import Optional import cv2 import numpy as np import textdistance from Arknights.addons.common import CommonAddon from automator import AddonBase, cli_command from imgreco import imgops, resources, ocr import imgreco.ocr.tesseract as tesseract import util.cvimage as Image from util.cvimage import Rect from . import database operator_set = set(database.operators) operator_alphabet = ''.join(set(c for s in database.operators for c in s)) @dataclass class OperatorBox: box: Rect name: str mood: float status: str room: Optional[str] skill_icons: list[str] selected: bool = False def transform_rect(rc, M): l, t, r, b = rc pts = np.asarray([l,t, r,t, r,b, l,b], dtype=np.float32).reshape(-1, 1, 2) tpts: np.ndarray = cv2.transform(pts, M).reshape(-1, 2) left = int(round(tpts[:, 0].min())) top = int(round(tpts[:, 1].min())) right = int(round(tpts[:, 0].max())) bottom = int(round(tpts[:, 1].max())) return left, top, right, bottom class RIICAddon(AddonBase): def on_attach(self) -> None: self.sync_richlog() self.ocr = tesseract.Engine(lang=None, model_name='chi_sim') self.tag = time.time() self.seq = 0 def check_in_riic(self, screenshot=None): if self.match_roi('riic/overview', method='template_matching', screenshot=screenshot): return True if roi := self.match_roi('riic/pending', method='template_matching', screenshot=screenshot): self.logger.info('取消待办事项') self.tap_rect(roi.bbox) return True return False def enter_riic(self): self.addon(CommonAddon).back_to_main(extra_predicate=self.check_in_riic) if self.check_in_riic(): return result = self.match_roi('riic/riic_entry', fixed_position=False, method='sift', mode='L') if result: self.logger.info('进入基建') self.tap_quadrilateral(result.context.template_corners, post_delay=6) else: raise RuntimeError('failed to find riic entry') while not self.check_in_riic(): self.delay(1) self.logger.info('已进入基建') def collect_all(self): self.enter_riic() count = 0 while count < 2: if roi := self.match_roi('riic/notification2', fixed_position=False, method='mse'): while True: self.logger.info('发现蓝色通知') self.tap_rect(roi.bbox) if self.match_roi('riic/pending'): break self.logger.info('重试点击蓝色通知') while roi := self.wait_for_roi('riic/collect_all2', timeout=2, fixed_position=False, method='mse'): self.logger.info('发现全部收取按钮') rc = roi.bbox rc.y = 93.704 * self.vh rc.height = 5.833 * self.vh rc.x -= 7.407 * self.vh self.tap_rect(roi.bbox) break else: self.logger.info('未发现蓝色通知,等待 3 s') self.delay(3) count += 1 self.logger.info('一键收取完成') def recognize_layout(self): if not self.check_in_riic(): raise RuntimeError('not here') self.logger.info('正在识别基建布局') screenshot = self.device.screenshot() t0 = time.monotonic() # screen_mask = None templ_mask = resources.load_image_cached('riic/layout.mask.png', 'L').array left_mask = imgops.scale_to_height(resources.load_image_cached('riic/layout.screen_mask.left.png', 'L'), screenshot.height, Image.NEAREST) right_mask = imgops.scale_to_height(resources.load_image_cached('riic/layout.screen_mask.right.png', 'L'), screenshot.height, Image.NEAREST) screen_mask = np.concatenate([left_mask.array, np.full((screenshot.height, screenshot.width - left_mask.width - right_mask.width), 255, dtype=np.uint8), right_mask.array], axis=1) match = imgops.match_feature_orb(resources.load_image_cached('riic/layout.png', 'L'), screenshot.convert('L'), templ_mask=templ_mask, haystack_mask=screen_mask, limited_transform=True) # roi = self.match_roi('riic/layout', fixed_position=False, method='sift', mode='L') self.logger.debug('%r', match) if match.M is None: raise RuntimeError('未能识别基建布局') # discard rotation M = match.M scalex = np.sqrt(M[0,0] ** 2 + M[0,1] ** 2) scaley =
np.sqrt(M[1,0] ** 2 + M[1,1] ** 2)
numpy.sqrt
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Jun 26 14:46:56 2017 @author: luohao """ """ CVPR2017 paper:<NAME>, <NAME>, <NAME>, et al. Re-ranking Person Re-identification with k-reciprocal Encoding[J]. 2017. url:http://openaccess.thecvf.com/content_cvpr_2017/papers/Zhong_Re-Ranking_Person_Re-Identification_CVPR_2017_paper.pdf Matlab version: https://github.com/zhunzhong07/person-re-ranking """ """ API probFea: all feature vectors of the query set, shape = (image_size, feature_dim) galFea: all feature vectors of the gallery set, shape = (image_size, feature_dim) k1,k2,lambda: parameters, the original paper is (k1=20,k2=6,lambda=0.3) MemorySave: set to 'True' when using MemorySave mode Minibatch: avaliable when 'MemorySave' is 'True' """ import numpy as np from scipy.spatial.distance import cdist from scipy.stats import entropy # for KL divergence from math import log def compute_metadata_distance_hard(q_metadatas, g_metadatas, metadata_prob_ranges): q_num = q_metadatas.shape[0] g_num = g_metadatas.shape[0] dist = np.zeros((q_num, g_num), dtype=np.float32) for iq in range(q_num): for ig in range(g_num): for p_begin, p_end in metadata_prob_ranges: cq = np.argmax(q_metadatas[iq][p_begin:p_end]) cg = np.argmax(g_metadatas[ig][p_begin:p_end]) if cq != cg: dist[iq, ig] += 1 break return dist def compute_metadata_distance_semihard(q_metadatas, g_metadatas, metadata_prob_ranges): q_num = q_metadatas.shape[0] g_num = g_metadatas.shape[0] dist = np.zeros((q_num, g_num), dtype=np.float32) for iq in range(q_num): for ig in range(g_num): for p_begin, p_end in metadata_prob_ranges: cq = np.argmax(q_metadatas[iq][p_begin:p_end]) cg = np.argmax(g_metadatas[ig][p_begin:p_end]) if cq != cg and cq != (p_end - p_begin - 1) and cg != (p_end - p_begin - 1): # the last class is "other" dist[iq, ig] += 1 break return dist def compute_metadata_distance_easy(q_metadatas, g_metadatas, metadata_prob_ranges): q_num = q_metadatas.shape[0] g_num = g_metadatas.shape[0] dist = np.ones((q_num, g_num), dtype=np.float32) for iq in range(q_num): for ig in range(g_num): for p_begin, p_end in metadata_prob_ranges: cq = np.argmax(q_metadatas[iq][p_begin:p_end]) cg = np.argmax(g_metadatas[ig][p_begin:p_end]) if cq == cg: dist[iq, ig] = 0 break return dist def compute_KL_divergence(q_metadatas, g_metadatas, metadata_prob_ranges = [(0,6), (6,18), (18,26)]): q_num = q_metadatas.shape[0] g_num = g_metadatas.shape[0] m_num = len(metadata_prob_ranges) KL_div = np.zeros((q_num, g_num, m_num), dtype=np.float32) epsilon = 1e-4 for iq in range(q_num): for ig in range(g_num): for im, (p_begin, p_end) in enumerate(metadata_prob_ranges): KL_div[iq, ig, im] = entropy(q_metadatas[iq][p_begin:p_end]+epsilon, g_metadatas[ig][p_begin:p_end]+epsilon) return KL_div def compute_pred(metadatas, metadata_prob_ranges): all_num = metadatas.shape[0] m_num = len(metadata_prob_ranges) pred = np.zeros((all_num, m_num), dtype=np.int32) for im, (p_begin, p_end) in enumerate(metadata_prob_ranges): pred[:,im] = np.argmax(metadatas[:,p_begin:p_end], axis=1) return pred def compute_confusion_weight_old(q_pred, g_pred, confusion_mat): q_num = q_pred.shape[0] g_num = g_pred.shape[0] c_num = confusion_mat.shape[0] confusion_mat = confusion_mat + 1e-4*np.ones((c_num, c_num), dtype=np.float32) c_weight = np.transpose(confusion_mat)*np.diag(confusion_mat) c_weight += np.transpose(c_weight) c_sum = np.sum(confusion_mat, axis=0).reshape(1,-1) c_sum = np.matmul(np.transpose(c_sum), c_sum) c_weight = c_weight * np.reciprocal(c_sum) #c_weight[range(c_num),range(c_num)]/=2 np.fill_diagonal(c_weight, 1) # no penalty for the same class #print('c_weight = ') #print(c_weight) confusion_weight = np.ones((q_num, g_num), dtype=np.float32) for iq in range(q_num): for ig in range(g_num): confusion_weight[iq, ig] = c_weight[q_pred[iq], g_pred[ig]] return confusion_weight def compute_confusion_weight(q_pred, g_pred, confusion_mat): q_num = q_pred.shape[0] g_num = g_pred.shape[0] c_num = confusion_mat.shape[0] #print('confusion_mat = ') #print(confusion_mat) confusion_mat = confusion_mat + 1e-4*np.ones((c_num, c_num), dtype=np.float32) c_sum = np.sum(confusion_mat, axis=0) confusion_mat_norm = confusion_mat * np.reciprocal(c_sum) #print('confusion_mat_norm = ') #print(confusion_mat_norm) c_weight = np.matmul(np.transpose(confusion_mat_norm), confusion_mat_norm) np.fill_diagonal(c_weight, 1) # no penalty for the same class #print('c_weight = ') #print(c_weight) confusion_weight = np.ones((q_num, g_num), dtype=np.float32) for iq in range(q_num): for ig in range(g_num): confusion_weight[iq, ig] = c_weight[q_pred[iq], g_pred[ig]] return confusion_weight def cluster_gallery_soft(gf, g_metadatas, metadata_prob_ranges = [(0,6), (6,18), (18,26)], k=20, learning_rate=0.5, num_iter=20, MemorySave=False, Minibatch=2000): ''' return new gallery feature gf_new ''' gf = gf.copy() # make a copy since it will be updated in each iteration g_num = gf.shape[0] # meta data penalty '''dist_meta = np.zeros((g_num, g_num), dtype=np.float16) epsilon = 1e-4 for i in range(g_num): metaI = g_metadatas[i] for j in range(g_num): metaJ = g_metadatas[j] for prob_range_begin, prob_ranges_end in metadata_prob_ranges: if entropy (metaI[prob_range_begin:prob_ranges_end] + epsilon, metaJ[prob_range_begin:prob_ranges_end] + epsilon) > 0.5: dist_meta[i][j] = 1 break''' dist_meta = compute_metadata_distance_hard(g_metadatas, g_metadatas, metadata_prob_ranges) for iter in range(num_iter): #print('iter: %d' % iter) #print('computing original distance') if MemorySave: g_g_dist = np.zeros(shape=[g_num, g_num], dtype=np.float16) i = 0 while True: it = i + Minibatch if it < np.shape(gf)[0]: g_g_dist[i:it, ] = np.power(cdist(gf[i:it, ], gf), 2).astype(np.float16) else: g_g_dist[i:, :] = np.power(cdist(gf[i:, ], gf), 2).astype(np.float16) break i = it else: g_g_dist = cdist(gf, gf).astype(np.float16) g_g_dist = np.power(g_g_dist, 2).astype(np.float16) dist_min = np.min(g_g_dist[np.triu_indices(g_num,1)]) dist_max = np.max(g_g_dist[np.triu_indices(g_num,1)]) #print('dist_min = %f, dist_max = %f' % (dist_min, dist_max)) #g_g_dist = np.transpose(g_g_dist / np.max(g_g_dist, axis=0)) # apply meta data g_g_dist += np.transpose(dist_meta * np.max(g_g_dist, axis=1)) initial_rank = np.argsort(g_g_dist).astype(np.int32) # apply mean field gf_new = gf.copy() sigma = dist_min / 2 + 1 for i in range(g_num): k_neigh_index = initial_rank[i, :k + 1] sigma = np.min(g_g_dist[i, k_neigh_index[1:]]) + 1 weight = np.exp(-g_g_dist[i, k_neigh_index] / sigma) weight /= np.sum(weight) if i % 100 == 0 and False: print(i) print(k_neigh_index) print(g_g_dist[i, k_neigh_index]) print(weight) gf_new[i] = np.dot(np.transpose(gf[k_neigh_index]), weight) gf = gf * (1 - learning_rate) + gf_new * (learning_rate) return gf def re_ranking_metadata_soft_v3(original_dist, metadata_dist, query_num, all_num, r_metadata, k1, k2, lambda_value): ''' input: original_dist: pre-compute distmat metadata_dist: metadata distance r_metadata: weight for metadata distance return: final_dist ''' # The following naming, e.g. gallery_num, is different from outer scope. # Don't care about it. gallery_num = all_num original_dist = np.transpose(original_dist / np.max(original_dist, axis=0)) ### additional scaling scaling = False if scaling: tmp_rank = np.argsort(original_dist).astype(np.int32) min_dist = original_dist[range(all_num), tmp_rank[:,1]] metadata_dist = np.transpose(metadata_dist * min_dist) #print('min_dist = ') #print(min_dist) ### original_dist += r_metadata * metadata_dist print('starting re_ranking') initial_rank = np.argsort(original_dist).astype(np.int32) V = np.zeros_like(original_dist).astype(np.float16) for i in range(all_num): # k-reciprocal neighbors forward_k_neigh_index = initial_rank[i, :k1 + 1] backward_k_neigh_index = initial_rank[forward_k_neigh_index, :k1 + 1] fi = np.where(backward_k_neigh_index == i)[0] k_reciprocal_index = forward_k_neigh_index[fi] k_reciprocal_expansion_index = k_reciprocal_index for j in range(len(k_reciprocal_index)): candidate = k_reciprocal_index[j] candidate_forward_k_neigh_index = initial_rank[candidate, :int(np.around(k1 / 2)) + 1] candidate_backward_k_neigh_index = initial_rank[candidate_forward_k_neigh_index, :int(np.around(k1 / 2)) + 1] fi_candidate = np.where(candidate_backward_k_neigh_index == candidate)[0] candidate_k_reciprocal_index = candidate_forward_k_neigh_index[fi_candidate] if len(np.intersect1d(candidate_k_reciprocal_index, k_reciprocal_index)) > 2 / 3 * len( candidate_k_reciprocal_index): k_reciprocal_expansion_index = np.append(k_reciprocal_expansion_index, candidate_k_reciprocal_index) k_reciprocal_expansion_index = np.unique(k_reciprocal_expansion_index) weight = np.exp(-original_dist[i, k_reciprocal_expansion_index]) V[i, k_reciprocal_expansion_index] = weight / np.sum(weight) original_dist = original_dist[:query_num, ] if k2 != 1: V_qe = np.zeros_like(V, dtype=np.float16) for i in range(all_num): V_qe[i, :] = np.mean(V[initial_rank[i, :k2], :], axis=0) V = V_qe del V_qe del initial_rank invIndex = [] for i in range(gallery_num): invIndex.append(np.where(V[:, i] != 0)[0]) jaccard_dist = np.zeros_like(original_dist, dtype=np.float16) for i in range(query_num): temp_min = np.zeros(shape=[1, gallery_num], dtype=np.float16) indNonZero = np.where(V[i, :] != 0)[0] indImages = [] indImages = [invIndex[ind] for ind in indNonZero] for j in range(len(indNonZero)): temp_min[0, indImages[j]] = temp_min[0, indImages[j]] + np.minimum(V[i, indNonZero[j]], V[indImages[j], indNonZero[j]]) jaccard_dist[i] = 1 - temp_min / (2 - temp_min) final_dist = jaccard_dist * (1 - lambda_value) + original_dist * lambda_value del original_dist del V del jaccard_dist final_dist = final_dist[:query_num, query_num:] # np.save('final_dist.npy', final_dist) return final_dist def re_ranking_metadata_soft_v2(qf, gf, q_metadatas, g_metadatas, confusion_mats, metadata_prob_ranges, k1=4, k2=4, lambda_value=0.5, MemorySave=False, Minibatch=2000): m_num = len(metadata_prob_ranges) for p_begin, p_end in metadata_prob_ranges: assert (p_begin, p_end) in confusion_mats query_num = qf.shape[0] all_num = query_num + gf.shape[0] feat = np.append(qf, gf, axis=0) all_metadatas = np.append(q_metadatas, g_metadatas, axis=0) ###feat = np.concatenate((feat, all_metadatas*20), axis=1) # feat = np.append(probFea, galFea) # feat = np.vstack((probFea, galFea)) feat = feat.astype(np.float16) print('computing original distance') if MemorySave: original_dist = np.zeros(shape=[all_num, all_num], dtype=np.float16) i = 0 while True: it = i + Minibatch if it < np.shape(feat)[0]: original_dist[i:it, ] = np.power(cdist(feat[i:it, ], feat), 2).astype(np.float16) else: original_dist[i:, :] = np.power(cdist(feat[i:, ], feat), 2).astype(np.float16) break i = it else: original_dist = cdist(feat, feat).astype(np.float16) original_dist = np.power(original_dist, 2).astype(np.float16) del feat gallery_num = original_dist.shape[0] original_dist = np.transpose(original_dist / np.max(original_dist, axis=0)) V = np.zeros_like(original_dist).astype(np.float16) # apply meta data print('computing KL divergence') KL_div = compute_KL_divergence(all_metadatas, all_metadatas, metadata_prob_ranges) KL_div_U = compute_KL_divergence(all_metadatas, np.ones(all_metadatas.shape, dtype=np.float32), metadata_prob_ranges) conf_pred = np.zeros((all_num, all_num, m_num), dtype=np.float32) for im, (p_begin, p_end) in enumerate(metadata_prob_ranges): conf_pred[:,:,im] = KL_div_U[:,:,im] * np.transpose(KL_div_U[:,:,im]) / (np.log(p_end - p_begin)*np.log(p_end - p_begin)) pred = compute_pred(all_metadatas, metadata_prob_ranges) confusion_dist = np.zeros((all_num, all_num, m_num), dtype=np.float32) for im, (p_begin, p_end) in enumerate(metadata_prob_ranges): confusion_weight = compute_confusion_weight(pred[:,im], pred[:,im], confusion_mats[(p_begin, p_end)]) confusion_dist[:,:,im] = -np.log(confusion_weight + 1e-4) / np.log(p_end-p_begin) pred_weight = conf_pred * confusion_dist# * KL_div pred_weight = np.sum(pred_weight, axis=2) #print('confusion_dist = ') #print(confusion_dist) tmp_rank = np.argsort(original_dist).astype(np.int32) min_dist = original_dist[range(all_num), tmp_rank[:,1]] #print('min_dist = ') #print(min_dist) pred_dist = np.transpose(pred_weight * min_dist) #print('pred_dist = ') #print(pred_dist) r_KL = 10#0.5#20.0 #print('original_dist = ') #print(original_dist) #original_dist_no_meta = original_dist.copy() original_dist += pred_dist*r_KL #original_dist = np.clip(original_dist, 0, 1) # not meaningful #print('original_dist = ') #print(original_dist) initial_rank = np.argsort(original_dist).astype(np.int32) #original_dist_no_query = original_dist.copy() #original_dist_no_query[:,:query_num] = 1000.0 #initial_rank = np.argsort(original_dist_no_query).astype(np.int32) print('starting re_ranking') for i in range(all_num): # k-reciprocal neighbors forward_k_neigh_index = initial_rank[i, :k1 + 1] backward_k_neigh_index = initial_rank[forward_k_neigh_index, :k1 + 1] fi = np.where(backward_k_neigh_index == i)[0] k_reciprocal_index = forward_k_neigh_index[fi] k_reciprocal_expansion_index = k_reciprocal_index for j in range(len(k_reciprocal_index)): candidate = k_reciprocal_index[j] candidate_forward_k_neigh_index = initial_rank[candidate, :int(np.around(k1 / 2)) + 1] candidate_backward_k_neigh_index = initial_rank[candidate_forward_k_neigh_index, :int(
np.around(k1 / 2)
numpy.around
import copy from PIL import Image from PIL import ImageEnhance from torch.utils.data import DataLoader, Dataset import torch import numpy as np import glob import torchvision import matplotlib.pyplot as plt import random import cv2 from torchvision import transforms np.seterr(divide='ignore', invalid='ignore') def takeSecond(elem): return elem[0]**2+elem[1]**2 class heatmap_dataset(Dataset): def __init__(self, ds_dir, sigma, setname='train', transform=None, norm_factor=256, rgb2gray=False, resize=True): self.ds_dir = ds_dir self.setname = setname self.transform = transform self.norm_factor = norm_factor self.rgb2gray = rgb2gray self.__sigma = sigma self.resize = resize self.c = 0 self.s = 0 self.r = 0 if setname == 'train': data = [] gt = [] train_list = '/media/home_bak/ziqi/park/Hourglass_twopoint/dataset/train.txt' f = open(train_list) for line in f: line_data = line.strip('\n') line_gt = line_data.replace( 'perspective_img', 'point').replace('.jpg', '_OA.txt') data.append(line_data) gt.append(line_gt) self.data = data self.gt = gt if setname == 'val': data = [] gt = [] test_list = '/media/home_bak/ziqi/park/Hourglass_twopoint/dataset/val.txt' f = open(test_list) for line in f: line_data = line.strip('\n') line_gt = line_data.replace( 'perspective_img', 'point').replace('.jpg', '_OA.txt') data.append(line_data) gt.append(line_gt) self.data = data self.gt = gt def __len__(self): return len(self.data) def get_affine_transform(self, center, scale, rot, output_size, shift=np.array([0, 0], dtype=np.float32), inv=0): if not isinstance(scale, np.ndarray) and not isinstance(scale, list): print(scale) scale = np.array([scale, scale]) scale_tmp = scale * 200 # print('scale_tmp',scale_tmp) # print("scale_tmp: {}".format(scale_tmp)) # print("output_size: {}".format(output_size)) # W H src_w = scale_tmp[0] dst_w = output_size[0] dst_h = output_size[1] rot_rad = np.pi * rot / 180 src_dir = self.get_dir([0, src_w * -0.5], rot_rad) dst_dir = np.array([0, dst_w * -0.5], np.float32) # print("src_dir: {}".format(src_dir)) # print("dst_dir: {}".format(dst_dir)) src = np.zeros((3, 2), dtype=np.float32) dst = np.zeros((3, 2), dtype=np.float32) # print("center: {}".format(center)) src[0, :] = center + scale_tmp * shift # print("src[0, :]: {}".format(src[0, :])) # print("src_dir: {}".format(src_dir)) src[1, :] = center + src_dir + scale_tmp * shift # print("src[1, :]: {}".format(src[1, :])) dst[0, :] = [dst_w * 0.5, dst_h * 0.5] dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir src[2:, :] = self.get_3rd_point(src[0, :], src[1, :]) # print("src[2:, :]: {}".format(src[2:, :])) dst[2:, :] = self.get_3rd_point(dst[0, :], dst[1, :]) # print('src', src,dst) # print("src:\n{}".format(src)) # print("dst:\n{}".format(dst)) if inv: trans = cv2.getAffineTransform(np.float32(dst), np.float32(src)) else: trans = cv2.getAffineTransform(np.float32(src), np.float32(dst)) # exit(1) return trans def get_dir(self, src_point, rot_rad): sn, cs = np.sin(rot_rad), np.cos(rot_rad) src_result = [0, 0] src_result[0] = src_point[0] * cs - src_point[1] * sn src_result[1] = src_point[0] * sn + src_point[1] * cs return src_result def get_3rd_point(self, a, b): direct = a - b return b + np.array([-direct[1], direct[0]], dtype=np.float32) def _box2cs(self, size, aspect_ratio=None, scale_factor=None): x, y, w, h = 0, 0, size[0], size[1] return self._xywh2cs(x, y, w, h, aspect_ratio, scale_factor) def _xywh2cs(self, x, y, w, h, aspect_ratio, scale_factor): center = np.zeros((2), dtype=np.float32) center[0] = x + w * 0.5 center[1] = y + h * 0.5 if w > aspect_ratio * h: h = w * 1.0 / aspect_ratio elif w < aspect_ratio * h: w = h * aspect_ratio scale = np.array( [w * 1.0 / 200, h * 1.0 / 200], dtype=np.float32) return center, scale def __getitem__(self, item): if item < 0 or item >= self.__len__(): return None # Read images # data = Image.open(str(self.data[item])) data = cv2.imread(str(self.data[item])) imgPath = str(self.data[item]) gt = [[0, 0], [0, 0]] # gt = np.loadtxt(str(self.data[item])) with open(str(self.gt[item]), "r") as f: lines = f.readlines() # 把全部数据文件读到一个列表lines中 # 表示矩阵的行,从0行开始 row = 0 # 把lines中的数据逐行读取出来 for line in lines: # 处理逐行数据:strip表示把头尾的'\n'去掉,split表示以空格来分割行数据,然后把处理后的行数据返回到list列表中 list = line.strip('\n').split(' ') gt[row][0] = float(list[0]) gt[row][1] = float(list[1]) # print("point:", list[0], list[1]) # 然后方阵A的下一行接着读 row = row + 1 if row == 2: break # gt.sort(key=takeSecond) # print("file", imgPath) H, W = 384, 384 # print(type(data)) # 数据增强 # data = self.randomBlur(data) data = self.RandomBrightness(data) data = self.RandomHue(data) data = self.RandomSaturation(data) # data = self.randomColor(data) data = self.randomGaussian(data, mean=0.2, sigma=0.3) data = 255 * np.array(data).astype('uint8') data = cv2.cvtColor(np.array(data), cv2.COLOR_RGB2BGR) # PIL转cv2 if self.rgb2gray: t = torchvision.transforms.Grayscale(1) data = t(data) # Convert to numpy data = np.array(data, dtype=np.float32) / self.norm_factor # gt = np.array(gt, dtype=np.float32) / 384 gt =
np.array(gt, dtype=np.float32)
numpy.array
import numpy as np import loupe def asarray(a): """Convert the input to an array. Parameters ---------- a : array_like Input data, in any form that can be converted to an array. This includes lists, lists of tuples, tuples, tuples of tuples, tuples of lists and ndarrays. Returns ------- out : :class:`array` Input data packaged as an :class:`array`. If input is already an :class:`array` or :class:`~loupe.core.Function`, the original input is returned. Examples -------- Convert a list into an array: .. code:: pycon >>> a = [1,2,3] >>> loupe.asarray(a) array([ 1.,2., 3.]) Existing arrays are not copied: .. code:: pycon >>> a = loupe.array([1,2,3]) >>> loupe.asarray(a) is a True """ if isinstance(a, (loupe.array, loupe.core.Function)): return a elif isinstance(a, (int, float, complex, list, tuple, np.ndarray)): return loupe.array(a) else: raise TypeError(f'Unsupported type. Cannot create array from \ {a.__class__.__name__}') def zeros(shape, dtype=None, requires_grad=False): """Return a new array with values set to zeros. Parameters ---------- shape : int or tuple of ints Shape of the array dtype : data type, optional Desired data type for the array requires_grad : bool, optional It True, gradients will be computed for this array. Default is False. Returns ------- out : :class:`array` Array of zeros with the given shape and dtype. See Also -------- zeros_like : Return an array of zeros with shape and type of input. ones : Return a new array with values set to ones. """ return loupe.array(np.zeros(shape), dtype=dtype, requires_grad=requires_grad) def zeros_like(a, dtype=None, requires_grad=False): """Return a new array of zeros with the same shape and type as a given array. """ return loupe.zeros(shape=a.shape, dtype=dtype, requires_grad=requires_grad) def ones(shape, dtype=None, requires_grad=False): """Return a new array with values set to ones.""" return loupe.array(
np.ones(shape)
numpy.ones
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Nov 29 19:48:05 2018 @author: andrew """ import numpy as np import matplotlib.pyplot as plt from scipy.optimize import curve_fit from scipy.ndimage.filters import gaussian_filter from scipy.special import iv from astropy.io import fits import glob import sys #import gc from scipy.stats import chisquare from scipy.stats import chi2 from scipy.stats import skellam as skell from scipy.special import erf from scipy.integrate import quad from astropy.stats import sigma_clip import sep def stdev_dist(data, n_x=3, n_y=3): shape_x, shape_y = data.shape[0], data.shape[1] # while shape_x % n_x != 0: # n_x += 1 # while shape_y % n_y != 0: # n_y += 1 # stdevs = [] # stamps_vert = np.split(data, n_x) # stamps_horiz = np.split(data, n_y, axis=1) # for x in stamps_vert: # stdevs.append(np.ma.median(x)) # for y in stamps_horiz: # stdevs.append(np.ma.median(y)) # return np.std(stdevs) width_x, width_y = np.floor(shape_x/n_x), np.floor(shape_y/n_y) d_x, d_y = np.floor(width_x/2), np.floor(width_y/2) x = [] y = [] stdevs = [] # stamps = [] for i in range(n_x): x.append(d_x + (i*width_x)) for j in range(n_y): y.append(d_y + (j*width_y)) for h in x: for k in y: stamp = data.data[int((k-d_y)):int((k+d_y+1)), int((h-d_x)):int((h+d_x+1))] # stamps.append(stamp) stdevs.append(np.ma.std(stamp)) return np.std(stdevs) def split_im(data, n_x=2, n_y=2): # shape_x, shape_y = data.shape[0], data.shape[1] # while shape_x % n_x != 0: # n_x += 1 # while shape_y % n_y != 0: # n_y += 1 # if n_x > 5 or n_y > 5: # print("-> Warning: odd image dimensions-- optimization may take a long time") stamps = [] stamps_vert = np.array_split(data, n_x) stamps_horiz = np.array_split(data, n_y, axis=1) for v in stamps_vert: stamps_horiz = np.split(v, n_y, axis=1) for h in stamps_horiz: stamps.append(h) return stamps def make_im(x=1000,y=1000,numStars=50,seeing=2,maxFlux=10000,bkg=50): Xs = np.random.randint(0,high=x,size=numStars) Ys = np.random.randint(0,high=y,size=numStars) fluxes = np.random.random(size=numStars)*maxFlux image = np.zeros((x,y)) for i in range(numStars): image[Xs[i],Ys[i]] = fluxes[i] image = gaussian_filter(image,seeing) image += bkg return image def add_poisson(image): im = image + np.random.poisson(image) return im def plot_res(im1,im2): res = im1 - im2 median1 = np.median(im1) median2 = np.median(im2) medianAvg = round(np.mean([median1,median2])) bns = int(round(2*(len(res.flatten()))**(1/3))) return plt.hist(res.flatten(), bins=bns, range=[-1*medianAvg,medianAvg], normed=True), medianAvg, bns def get_res_data(image, N_x=2, N_y=2, opt=True): name = image.split('/')[-1] location = image.replace('/data/' + name,'') residual = location + '/' + 'residuals/' + name[:-5] + 'residual_.fits' template = glob.glob(location + '/templates/*.fits') if opt == True: res = '%s/temp/conv.fits' % (location) try: weight_check = fits.getval(res, 'WEIGHT') except: weight_check = 'N' if weight_check == 'N': res_data = np.ma.masked_array((fits.getdata(res))*-1, mask=fits.getdata(residual, 1)) else: res_data = np.ma.masked_array((fits.getdata(res))*-1, mask=((fits.getdata(residual, 1)-1)*-1)) else: try: weight_check = fits.getval(residual, 'WEIGHT') except: weight_check = 'N' if weight_check == 'N': res_data = np.ma.masked_array(fits.getdata(residual), mask=fits.getdata(residual, 1)) else: res_data = np.ma.masked_array(fits.getdata(residual), mask=((fits.getdata(residual, 1)-1)*-1)) res_data_clipped = sigma_clip(res_data.data, sigma=3) res_data_master_mask = np.logical_or(res_data.mask, res_data_clipped.mask) res_data = np.ma.MaskedArray(res_data.data, mask=res_data_master_mask) if len(template) == 1: im_data = fits.getdata(image) temp_data = fits.getdata(template[0]) im_data = (im_data).byteswap().newbyteorder() temp_data = (temp_data).byteswap().newbyteorder() image_data = np.ma.masked_array(im_data, mask=np.logical_not(fits.getdata(image, 1))) template_data = np.ma.masked_array(temp_data, mask=np.logical_not(fits.getdata(template[0], 1))) # res_stamps = split_im(res_data, n_x=N_x, n_y=N_y) res_stamps = np.array_split(res_data, N_x) image_stamps = split_im(image_data, n_x=N_x, n_y=N_y) template_stamps = split_im(template_data, n_x=N_x, n_y=N_y) # try: image_median = float(fits.getval(image, 'MEDIAN')) # except: image_median = np.median(np.ma.MaskedArray(fits.getdata(image), mask=np.logical_not(fits.getdata(image, 1)))) # try: template_median = float(fits.getval(template[0], 'MEDIAN')) # except: template_median = np.median(np.ma.MaskedArray(fits.getdata(template[0]), mask=np.logical_not(fits.getdata(template[0], 1)))) # image_median = np.ma.median(image_data) # template_median = np.ma.median(template_data) # image_median = [np.ma.median(i) for i in image_stamps] # template_median = [np.ma.median(i) for i in template_stamps] image_backs = [sep.Background(i.data, mask=i.mask) for i in image_stamps] template_backs = [sep.Background(j.data, mask=j.mask) for j in template_stamps] image_median = [i.globalback for i in image_backs] template_median = [j.globalback for j in template_backs] del res_data, name, location, residual, template return res_stamps, image_median, template_median elif len(template) > 1: print("\n-> Error: Too many template images in 'templates' directory\n") sys.exit() else: print("\n-> Error: Problem with number of template images\n") sys.exit() #@profile def get_res_hist(res_data, image_median_list, template_median_list): image_median = np.mean(image_median_list) template_median = np.mean(template_median_list) medianAvg = np.mean([image_median, template_median]) res_median = np.ma.median(res_data) res_median_theoretical = image_median - template_median if np.ma.is_masked(np.ma.median(res_data)): res_median = 0 rangeRes = abs((-1*5*medianAvg)+res_median_theoretical) + abs(res_median_theoretical+(5*medianAvg)) range_low = res_median_theoretical - (5*abs(medianAvg)) range_high = res_median_theoretical + (5*abs(medianAvg)) bns = int(round((rangeRes/400)*2*(len((res_data.data).flatten()))**(1/3))/2) # if medianAvg > 0: return np.histogram(res_data.data, weights=(np.logical_not(res_data.mask)).astype(int), bins=bns, range=[range_low, range_high], density=True), res_median, np.ma.std(res_data), bns # elif medianAvg < 0: # return np.histogram(res_data.data, weights=(np.logical_not(res_data.mask)).astype(int), bins=bns, range=[2*medianAvg+res_median, res_median+(-1*2*medianAvg)], density=True), res_median, np.ma.std(res_data), bns # else: # return np.histogram(res_data.data, weights=(np.logical_not(res_data.mask)).astype(int), bins=bns, range=[-100,100], density=True), res_median, np.ma.std(res_data), bns def plot_im(im,rnge=[0,500],bns=100): return plt.hist(im.flatten(), bins=bns, range=rnge) def normal(x): return (1/(np.sqrt(2*np.pi)))*np.exp(-0.5*(x**2)) def int_gauss(x1, x2): I = quad(normal, x1, x2) return I[0] def chi2_fit(res_data, median1, median2, conf_level=0.995, dx=100, dy=100, delta_df=2): # data_mid_horiz = data.shape[0] / 2 # data_mid_vert = data.shape[1] / 2 # res_data = data[(round(data_mid_vert)-dy):(round(data_mid_vert)+dy+1), (round(data_mid_horiz)-dx):(round(data_mid_horiz)+dx+1)] expected_iter = len(res_data.flatten()) res_noise = np.sqrt(median1+median2) res_data = (res_data - (median1-median2)) / res_noise # expected_interval = skell.interval(0.99999999, median1, median2) medianAvg = np.mean([median1, median2]) # data_range= abs((-1*2*medianAvg)+np.ma.median(res_data)) + abs(np.ma.median(res_data)+(2*medianAvg)) # data_range = expected_interval[1] - expected_interval[0] # bns = int(round((data_range/400)*2*(len((res_data.data).flatten()))**(1/3))/2) bns = int((np.log2(expected_iter) + 1)) expected_interval = (-5, 5) # expected = skellam(np.linspace(expected_interval[0], expected_interval[1], num=expected_iter), median1, median2) # expected = [skell.rvs(median1, median2) for i in range(expected_iter)] # expected = np.random.normal(size=expected_iter) if medianAvg >= 0: data_hist = np.histogram(res_data.data, weights=(
np.logical_not(res_data.mask)
numpy.logical_not
from numpy.testing import (assert_, assert_allclose, assert_raises, assert_equal) import numpy as np from scipy.optimize._lsq.common import ( step_size_to_bound, find_active_constraints, make_strictly_feasible, CL_scaling_vector, intersect_trust_region, build_quadratic_1d, minimize_quadratic_1d, evaluate_quadratic, reflective_transformation) class TestBounds(object): def test_step_size_to_bounds(self): lb = np.array([-1.0, 2.5, 10.0]) ub = np.array([1.0, 5.0, 100.0]) x = np.array([0.0, 2.5, 12.0]) s = np.array([0.1, 0.0, 0.0]) step, hits = step_size_to_bound(x, s, lb, ub) assert_equal(step, 10) assert_equal(hits, [1, 0, 0]) s = np.array([0.01, 0.05, -1.0]) step, hits = step_size_to_bound(x, s, lb, ub) assert_equal(step, 2) assert_equal(hits, [0, 0, -1]) s = np.array([10.0, -0.0001, 100.0]) step, hits = step_size_to_bound(x, s, lb, ub) assert_equal(step, np.array(-0)) assert_equal(hits, [0, -1, 0]) s = np.array([1.0, 0.5, -2.0]) step, hits = step_size_to_bound(x, s, lb, ub) assert_equal(step, 1.0) assert_equal(hits, [1, 0, -1]) s = np.zeros(3) step, hits = step_size_to_bound(x, s, lb, ub)
assert_equal(step, np.inf)
numpy.testing.assert_equal
import numpy as np import pandas as pd from matplotlib import pyplot as plt # %% load data, prepare common variables data = pd.read_csv("datasets/OMAE2020_Dataset_D.txt", sep=";") data.columns = ["Datetime", "V", "Hs"] data = data[["Hs", "V"]] x, dx = np.linspace([0.1, 0.1], [6, 22], num=100, retstep=True) # given_hs = list(range(1, 7)) # %% # vc2 from virocon import GlobalHierarchicalModel from virocon.predefined import get_DNVGL_Hs_U dist_descriptions, fit_descriptions, semantics = get_DNVGL_Hs_U() ghm = GlobalHierarchicalModel(dist_descriptions) ghm.fit(data, fit_descriptions=fit_descriptions) # %% from virocon.plotting import plot_2D_isodensity plot_2D_isodensity(ghm, data, semantics=semantics) # %% my_f = ghm.pdf(x) my_f_weibull3 = ghm.distributions[0].pdf(x[:, 0]) my_weibull3_params = ( ghm.distributions[0].beta, ghm.distributions[0].gamma, ghm.distributions[0].alpha, ) my_weibull2 = ghm.distributions[1] my_given = my_weibull2.conditioning_values my_f_weibull2 = [] for given in my_given: my_f_weibull2.append(my_weibull2.pdf(x[:, 1], given)) my_f_weibull2 = np.stack(my_f_weibull2, axis=1) my_alphas =
np.array([par["alpha"] for par in my_weibull2.parameters_per_interval])
numpy.array
from __future__ import absolute_import import re import operator as op import math try: basestring except NameError: basestring = (str, bytes) try: from collections.abc import Container, Sized except ImportError: from collections import Container, Sized from bisect import bisect_right from contextlib import contextmanager from .structures import PyteomicsError from .file_helpers import _keepstate, IteratorContextManager, _make_chain, ChainBase, TableJoiner from .patch import pd def _fix_docstring(f, **defaults): for argname, v in defaults.items(): if v is not None: f.__doc__ = re.sub('{} : .*'.format(argname), lambda m: m.group() + ', optional', f.__doc__) def _calculate_qvalues(scores, isdecoy, peps=False, **kwargs): """Actual q-value calculation. Parameters ---------- scores : numpy.ndarray Sorted array of PSMs. isdecoy : numpy.ndarray Sorted array of bools (decoy/target) or floats (PEPs). Returns ------- out : numpy.ndarray Calculated q-values. """ correction = kwargs.pop('correction', 0) ratio = kwargs.pop('ratio', 1) remove_decoy = kwargs.get('remove_decoy', False) formula = kwargs.pop('formula', (2, 1)[bool(remove_decoy)]) if formula not in {1, 2}: raise PyteomicsError('`formula` must be either 1 or 2') # score_label = kwargs['score_label'] cumsum = isdecoy.cumsum(dtype=np.float64) tfalse = cumsum.copy() ind =
np.arange(1., scores.shape[0] + 1., dtype=np.float64)
numpy.arange
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Author: nico # @Date: 2018-02-13 18:16:02 """ Created on Wed Jan 14 11:30:29 2015 @author: nico """ import numpy as np from math import factorial def savitzky_golay(y, window_size, order, deriv=0, rate=1): """ Smoothes input signal with a Savitzky-Golay function. Uses a kernel of size "window_size" and a polinomial fit of order "order". :param y: [description] :type y: [type] :param window_size: [description] :type window_size: [type] :param order: [description] :type order: [type] :param deriv: [description], defaults to 0 :param deriv: int, optional :param rate: [description], defaults to 1 :param rate: int, optional :raises ValueError: [description] :raises TypeError: [description] :raises TypeError: [description] :return: [description] :rtype: [type] """ y = np.array(y) try: window_size = np.abs(np.int(window_size)) order = np.abs(np.int(order)) except ValueError: raise ValueError("window_size and order have to be of type int") if window_size % 2 != 1 or window_size < 1: raise TypeError("window_size size must be a positive odd number") if window_size < order + 2: raise TypeError("window_size is too small for the polynomials order") order_range = range(order + 1) half_window = (window_size - 1) // 2 # precompute coefficients b = np.mat([[k**i for i in order_range] for k in range( -half_window, half_window + 1)]) m = np.linalg.pinv(b).A[deriv] * rate**deriv * factorial(deriv) # pad the signal at the extremes with # values taken from the signal itself firstvals = y[0] - np.abs(y[1:half_window + 1][::-1] - y[0]) lastvals = y[-1] + np.abs(y[-half_window - 1:-1][::-1] - y[-1]) y =
np.concatenate((firstvals, y, lastvals))
numpy.concatenate
# generates the ditance matrix for clustering def caldistance(lst1, lst2): # calculates the L1 distance between lst1, lst2. they represent two layers (chcknum1/2) with heir list of metabolomic values dist0 = 0 for ii in range(0, len(lst1)): tmp = abs(lst1[ii] - lst2[ii]) dist0 = dist0 + tmp return dist0 def strtofloat0(lst): # returns a list of float, given al ist of numbers in str type ans = [] for ii in lst: tmp = [float(kk) for kk in ii] ans.append(tmp) return ans def getvalues0(polarval0, start1, len1, start2, len2): # returns lists with the values of the groups that we want to compare grp1 = polarval0[:, start1:(start1+len1)] grp2 = polarval0[:, start2:(start2+len2)] grp1lst = grp1.tolist() grp2lst = grp2.tolist() return grp1lst, grp2lst def averageingroupdis(dim0, mtrx0): # calculates the average distance within the same group (array) - sum of all elements, devided by (number of elements minus diagonal) # dim0 is the number of rows/columns in the array. # This is a symmetrical matrix with diagonal = 0. element ij is the distance between animal i and j (in the same group) sm0 = np.sum(mtrx0) numbrofelmnts = ((dim0*dim0) - dim0) ans = sm0/numbrofelmnts return ans def averageoutgroupdis(dim0, mtrx0): # calculates the average distance beween two groups (array) - sum of all elements, devided by number of elements # dim0 is the number of rows/columns in the array, here the diagonal has no meaning - each row is one group and each column is a second group. # element ij is the distance between animal i and j (in the different groups!) sm0 = np.sum(mtrx0) numbrofelmnts = ((dim0*dim0)) ans = sm0/numbrofelmnts return ans def buildidsmatrx(distarr, perm0): # receives the original distance matrix/array and the permutation vector, builds the permutated matrix permdist0 = [] for ii in perm0: permtmp = [] for jj in perm0: tmp = distarr[ii, jj] # need to have the indices starting from 0! permtmp.append(tmp) # print('permtmp', permtmp) permdist0.append(permtmp) return permdist0 def originaldistmtrx(distarry): # receives the two-group metabolomics data, generates the distance matrix(list) distlstot0 = [] for ii in range(0, len(distarry)): rowdist = [] for jj in range(0, len(distarry)): tmpdist = caldistance(distarry[ii], distarry[jj]) rowdist.append(tmpdist) distlstot0.append(rowdist) return distlstot0 def generatepairgroup(group01, group02): # generates the distance matrix (array) for the group01-group02 pair group01arr = np.array(group01) group01arrt = group01arr.transpose() print(len(group01arrt), len(group01arrt[0])) # group01lst0 = group01arrt.tolist() group02arr = np.array(group02) group02arrt = group02arr.transpose() print(len(group02arrt), len(group02arrt[0])) # group02lst0 = group02arrt.tolist() group0102lst0 = group01lst0 + group02lst0 print(len(group0102lst0), len(group0102lst0[0])) # distlst0 = originaldistmtrx(group0102lst0) # generating the distance matrix (array) print(len(distlst0), len(distlst0[0]), distlst0[0][0], distlst0[0][1], distlst0[1][1], distlst0[1][0]) return distlst0 def ingpdis(gpnum, gpsize, distmtrx): # receives the distance matrix(list), returns the intragroup distance of gpnum distmtrxarr = np.array(distmtrx) if gpnum == 1: # always size 15 tmpdistmtrxarr = distmtrxarr[0:gpsize, 0:gpsize] sm0 = np.sum(tmpdistmtrxarr) numbrofelmnts = ((gpsize * gpsize) - gpsize) ans = sm0 / numbrofelmnts if gpnum == 2: # should work for size 15 as well as 14 tmpdistmtrxarr = distmtrxarr[15:, 15:] # starts with No. 15 always sm0 = np.sum(tmpdistmtrxarr) numbrofelmnts = ((gpsize * gpsize) - gpsize) # goos for size 15 and 14 - this is the matrix size ans = sm0 / numbrofelmnts return ans def outgpdis(gset, gpsize, distmtrx): # receives the distance matrix(list), returns the intergroup distance of gset distmtrxarr =
np.array(distmtrx)
numpy.array
''' @file base.py Contains the functions that compute the features The MIT License (MIT) Copyright (c) 2013 <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. calculate filterbank features. Provides e.g. fbank and mfcc features for use in ASR applications Author: <NAME> 2012 ''' import numpy import sigproc from scipy.fftpack import dct from scipy.ndimage import convolve1d def mfcc(signal, samplerate, conf): ''' Compute MFCC features from an audio signal. Args: signal: the audio signal from which to compute features. Should be an N*1 array samplerate: the samplerate of the signal we are working with. conf: feature configuration Returns: A numpy array of size (NUMFRAMES by numcep) containing features. Each row holds 1 feature vector, a numpy vector containing the signal log-energy ''' feat, energy = fbank(signal, samplerate, conf) feat = numpy.log(feat) feat = dct(feat, type=2, axis=1, norm='ortho')[:, :int(conf['numcep'])] feat = lifter(feat, float(conf['ceplifter'])) return feat, numpy.log(energy) def fbank(signal, samplerate, conf): ''' Compute fbank features from an audio signal. Args: signal: the audio signal from which to compute features. Should be an N*1 array samplerate: the samplerate of the signal we are working with. conf: feature configuration Returns: A numpy array of size (NUMFRAMES by nfilt) containing features, a numpy vector containing the signal energy ''' highfreq = int(conf['highfreq']) if highfreq < 0: highfreq = samplerate/2 signal = sigproc.preemphasis(signal, float(conf['preemph'])) frames = sigproc.framesig(signal, float(conf['winlen'])*samplerate, float(conf['winstep'])*samplerate) pspec = sigproc.powspec(frames, int(conf['nfft'])) # this stores the total energy in each frame energy = numpy.sum(pspec, 1) # if energy is zero, we get problems with log energy = numpy.where(energy == 0, numpy.finfo(float).eps, energy) filterbank = get_filterbanks(int(conf['nfilt']), int(conf['nfft']), samplerate, int(conf['lowfreq']), highfreq) # compute the filterbank energies feat = numpy.dot(pspec, filterbank.T) # if feat is zero, we get problems with log feat = numpy.where(feat == 0, numpy.finfo(float).eps, feat) return feat, energy def logfbank(signal, samplerate, conf): ''' Compute log-fbank features from an audio signal. Args: signal: the audio signal from which to compute features. Should be an N*1 array samplerate: the samplerate of the signal we are working with. conf: feature configuration Returns: A numpy array of size (NUMFRAMES by nfilt) containing features, a numpy vector containing the signal log-energy ''' feat, energy = fbank(signal, samplerate, conf) return numpy.log(feat), numpy.log(energy) def ssc(signal, samplerate, conf): ''' Compute ssc features from an audio signal. Args: signal: the audio signal from which to compute features. Should be an N*1 array samplerate: the samplerate of the signal we are working with. conf: feature configuration Returns: A numpy array of size (NUMFRAMES by nfilt) containing features, a numpy vector containing the signal log-energy ''' highfreq = int(conf['highfreq']) if highfreq < 0: highfreq = samplerate/2 signal = sigproc.preemphasis(signal, float(conf['preemph'])) frames = sigproc.framesig(signal, float(conf['winlen'])*samplerate, float(conf['winstep'])*samplerate) pspec = sigproc.powspec(frames, int(conf['nfft'])) # this stores the total energy in each frame energy = numpy.sum(pspec, 1) # if energy is zero, we get problems with log energy = numpy.where(energy == 0, numpy.finfo(float).eps, energy) filterbank = get_filterbanks(int(conf['nfilt']), int(conf['nfft']), samplerate, int(conf['lowfreq']), highfreq) # compute the filterbank energies feat = numpy.dot(pspec, filterbank.T) tiles = numpy.tile(numpy.linspace(1, samplerate/2,
numpy.size(pspec, 1)
numpy.size
import os import numpy as np from array import array from sklearn.metrics import mean_absolute_error from skmultiflow.data import RegressionGenerator from skmultiflow.trees import HoeffdingTreeRegressor from difflib import SequenceMatcher def test_hoeffding_tree_regressor(): stream = RegressionGenerator(n_samples=500, n_features=20, n_informative=15, random_state=1) learner = HoeffdingTreeRegressor(leaf_prediction='mean') cnt = 0 max_samples = 500 y_pred = array('d') y_true = array('d') wait_samples = 10 while cnt < max_samples: X, y = stream.next_sample() # Test every n samples if (cnt % wait_samples == 0) and (cnt != 0): y_pred.append(learner.predict(X)[0]) y_true.append(y[0]) learner.partial_fit(X, y) cnt += 1 expected_predictions = array('d', [102.38946041769101, 55.6584574987656, 5.746076599168373, 17.11797209372667, 2.566888222752787, 9.188247802192826, 17.87894804676911, 15.940629626883966, 8.981172175448485, 13.152624115190092, 11.106058099429399, 6.473195313058236, 4.723621479590173, 13.825568609556493, 8.698873073880696, 1.6452441811010252, 5.123496188584294, 6.34387187194982, 5.9977733790395105, 6.874251577667707, 4.605348088338317, 8.20112636572672, 9.032631648758098, 4.428189978974459, 4.249801041367518, 9.983272668044492, 12.859518508979734, 11.741395774380285, 11.230028410261868, 9.126921979081521, 9.132146661688296, 7.750655625124709, 6.445145118245414, 5.760928671876355, 4.041291302080659, 3.591837600560529, 0.7640424010500604, 0.1738639840537784, 2.2068337802212286, -81.05302946841077, 96.17757415335177, -77.35894903819677, 95.85568683733698, 99.1981674250886, 99.89327888035015, 101.66673013734784, -79.1904234513751, -80.42952143783687, 100.63954789983896]) assert np.allclose(y_pred, expected_predictions) error = mean_absolute_error(y_true, y_pred) expected_error = 143.11351404083086 assert
np.isclose(error, expected_error)
numpy.isclose
# -*- coding: utf-8 -*- # # Test basic functionality of ComputationalRoutine class # # Builtin/3rd party package imports import os import tempfile import time import pytest import numpy as np from glob import glob from scipy import signal # Local imports from syncopy import __acme__ if __acme__: import dask.distributed as dd from syncopy.datatype import AnalogData from syncopy.datatype.base_data import Selector from syncopy.io import load from syncopy.shared.computational_routine import ComputationalRoutine from syncopy.shared.kwarg_decorators import unwrap_io, unwrap_cfg, unwrap_select from syncopy.tests.misc import generate_artificial_data # Decorator to decide whether or not to run dask-related tests skip_without_acme = pytest.mark.skipif(not __acme__, reason="acme not available") @unwrap_io def lowpass(arr, b, a=None, noCompute=None, chunkShape=None): if noCompute: return arr.shape, arr.dtype res = signal.filtfilt(b, a, arr.T, padlen=200).T return res class LowPassFilter(ComputationalRoutine): computeFunction = staticmethod(lowpass) def process_metadata(self, data, out): if data.selection is not None: chanSec = data.selection.channel trl = data.selection.trialdefinition else: chanSec = slice(None) trl = np.zeros((len(self.trialList), 3), dtype=int) trial_lengths =
np.diff(data.sampleinfo)
numpy.diff
import torch import torch.nn as nn import numpy as np from mmdet.core import bbox2roi, build_assigner, build_sampler, tensor2imgs, get_classes from .two_stage import TwoStageDetector from .. import builder from ..registry import DETECTORS import pycocotools.mask as mask_util import mmcv from mmcv import imresize @DETECTORS.register_module class ClusterRCNN(TwoStageDetector): def __init__(self, backbone, rpn_head, bbox_roi_extractor, bbox_head, mask_roi_extractor, train_cfg, test_cfg, backbone_of=None, neck=None, shared_head=None, mask_head=None, mask_cluster_head=None, roi_cluster_head=None, pretrained=None, swapped=False, num_clusters=2): super(ClusterRCNN, self).__init__( backbone=backbone, neck=neck, shared_head=shared_head, rpn_head=rpn_head, bbox_roi_extractor=bbox_roi_extractor, bbox_head=bbox_head, mask_roi_extractor=mask_roi_extractor, mask_head=mask_head, train_cfg=train_cfg, test_cfg=test_cfg, pretrained=pretrained) self.swapped = swapped self.num_clusters = num_clusters if mask_cluster_head is not None: self.mask_cluster_head = builder.build_head(mask_cluster_head) self.mask_cluster_head.init_weights() if mask_roi_extractor is not None: self.mask_roi_extractor = builder.build_roi_extractor(mask_roi_extractor) self.share_roi_extractor = False if roi_cluster_head is not None: self.roi_cluster_head = builder.build_head(roi_cluster_head) self.roi_cluster_head.init_weights() @property def with_cluster(self): return hasattr(self, 'mask_cluster_head') and self.mask_cluster_head is not None @property def with_roi_cluster(self): return hasattr(self, 'roi_cluster_head') and self.roi_cluster_head is not None def forward_train(self, img, img_meta, gt_bboxes, gt_labels, gt_inst_ids=None, gt_masks=None, gt_bboxes_ignore=None, proposals=None, return_targets=False): M = self.forward_to_neck(img) losses, _ = self.forward_heads( M, img_meta, gt_bboxes, gt_labels, gt_inst_ids, gt_masks, gt_bboxes_ignore, proposals, return_targets) return losses def forward_to_neck(self, img, of=None): return self.extract_feat(img, of) def forward_heads(self, M, img_meta, gt_bboxes, gt_labels, gt_inst_ids=None, gt_masks=None, gt_bboxes_ignore=None, proposals=None, return_targets=False, calculate_losses=True, img=None): x = M losses = dict() targets = dict() # RPN forward and loss if self.with_rpn: rpn_outs = self.rpn_head(x) rpn_loss_inputs = rpn_outs + (gt_bboxes, img_meta, self.train_cfg.rpn) if calculate_losses: rpn_losses = self.rpn_head.loss( *rpn_loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore) losses.update(rpn_losses) proposal_cfg = self.train_cfg.get('rpn_proposal', self.test_cfg.rpn) proposal_inputs = rpn_outs + (img_meta, proposal_cfg) proposal_list = self.rpn_head.get_bboxes(*proposal_inputs) else: asd #TODO proposal_list = proposals # assign gts and sample proposals if self.with_bbox or self.with_mask: bbox_assigner = build_assigner(self.train_cfg.rcnn.assigner) bbox_sampler = build_sampler( self.train_cfg.rcnn.sampler, context=self) num_imgs = len(img_meta) if gt_bboxes_ignore is None: gt_bboxes_ignore = [None for _ in range(num_imgs)] sampling_results = [] for i in range(num_imgs): assign_result = bbox_assigner.assign(proposal_list[i], gt_bboxes[i], gt_bboxes_ignore[i], gt_labels[i]) sampling_result = bbox_sampler.sample( assign_result, proposal_list[i], gt_bboxes[i], gt_labels[i], feats=[lvl_feat[i][None] for lvl_feat in x]) sampling_results.append(sampling_result) # bbox head forward and loss if self.with_bbox: rois = bbox2roi([res.bboxes for res in sampling_results]) # TODO: a more flexible way to decide which feature maps to use bbox_feats = self.bbox_roi_extractor( x[:self.bbox_roi_extractor.num_inputs], rois) if self.with_shared_head: bbox_feats = self.shared_head(bbox_feats) cls_score, bbox_pred = self.bbox_head(bbox_feats) bbox_targets = self.bbox_head.get_target(sampling_results, gt_bboxes, gt_labels, self.train_cfg.rcnn) if calculate_losses: loss_bbox = self.bbox_head.loss(cls_score, bbox_pred, *bbox_targets) losses.update(loss_bbox) # mask head forward and loss if not self.share_roi_extractor: pos_rois = bbox2roi( [res.pos_bboxes for res in sampling_results]) mask_feats = self.mask_roi_extractor( x[:self.mask_roi_extractor.num_inputs], pos_rois) if self.with_shared_head: mask_feats = self.shared_head(mask_feats) else: pos_inds = [] device = bbox_feats.device for res in sampling_results: pos_inds.append( torch.ones( res.pos_bboxes.shape[0], device=device, dtype=torch.uint8)) pos_inds.append( torch.zeros( res.neg_bboxes.shape[0], device=device, dtype=torch.uint8)) pos_inds = torch.cat(pos_inds) mask_feats = bbox_feats[pos_inds] pos_labels = torch.cat( [res.pos_gt_labels for res in sampling_results]) if self.with_cluster: # mask cluster head forward and loss mask_cluster_pred = self.mask_cluster_head(mask_feats) if gt_inst_ids==None: gt_inst_ids = [torch.arange(1, gt_mask.shape[0]+1) for gt_mask in gt_masks] mask_bg_targets, mask_inst_targets, mask_inst_score, \ roi_inst_targets, roi_inst_score = self.mask_cluster_head.get_target( sampling_results, gt_masks, gt_inst_ids, self.train_cfg.rcnn) im_size_list = [max(gt_mask.shape) for gt_mask in gt_masks] pos_assigned_gt_inds = [res.pos_assigned_gt_inds for res in sampling_results] if calculate_losses: loss_bg = self.mask_cluster_head.background_loss(mask_cluster_pred[:, :1], mask_bg_targets, pos_labels) losses.update(loss_bg) ############# def batch_separator(assigned_gt_inds): start_idx = 0 batch_sep = [] for inds in assigned_gt_inds: batch_sep.append(list(range(start_idx, start_idx+len(inds)))) start_idx += len(inds) return batch_sep batch_sep = batch_separator(pos_assigned_gt_inds) mask_cluster_pred = [mask_cluster_pred[sep] for sep in batch_sep] mask_feats = [mask_feats[sep] for sep in batch_sep] roi_inst_targets, roi_indeces, cluster_indeces, ext_assigned_gt_inds \ = self.mask_cluster_head.get_roi_mask_target( sampling_results, gt_masks, gt_inst_ids, mask_cluster_pred, self.train_cfg.rcnn) selected_cluster_featuremap = [] ext_mask_feats = [] for clustermap, roi_idx, cluster_idx, mask_feat in zip(mask_cluster_pred, roi_indeces, cluster_indeces, mask_feats): #inds = torch.arange(0, clustermap.shape[0], dtype=torch.long, device=clustermap.device) selected_cluster_featuremap.append(clustermap[roi_idx, cluster_idx]) ext_mask_feats.append(mask_feat[roi_idx]) selected_cluster_featuremap = torch.cat(selected_cluster_featuremap) mask_feats = torch.cat(ext_mask_feats) roi_cluster_pred = self.roi_cluster_head(mask_feats, selected_cluster_featuremap) ####################x batch_sep = batch_separator(ext_assigned_gt_inds) roi_cluster_pred = [roi_cluster_pred[sep] for sep in batch_sep] #roi_bboxes = [roi_bboxes[sep] for sep in batch_sep] if return_targets: roi_bboxes = [res.pos_bboxes for res in sampling_results] targets = dict(pos_assigned_gt_inds=pos_assigned_gt_inds, ext_assigned_gt_inds=ext_assigned_gt_inds, gt_bboxes=gt_bboxes, im_size_list=im_size_list, mask_cluster_pred=mask_cluster_pred, roi_cluster_pred=roi_cluster_pred, mask_inst_targets=mask_inst_targets, mask_inst_score=mask_inst_score, roi_bboxes=roi_bboxes, mask_feats=mask_feats, roi_inst_targets=roi_inst_targets, roi_inst_score=roi_inst_score) return losses, targets def simple_test_mask(self, x, img_meta, det_bboxes, det_labels, det_obj_ids=None, rescale=False): # image shape of the first image in the batch (only one) ori_shape = img_meta[0]['ori_shape'] scale_factor = img_meta[0]['scale_factor'] if det_bboxes.shape[0] == 0: segm_result = [[] for _ in range(self.mask_head.num_classes - 1)] else: # if det_bboxes is rescaled to the original image size, we need to # rescale it back to the testing scale to obtain RoIs. _bboxes = ( det_bboxes[:, :4] * scale_factor if rescale else det_bboxes) mask_rois = bbox2roi([_bboxes]) mask_feats = self.mask_roi_extractor( x[:len(self.mask_roi_extractor.featmap_strides)], mask_rois) if self.with_shared_head: mask_feats = self.shared_head(mask_feats) if self.swapped: _, mask_cluster_pred = self.mask_cluster_head(mask_feats) cluster_pred_pooled = torch.nn.MaxPool2d(2, 2)(mask_cluster_pred) mask_feats = torch.cat((mask_feats, cluster_pred_pooled), 1) mask_pred = self.mask_head(mask_feats) segm_result = self.mask_head.get_seg_masks(mask_pred, _bboxes, det_labels, self.test_cfg.rcnn, ori_shape, scale_factor, rescale, det_obj_ids=det_obj_ids) return segm_result def simple_video_test_mask(self, x, img_meta, det_bboxes, det_labels, mask_roi_map, rescale=False): # image shape of the first image in the batch (only one) ori_shape = img_meta[0]['ori_shape'] scale_factor = img_meta[0]['scale_factor'] if det_bboxes.shape[0] == 0: obj_segms = [] mask_clusters = [[]] mask_cluster_ids = [] cluster_map = np.zeros((0, 0, 6), dtype=np.float32) roi_cluster_ids = [] roi_indeces = [] else: # if det_bboxes is rescaled to the original image size, we need to # rescale it back to the testing scale to obtain RoIs. if rescale: det_bboxes[:, :4] *= scale_factor mask_rois = bbox2roi([det_bboxes]) mask_feats = self.mask_roi_extractor( x[:len(self.mask_roi_extractor.featmap_strides)], mask_rois) if self.with_shared_head: mask_feats = self.shared_head(mask_feats) mask_cluster_pred = self.mask_cluster_head(mask_feats) obj_segms, mask_cluster_ids, roi_indeces, cluster_map = self.mask_cluster_head.get_cluster_mask_ids( mask_cluster_pred, det_bboxes, det_labels, self.test_cfg.rcnn, ori_shape, scale_factor, rescale, roi_id=False) mask_cluster_ids = [mask_cluster_id + 1 for mask_cluster_id in mask_cluster_ids] mask_cluster_pred = mask_cluster_pred[roi_indeces, mask_cluster_ids] mask_feats = mask_feats[roi_indeces] if len(roi_indeces) > 0: roi_cluster_pred = self.roi_cluster_head(mask_feats, mask_cluster_pred) roi_cluster_pred = roi_cluster_pred.cpu().numpy() roi_cluster_ids = np.argmax(roi_cluster_pred, axis=1) roi_cluster_ids = [pred[0]+1 for pred in roi_cluster_ids] if len(np.unique(np.asarray(roi_cluster_ids))) > 1: mask_roi_map_tmp = {} for m, r in zip(mask_cluster_ids, roi_cluster_ids): mask_roi_map_tmp[m] = r if len(list(mask_roi_map_tmp.values())) == self.num_clusters and len(np.unique(np.asarray(list(mask_roi_map_tmp.values())))) == self.num_clusters: mask_roi_map = mask_roi_map_tmp else: if mask_roi_map: roi_cluster_ids = [mask_roi_map[m] for m in mask_cluster_ids] obj_segms = {roi_cluster_id:obj_segm for roi_cluster_id, obj_segm in zip(roi_cluster_ids, obj_segms)} else: roi_cluster_ids = [] return obj_segms, cluster_map, roi_cluster_ids, roi_indeces, mask_roi_map def simple_test(self, img, img_meta, proposals=None, rescale=False, with_cluster=True): if not with_cluster: return super(ClusterRCNN, self).simple_test(img, img_meta, proposals=proposals, rescale=rescale) """Test without augmentation.""" assert self.with_bbox, "Bbox head must be implemented." x = self.extract_feat(img) proposal_list = self.simple_test_rpn( x, img_meta, self.test_cfg.rpn) if proposals is None else proposals det_bboxes, det_labels = self.simple_test_bboxes( x, img_meta, proposal_list, self.test_cfg.rcnn, rescale=rescale) segm_results, mask_clusters, mask_cluster_ids = self.simple_video_test_mask( x, img_meta, det_bboxes, det_labels, rescale=rescale) bbox_results = bbox2result_with_id(det_bboxes, det_labels, mask_cluster_ids, self.bbox_head.num_classes) return bbox_results, segm_results, mask_clusters def gen_colormask(self, N=256): def bitget(byteval, idx): return ((byteval & (1 << idx)) != 0) dtype = 'uint8' cmap = np.zeros((N, 3), dtype=dtype) for i in range(N): r = g = b = 0 c = i for j in range(8): r = r | (bitget(c, 0) << 7-j) g = g | (bitget(c, 1) << 7-j) b = b | (bitget(c, 2) << 7-j) c = c >> 3 cmap[i] = np.array([r, g, b]) self.color_mask = cmap[3:] def show_result(self, data, result, dataset=None, score_thr=0.3): if isinstance(result, tuple): bbox_results, segm_results, mask_clusters, mask_clusters_orig = result else: bbox_results, segm_results, mask_clusters, mask_clusters_orig = result, None, None, None if dataset is None: class_names = self.CLASSES elif isinstance(dataset, str): class_names = get_classes(dataset) elif isinstance(dataset, (list, tuple)): class_names = dataset else: raise TypeError( 'dataset must be a valid dataset name or a sequence' ' of class names, not {}'.format(type(dataset))) # use colors to denote different object instances in videos # for YTVOS, only refresh color_mask at the first frame of each video if not hasattr(self, 'color_mask'): self.gen_colormask() if isinstance(bbox_results, dict) and len(bbox_results.keys()) == 0: return for inp, bbox_result, segm_result, mask_cluster, mask_cluster_orig in zip(data['inp_seq'], bbox_results, segm_results, mask_clusters, mask_clusters_orig): img_tensor = inp['img'][0] img_meta = inp['img_meta'][0].data[0][0] img = tensor2imgs(img_tensor, **img_meta['img_norm_cfg'])[0] h, w, _ = img_meta['img_shape'] img = imresize(img, (w, h)) #img_show = img[:h, :w, :] img_show = np.ones((h,w,3)) if bbox_result: bboxes = np.vstack([x['bbox'] for x in bbox_result.values()]) obj_ids = list(bbox_result.keys()) else: bboxes = np.zeros((0, 5)) obj_ids = [] # draw segmentation masks if len(segm_result)>0: inds = np.where(bboxes[:, -1] > score_thr)[0] for i in inds: if obj_ids[i] in segm_result: mask = mask_util.decode(segm_result[obj_ids[i]]).astype(np.bool) color_id = obj_ids[i] +1 img_show[mask] = self.color_mask[color_id,:] mask_cluster = (mask_cluster * 255).astype(np.uint8) mask_cluster_orig = (mask_cluster_orig * 255).astype(np.uint8) mask_cluster_img = np.concatenate((mask_cluster_orig[:, :, [0, 1, 2]], mask_cluster_orig[:, :, [0, 3, 4]])) #mask_cluster_img = np.concatenate((mask_cluster, mask_cluster_orig)) save_vis = True save_path = 'viss' if save_vis: show = False save_path = '{}/{}/{}.png'.format(save_path, img_meta['video_id'], img_meta['frame_id']) else: show = True save_path = None # draw bounding boxes if dataset == 'coco': labels = [ np.full(bbox.shape[0], i, dtype=np.int32) for i, bbox in enumerate(bbox_result) ] labels = np.concatenate(labels) else: labels = [ x['label'] for x in bbox_result.values()] labels =
np.array(labels)
numpy.array
import unittest from setup.settings import * from numpy.testing import * from pandas.util.testing import * import numpy as np import dolphindb_numpy as dnp import pandas as pd import orca class FunctionDivideTest(unittest.TestCase): @classmethod def setUpClass(cls): # connect to a DolphinDB server orca.connect(HOST, PORT, "admin", "123456") def test_function_math_binary_divide_scalar(self): self.assertEqual(dnp.divide(1.2 + 1j, 1.2 - 1j), np.divide(1.2 + 1j, 1.2 - 1j)) self.assertEqual(dnp.divide(0.5, 9), np.divide(0.5, 9)) self.assertEqual(dnp.divide(-1, 8.5), np.divide(-1, 8.5)) self.assertEqual(dnp.divide(1, 4), np.divide(1, 4)) self.assertEqual(dnp.divide(1, -5), np.divide(1, -5)) self.assertEqual(dnp.divide(0, 9), np.divide(0, 9)) self.assertEqual(dnp.isnan(dnp.divide(dnp.nan, -5)), True) self.assertEqual(np.isnan(np.divide(dnp.nan, -5)), True) def test_function_math_binary_divide_list(self): lst1 = [1, 2, 3] lst2 = [4, 6, 9] assert_array_equal(dnp.divide(lst1, lst2), np.divide(lst1, lst2)) def test_function_math_binary_divide_array_with_scalar(self): npa = np.array([1, 2, 3]) dnpa = dnp.array([1, 2, 3]) assert_array_equal(dnp.divide(dnpa, 1), np.divide(npa, 1)) assert_array_equal(dnp.divide(dnpa, dnp.nan), np.divide(npa, np.nan)) # TODO: divide bug # assert_array_equal(dnp.divide(1, dnpa), np.divide(1, npa)) def test_function_math_binary_divide_array_with_array(self): npa1 = np.array([1, 2, 3]) npa2 = np.array([4, 6, 9]) dnpa1 = dnp.array([1, 2, 3]) dnpa2 = dnp.array([4, 6, 9]) assert_array_equal(dnp.divide(dnpa1, dnpa2), np.divide(npa1, npa2)) def test_function_math_binary_divide_array_with_array_param_out(self): npa1 = np.array([1, 2, 3]) npa2 = np.array([4, 6, 9]) npa = np.zeros(shape=(1, 3)) dnpa1 = dnp.array([1, 2, 3]) dnpa2 = dnp.array([4, 6, 9]) dnpa = dnp.zeros(shape=(1, 3)) np.divide(npa1, npa2, out=npa) dnp.divide(dnpa1, dnpa2, out=dnpa) # TODO: dolphindb numpy divide bug # assert_array_equal(dnpa.to_numpy(), npa) def test_function_math_binary_divide_array_with_series(self): npa = np.array([1, 2, 3]) dnpa = dnp.array([1, 2, 3]) ps = pd.Series([4, 6, 9]) os = orca.Series([4, 6, 9]) assert_series_equal(dnp.divide(dnpa, os).to_pandas(), np.divide(npa, ps)) assert_series_equal(dnp.divide(os, dnpa).to_pandas(), np.divide(ps, npa)) def test_function_math_binary_divide_array_with_dataframe(self): npa =
np.array([1, 2, 3])
numpy.array
import wx, numpy, re # The recommended way to use wx with mpl is with the WXAgg backend. import matplotlib matplotlib.use('WXAgg') import matplotlib.pyplot as plt import scipy.spatial.distance import matplotlib.colors from matplotlib.text import Text from matplotlib.patches import Ellipse from matplotlib.patches import Polygon from ..reremi.classQuery import SYM, Query from ..reremi.classRedescription import Redescription from ..reremi.classSParts import SSetts from classInterObjects import MaskCreator import pdb class DrawerBasis(object): wait_delay = 300 max_emphlbl = 5 ann_xy = (-10, 15) info_dets = {"px": 0, "py":0, "dx": 10, "dy":10, "va":"bottom", "ha": "left", "ec": "#111111", "alpha": .6} ltids_map = {1: "binary", 2: "spectral", 3: "viridis"} @classmethod def getCMap(tcl, ltid): return plt.get_cmap(tcl.ltids_map.get(ltid, "jet")) def __init__(self, view): self.view = view self.call_wait = None self.elements = {"active_info": False, "act_butt": [1]} self.initPlot() self.plot_void() def initPlot(self): self.setAxe(self.getFigure().add_subplot( 111 )) def draw(self): self.getLayH().draw() def setFocus(self): self.getLayH().setFocus() def getVecAndDets(self, inter_params=None): vec = self.getPltDtH().getVec() vec_dets = self.getPltDtH().getVecDets() return vec, vec_dets def update(self, more=None): if self.view.wasKilled(): return if self.isReadyPlot(): self.clearPlot() self.makeBackground() inter_params = self.getParamsInter() vec, vec_dets = self.getVecAndDets(inter_params) draw_settings = self.getDrawSettings() selected = self.getPltDtH().getUnvizRows() x0, x1, y0, y1 = self.getAxisLims() bx, by = (x1-x0)/100.0, (y1-y0)/100.0 corners = (x0, x1, y0, y1, bx, by) if self.getPltDtH().isSingleVar(): self.dots_draws, mapper = self.prepareSingleVarDots(vec, vec_dets, draw_settings) else: self.dots_draws = self.prepareEntitiesDots(vec, vec_dets, draw_settings) mapper = None if len(selected) > 0: selp = inter_params.get("slide_opac", 50)/100. self.dots_draws["fc_dots"][numpy.array(list(selected)), -1] *= selp self.dots_draws["ec_dots"][numpy.array(list(selected)), -1] *= selp draw_indices = numpy.where(self.dots_draws["draw_dots"])[0] if self.plotSimple(): ## #### NO PICKER, FASTER PLOTTING. self.plotDotsSimple(self.getAxe(), self.dots_draws, draw_indices, draw_settings) else: self.plotDotsPoly(self.getAxe(), self.dots_draws, draw_indices, draw_settings) if mapper is not None: corners = self.plotMapperHist(self.axe, vec, vec_dets, mapper, self.NBBINS, corners, draw_settings) self.makeFinish(corners[:4], corners[4:]) self.updateEmphasize(review=False) self.draw() self.setFocus() else: self.plot_void() ### IMPLEMENT def isEntitiesPlt(self): return False def isRedPlt(self): return False def inCapture(self, event): return event.inaxes == self.getAxe() def isReadyPlot(self): return True def getAxisLims(self): return (0,1,0,1) def drawPoly(self): return False def plotSimple(self): return not self.drawPoly() def adjust(self): pass def makeBackground(self): pass def makeFinish(self, xylims=(0,1,0,1), xybs=(.1,.1)): self.axe.axis([xylims[0], xylims[1], xylims[2], xylims[3]]) def updateEmphasize(self, review=True): if self.hasParent() and self.isEntitiesPlt(): lids = self.getParentViewsm().getEmphasizedR(vkey=self.getId()) self.emphasizeOnOff(turn_on=lids, turn_off=None, review=review) def emphasizeOnOff(self, turn_on=set(), turn_off=set(), hover=False, review=True): pass def clearPlot(self): axxs = self.getFigure().get_axes() for ax in axxs: ax.cla() if ax != self.getAxe(): self.getFigure().delaxes(ax) self.clearHighlighted() self.clearInfoText() def clearHighlighted(self): ### IMPLEMENT pass def getId(self): return self.view.getId() def hasParent(self): return self.view.hasParent() def getParent(self): return self.view.getParent() def getLayH(self): return self.view.getLayH() def getPltDtH(self): return self.view.getPltDtH() def getParentData(self): return self.view.getParentData() def getParentViewsm(self): return self.view.getParentViewsm() def getDrawSettDef(self): return self.view.getDrawSettDef() def getDrawSettings(self): return self.view.getDrawSettings() def getVec(self, more=None): return self.getPltDtH().getVec(more) def getFigure(self): return self.getLayH().getFigure() def getAxe(self): return self.axe def setAxe(self, value): self.axe = value def delElement(self, key): if key in self.elements: del self.elements[key] def setElement(self, key, value): self.elements[key] = value def getElement(self, key): return self.elements[key] def hasElement(self, key): return key in self.elements def getSettV(self, key, default=False): return self.view.getSettV(key, default) def makeAdditionalElements(self, panel=None): return [] #### SEC: INTERACTIVE ELEMENTS ########################################### def prepareInteractive(self, panel=None): self.setElement("inter_elems", {}) boxes = self.makeAdditionalElements(panel) self.interBind() self.setElement("ellipse", Ellipse((2, -1), 0.5, 0.5)) for act, meth in self.getCanvasConnections(): if act == "MASK": self.setElement("mask_creator", MaskCreator(self.getAxe(), None, buttons_t=[], callback_change=self.view.makeMenu)) else: self.getFigure().canvas.mpl_connect(act, meth) self.prepareActions() self.setKeys() return boxes def getCanvasConnections(self): return [] def interBind(self): for button in self.getElement("buttons"): button["element"].Bind(wx.EVT_BUTTON, button["function"]) for name, elem in self.getElement("inter_elems").items(): if re.match("slide", name): elem.Bind(wx.EVT_SCROLL_THUMBRELEASE, self.OnSlide) if re.match("choice", name): elem.Bind(wx.EVT_CHOICE, self.OnChoice) def getParamsInter(self): inter_params = {} for name, elem in self.getElement("inter_elems").items(): if re.match("slide", name): inter_params[name] = elem.GetValue() if re.match("choice", name): inter_params[name] = elem.GetSelection() return inter_params def getInterElements(self): return self.getElement("inter_elems") def OnSlide(self, event): self.update() def OnChoice(self, event): self.update() #### SEC: ACTIONS ########################################### def hasToolbActive(self): return self.getLayH().getToolbar().has_active_button() def getActionsDetails(self): details = [] for action, dtl in self.actions_map.items(): details.append({"label": "%s[%s]" % (dtl["label"].ljust(30), dtl["key"]), "legend": dtl["legend"], "active": dtl["active_q"](), "key": dtl["key"], "order": dtl["order"], "type": dtl["type"]}) if self.hasElement("mask_creator"): details.extend(self.getElement("mask_creator").getActionsDetails(6)) return details def prepareActions(self): self.actions_map = {} def OnMenuAction(self, event): if event.GetId() in self.menu_map_act: self.doActionForKey(self.menu_map_act[event.GetId()]) def OnMenuMCAction(self, event): if self.hasElement("mask_creator") and event.GetId() in self.menu_map_act: self.getElement("mask_creator").doActionForKey(self.menu_map_act[event.GetId()]) def makeActionsMenu(self, frame, menuAct=None): self.menu_map_act = {} if menuAct is None: menuAct = wx.Menu() for action in sorted(self.getActionsDetails(), key=lambda x:(x["order"],x["key"])): ID_ACT = wx.NewId() if action["type"] == "check": m_act = menuAct.AppendCheckItem(ID_ACT, action["label"], action["legend"]) frame.Bind(wx.EVT_MENU, self.OnMenuAction, m_act) self.menu_map_act[ID_ACT] = action["key"] if action["active"]: m_act.Check() else: m_act = menuAct.Append(ID_ACT, action["label"], action["legend"]) if action["active"]: if action["type"] == "mc": frame.Bind(wx.EVT_MENU, self.OnMenuMCAction, m_act) else: frame.Bind(wx.EVT_MENU, self.OnMenuAction, m_act) self.menu_map_act[ID_ACT] = action["key"] else: menuAct.Enable(ID_ACT, False) if menuAct.GetMenuItemCount() == 0: self.getParent().appendEmptyMenuEntry(menuAct, "No Actions", "There are no edit actions.") return menuAct ################ HANDLING KEY ACTIONS def setKeys(self, keys=None): self.keys_map = {} if keys is None: for action, details in self.actions_map.items(): details["key"] = action[0] self.keys_map[details["key"]] = action else: for action, details in self.actions_map.items(): details["key"] = None for key, action in keys.items(): if action in self.actions_map: self.actions_map[action]["key"] = key self.keys_map[key] = action def doActionForKey(self, key): if self.keys_map.get(key, None in self.actions_map): act = self.actions_map[self.keys_map[key]] if act["type"] == "check" or act["active_q"](): self.actions_map[self.keys_map[key]]["method"](self.actions_map[self.keys_map[key]]["more"]) return True return False def key_press_callback(self, event): self.doActionForKey(event.key) def mkey_press_callback(self, event): self.doActionForKey(chr(event.GetKeyCode()).lower()) ################ ACTIONS QUERIES def q_has_poly(self): return self.hasElement("mask_creator") and self.getElement("mask_creator").q_has_poly() def q_active_poly(self): return self.hasElement("mask_creator") and self.getElement("mask_creator").isActive() def q_active_info(self): return self.getElement("active_info") def q_true(self): return True def q_not_svar(self): return not self.getPltDtH().isSingleVar() def q_has_selected(self): return len(self.getHighlightedIds()) > 0 ################ ACTIONS FUNCTIONS def do_toggle_info(self, event): self.setElement("active_info", not self.getElement("active_info")) def do_toggle_poly(self, event): self.togglePoly() def togglePoly(self): if self.hasElement("mask_creator"): if self.getElement("mask_creator").isActive(): self.getElement("mask_creator").setButtons([]) self.setElement("act_butt", [1]) else: self.getElement("mask_creator").setButtons([1]) self.setElement("act_butt", []) self.view.makeMenu() self.getLayH().getToolbar().mouse_move() def apply_mask(self, path, radius=0.0): if path is not None and self.getCoords() is not None: points = numpy.transpose((self.getCoords(0), self.getCoords(1))) return [i for i,point in enumerate(points) if path.contains_point(point, radius=radius)] return [] def do_deselect_all(self, more=None): if self.isEntitiesPlt(): self.sendEmphasize(None) def do_set_select(self, setp): if self.isEntitiesPlt(): points = [i for (i,p) in enumerate(self.getVec()) if p in setp] self.sendEmphasize(points) def do_select_poly(self, more=None): if self.isEntitiesPlt(): points = self.apply_mask(self.getElement("mask_creator").get_path()) self.getElement("mask_creator").clear() if points != set(): self.sendEmphasize(points) def do_flip_emphasized(self, more=None): if self.isEntitiesPlt(): self.sendFlipEmphasizedR() def save_supp_var(self, more=None): if self.hasParent(): self.getParent().OnSaveSuppAsVar(self.getVec(), "%s" % self.getParentViewsm().getItemId(self.getId())) def save_sel_var(self, more=None): if self.hasParent() and self.isEntitiesPlt(): lids = self.getParentViewsm().getEmphasizedR(vkey=self.getId()) self.getParent().OnSaveSelAsVar(lids, "S%s" % self.getParentViewsm().getItemId(self.getId())) #### SEC: FILL and WAIT PLOTTING ########################################### def plot_void(self): if self.view.wasKilled(): return self.clearPlot() self.axe.plot([r/10.0+0.3 for r in [0,2,4]], [0.5 for r in [0,2,4]], 's', markersize=10, mfc="#DDDDDD", mec="#DDDDDD") self.axe.axis([0,1,0,1]) self.draw() def init_wait(self): self.call_wait = wx.CallLater(1, self.plot_wait) self.cp = 0 def kill_wait(self): if self.call_wait is not None: self.call_wait.Stop() if self.view.wasKilled(): return self.clearPlot() self.axe.plot([r/10.0+0.3 for r in [1,3]], [0.5, 0.5], 's', markersize=10, mfc="#DDDDDD", mec="#DDDDDD") self.axe.plot([r/10.0+0.3 for r in [0,2,4]], [0.5, 0.5, 0.5], 'ks', markersize=10) self.axe.axis([0,1,0,1]) self.draw() def plot_wait(self): if self.view.wasKilled(): return self.clearPlot() self.axe.plot([r/10.0+0.3 for r in range(5)], [0.5 for r in range(5)], 'ks', markersize=10, mfc="#DDDDDD", mec="#DDDDDD") self.axe.plot(((self.cp)%5)/10.0+0.3, 0.5, 'ks', markersize=10) self.axe.axis([0,1,0,1]) self.draw() self.cp += 1 self.call_wait.Restart(self.wait_delay) def setInfoText(self, text_str): if not self.hasElement("info_text"): info_text = {} ax = self.getAxe() dets = self.getInfoDets() xlims = ax.get_xlim() lx = xlims[0] + dets["px"]*(xlims[1]-xlims[0]) ylims = ax.get_ylim() ly = ylims[0] + dets["py"]*(ylims[1]-ylims[0]) info_text["text"] = ax.annotate(text_str, xy=(lx, ly), xycoords='data', xytext=(dets["dx"], dets["dy"]), textcoords='offset points', color=dets["ec"], va=dets["va"], ha=dets["ha"], backgroundcolor="#FFFFFF", bbox=dict(boxstyle="round", facecolor="#FFFFFF", ec=dets["ec"], alpha=dets["alpha"]), zorder=8, **self.view.getFontProps()) self.setElement("info_text", info_text) else: self.getElement("info_text")["text"].set_text(text_str) self.draw() def clearInfoText(self): self.delElement("info_text") def delInfoText(self): if self.hasElement("info_text"): self.getElement("info_text")["text"].remove() self.delElement("info_text") self.draw() def addStamp(self, pref=""): if not self.getPltDtH().hasQueries(): return if not self.hasElement("red_stamp"): old_pos = self.getAxe().get_position() # print "PosA", old_pos new_pos = [old_pos.x0, old_pos.y0, old_pos.width, 7./8*old_pos.height] # # pos2 = [0., 0., 1., 1.0] self.getAxe().set_position(new_pos) # pos1 = self.axe.get_position() # print "PosB", pos1 qrs = self.getPltDtH().getQueries() red = Redescription.fromQueriesPair(qrs, self.getParentData()) tex_fields = ["LHS:query:", "RHS:query:", ":acc:", ":perc:Exx"] headers = ["qL=", "qR=", "J=", "%supp="] if self.getParentData().hasLT(): tex_fields.extend(["acc_ratioTL", "len_I_ratioTA"]) headers.extend(["J$_{I/O}$=", "supp$_{I/A}$="]) rr = pref tex_str = red.disp(self.getParentData().getNames(), list_fields=tex_fields, with_fname=headers, sep=" ", delim="", nblines=3, style="T") #, rid=rr) if not self.hasElement("red_stamp"): red_stamp = {"old_pos": old_pos} old_pos = self.getAxe().get_position() red_stamp["text"] = self.getAxe().text(0.5*self.getAxe().get_xlim()[1], self.getAxe().get_ylim()[1], tex_str, ha="center", va="bottom", **self.view.getFontProps()) self.setElement("red_stamp", red_stamp) else: self.getElement("red_stamp")["text"].set_text(tex_str, **self.view.getFontProps()) self.draw() def delStamp(self): if self.hasElement("red_stamp"): red_stamp = self.getElement("red_stamp") self.axe.set_position(red_stamp["old_pos"]) red_stamp["text"].remove() self.delElement("red_stamp") self.draw() class DrawerEntitiesTD(DrawerBasis): NBBINS = 20 MAP_POLY = False max_emphlbl = 5 map_select_supp = [("l", "|E"+SSetts.sym_sparts[SSetts.Exo]+"|", [SSetts.Exo]), ("r", "|E"+SSetts.sym_sparts[SSetts.Eox]+"|", [SSetts.Eox]), ("i", "|E"+SSetts.sym_sparts[SSetts.Exx]+"|", [SSetts.Exx]), ("o", "|E"+SSetts.sym_sparts[SSetts.Eoo]+"|", [SSetts.Eoo])] def __init__(self, view): DrawerBasis.__init__(self, view) self.dots_draws = None def isEntitiesPlt(self): return True def drawPoly(self): return self.getPltDtH().hasPolyCoords() & self.getSettV("map_poly", self.MAP_POLY) def getAxisLims(self): return self.getPltDtH().getParentCoordsExtrema() #### SEC: ACTIONS ###################################### def makeAdditionalElements(self, panel=None): if panel is None: panel = self.getLayH().getPanel() flags = wx.ALIGN_CENTER | wx.ALL # | wx.EXPAND buttons = [] buttons.append({"element": wx.Button(panel, size=(self.getLayH().butt_w,-1), label="Expand"), "function": self.view.OnExpandSimp}) buttons[-1]["element"].SetFont(wx.Font(8, wx.FONTFAMILY_DEFAULT, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL)) inter_elems = {} inter_elems["slide_opac"] = wx.Slider(panel, -1, 10, 0, 100, wx.DefaultPosition, (self.getLayH().sld_w, -1), wx.SL_HORIZONTAL) ############################################## add_boxB = wx.BoxSizer(wx.HORIZONTAL) add_boxB.AddSpacer((self.getLayH().getSpacerWn()/2.,-1)) v_box = wx.BoxSizer(wx.VERTICAL) label = wx.StaticText(panel, wx.ID_ANY,u"- opac. disabled +") label.SetFont(wx.Font(8, wx.FONTFAMILY_DEFAULT, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL)) v_box.Add(label, 0, border=1, flag=flags) #, userData={"where": "*"}) v_box.Add(inter_elems["slide_opac"], 0, border=1, flag=flags) #, userData={"where":"*"}) add_boxB.Add(v_box, 0, border=1, flag=flags) add_boxB.AddSpacer((self.getLayH().getSpacerWn(),-1)) add_boxB.Add(buttons[-1]["element"], 0, border=1, flag=flags) add_boxB.AddSpacer((self.getLayH().getSpacerWn()/2.,-1)) self.setElement("buttons", buttons) self.setElement("inter_elems", inter_elems) return [add_boxB] def getCanvasConnections(self): return [("MASK", None), ("key_press_event", self.key_press_callback), ("button_release_event", self.on_click), ("motion_notify_event", self.on_motion)] def hoverActive(self): return self.getSettV('hover_entities') and not self.hasToolbActive() def hoverCoordsActive(self): return self.getSettV('hover_coords') and not self.hasToolbActive() def clickActive(self): return self.getSettV('click_entities') and not self.hasToolbActive() def getLidAt(self, x, y): if self.drawPoly(): return self.getLidAtPoly(x, y) return self.getLidAtSimple(x, y) def getLidAtPoly(self, x, y): ids_drawn =
numpy.where(self.dots_draws["draw_dots"])
numpy.where
''' Basic classes for sections and surfaces, and fundamental functions ''' import copy import os import re import matplotlib.pyplot as plt import numpy as np from mpl_toolkits.mplot3d import Axes3D from scipy.interpolate import CubicSpline from scipy import spatial from scipy.interpolate import interp1d from scipy.spatial.distance import cdist class BasicSection(): ''' Section: 3D curve and 2D unit curve ''' def __init__(self, thick=None, chord=1.0, twist=0.0): self.xLE = 0.0 self.yLE = 0.0 self.zLE = 0.0 self.chord = chord self.twist = twist self.thick = 0.0 self.thick_set = thick #* 2D unit curve self.xx = None self.yy = None # open curve self.yu = None # upper surface of closed curve self.yl = None # lower surface of closed curve #* 3D section self.x = np.zeros(1) self.y = np.zeros(1) self.z = np.zeros(1) def set_params(self, init=False, **kwargs): ''' Set parameters of the section ### Inputs: ```text init: True, set to default values ``` ### kwargs: ```text xLE, yLE, zLE, chord, twist, thick (None) ``` ''' if init: self.xLE = 0.0 self.yLE = 0.0 self.zLE = 0.0 self.chord = 1.0 self.twist = 0.0 self.thick = 0.0 self.thick_set = None return if 'xLE' in kwargs.keys(): self.xLE = kwargs['xLE'] if 'yLE' in kwargs.keys(): self.yLE = kwargs['yLE'] if 'zLE' in kwargs.keys(): self.zLE = kwargs['zLE'] if 'chord' in kwargs.keys(): self.chord = kwargs['chord'] if 'twist' in kwargs.keys(): self.twist = kwargs['twist'] if 'thick' in kwargs.keys(): self.thick_set = kwargs['thick'] def section(self, nn=1001, flip_x=False, proj=True): ''' ### Functions: ```text 1. Construct 2D unit curve (null in the BasicSection) 2. Transform to 3D curve ``` ### Inputs: ```text nn: total amount of points (it's here for function BasicSurface.geo_secs) flip_x: True ~ flip section.xx in reverse order proj: True => for unit airfoil, the rotation keeps the projection length the same ``` ''' if not isinstance(self.xx, np.ndarray): raise Exception('The 2D curve has not been constructed') #* Flip xx if flip_x: self.xx = np.flip(self.xx) #* Transform to 3D for open section if isinstance(self.yy, np.ndarray): self.x, _, self.y, _ = transform(self.xx, self.xx, self.yy, self.yy, scale=self.chord, rot=self.twist, dx=self.xLE, dy=self.yLE, proj=proj) self.z = np.ones_like(self.x)*self.zLE #* Transform to 3D for closed section if isinstance(self.yu, np.ndarray): xu_, xl_, yu_, yl_ = transform(self.xx, self.xx, self.yu, self.yl, scale=self.chord, rot=self.twist, dx=self.xLE, dy=self.yLE, proj=proj) self.x = np.concatenate((np.flip(xl_),xu_[1:]), axis=0) self.y = np.concatenate((np.flip(yl_),yu_[1:]), axis=0) self.z = np.ones_like(self.x)*self.zLE def copyfrom(self, other): ''' Copy from anthor BasicSection object ''' if not isinstance(other, BasicSection): raise Exception('Must copy from another BasicSection object') self.xLE = other.xLE self.yLE = other.yLE self.zLE = other.zLE self.chord = other.chord self.twist = other.twist self.xx = copy.deepcopy(other.xx) self.yy = copy.deepcopy(other.yy) self.yu = copy.deepcopy(other.yu) self.yl = copy.deepcopy(other.yl) self.x = other.x.copy() self.y = other.y.copy() self.z = other.z.copy() class BasicSurface(): ''' Construct multi-section surface with BasicSection objects. >>> BasicSurface(n_sec=0, name='Surf', nn=1001, ns=101, project=True) ''' def __init__(self, n_sec=0, name='Surf', nn=1001, ns=101, project=True): n_ = max(1, n_sec) self.l2d = n_ == 1 # type: bool self.name = name # type: str self.nn = nn # type: int self.ns = ns # type: int self.secs = [ BasicSection() for _ in range(n_) ] self.surfs = [] # type: list[list] self.project = project # type: bool # Parameters for plot self.half_s = 0.5 # type: float self.center = np.array([0.5, 0.5, 0.5]) @property def n_sec(self): return len(self.secs) @property def zLE_secs(self): ''' List of section zLE ''' return [round(sec.zLE,5) for sec in self.secs] def read_setting(self, fname: str): ''' Read in Surface layout parameters from file ### Inputs: ```text fname: control file name ``` ''' if not os.path.exists(fname): raise Exception(fname+' does not exist for surface setting') key_dict = {'Layout:': 1} found_surf = False found_key = 0 with open(fname, 'r') as f: lines = f.readlines() iL = 0 while iL<len(lines): line = lines[iL].split() if len(line) < 1: iL += 1 continue if not found_surf and len(line) > 1: if '[Surf]' in line[0] and self.name == line[1]: found_surf = True elif found_surf and '[Surf]' in line[0]: break elif found_surf and found_key == 0: if line[0] in key_dict: found_key = key_dict[line[0]] elif found_surf and found_key == 1: for i in range(self.n_sec): iL += 1 line = lines[iL].split() self.secs[i].xLE = float(line[0]) self.secs[i].yLE = float(line[1]) self.secs[i].zLE = float(line[2]) self.secs[i].chord = float(line[3]) self.secs[i].twist = float(line[4]) if len(line) >= 6: self.secs[i].thick_set = float(line[5]) if self.l2d: self.secs[i].zLE = 0.0 found_key = 0 else: # Lines that are not relevant pass iL += 1 self.layout_center() def layout_center(self): ''' Locate layout center for plot ''' x_range = [self.secs[0].xLE, self.secs[0].xLE] y_range = [self.secs[0].yLE, self.secs[0].yLE] z_range = [self.secs[0].zLE, self.secs[0].zLE] for i in range(self.n_sec): x_range[0] = min(x_range[0], self.secs[i].xLE) x_range[1] = max(x_range[1], self.secs[i].xLE+self.secs[i].chord) y_range[0] = min(y_range[0], self.secs[i].yLE) y_range[1] = max(y_range[1], self.secs[i].yLE) z_range[0] = min(z_range[0], self.secs[i].zLE) z_range[1] = max(z_range[1], self.secs[i].zLE) span = np.array([x_range[1]-x_range[0], y_range[1]-y_range[0], z_range[1]-z_range[0]]) self.half_s = span.max()/2.0 self.center[0] = 0.5*(x_range[1]+x_range[0]) self.center[1] = 0.5*(y_range[1]+y_range[0]) self.center[2] = 0.5*(z_range[1]+z_range[0]) def copyfrom(self, other): ''' Copy from another BasicSurface object ''' if not isinstance(other, BasicSurface): raise Exception('Must copy from a BasicSurface object') self.l2d = other.l2d self.name = other.name self.nn = other.nn self.ns = other.ns self.secs = copy.deepcopy(other.secs) self.surfs = copy.deepcopy(other.surfs) self.half_s = other.half_s self.center = other.center.copy() def linear_interpolate_z(self, z: float, key='x'): ''' Linear interpolation of key by given z >>> key_value = linear_interpolate_z(z: float, key='x') ### Inputs: ```text z: location of the value key: The value to be interpolated 'x' or 'X' 'y' or 'Y' 'c' or 'C' or 'chord' 't' or 'thick' or 'thickness' 'twist' ``` ''' #* Find the adjacent control sections i_sec = self.n_sec for i in range(self.n_sec-1): if (z-self.secs[i].zLE)*(z-self.secs[i+1].zLE)<0 or z==self.secs[i].zLE: i_sec = i if i_sec >= self.n_sec: raise Exception('z is not within the surface: ', z, self.secs[0].zLE, self.secs[-1].zLE) #* Linear interpolation tt = (z-self.secs[i_sec].zLE)/(self.secs[i_sec+1].zLE-self.secs[i_sec].zLE) key_value = None if key == 'x' or key == 'X': key_value = (1-tt)*self.secs[i_sec].xLE + tt*self.secs[i_sec+1].xLE elif key == 'y' or key == 'Y': key_value = (1-tt)*self.secs[i_sec].yLE + tt*self.secs[i_sec+1].yLE elif key == 'c' or key == 'C' or key == 'chord': key_value = (1-tt)*self.secs[i_sec].chord + tt*self.secs[i_sec+1].chord elif key == 't' or key == 'thick' or key == 'thickness': key_value = (1-tt)*self.secs[i_sec].thick + tt*self.secs[i_sec+1].thick elif key == 'twist': key_value = (1-tt)*self.secs[i_sec].twist + tt*self.secs[i_sec+1].twist else: raise Exception('Unknown key:', key) return key_value def geo_secs(self, flip_x=False): ''' Update surface sections ### Functions: ```text 1. Construct 2D unit curve (null in the BasicSection) 2. Transform to 3D curve ``` ### Inputs: ```text flip_x: True ~ flip section.xx in reverse order ``` ''' for i in range(self.n_sec): self.secs[i].section(nn=self.nn, flip_x=flip_x, proj=self.project) def geo(self, flip_x=False, update_sec=True): ''' Generate surface geometry ### Inputs: ```text flip_x: True ~ flip section.xx in reverse order update_sec: True ~ update sections ``` ''' if update_sec: self.geo_secs(flip_x=flip_x) self.surfs = [] if self.l2d: sec_ = copy.deepcopy(self.secs[0]) sec_.zLE = 1.0 surf = self.section_surf(self.secs[0], sec_, ns=self.ns) self.surfs.append(surf) else: for i in range(self.n_sec-1): surf = self.section_surf(self.secs[i], self.secs[i+1], ns=self.ns) self.surfs.append(surf) def geo_axisymmetric(self, phi, flip_x=False, update_sec=True): ''' Generate axisymmetric surface geometry ### Inputs: ```text phi: list or ndarray, position angle of control sections flip_x: True ~ flip section.xx in reverse order update_sec: True ~ update sections ``` ''' if update_sec: self.geo_secs(flip_x=flip_x) self.surfs = [] if self.l2d: raise Exception('Axisymmetric geometry can not be 2D surface') else: for i in range(self.n_sec-1): surf = self.section_surf_axisymmetric(self.secs[i], self.secs[i+1], phi[i], phi[i+1], ns=self.ns) self.surfs.append(surf) @staticmethod def section_surf(sec0, sec1, ns=101): ''' Interplot surface section between curves >>> surf = section_surf(sec0, sec1, ns) ### Inputs: ```text sec0, sec1: Section object ns: number of spanwise points ``` ### Return: ```text surf: [surf_x, surf_y, surf_z] list of ndarray [ns, nn] ``` ''' nn = sec0.x.shape[0] surf_x = np.zeros((ns,nn)) surf_y = np.zeros((ns,nn)) surf_z = np.zeros((ns,nn)) for i in range(ns): tt = 1.0*i/(ns-1.0) surf_x[i,:] = (1-tt)*sec0.x + tt*sec1.x surf_y[i,:] = (1-tt)*sec0.y + tt*sec1.y surf_z[i,:] = (1-tt)*sec0.z + tt*sec1.z surf = [surf_x, surf_y, surf_z] return surf @staticmethod def section_surf_axisymmetric(sec0, sec1, phi0: float, phi1: float, ns=101): ''' Interplot axisymmetric surface section between curves >>> surf = section_surf_axisymmetric(sec0, sec1, ns) ### Inputs: ```text sec0, sec1: Section object phi0, phi1: angle (degree) about X-axis (X-Y plane is 0 degree) ns: number of spanwise points ``` ### Return: ```text surf: [surf_x, surf_y, surf_z] list of ndarray [ns, nn] ``` ''' nn = sec0.x.shape[0] surf_x = np.zeros((ns,nn)) surf_y = np.zeros((ns,nn)) surf_z = np.zeros((ns,nn)) xx = np.zeros(nn) yy = np.zeros(nn) zz = np.zeros(nn) R = np.sqrt(sec0.yLE**2+sec0.zLE**2) for i in range(ns): tt = 1.0*i/(ns-1.0) t0 = 1-tt xLE = t0*sec0.xLE + tt*sec1.xLE yLE_ = t0*sec0.yLE + tt*sec1.yLE zLE_ = t0*sec0.zLE + tt*sec1.zLE angle = t0*phi0 + tt*phi1 yLE = R*np.cos(angle/180.0*np.pi) zLE = R*np.sin(angle/180.0*np.pi) xx = t0*sec0.x + tt*sec1.x yy = t0*sec0.y + tt*sec1.y + (yLE-yLE_) zz = t0*sec0.z + tt*sec1.z + (zLE-zLE_) surf_x[i,:], surf_y[i,:], surf_z[i,:] = rotate(xx, yy, zz, angle=angle, origin=[xLE, yLE, zLE], axis='X') return [surf_x, surf_y, surf_z] def flip(self, axis='None', plane='None'): ''' For surfs, and center. (This should be the last action) The axis and plane can be a single string, or a string contains multiple actions to take in order, e.g., '+X +Y'. ### Inputs: ```text axis: turn 90 degrees about axis: +X, -X, +Y, -Y, +Z, -Z plane: get symmetry about plane: 'XY', 'YZ', 'ZX' ``` ''' for axis_ in axis.split(): if '+X' in axis_: for i_sec in range(len(self.surfs)): temp = -self.surfs[i_sec][2] self.surfs[i_sec][2] = copy.deepcopy(self.surfs[i_sec][1]) self.surfs[i_sec][1] = copy.deepcopy(temp) temp = self.center[2]*1.0 self.center[2] = self.center[1]*1.0 self.center[1] = -temp if '-X' in axis_: for i_sec in range(len(self.surfs)): temp = -self.surfs[i_sec][1] self.surfs[i_sec][1] = copy.deepcopy(self.surfs[i_sec][2]) self.surfs[i_sec][2] = copy.deepcopy(temp) temp = self.center[1]*1.0 self.center[1] = self.center[2] self.center[2] = -temp if '+Y' in axis_: for i_sec in range(len(self.surfs)): temp = -self.surfs[i_sec][0] self.surfs[i_sec][0] = copy.deepcopy(self.surfs[i_sec][2]) self.surfs[i_sec][2] = copy.deepcopy(temp) temp = self.center[0] self.center[0] = self.center[2] self.center[2] = -temp if '-Y' in axis_: for i_sec in range(len(self.surfs)): temp = -self.surfs[i_sec][2] self.surfs[i_sec][2] = copy.deepcopy(self.surfs[i_sec][0]) self.surfs[i_sec][0] = copy.deepcopy(temp) temp = self.center[2] self.center[2] = self.center[0] self.center[0] = -temp if '+Z' in axis_: for i_sec in range(len(self.surfs)): temp = -self.surfs[i_sec][1] self.surfs[i_sec][1] = copy.deepcopy(self.surfs[i_sec][0]) self.surfs[i_sec][0] = copy.deepcopy(temp) temp = self.center[1] self.center[1] = self.center[0] self.center[0] = -temp if '-Z' in axis_: for i_sec in range(len(self.surfs)): temp = -self.surfs[i_sec][0] self.surfs[i_sec][0] = copy.deepcopy(self.surfs[i_sec][1]) self.surfs[i_sec][1] = copy.deepcopy(temp) temp = self.center[0] self.center[0] = self.center[1] self.center[1] = -temp if 'XY' in plane: for i_sec in range(len(self.surfs)): self.surfs[i_sec][2] = -self.surfs[i_sec][2] self.center[2] = - self.center[2] if 'YZ' in plane: for i_sec in range(len(self.surfs)): self.surfs[i_sec][0] = -self.surfs[i_sec][0] self.center[0] = - self.center[0] if 'ZX' in plane: for i_sec in range(len(self.surfs)): self.surfs[i_sec][1] = -self.surfs[i_sec][1] self.center[1] = - self.center[1] def translate(self, dX=0.0, dY=0.0, dZ=0.0): ''' Translate surface coordinates >>> translate(dX=0.0, dY=0.0, dZ=0.0) ''' for surf in self.surfs: surf[0] += dX surf[1] += dY surf[2] += dZ self.center[0] += dX self.center[1] += dY self.center[2] += dZ def scale(self, scale=1.0, X0=0.0, Y0=0.0, Z0=0.0): ''' Scale surface coordinates about (X0, Y0, Z0) >>> scale(scale=1.0, X0=0.0, Y0=0.0, Z0=0.0) ''' for surf in self.surfs: surf[0] = (surf[0]-X0)*scale + X0 surf[1] = (surf[1]-Y0)*scale + Y0 surf[2] = (surf[2]-Z0)*scale + Z0 self.center[0] = (self.center[0]-X0)*scale + X0 self.center[1] = (self.center[1]-Y0)*scale + Y0 self.center[2] = (self.center[2]-Z0)*scale + Z0 def smooth(self, i_sec0: int, i_sec1: int, smooth0=False, smooth1=False, dyn0=None, ratio_end=10): ''' Smooth the spanwise curve between i_sec0 and i_sec1 ### Inputs: ```text i_sec0, i_sec1: the starting and ending section index of the smooth region smooth0, smooth1: bool, whether have smooth transition to the neighboring surfaces dyn0: (dy/dz)|n, set the slope of y-z curve at the end of section 0 ``` ''' #* Do not have neighboring surfaces if i_sec0 == 0: smooth0 = False if i_sec1 == self.n_sec-1: smooth1 = False #* For each point in the section curve (n_point) n_point = self.surfs[0][0].shape[1] for ip in range(n_point): #* Collect the spanwise control points xx = [] yy = [] zz = [] for i_surf in range(i_sec0, i_sec1): xx.append(self.surfs[i_surf][0][0,ip]) yy.append(self.surfs[i_surf][1][0,ip]) zz.append(self.surfs[i_surf][2][0,ip]) xx.append(self.surfs[i_sec1-1][0][-1,ip]) yy.append(self.surfs[i_sec1-1][1][-1,ip]) zz.append(self.surfs[i_sec1-1][2][-1,ip]) #* Construct spanwise spline curve bcx0 = (2,0.0) bcx1 = (2,0.0) bcy0 = (2,0.0) bcy1 = (2,0.0) if smooth0: ii = i_sec0-1 dz = self.surfs[ii][2][-1,ip] - self.surfs[ii][2][-2,ip] dxz0 = (self.surfs[ii][0][-1,ip] - self.surfs[ii][0][-2,ip])/dz dyz0 = (self.surfs[ii][1][-1,ip] - self.surfs[ii][1][-2,ip])/dz bcx0 = (1,dxz0) bcy0 = (1,dyz0) if smooth1: ii = i_sec1+1 dz = self.surfs[ii][2][1,ip] - self.surfs[ii][2][0,ip] dxz1 = (self.surfs[ii][0][1,ip] - self.surfs[ii][0][0,ip])/dz dyz1 = (self.surfs[ii][1][1,ip] - self.surfs[ii][1][0,ip])/dz bcx1 = (1,dxz1) bcy1 = (1,dyz1) curve_x = CubicSpline(zz, xx, bc_type=(bcx0, bcx1)) if isinstance(dyn0, float) or isinstance(dyn0, int): if abs(dyn0)<=1e-6: if ip < n_point-1: _x1 = self.surfs[i_sec0][0][0,ip+1] - self.surfs[i_sec0][0][0,ip] _y1 = self.surfs[i_sec0][1][0,ip+1] - self.surfs[i_sec0][1][0,ip] _z2 = self.surfs[i_sec0][2][1,ip] - self.surfs[i_sec0][2][0,ip] _x2 = curve_x(self.surfs[i_sec0][2][1,ip]) - self.surfs[i_sec0][0][0,ip] _yz = _y1/_z2 * np.clip(_x2/_x1, -1, 1) bcy0 = (1,_yz) else: bcy0 = (1,_yz) else: bcy0 = (1,dyn0) curve_y = CubicSpline(zz, yy, bc_type=(bcy0, bcy1)) #* Smoothly change to the original geometry at both ends of the curve (ip=0, n_point-1) r1 = self.smooth_ratio_function(-ip/(n_point-1)*10, a=ratio_end) r2 = self.smooth_ratio_function((ip/(n_point-1)-1)*10, a=ratio_end) ratio = r1+r2 #* Use the spanwise spline to update the spanwise geometry for i_surf in range(i_sec0, i_sec1): nn = self.surfs[i_surf][0].shape[0] for j in range(nn): zi = self.surfs[i_surf][2][j,ip] self.surfs[i_surf][0][j,ip] = (1-ratio)*curve_x(zi) + ratio*self.surfs[i_surf][0][j,ip] self.surfs[i_surf][1][j,ip] = (1-ratio)*curve_y(zi) + ratio*self.surfs[i_surf][1][j,ip] def smooth_axisymmetric(self, i_sec0: int, i_sec1: int, phi, linear_TEx=True, RTE=None, RTE_=None, func_trans=None): ''' Smooth the axisymmetric curve between i_sec0 and i_sec1 ### Inputs: ```text i_sec0, i_sec1: the starting and ending section index of the smooth region phi: list or ndarray, position angle of control sections: i_sec0 ~ i_sec1 linear_TEx: if True, the x coordinates of trailing edge curve are piece-wise linear distribution. Otherwise, they can be nonlinear distribution due to the leading edge curve RTE: default None, then the trailing edge curve in YZ plane is generated by the layout parameters. If provided a float, then the trailing edge curve in YZ plane is set to a circle. Its origin is (0,0), radius is RTE RTE_: if RTE_ is provided, it means the control section is close sections i.e., both upper and lower surfaces of the control section exist Then, RTE_ is the inner circle radius func_trans: optional function: ratio = func_trans(tx) ratio is a float (0~1), representing the extent of the YZ-plane curve being similar to a circle. When ratio is 1, the curve is the specified circle of which the radius is RTE. tx is a float (0~1), representing the relative x-axis location of the YZ-plane curve default None, means ratio = tx ``` ''' periodic = False if np.abs(phi[0]+phi[-1]-360.0)<1E-3: periodic = True #* First, smooth the X-axis position of each section xx = [] for i in range(i_sec0, i_sec1+1): xx.append(self.secs[i].xLE) if periodic: curve_x = CubicSpline(phi, xx, bc_type='periodic') else: curve_x = CubicSpline(phi, xx) for i_surf in range(i_sec0, i_sec1): sec0 = self.secs[i_surf] sec1 = self.secs[i_surf+1] for j in range(self.ns): tt = 1.0*j/(self.ns-1.0) xLE_ = (1-tt)*sec0.xLE + tt*sec1.xLE chord = (1-tt)*sec0.chord + tt*sec1.chord angle = (1-tt)*phi[i_surf] + tt*phi[i_surf+1] xLE = curve_x(angle) # type: float if linear_TEx: self.surfs[i_surf][0][j,:] = (self.surfs[i_surf][0][j,:]-xLE_)/chord*(chord-xLE+xLE_) + xLE else: self.surfs[i_surf][0][j,:] += xLE - xLE_ #* Second, smooth the radius distribution in the circumferential direction # For each point in the section curve (nn) nn = self.secs[0].x.shape[0] for ip in range(nn): # Collect the circumferential control points # Must use surfs data instead of secs data, since only the surfs data is rotated rr = [] for i_surf in range(i_sec0, i_sec1): y_ = self.surfs[i_surf][1][0,ip] z_ = self.surfs[i_surf][2][0,ip] r_ = np.sqrt(y_**2+z_**2) rr.append(r_) y_ = self.surfs[i_surf][1][-1,ip] z_ = self.surfs[i_surf][2][-1,ip] r_ = np.sqrt(y_**2+z_**2) rr.append(r_) if periodic: curve_r = CubicSpline(phi, rr, bc_type='periodic') else: curve_r = CubicSpline(phi, rr) # Use the circumferential spline to update the circumferential geometry for i_surf in range(i_sec0, i_sec1): for j in range(self.ns): tt = 1.0*j/(self.ns-1.0) angle = (1-tt)*phi[i_surf] + tt*phi[i_surf+1] R = curve_r(angle) # type: float if isinstance(RTE, float): chord = (1-tt)*self.secs[i_surf].chord + tt*self.secs[i_surf+1].chord xLE_ = (1-tt)*self.secs[i_surf].xLE + tt*self.secs[i_surf+1].xLE xLE = curve_x(angle) # type: float tx = (self.surfs[i_surf][0][j,ip]-xLE)/(chord-xLE+xLE_) if func_trans is not None: tx = func_trans(tx) if isinstance(RTE_, float): if ip>nn/2.0: R = (1-tx)*R + tx*RTE else: R = (1-tx)*R + tx*RTE_ else: R = (1-tx)*R + tx*RTE self.surfs[i_surf][1][j,ip] = R*np.cos(angle/180.0*np.pi) self.surfs[i_surf][2][j,ip] = R*np.sin(angle/180.0*np.pi) @staticmethod def smooth_ratio_function(x, a=4): ''' x<=0, y: 0 -> 1 ''' y1 = 1.0/(1.0+np.exp(-a*x-2)) y2 = 1.0 + a/4*x rr = x < -2/a return rr*y1 + (1-rr)*y2 def bend(self, i_sec0: int, i_sec1: int, leader=None, kx=None, ky=None, kc=None, rot_x=False): ''' Bend surfaces by a guide curve, i.e., leader. >>> bend(i_sec0: int, i_sec1: int, leader=None, >>> kx=None, ky=None, kc=None, rot_x=False) ### Inputs: ```text i_sec0: the index of start section i_sec1: the index of end section leader: list of points (and chord length) in the guide curve. [[x,y,z(,c)], [x,y,z(,c)], ...] axis: Z-axis, spanwise direction kx: X-axis slope (dx/dz) at both ends [kx0, kx1] ky: Y-axis slope (dy/dz) at both ends [ky0, ky1] kc: Chord slope (dc/dz) at both ends [kc0, kc1] rot_x: if True, rotate sections in x-axis to make the section vertical to the leader ``` ### Note: ```text The leader is a list of points to define the spline curve that describes the leading edge curve. Regenerate the surface between section i_sec0 and i_sec1 X is the flow direction (chord direction) ``` ''' if self.l2d: print('No bending for 2D cases') return def sortZ(loc): return loc[2] #* Control points of the leader curve leader_points = [] spline_chord = False if not kc is None: spline_chord = True elif not leader is None: if len(leader[0])==4: spline_chord = True if spline_chord: for i in range(i_sec0, i_sec1+1): leader_points.append([self.secs[i].xLE, self.secs[i].yLE, self.secs[i].zLE, self.secs[i].chord]) else: for i in range(i_sec0, i_sec1+1): leader_points.append([self.secs[i].xLE, self.secs[i].yLE, self.secs[i].zLE]) #* Manually provided leader points if not leader is None: if (spline_chord and len(leader[0])==4) or (not spline_chord and len(leader[0])==3): # Need c and provide c // Don't need c and have no c for point in leader: leader_points.append(point) elif spline_chord and len(leader[0])==3: # Need c but have no c for point in leader: chord = self.linear_interpolate_z(point[2], key='chord') point_ = point.append(chord) leader_points.append(point) else: print('spline_chord', spline_chord) print('len(leader[0])', len(leader[0])) print('kc', kc) raise Exception('Should not happen') leader_points.sort(key=sortZ) n_point = len(leader_points) #* Generating leader curve u = np.zeros(n_point) # independent variable list v = np.zeros(n_point) # dependent variable list w = np.zeros(n_point) # dependent variable list c = np.zeros(n_point) # chord list for i in range(n_point): u[i] = leader_points[i][2] # z v[i] = leader_points[i][0] # x w[i] = leader_points[i][1] # y if spline_chord: c[i] = leader_points[i][3] # chord if kx is None: leader_x = CubicSpline(u, v) else: leader_x = CubicSpline(u, v, bc_type=((1,kx[0]), (1,kx[1]))) if ky is None: leader_y = CubicSpline(u, w) else: leader_y = CubicSpline(u, w, bc_type=((1,ky[0]), (1,ky[1]))) if spline_chord and kc is None: leader_c = CubicSpline(u, c) elif not kc is None: leader_c = CubicSpline(u, c, bc_type=((1,kc[0]), (1,kc[1]))) #* Bend surfaces i0 = i_sec0 i1 = i_sec1 for i_surf in range(i0, i1): sec0 = self.secs[i_surf] sec1 = self.secs[i_surf+1] ns = self.surfs[i_surf][0].shape[0] for j in range(ns): # Transition of inner sections if i_sec0!=0 and j==0: if i_surf==i0: continue if i_sec1!=self.n_sec-1 and j==ns-1: if i_surf==i1-1: continue # Start bending xx = self.surfs[i_surf][0][j,:] yy = self.surfs[i_surf][1][j,:] zz = self.surfs[i_surf][2][j,:] nn = xx.shape[0] zLE = zz[0] xLE = leader_x(zLE) yLE = leader_y(zLE) # Original leading edge coordinates tt = 1.0*j/(ns-1.0) x0 = (1-tt)*sec0.xLE + tt*sec1.xLE y0 = (1-tt)*sec0.yLE + tt*sec1.yLE c0 = (1-tt)*sec0.chord + tt*sec1.chord #* Rotation of x-axis (dy/dz) if rot_x: angle = -np.arctan(leader_y(zLE, 1))/np.pi*180.0 #xx, yy, zz = rotate(xx, yy, zz, angle=angle, origin=[xLE, yLE, zLE]) xx, yy, zz = rotate(xx, yy, zz, angle=angle, origin=[x0, y0, zLE]) #* Translation if spline_chord: xx, _, yy, _ = transform(xx, xx, yy, yy, dx=xLE-x0, dy=yLE-y0, x0=xLE, y0=yLE, scale=leader_c(zLE)/c0) else: i_half = int(np.floor(nn/2.0)) if abs(xx[i_half]-x0)>1e-6 or abs(yy[i_half]-y0)>1e-6: #* The location of curve end is fixed # Single piece of open curve to be bent xx, yy = stretch_fixed_point(xx, yy, dx=xLE-x0, dy=yLE-y0, xm=x0, ym=y0, xf=xx[-1], yf=yy[-1]) else: #* The locations of the trailing edge of upper and lower surface are fixed # An airfoil (containing both upper and lower surfaces) to be bent # Original leading edge: x0, xu[0], xl[-1] # New leading edge: xLE # Original trailing edge: xu[-1], xl[0] xu = xx[i_half:] xl = xx[:i_half+1] yu = yy[i_half:] yl = yy[:i_half+1] xu, yu = stretch_fixed_point(xu, yu, dx=xLE-x0, dy=yLE-y0, xm=x0, ym=y0, xf=xu[-1], yf=yu[-1]) xl, yl = stretch_fixed_point(xl, yl, dx=xLE-x0, dy=yLE-y0, xm=x0, ym=y0, xf=xl[0], yf=yl[0]) xx = np.concatenate((xl,xu[1:]), axis=0) yy = np.concatenate((yl,yu[1:]), axis=0) self.surfs[i_surf][0][j,:] = xx.copy() self.surfs[i_surf][1][j,:] = yy.copy() self.surfs[i_surf][2][j,:] = zz.copy() def Surf2Cylinder(self, flip=True, origin=None): ''' Bend the surface (surfs) to cylinder (turbomachinery). The original surface is constructed by 2D sections. ### Inputs: ```text flip: if True, flip X origin: default None, i.e., the cylinder origin axis is Z-axis for all sections otherwise, provide a list of actual cylinder origins, [O0, O1, ...] list length is the number of sections each element is the cylinder origin of that section, i.e., [xO, yO] can be ndarray or list ``` ''' if origin is None: for surf in self.surfs: ns = surf[0].shape[0] for j in range(ns): x, y, z = toCylinder(surf[0][j,:], surf[1][j,:], surf[2][j,:], flip=flip) surf[0][j,:] = x.copy() surf[1][j,:] = y.copy() surf[2][j,:] = z.copy() for sec in self.secs: sec.x, sec.y, sec.z = toCylinder(sec.x, sec.y, sec.z, flip=flip) else: for i in range(len(self.surfs)): surf = self.surfs[i] ns = surf[0].shape[0] for j in range(ns): #! This linear interplotation of origins #! causes non-smooth surface even when the smooth function is used tt = j/(ns-1.0) x0 = (1-tt)*origin[i][0] + tt*origin[i+1][0] y0 = (1-tt)*origin[i][1] + tt*origin[i+1][1] x, y, z = toCylinder(surf[0][j,:], surf[1][j,:], surf[2][j,:], flip=flip, origin=[x0,y0]) surf[0][j,:] = x.copy() surf[1][j,:] = y.copy() surf[2][j,:] = z.copy() for i in range(self.n_sec): sec = self.secs[i] sec.x, sec.y, sec.z = toCylinder(sec.x, sec.y, sec.z, flip=flip, origin=origin[i]) def read_cylinder_origins(self, fname): ''' Read in orgins of each section from file >>> origins = read_cylinder_origins(fname) ### Inputs: ```text fname: settings file name ``` ''' if not os.path.exists(fname): raise Exception(fname+' does not exist for surface read setting') key_dict = {'CylinderOrigin:': 9} origins = [] found_surf = False found_key = 0 with open(fname, 'r') as f: lines = f.readlines() iL = 0 while iL<len(lines): line = lines[iL].split() if len(line) < 1: iL += 1 continue if not found_surf and len(line) > 1: if '[Surf]' in line[0] and self.name == line[1]: found_surf = True elif found_surf and '[Surf]' in line[0]: break elif found_surf and found_key == 0: if line[0] in key_dict: found_key = key_dict[line[0]] elif found_surf and found_key == 9: for i in range(self.n_sec): iL += 1 line = lines[iL].split() origins.append([float(line[0]), float(line[1])]) found_key = 0 else: # Lines that are not relevant pass iL += 1 return origins def output_tecplot(self, fname=None, one_piece=False): ''' Output the surface to *.dat in Tecplot format ### Inputs: ```text fname: the name of the file one_piece: True ~ combine the spanwise sections into one piece ``` ''' # surf_x[ns,nt], ns => spanwise if fname is None: fname = self.name + '.dat' n_sec = 1 if self.l2d else self.n_sec-1 n_piece = len(self.surfs) with open(fname, 'w') as f: f.write('Variables= X Y Z \n ') nt = self.surfs[0][0].shape[1] ns = self.ns if not one_piece: for i_sec in range(n_piece): surf_x = self.surfs[i_sec][0] surf_y = self.surfs[i_sec][1] surf_z = self.surfs[i_sec][2] f.write('zone T="sec %d" i= %d j= %d \n'%(i_sec, nt, ns)) for i in range(ns): for j in range(nt): f.write(' %.9f %.9f %.9f\n'%(surf_x[i,j], surf_y[i,j], surf_z[i,j])) else: n_point = n_sec*(self.ns-1) + 1 f.write('zone T="sec" i= %d j= %d \n'%(nt, n_point)) for i_sec in range(n_piece): surf_x = self.surfs[i_sec][0] surf_y = self.surfs[i_sec][1] surf_z = self.surfs[i_sec][2] if i_sec>=n_piece-2: i_add = 0 else: i_add = 1 for i in range(ns-i_add): for j in range(nt): f.write(' %.9f %.9f %.9f\n'%(surf_x[i,j], surf_y[i,j], surf_z[i,j])) def output_plot3d(self, fname=None): ''' Output the surface to *.grd in plot3d format ### Inputs: ```text fname: the name of the file ``` ''' if fname is None: fname = self.name + '.grd' n_piece = len(self.surfs) # X[ns][nn], ns => spanwise X = self.surfs[0][0] ns = X.shape[0] nn = X.shape[1] with open(fname, 'w') as f: f.write('%d \n '%(n_piece)) # Number of surfaces for i_sec in range(n_piece): f.write('%d %d 1\n '%(nn, ns)) for i_sec in range(n_piece): X = self.surfs[i_sec][0] ii = 0 for i in range(ns): for j in range(nn): f.write(' %.9f '%(X[i,j])) ii += 1 if ii%3==0 or (i==ns-1 and j==nn-1): f.write(' \n ') Y = self.surfs[i_sec][1] ii = 0 for i in range(ns): for j in range(nn): f.write(' %.9f '%(Y[i,j])) ii += 1 if ii%3==0 or (i==ns-1 and j==nn-1): f.write(' \n ') Z = self.surfs[i_sec][2] ii = 0 for i in range(ns): for j in range(nn): f.write(' %.9f '%(Z[i,j])) ii += 1 if ii%3==0 or (i==ns-1 and j==nn-1): f.write(' \n ') def output_section(self, fname=None, TwoD=True): ''' Output the control sections ### Inputs: ```text fname: file name of the output file TwoD: if True, output the 2D unit curves otherwise, output the 3D control sections ``` ''' if fname is None: fname = self.name + '-section.dat' f = open(fname, 'w') if TwoD: f.write('Variables= X Y \n ') nn = self.secs[0].xx.shape[0] for i in range(self.n_sec): f.write('zone T="sec-u %d" i= %d \n'%(i, nn)) for j in range(nn): f.write(' %20.10f %20.10f \n'%(self.secs[i].xx[j], self.secs[i].yu[j])) f.write('zone T="sec-l %d" i= %d \n'%(i, nn)) for j in range(nn): f.write(' %20.10f %20.10f \n'%(self.secs[i].xx[j], self.secs[i].yl[j])) else: f.write('Variables= X Y Z \n ') nn = self.secs[0].x.shape[0] for i in range(self.n_sec): f.write('zone T="sec %d" i= %d \n'%(i, nn)) for j in range(nn): f.write(' %20.10f %20.10f %20.10f \n'%( self.secs[i].x[j], self.secs[i].y[j], self.secs[i].z[j])) f.close() def plot(self, fig_id=1, type='wireframe'): ''' Plot surface ### Inputs: ```text fig_id: ID of the figure type: wireframe, surface ``` ''' fig = plt.figure(fig_id) ax = Axes3D(fig) for surf in self.surfs: if type in 'wireframe': ax.plot_wireframe(surf[0], surf[1], surf[2]) else: ax.plot_surface(surf[0], surf[1], surf[2]) ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') ax.set_xlim3d(self.center[0]-self.half_s, self.center[0]+self.half_s) ax.set_ylim3d(self.center[1]-self.half_s, self.center[1]+self.half_s) ax.set_zlim3d(self.center[2]-self.half_s, self.center[2]+self.half_s) plt.show() #* =========================================== #* Supportive functions #* =========================================== def transform(xu, xl, yu, yl, scale=1.0, rot=None, x0=None, y0=None, dx=0.0, dy=0.0, proj=False): ''' Apply chord length, twist angle(deg) and leading edge position to unit airfoil >>> xu_new, xl_new, yu_new, yl_new = transform() ### Inputs: ```text xu, xl, yu, yl: current curve or unit airfoil (ndarray) scale: scale factor, e.g., chord length rot: rotate angle (deg), +z direction for x-y plane, e.g., twist angle x0, y0: rotation and scale center dx, dy: translation, e.g., leading edge location proj: if True, for unit airfoil, the rotation keeps the projection length the same ``` ### Return: ```text xu_new, xl_new, yu_new, yl_new (ndarray) ``` ''' #* Translation xu_new = dx + xu xl_new = dx + xl yu_new = dy + yu yl_new = dy + yl #* Rotation center if x0 is None: x0 = xu_new[0] if y0 is None: y0 = 0.5*(yu_new[0]+yl_new[0]) #* Scale (keeps the same projection length) rr = 1.0 if proj and not rot is None: angle = rot/180.0*np.pi # rad rr = np.cos(angle) xu_new = x0 + (xu_new-x0)*scale/rr xl_new = x0 + (xl_new-x0)*scale/rr yu_new = y0 + (yu_new-y0)*scale/rr yl_new = y0 + (yl_new-y0)*scale/rr #* Rotation if not rot is None: xu_new, yu_new, _ = rotate(xu_new, yu_new, None, angle=rot, origin=[x0, y0, 0.0], axis='Z') xl_new, yl_new, _ = rotate(xl_new, yl_new, None, angle=rot, origin=[x0, y0, 0.0], axis='Z') return xu_new, xl_new, yu_new, yl_new def rotate(x, y, z, angle=0.0, origin=[0.0, 0.0, 0.0], axis='X'): ''' Rotate the 3D curve according to origin >>> x_, y_, z_ = rotate(x, y, z, angle, origin, axis) ### Inputs: ```text x,y,z: curve ndarray angle: rotation angle (deg) origin: rotation origin axis: rotation axis (use positive direction to define angle) ``` ### Return: x_, y_, z_ (ndarray) ''' cc = np.cos( angle/180.0*np.pi ) ss = np.sin( angle/180.0*np.pi ) x_ = copy.deepcopy(x) y_ = copy.deepcopy(y) z_ = copy.deepcopy(z) if axis in 'X': y_ = origin[1] + (y-origin[1])*cc - (z-origin[2])*ss z_ = origin[2] + (y-origin[1])*ss + (z-origin[2])*cc if axis in 'Y': z_ = origin[2] + (z-origin[2])*cc - (x-origin[0])*ss x_ = origin[0] + (z-origin[2])*ss + (x-origin[0])*cc if axis in 'Z': x_ = origin[0] + (x-origin[0])*cc - (y-origin[1])*ss y_ = origin[1] + (x-origin[0])*ss + (y-origin[1])*cc return x_, y_, z_ def stretch_fixed_point(x, y, dx=0.0, dy=0.0, xm=None, ym=None, xf=None, yf=None): ''' Linearly stretch a curve when certain point is fixed >>> x_, y_ = stretch_fixed_point(x, y, dx, dy, xm, ym, xf, yf) ### Inputs: ```text x, y: curve (ndarray) dx, dy: movement of the first element (scaler) xm, ym: The point that moves dx, dy (e.g., the first element of the curve) xf, yf: The fixed point (e.g., the last element of the curve) ``` ### Returns: x_, y_ (ndarray) ''' x_ = x.copy() y_ = y.copy() if xf is None or yf is None: xf = x[-1] yf = y[-1] if xm is None or ym is None: xm = x[0] ym = y[0] lm = np.linalg.norm([xm-xf, ym-yf]) for i in range(x.shape[0]): rr = np.linalg.norm([x[i]-xf, y[i]-yf]) / lm x_[i] = x_[i] + rr*dx y_[i] = y_[i] + rr*dy return x_, y_ def interplot_basic_sec(sec0: BasicSection, sec1: BasicSection, ratio: float): ''' Interplot a basic section by ratio. >>> sec = interplot_basic_sec(sec0, sec1, ratio) ''' sec = copy.deepcopy(sec0) sec.xLE = (1-ratio)*sec0.xLE + ratio*sec1.xLE sec.yLE = (1-ratio)*sec0.yLE + ratio*sec1.yLE sec.zLE = (1-ratio)*sec0.zLE + ratio*sec1.zLE sec.chord = (1-ratio)*sec0.chord + ratio*sec1.chord sec.twist = (1-ratio)*sec0.twist + ratio*sec1.twist sec.thick = (1-ratio)*sec0.thick + ratio*sec1.thick sec.xx = (1-ratio)*sec0.xx + ratio*sec1.xx if isinstance(sec.yy, np.ndarray): sec.yy = (1-ratio)*sec0.yy + ratio*sec1.yy else: sec.yu = (1-ratio)*sec0.yu + ratio*sec1.yu sec.yl = (1-ratio)*sec0.yl + ratio*sec1.yl sec.x = (1-ratio)*sec0.x + ratio*sec1.x sec.y = (1-ratio)*sec0.y + ratio*sec1.y sec.z = (1-ratio)*sec0.z + ratio*sec1.z return sec def fromCylinder(x, y, z, flip=True, origin=None): ''' Bend the cylinder curve to a 2D plane curve. ### Inputs: ```text x, y ,z: ndarray, point coordinates of curves on the cylinder flip: if True, flip the X of plane curve origin: default None. if provided a list [x0, y0], then the cylinder origin is [x0, y0] ``` ### Return: X, Y, Z: ndarray, point coordinates of curves bent to 2D X-Y planes ### Note: ```text Cylinder: origin (0,0,0), axis is z-axis x and y must not be 0 at the same time The origin of cylinder and plane curves is the same (0,0,0). Cylinder: x, y, z ~~ r, theta, z Plane: X, Y, Z theta = arctan(y/x) r = sqrt(x^2+y^2) z = z X = r*theta Y = z Z = r ``` ''' coef = -1.0 if flip else 1.0 if origin is not None: x = x - origin[0] y = y - origin[1] rr = np.sqrt(x*x+y*y) tt = np.arctan2(y, x) * coef X = rr*tt Y = z.copy() Z = rr return X, Y, Z def toCylinder(X, Y, Z, flip=True, origin=None): ''' Bend the plane sections to curves on a cylinder. ### Inputs: ```text X, Y, Z: ndarray, point coordinates of curves on 2D X-Y planes Z must not be 0 flip: if True, flip the X of plane curve origin: default None. if provided a list [x0, y0], then the cylinder origin is [x0, y0] ``` ### Return: x, y ,z: ndarray, point coordinate of curves bent to a cylinder ### Note: ```text The origin of cylinder and plane curves is the same (0,0,0). Plane: X, Y, Z Cylinder: x, y, z ~~ r, theta, z theta = arctan(y/x) r = sqrt(x^2+y^2) z = z X = r*theta Y = z Z = r ``` ''' coef = -1.0 if flip else 1.0 nn = X.shape[0] x = np.zeros(nn) y = np.zeros(nn) z = Y.copy() for i in range(nn): r = Z[i] theta = X[i]/r * coef x[i] = r*np.cos(theta) y[i] = r*np.sin(theta) if origin is not None: x = x + origin[0] y = y + origin[1] return x, y, z def output_curve(x, y, fname='curve.dat', ID=0): ''' Output airfoil data to tecplot ASCII format file ### Inputs: ```text x, y: current curve (ndarray) ID: >0 append to existed file. 0: write header ``` ''' nn = x.shape[0] if ID == 0: with open(fname, 'w') as f: f.write('Variables= X Y \n ') with open(fname, 'a') as f: f.write('zone T="%d" i= %d \n'%(ID, nn)) for i in range(nn): f.write(' %20.9f %20.9f \n'%(x[i], y[i])) f.write('\n') def read_curves(fname='curve.dat'): ''' Read curves from a tecplot format file. >>> xs, ys = read_curves(fname='curve.dat') ### Return: ```text xs, ys: list [list] len(xs) = len(ys) = number of curves len(xs[i]) = number of points on curve i ``` ''' xs = [] ys = [] with open(fname, 'r') as f: lines = f.readlines() for line in lines: line = line.split() if len(line)<=1: continue if line[0] in 'zone': xs.append([]) ys.append([]) continue if len(line)!=2: continue xs[-1].append(float(line[0])) ys[-1].append(float(line[1])) return xs, ys def read_tecplot(fname='tecplot.dat'): ''' Read a tecplot format data file >>> data, name_var, titles = read_tecplot(fname='tecplot.dat') ### Return: ```text data: list of ndarray [ni,nj,nk,nv], data of all zones name_var: list, name of variables titles: list, title of zones ``` ''' name_var = [] data = [] titles = [] n_var = 0 with open(fname, 'r') as f: lines = f.readlines() nLine = len(lines) iLine = 0 while iLine < nLine: line = lines[iLine].split() if len(line) == 0: iLine += 1 continue if line[0] in 'Variables=' or line[0] in 'VARIABLES=' : line = re.split(r'[=",\s]', lines[iLine]) while '' in line: line.remove('') name_var = line[1:] n_var = len(name_var) iLine += 1 continue if line[0] in 'zone' or line[0] in 'ZONE' or line[0] in 'Zone': line = re.split(r'[=\s]', lines[iLine]) while '' in line: line.remove('') if 'i' in line: ni = int(line[line.index('i')+1]) elif 'I' in line: ni = int(line[line.index('I')+1]) else: ni = 1 if 'j' in line: nj = int(line[line.index('j')+1]) elif 'J' in line: nj = int(line[line.index('J')+1]) else: nj = 1 if 'k' in line: nk = int(line[line.index('k')+1]) elif 'K' in line: nk = int(line[line.index('K')+1]) else: nk = 1 if 'T' in line: # 非贪婪模式:寻找最短的可能匹配 https://www.cnblogs.com/baxianhua/p/8571967.html str_pat = re.compile(r'\"(.*?)\"') name = str_pat.findall(lines[iLine]) titles.append(name[0]) else: titles.append('') data_ = np.zeros((ni,nj,nk,n_var)) iLine += 1 for k in range(nk): for j in range(nj): for i in range(ni): line = ['#'] while line[0] == '#': line = lines[iLine].split() iLine += 1 for v in range(n_var): data_[i,j,k,v] = float(line[v]) data.append(data_.copy()) continue return data, name_var, titles #* =========================================== #* Intersection and interplotation #* =========================================== def interplot_from_curve(x0, x, y) -> np.ndarray: ''' Interplot points from curve represented points [x, y] >>> y0 = interplot_from_curve(x0, x, y) ### Inputs: ```text x0 : ndarray/value of x locations to be interploted x, y: points of curve (ndarray) ``` ### Return: y0: ndarray/float ''' f = interp1d(x, y, kind='cubic') y0 = f(x0) return y0 def interpolate_IDW(x0, xs, ys, eps=1e-10): ''' Inverse distance weighted interpolation >>> y0 = interpolate_IDW(x0, xs, ys, eps=1e-10) ### Inputs: ```text x0: ndarray [n0,3] xs: ndarray [n, 3] ys: ndarray [n, ny] ``` ### Return: ```text y0: ndarray [n0,ny] ``` ''' n0 = x0.shape[0] n = xs.shape[0] ny = ys.shape[1] y0 = np.zeros([n0,ny]) ds = dis_matrix(x0, xs) # [n0, n] for i0 in range(n0): if np.min(ds[i0,:]) <= eps: j = np.argmin(ds[i0,:]) y0[i0,:] = ys[j,:] continue ws = ds[i0,:]**-1 # [n] w_all = np.sum(ws) # float y0[i0,:] = np.dot(np.transpose(ys), ws)/w_all return y0 def dis_matrix(xs1, xs2): ''' Calculate the distance between vectors in xs1 and xs2 Suggest: each components of vectors in x1 and x2 is 0~1 >>> RR = dis_matrix(xs1, xs2) ### Inputs: ```text xs1: ndarray [n1, nx], vectors of all samples xs2: ndarray [n2, nx], vectors of all samples ``` ### Return: ```text RR: ndarray [n1, n2], dis=sqrt(sum((x1-x2)**2)/nx) ``` ''' nx = xs1.shape[1] RR = cdist(xs1, xs2, metric='euclidean') RR = RR/np.sqrt(1.0*nx) return RR def curve_intersect(x1, y1, x2, y2): ''' Find the intersect index between two curves. >>> i1, i2, points = curve_intersect(x1, y1, x2, y2) ### Inputs: ```text x1, y1: curve 1 coordinates, list or ndarray x2, y2: curve 2 coordinates, list or ndarray ``` ### Return: ```text i1, i2: index of the closest points in curve 1 & 2 points: tuple of two closest points in curve 1 & 2 ``` ''' arr1 = np.vstack((np.array(x1),np.array(y1))).T arr2 = np.vstack((np.array(x2),np.array(y2))).T tree = spatial.KDTree(arr2) distance, arr2_index = tree.query(arr1) i1 = distance.argmin() # type: int i2 = arr2_index[i1] # type: int points = (arr1[i1], arr2[i2]) return i1, i2, points def intersect_point(p1, p2, p3, p4): ''' Calculate intersection point of two segments p1p2 & p3p4 ### Inputs: ```text px: ndarray [2] or [:,2] ``` ### Return: ```text pi: ndarray [2] or [:,2] ``` ''' if len(p1.shape)==1: a1 = p2[1]-p1[1] b1 = p1[0]-p2[0] c1 = p1[0]*p2[1]-p2[0]*p1[1] a2 = p4[1]-p3[1] b2 = p3[0]-p4[0] c2 = p3[0]*p4[1]-p4[0]*p3[1] dd = a1*b2-a2*b1 if dd==0: return None else: x0 = (c1*b2-c2*b1)/dd y0 = (c2*a1-c1*a2)/dd return np.array([x0,y0]) else: a1 = p2[:,1]-p1[:,1] b1 = p1[:,0]-p2[:,0] c1 = p1[:,0]*p2[:,1]-p2[:,0]*p1[:,1] a2 = p4[:,1]-p3[:,1] b2 = p3[:,0]-p4[:,0] c2 = p3[:,0]*p4[:,1]-p4[:,0]*p3[:,1] dd = a1*b2-a2*b1 if np.any(dd==0): print('Parallel segments') return None else: x0 = (c1*b2-c2*b1)/dd y0 = (c2*a1-c1*a2)/dd pi = np.concatenate((x0, y0), axis=1) return pi def intersect_vec_plane(V0, V1, P0, P1, P3): ''' Calculate the intersection point of a vector and a plane >>> xi, t1, t3, rv = intersect_vec_plane(V0, V1, P0, P1, P3) ### Inputs: ```text V0, V1: ndarray [3], coordinates of vector: V01 P0, P1, P3: ndarray [3], coordinates of three points of plane P0123 ``` ### Return: ```text xi: ndarray [3], intersection point t1, t3: ratio of xi in P01, P03 direction rv: ratio of xi in V01 direction ``` ''' nR = V1 - V0 l0 = np.linalg.norm(nR) + 1E-20 nR = nR / l0 A = np.zeros((3,3)) A[:,0] = P1-P0 A[:,1] = P3-P0 A[:,2] = - nR B = V0-P0 Sol =
np.linalg.solve(A, B)
numpy.linalg.solve
#!/usr/bin/env python # -------------------------------------------------------- # LDDP # Licensed under UC Berkeley's Standard Copyright [see LICENSE for details] # Written by <NAME> # -------------------------------------------------------- import numpy as np from fast_rcnn.bbox_transform import bbox_transform_inv, clip_boxes,bbox_transform from boxTools import * from fast_rcnn.config import cfg class DPP(): def __init__(self,stds=[],means=[],sim_classes=[],epsilon=0.01,loss_weight=0.001): self.stds =stds self.means = means self.sim_classes = sim_classes self.epsilon = epsilon self._loss_weight = loss_weight def select_bg(self,Phi_labels,boxes,labels,bbox_pred,keeps_Y,good_gt_overlap,M,im_shape_w,im_shape_h): """ Find B in p(B|Xb) """ selected_item = range(M) prob_dpp = np.ones((M,)) ignores=[] dict_keeps_Y = {} for i,j in keeps_Y.iteritems(): if j not in dict_keeps_Y: dict_keeps_Y[j]=[] dict_keeps_Y[j].append(i) for k in range(M): if (k in keeps_Y and keeps_Y[k]==Phi_labels[k]) \ or (k in good_gt_overlap and Phi_labels[k]==labels[k] and labels[k]>0): ignores.append(k) else: label_k = labels[k] if label_k in dict_keeps_Y: loc_lbl = bbox_pred[[k],4*label_k:4*(label_k+1)] loc_lbl = loc_lbl * self.stds[label_k,:] + self.means[label_k,:] pbox = bbox_transform_inv(boxes[[k],:], loc_lbl) pbox = clip_boxes(pbox, (im_shape_w,im_shape_h)) pbox = np.reshape(np.tile(pbox,len(dict_keeps_Y[label_k])),(len(dict_keeps_Y[label_k]),4)) Y_selected_ll = bbox_pred[dict_keeps_Y[label_k],4*label_k:4*(label_k+1)] Y_selected_ll = Y_selected_ll*self.stds[label_k,:] + self.means[label_k,:] Y_selected_pbox = bbox_transform_inv(boxes[dict_keeps_Y[label_k],:], Y_selected_ll) Y_selected_pbox = clip_boxes(Y_selected_pbox, (im_shape_w,im_shape_h)) if np.max(IoU_target(pbox,Y_selected_pbox)) > cfg.TRAIN.IGNORANCE: ignores.append(k) selected_item = np.array([x for ii,x in enumerate(selected_item) if ii not in ignores]) prob_dpp = [x for ii,x in enumerate(prob_dpp) if ii not in ignores] return selected_item,prob_dpp def dpp_greedy(self,S, scores_s, score_power, max_per_image, among_ims, num_gt_per_img=1000, close_thr=0.0001): """ Greedy optimization to select boxes S: similarity matrix scores_s : predicted scores over different categories """ prob_thresh = cfg.TEST.PROB_THRESH S = S[among_ims,:][:,among_ims] scores_s = scores_s[among_ims] M = S.shape[0] #keep: selected_boxes keep = [] #left : boxes not selected yet left = np.zeros((M,3)) left[:,0] = np.arange(M) #box number left[:,1] = 1 # 0/1? Is the box left? selected_prob = [] while (len(keep) < max_per_image) and sum(left[:,1])>0: z = np.zeros((M,1)) z[keep] = 1 sum_scores = (score_power*np.log(scores_s).T).dot(z) prob_rest = np.zeros((M,)) left_indices = np.where(left[:,1]==1)[0] done_indices =
np.where(left[:,1]==0)
numpy.where
from typing import Union from pdb import set_trace as st import numpy as np __all__ = ["argtopk", "arg_approx", "arg_approx_signed", "repeat", "concatenate"] def get_int_k(array: np.ndarray, k: Union[int, float]) -> int: if type(k) is float: if 0.0 < k < 1.0: k = round(array.size * k) if k == array.size: return array.size - 1 elif k == 0: return 1 return k else: raise ValueError() else: return k def argtopk(array: np.ndarray, k: Union[int, float]) -> np.ndarray: k = get_int_k(array, k) if k == 1: return np.array([np.argmax(array)]) else: return np.argpartition(array, -k, axis=None)[-k:] def arg_sorted_topk(array: np.ndarray, k: Union[int, float]) -> np.ndarray: # topk_index = argtopk(array, k) # sorted_index = np.array(list(reversed(np.argsort(array[topk_index])))) # return topk_index[sorted_index] k = get_int_k(array, k) return np.argsort(array)[::-1][:k] def arg_approx(array: np.ndarray, precision: float) -> np.ndarray: if (1 / array.size) >= precision: return np.array([np.argmax(array)]) input_sum = array.sum() if input_sum <= 0: return np.array([
np.argmax(array)
numpy.argmax
# -*- coding: utf-8 -*- from sklearn.decomposition import TruncatedSVD from sklearn.manifold import TSNE, SpectralEmbedding from sklearn.manifold import Isomap from sklearn.decomposition import KernelPCA import numpy as np from random import randint import os import matplotlib.pyplot as plt import matplotlib.patches as mpatches import sys import re from itertools import cycle sys.path.append("../") """ Utility functions for processing timerseries data: 1) convert input data into timeseries format 2) plotting py timeseries into pytorch tensors to input into VRAE """ def split_train_val_timeseries(normal_data, abnormal_zone1_data, abnormal_zone2_data, abnormal_zone3_data, length_time_series, window_size, ratio_train=0.8): """ Splits 3D time series data into train and validation sets It also assigns labels to data (for cluster visualization): 0 - normal cases zone 0 1 - abnormal case zone 1 2 - abnormal case zone 2 3 - abnormal case zone 3 :param normal and abnormal data: 3D np array of dimensions (samples, length_time_series, features) :param seq_length: sequence length :param ration_train: argument to split data into training and testing Output: np.arrays (x_train, x_val): (shuffled timeseries until ind_cut, rest of shuffled timeseries starting in ind_cut) """ features = normal_data.shape[2] print("[INFO] total normal time series:", len(normal_data)) print("[INFO] total abnormal zone 1 time series:", len(abnormal_zone1_data)) print("[INFO] total abnormal zone 2 time series:", len(abnormal_zone2_data)) print("[INFO] total abnormal zone 3 time series:", len(abnormal_zone3_data)) print("[INFO] sequence length:", length_time_series) print("[INFO] features:", features) print() print("[INFO] splitting data into chunks every {0} time step based on window size parameter".format(window_size)) # if window_size: normal_chunks = int(normal_data.shape[1] / window_size) abnormal_chunks_zone1 = int(abnormal_zone1_data.shape[1] / window_size) abnormal_chunks_zone2 = int(abnormal_zone2_data.shape[1] / window_size) abnormal_chunks_zone3 = int(abnormal_zone3_data.shape[1] / window_size) print("normal chunks (per sample):", normal_chunks) print("abnormal chunks zone 1 (per sample):", abnormal_chunks_zone1) print("abnormal chunks zone 2 (per sample):", abnormal_chunks_zone2) print("abnormal chunks zone 3 (per sample):", abnormal_chunks_zone3) # reshape chunks into time series format normal_data = normal_data.reshape(len(normal_data) * normal_chunks, window_size, features) abnormal_zone1_data = abnormal_zone1_data.reshape(len(abnormal_zone1_data) * abnormal_chunks_zone1, window_size, features) abnormal_zone2_data = abnormal_zone2_data.reshape(len(abnormal_zone2_data) * abnormal_chunks_zone2, window_size, features) abnormal_zone3_data = abnormal_zone3_data.reshape(len(abnormal_zone3_data) * abnormal_chunks_zone3, window_size, features) print() print("normal (after chunk split):", normal_data.shape) print("abnormal zone1 data (after chunk split):", abnormal_zone1_data.shape) print("abnormal zone2 data (after chunk split):", abnormal_zone2_data.shape) print("abnormal zone3 data (after chunk split)::", abnormal_zone3_data.shape) # create random indices to shuffle TRAIN and VALIDATION data normal_index_cut = int(ratio_train * len(normal_data)) normal_indices = np.random.permutation(len(normal_data)) abnormal_zone1_index_cut = int(ratio_train * len(abnormal_zone1_data)) abnormal_zone1_indices = np.random.permutation(len(abnormal_zone1_data)) abnormal_zone2_index_cut = int(ratio_train * len(abnormal_zone2_data)) abnormal_zone2_indices = np.random.permutation(len(abnormal_zone2_data)) abnormal_zone3_index_cut = int(ratio_train * len(abnormal_zone3_data)) abnormal_zone3_indices = np.random.permutation(len(abnormal_zone3_data)) # else: # # NOTE: almost always working with window size # # perform random selection of timeseries for training and evaluation # ind_cut = int(ratio_train * normal_samples) # ind = np.random.permutation(normal_samples) # create X_train and X_val arrays X_normal_train = normal_data[normal_indices[:normal_index_cut], 0:, :] X_abnormal_zone1_train = abnormal_zone1_data[abnormal_zone1_indices[:abnormal_zone1_index_cut], 0:, :] X_abnormal_zone2_train = abnormal_zone2_data[abnormal_zone2_indices[:abnormal_zone2_index_cut], 0:, :] X_abnormal_zone3_train = abnormal_zone3_data[abnormal_zone3_indices[:abnormal_zone3_index_cut], 0:, :] X_normal_val = normal_data[normal_indices[normal_index_cut:], 0:, :] X_abnormal_zone1_val = abnormal_zone1_data[abnormal_zone1_indices[abnormal_zone1_index_cut:], 0:, :] X_abnormal_zone2_val = abnormal_zone2_data[abnormal_zone2_indices[abnormal_zone2_index_cut:], 0:, :] X_abnormal_zone3_val = abnormal_zone3_data[abnormal_zone3_indices[abnormal_zone3_index_cut:], 0:, :] # create class labels with train/val arrays normal_labels, abnormal_zone1_labels, abnormal_zone2_labels, abnormal_zone3_labels = \ create_timeseries_labels(X_normal_val, X_abnormal_zone1_val, X_abnormal_zone2_val, X_abnormal_zone3_val) # once labels are generated per zone, stack all train/val arrays vertically (no more need to differentiate them) X_train = np.vstack((X_normal_train, X_abnormal_zone1_train, X_abnormal_zone2_train, X_abnormal_zone3_train)) X_val = np.vstack((X_normal_val, X_abnormal_zone1_val, X_abnormal_zone2_val, X_abnormal_zone3_val)) X_val_labels = np.hstack((normal_labels, abnormal_zone1_labels, abnormal_zone2_labels, abnormal_zone3_labels)) return X_train, X_val, X_val_labels def create_timeseries_labels(normal_validation, abnormal_zone1_validation, abnormal_zone2_validation, abnormal_zone3_validation): """ Assigns integer values to each zone for later label 2D embedding projections """ normal_labels = [0 for i in range(len(normal_validation))] abnormal_zone1_labels = [1 for i in range(len(abnormal_zone1_validation))] abnormal_zone2_labels = [2 for i in range(len(abnormal_zone2_validation))] abnormal_zone3_labels = [3 for i in range(len(abnormal_zone3_validation))] return normal_labels, abnormal_zone1_labels, abnormal_zone2_labels, abnormal_zone3_labels def get_data_offset(data, samples, length_time_series): offset = len(data) - samples*length_time_series print("offset of dataset:", offset) return data[:-offset,:] def plot_clustering(z_run, labels, image_folder, image_name, engine = 'matplotlib', download=False): """ Given latent variables for all timeseries, and output of k-means, run PCA and tSNE on latent vectors and color the points using cluster_labels. :param z_run: Latent vectors for all input tensors :param labels: Cluster labels for all input tensors :param engine: plotly/matplotlib :param download: If true, it will download plots in `image_folder` :param image_folder: Download folder to dump plots :return: """ def plot_clustering_matplotlib(z_run, labels, download, image_folder, image_name): labels = labels[:z_run.shape[0]] # because of weird batch_size # hex_colors = [] # for _ in np.unique(labels): # hex_colors.append('#%06X' % randint(0, 0xFFFFFF)) # # colors = [hex_colors[int(i)] for i in labels] z_run_pca = TruncatedSVD(n_components=3).fit_transform(z_run) z_run_tsne = TSNE(perplexity=50, min_grad_norm=1E-12, n_iter=3000).fit_transform(z_run) z_run_se = SpectralEmbedding(n_components=2).fit_transform(z_run) z_run_kernel_PCA = KernelPCA(n_components=3, kernel="rbf", gamma=0.5).fit_transform(z_run) z_run_iso = Isomap(n_components=2, n_neighbors=10).fit_transform(z_run) print("[INFO] saving 2D projections from different methods") np.save(image_folder + "/z_run_PCA.npy", z_run_pca) np.save(image_folder + "/z_run_tSNE.npy", z_run_tsne) np.save(image_folder + "/z_run_SE.npy", z_run_se) np.save(image_folder + "/z_run_kernel_PCA.npy", z_run_kernel_PCA) np.save(image_folder + "/z_run_iso.npy", z_run_iso) print("z_run shape:", z_run.shape) print("z_run PCA shape", z_run_pca.shape) # fetch indices of labels zero_index, =
np.where(labels == 0)
numpy.where
import os from functools import partial import numpy as np import gc import time import open3d as o3d import pymp import torch.utils.data from data_source import DataSource from dh_grid import DHGrid from sphere import Sphere from tqdm.auto import tqdm, trange from tqdm.contrib.concurrent import process_map, thread_map # LiDARMace T_B_L_mace = np.array( [[0.999776464807781, -0.016285963261510, 0.013460141210110, -0.029098378563024], [0.016299962125963, 0.999865603816677, -0.000875084243449, 0.121665163511970], [-0.013444131722031, 0.001094290840472, 0.999909050000742, -0.157908708175463], [0, 0, 0, 1]]) # LiDARStick T_B_L_stick = np.array( [[0.699172, -0.7149, 0.00870821, -0.100817], [-0.714841, -0.699226, -0.00925541, -0.00368789], [0.0127057, 0.000246142, -0.999919, -0.0998847], [0, 0, 0, 1]]) def transformStickCloudToIMU(cloud): pcd = o3d.geometry.PointCloud() pcd.points = o3d.utility.Vector3dVector(cloud[:, 0:3]) pcd.transform(T_B_L_stick) dst = np.asarray(pcd.points) return np.column_stack((dst, cloud[:, 3])) def transformMaceCloudToIMU(cloud): pcd = o3d.geometry.PointCloud() pcd.points = o3d.utility.Vector3dVector(cloud[:, 0:3]) pcd.transform(T_B_L_mace) dst = np.asarray(pcd.points) return np.column_stack((dst, cloud[:, 3])) def progresser_low_res(sample, grid, auto_position=True, write_safe=False, blocking=True, progress=False): sample_in_B = transformStickCloudToIMU(sample) sample_sphere = Sphere(sample_in_B) return sample_sphere.sampleUsingGrid(grid) def progresser_high_res(sample, grid, auto_position=True, write_safe=False, blocking=True, progress=False): sample_in_B = transformMaceCloudToIMU(sample) sample_sphere = Sphere(sample_in_B) return sample_sphere.sampleUsingGrid(grid) class TrainingSet(torch.utils.data.Dataset): def __init__(self, restore, bw=100): self.ds = None self.bw = bw self.is_restoring = restore self.test_indices = [] self.cache = None self.grid = DHGrid.CreateGrid(bw) self.anchor_features = [] self.positive_features = [] self.negative_features = [] def generateAll(self, datasource): self.ds = datasource self.cache = datasource.cache print(f'Generating features from {self.ds.start_cached} to {self.ds.end_cached}') # Generate features from clouds. a_pcl_features=None p_pcl_features=None n_pcl_features=None if self.ds.load_negatives: (a, p, n) = self.ds.get_all_cached_clouds() a_pcl_features, p_pcl_features, n_pcl_features = self.__genAllCloudFeatures( a, p, n) else: (a, p) = self.ds.get_all_cached_clouds() a_pcl_features, p_pcl_features, _ = self.__genAllCloudFeatures(a, p, None) # Copy all features to the data structure. double_bw = 2 * self.bw n_clouds = len(a_pcl_features) self.anchor_features = [np.zeros((3, double_bw, double_bw))] * n_clouds self.positive_features = [ np.zeros((3, double_bw, double_bw))] * n_clouds self.negative_features = [ np.zeros((3, double_bw, double_bw))] * n_clouds if self.ds.load_negatives: a_img_features, p_img_features, n_img_features = self.ds.get_all_cached_images() for i in range(self.ds.start_cached, self.ds.end_cached): self.anchor_features[i], self.positive_features[i], self.negative_features[i] = self.createFeature( a_pcl_features[i], a_img_features[i], p_pcl_features[i], p_img_features[i], n_pcl_features[i], n_img_features[i]) self.negative_features = np.array(self.negative_features) else: a_img_features, p_img_features = self.ds.get_all_cached_images() for i in range(self.ds.start_cached, self.ds.end_cached): self.anchor_features[i], self.positive_features[i] = self.createFeatureForTest( a_pcl_features[i], a_img_features[i], p_pcl_features[i], p_img_features[i]) self.anchor_features = np.array(self.anchor_features) self.positive_features = np.array(self.positive_features) def __getitem__(self, index): # isinstance(l[1], str) if (self.ds is not None): return self.loadFromDatasource(index) else: return self.loadFromFeatures(index) def loadFromDatasource(self, index): if (index >= self.ds.start_cached) and (index < self.ds.end_cached): return self.get_and_delete_torch_feature(index) # We reached the end of the current cached batch. # Free the current set and cache the next one. a_cloud, p_cloud, n_cloud = self.ds.load_clouds_directly(index) a_cloud, p_cloud, n_cloud = self.__gen_all_features_single( a_cloud, p_cloud, n_cloud) a_img, p_img, n_img = self.ds.load_images_directly(index) a, p, n = self.createFeature( a_cloud, a_img, p_cloud, p_img, n_cloud, n_img) return a, p, n def loadFromFeatures(self, index): return self.anchor_features[index], self.positive_features[index], self.negative_features[index] def createFeature(self, a_cloud, a_img, p_cloud, p_img, n_cloud, n_img): double_bw = 2 * self.bw anchor_features = np.zeros((3, double_bw, double_bw)) positive_features = np.zeros((3, double_bw, double_bw)) negative_features = np.zeros((3, double_bw, double_bw)) a_img_feat = np.reshape(a_img.transpose(), (4, double_bw, double_bw)) anchor_features[0, :, :] = np.nan_to_num(a_cloud[0, :, :]) anchor_features[1, :, :] = np.nan_to_num(a_cloud[1, :, :]) anchor_features[2, :, :] = np.nan_to_num(a_img_feat[3, :, :]) p_img_feat = np.reshape(p_img.transpose(), (4, double_bw, double_bw)) positive_features[0, :, :] = np.nan_to_num(p_cloud[0, :, :]) positive_features[1, :, :] = np.nan_to_num(p_cloud[1, :, :]) positive_features[2, :, :] = np.nan_to_num(p_img_feat[3, :, :]) n_img_feat = np.reshape(n_img.transpose(), (4, double_bw, double_bw)) negative_features[0, :, :] = np.nan_to_num(n_cloud[0, :, :]) negative_features[1, :, :] = np.nan_to_num(n_cloud[1, :, :]) negative_features[2, :, :] = np.nan_to_num(n_img_feat[3, :, :]) return anchor_features, positive_features, negative_features def createFeatureForTest(self, a_cloud, a_img, p_cloud, p_img): double_bw = 2 * self.bw anchor_features = np.zeros((3, double_bw, double_bw)) positive_features = np.zeros((3, double_bw, double_bw)) a_img_feat = np.reshape(a_img.transpose(), (4, double_bw, double_bw)) anchor_features[0, :, :] = np.nan_to_num(a_cloud[0, :, :]) anchor_features[1, :, :] = np.nan_to_num(a_cloud[1, :, :]) anchor_features[2, :, :] = np.nan_to_num(a_img_feat[3, :, :]) p_img_feat = np.reshape(p_img.transpose(), (4, double_bw, double_bw)) positive_features[0, :, :] = np.nan_to_num(p_cloud[0, :, :]) positive_features[1, :, :] = np.nan_to_num(p_cloud[1, :, :]) positive_features[2, :, :] = np.nan_to_num(p_img_feat[3, :, :]) return anchor_features, positive_features def get_and_delete_torch_feature(self, index): anchor = torch.from_numpy(self.anchor_features[index]) positive = torch.from_numpy(self.positive_features[index]) if self.ds.load_negatives: negative = torch.from_numpy(self.negative_features[index]) return anchor, positive, negative return anchor, positive def __len__(self): return len(self.anchor_features) def __genAllCloudFeatures(self, anchors, positives, negatives): elapsed_s = 0 processed = 0 print("Generating anchor spheres") start = time.time() anchor_features = process_map( partial(progresser_high_res, grid=self.grid), anchors, max_workers=32) end = time.time() elapsed_s = elapsed_s + (end - start) processed = processed + len(anchors) print(f'Processing time in total {elapsed_s} for {processed} anchors.') np.save('/home/berlukas/data/spherical/arche_low_res_big/anchor_cloud_features.npy', anchor_features) anchors = [] print("Generating positive spheres") start = time.time() positive_features = process_map( partial(progresser_high_res, grid=self.grid), positives, max_workers=32) end = time.time() elapsed_s = elapsed_s + (end - start) processed = processed + len(positives) print(f'Processing time in total {elapsed_s} for {processed} positives.') np.save('/home/berlukas/data/spherical/arche_low_res_big/positive_cloud_features.npy', positive_features) positives = [] if self.ds.load_negatives: print("Generating negative spheres") start = time.time() negative_features = process_map( partial(progresser_high_res, grid=self.grid), negatives, max_workers=32) end = time.time() elapsed_s = elapsed_s + (end - start) processed = processed + len(negatives) print(f'Processing time in total {elapsed_s} for {processed} negatives.') np.save('/home/berlukas/data/spherical/arche_low_res_big/negative_cloud_features.npy', negative_features) negatives = [] else: negative_features = None print("Generated all pcl features") #anchor_features = np.load('/home/berlukas/data/spherical/arche_low_res_big/anchor_cloud_features.npy'); #positive_features = np.load('/home/berlukas/data/spherical/arche_low_res_big/positive_cloud_features.npy'); #negative_features = np.load('/home/berlukas/data/spherical/arche_low_res_big/negative_cloud_features.npy'); if processed > 0: print(f'Processing time in total {elapsed_s} for {processed} items.') avg_s = elapsed_s / (processed) print(f'Processing time avg is {avg_s:.5f}') return anchor_features, positive_features, negative_features def __gen_all_features_single(self, a, p, n): anchor_features = progresser(a, self.grid) positive_features = progresser(p, self.grid) negative_features = progresser(n, self.grid) return anchor_features, positive_features, negative_features def __loadTestSet(self): with open('test_indices.txt', 'rb') as f: self.test_indices = np.loadtxt(f).astype(int) #import pdb; pdb.set_trace() a = [self.ds.anchors[i] for i in self.test_indices] p = [self.ds.positives[i] for i in self.test_indices] n = [self.ds.negatives[i] for i in self.test_indices] return (a, p, n) def isRestoring(self): return self.is_restoring def exportGeneratedFeatures(self, export_path): k_anchor_features_path = export_path + '/anchor_features.npy' k_positive_features_path = export_path + '/positiv_featurese.npy' k_negative_features_path = export_path + '/negativ_featurese.npy' k_anchor_poses_path = export_path + '/anchor_poses.npy' k_positive_poses_path = export_path + '/positiv_poses.npy' k_negative_poses_path = export_path + '/negativ_poses.npy'
np.save(k_anchor_features_path, self.anchor_features)
numpy.save
import numpy as np import cv2 from keras.models import load_model from mtcnn.mtcnn import MTCNN from PIL import Image from sklearn.svm import SVC from SVMclassifier import model as svm from SVMclassifier import out_encoder model = load_model('../models/facenet_keras.h5') # get the face embedding for one face def get_embedding(model, face_pixels): # scale pixel values face_pixels = face_pixels.astype('float32') # standardize pixel values across channels (global) mean, std = face_pixels.mean(), face_pixels.std() face_pixels = (face_pixels - mean) / std print(face_pixels.shape) # transform face into one sample #expand dims adds a new dimension to the tensor samples = np.expand_dims(face_pixels, axis=0) print(samples.shape) # make prediction to get embedding yhat = model.predict(samples) return yhat[0] faceCascade = cv2.CascadeClassifier('C:/Users/alisy/OneDrive/Documents/AIandMachineLearning/FaceNet-FriendScan/Real-Time_Face-Recognition-System/haarcascades/haarcascade_frontalface_default.xml') video_capture = cv2.VideoCapture(0) while True: # Capture frame-by-frame ret, frame = video_capture.read() gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) faces = faceCascade.detectMultiScale( gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30), flags= cv2.CASCADE_SCALE_IMAGE ) # Draw a rectangle around the faces and predict the face name for (x, y, w, h) in faces: cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2) #take the face pixels from the frame crop_frame = frame[y:y+h, x:x+w] #turn the face pixels back into an image new_crop = Image.fromarray(crop_frame) #resize the image to meet the size requirment of facenet new_crop = new_crop.resize((160, 160)) #turn the image back into a tensor crop_frame =
np.asarray(new_crop)
numpy.asarray
from tensorboard.plugins.inference.ReadTFRecord import read_and_decode from tensorboard.plugins.inference.refresh_board import pred_refresh, fea_refresh import matplotlib.pyplot as plt import tensorflow as tf import numpy as np import math import cv2 import os class Inference(object): def __init__(self, model_path = None, model_type = None): tf.reset_default_graph() self.model_path = model_path self.model_type = model_type self.tensor_name = [] self.tensor_in_graph = [] self.tensor_channel_num=[] self.sess = tf.Session() self.sess.run(tf.global_variables_initializer()) self.coord = tf.train.Coordinator() self.threads = tf.train.start_queue_runners(sess=self.sess, coord=self.coord) self.restore(self.model_path,self.model_type) self.loaded_graph = tf.get_default_graph() self.ifDone = False self.test_x=None self.test_label=None print('load susess') def restore(self,model_dir,model_type_name): saver = tf.train.import_meta_graph(model_dir+"/model-1000.meta") saver.restore(self.sess,model_dir+"/model-1000") def each_label_acc(self,label,pred): total_amount = [0]*10 correct_amount = [0]*10 for i in range(len(label)): total_amount[label[i]]+=1 if(label[i]==pred[i]): correct_amount[label[i]]+=1 acc = np.true_divide(np.array(correct_amount),np.array(total_amount)) return acc.tolist() def concact_features(self, conv_output): num_or_size_splits = int(math.sqrt(conv_output.shape[0])) #side margin = int(conv_output.shape[1]/7) index = np.unravel_index(np.argmax(conv_output),conv_output.shape) blank_value = conv_output[index[0],index[1],index[2],index[3]]#white img_out_list = [] if num_or_size_splits!=1: conv_tmp=[] for i in range(conv_output.shape[0]): conv_tmp.append(np.pad( conv_output[i], ((margin, margin), (margin, margin),(0,0)), 'constant', constant_values=(blank_value, blank_value)))#margin conv_output = np.array(conv_tmp) for j in range(num_or_size_splits): img_temp = conv_output[j*4] #img_temp = np.pad(conv_output[j*4], ((4, 4), (4, 4),(0,0)), 'constant', constant_values=(0, 0)) for i in range(num_or_size_splits-1): img_temp = np.concatenate((img_temp,conv_output[i+1+4*j]),axis=1) img_out_list.append(img_temp) img_out = img_out_list[0] for k in range(len(img_out_list)-1): img_out = np.concatenate((img_out,img_out_list[k+1])) return img_out def generate_tensor_single(self,conv): g = tf.Graph() with tf.Session(graph=g) as sess: #conv_transpose = sess.run(tf.transpose(conv, [3, 1, 2, 0])) conv1_channel = sess.run(tf.transpose(conv[15], [2, 0, 1])) tensor_conv = tf.convert_to_tensor(conv1_channel)[:, :, :, np.newaxis] return tensor_conv def generate_tensor(self,conv): g = tf.Graph() with tf.Session(graph=g) as sess: conv_transpose = sess.run(tf.transpose(conv, [3, 2, 1, 0])) print(conv_transpose.shape)# (16,28,28,1024,1) self.tensor_channel_num.append(conv_transpose.shape[0]) with tf.Session(graph=g) as sess: conv_concact = sess.run(tf.transpose(self.concact_features(conv_transpose), [2, 1, 0])) tensor_conv = tf.convert_to_tensor(conv_concact)[:, :, :, np.newaxis] return tensor_conv def predict(self, file_path, batchsize_s, inputshape, outputshape): batchsize = int(batchsize_s) filename_queue = tf.train.string_input_producer([file_path],num_epochs=None) img,label = read_and_decode(filename_queue,True,batchsize,inputshape,outputshape) #threads stop problem sv = tf.train.Supervisor() with sv.managed_session() as sess: test_x, test_label=sess.run([img,label]) #acc = self.sess.run(self.net.accuracy,feed_dict = {self.net.init_x:test_x,self.net.label:test_label}) y = self.sess.run(self.net.y,feed_dict = {self.net.init_x:test_x}) values = self.sess.run(self.net.variable_names) print((np.array(values)).shape,(np.array(values[0])).shape,(np.array(values[1])).shape,(np.array(values[2])).shape,(np.array(values[3])).shape,(np.array(values[4])).shape,(np.array(values[5])).shape,(np.array(values[6])).shape,(np.array(values[7])).shape) h_conv1_dist=values[2] h_conv1_dist = np.transpose(h_conv1_dist, (2,3,0,1)) h_conv1_dist = np.reshape(h_conv1_dist, (-1,25)) print(h_conv1_dist[3],(np.array(h_conv1_dist)).shape) y_label = [] y_pred = [] for i in range(batchsize): y_label.append(np.argmax(test_label[i])) y_pred.append(np.argmax(y[i])) eachlabelacc = self.each_label_acc(y_label,y_pred) label = [0,1,2,3,4,5,6,7,8,9] data = [] data.append(['label','accuracy']) for i in range(len(eachlabelacc)): data.append([label[i],eachlabelacc[i]]) print(eachlabelacc,data) return {'acc': eachlabelacc, 'label': label, 'data':data} def accuracy(self,file_path,batchsize_s): batchsize = int(batchsize_s) filename_queue = tf.train.string_input_producer([file_path],num_epochs=None) img,label = read_and_decode(filename_queue,True,batchsize)#(batchsize,28,28) #threads stop problem sv = tf.train.Supervisor() with sv.managed_session() as sess: test_x, test_label=sess.run([img,label]) acc = self.sess.run(self.net.accuracy,feed_dict = {self.net.init_x:test_x,self.net.label:test_label}) return acc def channel(self,layer_index_s,channel_s,input_cache,label_cache): #values = self.loaded_graph.get_tensor_by_name("layer1/Variable/Adam:0") #h_conv1_dist = self.sess.run(values) channel = int(channel_s) layer_index = int(layer_index_s) self.get_all_tensor() values = self.tensor_in_graph[layer_index] init_x = self.loaded_graph.get_tensor_by_name("input/Placeholder:0") label_y = self.loaded_graph.get_tensor_by_name("label/Placeholder:0") h_conv1_dist = self.sess.run(values,feed_dict = {init_x:input_cache, label_y:label_cache}) print(h_conv1_dist.shape) h_conv1_dist = np.transpose(h_conv1_dist, (0,3,1,2)) print(h_conv1_dist.shape) h_conv1_dist = np.reshape(h_conv1_dist, (h_conv1_dist.shape[0], h_conv1_dist.shape[1], h_conv1_dist.shape[2]*h_conv1_dist.shape[3])) print(h_conv1_dist.shape) weights = np.arange(len(h_conv1_dist[0][0])) data = [] data.append(['weights','figure']) for i in range(len(weights)): print(weights[i],h_conv1_dist[0][channel][i]) data.append([weights[i].tolist(),h_conv1_dist[0][channel][i].tolist()])#sample batch 0 return {'data':data} def feature( self, file_path, batchsize_s, inputshape, outputshape): init_x = self.loaded_graph.get_tensor_by_name("input/Placeholder:0") label_y = self.loaded_graph.get_tensor_by_name("label/Placeholder:0") predict = self.loaded_graph.get_tensor_by_name("predict/Equal:0") #output_y = self.loaded_graph.get_tensor_by_name("layer1/Relu:0") #grads = self.loaded_graph.get_tensor_by_name("grads/div:0") #accuracy = self.loaded_graph.get_tensor_by_name("accuracy/Const:0") batchsize = int(batchsize_s) filename_queue = tf.train.string_input_producer([file_path],num_epochs=None) img,label = read_and_decode( filename_queue, True, batchsize, inputshape, outputshape) #threads stop problem sv = tf.train.Supervisor() with sv.managed_session() as sess: self.test_x, self.test_label=sess.run([img,label]) self.get_all_tensor() predict_list = self.sess.run(predict, feed_dict={init_x:self.test_x, label_y:self.test_label}) #output,grads_val = self.sess.run([output_y,grads], # feed_dict = {init_x:self.test_x, label_y:self.test_label}) acc = 0 for result in predict_list: if result: acc+=1 acc = round(float(acc/len(predict_list)),5) grads_list=[] #for i in range(16): # grads_list.append(self.convert_cam(self.grad_cam(output,grads_val)[i])) #grads_npary = np.array(grads_list) #print(grads_npary.shape) #grads_npary = np.transpose(grads_npary, (1,2,0,3)) #print("%%%%%%%%%%%%%%%%") #print(grads_npary.shape) #acc, = self.sess.run(accuracy,feed_dict = {init_x:self.test_x,label_y:self.test_label}) tf.reset_default_graph() g = tf.Graph() with g.as_default(): feature_list = self.sess.run(self.tensor_in_graph, feed_dict={init_x:self.test_x})#list feature_tensor = [] for i in range(len(self.tensor_in_graph)): feature_tensor.append(self.generate_tensor(feature_list[i])) #print(np.array(feature_list[i]).shape) #print(self.tensor_channel_num) #feature_tensor.append(self.generate_tensor(grads_npary)) #self.tensor_name.append("grads") fea_refresh("/tmp/mnist/feature", feature_tensor, self.tensor_name) return acc,self.test_x,self.test_label def feature_edit(self, input_cache, label_cache, batchsize_s, batch, x, y, c, value): init_x = self.loaded_graph.get_tensor_by_name("input/Placeholder:0") label_y = self.loaded_graph.get_tensor_by_name("label/Placeholder:0") #accuracy = self.loaded_graph.get_tensor_by_name("accuracy/Const:0") predict = self.loaded_graph.get_tensor_by_name("predict/Equal:0") input_reshape = self.loaded_graph.get_tensor_by_name("input_reshape/Reshape:0") output_y = self.loaded_graph.get_tensor_by_name("layer1/Relu:0") grads = self.loaded_graph.get_tensor_by_name("grads/div:0") batchsize = int(batchsize_s) img_reshape = np.reshape(input_cache, (-1, input_reshape.shape[1], input_reshape.shape[2], input_reshape.shape[3])) img_edit = self.edit(img_reshape,batch,x,y,c,value)#edit img_reshape = np.reshape(img_edit,(-1,init_x.shape[1])) #threads stop problem self.get_all_tensor() predict_list = self.sess.run(predict, feed_dict={input_reshape:img_edit, label_y:label_cache}) #output,grads_val = self.sess.run([output_y,grads], feed_dict = {init_x:self.test_x, label_y:self.test_label}) acc = 0 for result in predict_list: if result: acc+=1 acc = round(float(acc/len(predict_list)),5) #acc = self.sess.run(accuracy,feed_dict = {input_reshape:img_edit, label_y:label_cache}) tf.reset_default_graph() g = tf.Graph() with g.as_default(): feature_list = self.sess.run(self.tensor_in_graph, feed_dict={input_reshape:img_edit}) feature_tensor = [] for i in range(len(self.tensor_in_graph)): feature_tensor.append(self.generate_tensor(feature_list[i])) #feature_tensor.append(self.generate_tensor(self.convert_cam(self.grad_cam(output,grads_val)))) fea_refresh("/tmp/mnist/feature", feature_tensor, self.tensor_name) return acc def grad_cam(self,output,grads_val): print(np.array(grads_val).shape,output.shape) #[1024,28,28,16] #output = output[0] #grads_val = grads_val[0] #print(grads_val,grads_val.shape) weights = np.mean(grads_val[:],axis=(1,2)) # average pooling [1024,16] print("##################################") print(weights.shape) cam = np.ones(output.shape[0:3], dtype = np.float32) #[1024,28,28] print(cam.shape) #for i,w in enumerate(weights): # cam += w*output[:,:,i] cam = [[]]*len(weights) #1024 for i,w in enumerate(weights):#i==1024,w==[16,] for j,u in enumerate(w):#j==16 cam[i].append((u*output[i,:,:,j]).tolist()) return cam #(1024,16,28,28,3) def convert_cam(self,cam): # Passing through ReLU cam =
np.maximum(cam, 0)
numpy.maximum
import math from math import cos, degrees, pi, radians, sin from pathlib import Path import matplotlib.lines as lines import matplotlib.patches as mpatches import numpy as np import pandas as pd from matplotlib import pyplot as plt from matplotlib.patches import Ellipse from numpy import arctan2 from numpy import linalg as LA from shapely import affinity from shapely import geometry as geom from . import io IMG_X_SIZE = 840 IMG_Y_SIZE = 648 def set_subframe_size(ax): """Set plot view limit on Planet 4 subframe size.""" ax.set_xlim(0, IMG_X_SIZE) ax.set_ylim(IMG_Y_SIZE, 0) def calc_fig_size(width): """Calc figure height in ratio of subframes.""" ratio = IMG_X_SIZE / IMG_Y_SIZE return (width, width / ratio) class Marking: def __init__(self, data, scope="planet4"): self.data = data self.scope = scope class Blotch(Ellipse): """Blotch management class for P4. Parameters ---------- data : object with blotch data attributes object should provide attributes [`x`, `y`, `radius_1`, `radius_2`, `angle`] scope : {'planet4', 'hirise'} string that decides between using x/y or image_x/image_y as center corods color : str, optional to control the color of the mpl.Ellipse object Attributes ---------- to_average : list List of cols to be averaged after clustering data : object with blotch data attributes, as provided by `data` center : tuple (inherited from matplotlib.Ellipse) Coordinates of center, i.e. self.x, self.y """ to_average = "x y image_x image_y angle radius_1 radius_2".split() def __init__(self, data, scope="planet4", with_center=False, url_db="", **kwargs): self.data = data self.scope = scope if scope is not None else "planet4" self.with_center = with_center self.url_db = Path(url_db) self.ax = None if scope not in ["hirise", "planet4"]: raise TypeError("Unknown scope: {}".format(scope)) try: self.x = data.x if scope == "planet4" else data.image_x self.y = data.y if scope == "planet4" else data.image_y except AttributeError: print("No x and y attributes in data:\n{}".format(data)) raise AttributeError # default member number is 1. This is set to the cluster member inside # clustering execution. self._n_members = 1 super(Blotch, self).__init__( (self.x, self.y), data.radius_1 * 2, data.radius_2 * 2, data.angle, alpha=0.65, linewidth=2, fill=False, **kwargs ) self.data = data @property def subframe(self): url = io.get_url_for_tile_id(self.data.tile_id) return io.get_subframe(url) def show_subframe(self, ax=None, aspect="auto"): if ax is None: _, ax = plt.subplots(figsize=calc_fig_size(8)) ax.imshow(self.subframe, origin="upper", aspect=aspect) ax.set_axis_off() self.ax = ax def is_equal(self, other): if ( self.data.x == other.data.x and self.data.y == other.data.y and self.data.image_x == other.data.image_y and self.data.image_y == other.data.image_y and self.data.radius_1 == other.data.radius_1 and self.data.radius_2 == other.data.radius_2 and self.data.angle == other.data.angle ): return True else: return False def to_shapely(self): """Convert a markings.Blotch to shapely Ellipse. Code from https://gis.stackexchange.com/questions/243459/drawing-ellipse-with-shapely/243462 """ circ = geom.Point(self.center).buffer(1) ell = affinity.scale(circ, self.data.radius_1, self.data.radius_2) ellr = affinity.rotate(ell, self.data.angle) return ellr @property def area(self): return pi * self.data.radius_1 * self.data.radius_2 @property def x1(self): return math.cos(math.radians(self.angle)) * self.data.radius_1 @property def y1(self): return math.sin(self.angle) * self.data.radius_1 @property def p1(self): return np.array(self.center) + np.array([self.x1, self.y1]) @property def p2(self): return np.array(self.center) - np.array([self.x1, self.y1]) @property def x2(self): return math.cos(math.radians(self.angle + 90)) * self.data.radius_2 @property def y2(self): return math.sin(math.radians(self.angle + 90)) * self.data.radius_2 @property def p3(self): return np.array(self.center) + np.array([self.x2, self.y2]) @property def p4(self): return np.array(self.center) - np.array([self.x2, self.y2]) @property def limit_points(self): return [self.p1, self.p2, self.p3, self.p4] def plot_center(self, ax, color="b"): ax.scatter(self.x, self.y, color=color, s=20, marker=".") def plot_limit_points(self, ax, color="b"): for x, y in self.limit_points: ax.scatter(x, y, color=color, s=20, marker="o") @property def n_members(self): return self._n_members @n_members.setter def n_members(self, value): self._n_members = value def plot(self, color="green", ax=None): self.show_subframe(ax) ax = self.ax if ax is None: _, ax = plt.subplots() if color is not None: self.set_color(color) ax.add_patch(self) if self.with_center: self.plot_center(ax, color=color) def store(self, fpath=None): out = self.data for p in range(1, 5): attr = "p" + str(p) point = getattr(self, attr) out[attr + "_x"] = point[0] out[attr + "_y"] = point[1] if "image_id" not in out.index: pass # out['image_id'] = self.image_id if fpath is not None: out.to_hdf(str(fpath.with_suffix(".hdf")), "df") out["n_members"] = self.n_members return out def __str__(self): s = "markings.Blotch object. Input data:\n" s += self.data.__str__() s += "\n" s += "N_members: {}".format(self.n_members) return s def __repr__(self): return self.__str__() def rotate_vector(v, angle): """Rotate vector by angle given in degrees. Parameters ---------- v : np.array Vector to be rotated angle : float Angle in degrees """ rangle = radians(angle) rotmat = np.array([[cos(rangle), -sin(rangle)], [sin(rangle), cos(rangle)]]) return rotmat.dot(v) class Fan(lines.Line2D): """Fan management class for P4. Parameters ---------- data : object with fan data attributes object has to provide [`x`, `y`, `angle`, `spread`, `distance`] scope : {'planet4', 'hirise'} string that decides between using x/y or image_x/image_y as base coords kwargs : dictionary, optional Attributes ---------- to_average : list List of columns to average after clustering data : object with fan data attributes as provided by `data`. base : tuple base coordinates `x` and `y`. inside_half : float `data` divided by 2.0. armlength : float length of the fan arms. v1 : float[2] vector of first arm of fan. v2 : float[2] vector of second arm of fan. coords : float[3, 2] Set of coords to draw for MPL.Line2D object: arm1->base->arm2 circle_base center radius midpoint base_to_midpoint_vec """ to_average = "x y image_x image_y angle spread distance".split() def __init__(self, data, scope="planet4", with_center=False, **kwargs): self.data = data self.scope = scope if scope is not None else "planet4" self.with_center = with_center if scope not in ["hirise", "planet4"]: raise TypeError("Unknown scope: {}".format(scope)) # first coordinate is the base of fan actual_x = "x" if scope == "planet4" else "image_x" actual_y = "y" if scope == "planet4" else "image_y" try: self.base = self.data.loc[[actual_x, actual_y]].values.astype("float") except KeyError: print("No x and y in the data:\n{}".format(data)) raise KeyError # default n_members value (property) self._n_members = 1 # angles self.inside_half = self.data.spread / 2.0 alpha = self.data.angle - self.inside_half beta = self.data.angle + self.inside_half # length of arms self.armlength = self.get_arm_length() # first arm self.v1 = rotate_vector([self.armlength, 0], alpha) # second arm self.v2 = rotate_vector([self.armlength, 0], beta) # vector matrix, stows the 1D vectors row-wise self.coords = np.vstack((self.base + self.v1, self.base, self.base + self.v2)) # init fan line, first column are the x-components of the row-vectors lines.Line2D.__init__( self, self.coords[:, 0], self.coords[:, 1], alpha=0.65, color="white", **kwargs ) def is_equal(self, other): if ( self.data.x == other.data.x and self.data.y == other.data.y and self.data.image_x == other.data.image_x and self.data.image_y == other.data.image_y and self.data.angle == other.data.angle and self.data.spread == other.data.spread and self.data.distance == other.data.distance ): return True else: return False @property def n_members(self): return self._n_members @n_members.setter def n_members(self, value): self._n_members = value def get_arm_length(self): half = radians(self.inside_half) return self.data.distance / (cos(half) + sin(half)) @property def area(self): tr_h =
np.sqrt(self.armlength ** 2 - self.radius ** 2)
numpy.sqrt
import gym import collections import numpy as np from models.q_table import Q_Table from util.bitmask import BitMask class IMTAgent(): def __init__(self, obs_size: int, action_size: int, alpha: float, gamma: float, epsilon: float, retries=1, target_value=0, window_size: int = 20): self.obs_size = obs_size self.action_size = action_size self.past_qs = collections.deque(maxlen=window_size) self.arousal_model = Q_Table(100, alpha, gamma, epsilon) self.emotive_model = Q_Table(100, alpha, gamma, epsilon) self.goal_model = Q_Table(3, alpha, gamma, epsilon) self.subgoal_idx = 0 self.attentional_model = Q_Table(3, alpha, gamma, epsilon) self.attentional_mask = BitMask(obs_size, random=True) self.affordance_model = Q_Table(3, alpha, gamma, epsilon) self.affordance_mask = BitMask(action_size, random=True) self.retries = retries self.experiential_model = Q_Table( self.action_size, alpha, gamma, epsilon) self.visited_states = [] self.target_value = target_value self.affective_values = np.arange(0, 100, 1) @staticmethod def create_circular_mask(h, w, center, radius): Y, X = np.ogrid[:h, :w] dist_from_center = np.sqrt((X - center[0])**2 + (Y-center[1])**2) mask = dist_from_center <= radius return mask def get_distance(self, first_state, second_state): first_state = np.array(first_state) second_state = np.array(second_state) return np.linalg.norm(first_state - second_state) def clamp(self, n, minn, maxn): return max(min(maxn, n), minn) def concatenate_state(self, *args): return
np.append(args[0], args[1:])
numpy.append
""" Sequence preprocessing functionality. Extends sklearn transformers to sequences. """ import numpy as np from sklearn.base import ClassifierMixin, BaseEstimator, TransformerMixin, clone from sklearn.model_selection import GridSearchCV, train_test_split from sklearn.pipeline import make_pipeline from sklearn.preprocessing import LabelEncoder, StandardScaler from sklearn.metrics import accuracy_score from sklearn.svm import LinearSVC # A set of procedures for preprocessing of sequences def make_subsequences(x, y, step=1, max_len=2 ** 31): """ Creates views to all subsequences of the sequence x. For example if x = [1,2,3,4] y = [1,1,0,0] step = 1 the result is a tuple a, b, where: a = [[1], [1,2], [1,2,3], [1,2,3,4] ] b = [1,1,0,0] Note that only a view into x is created, but not a copy of elements of x. Parameters ---------- X : array [seq_length, n_features] y : numpy array of shape [n_samples] Target values. Can be string, float, int etc. step : int Step with which to subsample the sequence. max_len : int, default 2 ** 31 Step with which to subsample the sequence. Returns ------- a, b : a is all subsequences of x taken with some step, and b is labels assigned to these sequences. """ r = range(step-1, len(x), step) X = [] Y = [] for i in r: start = max(0, i - max_len) stop = i+1 X.append(x[start:stop]) Y.append(y[i]) return X, Y class PadSubsequence(BaseEstimator, TransformerMixin): """ Takes subsequences of fixed length from input list of sequences. If sequence is not long enough, it is left padded with zeros. Parameters ---------- length : float, length of the subsequence to take """ def __init__(self, length=10, step=1): self.length = length self.step = step def _check_input(self, X): if len(X.shape) < 2: raise ValueError("The input should be a sequence, found shape %s" % X.shape) def fit(self,X,y=None): # remeber the num. of features self.n_features = X[0].shape[-1] return self def transform(self, X, y=None): if not hasattr(self, 'step'): self.step = 1 # X might be a list R = [] for x in X: if len(x) >= self.length: R.append(x[-self.length::self.step]) else: z = np.zeros((self.length - len(x), x.shape[-1])) zx = np.row_stack((z,x)) zx = zx[::self.step] R.append(zx) R = np.array(R) return R class CalculateSpectrum(BaseEstimator, TransformerMixin): """Calculates spectrum of sequence. """ def __init__(self, copy=True, with_mean=True, with_std=True): self.with_mean = with_mean self.with_std = with_std def fit(self, X, y=None): return self def transform(self, X, y=None): """Perform fft on sequence along every feature Parameters ---------- X : array-like, shape [n_samples, seq_len, n_features] The data used to fft along the features axis. """ from scipy import fftpack X = abs(fftpack.fft(X, axis=1)) return X class FlattenShape(BaseEstimator, TransformerMixin): """ Flattens the shape of samples to a single vector. This is useful in cases when "classic" models like SVM are used. Parameters ---------- """ def fit(self, X, y=None): self.shape = X[0].shape return self def transform(self, X, y=None): V = np.array([np.ravel(x) for x in X]) return V def inverse_transform(self, X, y=None): V = np.array([np.reshape(x, self.shape) for x in X]) return V # Wrapper for the standard classes of sklearn to work with sequence labeling class SequenceTransformer(BaseEstimator, TransformerMixin): def __init__(self, transformer, mode='stack'): """ Applies transformer to every element in input sequence. transformer: TransformerMixin mode: How to preprocess sequences for transformer fitting. default: stack all sequences into one huge sequence so that then it looks like a normal 2d training set """ self.transformer = transformer self.mode = mode self.transformer_ = None def fit(self, X, y=None): """ Fit base transformer to the set of sequences. X: iterable of shape [n_samples, ...] y: iterable of shape [n_samples, ...] """ # stack all the elements into one huge dataset self.transformer_ = clone(self.transformer) if self.mode == 'stack': X_conc = np.row_stack(x for x in X) # might have bugs here in future :( if y is not None: y_conc = np.concatenate([[v] * len(x) for x, v in zip(X, y)]) else: X_conc = X y_conc = y if y is None: self.transformer_.fit(X_conc) else: self.transformer_.fit(X_conc, y_conc) return self def transform(self, X, y=None): if y is None: result = [self.transformer_.transform(xx) for xx in X] else: result = [self.transformer_.transform(xx, [yy] * len(xx)) for xx, yy in zip(X, y)] result = np.array(result) return result def set_params(self, **params): self.base_transformer.set_params(**params) return self class Seq1Dto2D(BaseEstimator, TransformerMixin): """ Useful for working with text sequences. Such sequence is just a list of characters. This converts a sequence of elements to a sequence of lists of size 1 of characters. So "abc" -> [['a'], ['b'], ['c']] Useful for applications where you do not want to convert text to features explicitly. """ def __init__(self): pass def fit(self, X, y=None): return self def transform(self, X, y=None): return [np.array(list(xx))[:, np.newaxis] for xx in X] class Subsequensor(BaseEstimator, TransformerMixin): """ Creates views in all subsequences of a numpy sequence. Parameters ---------- step: int, step with which the subsequences are taken. max_subsequence: int or None, maximum subsequence size that is used in order to predict a certain output value. """ def __init__(self, step, max_subsequence=None): self.step = step self.max_subsequence = max_subsequence def fit(self, X, Y): """Fit the transformer according to the given training data. Parameters ---------- X : list of numpy arrays List of sequences, where every sequence is a 2d numpy array, where the first dimension corresponds to time, and last for features. Y : list of object List of labels assigned to corresponding sequences in X. Returns ------- self : object Returns self. """ return self def transform(self, X, Y=None): """Transform the input data. Parameters ---------- X : list of numpy arrays List of sequences, where every sequence is a 2d numpy array, where the first dimension corresponds to time, and last for features. Y : list of object List of labels assigned to corresponding sequences in X. Returns ------- X : list Returns list of views into the sequences. """ test_time = Y is None if test_time: Y = [[None]*len(x) for x in X] if self.max_subsequence is None: args = (self.step, ) else: args = (self.step, self.max_subsequence) XY = [make_subsequences(*((x, y, ) + args)) for x, y in zip(X, Y)] X = [z[0] for z in XY] if test_time: return X return X, [z[1] for z in XY] class SequenceEstimator(BaseEstimator): """ This generic estimator class can be used to label every element in a sequence using underlying subsequence estimator. One example would be labeling which parts of sensory data correspond to what kind of activity of the user. Consider the following example: X = [[1,2,3]] y = [[0,0,1]] fit() will train the estimator to classify properly the following data: X = [[1], [1,2], [1,2,3]] y = [[0, 0, 1]] predict() on X will return labels for every element in a sequence. Parameters ---------- estimator: BaseEstimator, model which is used to do estimations on subsequences. step: int, step with which the subsequences are taken for training of internal sestimator. """ def __init__(self, estimator, step=1, max_subsequence=None): self.estimator = estimator self.step = step self.max_subsequence = max_subsequence self.subsequencer = None # class instance that is responsible for getting views into the sequence def set_params(self, **params): step_name = self.__class__.__name__.lower() + "__step" if step_name in params: self.step = params[step_name] params = params.copy() del params[step_name] self.estimator.set_params(**params) return self def fit(self, X, y): X, y = Subsequensor(step=self.step, max_subsequence=self.max_subsequence).transform(X, y) X, y = sum(X, []), sum(y, []) # concat all data together self.estimator.fit(X, y) return self def predict(self, X): X = Subsequensor(step=1).transform(X) R = [self.estimator.predict(x) for x in X] return R def score(self, X, y): X, y = Subsequensor(step=self.step, max_subsequence=self.max_subsequence).transform(X, y) X, y = sum(X, []), sum(y, []) # concat all data together return self.estimator.score(X, y) # Classes that work with sequences directly # Readers def read_wav(filename, mono=False): """ Reads a wav file into a sequence of vectors, which represent the intensity of sound at some time. Every vector has a lenght of 1 if mono mode is used, else 2. Parameters ---------- filename : string, file to read mono: bool, whether to read audio as mono or stereo. Mono files are always read as mono. Returns ------- numpy array containing sequence of audio intensities. """ import scipy.io.wavfile as scw framerate, data = scw.read(filename) if len(data.shape) < 2: data = data[:,np.newaxis] if mono: data = np.mean(data, axis=1) data = data[:,np.newaxis] return data # Example pipelines def rnn_pipe(): pipe = make_pipeline( PadSubsequence(), RNNClassifier() ) grid = [ { "paddedsubsequence__length":[2,4], "rnnclassifier__n_neurons":[32] } ] return pipe, grid def svm_pipe(): pipe = make_pipeline( PadSubsequence(), FlattenShape(), StandardScaler(), LinearSVC(), ) grid = [ { "paddedsubsequence__length":[1,2,4,8,16], "linearsvc__C":10 **
np.linspace(-10, 10, 51)
numpy.linspace
import functools import logging import pickle import sys import time from collections import Counter from datetime import datetime from pathlib import Path from typing import Dict from typing import Set from typing import Union, Tuple, List import igraph as ig import matplotlib.pyplot as plt import networkx as nx import numpy as np import seaborn as sns; sns.set_style('white') from matplotlib import gridspec from numpy import linalg as la from scipy import sparse as sps from scipy.sparse import issparse import statsmodels.stats.api as sm from VRG.src.LightMultiGraph import LightMultiGraph sns.set(); sns.set_style("darkgrid") clusters = {} # stores the cluster members original_graph = None # to keep track of the original edges covered def matrix_distance(A: np.array, B: np.array, kind: str) -> float: # pad matrices such that their orders match if A.shape[0] > B.shape[0]: B = _pad(B, A.shape[0]) elif A.shape[0] < B.shape[0]: A = _pad(A, B.shape[0]) assert A.shape[0] == B.shape[0] if kind == 'L1': d = np.sum(np.abs(A - B)) elif kind == 'L2': d = np.sqrt(np.sum(np.square(A - B))) elif kind == 'L_inf': d = np.max(np.max(np.abs(A - B))) else: raise NotImplementedError(f'Invalid kind: {kind!r}') return d def unnest_attr_dict(g): new_g = nx.Graph() for n, d in g.nodes(data=True): while 'attr_dict' in d: d = d['attr_dict'] new_g.add_node(n, **d) new_g.add_edges_from(g.edges()) return new_g def get_terminal_subgraph(g): """ Return the subgraph induced by terminal nodes in g :param g: :return: """ terminals = {node for node, d in g.nodes(data=True) if 'nt' not in d} return g.subgraph(terminals).copy() def get_compatibility_matrix(g: nx.Graph, attr_name: str): """ From Danai's heterophily paper :param g: :param attr_name: :return: """ values = set(nx.get_node_attributes(g, attr_name).values()) mapping = {val: i for i, val in enumerate(values)} print(mapping) C = nx.attribute_mixing_matrix(g, attribute=attr_name, mapping=mapping, normalized=False) np.fill_diagonal(C, C.diagonal() / 2) D = np.diag(np.diag(C)) e = np.ones(shape=(len(mapping), 1)) h = float((e.T @ D @ e) / (e.T @ C @ e)) Y = np.zeros(shape=(g.order(), len(mapping))) for n, d in g.nodes(data=True): attr = d[attr_name] Y[n, mapping[attr]] = 1 A = nx.adjacency_matrix(g) E = np.ones(shape=(A.shape[0], len(mapping))) H = (Y.T @ A @ Y) / (Y.T @ A @ E) return_d = dict(homophily_ratio=h, compatibility_mat=H, attr_name=attr_name, mapping=mapping) return return_d def find_boundary_edges(g: LightMultiGraph, nbunch: Set[int]) -> List[Tuple]: """ Collect all of the boundary edges (i.e., the edges that connect the subgraph to the original graph) :param g: whole graph :param nbunch: set of nodes in the subgraph :return: boundary edges """ nbunch = set(nbunch) if len(nbunch) == g.order(): # it's the entire node set return [] boundary_edges = [] for u, v in nx.edge_boundary(g, nbunch): edges = [(u, v)] * g.number_of_edges(u, v) boundary_edges.extend(edges) return boundary_edges def set_boundary_degrees(g: LightMultiGraph, sg: LightMultiGraph) -> None: boundary_degree = {n: 0 for n in sg.nodes} # by default every boundary degree is 0 for u, v in nx.edge_boundary(g, sg.nodes()): if sg.has_node(u): boundary_degree[u] += g.number_of_edges(u, v) else: boundary_degree[v] += g.number_of_edges(u, v) nx.set_node_attributes(sg, values=boundary_degree, name='b_deg') return def set_boundary_degrees_old(g: LightMultiGraph, sg: LightMultiGraph) -> None: """ Find the nunber of boundary edges that each node participate in. This is stored as a node level attribute - 'b_deg' in nodes in g that are part of nbunch :param g: whole graph :param sg: the subgraph :return: nothing """ boundary_degree = {} for u in sg.nodes(): boundary_degree[u] = 0 for v in g.neighbors(u): if not sg.has_node(v): boundary_degree[u] += g.number_of_edges(u, v) # for a multi-graph nx.set_node_attributes(sg, values=boundary_degree, name='b_deg') return def get_nodes_covered(sg: LightMultiGraph) -> Set[int]: """ Get nodes covered by a non-terminal :param g: :param sg: :return: """ nodes_covered = set() for node, data in sg.nodes(data=True): if 'nt' in data: # if the subgraph has a non-terminal node, the new non-terminal now has all the nodes_covered of that non-terminal node nt = data['nt'] assert isinstance(nt.nodes_covered, set) and len( nt.nodes_covered) > 0, 'non-terminal has invalid nodes_covered' nodes_covered.update(nt.nodes_covered) else: # it's a regular node nodes_covered.add(node) return nodes_covered def load_pickle(fname): try: obj = pickle.load(open(fname, 'rb')) except Exception as e: obj = None logging.error(f'{e} Error loading pickle from {fname!r}') return obj def dump_pickle(obj, fname): logging.error(f'Dumping pickle at {fname!r}') pickle.dump(obj, open(fname, 'wb')) return def mean_confidence_interval(arr, alpha=0.05) -> Tuple: if len(arr) == 1: return 0, 0 return sm.DescrStatsW(arr).tconfint_mean(alpha=alpha) def node_matcher_b_deg(node_attr_1: Dict, node_attr_2: Dict) -> bool: """ Only match boundary degrees """ return node_attr_1['b_deg'] == node_attr_2['b_deg'] def node_matcher_strict(node_attr_1: Dict, node_attr_2: Dict) -> bool: """ If node n1 in G1 are the same as node n2 in G2 :param node_attr_1: Dictionary of node attrs :param node_attr_2: :return: """ # check if they have the same set of attributes # only check if their b_deg are the same same = set(node_attr_1.keys()) == set(node_attr_2.keys()) if same: # check if the values are the same too for key, val_1 in node_attr_1.items(): if key == 'actual_label': # ignore actual_label attribute continue val_2 = node_attr_2[key] if val_1 != val_2: # if the values don't match, break same = False break return same def edge_matcher(edge_attr_1: Dict, edge_attr_2: Dict) -> bool: """ If edge e1 in G1 is the same as edge e2 in G2 :param edge_attr_1: :param edge_attr_2: :return: """ # they must have the same set of edge attrs same = set(edge_attr_1.keys()) == set(edge_attr_1.keys()) if same: # check if the values are the same too for key, val_1 in edge_attr_1.items(): val_2 = edge_attr_2[key] if val_1 != val_2: # if values dont match same = False break return same def jaccard(set1: Set[int], set2: Set[int]): return len(set1 & set2) / len(set1 | set2) def cvm_distance(data1, data2) -> float: data1, data2 = map(np.asarray, (data1, data2)) n1 = len(data1) n2 = len(data2) data1 = np.sort(data1) data2 = np.sort(data2) data_all = np.concatenate([data1, data2]) cdf1 = np.searchsorted(data1, data_all, side='right') / n1 cdf2 = np.searchsorted(data2, data_all, side='right') / n2 assert len(cdf1) == len(cdf2), 'CDFs should be of the same length' d = np.sum(np.absolute(cdf1 - cdf2)) / len(cdf1) return np.round(d, 3) def ks_distance(data1, data2) -> float: data1, data2 = map(np.asarray, (data1, data2)) n1 = len(data1) n2 = len(data2) data1 = np.sort(data1) data2 = np.sort(data2) data_all = np.concatenate([data1, data2]) cdf1 = np.searchsorted(data1, data_all, side='right') / n1 cdf2 = np.searchsorted(data2, data_all, side='right') / n2 d = np.max(np.absolute(cdf1 - cdf2)) return np.round(d, 3) def timer(func): @functools.wraps(func) def wrapper_timer(*args, **kwargs): ColorPrint.print_bold(f'({func.__name__}) Start: {datetime.now().ctime()}') tic = time.perf_counter() value = func(*args, **kwargs) toc = time.perf_counter() elapsed_time = toc - tic ColorPrint.print_bold(f'({func.__name__}) End: {datetime.now().ctime()}, Elapsed time: {elapsed_time:0.4f}s') return value return wrapper_timer def _pad(A, N): """Pad A so A.shape is (N,N)""" n, _ = A.shape if n >= N: return A else: if issparse(A): # thrown if we try to np.concatenate sparse matrices side = sps.csr_matrix((n, N - n)) bottom = sps.csr_matrix((N - n, N)) A_pad = sps.hstack([A, side]) A_pad = sps.vstack([A_pad, bottom]) else: side = np.zeros((n, N - n)) bottom = np.zeros((N - n, N)) A_pad =
np.concatenate([A, side], axis=1)
numpy.concatenate
""" CMSC733 Spring 2019: Classical and Deep Learning Approaches for Geometric Computer Vision Project 1: Autopano Author(s): <NAME> (<EMAIL>) Graduate Student in M.Eng Robotics, University of Maryland, College Park <NAME> (<EMAIL>) Graduate Student in M.Eng Robotics, University of Maryland, College Park """ # Dependencies: # opencv, do (pip install opencv-python) # skimage, do (apt install python-skimage) import cv2 import os import sys import glob import random from skimage import data, exposure, img_as_float import matplotlib.pyplot as plt from Network.Network import * from Misc.MiscUtils import * from Misc.DataUtils import * from Wrapper import * import numpy as np import time import argparse import shutil import string import math as m from tqdm import tqdm from Misc.TFSpatialTransformer import * import tensorflow.compat.v1 as tf tf.disable_v2_behavior() # Don't generate pyc codes sys.dont_write_bytecode = True '''-------------GPU Verification-------------''' config = tf.ConfigProto() config.gpu_options.allow_growth = True session = tf.Session(config=config) print("\n-->> TotalGPUs Available: ", len(tf.config.experimental.list_physical_devices('GPU'))) if (len(tf.config.experimental.list_physical_devices('GPU')) > 0) : print("\n<<<<<<<<<<--------------------Preparing To Run on GPU-------------------->>>>>>>>>>") else: print("\n<<<<<<<<<<--------------------NO GPU FOUND !!!!-------------------->>>>>>>>>>") def GenerateBatch(BasePath, DirNamesTrain, TrainLabels, ImageSize, MiniBatchSize, NumTestSamples): """ Inputs: BasePath - Path to COCO folder without "/" at the end DirNamesTrain - Variable with Subfolder paths to train files NOTE that Train can be replaced by Val/Test for generating batch corresponding to validation (held-out testing in this case)/testing TrainLabels - Labels corresponding to Train NOTE that TrainLabels can be replaced by Val/TestLabels for generating batch corresponding to validation (held-out testing in this case)/testing ImageSize - Size of the Image MiniBatchSize is the size of the MiniBatch Outputs: I1Batch - Batch of images LabelBatch - Batch of one-hot encoded labels """ image_IA_batches = [] corner_1_batches = [] patch_2_batches = [] patch_batches = [] for n in range(NumTestSamples): index = n p_1_dir = BasePath + os.sep + "Patch_A/" + DirNamesTrain[index, 0] p_2_dir = BasePath + os.sep + "Patch_B/" + DirNamesTrain[index, 0] image_IA_dir = BasePath + os.sep + "Image_IA/" + DirNamesTrain[index, 0] p_1 = cv2.imread(p_1_dir, cv2.IMREAD_GRAYSCALE) p_2 = cv2.imread(p_2_dir, cv2.IMREAD_GRAYSCALE) image_IA = cv2.imread(image_IA_dir, cv2.IMREAD_GRAYSCALE) if(p_1 is None) or (p_2 is None): print("\nPatch empty moving on ..") continue p_1 = np.float32(p_1) p_2 = np.float32(p_2) image_IA = np.float32(image_IA) p_pair = np.dstack((p_1, p_2)) o_corner = TrainLabels[index, :, :, 0] patch_batches.append(p_pair) corner_1_batches.append(o_corner) patch_2_batches.append(p_2.reshape(128, 128, 1)) image_IA_batches.append(image_IA.reshape(image_IA.shape[0], image_IA.shape[1], 1)) patch_batches = np.array(patch_batches) corner_1_batches = np.array(corner_1_batches) patch_2_batches = np.array(patch_2_batches) image_IA_batches = np.array(image_IA_batches) p_indices_batch = [] for i in range(corner_1_batches.shape[0]): x_min, y_min = corner_1_batches[i, 0, 0], corner_1_batches[i, 0, 1] x_max, y_max = corner_1_batches[i, 3, 0], corner_1_batches[i, 3, 1] X_, Y_ = np.mgrid[x_min : x_max, y_min : y_max] p_indices_batch.append(np.dstack((Y_, X_))) return patch_batches, corner_1_batches, patch_2_batches, image_IA_batches, p_indices_batch def testUnsupervised(ImgPH, LabelPH, DirNamesTrain, ImageSize, TrainLabels, CornerPH, Patch2PH, patchIndicesPH, SavePath, ModelPath, BasePath, NumTestSamples): if(not (os.path.isdir(SavePath))): print(SavePath, "\nCreating Results Dir ...") os.makedirs(SavePath) _, h_4_batch, _ = unsuperHomographyModel(LabelPH, ImgPH, CornerPH, patchIndicesPH) Saver = tf.train.Saver() with tf.Session() as sess: Saver.restore(sess, ModelPath) print('Number of parameters in this model are %d ' % np.sum([np.prod(v.get_shape().as_list()) for v in tf.trainable_variables()])) patch_batches, corner_1_batches, _, image_IA_batches, p_indices_batch = GenerateBatch(BasePath, DirNamesTrain, TrainLabels, ImageSize, _, NumTestSamples) FeedDict = {LabelPH: patch_batches, CornerPH: corner_1_batches, ImgPH: image_IA_batches, patchIndicesPH: p_indices_batch} pred_h = sess.run(h_4_batch, FeedDict) np.save(SavePath+"predicted_H.npy", pred_h) def testSupervised(LabelPH, ModelPath, SavePath): """ Inputs: ImgPH is the Input Image placeholder ImageSize is the size of the image ModelPath - Path to load trained model from DataPath - Paths of all images where testing will be run on LabelsPathPred - Path to save predictions Outputs: Predictions written to ./TxtFiles/PredOut.txt """ image_IA_dir= "../Data/Val/" image_name = os.listdir(image_IA_dir) ran_index = random.randint(0, len(image_name) - 1) a = image_name[ran_index] ad = cv2.imread(image_IA_dir + a, 0) random_Image = cv2.resize(ad, (320, 240), interpolation = cv2.INTER_AREA) pA, pB, _, _, coors = patchCreation(random_Image) patch_batch = np.dstack((pA, pB)) h_4_points = superHomographyModel(LabelPH) Saver = tf.train.Saver() with tf.Session() as sess: Saver.restore(sess, ModelPath) print('Number of parameters in this model are %d ' % np.sum([np.prod(v.get_shape().as_list()) for v in tf.trainable_variables()])) patch_batch = np.array(patch_batch).reshape(1, 128, 128, 2) # patch_batch = tf.reshape(patch_batch, shape=(1, 128, 128, 2)) FeedDict = {LabelPH: patch_batch} Predicted = sess.run(h_4_points, FeedDict) pA_new = coors[0] + Predicted.reshape(4, 2) h_4_points_new = coors[1] - pA_new cv2.polylines(ad, np.int32([coors[0]]), True,(0, 255, 0), 3) cv2.polylines(ad, np.int32([coors[1]]), True,(255, 0, 0), 5) cv2.polylines(ad, np.int32([pA_new]), True,(0, 0, 255), 5) plt.figure() plt.imshow(ad) plt.show() cv2.imwrite(SavePath + "Stacked" + ".png", ad) def main(): """ Inputs: None Outputs: Prints out the confusion matrix with accuracy """ # Parse Command Line arguments Parser = argparse.ArgumentParser() Parser.add_argument('--ModelPath', dest='ModelPath', default='../Checkpoints/unsupervised/9model.ckpt', help='Path to load latest model from, Default:ModelPath') Parser.add_argument('--CheckPointPath', dest='CheckPointPath', default= '../Checkpoints/unsupervised/', help='Path to load latest model from, Default:CheckPointPath') Parser.add_argument('--BasePath', dest='BasePath', default='../Data/Validated_', help='Path to load images from, Default:BasePath') Parser.add_argument('--SavePath', dest='SavePath', default='./Results/', help='Path of labels file, Default: ./Results/') Parser.add_argument('--ModelType', default='Unsup', help='Model type, Supervised or Unsupervised? Choose from Sup and Unsup, Default:Unsup') Args = Parser.parse_args() ModelPath = Args.ModelPath BasePath = Args.BasePath CheckPointPath = Args.CheckPointPath SavePath = Args.SavePath ModelType = Args.ModelType # Plot Confusion Matrix # LabelsTrue, LabelsPred = ReadLabels(LabelsPath, LabelsPathPred) # ConfusionMatrix(LabelsTrue, LabelsPred) if ModelType == 'Unsup': DirNamesTrain, SaveCheckPoint, ImageSize, _, TrainLabels, NumClasses = SetupAll(BasePath, CheckPointPath) NumTestSamples = 100 TrainLabels =
np.load(BasePath + "/points_list.npy")
numpy.load
# encoding: utf-8 from __future__ import division import sys import os import time import datetime import pandas as pd import numpy as np import math import ast CURRENT_DIR = os.path.abspath(os.path.dirname(__file__)) ADD_PATH = "%s/../"%(CURRENT_DIR) sys.path.append(ADD_PATH) from tools.mail import MyEmail from tools.html import html_with_style DATA_PATH = "%s/../data/basic_matrix" % (CURRENT_DIR) def reviewing_data(df,send_str): if len(df) ==0: send_str += '零单' + '<br>' return send_str send_str += '审核中单量:'+str(len(df[(df['type']=='nan')])) + ' ' + '<br>' send_str += '审核中比例:'+str(100.0*len(df[(df['type']=='nan')])/len(df)) + ' ' + '<br>' + '<br>' return send_str def pass_rate(df,send_str): if len(df) == 0: send_str += '零完成单' + '<br>' return send_str out = [] concat = [] out.append((len(df),len(df[df['suggestion']=='1']),100.0*len(df[df['suggestion']=='1'])/len(df))) if len(df[df['type']=='first']) == 0: out.append((0,0,0)) else: out.append((len(df[df['type']=='first']),len(df[(df['suggestion']=='1')&(df['type']=='first')]),100.0*len(df[(df['suggestion']=='1')&(df['type']=='first')])/len(df[df['type']=='first']))) if len(df[df['type']=='regular']) == 0: out.append((0,0,0)) else: out.append((len(df[df['type']=='regular']),len(df[(df['suggestion']=='1')&(df['type']=='regular')]),100.0*len(df[(df['suggestion']=='1')&(df['type']=='regular')])/len(df[df['type']=='regular']))) if len(df[df['type']=='again']) == 0: out.append((0,0,0)) else: out.append((len(df[df['type']=='again']),len(df[(df['suggestion']=='1')&(df['type']=='again')]),100.0*len(df[(df['suggestion']=='1')&(df['type']=='again')])/len(df[df['type']=='again']))) frame = pd.DataFrame(out, index=['总通过率','新单通过率','续贷通过率','再次通过率'], columns=['订单申请数','通过数','通过率']) concat.append(frame) concat = pd.concat(concat, keys=['机审通过率'], axis=1) send_str += html_with_style(concat) + '<br>' return send_str def baseline(df,send_str): if len(df) == 0: send_str += '无新单' + '<br>' return send_str out = [] concat = [] baseline_data = [] baseline = df['baseline'].values.tolist() for i in baseline: temp = ast.literal_eval(i) if len(temp) != 0: baseline_data.extend(temp) if baseline_data == []: send_str += '无baseline' + '<br>' return send_str for i in set(baseline_data): out.append((i,baseline_data.count(i),100.0*baseline_data.count(i)/len(df))) frame = pd.DataFrame(out, columns=['baseline','个数','拒绝率']) concat.append(frame) concat = pd.concat(concat, keys=['新单baseline拒绝率'], axis=1) send_str += html_with_style(concat) + '<br>' return send_str def score(df,send_str): if len(df) == 0: send_str += '无新单' + '<br>' return send_str out = [] concat = [] temp = df['score'].values.tolist() score = [] for i in temp: try: score.append(int(i)) except: continue score = np.array(score) out.append(('>1000',sum(np.array(score)>1000),100.0*sum(
np.array(score)
numpy.array
from typing import Tuple import numpy as np from scipy.stats import norm def step_f(z: np.ndarray, scale: float, loc: float) -> np.ndarray: """ :param z: z-dimension :param scale: width of step function, always 0 :param loc: position of step :return: positioned step function """ new_z = z - loc f = np.ones_like(new_z) * 0.5 f[new_z <= -scale] = 0 f[new_z >= scale] = 1 return f def sld_with_roughness(beta: np.ndarray, d: np.ndarray, sigma: np.ndarray) -> Tuple[np.ndarray]: """ Determine the scattering length density profile shape, with roughness present. :param beta: array of scattering length densities, shape: (number_layers) :param d: layer thicknesses, shape: (number_layers) :param sigma: interfacial roughnesses, shape (number_layers-1) :return: z-dimension and the SLD profile """ dist = np.cumsum(d[:-1]) zstart = -5 - 4 * sigma[1] zend = 5 + dist[-1] + 4 * sigma[-1] zed = np.linspace(zstart, zend, 500) sld = np.ones_like(zed, dtype=float) * beta[0].real delta_rho = beta[1:].real - beta[:-1].real erf_f = norm.cdf for i in range(beta.shape[0] - 1): f = erf_f if sigma[i] == 0: f = step_f sld += delta_rho[i] * f(zed, scale=sigma[i], loc=dist[i]) return zed, sld def microslicing(beta: np.ndarray, d: np.ndarray, sigma: np.ndarray, slice_size: float=0.5) -> Tuple[np.ndarray]: """ Creates a microslab representation of the scattering length density profile. :param beta: scattering length densitys, shape: (number_layers) :param d: layer thicknesses, shape: (number_layers) :param sigma: interfacial roughnesses, shape: (number_layers-1) :param slice_size: Thickness of each slab in the micro-slab representation Returns ------- micro_slabs : np.ndarray The micro-slab representation of the model. See the `Structure.slabs` method for a description of the array. """ dist = np.cumsum(d[:-1]) zstart = -20.0 - 8 * sigma[0] zend = 20.0 + dist[-1] + 8 * sigma[0] nsteps = int((zend - zstart) / slice_size + 1) zed = np.linspace(zstart, zend, num=nsteps) sld = np.ones_like(zed, dtype=float) * beta[0].real delta_rho = beta[1:].real - beta[:-1].real for i in range(len(d) - 1): f = norm.cdf if sigma[i] == 0: f = step_f p = f(zed, scale=sigma[i], loc=dist[i]) sld += delta_rho[i] * p return zed + 0.5 * slice_size, sld def normal_wavevectors(q: np.ndarray, beta: np.ndarray) -> np.ndarray: """ :param q: array of q-wavevectors, shape: (number_q) :param beta: array of scattering length densities, shape: (number_layers) :return: wavevectors normal to surface, shape: (number_q, number_layers) """ k0 = 0.5 * q[:, np.newaxis] kn = np.sqrt(k0 ** 2 - 4.0 * np.pi * (beta - beta[0])) return kn def fresnel_reflectance(kn: np.ndarray) -> np.ndarray: """ :param kn: wavevectors normal to surface, shape: (number_q, number_layers) :return: fresnel reflectance between layers, shape: (number_q, number_layers-1) """ return (kn[:, :-1] - kn[:, 1:]) / (kn[:, :-1] + kn[:, 1:]) def fresnel_reflectance_with_roughness(kn: np.ndarray, sigma: np.ndarray) -> np.ndarray: """ :param kn: wavevectors normal to surface, shape: (number_q, number_layers) :param sigma: interfacial roughness widths, shape: (number_layers-1) :return: fresnel reflectance between layers, shape: (number_q, number_layers-1) """ return (kn[:, :-1] - kn[:, 1:]) / (kn[:, :-1] + kn[:, 1:]) * np.exp(-2 * kn[:, :-1] * kn[:, 1:] * sigma ** 2) def phase_factor(kn:np.ndarray, d: np.ndarray) -> np.ndarray: """ :param kn: wavevectors normal to surface, shape: (number_q, number_layers) :param d: layer thicknesses, shape: (number_layers) :return: phase factor, shape: (number_q, number_layers) """ phi_t = kn * d phi_t[:, 0] = np.zeros(kn.shape[0]) return phi_t def characteristic_matrices(r: np.ndarray, phi: np.ndarray) -> np.ndarray: """ :param r: Fresnel reflectances, shape: (number_q, number_layers-1) :param phi: phase factors, shape: (number_q, number_layers-1) :returns: characteristic matrices, shape: (2, 2, number_q, number_layers-1) """ M = np.ones((2, 2, *r.shape), dtype=complex) M[0, 0, :, 1:] = np.exp(1j * phi[:, 1:-1]) M[1, 1, :, 1:] =
np.exp(-1j * phi[:, 1:-1])
numpy.exp
import os from multiprocessing import cpu_count from pathlib import Path import pickle import re from PIL import Image import pandas as pd import numpy as np from sklearn.preprocessing import OneHotEncoder from sklearn.utils.class_weight import compute_class_weight from sklearn.model_selection import train_test_split from nltk.tokenize import word_tokenize import keras from keras import layers from keras_preprocessing.image import ImageDataGenerator, img_to_array from keras import backend as K import tensorflow as tf from tqdm import tqdm """Combines text and image features to form one classifier. Not used in the end due to mediocre performance""" config = tf.ConfigProto() config.gpu_options.allow_growth = True session = tf.Session(config=config) K.set_session(session) psychic_learners_dir = Path.cwd().parent BIG_CATEGORY = 'fashion' IMAGE_MODEL_PATH = str(psychic_learners_dir / 'data' / 'keras_checkpoints' / BIG_CATEGORY / 'converted_model.h5') TEXT_MODEL_PATH = str(psychic_learners_dir / 'data' / 'keras_checkpoints' / BIG_CATEGORY / 'word_cnn' / '0.7805109797045588.ckpt-382000') TRAIN_CSV = str(psychic_learners_dir / 'data' / 'csvs' / f'{BIG_CATEGORY}_train_split.csv') VALID_CSV = str(psychic_learners_dir / 'data' / 'csvs' / f'{BIG_CATEGORY}_valid_split.csv') TEST_CSV = str(psychic_learners_dir / 'data' / 'csvs' / f'{BIG_CATEGORY}_test_split.csv') TRAIN_IMAGE_DIR = str(psychic_learners_dir / 'data' / 'image' / 'v1_train_240x240' / BIG_CATEGORY) VAL_IMAGE_DIR = str(psychic_learners_dir / 'data' / 'image' / 'valid_240x240' / BIG_CATEGORY) TEST_IMAGE_DIR = str(psychic_learners_dir / 'data' / 'test_240x240' / 'test_240x240') FEATURES_DIR = psychic_learners_dir / 'data'/ 'features' / BIG_CATEGORY IMAGE_SIZE = (240, 240) N_CLASSES = 17 BATCH_SIZE = 128 WORD_MAX_LEN = 15 os.makedirs(FEATURES_DIR, exist_ok=True) with open("word_dict.pickle", "rb") as f: word_dict = pickle.load(f) def build_word_dataset(titles, word_dict, document_max_len): df = pd.DataFrame(data={'title': titles}) x = list(map(lambda d: word_tokenize(clean_str(d)), df["title"])) x = list(map(lambda d: list(map(lambda w: word_dict.get(w, word_dict["<unk>"]), d)), x)) x = list(map(lambda d: d + [word_dict["<eos>"]], x)) x = list(map(lambda d: d[:document_max_len], x)) x = list(map(lambda d: d + (document_max_len - len(d)) * [word_dict["<pad>"]], x)) return x def clean_str(text): text = re.sub(r"[^A-Za-z0-9]", " ", text) text = re.sub(r"\s{2,}", " ", text) text = text.strip().lower() return text def batch_iter(inputs, batch_size): inputs =
np.array(inputs)
numpy.array
import os import types import pickle from utils.misc import isnotebook if isnotebook(): from tqdm import tqdm_notebook as tqdm else: from tqdm import tqdm import numpy as np import networkx as nx import graph_tool as gt import graph_tool.stats as gt_stats import graph_tool.topology as gt_topology import graph_tool.clustering as gt_clustering import graph_tool.generation as gt_generation from utils.conversions import convert_to_gt def unique_non_isomorphic(H_set): H_unique = [] for H in H_set: found = False for H_saved in H_unique: if H.num_vertices() != H_saved.num_vertices() or H.num_edges() != H_saved.num_edges(): # avoid running isomorphism routine if num vertices/num edges is different continue iso = True if H.num_edges() == 0 and H.num_vertices() == 1 else \ gt_topology.isomorphism(H, H_saved) if iso: found = True break if not found: H_unique.append(H) return H_unique def get_motifs(k_min, k_max, graphs_ptg, directed=False): #n_shuffles = 100 motif_num_vertices_list = list(range(k_min, k_max+1)) H_dictionary = [] counts = [] # add single nodes and single edges H_dictionary += [gt_generation.complete_graph(1), gt_generation.complete_graph(2)] counts += [0,0] for i in tqdm(range(len(graphs_ptg))): G_edge_index = graphs_ptg[i].edge_index.transpose(1,0).tolist() G_gt = gt.Graph(directed=directed) G_gt.add_edge_list(G_edge_index) gt_stats.remove_self_loops(G_gt) gt_stats.remove_parallel_edges(G_gt) for motif_num_vertices in motif_num_vertices_list: motifs_k, counts_k = gt_clustering.motifs(G_gt, motif_num_vertices) for motif, count in zip(motifs_k, counts_k): found=False for H_index, H in enumerate(H_dictionary): if H.num_vertices() != motif.num_vertices() or H.num_edges() != motif.num_edges(): # avoid running isomorphism routine if num vertices/num edges is different continue iso = True if H.num_edges() == 0 and H.num_vertices()==1 else \ gt_topology.isomorphism(H, motif) if iso: counts[H_index] += count found = True break if not found: H_dictionary.append(motif) counts += [count] counts = np.array(counts) H_dictionary = list(
np.array(H_dictionary)
numpy.array
from __future__ import print_function #!/usr/bin/python """ Simple adjunct routine to plot LSPS/CRACM maps with traces, over cell image if possible. Reuqires acq4read. Takes advantage of acq4read code to access all data and attributes. """ import os import re import itertools import argparse from collections import OrderedDict from pathlib import Path import pandas as pd import matplotlib matplotlib.use('Qt5Agg') import matplotlib.pyplot as mpl from matplotlib.widgets import RectangleSelector import matplotlib.backend_bases as MBB import scipy.ndimage as SND import pylibrary.plotting.plothelpers as PH import seaborn as sns import ephys.ephysanalysis.acq4read as ARC import ephys.ephysanalysis.metaarray as EM from pyqtgraph import configfile from pylibrary.plotting import picker import scipy.ndimage import numpy as np import datetime import pprint import textwrap as WR import collections import tifffile as tf import ephys.ephysanalysis.boundrect as BR import ephys.mapanalysistools.digital_filters as FILT import mahotas as MH import nf107.set_expt_paths as set_expt_paths set_expt_paths.get_computer() experiments = set_expt_paths.get_experiments() exclusions = set_expt_paths.get_exclusions() class ScannerInfo(object): """ Get scanner information, compute the scanner box and some additional parameters Do this as a class to encapsulate the data and make reusable. """ def __init__(self, AR): BRI = BR.BoundRect() self.AR = AR # save the acq4read instance for access to the data self.AR.getScannerPositions() self.scannerpositions = np.array(AR.scannerpositions) pos = self.AR.scannerCamera['frames.ma']['transform']['pos'] scale = self.AR.scannerCamera['frames.ma']['transform']['scale'] region = self.AR.scannerCamera['frames.ma']['region'] self.binning = self.AR.scannerCamera['frames.ma']['binning'] scale = list(scale) scale[0] = scale[0]/self.binning[0] scale[1] = scale[1]/self.binning[1] self.scale = scale if self.AR.spotsize is not None: print ('Spot Size: {0:0.3f} microns'.format(self.AR.spotsize*1e6)) else: self.AR.spotsize=50. self.camerabox = [[pos[0] + scale[0]*region[0], pos[1] + scale[1]*region[1]], [pos[0] + scale[0]*region[0], pos[1] + scale[1]*region[3]], [pos[0] + scale[0]*region[2], pos[1] + scale[1]*region[3]], [pos[0] + scale[0]*region[2], pos[1] + scale[1]*region[1]], [pos[0] + scale[0]*region[0], pos[1] + scale[1]*region[1]] ] scannerbox = BRI.getRectangle(self.AR.scannerpositions) if scannerbox is None: # likely just one point pt = self.AR.scannerpositions fp = np.array([[pt[0][0]], [pt[0][1]]]) scannerbox = fp else: fp = np.array([scannerbox[0][0], scannerbox[1][1]]).reshape(2,1) # print('fp: ', fp) scannerbox = np.append(scannerbox, fp, axis=1) self.scboxw = np.array(scannerbox) self.boxw = np.swapaxes(np.array(self.camerabox), 0, 1) class MapTraces(object): def __init__(self): self.cell = None self.datasets = OrderedDict() self.image = None self.AR = ARC.Acq4Read() self.outputfn = None self.invert = True self.vmax = 20000. self.voff = 0. self.ioff = 0.050 self.basezero = True self.ax = None self.ax2 = None self.xscale = 1.0 self.yscale = 1.0 self.nspots = 0 self.ticks = None self.overlay = True self.indicesplotted = [] self.twin = [0, 0.6] self.averageScannerImages = False # normally, would not do self.calbar = [20, 500] # 20 ms, 500 pA self.picker = picker.Picker() sns.set() sns.color_palette("colorblind", 10) self.palette = itertools.cycle(sns.color_palette("colorblind", 10)) sns.set_style("white") sns.set_style("ticks") self.window = False self.XY = [[None, None]] self.XYdepth = 0 self.calbarobj = None self.calbartext = None self.mx = 0 self.my = 0 def setProtocol(self, cell, image=None, videos=None): self.cell = Path(cell) if not self.cell.is_dir(): print(f"Did not find directory: {str(cell):s}") raise ValueError if image is not None: self.image = Path(self.cell, image) print(self.image) print(self.cell) self.image_data = self.AR.getImage(self.image) else: self.image = None self.videos = [] if videos is not None: for v in videos: self.videos.append(Path(self.cell, f"video_0{v:02d}")) self.AR.setProtocol(self.cell) def setWindow(self, x0, x1, y0, y1): self.xlim = (x0, x1) self.ylim = (y0, y1) if not pd.isnull(x0): self.window = True print('window set!!!!!') else: self.window = False def setOutputFile(self, filename): self.outputfn = filename def setPars(self, pdict): for k in list(pdict.keys()): if k == 'invert': self.invert = pdict[k] if k == 'vmax': self.vmax = pdict[k] if k == 'voff': self.voff = pdict[k] if k == 'ioff': self.ioff = pdict[k] if k == 'xscale': self.xscale = pdict[k] if k == 'yscale': self.yscale = pdict[k] if k == 'calbar': self.calbar[0] = pdict[k][0]*1e-3 self.calbar[1] = pdict[k][1]*1e-12 if k == 'twin': self.twin[0] = pdict[k][0] self.twin[1] = pdict[k][1] if k == 'ticks': self.ticks = pdict[k] def plot_maps(self, protocols, traces=None, linethickness=1.0): """ Plot map or superimposed maps... """ print('plot_maps') self.figure = mpl.figure() # print(dir(self.figure)) self.figure.set_size_inches(14., 8.) if traces is None: self.ax = self.figure.add_subplot('111') print('set ax') else: self.ax = self.figure.add_subplot('121') self.ax2 = self.figure.add_subplot('122') sns.despine(ax=self.ax2, left=True, bottom=True, right=True, top=True) print('set ax and ax2') # self.ax3 = self.figure.add_subplot('133') self.data = dict.fromkeys(list(protocols.keys())) cols = ['r', 'b', 'c', 'g'] self.traces = traces for i, p in enumerate(protocols): prot = protocols[p] self.datasets[p] = [] if i == 0: self.setProtocol(prot, self.image) self.show_traces(self.figure, self.ax, pcolor=cols[i], name=p, linethickness=linethickness) else: self.setProtocol(prot) self.show_traces(self.figure, self.ax, pcolor=cols[i], name=p, linethickness=linethickness) if self.traces is not None: for tr in self.traces: self.handle_event(index=tr) PH.calbar(self.ax2, calbar=[0, -6., 50, 5.], scale=[1.0, 1.0], axesoff=True, orient='left', unitNames=None, fontsize=11, weight='normal', color='k', font='Arial') else: self.picker = picker.Picker() self.picker.setData(2, self.scp) self.picker.setAction(self.handle_event) # self.figure.canvas.mpl_connect('button_press_event', self.picker.pickEvent) # self.figure.canvas.mpl_connect('pick_event', self.picker.pickEvent) # self.figure.canvas.mpl_connect('motion_notify_event', self.picker.onMouseMotion) x1, x2 = self.ax.get_xlim() y1, y2 = self.ax.get_ylim() self.XY = [self.get_XYlims()] cp = self.cell.parts cellname = '/'.join(cp[-4:]) self.figure.suptitle(cellname, fontsize=11) self.fig2 = None if self.outputfn is not None: mpl.savefig(self.outputfn) # mpl.show() def get_XYlims(self): x1, x2 = self.ax.get_xlim() y1, y2 = self.ax.get_ylim() return([x1, y1, x2, y2]) def show_traces(self, f, ax, pcolor='r', linethickness=0.5, name=None): self.cell.glob('*') # imageplotted = False # imagetimes = [] # imagename = [] # maptimes = [] # mapname = [] supindex = self.AR.readDirIndex(currdir=self.cell) self.SI = ScannerInfo(self.AR) print(self.SI.boxw) if self.invert: cmap = 'gist_gray_r' else: cmap = 'gist_gray' self.imageax = None max_camera = None if self.averageScannerImages: max_camera = self.AR.getAverageScannerImages(dataname='Camera/frames.ma', mode='max', firstonly=False, limit=None) self.imageax = ax.imshow(max_camera, aspect='equal', cmap='Reds', alpha=0.7, vmin = 1000, vmax=self.vmax, extent=[np.min(self.SI.boxw[0]), np.max(self.SI.boxw[0]), np.min(self.SI.boxw[1]), np.max(self.SI.boxw[1])]) # max_camera = scipy.ndimage.gaussian_filter(max_camera, sigma=256/(4.*10)) self.cmin = SND.minimum(self.max_camera) self.cmax = SND.maximum(self.max_camera) if len(self.videos) > 0: self.process_videos() self.imageax = ax.imshow(self.merged_image, aspect='equal', cmap=cmap, alpha=0.75, vmin = 0, vmax=self.vmax, extent=[np.min(self.SI.boxw[0]), np.max(self.SI.boxw[0]), np.min(self.SI.boxw[1]), np.max(self.SI.boxw[1])]) self.cmin = SND.minimum(self.merged_image) self.cmax = SND.maximum(self.merged_image) else: self.imageax = ax.imshow(self.image_data, aspect='equal', cmap=cmap, alpha=0.75, vmin = 0, vmax=self.vmax, extent=[np.min(self.SI.boxw[0]), np.max(self.SI.boxw[0]), np.min(self.SI.boxw[1]), np.max(self.SI.boxw[1])]) self.cmin = SND.minimum(self.image_data) self.cmax = SND.maximum(self.image_data) print('self.window: ', self.window) if self.window: ax.set_xlim(self.xlim) ax.set_ylim(self.ylim) self.scp = self.SI.scannerpositions scp = self.scp xmin = np.min(scp[:,0]) xmax = np.max(scp[:,0]) ymin =
np.min(scp[:,1])
numpy.min
# # pylint: disable=missing-docstring from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import re import sys import tarfile from six.moves import urllib import tensorflow as tf import numpy as np import joblib import json import argparse import dmm_input #from dmm_model import inference_by_sample, loss, p_filter, sampleVariationalDist from dmm_model import inference, loss, p_filter, sampleVariationalDist from dmm_model import construct_placeholder, computeEmission, computeVariationalDist import hyopt as hy from attractor import field,potential,make_griddata_discrete,compute_discrete_transition_mat #FLAGS = tf.app.flags.FLAGS # Basic model parameters. #tf.app.flags.DEFINE_boolean('use_fp16', False,"""Train the model using fp16.""") class dotdict(dict): """dot.notation access to dictionary attributes""" __getattr__ = dict.get __setattr__ = dict.__setitem__ __delattr__ = dict.__delitem__ class NumPyArangeEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, np.int64): return int(obj) if isinstance(obj, np.int32): return int(obj) if isinstance(obj, np.float32): return float(obj) if isinstance(obj, np.float64): return float(obj) if isinstance(obj, np.ndarray): return obj.tolist() # or map(int, obj) return json.JSONEncoder.default(self, obj) def get_default_config(): config={} # data and network #config["dim"]=None config["dim"]=2 # training config["epoch"] = 10 config["patience"] = 5 config["batch_size"] = 100 config["alpha"] = 1.0 config["learning_rate"] = 1.0e-2 config["curriculum_alpha"]=False config["epoch_interval_save"] =10#100 config["epoch_interval_print"] =10#100 config["sampling_tau"]=10#0.1 config["normal_max_var"]=5.0#1.0 config["normal_min_var"]=1.0e-5 config["zero_dynamics_var"]=1.0 config["pfilter_sample_size"]=10 config["pfilter_proposal_sample_size"]=1000 config["pfilter_save_sample_num"]=100 # dataset config["train_test_ratio"]=[0.8,0.2] config["data_train_npy"] = None config["mask_train_npy"] = None config["data_test_npy"] = None config["mask_test_npy"] = None # save/load model config["save_model_path"] = None config["load_model"] = None config["save_result_train"]=None config["save_result_test"]=None config["save_result_filter"]=None #config["state_type"]="discrete" config["state_type"]="normal" config["sampling_type"]="none" config["time_major"]=True config["steps_npy"]=None config["steps_test_npy"]=None config["sampling_type"]="normal" config["emission_type"]="normal" config["state_type"]="normal" config["dynamics_type"]="distribution" config["pfilter_type"]="trained_dynamics" config["potential_enabled"]=True, config["potential_grad_transition_enabled"]=True, config["potential_nn_enabled"]=False, # generate json #fp = open("config.json", "w") #json.dump(config, fp, ensure_ascii=False, indent=4, sort_keys=True, separators=(',', ': ')) return config def construct_feed(idx,data,placeholders,alpha,is_train=False): feed_dict={} num_potential_points=100 hy_param=hy.get_hyperparameter() dim=hy_param["dim"] dim_emit=hy_param["dim_emit"] n_steps=hy_param["n_steps"] batch_size=len(idx) dropout_rate=0.0 if is_train: if "dropout_rate" in hy_param: dropout_rate=hy_param["dropout_rate"] else: dropout_rate=0.5 # for key,ph in placeholders.items(): if key == "x": feed_dict[ph]=data.x[idx,:,:] elif key == "m": feed_dict[ph]=data.m[idx,:,:] elif key == "s": feed_dict[ph]=data.s[idx] elif key == "alpha": feed_dict[ph]=alpha elif key == "vd_eps": #eps=np.zeros((batch_size,n_steps,dim)) if hy_param["state_type"]=="discrete": eps=np.random.uniform(1.0e-10,1.0-1.0e-10,(batch_size,n_steps,dim)) eps=-np.log(-np.log(eps)) else: eps=np.random.standard_normal((batch_size,n_steps,dim)) feed_dict[ph]=eps elif key == "tr_eps": #eps=np.zeros((batch_size,n_steps,dim)) eps=np.random.standard_normal((batch_size,n_steps,dim)) feed_dict[ph]=eps elif key == "potential_points": pts=np.random.standard_normal((num_potential_points,dim)) feed_dict[ph]=pts elif key == "dropout_rate": feed_dict[ph]=dropout_rate elif key == "is_train": feed_dict[ph]=is_train return feed_dict def print_variables(): # print variables print('## emission variables') vars_em = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope="emission_var") for v in vars_em: print(v.name) print('## variational dist. variables') vars_vd = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope="variational_dist_var") for v in vars_vd: print(v.name) print('## transition variables') vars_tr = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope="transition_var") for v in vars_tr: print(v.name) print('## potential variables') vars_pot = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope="potential_var") for v in vars_pot: print(v.name) return def compute_alpha(config,i): alpha_max=config["alpha"] if config["curriculum_alpha"]: begin_tau=config["epoch"]*0.1 end_tau=config["epoch"]*0.9 tau=100.0 if i < begin_tau: alpha=0.0 elif i<end_tau: alpha=alpha_max*(1.0-np.exp(-(i-begin_tau)/tau)) else: alpha=alpha_max return alpha return alpha_max class EarlyStopping: def __init__(self,config, **kwargs): self.prev_validation_cost=None self.validation_count=0 self.config=config def evaluate_validation(self,validation_cost,info): config=self.config if self.prev_validation_cost is not None and self.prev_validation_cost<validation_cost: self.validation_count+=1 if config["patience"] >0 and self.validation_count>=config["patience"]: self.print_info(info) print("[stop] by validation") return True else: self.validation_count=0 self.prev_validation_cost=validation_cost return False def print_info(self,info): config=self.config epoch=info["epoch"] training_cost=info["training_cost"] validation_cost=info["validation_cost"] training_error=info["training_error"] validation_error=info["validation_error"] training_all_costs=info["training_all_costs"] validation_all_costs=info["validation_all_costs"] alpha=info["alpha"] save_path=info["save_path"] if save_path is None: format_tuple=(epoch, training_cost, training_error, validation_cost,validation_error, self.validation_count) print("epoch %d, training cost %g (error=%g), validation cost %g (error=%g) (count=%d) "%format_tuple) print("[LOG] %d, %g,%g,%g,%g, %g, %g,%g,%g, %g,%g,%g"%(epoch, training_cost,validation_cost,training_error,validation_error,alpha, training_all_costs[0],training_all_costs[1],training_all_costs[2], validation_all_costs[0],validation_all_costs[1],validation_all_costs[2])) else: format_tuple=(epoch, training_cost,training_error, validation_cost,validation_error,self.validation_count,save_path) print("epoch %d, training cost %g (error=%g), validation cost %g (error=%g) (count=%d) ([SAVE] %s) "%format_tuple) print("[LOG] %d, %g,%g,%g,%g, %g, %g,%g,%g, %g,%g,%g"%(epoch, training_cost,validation_cost,training_error,validation_error,alpha, training_all_costs[0],training_all_costs[1],training_all_costs[2], validation_all_costs[0],validation_all_costs[1],validation_all_costs[2])) def compute_cost(sess,placeholders,data,data_idx,output_cost,batch_size,alpha,is_train): # initialize costs cost=0.0 error=0.0 all_costs=np.zeros((3,),np.float32) # compute cost in data n_batch=int(np.ceil(data.num*1.0/batch_size)) for j in range(n_batch): idx=data_idx[j*batch_size:(j+1)*batch_size] feed_dict=construct_feed(idx,data,placeholders,alpha,is_train=is_train) cost +=np.array(sess.run(output_cost["cost"],feed_dict=feed_dict)) all_costs+=np.array(sess.run(output_cost["all_costs"],feed_dict=feed_dict)) error +=np.array(sess.run(output_cost["error"],feed_dict=feed_dict))/n_batch data_info={ "cost":cost, "error":error, "all_costs":all_costs, } return data_info def compute_cost_train_valid(sess,placeholders,train_data,valid_data,train_idx,valid_idx,output_cost,batch_size,alpha): train_data_info=compute_cost(sess,placeholders,train_data,train_idx,output_cost,batch_size,alpha,is_train=True) valid_data_info=compute_cost(sess,placeholders,valid_data,valid_idx,output_cost,batch_size,alpha,is_train=False) all_info={} for k,v in train_data_info.items(): all_info["training_"+k]=v for k,v in valid_data_info.items(): all_info["validation_"+k]=v return all_info def compute_result(sess,placeholders,data,data_idx,outputs,batch_size,alpha): results={} n_batch=int(np.ceil(data.num*1.0/batch_size)) for j in range(n_batch): idx=data_idx[j*batch_size:(j+1)*batch_size] feed_dict=construct_feed(idx,data,placeholders,alpha) for k,v in outputs.items(): if v is not None: res=sess.run(v,feed_dict=feed_dict) if k in ["z_s"]: if k in results: results[k]=np.concatenate([results[k],res],axis=0) else: results[k]=res elif k in ["obs_params","obs_pred_params", "z_params","z_pred_params"]: if k in results: for i in range(len(res)): results[k][i]=np.concatenate([results[k][i],res[i]],axis=0) else: results[k]=res for k,v in results.items(): if k in ["z_s"]: print(k,v.shape) elif k in ["obs_params","obs_pred", "z_params","z_pred"]: if len(v)==1: print(k,v[0].shape) else: print(k,v[0].shape,v[1].shape) return results def get_dim(config,hy_param,data): dim_emit=data.dim if config["dim"] is None: dim=dim_emit config["dim"]=dim else: dim=config["dim"] hy_param["dim"]=dim hy_param["dim_emit"]=dim_emit return dim,dim_emit def train(sess,config): hy_param=hy.get_hyperparameter() train_data,valid_data = dmm_input.load_data(config,with_shuffle=True,with_train_test=True) batch_size,n_batch=get_batch_size(config,hy_param,train_data) dim,dim_emit=get_dim(config,hy_param,train_data) n_steps=train_data.n_steps hy_param["n_steps"]=n_steps print("train_data_size:",train_data.num) print("batch_size :",batch_size) print("n_steps :",n_steps) print("dim_emit :",dim_emit) placeholders=construct_placeholder(config) control_params={ "config":config, "placeholders":placeholders, } # inference #outputs=inference_by_sample(n_steps,control_params=control_params) outputs=inference(n_steps,control_params=control_params) # cost output_cost=loss(outputs,placeholders["alpha"],control_params=control_params) # train_step update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): train_step = tf.train.AdamOptimizer(config["learning_rate"]).minimize(output_cost["cost"]) print_variables() saver = tf.train.Saver() # initialize init = tf.global_variables_initializer() sess.run(init) train_idx=list(range(train_data.num)) valid_idx=list(range(valid_data.num)) ## training validation_count=0 prev_validation_cost=0 alpha=None early_stopping=EarlyStopping(config) print("[LOG] epoch, cost,cost(valid.),error,error(valid.),alpha,cost(recons.),cost(temporal),cost(potential),cost(recons.,valid.),cost(temporal,valid),cost(potential,valid)") for i in range(config["epoch"]): np.random.shuffle(train_idx) alpha=compute_alpha(config,i) training_info=compute_cost_train_valid(sess,placeholders, train_data,valid_data,train_idx,valid_idx, output_cost,batch_size,alpha) # save save_path=None if i%config["epoch_interval_save"] == 0: save_path = saver.save(sess, config["save_model_path"]+"/model.%05d.ckpt"%(i)) # early stopping training_info["epoch"]=i training_info["alpha"]=alpha training_info["save_path"]=save_path if i%config["epoch_interval_print"] == 0: early_stopping.print_info(training_info) if i%100: if early_stopping.evaluate_validation(training_info["validation_cost"],training_info): break # update n_batch=int(np.ceil(train_data.num*1.0/batch_size)) for j in range(n_batch): idx=train_idx[j*batch_size:(j+1)*batch_size] feed_dict=construct_feed(idx,train_data,placeholders,alpha,is_train=True) train_step.run(feed_dict=feed_dict) training_info=compute_cost_train_valid(sess,placeholders, train_data,valid_data,train_idx,valid_idx, output_cost,batch_size,alpha) print("[RESULT] training cost %g, validation cost %g, training error %g, validation error %g"%( training_info["training_cost"], training_info["validation_cost"], training_info["training_error"], training_info["validation_error"])) hy_param["evaluation"]=training_info # save hyperparameter if config["save_model"] is not None and config["save_model"]!="": save_model_path=config["save_model"] save_path = saver.save(sess, save_model_path) print("[SAVE] %s"%(save_path)) hy.save_hyperparameter() ## save results if config["save_result_train"]!="": results=compute_result(sess,placeholders,train_data,train_idx,outputs,batch_size,alpha) results["config"]=config print("[SAVE] result : ",config["save_result_train"]) base_path = os.path.dirname(config["save_result_train"]) os.makedirs(base_path,exist_ok=True) joblib.dump(results,config["save_result_train"]) # e=(train_data.x-results["obs_params"][0])**2 # def infer(sess,config): hy_param=hy.get_hyperparameter() _,test_data = dmm_input.load_data(config,with_shuffle=False,with_train_test=False, test_flag=True) batch_size,n_batch=get_batch_size(config,hy_param,test_data) dim,dim_emit=get_dim(config,hy_param,test_data) n_steps=test_data.n_steps hy_param["n_steps"]=n_steps print("test_data_size:",test_data.num) print("batch_size :",batch_size) print("n_steps :",n_steps) print("dim_emit :",dim_emit) alpha=config["alpha"] print("alpha :",alpha) placeholders=construct_placeholder(config) control_params={ "config":config, "placeholders":placeholders, } # inference outputs=inference(n_steps,control_params) # cost output_cost=loss(outputs,placeholders["alpha"],control_params=control_params) # train_step saver = tf.train.Saver() print("[LOAD]",config["load_model"]) saver.restore(sess,config["load_model"]) test_idx=list(range(test_data.num)) # check point test_info=compute_cost(sess,placeholders, test_data,test_idx, output_cost,batch_size,alpha,is_train=False) print("cost: %g"%(test_info["cost"])) ## save results if config["save_result_test"]!="": results=compute_result(sess,placeholders,test_data,test_idx,outputs,batch_size,alpha) results["config"]=config print("[SAVE] result : ",config["save_result_test"]) base_path = os.path.dirname(config["save_result_test"]) os.makedirs(base_path,exist_ok=True) joblib.dump(results,config["save_result_test"]) def filter_discrete_forward(sess,config): hy_param=hy.get_hyperparameter() _,test_data = dmm_input.load_data(config,with_shuffle=False,with_train_test=False,test_flag=True) batch_size,n_batch=get_batch_size(config,hy_param,test_data) dim,dim_emit=get_dim(config,hy_param,test_data) n_steps=1 hy_param["n_steps"]=n_steps z_holder=tf.placeholder(tf.float32,shape=(None,dim)) z0=make_griddata_discrete(dim) batch_size=z0.shape[0] control_params={ "dropout_rate":0.0, "config":config, } # inference params=computeEmission(z_holder,n_steps, init_params_flag=True,control_params=control_params) x_holder=tf.placeholder(tf.float32,shape=(None,100,dim_emit)) qz=computeVariationalDist(x_holder,n_steps,init_params_flag=True,control_params=control_params) # load try: saver = tf.train.Saver() print("[LOAD] ",config["load_model"]) saver.restore(sess,config["load_model"]) except: print("[SKIP] Load parameters") # feed_dict={z_holder:z0} x_params=sess.run(params,feed_dict=feed_dict) x=test_data.x feed_dict={x_holder:x} out_qz=sess.run(qz,feed_dict=feed_dict) print(out_qz[0].shape) print(len(out_qz)) # data: # data_num x n_steps x emit_dim num_d=x_params[0].shape[0] dist_x=[] for d in range(num_d): m=x_params[0][d,0,:] print("##,",d,",".join(map(str,m))) for d in range(num_d): cov=x_params[1][d,0,:] print("##,",d,",".join(map(str,cov))) for d in range(num_d): m=x_params[0][d,0,:] cov=x_params[1][d,0,:] diff_x=-(x-m)**2/(2*cov) prob=-1.0/2.0*np.log(2*np.pi*cov)+diff_x # prob: data_num x n_steps x emit_dim prob=np.mean(prob,axis=2) dist_x.append(prob) dist_x=np.array(dist_x) dist_x=np.transpose(dist_x,[1,2,0]) # dist: data_num x n_steps x dim dist_x_max=np.zeros_like(dist_x) for i in range(dist_x.shape[0]): for j in range(dist_x.shape[1]): k=np.argmax(dist_x[i,j,:]) dist_x_max[i,j,k]=1 ## ## p(x|z)*q(z) ## p(x,z) dist_qz=out_qz[0].reshape((20,100,dim)) dist_pxz=dist_qz*np.exp(dist_x) ## tr_mat=compute_discrete_transition_mat(sess,config) print(tr_mat) beta=5.0e-2 tr_mat=beta*tr_mat+(1.0-beta)*np.identity(dim) print(tr_mat) ## viterbi prob_viterbi=np.zeros_like(dist_x) prob_viterbi[:,:,:]=-np.inf path_viterbi=np.zeros_like(dist_x) index_viterbi=np.zeros_like(dist_x,dtype=np.int32) for d in range(dist_x.shape[0]): prob_viterbi[d,0,:]=dist_pxz[d,0,:] index_viterbi[d,0,:]=np.argmax(dist_pxz[d,0,:]) step=dist_x.shape[1]-1 for t in range(step): for i in range(dim): for j in range(dim): p=0 p+=prob_viterbi[d,t,i] p+=
np.log(dist_pxz[d,t+1,j])
numpy.log
# ________ # / # \ / # \ / # \/ import random import textwrap import emd_mean import AdvEMDpy import emd_basis import emd_utils import numpy as np import pandas as pd import cvxpy as cvx import seaborn as sns import matplotlib.pyplot as plt from scipy.integrate import odeint from scipy.ndimage import gaussian_filter from emd_utils import time_extension, Utility from scipy.interpolate import CubicSpline from emd_hilbert import Hilbert, hilbert_spectrum from emd_preprocess import Preprocess from emd_mean import Fluctuation from AdvEMDpy import EMD # alternate packages from PyEMD import EMD as pyemd0215 import emd as emd040 sns.set(style='darkgrid') pseudo_alg_time = np.linspace(0, 2 * np.pi, 1001) pseudo_alg_time_series = np.sin(pseudo_alg_time) + np.sin(5 * pseudo_alg_time) pseudo_utils = Utility(time=pseudo_alg_time, time_series=pseudo_alg_time_series) # plot 0 - addition fig = plt.figure(figsize=(9, 4)) ax = plt.subplot(111) plt.gcf().subplots_adjust(bottom=0.10) plt.title('First Iteration of Sifting Algorithm') plt.plot(pseudo_alg_time, pseudo_alg_time_series, label=r'$h_{(1,0)}(t)$', zorder=1) plt.scatter(pseudo_alg_time[pseudo_utils.max_bool_func_1st_order_fd()], pseudo_alg_time_series[pseudo_utils.max_bool_func_1st_order_fd()], c='r', label=r'$M(t_i)$', zorder=2) plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time) + 1, '--', c='r', label=r'$\tilde{h}_{(1,0)}^M(t)$', zorder=4) plt.scatter(pseudo_alg_time[pseudo_utils.min_bool_func_1st_order_fd()], pseudo_alg_time_series[pseudo_utils.min_bool_func_1st_order_fd()], c='c', label=r'$m(t_j)$', zorder=3) plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time) - 1, '--', c='c', label=r'$\tilde{h}_{(1,0)}^m(t)$', zorder=5) plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time), '--', c='purple', label=r'$\tilde{h}_{(1,0)}^{\mu}(t)$', zorder=5) plt.yticks(ticks=[-2, -1, 0, 1, 2]) plt.xticks(ticks=[0, np.pi, 2 * np.pi], labels=[r'0', r'$\pi$', r'$2\pi$']) box_0 = ax.get_position() ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.95, box_0.height]) ax.legend(loc='center left', bbox_to_anchor=(1, 0.5)) plt.savefig('jss_figures/pseudo_algorithm.png') plt.show() knots = np.arange(12) time = np.linspace(0, 11, 1101) basis = emd_basis.Basis(time=time, time_series=time) b_spline_basis = basis.cubic_b_spline(knots) chsi_basis = basis.chsi_basis(knots) # plot 1 plt.title('Non-Natural Cubic B-Spline Bases at Boundary') plt.plot(time[500:], b_spline_basis[2, 500:].T, '--', label=r'$ B_{-3,4}(t) $') plt.plot(time[500:], b_spline_basis[3, 500:].T, '--', label=r'$ B_{-2,4}(t) $') plt.plot(time[500:], b_spline_basis[4, 500:].T, '--', label=r'$ B_{-1,4}(t) $') plt.plot(time[500:], b_spline_basis[5, 500:].T, '--', label=r'$ B_{0,4}(t) $') plt.plot(time[500:], b_spline_basis[6, 500:].T, '--', label=r'$ B_{1,4}(t) $') plt.xticks([5, 6], [r'$ \tau_0 $', r'$ \tau_1 $']) plt.xlim(4.4, 6.6) plt.plot(5 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-') plt.plot(6 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-') plt.legend(loc='upper left') plt.savefig('jss_figures/boundary_bases.png') plt.show() # plot 1a - addition knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001) knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time) knots_uniform = np.linspace(0, 2 * np.pi, 51) emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series) imfs = emd.empirical_mode_decomposition(knots=knots_uniform, edge_effect='anti-symmetric', verbose=False)[0] fig, axs = plt.subplots(3, 1) fig.subplots_adjust(hspace=0.6) plt.gcf().subplots_adjust(bottom=0.10) axs[0].set_title('Time Series and Uniform Knots') axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100) axs[0].set_yticks(ticks=[-2, 0, 2]) axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi]) axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$']) axs[1].set_title('IMF 1 and Uniform Knots') axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100) axs[1].set_yticks(ticks=[-2, 0, 2]) axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi]) axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$']) axs[2].set_title('IMF 2 and Uniform Knots') axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100) axs[2].set_yticks(ticks=[-2, 0, 2]) axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi]) axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$']) axs[0].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots') axs[0].legend(loc='lower left') axs[1].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots') axs[2].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots') for i in range(3): for j in range(1, len(knots_uniform)): axs[i].plot(knots_uniform[j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey') plt.savefig('jss_figures/knot_uniform.png') plt.show() # plot 1b - addition knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001) knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time) emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series) imfs, _, _, _, knots, _, _ = emd.empirical_mode_decomposition(edge_effect='anti-symmetric', optimise_knots=1, verbose=False) fig, axs = plt.subplots(3, 1) fig.subplots_adjust(hspace=0.6) plt.gcf().subplots_adjust(bottom=0.10) axs[0].set_title('Time Series and Statically Optimised Knots') axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100) axs[0].set_yticks(ticks=[-2, 0, 2]) axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi]) axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$']) axs[1].set_title('IMF 1 and Statically Optimised Knots') axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100) axs[1].set_yticks(ticks=[-2, 0, 2]) axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi]) axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$']) axs[2].set_title('IMF 2 and Statically Optimised Knots') axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100) axs[2].set_yticks(ticks=[-2, 0, 2]) axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi]) axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$']) axs[0].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots') axs[0].legend(loc='lower left') axs[1].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots') axs[2].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots') for i in range(3): for j in range(1, len(knots)): axs[i].plot(knots[j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey') plt.savefig('jss_figures/knot_1.png') plt.show() # plot 1c - addition knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001) knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time) emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series) imfs, _, _, _, knots, _, _ = emd.empirical_mode_decomposition(edge_effect='anti-symmetric', optimise_knots=2, verbose=False) fig, axs = plt.subplots(3, 1) fig.subplots_adjust(hspace=0.6) plt.gcf().subplots_adjust(bottom=0.10) axs[0].set_title('Time Series and Dynamically Optimised Knots') axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100) axs[0].set_yticks(ticks=[-2, 0, 2]) axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi]) axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$']) axs[1].set_title('IMF 1 and Dynamically Knots') axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100) axs[1].set_yticks(ticks=[-2, 0, 2]) axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi]) axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$']) axs[2].set_title('IMF 2 and Dynamically Knots') axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100) axs[2].set_yticks(ticks=[-2, 0, 2]) axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi]) axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$']) axs[0].plot(knots[0][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots') axs[0].legend(loc='lower left') axs[1].plot(knots[1][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots') axs[2].plot(knots[2][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots') for i in range(3): for j in range(1, len(knots[i])): axs[i].plot(knots[i][j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey') plt.savefig('jss_figures/knot_2.png') plt.show() # plot 1d - addition window = 81 fig, axs = plt.subplots(2, 1) fig.subplots_adjust(hspace=0.4) figure_size = plt.gcf().get_size_inches() factor = 0.8 plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1])) plt.gcf().subplots_adjust(bottom=0.10) axs[0].set_title('Preprocess Filtering Demonstration') axs[1].set_title('Zoomed Region') preprocess_time = pseudo_alg_time.copy() np.random.seed(1) random.seed(1) preprocess_time_series = pseudo_alg_time_series + np.random.normal(0, 0.1, len(preprocess_time)) for i in random.sample(range(1000), 500): preprocess_time_series[i] += np.random.normal(0, 1) preprocess = Preprocess(time=preprocess_time, time_series=preprocess_time_series) axs[0].plot(preprocess_time, preprocess_time_series, label='x(t)') axs[0].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple', label=textwrap.fill('Noiseless time series', 12)) axs[0].plot(preprocess_time, preprocess.mean_filter(window_width=window)[1], label=textwrap.fill('Mean filter', 12)) axs[0].plot(preprocess_time, preprocess.median_filter(window_width=window)[1], label=textwrap.fill('Median filter', 13)) axs[0].plot(preprocess_time, preprocess.winsorize(window_width=window, a=0.8)[1], label=textwrap.fill('Windsorize filter', 12)) axs[0].plot(preprocess_time, preprocess.winsorize_interpolate(window_width=window, a=0.8)[1], label=textwrap.fill('Windsorize interpolation filter', 14)) axs[0].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.90)[1], c='grey', label=textwrap.fill('Quantile window', 12)) axs[0].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.10)[1], c='grey') axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), -3 * np.ones(101), '--', c='black', label=textwrap.fill('Zoomed region', 10)) axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), 3 * np.ones(101), '--', c='black') axs[0].plot(0.85 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black') axs[0].plot(1.15 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black') axs[0].set_yticks(ticks=[-2, 0, 2]) axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi]) axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$']) axs[1].plot(preprocess_time, preprocess_time_series, label='x(t)') axs[1].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple', label=textwrap.fill('Noiseless time series', 12)) axs[1].plot(preprocess_time, preprocess.mean_filter(window_width=window)[1], label=textwrap.fill('Mean filter', 12)) axs[1].plot(preprocess_time, preprocess.median_filter(window_width=window)[1], label=textwrap.fill('Median filter', 13)) axs[1].plot(preprocess_time, preprocess.winsorize(window_width=window, a=0.8)[1], label=textwrap.fill('Windsorize filter', 12)) axs[1].plot(preprocess_time, preprocess.winsorize_interpolate(window_width=window, a=0.8)[1], label=textwrap.fill('Windsorize interpolation filter', 14)) axs[1].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.90)[1], c='grey', label=textwrap.fill('Quantile window', 12)) axs[1].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.10)[1], c='grey') axs[1].set_xlim(0.85 * np.pi, 1.15 * np.pi) axs[1].set_ylim(-3, 3) axs[1].set_yticks(ticks=[-2, 0, 2]) axs[1].set_xticks(ticks=[np.pi]) axs[1].set_xticklabels(labels=[r'$\pi$']) box_0 = axs[0].get_position() axs[0].set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height]) axs[0].legend(loc='center left', bbox_to_anchor=(1, -0.15)) box_1 = axs[1].get_position() axs[1].set_position([box_1.x0 - 0.05, box_1.y0, box_1.width * 0.85, box_1.height]) plt.savefig('jss_figures/preprocess_filter.png') plt.show() # plot 1e - addition fig, axs = plt.subplots(2, 1) fig.subplots_adjust(hspace=0.4) figure_size = plt.gcf().get_size_inches() factor = 0.8 plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1])) plt.gcf().subplots_adjust(bottom=0.10) axs[0].set_title('Preprocess Smoothing Demonstration') axs[1].set_title('Zoomed Region') axs[0].plot(preprocess_time, preprocess_time_series, label='x(t)') axs[0].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple', label=textwrap.fill('Noiseless time series', 12)) axs[0].plot(preprocess_time, preprocess.hp()[1], label=textwrap.fill('Hodrick-Prescott smoothing', 12)) axs[0].plot(preprocess_time, preprocess.hw(order=51)[1], label=textwrap.fill('Henderson-Whittaker smoothing', 13)) downsampled_and_decimated = preprocess.downsample() axs[0].plot(downsampled_and_decimated[0], downsampled_and_decimated[1], label=textwrap.fill('Downsampled & decimated', 11)) downsampled = preprocess.downsample(decimate=False) axs[0].plot(downsampled[0], downsampled[1], label=textwrap.fill('Downsampled', 13)) axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), -3 * np.ones(101), '--', c='black', label=textwrap.fill('Zoomed region', 10)) axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), 3 * np.ones(101), '--', c='black') axs[0].plot(0.85 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black') axs[0].plot(1.15 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black') axs[0].set_yticks(ticks=[-2, 0, 2]) axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi]) axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$']) axs[1].plot(preprocess_time, preprocess_time_series, label='x(t)') axs[1].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple', label=textwrap.fill('Noiseless time series', 12)) axs[1].plot(preprocess_time, preprocess.hp()[1], label=textwrap.fill('Hodrick-Prescott smoothing', 12)) axs[1].plot(preprocess_time, preprocess.hw(order=51)[1], label=textwrap.fill('Henderson-Whittaker smoothing', 13)) axs[1].plot(downsampled_and_decimated[0], downsampled_and_decimated[1], label=textwrap.fill('Downsampled & decimated', 13)) axs[1].plot(downsampled[0], downsampled[1], label=textwrap.fill('Downsampled', 13)) axs[1].set_xlim(0.85 * np.pi, 1.15 * np.pi) axs[1].set_ylim(-3, 3) axs[1].set_yticks(ticks=[-2, 0, 2]) axs[1].set_xticks(ticks=[np.pi]) axs[1].set_xticklabels(labels=[r'$\pi$']) box_0 = axs[0].get_position() axs[0].set_position([box_0.x0 - 0.06, box_0.y0, box_0.width * 0.85, box_0.height]) axs[0].legend(loc='center left', bbox_to_anchor=(1, -0.15)) box_1 = axs[1].get_position() axs[1].set_position([box_1.x0 - 0.06, box_1.y0, box_1.width * 0.85, box_1.height]) plt.savefig('jss_figures/preprocess_smooth.png') plt.show() # plot 2 fig, axs = plt.subplots(1, 2, sharey=True) axs[0].set_title('Cubic B-Spline Bases') axs[0].plot(time, b_spline_basis[2, :].T, '--', label='Basis 1') axs[0].plot(time, b_spline_basis[3, :].T, '--', label='Basis 2') axs[0].plot(time, b_spline_basis[4, :].T, '--', label='Basis 3') axs[0].plot(time, b_spline_basis[5, :].T, '--', label='Basis 4') axs[0].legend(loc='upper left') axs[0].plot(5 * np.ones(100), np.linspace(-0.2, 0.8, 100), 'k-') axs[0].plot(6 * np.ones(100), np.linspace(-0.2, 0.8, 100), 'k-') axs[0].set_xticks([5, 6]) axs[0].set_xticklabels([r'$ \tau_k $', r'$ \tau_{k+1} $']) axs[0].set_xlim(4.5, 6.5) axs[1].set_title('Cubic Hermite Spline Bases') axs[1].plot(time, chsi_basis[10, :].T, '--') axs[1].plot(time, chsi_basis[11, :].T, '--') axs[1].plot(time, chsi_basis[12, :].T, '--') axs[1].plot(time, chsi_basis[13, :].T, '--') axs[1].plot(5 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-') axs[1].plot(6 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-') axs[1].set_xticks([5, 6]) axs[1].set_xticklabels([r'$ \tau_k $', r'$ \tau_{k+1} $']) axs[1].set_xlim(4.5, 6.5) plt.savefig('jss_figures/comparing_bases.png') plt.show() # plot 3 a = 0.25 width = 0.2 time = np.linspace(0, (5 - a) * np.pi, 1001) time_series = np.cos(time) + np.cos(5 * time) utils = emd_utils.Utility(time=time, time_series=time_series) max_bool = utils.max_bool_func_1st_order_fd() maxima_x = time[max_bool] maxima_y = time_series[max_bool] min_bool = utils.min_bool_func_1st_order_fd() minima_x = time[min_bool] minima_y = time_series[min_bool] max_dash_time = np.linspace(maxima_x[-1] - width, maxima_x[-1] + width, 101) max_dash = maxima_y[-1] * np.ones_like(max_dash_time) min_dash_time = np.linspace(minima_x[-1] - width, minima_x[-1] + width, 101) min_dash = minima_y[-1] * np.ones_like(min_dash_time) dash_1_time = np.linspace(maxima_x[-1], minima_x[-1], 101) dash_1 = np.linspace(maxima_y[-1], minima_y[-1], 101) max_discard = maxima_y[-1] max_discard_time = minima_x[-1] - maxima_x[-1] + minima_x[-1] max_discard_dash_time = np.linspace(max_discard_time - width, max_discard_time + width, 101) max_discard_dash = max_discard * np.ones_like(max_discard_dash_time) dash_2_time = np.linspace(minima_x[-1], max_discard_time, 101) dash_2 = np.linspace(minima_y[-1], max_discard, 101) end_point_time = time[-1] end_point = time_series[-1] time_reflect = np.linspace((5 - a) * np.pi, (5 + a) * np.pi, 101) time_series_reflect = np.flip(np.cos(np.linspace((5 - 2.6 * a) * np.pi, (5 - a) * np.pi, 101)) + np.cos(5 * np.linspace((5 - 2.6 * a) * np.pi, (5 - a) * np.pi, 101))) time_series_anti_reflect = time_series_reflect[0] - time_series_reflect utils = emd_utils.Utility(time=time, time_series=time_series_anti_reflect) anti_max_bool = utils.max_bool_func_1st_order_fd() anti_max_point_time = time_reflect[anti_max_bool] anti_max_point = time_series_anti_reflect[anti_max_bool] utils = emd_utils.Utility(time=time, time_series=time_series_reflect) no_anchor_max_time = time_reflect[utils.max_bool_func_1st_order_fd()] no_anchor_max = time_series_reflect[utils.max_bool_func_1st_order_fd()] point_1 = 5.4 length_distance = np.linspace(maxima_y[-1], minima_y[-1], 101) length_distance_time = point_1 * np.pi * np.ones_like(length_distance) length_time = np.linspace(point_1 * np.pi - width, point_1 * np.pi + width, 101) length_top = maxima_y[-1] * np.ones_like(length_time) length_bottom = minima_y[-1] * np.ones_like(length_time) point_2 = 5.2 length_distance_2 = np.linspace(time_series[-1], minima_y[-1], 101) length_distance_time_2 = point_2 * np.pi * np.ones_like(length_distance_2) length_time_2 = np.linspace(point_2 * np.pi - width, point_2 * np.pi + width, 101) length_top_2 = time_series[-1] * np.ones_like(length_time_2) length_bottom_2 = minima_y[-1] * np.ones_like(length_time_2) symmetry_axis_1_time = minima_x[-1] * np.ones(101) symmetry_axis_2_time = time[-1] * np.ones(101) symmetry_axis = np.linspace(-2, 2, 101) end_time = np.linspace(time[-1] - width, time[-1] + width, 101) end_signal = time_series[-1] * np.ones_like(end_time) anti_symmetric_time = np.linspace(time[-1] - 0.5, time[-1] + 0.5, 101) anti_symmetric_signal = time_series[-1] * np.ones_like(anti_symmetric_time) ax = plt.subplot(111) plt.gcf().subplots_adjust(bottom=0.10) plt.plot(time, time_series, LineWidth=2, label='Signal') plt.title('Symmetry Edge Effects Example') plt.plot(time_reflect, time_series_reflect, 'g--', LineWidth=2, label=textwrap.fill('Symmetric signal', 10)) plt.plot(time_reflect[:51], time_series_anti_reflect[:51], '--', c='purple', LineWidth=2, label=textwrap.fill('Anti-symmetric signal', 10)) plt.plot(max_dash_time, max_dash, 'k-') plt.plot(min_dash_time, min_dash, 'k-') plt.plot(dash_1_time, dash_1, 'k--') plt.plot(dash_2_time, dash_2, 'k--') plt.plot(length_distance_time, length_distance, 'k--') plt.plot(length_distance_time_2, length_distance_2, 'k--') plt.plot(length_time, length_top, 'k-') plt.plot(length_time, length_bottom, 'k-') plt.plot(length_time_2, length_top_2, 'k-') plt.plot(length_time_2, length_bottom_2, 'k-') plt.plot(end_time, end_signal, 'k-') plt.plot(symmetry_axis_1_time, symmetry_axis, 'r--', zorder=1) plt.plot(anti_symmetric_time, anti_symmetric_signal, 'r--', zorder=1) plt.plot(symmetry_axis_2_time, symmetry_axis, 'r--', label=textwrap.fill('Axes of symmetry', 10), zorder=1) plt.text(5.1 * np.pi, -0.7, r'$\beta$L') plt.text(5.34 * np.pi, -0.05, 'L') plt.scatter(maxima_x, maxima_y, c='r', zorder=4, label='Maxima') plt.scatter(minima_x, minima_y, c='b', zorder=4, label='Minima') plt.scatter(max_discard_time, max_discard, c='purple', zorder=4, label=textwrap.fill('Symmetric Discard maxima', 10)) plt.scatter(end_point_time, end_point, c='orange', zorder=4, label=textwrap.fill('Symmetric Anchor maxima', 10)) plt.scatter(anti_max_point_time, anti_max_point, c='green', zorder=4, label=textwrap.fill('Anti-Symmetric maxima', 10)) plt.scatter(no_anchor_max_time, no_anchor_max, c='gray', zorder=4, label=textwrap.fill('Symmetric maxima', 10)) plt.xlim(3.9 * np.pi, 5.5 * np.pi) plt.xticks((4 * np.pi, 5 * np.pi), (r'4$\pi$', r'5$\pi$')) plt.yticks((-2, -1, 0, 1, 2), ('-2', '-1', '0', '1', '2')) box_0 = ax.get_position() ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height]) ax.legend(loc='center left', bbox_to_anchor=(1, 0.5)) plt.savefig('jss_figures/edge_effects_symmetry_anti.png') plt.show() # plot 4 a = 0.21 width = 0.2 time = np.linspace(0, (5 - a) * np.pi, 1001) time_series = np.cos(time) + np.cos(5 * time) utils = emd_utils.Utility(time=time, time_series=time_series) max_bool = utils.max_bool_func_1st_order_fd() maxima_x = time[max_bool] maxima_y = time_series[max_bool] min_bool = utils.min_bool_func_1st_order_fd() minima_x = time[min_bool] minima_y = time_series[min_bool] max_dash_1 = np.linspace(maxima_y[-1] - width, maxima_y[-1] + width, 101) max_dash_2 = np.linspace(maxima_y[-2] - width, maxima_y[-2] + width, 101) max_dash_time_1 = maxima_x[-1] * np.ones_like(max_dash_1) max_dash_time_2 = maxima_x[-2] * np.ones_like(max_dash_1) min_dash_1 = np.linspace(minima_y[-1] - width, minima_y[-1] + width, 101) min_dash_2 = np.linspace(minima_y[-2] - width, minima_y[-2] + width, 101) min_dash_time_1 = minima_x[-1] * np.ones_like(min_dash_1) min_dash_time_2 = minima_x[-2] * np.ones_like(min_dash_1) dash_1_time = np.linspace(maxima_x[-1], minima_x[-1], 101) dash_1 = np.linspace(maxima_y[-1], minima_y[-1], 101) dash_2_time = np.linspace(maxima_x[-1], minima_x[-2], 101) dash_2 = np.linspace(maxima_y[-1], minima_y[-2], 101) s1 = (minima_y[-2] - maxima_y[-1]) / (minima_x[-2] - maxima_x[-1]) slope_based_maximum_time = maxima_x[-1] + (maxima_x[-1] - maxima_x[-2]) slope_based_maximum = minima_y[-1] + (slope_based_maximum_time - minima_x[-1]) * s1 max_dash_time_3 = slope_based_maximum_time * np.ones_like(max_dash_1) max_dash_3 = np.linspace(slope_based_maximum - width, slope_based_maximum + width, 101) dash_3_time = np.linspace(minima_x[-1], slope_based_maximum_time, 101) dash_3 = np.linspace(minima_y[-1], slope_based_maximum, 101) s2 = (minima_y[-1] - maxima_y[-1]) / (minima_x[-1] - maxima_x[-1]) slope_based_minimum_time = minima_x[-1] + (minima_x[-1] - minima_x[-2]) slope_based_minimum = slope_based_maximum - (slope_based_maximum_time - slope_based_minimum_time) * s2 min_dash_time_3 = slope_based_minimum_time * np.ones_like(min_dash_1) min_dash_3 = np.linspace(slope_based_minimum - width, slope_based_minimum + width, 101) dash_4_time = np.linspace(slope_based_maximum_time, slope_based_minimum_time) dash_4 = np.linspace(slope_based_maximum, slope_based_minimum) maxima_dash = np.linspace(2.5 - width, 2.5 + width, 101) maxima_dash_time_1 = maxima_x[-2] * np.ones_like(maxima_dash) maxima_dash_time_2 = maxima_x[-1] * np.ones_like(maxima_dash) maxima_dash_time_3 = slope_based_maximum_time * np.ones_like(maxima_dash) maxima_line_dash_time = np.linspace(maxima_x[-2], slope_based_maximum_time, 101) maxima_line_dash = 2.5 * np.ones_like(maxima_line_dash_time) minima_dash = np.linspace(-3.4 - width, -3.4 + width, 101) minima_dash_time_1 = minima_x[-2] * np.ones_like(minima_dash) minima_dash_time_2 = minima_x[-1] * np.ones_like(minima_dash) minima_dash_time_3 = slope_based_minimum_time * np.ones_like(minima_dash) minima_line_dash_time = np.linspace(minima_x[-2], slope_based_minimum_time, 101) minima_line_dash = -3.4 * np.ones_like(minima_line_dash_time) # slightly edit signal to make difference between slope-based method and improved slope-based method more clear time_series[time >= minima_x[-1]] = 1.5 * (time_series[time >= minima_x[-1]] - time_series[time == minima_x[-1]]) + \ time_series[time == minima_x[-1]] improved_slope_based_maximum_time = time[-1] improved_slope_based_maximum = time_series[-1] improved_slope_based_minimum_time = slope_based_minimum_time improved_slope_based_minimum = improved_slope_based_maximum + s2 * (improved_slope_based_minimum_time - improved_slope_based_maximum_time) min_dash_4 = np.linspace(improved_slope_based_minimum - width, improved_slope_based_minimum + width, 101) min_dash_time_4 = improved_slope_based_minimum_time * np.ones_like(min_dash_4) dash_final_time = np.linspace(improved_slope_based_maximum_time, improved_slope_based_minimum_time, 101) dash_final = np.linspace(improved_slope_based_maximum, improved_slope_based_minimum, 101) ax = plt.subplot(111) figure_size = plt.gcf().get_size_inches() factor = 0.9 plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1])) plt.gcf().subplots_adjust(bottom=0.10) plt.plot(time, time_series, LineWidth=2, label='Signal') plt.title('Slope-Based Edge Effects Example') plt.plot(max_dash_time_1, max_dash_1, 'k-') plt.plot(max_dash_time_2, max_dash_2, 'k-') plt.plot(max_dash_time_3, max_dash_3, 'k-') plt.plot(min_dash_time_1, min_dash_1, 'k-') plt.plot(min_dash_time_2, min_dash_2, 'k-') plt.plot(min_dash_time_3, min_dash_3, 'k-') plt.plot(min_dash_time_4, min_dash_4, 'k-') plt.plot(maxima_dash_time_1, maxima_dash, 'k-') plt.plot(maxima_dash_time_2, maxima_dash, 'k-') plt.plot(maxima_dash_time_3, maxima_dash, 'k-') plt.plot(minima_dash_time_1, minima_dash, 'k-') plt.plot(minima_dash_time_2, minima_dash, 'k-') plt.plot(minima_dash_time_3, minima_dash, 'k-') plt.text(4.34 * np.pi, -3.2, r'$\Delta{t^{min}_{m}}$') plt.text(4.74 * np.pi, -3.2, r'$\Delta{t^{min}_{m}}$') plt.text(4.12 * np.pi, 2, r'$\Delta{t^{max}_{M}}$') plt.text(4.50 * np.pi, 2, r'$\Delta{t^{max}_{M}}$') plt.text(4.30 * np.pi, 0.35, r'$s_1$') plt.text(4.43 * np.pi, -0.20, r'$s_2$') plt.text(4.30 * np.pi + (minima_x[-1] - minima_x[-2]), 0.35 + (minima_y[-1] - minima_y[-2]), r'$s_1$') plt.text(4.43 * np.pi + (slope_based_minimum_time - minima_x[-1]), -0.20 + (slope_based_minimum - minima_y[-1]), r'$s_2$') plt.text(4.50 * np.pi + (slope_based_minimum_time - minima_x[-1]), 1.20 + (slope_based_minimum - minima_y[-1]), r'$s_2$') plt.plot(minima_line_dash_time, minima_line_dash, 'k--') plt.plot(maxima_line_dash_time, maxima_line_dash, 'k--') plt.plot(dash_1_time, dash_1, 'k--') plt.plot(dash_2_time, dash_2, 'k--') plt.plot(dash_3_time, dash_3, 'k--') plt.plot(dash_4_time, dash_4, 'k--') plt.plot(dash_final_time, dash_final, 'k--') plt.scatter(maxima_x, maxima_y, c='r', zorder=4, label='Maxima') plt.scatter(minima_x, minima_y, c='b', zorder=4, label='Minima') plt.scatter(slope_based_maximum_time, slope_based_maximum, c='orange', zorder=4, label=textwrap.fill('Slope-based maximum', 11)) plt.scatter(slope_based_minimum_time, slope_based_minimum, c='purple', zorder=4, label=textwrap.fill('Slope-based minimum', 11)) plt.scatter(improved_slope_based_maximum_time, improved_slope_based_maximum, c='deeppink', zorder=4, label=textwrap.fill('Improved slope-based maximum', 11)) plt.scatter(improved_slope_based_minimum_time, improved_slope_based_minimum, c='dodgerblue', zorder=4, label=textwrap.fill('Improved slope-based minimum', 11)) plt.xlim(3.9 * np.pi, 5.5 * np.pi) plt.xticks((4 * np.pi, 5 * np.pi), (r'4$\pi$', r'5$\pi$')) plt.yticks((-3, -2, -1, 0, 1, 2), ('-3', '-2', '-1', '0', '1', '2')) box_0 = ax.get_position() ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height]) ax.legend(loc='center left', bbox_to_anchor=(1, 0.5)) plt.savefig('jss_figures/edge_effects_slope_based.png') plt.show() # plot 5 a = 0.25 width = 0.2 time = np.linspace(0, (5 - a) * np.pi, 1001) time_series = np.cos(time) + np.cos(5 * time) utils = emd_utils.Utility(time=time, time_series=time_series) max_bool = utils.max_bool_func_1st_order_fd() maxima_x = time[max_bool] maxima_y = time_series[max_bool] min_bool = utils.min_bool_func_1st_order_fd() minima_x = time[min_bool] minima_y = time_series[min_bool] A2 = np.abs(maxima_y[-2] - minima_y[-2]) / 2 A1 = np.abs(maxima_y[-1] - minima_y[-1]) / 2 P2 = 2 * np.abs(maxima_x[-2] - minima_x[-2]) P1 = 2 * np.abs(maxima_x[-1] - minima_x[-1]) Huang_time = (P1 / P2) * (time[time >= maxima_x[-2]] - time[time == maxima_x[-2]]) + maxima_x[-1] Huang_wave = (A1 / A2) * (time_series[time >= maxima_x[-2]] - time_series[time == maxima_x[-2]]) + maxima_y[-1] Coughlin_time = Huang_time Coughlin_wave = A1 * np.cos(2 * np.pi * (1 / P1) * (Coughlin_time - Coughlin_time[0])) Average_max_time = maxima_x[-1] + (maxima_x[-1] - maxima_x[-2]) Average_max = (maxima_y[-2] + maxima_y[-1]) / 2 Average_min_time = minima_x[-1] + (minima_x[-1] - minima_x[-2]) Average_min = (minima_y[-2] + minima_y[-1]) / 2 utils_Huang = emd_utils.Utility(time=time, time_series=Huang_wave) Huang_max_bool = utils_Huang.max_bool_func_1st_order_fd() Huang_min_bool = utils_Huang.min_bool_func_1st_order_fd() utils_Coughlin = emd_utils.Utility(time=time, time_series=Coughlin_wave) Coughlin_max_bool = utils_Coughlin.max_bool_func_1st_order_fd() Coughlin_min_bool = utils_Coughlin.min_bool_func_1st_order_fd() Huang_max_time = Huang_time[Huang_max_bool] Huang_max = Huang_wave[Huang_max_bool] Huang_min_time = Huang_time[Huang_min_bool] Huang_min = Huang_wave[Huang_min_bool] Coughlin_max_time = Coughlin_time[Coughlin_max_bool] Coughlin_max = Coughlin_wave[Coughlin_max_bool] Coughlin_min_time = Coughlin_time[Coughlin_min_bool] Coughlin_min = Coughlin_wave[Coughlin_min_bool] max_2_x_time = np.linspace(maxima_x[-2] - width, maxima_x[-2] + width, 101) max_2_x_time_side = np.linspace(5.3 * np.pi - width, 5.3 * np.pi + width, 101) max_2_x = maxima_y[-2] * np.ones_like(max_2_x_time) min_2_x_time = np.linspace(minima_x[-2] - width, minima_x[-2] + width, 101) min_2_x_time_side =
np.linspace(5.3 * np.pi - width, 5.3 * np.pi + width, 101)
numpy.linspace
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Oct 14 21:31:56 2017 @author: Franz """ import scipy.signal import numpy as np import scipy.io as so import os.path import re import matplotlib.pylab as plt import h5py import matplotlib.patches as patches import numpy.random as rand import seaborn as sns import pandas as pd from functools import reduce import random import pdb class Mouse : def __init__(self, idf, list=None, typ='') : self.recordings = [] self.recordings.append(list) self.typ = typ self.idf = idf def add(self, rec) : self.recordings.append(rec) def __len__(self) : return len(self.recordings) def __repr__(self) : return ", ".join(self.recordings) ### PROCESSING OF RECORDING DATA ############################################## def load_stateidx(ppath, name, ann_name=''): """ load the sleep state file of recording (folder) $ppath/$name @Return: M,K sequence of sleep states, sequence of 0'1 and 1's indicating non- and annotated states """ ddir = os.path.join(ppath, name) ppath, name = os.path.split(ddir) if ann_name == '': ann_name = name sfile = os.path.join(ppath, name, 'remidx_' + ann_name + '.txt') f = open(sfile, 'r') lines = f.readlines() f.close() n = 0 for l in lines: if re.match('\d', l): n += 1 M = np.zeros(n, dtype='int') K = np.zeros(n, dtype='int') i = 0 for l in lines : if re.search('^\s+$', l) : continue if re.search('\s*#', l) : continue if re.match('\d+\s+-?\d+', l) : a = re.split('\s+', l) M[i] = int(a[0]) K[i] = int(a[1]) i += 1 return M,K def load_recordings(ppath, rec_file) : """ load_recordings(ppath, rec_file) load recording listing with syntax: [E|C] \s+ recording_name #COMMENT @RETURN: (list of controls, lis of experiments) """ exp_list = [] ctr_list = [] rfile = os.path.join(ppath, rec_file) f = open(rfile, newline=None) lines = f.readlines() f.close() for l in lines : if re.search('^\s+$', l) : continue if re.search('^\s*#', l) : continue a = re.split('\s+', l) if re.search('E', a[0]) : exp_list.append(a[1]) if re.search('C', a[0]) : ctr_list.append(a[1]) return ctr_list, exp_list def load_dose_recordings(ppath, rec_file): """ load recording list with following syntax: A line is either control or experiments; Control recordings look like: C \s recording_name Experimental recordings also come with an additional dose parameter (allowing for comparison of multiple doses with controls) E \s recording_name \s dose_1 E \s recording_name \s dose_2 """ rfile = os.path.join(ppath, rec_file) f = open(rfile, newline=None) lines = f.readlines() f.close() # first get all potential doses doses = {} ctr_list = [] for l in lines : if re.search('^\s+$', l): continue if re.search('^\s*#', l): continue a = re.split('\s+', l) if re.search('E', a[0]): if a[2] in doses: doses[a[2]].append(a[1]) else: doses[a[2]] = [a[1]] if re.search('C', a[0]): ctr_list.append(a[1]) return ctr_list, doses def get_snr(ppath, name): """ read and return sampling rate (SR) from file $ppath/$name/info.txt """ fid = open(os.path.join(ppath, name, 'info.txt'), newline=None) lines = fid.readlines() fid.close() values = [] for l in lines : a = re.search("^" + 'SR' + ":" + "\s+(.*)", l) if a : values.append(a.group(1)) return float(values[0]) def get_infoparam(ifile, field): """ NOTE: field is a single string and the function does not check for the type of the values for field. In fact, it just returns the string following field """ fid = open(ifile, newline=None) lines = fid.readlines() fid.close() values = [] for l in lines : a = re.search("^" + field + ":" + "\s+(.*)", l) if a : values.append(a.group(1)) return values def add_infoparam(ifile, field, vals): """ :param ifile: info file :param field: Parameters specifier, e.g. 'SR' :param vals: list with parameters """ fid = open(ifile, 'a') vals = [str(s) for s in vals] param = " ".join(vals) fid.write('%s:\t%s' % (field, param)) fid.write(os.linesep) fid.close() def laser_start_end(laser, SR=1525.88, intval=5): """laser_start_end(ppath, name) print start and end index of laser stimulation trains: For example, if you was stimulated for 2min every 20 min with 20 Hz, return the start and end index of the each 2min stimulation period (train) returns the tuple (istart, iend), both indices are inclusive, i.e. part of the sequence @Param: laser - laser, vector of 0s and 1s intval - minimum time separation [s] between two laser trains @Return: (istart, iend) - tuple of two np.arrays with laser start and end indices """ idx = np.where(laser > 0.5)[0] if len(idx) == 0 : return ([], []) idx2 = np.nonzero(np.diff(idx)*(1./SR) > intval)[0] istart = np.hstack([idx[0], idx[idx2+1]]) iend = np.hstack([idx[idx2], idx[-1]]) return (istart, iend) def load_laser(ppath, name): """ load laser from recording ppath/name @RETURN: @laser, vector of 0's and 1's """ # laser might be .mat or h5py file # perhaps we could find a better way of testing that file = os.path.join(ppath, name, 'laser_'+name+'.mat') try: laser = np.array(h5py.File(file,'r').get('laser')) except: laser = so.loadmat(file)['laser'] return np.squeeze(laser) def laser_protocol(ppath, name): """ What was the stimulation frequency and the inter-stimulation interval for recording $ppath/$name? @Return: iinter-stimulation intervals, avg. inter-stimulation interval, frequency """ laser = load_laser(ppath, name) SR = get_snr(ppath, name) # first get inter-stimulation interval (istart, iend) = laser_start_end(laser, SR) intv = np.diff(np.array(istart/float(SR))) d = intv/60.0 print("The laser was turned on in average every %.2f min," % (np.mean(d))) print("with a min. interval of %.2f min and max. interval of %.2f min." % (np.min(d), np.max(d))) print("Laser stimulation lasted for %f s." % (np.mean(np.array(iend/float(SR)-istart/float(SR)).mean()))) # print laser start times print("Start time of each laser trial:") j=1 for t in istart: print("trial %d: %.2f" % (j, (t / float(SR)) / 60)) j += 1 # for each laser stimulation interval, check laser stimulation frequency dt = 1/float(SR) freq = [] laser_up = [] laser_down = [] for (i,j) in zip(istart, iend): part = laser[i:j+1] (a,b) = laser_start_end(part, SR, 0.005) dur = (j-i+1)*dt freq.append(len(a) / dur) up_dur = (b-a+1)*dt*1000 down_dur = (a[1:]-b[0:-1]-1)*dt*1000 laser_up.append(np.mean(up_dur)) laser_down.append(np.mean(down_dur)) print(os.linesep + "Laser stimulation freq. was %.2f Hz," % np.mean(np.array(freq))) print("with laser up and down duration of %.2f and %.2f ms." % (np.mean(np.array(laser_up)), np.mean(np.array(laser_down)))) return d, np.mean(d), np.mean(np.array(freq)) def swap_eeg(ppath, rec, ch='EEG'): """ swap EEG and EEG2 or EMG with EMG2 if $ch='EMG' """ if ch == 'EEG': name = 'EEG' else: name = ch EEG = so.loadmat(os.path.join(ppath, rec, name+'.mat'))[name] EEG2 = so.loadmat(os.path.join(ppath, rec, name+'2.mat'))[name + '2'] tmp = EEG EEG = EEG2 EEG2 = tmp file_eeg1 = os.path.join(ppath, rec, '%s.mat' % name) file_eeg2 = os.path.join(ppath, rec, '%s2.mat' % name) so.savemat(file_eeg1, {name : EEG}) so.savemat(file_eeg2, {name+'2' : EEG2}) def eeg_conversion(ppath, rec, conv_factor=0.195): """ multiply all EEG and EMG channels with the given conversion factor and write the conversion factor as parameter (conversion:) into the info file. Only if there's no conversion factor in the info file specified, the conversion will be executed :param ppath: base filder :param rec: recording :param conv_factor: conversion factor :return: n/s """ ifile = os.path.join(ppath, rec, 'info.txt') conv = get_infoparam(ifile, 'conversion') if len(conv) > 0: print("found conversion: parameter in info file") print("returning: no conversion necessary!!!") return else: files = os.listdir(os.path.join(ppath, rec)) files = [f for f in files if re.match('^EEG', f)] for f in files: name = re.split('\.', f)[0] EEG = so.loadmat(os.path.join(ppath, rec, name+'.mat'), squeeze_me=True)[name] if EEG[0].dtype == 'int16': EEG = EEG * conv_factor file_eeg = os.path.join(ppath, rec, '%s.mat' % name) print(file_eeg) so.savemat(file_eeg, {name: EEG}) else: print('Wrong datatype! probably already converted; returning...') return files = os.listdir(os.path.join(ppath, rec)) files = [f for f in files if re.match('^EMG', f)] for f in files: name = re.split('\.', f)[0] EMG = so.loadmat(os.path.join(ppath, rec, name+'.mat'), squeeze_me=True)[name] if EMG[0].dtype == 'int16': EMG = EMG * conv_factor file_emg = os.path.join(ppath, rec, '%s.mat' % name) print(file_emg) so.savemat(file_emg, {name: EMG}) else: print('Wrong datatype! probably already converted; returning...') return add_infoparam(ifile, 'conversion', [conv_factor]) calculate_spectrum(ppath, rec) ### DEPRICATED ############################################ def video_pulse_detection(ppath, rec, SR=1000, iv = 0.01): """ return index of each video frame onset ppath/rec - recording @Optional SR - sampling rate of EEG(!) recording iv - minimum time inverval (in seconds) between two frames @Return index of each video frame onset """ V = np.squeeze(so.loadmat(os.path.join(ppath, rec, 'videotime_' + rec + '.mat'))['video']) TS = np.arange(0, len(V)) # indices where there's a jump in the signal t = TS[np.where(V<0.5)]; if len(t) == 0: idx = [] return idx # time points where the interval between jumps is longer than iv t2 = np.where(np.diff(t)*(1.0/SR)>=iv)[0] idx = np.concatenate(([t[0]],t[t2+1])) return idx # SIGNAL PROCESSING ########################################################### def my_lpfilter(x, w0, N=4): """ create a lowpass Butterworth filter with a cutoff of w0 * the Nyquist rate. The nice thing about this filter is that is has zero-phase distortion. A conventional lowpass filter would introduce a phase lag. w0 - filter cutoff; value between 0 and 1, where 1 corresponds to nyquist frequency. So if you want a filter with cutoff at x Hz, the corresponding w0 value is given by w0 = 2 * x / sampling_rate N - order of filter @Return: low-pass filtered signal See also my hp_filter, or my_bpfilter """ from scipy import signal b,a = signal.butter(N, w0) y = signal.filtfilt(b,a, x) return y def my_hpfilter(x, w0, N=4): """ create an N-th order highpass Butterworth filter with cutoff frequency w0 * sampling_rate/2 """ from scipy import signal # use scipy.signal.firwin to generate filter #taps = signal.firwin(numtaps, w0, pass_zero=False) #y = signal.lfilter(taps, 1.0, x) b,a = signal.butter(N, w0, 'high') y = signal.filtfilt(b,a, x, padlen = x.shape[0]-1) return y def my_bpfilter(x, w0, w1, N=4,bf=True): """ create N-th order bandpass Butterworth filter with corner frequencies w0*sampling_rate/2 and w1*sampling_rate/2 """ #from scipy import signal #taps = signal.firwin(numtaps, w0, pass_zero=False) #y = signal.lfilter(taps, 1.0, x) #return y from scipy import signal b,a = signal.butter(N, [w0, w1], 'bandpass') if bf: y = signal.filtfilt(b,a, x) else: y = signal.lfilter(b,a, x) return y def my_notchfilter(x, sr=1000, band=5, freq=60, ripple=10, order=3, filter_type='butter'): from scipy.signal import iirfilter,lfilter fs = sr nyq = fs/2.0 low = freq - band/2.0 high = freq + band/2.0 low = low/nyq high = high/nyq b, a = iirfilter(order, [low, high], rp=ripple, btype='bandstop', analog=False, ftype=filter_type) filtered_data = lfilter(b, a, x) return filtered_data def downsample_vec(x, nbin): """ y = downsample_vec(x, nbin) downsample the vector x by replacing nbin consecutive \ bin by their mean \ @RETURN: the downsampled vector """ n_down = int(np.floor(len(x) / nbin)) x = x[0:n_down*nbin] x_down = np.zeros((n_down,)) # 0 1 2 | 3 4 5 | 6 7 8 for i in range(nbin) : idx = list(range(i, int(n_down*nbin), int(nbin))) x_down += x[idx] return x_down / nbin def smooth_data(x, sig): """ y = smooth_data(x, sig) smooth data vector @x with gaussian kernel with standard deviation $sig """ sig = float(sig) if sig == 0.0: return x # gaussian: gauss = lambda x, sig : (1/(sig*np.sqrt(2.*np.pi)))*np.exp(-(x*x)/(2.*sig*sig)) bound = 1.0/10000 L = 10. p = gauss(L, sig) while (p > bound): L = L+10 p = gauss(L, sig) #F = map(lambda x: gauss((x, sig)), np.arange(-L, L+1.)) # py3: F = [gauss(x, sig) for x in np.arange(-L, L+1.)] F = F / np.sum(F) return scipy.signal.fftconvolve(x, F, 'same') def power_spectrum(data, length, dt): """ scipy's implementation of Welch's method using hanning window to estimate the power spectrum The function returns power density with units V**2/Hz see also https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.signal.welch.html The label on the y-axis should say PSD [V**2/Hz] @Parameters data - time series; float vector! length - length of hanning window, even integer! @Return: power density, frequencies The function returns power density in units V^2 / Hz Note that np.var(data) ~ np.sum(power density) * (frequencies[1]-frequencies[0]) """ f, pxx = scipy.signal.welch(data, fs=1.0/dt, window='hanning', nperseg=int(length), noverlap=int(length/2)) return pxx, f def spectral_density(data, length, nfft, dt): """ calculate the spectrogram for the time series given by data with time resolution dt The powerspectrum for each window of length $length is computed using Welch's method. The windows for the powerspectrum calculation are half-overlapping. If length contains 5s of data, then the first windows goes from 0s to 5s, the second window from 2.5 to 7.5s, ... The last window ends at ceil(len(data)/length)*5s Another example, assume we have 13 s of data, with 5 s windows, the the powerdensity is calculated for the following time windows: 0 -- 5, 2.5 -- 7.5, 5 -- 10, 7.5 -- 12.5, 10 -- 15 In total there are thus 2*ceil(13/5)-1 = 5 windows The last window starts at 2*3-2 * (5/2) = 10 s Note: the returned time axis starts at time point goes from 0 to 10s in 2.5s steps @Parameters: data - time series length - window length of data used to calculate powerspectrum. Note that the time resolution of the spectrogram is length/2 nfft - size of the window used to calculate the powerspectrum. determines the frequency resolution. @Return: Powspectrum, frequencies, time axis """ n = len(data) k = int(np.ceil((1.0*n)/length)) data = np.concatenate((data, np.zeros((length*k-n,)))) fdt = length*dt/2 # time step for spectrogram t = np.arange(0, fdt*(2*k-2)+fdt/2.0, fdt) # frequency axis of spectrogram f = np.linspace(0, 1, int(np.ceil(nfft/2.0))+1) * (0.5/dt) # the power spectrum is calculated for 2*k-1 time points Pow = np.zeros((len(f), k*2-1)) j = 0 for i in range(0, k-2+1): w1=data[(length*i):(i+1)*length] w2=data[length*i+int(length/2):(i+1)*length+int(length/2)] Pow[:,j] = power_spectrum(w1, nfft, dt)[0] Pow[:,j+1] = power_spectrum(w2, nfft, dt)[0] j += 2 # last time point Pow[:,j],f = power_spectrum(data[length*(k-1):k*length], nfft, dt) return Pow, f, t def calculate_spectrum(ppath, name, fres=0.5): """ calculate EEG and EMG spectrogram used for sleep stage detection. Function assumes that data vectors EEG.mat and EMG.mat exist in recording folder ppath/name; these are used to calculate the powerspectrum fres - resolution of frequency axis all data saved in "true" mat files :return EEG Spectrogram, EMG Spectrogram, frequency axis, time axis """ SR = get_snr(ppath, name) swin = round(SR)*5 fft_win = round(swin/5) # approximate number of data points per second if (fres == 1.0) or (fres == 1): fft_win = int(fft_win) elif fres == 0.5: fft_win = 2*int(fft_win) else: print("Resolution %f not allowed; please use either 1 or 0.5" % fres) (peeg2, pemg2) = (False, False) # Calculate EEG spectrogram EEG = np.squeeze(so.loadmat(os.path.join(ppath, name, 'EEG.mat'))['EEG']) Pxx, f, t = spectral_density(EEG, int(swin), int(fft_win), 1/SR) if os.path.isfile(os.path.join(ppath, name, 'EEG2.mat')): peeg2 = True EEG = np.squeeze(so.loadmat(os.path.join(ppath, name, 'EEG2.mat'))['EEG2']) Pxx2, f, t = spectral_density(EEG, int(swin), int(fft_win), 1/SR) #save the stuff to a .mat file spfile = os.path.join(ppath, name, 'sp_' + name + '.mat') if peeg2 == True: so.savemat(spfile, {'SP':Pxx, 'SP2':Pxx2, 'freq':f, 'dt':t[1]-t[0],'t':t}) else: so.savemat(spfile, {'SP':Pxx, 'freq':f, 'dt':t[1]-t[0],'t':t}) # Calculate EMG spectrogram EMG = np.squeeze(so.loadmat(os.path.join(ppath, name, 'EMG.mat'))['EMG']) Qxx, f, t = spectral_density(EMG, int(swin), int(fft_win), 1/SR) if os.path.isfile(os.path.join(ppath, name, 'EMG2.mat')): pemg2 = True EMG = np.squeeze(so.loadmat(os.path.join(ppath, name, 'EMG2.mat'))['EMG2']) Qxx2, f, t = spectral_density(EMG, int(swin), int(fft_win), 1/SR) # save the stuff to .mat file spfile = os.path.join(ppath, name, 'msp_' + name + '.mat') if pemg2 == True: so.savemat(spfile, {'mSP':Qxx, 'mSP2':Qxx2, 'freq':f, 'dt':t[1]-t[0],'t':t}) else: so.savemat(spfile, {'mSP':Qxx, 'freq':f, 'dt':t[1]-t[0],'t':t}) return Pxx, Qxx, f, t def whiten_spectrogram(ppath, name, fmax=50): """ experimental :param ppath: :param name: :param fmax: :return: """ P = so.loadmat(os.path.join(ppath, name, 'sp_' + name + '.mat'), squeeze_me=True) SPE = P['SP'] freq = P['freq'] ifreq = np.where(freq <= fmax)[0] SPE = SPE[ifreq,:] nfilt = 5 filt = np.ones((nfilt, nfilt)) filt = np.divide(filt, filt.sum()) #SPE = scipy.signal.convolve2d(SPE, filt, boundary='symm', mode='same') m = np.mean(SPE,axis=1) SPE -= np.tile(m, (SPE.shape[1], 1)).T SPE = SPE.T C = np.dot(SPE.T, SPE) [evals, L] = np.linalg.eigh(C) idx = np.argsort(evals) D = np.diag(np.sqrt(evals[idx])) L = L[:,idx] W = np.dot(L, np.dot(np.linalg.inv(D),np.dot(L.T,SPE.T))) nfilt = 2 filt = np.ones((nfilt,nfilt)) filt = np.divide(filt, filt.sum()) W = scipy.signal.convolve2d(W, filt, boundary='symm', mode='same') return W, D, L def normalize_spectrogram(ppath, name, fmax=0, band=[], vm=5, pplot=True, sptype='', filt_dim=[]): """ Normalize EEG spectrogram by deviding each frequency band by its average value. :param ppath, name: base folder, recording name :param fmax: maximum frequency; frequency axis of spectrogram goes from 0 to fmax if fmax=0, use complete frequency axis :param band: list or tuple, define lower and upper range of a frequency band, if pplot=True, plot band, along with spectrogram; if band=[], disregard :param vm: color range for plotting spectrogram :pplot: if True, plot spectrogram along with power band :sptype: if sptype='fine' plot 'special' spectrogram, save under sp_fine_$name.mat; otherwise plot 'normal' spectrogram sp_$name.mat :filt_dim: list or tuple; the two values define the dimensions of box filter used to filter the normalized spectrogram; if filt_dim=[], then no filtering :return SPE, t, freq: normalized spectrogram (np.array), time axis, frequency axis """ if (len(sptype) == 0) or (sptype=='std'): P = so.loadmat(os.path.join(ppath, name, 'sp_' + name + '.mat'), squeeze_me=True) elif sptype == 'fine': P = so.loadmat(os.path.join(ppath, name, 'sp_fine_' + name + '.mat'), squeeze_me=True) SPE = P['SP'] freq = P['freq'] t = P['t'] if fmax > 0: ifreq = np.where(freq <= fmax)[0] else: ifreq = np.arange(0, len(freq)) freq = freq[ifreq] nfilt = 4 filt = np.ones((nfilt,nfilt)) filt = np.divide(filt, filt.sum()) SPE = SPE[ifreq,:] # before #SPE = SPE[ifreq] #W = scipy.signal.convolve2d(SPE, filt, boundary='symm', mode='same') #sp_mean = W.mean(axis=1) sp_mean = SPE.mean(axis=1) SPE = np.divide(SPE, np.tile(sp_mean, (SPE.shape[1], 1)).T) if len(filt_dim) > 0: filt = np.ones(filt_dim) filt = np.divide(filt, filt.sum()) SPE = scipy.signal.convolve2d(SPE, filt, boundary='symm', mode='same') # get high gamma peaks if len(band) > 0: iband = np.where((freq >= band[0]) & (freq <= band[-1]))[0] pow_band = SPE[iband,:].mean(axis=0) thr = pow_band.mean() + pow_band.std() idx = np.where(pow_band > thr)[0] # plot normalized spectrogram, along with band if pplot: plt.ion() plt.figure() if len(band) > 0: med = np.median(SPE.mean(axis=0)) ax1 = plt.subplot(211) plt.pcolormesh(t, freq, SPE, vmin=0, vmax=vm*med, cmap='jet') plt.subplot(212, sharex=ax1) plt.plot(t,SPE[iband,:].mean(axis=0)) plt.plot(t[idx], pow_band[idx], '.') plt.draw() return SPE, t, freq[ifreq] def recursive_spectrogram(ppath, name, sf=0.3, alpha=0.3, pplot=True): """ calculate EEG/EMG spectrogram in a way that can be implemented by a closed-loop system. The spectrogram is temporally filtered using a recursive implementation of a lowpass filter @Parameters: ppath/name - mouse EEG recording sf - smoothing factor along frequency axis alpha - temporal lowpass filter time constant pplot - if pplot==True, plot figure @Return: SE, SM - EEG, EMG spectrogram """ EEG = np.squeeze(so.loadmat(os.path.join(ppath, name, 'EEG.mat'))['EEG']) EMG = np.squeeze(so.loadmat(os.path.join(ppath, name, 'EMG.mat'))['EMG']) len_eeg = len(EEG) fdt = 2.5 SR = get_snr(ppath, name) # we calculate the powerspectrum for 5s windows swin = int(np.round(SR) * 5.0) # but we sample new data each 2.5 s swinh = int(swin/2.0) fft_win = int(swin / 5.0) # number of 2.5s long samples spoints = int(np.floor(len_eeg / swinh)) SE = np.zeros((int(fft_win/2+1), spoints)) SM = np.zeros((int(fft_win/2+1), spoints)) print("Starting calculating spectrogram for %s..." % name) for i in range(2, spoints): # we take the last two swinh windows (the new 2.5 s long sample and the one from # the last iteration) x = EEG[(i-2)*swinh:i*swinh] [p, f] = power_spectrum(x.astype('float'), fft_win, 1.0/SR) p = smooth_data(p, sf) # recursive low pass filtering of spectrogram: # the current state is an estimate of the current sample and the previous state SE[:,i] = alpha*p + (1-alpha) * SE[:,i-1] # and the same of EMG x = EMG[(i-2)*swinh:i*swinh] [p, f] = power_spectrum(x.astype('float'), fft_win, 1.0/SR) p = smooth_data(p, sf) SM[:,i] = alpha*p + (1-alpha) * SM[:,i-1] if pplot: # plot EEG spectrogram t = np.arange(0, SM.shape[1])*fdt plt.figure() ax1 = plt.subplot(211) im = np.where((f>=0) & (f<=30))[0] med = np.median(SE.max(axis=0)) ax1.imshow(np.flipud(SE[im,:]), vmin=0, vmax=med*2) plt.xticks(()) ix = list(range(0, 30, 10)) fi = f[im][::-1] plt.yticks(ix, list(map(int, fi[ix]))) box_off(ax1) plt.axis('tight') plt.ylabel('Freq (Hz)') # plot EMG amplitude ax2 = plt.subplot(212) im = np.where((f>=10) & (f<100))[0] df = np.mean(np.diff(f)) # amplitude is the square root of the integral ax2.plot(t, np.sqrt(SM[im,:].sum(axis=0)*df)/1000.0) plt.xlim((0, t[-1])) plt.ylabel('EMG Ampl (mV)') plt.xlabel('Time (s)') box_off(ax2) plt.show(block=False) return SE, SM, f def recursive_sleepstate_rem(ppath, recordings, sf=0.3, alpha=0.3, past_mu=0.2, std_thdelta = 1.5, past_len=120, sdt=2.5, psave=False, xemg=False): """ predict a REM period only based on EEG/EMG history; the same algorithm is also used for closed-loop REM sleep manipulation. The algorithm uses for REM sleep detection a threshold on delta power, EMG power, and theta/delta power. For theta/delta I use two thresholds: A hard (larger) threshold and a soft (lower) threshold. Initially, theta/delta has to cross the hard threshold to initiate a REM period. Then, as long as, theta/delta is above the soft threshold (and EMG power stays low) REM sleep continues. @Parameters: ppath base folder with recordings recordings list of recordings sf smoothing factor for each powerspectrum alpha smoothing factor along time dimension past_mu percentage (0 .. 1) of brain states that are allowed to have EMG power larger than threshold during the last $past_len seconds past_len window to calculate $past_mu std_thdelta the hard theta/delta threshold is given by, mean(theta/delta) + $std_thdelta * std(theta/delta) sdt time bin for brain sttate, typically 2.5s psave if True, save threshold parameters to file. """ idf = re.split('_', recordings[0])[0] # 02/05/2020 changed from int to float: past_len = float(np.round(past_len/sdt)) # calculate spectrogram (SE, SM) = ([],[]) for rec in recordings: A,B, freq = recursive_spectrogram(ppath, rec, sf=sf, alpha=alpha) SE.append(A) SM.append(B) # fuse lists SE and SM SE = np.squeeze(reduce(lambda x,y: np.concatenate((x,y)), SE)) if not xemg: SM = np.squeeze(reduce(lambda x,y: np.concatenate((x,y)), SM)) else: SM = SE # EEG, EMG bands ntbins = SE.shape[1] r_delta = [0.5, 4] r_theta = [5,12] # EMG band r_mu = [300, 500] i_delta = np.where((freq >= r_delta[0]) & (freq <= r_delta[1]))[0] i_theta = np.where((freq >= r_theta[0]) & (freq <= r_theta[1]))[0] i_mu = np.where((freq >= r_mu[0]) & (freq <= r_mu[1]))[0] pow_delta = np.sum(SE[i_delta,:], axis=0) pow_theta = np.sum(SE[i_theta,:], axis=0) pow_mu = np.sum(SM[i_mu,:], axis=0) # theta/delta th_delta = np.divide(pow_theta, pow_delta) thr_th_delta1 = np.nanmean(th_delta) + std_thdelta*np.nanstd(th_delta) thr_th_delta2 = np.nanmean(th_delta) + 0.0*np.nanstd(th_delta) thr_delta = pow_delta.mean() thr_mu = pow_mu.mean() + 0.5*np.nanstd(pow_mu) ### The actual algorithm for REM detection rem_idx = np.zeros((ntbins,)) prem = 0 # whether or not we are in REM for i in range(ntbins): if prem == 0 and pow_delta[i] < thr_delta and pow_mu[i] < thr_mu: ### could be REM if th_delta[i] > thr_th_delta1: ### we are potentially entering REM if (i - past_len) >= 0: sstart = int(i-past_len) else: sstart = 0 # count the percentage of brainstate bins with elevated EMG power c_mu = np.sum( np.where(pow_mu[sstart:i]>thr_mu)[0] ) / (past_len*1.0) if c_mu < past_mu: ### we are in REM prem = 1 # turn laser on rem_idx[i] = 1 # We are currently in REM; do we stay there? if prem == 1: ### REM continues, if theta/delta is larger than soft threshold and if there's ### no EMG activation if (th_delta[i] > thr_th_delta2) and (pow_mu[i] < thr_mu): rem_idx[i] = 1 else: prem = 0 #turn laser off # for loop ends # Determine which channel is EEG, EMG ch_alloc = get_infoparam(os.path.join(ppath, recordings[0], 'info.txt'), 'ch_alloc')[0] # plot the whole stuff: # (1) spectrogram # (2) EMG Power # (3) Delta # (4) TH_Delta plt.figure() t = np.arange(0, sdt*(ntbins-1)+sdt/2.0, sdt) ax1 = plt.subplot(411) im = np.where((freq>=0) & (freq<=30))[0] med = np.median(SE.max(axis=0)) ax1.imshow(np.flipud(SE[im,:]), vmin=0, vmax=med*2) plt.yticks(list(range(0, 31, 10)), list(range(30, -1, -10))) plt.ylabel('Freq. (Hz)') plt.axis('tight') ax2 = plt.subplot(412) ax2.plot(t, pow_mu, color='black') ax2.plot(t, np.ones((len(t),))*thr_mu, color='red') plt.ylabel('EMG Pow.') plt.xlim((t[0], t[-1])) ax3 = plt.subplot(413, sharex=ax2) ax3.plot(t, pow_delta, color='black') ax3.plot(t, np.ones((len(t),))*thr_delta, color='red') plt.ylabel('Delta Pow.') plt.xlim((t[0], t[-1])) ax4 = plt.subplot(414, sharex=ax3) ax4.plot(t, th_delta, color='black') ax4.plot(t, np.ones((len(t),))*thr_th_delta1, color='red') ax4.plot(t, np.ones((len(t),))*thr_th_delta2, color='pink') ax4.plot(t, rem_idx*thr_th_delta1, color='blue') plt.ylabel('Theta/Delta') plt.xlabel('Time (s)') plt.xlim((t[0], t[-1])) plt.show(block=False) # write config file if psave: cfile = os.path.join(ppath, idf + '_rem.txt') fid = open(cfile, 'w') fid.write(('IDF: %s'+os.linesep) % idf) fid.write(('ch_alloc: %s'+os.linesep) % ch_alloc) fid.write(('THR_DELTA: %.2f'+os.linesep) % thr_delta) fid.write(('THR_MU: %.2f'+os.linesep) % thr_mu) fid.write(('THR_TH_DELTA: %.2f %.2f'+os.linesep) % (thr_th_delta1, thr_th_delta2)) fid.write(('STD_THDELTA: %.2f'+os.linesep) % std_thdelta) fid.write(('PAST_MU: %.2f'+os.linesep) % past_mu) fid.write(('SF: %.2f'+os.linesep) % sf) fid.write(('ALPHA: %.2f'+os.linesep) % alpha) fid.write(('Bern: %.2f' + os.linesep) % 0.5) if xemg: fid.write(('XEMG: %d'+os.linesep) % 1) else: fid.write(('XEMG: %d' + os.linesep) % 0) fid.close() print('wrote file %s' % cfile) def recursive_sleepstate_rem_control(ppath, recordings, past_len=120, sdt=2.5, delay=120): """ algorithm running laser control for REM sleep dependent activation/inhibtion. $delay s after a detected REM sleep period, the laser is turned on for the same duration. If a new REM period starts, the laser stops, but we keep track of the missing time. The next time is laser turns on again, it stays on for the duration of the most recent REM period + the remaining time. The algorithm for REM detection is the same as used forclosed-loop REM sleep manipulation. The function reads in the required parameters from the configuration file (MOUSEID_rem.txt) The algorithm uses for REM sleep detection a threshold on delta power, EMG power, and theta/delta power. For theta/delta I use two thresholds: A hard (larger) threshold and a soft (lower) threshold. Initially, theta/delta has to cross the hard threshold to initiate a REM period. Then, as long as, theta/delta is above the soft threshold (and EMG power stays low) REM sleep continues. @Parameters: ppath base folder with recordings recordings list of recordings past_len window to calculate $past_mu sdt time bin for brain sttate, typically 2.5s delay delay to wait after a REM sleep periods ends, till the laser is turned on. """ idf = re.split('_', recordings[0])[0] past_len = int(np.round(past_len/sdt)) # load parameters cfile = os.path.join(ppath, idf + '_rem.txt') params = load_sleep_params(ppath, cfile) thr_th_delta1 = params['THR_TH_DELTA'][0] thr_th_delta2 = params['THR_TH_DELTA'][1] thr_delta = params['THR_DELTA'][0] thr_mu = params['THR_MU'][0] alpha = params['ALPHA'][0] sf = params['SF'][0] past_mu = params['PAST_MU'][0] xemg = params['XEMG'][0] # calculate spectrogram (SE, SM) = ([], []) for rec in recordings: A, B, freq = recursive_spectrogram(ppath, rec, sf=sf, alpha=alpha) SE.append(A) SM.append(B) # fuse lists SE and SM SE = np.squeeze(reduce(lambda x, y: np.concatenate((x, y)), SE)) if not xemg: SM = np.squeeze(reduce(lambda x, y: np.concatenate((x, y)), SM)) else: SM = SE # EEG, EMG bands ntbins = SE.shape[1] r_delta = [0.5, 4] r_theta = [5, 12] # EMG band r_mu = [300, 500] i_delta = np.where((freq >= r_delta[0]) & (freq <= r_delta[1]))[0] i_theta = np.where((freq >= r_theta[0]) & (freq <= r_theta[1]))[0] i_mu = np.where((freq >= r_mu[0]) & (freq <= r_mu[1]))[0] pow_delta = np.sum(SE[i_delta, :], axis=0) pow_theta = np.sum(SE[i_theta, :], axis=0) pow_mu = np.sum(SM[i_mu, :], axis=0) th_delta = np.divide(pow_theta, pow_delta) ### The actual algorithm for REM detection rem_idx = np.zeros((ntbins,)) prem = 0 # whether or not we are in REM # NEW variables: laser_idx = np.zeros((ntbins,)) delay = int(np.round(delay/sdt)) delay_count = 0 curr_rem_dur = 0 dur_count = 0 on_delay = False laser_on = False for i in range(ntbins): if prem == 0 and pow_delta[i] < thr_delta and pow_mu[i] < thr_mu: ### could be REM if th_delta[i] > thr_th_delta1: ### we are potentially entering REM if (i - past_len) >= 0: sstart = i - past_len else: sstart = 0 # count the percentage of brainstate bins with elevated EMG power c_mu = np.sum(np.where(pow_mu[sstart:i] > thr_mu)[0]) / past_len if c_mu < past_mu: ### we are in REM prem = 1 # turn laser on rem_idx[i] = 1 curr_rem_dur += 1 #NEW # We are currently in REM; do we stay there? if prem == 1: ### REM continues, if theta/delta is larger than soft threshold and if there's ### no EMG activation if (th_delta[i] > thr_th_delta2) and (pow_mu[i] < thr_mu): rem_idx[i] = 1 curr_rem_dur += 1 else: prem = 0 # turn laser off dur_count += curr_rem_dur #NEW delay_count = delay #NEW curr_rem_dur = 0 #NEW on_delay = True #NEW # NEW: if on_delay: if prem == 0: delay_count -=1 if delay_count == 0: laser_on = True on_delay = False if laser_on: if prem == 0: if dur_count >= 0: dur_count -= 1 laser_idx[i] = 1 else: laser_on = False else: laser_on = False # plot the whole stuff: # (1) spectrogram # (2) EMG Power # (3) Delta # (4) TH_Delta plt.figure() t = np.arange(0, sdt*(ntbins-1)+sdt/2.0, sdt) ax1 = plt.subplot(411) im = np.where((freq>=0) & (freq<=30))[0] med = np.median(SE.max(axis=0)) ax1.imshow(np.flipud(SE[im,:]), vmin=0, vmax=med*2) plt.yticks(list(range(0, 31, 10)), list(range(30, -1, -10))) plt.ylabel('Freq. (Hz)') plt.axis('tight') ax2 = plt.subplot(412) ax2.plot(t, pow_mu, color='black') ax2.plot(t, np.ones((len(t),))*thr_mu, color='red') plt.ylabel('EMG Pow.') plt.xlim((t[0], t[-1])) ax3 = plt.subplot(413, sharex=ax2) ax3.plot(t, pow_delta, color='black') ax3.plot(t, np.ones((len(t),))*thr_delta, color='red') plt.ylabel('Delta Pow.') plt.xlim((t[0], t[-1])) ax4 = plt.subplot(414, sharex=ax3) ax4.plot(t, th_delta, color='black') ax4.plot(t, np.ones((len(t),))*thr_th_delta1, color='red') ax4.plot(t, np.ones((len(t),))*thr_th_delta2, color='pink') ax4.plot(t, rem_idx*thr_th_delta1, color='green', label='REM') ax4.plot(t, laser_idx * thr_th_delta1, color='blue', label='Laser') plt.ylabel('Theta/Delta') plt.xlabel('Time (s)') plt.xlim((t[0], t[-1])) plt.legend() plt.show(block=False) def load_sleep_params(path, param_file): """ load parameter file generated by &recursive_sleepstate_rem || &recursive_sleepstate_nrem @Return: Dictionary: Parameter --> Value """ fid = open(os.path.join(path, param_file), 'r') lines = fid.readlines() params = {} for line in lines: if re.match('^[\S_]+:', line): a = re.split('\s+', line) key = a[0][:-1] params[key] = a[1:-1] # transform number strings to floats for k in params: vals = params[k] new_vals = [] for v in vals: if re.match('^[\d\.]+$', v): new_vals.append(float(v)) else: new_vals.append(v) params[k] = new_vals return params def recursive_sleepstate_nrem(ppath, recordings, sf=0.3, alpha=0.3, std_thdelta = 1.5, sdt=2.5, psave=False, xemg=False): """ predict NREMs period only based on EEG/EMG history; the same algorithm is also used for closed-loop NREM sleep manipulation. The algorithm uses for NREM sleep detection thresholds for delta power, EMG power, and theta/delta power. For delta I use two thresholds: A hard (larger) threshold and a soft (lower) threshold. Initially, theta/delta has to cross the hard threshold to initiate a NREM period. Then, as long as, theta/delta is above the soft threshold (and EMG power stays low) REM sleep continues. The values for hard and soft threshold are fitted using a Gaussian mixture model :param ppath: base folder :param recordings: list of recordings :param sf: smoothing factor for each powerspectrum :param alpha: spatial smoothing factor :param std_thdelta: factor to set threshold for theta/delta :param sdt: time step of brain state classification, typically 2.5 s :param psave: save parameters to text file? :param xemg: use EEG instead of EMG? """ # to fit Gaussian mixture model to delta power distributino from sklearn import mixture idf = re.split('_', recordings[0])[0] # calculate spectrogram (SE, SM) = ([],[]) for rec in recordings: A,B, freq = recursive_spectrogram(ppath, rec, sf=sf, alpha=alpha) SE.append(A) SM.append(B) # fuse lists SE and SM SE = np.squeeze(reduce(lambda x,y: np.concatenate((x,y)), SE)) if not xemg: SM = np.squeeze(reduce(lambda x,y: np.concatenate((x,y)), SM)) else: SM = SE # EEG, EMG bands ntbins = SE.shape[1] r_delta = [0.5, 4] r_theta = [5,12] # EMG band r_mu = [300, 500] i_delta = np.where((freq >= r_delta[0]) & (freq <= r_delta[1]))[0] i_theta = np.where((freq >= r_theta[0]) & (freq <= r_theta[1]))[0] i_mu = np.where((freq >= r_mu[0]) & (freq <= r_mu[1]))[0] pow_delta = np.sum(SE[i_delta,:], axis=0) pow_theta = np.sum(SE[i_theta,:], axis=0) pow_mu = np.sum(SM[i_mu,:], axis=0) # theta/delta th_delta = np.divide(pow_theta, pow_delta) thr_th_delta1 = np.nanmean(th_delta) + std_thdelta*np.nanstd(th_delta) thr_th_delta2 = np.nanmean(th_delta) + 0.0*np.nanstd(th_delta) thr_mu = pow_mu.mean() + 0.5*np.nanstd(pow_mu) med_delta = np.median(pow_delta) pow_delta_fit = pow_delta[np.where(pow_delta<=3*med_delta)] # fit Gaussian mixture model to delta power # see http://www.astroml.org/book_figures/chapter4/fig_GMM_1D.html gm = mixture.GaussianMixture(n_components=2) fit = gm.fit(pow_delta_fit.reshape(-1, 1)) means = np.squeeze(fit.means_) x = np.arange(0, med_delta*3, 100) plt.figure() plt.hist(pow_delta_fit, 100, normed=True, histtype='stepfilled', alpha=0.4) logprob = fit.score_samples(x.reshape(-1,1)) responsibilities = fit.predict_proba(x.reshape((-1,1))) pdf = np.exp(logprob) pdf_individual = responsibilities * pdf[:, np.newaxis] plt.plot(x, pdf, '-k') plt.plot(x, pdf_individual, '--k') plt.xlim((0, med_delta*3)) plt.ylabel('p(x)') plt.xlabel('x = Delta power') # get point where curves cut each other if means[0] < means[1]: idx = np.where((x>= means[0]) & (x<= means[1]))[0] else: idx = np.where((x >= means[1]) & (x <= means[0]))[0] imin = np.argmin(pdf[idx]) xcut = x[idx[0]+imin] plt.plot(xcut, pdf[idx[0]+imin], 'ro') ilow = np.argmin(np.abs(x-means[0])) plt.plot(x[ilow], pdf[ilow], 'bo') ihigh = np.argmin(np.abs(x-means[1])) plt.plot(x[ihigh], pdf[ihigh], 'go') plt.show(block=False) # set parameters for hard and soft delta thresholds tmp = np.array([x[ihigh], xcut, x[ilow]]) tmp.sort() thr_delta1 = tmp[-1] # x[ihigh]; right peak of distribution thr_delta2 = tmp[1] # trough of distribution # NREM yes or no according to thresholds # However, this variable does not directly control whether laser should # be on or off; whether NREM sleep is really on or off is determined # by nrem_idx; if pnrem_hidden == 1, then all threshold critera, but not # sleep history criteria are fulfilled pnrem_hidden = 0 # if nrem_idx[i] == 1, time point i is NREM nrem_idx = np.zeros((ntbins,), dtype='int8') # NREM stays on after thresholds are NOT fulfilled to avoid interruptions by microarousals grace_period = int(20 / sdt) # nrem_delay: NREM only starts with some delay nrem_delay = int(10 / sdt) grace_count = grace_period delay_count = nrem_delay for i in range(ntbins): if pnrem_hidden == 0: ### Entering NREM: # Delta power laser than high threshold if pow_delta[i] > thr_delta1 and pow_mu[i] < thr_mu and th_delta[i] < thr_th_delta1: ### NOT-NREM -> NREM pnrem_hidden = 1 nrem_idx[i] = 0 delay_count -= 1 # we are fully in NREM, that's why grace_count is reset: grace_count = grace_period else: ### NOT-NREM -> NOT-NREM if grace_count > 0: grace_count -= 1 nrem_idx[i] = 1 else: nrem_idx[i] = 0 else: ### pnrem_hidden == 1 if pow_delta[i] > thr_delta2 and pow_mu[i] < thr_mu and th_delta[i] < thr_th_delta1: if delay_count > 0: delay_count -= 1 nrem_idx[i] = 0 else : nrem_idx[i] = 1 else: ### Exit NREM -> NOT-NREM # were are fully out of NREM, so delay_count can be reset: delay_count = nrem_delay pnrem_hidden = 0 if grace_count > 0: grace_count -= 1 nrem_idx[i] = 1 #### figure ############################################## plt.figure() t = np.arange(0, sdt * (ntbins - 1) + sdt / 2.0, sdt) ax1 = plt.subplot(411) im = np.where((freq >= 0) & (freq <= 30))[0] med = np.median(SE.max(axis=0)) ax1.imshow(np.flipud(SE[im, :]), vmin=0, vmax=med * 2, cmap='jet') ax1.pcolorfast(t, freq[im], np.flipud(SE[im, :]), vmin=0, vmax=med * 2, cmap='jet') plt.yticks(list(range(0, 31, 10)), list(range(30, -1, -10))) plt.ylabel('Freq. (Hz)') plt.axis('tight') ax2 = plt.subplot(412, sharex=ax1) ax2.plot(t, pow_mu, color='black') ax2.plot(t, np.ones((len(t),)) * thr_mu, color='red') plt.ylabel('EMG Pow.') plt.xlim((t[0], t[-1])) ax3 = plt.subplot(413, sharex=ax2) ax3.plot(t, pow_delta, color='black') ax3.plot(t, np.ones((len(t),)) * thr_delta1, color='red') ax3.plot(t, np.ones((len(t),)) * thr_delta2, color=[1, 0.6, 0.6]) ax3.plot(t, nrem_idx * thr_delta1, color=[0.6, 0.6, 0.6]) plt.ylabel('Delta Pow.') plt.xlim((t[0], t[-1])) ax4 = plt.subplot(414, sharex=ax3) ax4.plot(t, th_delta, color='black') ax4.plot(t, np.ones((len(t),)) * thr_th_delta1, color='red') plt.ylabel('Theta/Delta') plt.xlabel('Time (s)') plt.xlim((t[0], t[-1])) plt.show(block=False) # Determine which channel is EEG, EMG ch_alloc = get_infoparam(os.path.join(ppath, recordings[0], 'info.txt'), 'ch_alloc')[0] # write config file if psave: cfile = os.path.join(ppath, idf + '_nrem.txt') fid = open(cfile, 'w') fid.write(('IDF: %s' + os.linesep) % idf) fid.write(('ch_alloc: %s' + os.linesep) % ch_alloc) fid.write(('THR_DELTA: %.2f %.2f' + os.linesep) % (thr_delta1, thr_delta2)) fid.write(('THR_MU: %.2f' + os.linesep) % thr_mu) fid.write(('THR_TH_DELTA: %.2f %.2f' + os.linesep) % (thr_th_delta1, thr_th_delta2)) fid.write(('STD_THDELTA: %.2f' + os.linesep) % std_thdelta) fid.write(('SF: %.2f' + os.linesep) % sf) fid.write(('ALPHA: %.2f' + os.linesep) % alpha) if xemg: fid.write(('XEMG: %d' + os.linesep) % 1) else: fid.write(('XEMG: %d' + os.linesep) % 0) fid.close() print('wrote file %s' % cfile) def rem_online_analysis(ppath, recordings, backup='', single_mode=False, fig_file='', overlap=0): """ analyze results from closed-loop experiments :param ppath: base folder :param recordings: list of strings, recordinds :param backup: string, potential second backup folder with recordings :param single_mode: boolean, if True, average across all REM periods (irrespective of mouse) and plot each single REM period as dot :param overlap: float between 0 and 100; specifices percentage by which the online detected REM period has to overlap with real (annotated) REM period to be further consided for analysis; if overlap == 0, then any overlap counts, i.e. this parameter has no influence :return: df, pd.DataFrame, with control and experimental REM durations as data columns """ if type(recordings) != list: recordings = [recordings] overlap = overlap / 100.0 paths = dict() for rec in recordings: if os.path.isdir(os.path.join(ppath, rec)): paths[rec] = ppath else: paths[rec] = backup mice = dict() for rec in recordings: idf = re.split('_', rec)[0] if not idf in mice: mice[idf] = 1 mice = list(mice.keys()) if len(mice) == 1: single_mode=True dur_exp = {m:[] for m in mice} dur_ctr = {m:[] for m in mice} for rec in recordings: idf = re.split('_', rec)[0] M,S = load_stateidx(paths[rec], rec) sr = get_snr(paths[rec], rec) nbin = int(np.round(sr)*2.5) dt = (1.0/sr)*nbin laser = load_laser(paths[rec], rec) rem_trig = so.loadmat(os.path.join(paths[rec], rec, 'rem_trig_%s.mat'%rec), squeeze_me=True)['rem_trig'] laser = downsample_vec(laser, nbin) laser[np.where(laser>0)] = 1 rem_trig = downsample_vec(rem_trig, nbin) rem_trig[np.where(rem_trig>0)] = 1 laser_idx = np.where(laser==1)[0] rem_idx = np.where(rem_trig==1)[0] # REM sequences from offline analysis (assumed to be the # "ground truth" seq = get_sequences(np.where(M==1)[0]) for s in seq: # check true REM sequences overlapping with online detected sequences isect = np.intersect1d(s, rem_idx) #print(len(isect)/ len(s)) # test if real REM period s overlaps with online detected REM periods and, # if yes, make sure that the overlap is at least overlap *100 percent if len(np.intersect1d(s, rem_idx)) > 0 and float(len(isect)) / len(s) >= overlap: drn = (s[-1]-s[0]+1)*dt # does the sequence overlap with laser? if len(np.intersect1d(isect, laser_idx))>0: dur_exp[idf].append(drn) else: dur_ctr[idf].append(drn) data = {'exp':[], 'ctr':[]} # if single_mode put all REM periods together, # otherwise average across REM periods for each mouse if len(mice) == 1 or single_mode==True: for m in mice: data['exp'] += dur_exp[m] data['ctr'] += dur_ctr[m] else: for idf in dur_ctr: dur_ctr[idf] = np.array(dur_ctr[idf]).mean() dur_exp[idf] = np.array(dur_exp[idf]).mean() data['exp'] = np.array(list(dur_exp.values())) data['ctr'] = np.array(list(dur_ctr.values())) df = pd.DataFrame({'ctr':pd.Series(data['ctr']), 'exp' : pd.Series(data['exp'])}) # plot everything if not single_mode: plt.ion() plt.figure() ax = plt.axes([0.2, 0.15, 0.3, 0.7]) df_mean = df.mean() plt.bar([1], [df_mean['ctr']], color='grey', label='W/o Laser') plt.bar([2], [df_mean['exp']], color='blue', label='With laser') plt.xticks([1,2]) box_off(ax) #ax.set_xticklabels(['ctr', 'exp'], rotation=30) plt.ylabel('REM duration (s)') for (a,b) in zip(df['ctr'], df['exp']): plt.plot([1,2], [a,b], color='black') plt.legend(bbox_to_anchor=(0., 1.0, 1., .102), loc=3, mode='expand', ncol=1, frameon=False) else: plt.figure() ax = plt.axes([0.2, 0.15, 0.3, 0.7]) df_mean = df.mean() plt.bar([1], [df_mean['ctr']], color='grey') plt.bar([2], [df_mean['exp']], color='blue') plt.xticks([1,2]) box_off(ax) #ax.set_xticklabels(['ctr', 'exp'], rotation=30) plt.ylabel('REM duration (s)') a = df['ctr'] b = df['exp'] plt.plot(np.ones((len(a),)), a, '.', color='black', label='W/o Laser') plt.plot(2*np.ones((len(b),)), b, '.', color='black', label='With laser') plt.legend(bbox_to_anchor=(0., 1.0, 1., .102), loc=3, mode='expand', ncol=1, frameon=False) plt.show() if len(fig_file) > 0: save_figure(fig_file) return df def online_homeostasis(ppath, recordings, backup='', mode=0, single_mode=False, pplot=True, overlap=0, ma_thr=0): """ Further analysis of data obtained from closed loop stimulation Assume the sleep structure looks like this R R R R W W N N N N N W W N N N N R R R R R REM_pre -- inter REM ---- REM_post REM_pre is the duration of the first REM period, inter-REM is everything between REM_pre and the next REM period REM_post. The function calculates the inter REM duration after REM periods with laser and after REM periods w/o laser :param ppath: base folder :param recordings: list of recording, or file listing :param backup: backup folder for $ppath :param mode: mode == 0, calculate complete inter REM duration mode == 2, only calculate duration of wake in inter REM periods mode == 3, only calculate duration of NREM in inter REM periods :param single_mode: consider each single recording, instead of mice :param overlap: percentage (number between 0 and 100). Defines the percentage how much a true (offline annotated) REM period should overlap with laser to be considered as REM sleep with laser. Of note, REM periods w/o laser have to have 0 overlap with laser. All remaining REM periods are discarded. :param pplot: if True, plot figure; errorbars show 95% confidence intervals, calculated using bootstrapping :param ma: :return: df, if single_mode == True $df is a pandas DataFrame: REM iREM laser mouse - mouse ID REM - REM duration iREM - inter REM duration after REM periods with laser laser - 'y' or 'n'; depending on whether laser was on during REM sleep period (for "REM") or during the preceding REM sleep period (for "iREM") if single_mode == False, mouse is the data frame index """ if type(recordings) != list: recordings = [recordings] if overlap > 0: overlap = overlap / 100 paths = dict() for rec in recordings: if os.path.isdir(os.path.join(ppath, rec)): paths[rec] = ppath else: paths[rec] = backup mice = dict() for rec in recordings: idf = re.split('_', rec)[0] if not idf in mice: mice[idf] = 1 mice = list(mice.keys()) if len(mice) == 1: single_mode=True remdur_exp = {m:[] for m in mice} remdur_ctr = {m:[] for m in mice} itdur_exp = {m:[] for m in mice} itdur_ctr = {m:[] for m in mice} for rec in recordings: idf = re.split('_', rec)[0] M = load_stateidx(paths[rec], rec)[0] sr = get_snr(paths[rec], rec) nbin = int(np.round(sr)*2.5) dt = (1.0/sr)*nbin if ma_thr>0: seq = get_sequences(np.where(M==2)[0]) for s in seq: if len(s)*dt <= ma_thr: M[s] = 3 laser = load_laser(paths[rec], rec) rem_trig = so.loadmat(os.path.join(paths[rec], rec, 'rem_trig_%s.mat' % rec), squeeze_me=True)['rem_trig'] laser = downsample_vec(laser, nbin) laser[np.where(laser>0)] = 1 rem_trig = downsample_vec(rem_trig, nbin) rem_trig[np.where(rem_trig>0)] = 1 laser_idx = np.where(laser==1)[0] rem_idx = np.where(rem_trig==1)[0] # REM sequences from offline analysis (assumed to be the # "ground truth" seq = get_sequences(np.where(M==1)[0]) for (p,q) in zip(seq[0:-1], seq[1:]): # check if true REM sequences do overlap with online detected sequences # and only continue working with those: if len(np.intersect1d(p, rem_idx)) > 0: drn = (p[-1]-p[0]+1)*dt it_M = M[p[-1]+1:q[0]] if mode == 0: it_drn = len(it_M)*dt elif mode == 2: it_drn = len(np.where(it_M==2)[0]) * dt else: it_drn = len(np.where(it_M == 3)[0]) * dt # does the true REM sequence overlap with laser? # by setting overlap to a value > 0, you can # set a percentage how much the REM period should overlap with laser # NEW 08/26/21 if len(np.intersect1d(p, laser_idx)) / len(p) > overlap: remdur_exp[idf].append(drn) itdur_exp[idf].append(it_drn) elif len(np.intersect1d(p, laser_idx)) == 0: remdur_ctr[idf].append(drn) itdur_ctr[idf].append(it_drn) else: pass # if single_mode put all REM periods together, # otherwise average across REM periods for each mouse if len(mice) == 1 or single_mode==True: data = {'itexp':[], 'itctr':[], 'remexp':[], 'remctr':[]} for m in mice: data['itexp'] += itdur_exp[m] data['itctr'] += itdur_ctr[m] data['remexp'] += remdur_exp[m] data['remctr'] += remdur_ctr[m] df = pd.DataFrame({'REM': data['remexp']+data['remctr'], 'iREM':data['itexp']+data['itctr'], 'laser': ['y']*len(data['remexp']) + ['n']*len(data['remctr'])}) else: for idf in mice: itdur_ctr[idf] = np.array(itdur_ctr[idf]).mean() itdur_exp[idf] = np.array(itdur_exp[idf]).mean() remdur_ctr[idf] = np.array(remdur_ctr[idf]).mean() remdur_exp[idf] = np.array(remdur_exp[idf]).mean() data = {} for s in ['itexp', 'itctr', 'remexp', 'remctr']: data[s] = np.zeros((len(mice),)) i = 0 for m in mice: data['itexp'][i] = itdur_exp[m] data['itctr'][i] = itdur_ctr[m] data['remexp'][i] = remdur_exp[m] data['remctr'][i] = remdur_ctr[m] i += 1 df = pd.DataFrame({'REM': np.concatenate((data['remexp'], data['remctr'])), 'iREM': np.concatenate((data['itexp'], data['itctr'])), 'laser': ['y']*len(mice) + ['n']*len(mice), 'mouse': mice+mice}) if pplot and not single_mode: dfm = pd.melt(df, id_vars=['laser', 'mouse'], var_name='state') sns.set_style('whitegrid') plt.ion() plt.figure() sns.barplot(data=dfm, hue='laser', x='state', y='value', palette=['blue', 'gray']) sns.swarmplot(data=dfm, hue='laser', x='state', y='value', dodge=True, color='black') sns.despine() plt.ylabel('Duration (s)') if pplot and single_mode: dfm = pd.melt(df, id_vars=['laser'], var_name='state') plt.ion() plt.figure() sns.set(style="whitegrid") #sns.swarmplot(data=df[['itctr', 'itexp']], color='black') #sns.barplot(data=df[['itctr', 'itexp']], palette=['gray', 'blue'], errcolor='black') sns.barplot(data=dfm, hue='laser', x='state', y='value', palette=['blue', 'gray']) sns.swarmplot(data=dfm, hue='laser', x='state', y='value', dodge=True, color='black') sns.despine() plt.ylabel('Duration (s)') return df ### FUNCTIONS USED BY SLEEP_STATE ##################################################### def get_sequences(idx, ibreak=1) : """ get_sequences(idx, ibreak=1) idx - np.vector of indices @RETURN: seq - list of np.vectors """ diff = idx[1:] - idx[0:-1] breaks = np.nonzero(diff>ibreak)[0] breaks = np.append(breaks, len(idx)-1) seq = [] iold = 0 for i in breaks: r = list(range(iold, i+1)) seq.append(idx[r]) iold = i+1 return seq def threshold_crossing(data, th, ilen, ibreak, m): """ seq = threshold_crossing(data, th, ilen, ibreak, m) """ if m>=0: idx = np.where(data>=th)[0] else: idx = np.where(data<=th)[0] # gather sequences j = 0 seq = [] while (j <= len(idx)-1): s = [idx[j]] for k in range(j+1,len(idx)): if (idx[k] - idx[k-1]-1) <= ibreak: # add j to sequence s.append(idx[k]) else: break if (s[-1] - s[0]+1) >= ilen and not(s[0] in [i[1] for i in seq]): seq.append((s[0], s[-1])) if j == len(idx)-1: break j=k return seq def closest_precessor(seq, i): """ find the preceding element in seq which is closest to i helper function for sleep_state """ tmp = seq-i; d = np.where(tmp<0)[0] if len(d)>0: id = seq[d[-1]]; else: id = 0; return id def write_remidx(M, K, ppath, name, mode=1) : """ rewrite_remidx(idx, states, ppath, name) replace the indices idx in the remidx file of recording name with the assignment given in states """ if mode == 0 : outfile = os.path.join(ppath, name, 'remidx_' + name + '.txt') else : outfile = os.path.join(ppath, name, 'remidx_' + name + '_corr.txt') f = open(outfile, 'w') s = ["%d\t%d\n" % (i,j) for (i,j) in zip(M[0,:],K)] f.writelines(s) f.close() ####################################################################################### ### MANIPULATING FIGURES ############################################################## def set_fontsize(fs): import matplotlib matplotlib.rcParams.update({'font.size': fs}) def set_fontarial(): """ set Arial as default font """ import matplotlib matplotlib.rcParams['font.sans-serif'] = "Arial" def save_figure(fig_file): # alternative way of setting nice fonts: #matplotlib.rcParams['pdf.fonttype'] = 42 #matplotlib.rcParams['ps.fonttype'] = 42 #matplotlib.pylab.savefig(fig_file, dpi=300) #matplotlib.rcParams['text.usetex'] = False #matplotlib.rcParams['text.usetex'] = True plt.savefig(fig_file, bbox_inches="tight", dpi=200) #matplotlib.rcParams['text.usetex'] = False def box_off(ax): """ similar to Matlab's box off """ ax.spines["top"].set_visible(False) ax.spines["right"].set_visible(False) ax.get_xaxis().tick_bottom() ax.get_yaxis().tick_left() ####################################################################################### def sleep_state(ppath, name, th_delta_std=1, mu_std=0, sf=1, sf_delta=3, pwrite=0, pplot=True, pemg=True, vmax=2.5, pspec_norm=False, use_idx=[]): """ automatic sleep state detection based on delta, theta, sigma, gamma and EMG power. New: use also sigma band: that's very helpful to classify pre-REM periods as NREM; otherwise they tend to be classified as wake. Gamma peaks nicely pick up during microarousals. My strategy is the following: I smooth delta band a lot to avoid strong fragmentation of sleep; but to still pick up microarousals I use the gamma power. spectrogram data has to be calculated before using calculate_spectrum Each bin in the spectrogram gets assigned one of four states: 1-REM 2-Wake 3-NREM 0-undef :param ppath: base folder :param name: recording name :param th_delta_std: threshold for theta/delta band is calculated as mean(theta/delta) + th_delta_std*std(theta/delta) :param mu_std: threshold for EMG power is calculate as "mean(EMG) + mu_std * mean(EMG) :param sf: smoothing factor for gamma and sigma power :param sf_delta: smoothing factor for delta power :param pwrite: if True, save sleep classification to file remidx_$name.txt :param pplot: if True, plot figures :param pemg: if True, use EMG as EMG, otherwise use EEG gamma power instead :param vmax: float, set maximum of color range of EEG heatmap. :param pspec_norm: boolean, if True, normalized EEG spectrogram by deviding each frequency band by its mean; only affects plotting, no effect on sleep state calculation :param use_idx: list, if not empty, use only given indices to calculate sleep state :return: """ PRE_WAKE_REM = 30.0 # Minimum Duration and Break in # high theta/delta, high emg, high delta, high sigma and gamma sequences # # duration[i,0] is the minimum duration of sequence of state i # duration[i,1] is maximal break duration allowed in a sequence of state i duration = np.zeros((5,2)) # high theta/delta duration[0,:] = [5,15] # high emg duration[1,:] = [0, 5] # high delta duration[2,:] = [10, 10] # high sigma duration[3,:] = [10, 10] # gamma duration[4,:] = [0, 5] # Frequency Bands/Ranges for delta, theta, and, gamma r_delta = [0.5, 4] r_sigma = [12, 20] r_theta = [5,12] # EMG band r_mu = [50, 500] if not pemg: r_mu = [250, 500] # high gamma power r_gamma = [100, 150] #load EEG and EMG spectrum, calculated by calculate_spectrum P = so.loadmat(os.path.join(ppath, name, 'sp_' + name + '.mat')) if pemg: Q = so.loadmat(os.path.join(ppath, name, 'msp_' + name + '.mat')) else: Q = so.loadmat(os.path.join(ppath, name, 'sp_' + name + '.mat')) SPEEG = np.squeeze(P['SP']) if pemg == 1: SPEMG = np.squeeze(Q['mSP']) else: SPEMG = np.squeeze(P['SP']) if use_idx == []: use_idx = range(0, SPEEG.shape[1]) freq = np.squeeze(P['freq']) t = np.squeeze(P['t']) dt = float(np.squeeze(P['dt'])) N = len(t) duration = np.divide(duration,dt) # get indices for frequency bands i_delta = np.where((freq >= r_delta[0]) & (freq <= r_delta[1]))[0] i_theta = np.where((freq >= r_theta[0]) & (freq <= r_theta[1]))[0] i_mu = np.where((freq >= r_mu[0]) & (freq <= r_mu[1]))[0] i_sigma = np.where((freq >= r_sigma[0]) & (freq <= r_sigma[1]))[0] i_gamma = np.where((freq >= r_gamma[0]) & (freq <= r_gamma[1]))[0] p_delta = smooth_data( SPEEG[i_delta,:].mean(axis=0), sf_delta ) p_theta = smooth_data( SPEEG[i_theta,:].mean(axis=0), 0 ) # now filtering for EMG to pick up microarousals p_mu = smooth_data( SPEMG[i_mu,:].mean(axis=0), sf ) p_sigma = smooth_data( SPEEG[i_sigma,:].mean(axis=0), sf ) p_gamma = smooth_data( SPEEG[i_gamma,:].mean(axis=0), 0 ) th_delta = np.divide(p_theta, p_delta) #th_delta = smooth_data(th_delta, 2); seq = {} seq['high_theta'] = threshold_crossing(th_delta, np.nanmean(th_delta[use_idx])+th_delta_std*np.nanstd(th_delta[use_idx]), duration[0,1], duration[0,1], 1) seq['high_emg'] = threshold_crossing(p_mu, np.nanmean(p_mu[use_idx])+mu_std*np.nanstd(p_mu[use_idx]), duration[1,0], duration[1,1], 1) seq['high_delta'] = threshold_crossing(p_delta, np.nanmean(p_delta[use_idx]), duration[2,0], duration[2,1], 1) seq['high_sigma'] = threshold_crossing(p_sigma, np.nanmean(p_sigma[use_idx]), duration[3,0], duration[3,1], 1) seq['high_gamma'] = threshold_crossing(p_gamma, np.nanmean(p_gamma[use_idx]), duration[4,0], duration[4,1], 1) # Sleep-State Rules idx = {} for k in seq: tmp = [list(range(i,j+1)) for (i,j) in seq[k]] # now idea why this works to flatten a list # idx[k] = sum(tmp, []) # alternative that I understand: if len(tmp) == 0: idx[k] = np.array([]) else: idx[k] = np.array(reduce(lambda x,y: x+y, tmp)) idx['low_emg'] = np.setdiff1d(np.arange(0,N), np.array(idx['high_emg'])) idx['low_delta'] = np.setdiff1d(np.arange(0,N), np.array(idx['high_delta'])) idx['low_theta'] = np.setdiff1d(np.arange(0,N), np.array(idx['high_theta'])) #REM Sleep: thdel up, emg down, delta down a = np.intersect1d(idx['high_theta'], idx['low_delta']) # non high_emg phases b = np.setdiff1d(a, idx['high_emg']) rem = get_sequences(b, duration[0,1]) rem_idx = reduce(lambda x,y: np.concatenate((x,y)), rem) # SWS Sleep # delta high, no theta, no emg a = np.setdiff1d(idx['high_delta'], idx['high_emg']) # no emg activation b = np.setdiff1d(a, idx['high_theta']) # no theta; sws = get_sequences(b) sws_idx = reduce(lambda x,y: np.concatenate((x,y)), sws) #print a # Wake # low delta + high emg and not rem a = np.unique(np.union1d(idx['low_delta'], idx['high_emg'])) b = np.setdiff1d(a, rem_idx) wake = get_sequences(b) wake_idx = reduce(lambda x,y: np.concatenate((x,y)), wake) # sequences with low delta, high sigma and low emg are NREM a = np.intersect1d(np.intersect1d(idx['high_sigma'], idx['low_delta']), idx['low_emg']) a = np.setdiff1d(a, rem_idx) sws_idx = np.unique(np.union1d(a, sws_idx)) wake_idx = np.setdiff1d(wake_idx, a) #NREM sequences with high gamma are wake a = np.intersect1d(sws_idx, idx['high_gamma']) sws_idx = np.setdiff1d(sws_idx, a) wake_idx = np.unique(np.union1d(wake_idx,a)) # Wake and Theta wake_motion_idx = np.intersect1d(wake_idx, idx['high_theta']) # Wake w/o Theta wake_nomotion_idx = np.setdiff1d(wake_idx, idx['low_theta']) # Are there overlapping sequences? a = np.intersect1d(np.intersect1d(rem_idx, wake_idx), sws_idx) # Are there undefined sequences? undef_idx = np.setdiff1d(np.setdiff1d(np.setdiff1d(np.arange(0,N), rem_idx), wake_idx), sws_idx) # Wake wins over SWS sws_idx = np.setdiff1d(sws_idx, wake_idx) # Special rules # if there's a REM sequence directly following a short wake sequence (PRE_WAKE_REM), # this wake sequence goes to SWS # NREM to REM transitions are sometimes mistaken as quite wake periods for rem_seq in rem: if len(rem_seq) > 0: irem_start = rem_seq[0] # is there wake in the preceding bin? if irem_start-1 in wake_idx: # get the closest sws bin in the preceding history isws_end = closest_precessor(sws_idx, irem_start) if (irem_start - isws_end)*dt < PRE_WAKE_REM: new_rem = np.arange(isws_end+1,irem_start) rem_idx = np.union1d(rem_idx, new_rem) wake_idx = np.setdiff1d(wake_idx, new_rem) else: new_wake = rem_seq wake_idx = np.union1d(wake_idx, new_wake) rem_idx = np.setdiff1d(rem_idx, new_wake) # two different representations for the results: S = {} S['rem'] = rem_idx S['nrem'] = sws_idx S['wake'] = wake_idx S['awake'] = wake_motion_idx S['qwake'] = wake_nomotion_idx M = np.zeros((N,)) if len(rem_idx) > 0: M[rem_idx] = 1 if len(wake_idx) > 0: M[wake_idx] = 2 if len(sws_idx) > 0: M[sws_idx] = 3 if len(undef_idx) > 0: M[undef_idx] = 0 # write sleep annotation to file if pwrite: outfile = os.path.join(ppath, name, 'remidx_' + name + '.txt') print("writing annotation to %s" % outfile) f = open(outfile, 'w') s = ["%d\t%d\n" % (i,j) for (i,j) in zip(M,np.zeros((N,)))] f.writelines(s) f.close() # nice plotting plt.ion() if pplot: plt.figure(figsize=(18,9)) axes1=plt.axes([0.1, 0.9, 0.8, 0.05]) A = np.zeros((1,len(M))) A[0,:] = M cmap = plt.cm.jet my_map = cmap.from_list('ha', [[0,0,0], [0,1,1],[0.5,0,1], [0.8, 0.8, 0.8]], 4) #tmp = axes1.imshow(A, vmin=0, vmax=3) tmp = axes1.pcolorfast(t, [0,1], A, vmin=0, vmax=3) tmp.set_cmap(my_map) axes1.axis('tight') tmp.axes.get_xaxis().set_visible(False) tmp.axes.get_yaxis().set_visible(False) box_off(axes1) # show spectrogram axes2=plt.axes([0.1, 0.75, 0.8, 0.1], sharex=axes1) ifreq = np.where(freq <= 30)[0] med = np.median(SPEEG.max(axis=0)) if pspec_norm: ifreq = np.where(freq <= 80)[0] filt = np.ones((6, 1)) filt = filt / np.sum(filt) SPEEG = scipy.signal.convolve2d(SPEEG, filt, mode='same') spec_mean = SPEEG.mean(axis=1) SPEEG = np.divide(SPEEG, np.repeat([spec_mean], SPEEG.shape[1], axis=0).T) med = np.median(SPEEG.max(axis=0)) axes2.pcolorfast(t, freq[ifreq], SPEEG[ifreq, :], vmax = med*vmax, cmap='jet') else: axes2.pcolorfast(t, freq[ifreq], SPEEG[ifreq, :], vmax=med * vmax, cmap='jet') axes2.axis('tight') plt.ylabel('Freq (Hz)') box_off(axes2) # show delta power axes3=plt.axes([0.1, 0.6, 0.8, 0.1], sharex=axes2) axes3.plot(t,p_delta, color='gray') plt.ylabel('Delta (a.u.)') plt.xlim((t[0], t[-1])) seq = get_sequences(S['nrem']) #for s in seq: # plt.plot(t[s],p_delta[s], color='red') s = idx['high_delta'] seq = get_sequences(s) for s in seq: plt.plot(t[s],p_delta[s], color='red') box_off(axes3) axes4=plt.axes([0.1, 0.45, 0.8, 0.1], sharex=axes3) axes4.plot(t,p_sigma, color='gray') plt.ylabel('Sigma (a.u.)') plt.xlim((t[0], t[-1])) s = idx['high_sigma'] seq = get_sequences(s) for s in seq: plt.plot(t[s],p_sigma[s], color='red') box_off(axes4) axes5=plt.axes([0.1, 0.31, 0.8, 0.1], sharex=axes4) axes5.plot(t,th_delta, color='gray') plt.ylabel('Th/Delta (a.u.)') plt.xlim((t[0], t[-1])) s = idx['high_theta'] seq = get_sequences(s) for s in seq: plt.plot(t[s],th_delta[s], color='red') box_off(axes5) axes6=plt.axes([0.1, 0.17, 0.8, 0.1], sharex=axes5) axes6.plot(t,p_gamma, color='gray') plt.ylabel('Gamma (a.u.)') plt.xlim((t[0], t[-1])) s = idx['high_gamma'] seq = get_sequences(s) for s in seq: plt.plot(t[s],p_gamma[s], color='red') box_off(axes6) axes7=plt.axes([0.1, 0.03, 0.8, 0.1], sharex=axes6) axes7.plot(t,p_mu, color='gray') plt.xlabel('Time (s)') plt.ylabel('EMG (a.u.)') plt.xlim((t[0], t[-1])) s = idx['high_emg'] seq = get_sequences(s) for s in seq: plt.plot(t[s],p_mu[s], color='red') box_off(axes7) plt.show() # 2nd figure showing distribution of different bands plt.figure(figsize=(20,3)) axes1 = plt.axes([0.05, 0.1, 0.13, 0.8]) plt.hist(p_delta, bins=100) plt.plot(np.nanmean(p_delta), 10, 'ro') plt.title('delta') plt.ylabel('# Occurances') box_off(axes1) axes1 = plt.axes([0.25, 0.1, 0.13, 0.8]) plt.hist(th_delta, bins=100) plt.plot(np.nanmean(th_delta)+th_delta_std*np.nanstd(th_delta), 10, 'ro') plt.title('theta/delta') box_off(axes1) axes1 = plt.axes([0.45, 0.1, 0.13, 0.8]) plt.hist(p_sigma, bins=100) plt.plot(np.nanmean(p_sigma), 10, 'ro') plt.title('sigma') box_off(axes1) axes1 = plt.axes([0.65, 0.1, 0.13, 0.8]) plt.hist(p_gamma, bins=100) plt.plot(np.nanmean(p_gamma), 10, 'ro') plt.title('gamma') box_off(axes1) axes1 = plt.axes([0.85, 0.1, 0.13, 0.8]) plt.hist(p_mu, bins=100) plt.plot(np.nanmean(p_mu)+np.nanstd(p_mu), 10, 'ro') plt.title('EMG') plt.show(block=False) box_off(axes1) plt.show() return M,S def plot_hypnograms(ppath, recordings, tbin=0, unit='h', ma_thr=20, title='', tstart=0, tend=-1): """ plot all hypnograms specified in @recordings :param ppath: base folder :param recordings: list of recordings :param tbin: tbin for xticks :param unit: time unit; h - hour, min - minute, s - second :param ma_thr: float, wake periods shorter than $ma_thr are considered as microarousals and further converted to NREM :param tstart: float, start time point (in seconds!) of hypnograms :param tend: float, last shown time point (in seconds!) :param title: optional title for figure """ recordings = recordings[::-1] sr = get_snr(ppath, recordings[0]) nbin = int(np.round(sr) * 2.5) dt_sec = (1.0 / sr) * nbin istart = int(np.round(tstart/dt_sec)) dt = dt_sec if unit == 'h': dt /= 3600 elif unit == 'min': dt /= 60 rec_len = dict() irec = 0 ny = (1.0-0.2) / len(recordings) dy = ny * 0.75 cmap = plt.cm.jet my_map = cmap.from_list('brs', [[0, 0, 0], [0, 1, 1], [0.5, 0, 1], [0.8, 0.8, 0.8]], 4) plt.ion() plt.figure(figsize=(9,4)) axes = [] for rec in recordings: M,K = load_stateidx(ppath, rec) #kcut = np.where(K<0)[0] #M = M[kcut] #M[kcut] = 0 if tend == -1: iend = len(M) else: iend = int(tend/dt_sec) M = M[istart:iend] if ma_thr>0: seq = get_sequences(np.where(M==2)[0]) for s in seq: if len(s)*dt_sec <= ma_thr: M[s] = 3 rec_len[rec] = len(M)*dt t = np.arange(0, len(M))*dt ax = plt.axes([0.05, ny*irec+0.15, 0.75, dy]) tmp = ax.pcolorfast(t, [0, 1], np.array([M]), vmin=0, vmax=3, cmap=my_map) box_off(ax) ax.axis('tight') tmp.axes.get_yaxis().set_visible(False) if irec > 0: tmp.axes.get_xaxis().set_visible(False) if irec == 0: plt.xlabel('Time (%s)' % unit) irec += 1 axes.append(ax) if len(title) > 0: plt.title(title) max_dur = max(rec_len.values()) if tbin > 0: xtick = np.arange(0, max_dur, tbin) for (ax, rec) in zip(axes, recordings): ax.set_xlim([0, max_dur]) if tbin > 0: ax.set_xticks(xtick) ax.text(max_dur+max_dur*0.01, 0.5, rec) plt.show() def plot_swa(ppath, name, delta_win, alpha, band=[0.5, 4.5], swa_yrange=[]): """ plot slow wave (delta) activity during NREM The top plot shows the hynogram. The middle plot shows the delta power (irrespective of brain state) as line plot The bottom plot shows for consecutive $delta_win seconds long bins, the median delta power (SWA) during NREM, if the ration of NREM during the corresponding bin >= $alpha Example call: dm=plot_swa(ppath, name, 30, 0.5, swa_yrange=[0, 0.012]) :param ppath, name: basefolder, recording name :param delta_win: plot median swa value for each consecutive $delta_win seconds long window, if :param alpha: the ratio of NREM in this window is larger than alpha (value between 0 and 1) :param swa_yrange: tuple, minimun and maximum value of yrange for SWA :return df: pd.DataFrame with SWA time points and corresponding median SWA values """ r_delta = band sr = get_snr(ppath, name) nbin = int(np.round(2.5*sr)) dt = nbin*(1.0/sr) M,_ = load_stateidx(ppath, name) t = np.arange(0, len(M))*dt P = so.loadmat(os.path.join(ppath, name, 'sp_%s.mat' % name), squeeze_me=True) SP = P['SP'] freq = P['freq'] df = freq[1]-freq[0] idelta = np.where((freq>=r_delta[0]) & (freq<=r_delta[1]))[0] pow_delta = SP[idelta,:].sum(axis=0)*df # get NREM sequences contributing points for fitting iwin = int(delta_win/dt) #seq = get_sequences(nrem_idx, ibreak=int((delta_win/dt)*0.1)) delta_med = [] for j in range(0, len(M)-iwin, iwin): s = range(j, j+iwin) sc = j+int(iwin/2) Mcut = M[s] if (1.0*len(np.where(Mcut==3)[0])) / len(s) >= alpha: i = np.where(Mcut==3)[0] i = i+s[0] a = np.median(pow_delta[i]) delta_med.append((t[sc],a)) df = pd.DataFrame(columns=['time', 'pow'], data=delta_med) # generate figure # show brainstate plt.ion() plt.figure(figsize=(10, 4)) axes_brs = plt.axes([0.1, 0.85, 0.8, 0.1]) cmap = plt.cm.jet my_map = cmap.from_list('brs', [[0, 0, 0], [0, 1, 1], [0.6, 0, 1], [0.8, 0.8, 0.8]], 4) tmp = axes_brs.pcolorfast(t, [0, 1], np.array([M]), vmin=0, vmax=3) tmp.set_cmap(my_map) axes_brs.axis('tight') axes_brs.axes.get_xaxis().set_visible(False) axes_brs.axes.get_yaxis().set_visible(False) axes_brs.spines["top"].set_visible(False) axes_brs.spines["right"].set_visible(False) axes_brs.spines["bottom"].set_visible(False) axes_brs.spines["left"].set_visible(False) # plot delta power as function of time c = 1000**2 axes_tdelta = plt.axes([0.1, 0.55, 0.8, 0.2], sharex=axes_brs) plt.plot(t, pow_delta/c, 'k') box_off(axes_tdelta) axes_tdelta.axes.get_xaxis().set_visible(False) axes_tdelta.spines["bottom"].set_visible(False) plt.ylabel('SWA (mV$\mathrm{^2}$)') # plot delta power medians axes_delta = plt.axes([0.1, 0.12, 0.8, 0.35], sharex=axes_brs) for (s,delta) in delta_med: plt.plot(s, delta/c, 'ko') print(t) plt.xlim((t[0], t[-1])) box_off(axes_delta) plt.xlabel('Time (s)') plt.ylabel('NREM SWA (mV$\mathrm{^2}$)') if swa_yrange == []: ymax = df['pow'].max()/c plt.ylim([0, ymax+0.1*ymax]) else: plt.ylim(swa_yrange) plt.show() return df def laser_triggered_eeg(ppath, name, pre, post, f_max, pnorm=2, pplot=False, psave=False, tstart=0, tend=-1, peeg2=False, vm=2.5, prune_trials=True, mu=[10, 200], trig_state=0, harmcs=0, iplt_level=1): """ calculate laser triggered, averaged EEG and EMG spectrum :param ppath: base folder containing mouse recordings :param name: recording :param pre: time before laser :param post: time after laser :param f_max: calculate/plot frequencies up to frequency f_max :param pnorm: normalization, pnorm = 0, no normalization pnorm = 1, normalize each frequency band by its average power pnorm = 2, normalize each frequency band by the average power during the preceding baseline period :param vm: float to set saturation level of colormap :param pplot: plot figure yes=True, no=False :param psave: save the figure, yes=True, no = False :param tstart: float, starting time point. Only lasers trials after tstart will be considered :param tend: float, only laser trials up to tend will be considered; if tend==-1, use whole recording :param peeg2: if True, use EEG channel 2 :param prune_trials: if True, throw out trials with EEG or EMG artifacts :param mu: tuple; range used for EMG amplitude calculation :param trig_state: int; if > 0, only use trials where brain is at laser onset in brainstate trig_state 1=REM, 2=Wake, 3=NREM :param harmcs: if >0, interpolate all frequencies corresponding to multiples of harmcs by the average power of the two neighboring frequencies. :param iplt_level: options - 1 or 2. If 1 only take one neighboring frequency above and below the harmonic; if 2, take 2 neighbors above and below, respectively """ def _interpolate_harmonics(SP, freq, f_max, harmcs, iplt_level): df = freq[2]-freq[1] for h in np.arange(harmcs, f_max, harmcs): i = np.argmin(np.abs(freq - h)) if np.abs(freq[i] - h) < df and h != 60: if iplt_level == 2: SP[i,:] = (SP[i-2:i,:] + SP[i+1:i+3,:]).mean(axis=0) * 0.5 else: SP[i,:] = (SP[i-1,:] + SP[i+1,:]) * 0.5 return SP SR = get_snr(ppath, name) NBIN = np.round(2.5*SR) lsr = load_laser(ppath, name) idxs, idxe = laser_start_end(lsr) laser_dur = np.mean((idxe-idxs)/SR) print('%s: Average laser duration: %f; Number of trials %d' % (name, laser_dur, len(idxs))) # downsample EEG time to spectrogram time idxs = [int(i/NBIN) for i in idxs] idxe = [int(i/NBIN) for i in idxe] #load EEG and EMG P = so.loadmat(os.path.join(ppath, name, 'sp_' + name + '.mat')) Q = so.loadmat(os.path.join(ppath, name, 'msp_' + name + '.mat')) if not peeg2: SPEEG = np.squeeze(P['SP']) else: SPEEG = np.squeeze(P['SP2']) SPEMG = np.squeeze(Q['mSP']) freq = np.squeeze(P['freq']) t = np.squeeze(P['t']) dt = float(np.squeeze(P['dt'])) ifreq = np.where(freq<=f_max)[0] ipre = int(np.round(pre/dt)) ipost = int(np.round(post/dt)) speeg_mean = SPEEG.mean(axis=1) spemg_mean = SPEMG.mean(axis=1) # interpolate frequencies corresponding to harmonics of $harmcs if harmcs > 0: SPEEG = _interpolate_harmonics(SPEEG, freq, f_max, harmcs) SPEMG = _interpolate_harmonics(SPEMG, freq, f_max, harmcs) if tend > -1: i = np.where((
np.array(idxs)
numpy.array
import numpy as np import matplotlib.pyplot as plt from math import cos, sin, tan, pi import math import time class DHparam: """DHパラメータ""" def __init__(self, alpha, a, d, theta): self.alpha = alpha self.a = a self.d = d self.theta = theta class HomogeneousTransformationMatrix: """同次変換行列""" def __init__(self, DHparam=None, M=None): self.update(DHparam, M) return def update(self, p, M): """情報を更新""" if M is not None: self.t = M # 同次変換行列 else: self.t = np.array([ [cos(p.theta), -sin(p.theta), 0, p.a], [sin(p.theta)*cos(p.alpha), cos(p.theta)*cos(p.alpha), -sin(p.alpha), -p.d*sin(p.alpha)], [sin(p.theta)*sin(p.alpha), cos(p.theta)*sin(p.alpha), cos(p.alpha), p.d*cos(p.alpha)], [0, 0, 0, 1], ]) # 同次変換行列 self.o = self.t[0:3, 3:4] self.R = self.t[0:3, 0:3] self.rx = self.t[0:3, 0:1] self.ry = self.t[0:3, 1:2] self.rz = self.t[0:3, 2:3] return def __mul__(self, other): M = self.t @ other.t return HomogeneousTransformationMatrix(DHparam=None, M=M) # # H~クラスのテスト # A = np.array([ # [1, 2, 3, 4], # [5, 6, 7, 8], # [9, 10, 11, 12], # [13, 14, 15, 16], # ]) # B = A + 1 # print(A @ B) # A_ = HomogeneousTransformationMatrix(DHparam=None, M=A) # B_ = HomogeneousTransformationMatrix(DHparam=None, M=B) # C_ = A_ * B_ # print(C_.t) # パラメータ L = 278e-3 h = 64e-3 H = 1104e-3 L0 = 270.35e-3 L1 = 69e-3 L2 = 364.35e-3 L3 = 69e-3 L4 = 374.29e-3 L5 = 10e-3 L6 = 368.3e-3 q_neutral = np.array([[0, -31, 0, 43, 0, 72, 0]]).T * pi/180 # ニュートラルの姿勢 qr = q_neutral # 右手の関節角度ベクトル ql = q_neutral # 左手の関節角度ベクトル DHparams_r = [ DHparam(0, 0, 0, qr[0, 0]), DHparam(-pi/2, L1, 0, qr[1, 0]+pi/2), DHparam(pi/2, 0, L2, qr[2, 0]), DHparam(-pi/2, L3, 0, qr[3, 0]), DHparam(pi/2, 0, L4, qr[4, 0]), DHparam(-pi/2, L5, 0, qr[5, 0]), DHparam(pi/2, 0, 0, qr[6, 0]), ] DHparams_l = [ DHparam(0, 0, 0, ql[0, 0]), DHparam(-pi/2, L1, 0, ql[1, 0]+pi/2), DHparam(pi/2, 0, L2, ql[2, 0]), DHparam(-pi/2, L3, 0, ql[3, 0]), DHparam(pi/2, 0, L4, ql[4, 0]), DHparam(-pi/2, L5, 0, ql[5, 0]), DHparam(pi/2, 0, 0, ql[6, 0]), ] # 制御点のローカル座標 r_bar_1 = [ np.array([[0, L1/2, -L0/2, 1]]).T, np.array([[0, -L1/2, -L0/2, 1]]).T, np.array([[L1/2, 0, -L0/2, 1]]).T, np.array([[-L1/2, 0, -L0/2, 1]]).T, ] # 1座標系からみた制御点位置 r_bar_2 = [ np.array([[0, 0, L3/2, 1]]).T, np.array([[0, 0, -L3/2, 1]]).T, ] r_bar_3 = [ np.array([[0, L3/2, -L2*2/3, 1]]).T, np.array([[0, -L3/2, -L2*2/3, 1]]).T, np.array([[L3/2, 0, -L2*2/3, 1]]).T, np.array([[-L3/2, 0, -L2*2/3, 1]]).T, np.array([[0, L3/2, -L2*1/3, 1]]).T, np.array([[0, -L3/2, -L2*1/3, 1]]).T, np.array([[L3/2, 0, -L2*1/3, 1]]).T, np.array([[-L3/2, 0, -L2*1/3, 1]]).T, ] r_bar_4 = [ np.array([[0, 0, L3/2, 1]]).T, np.array([[0, 0, -L3/2, 1]]).T, ] r_bar_5 = [
np.array([[0, L5/2, -L4/2, 1]])
numpy.array
import math import numpy as np import sys resolutionHor = 256 resolutionVert = 256 scale = 20 # fill cells for cell noise cells0 = np.random.random_sample((scale , scale , scale , 3)) cells1 = np.random.random_sample((scale*2, scale*2, scale*2, 3)) cells2 = np.random.random_sample((scale*4, scale*4, scale*4, 3)) cells3 = np.random.random_sample((scale*8, scale*8, scale*8, 3)) # create 3d image image = np.empty((resolutionHor, resolutionHor, resolutionVert, 4)) sys.stdout.write('slice 0/' + str(resolutionVert)) for x in range(resolutionHor): for y in range(resolutionHor): for z in range(resolutionVert): refpos0 = ((np.array([x, y, z]) + 0.5) / resolutionHor) * scale refpos1 = ((np.array([x, y, z]) + 0.5) / resolutionHor) * scale*2 refpos2 = ((np.array([x, y, z]) + 0.5) / resolutionHor) * scale*4 refpos3 = ((np.array([x, y, z]) + 0.5) / resolutionHor) * scale*8 posi0 = np.floor(refpos0) posi1 = np.floor(refpos1) posi2 =
np.floor(refpos2)
numpy.floor
import logging import calendar import csv import datetime import logging import os import numpy as np import pandas as pd from mswh.tools.unit_converters import UnitConv log = logging.getLogger(__name__) class SourceAndSink(object): """Generates timeseries that are inputs to the simulation model and are known prior to the simulation, such as outdoor air temperature and end use load profiles. Parameters: input_dfs: a dict of pd dfs Dictionary of input dataframes as read in from the input db by the :func:`Sql <Sql>` class (see example in :func:`test_source_and_sink.SourceAndSinkTests.setUp <test_source_and_sink.SourceAndSinkTests.setUp>`) random_state: numpy random state object or an integer numpy random state object : if there is a need to maintain the same random seed throughout the analysis. integer : a new random state object gets instanteated at init log_level: None or python logger logging level, Default: logging.DEBUG This applies for a subset of the class functionality, mostly used to deprecate logger messages for certain calculations. For Example: log_level = logging.ERROR will only throw error messages and ignore INFO, DEBUG and WARNING. """ def __init__( self, input_dfs=None, random_state=123, log_level=logging.DEBUG ): # log level (e.g. only partial functionality of the class # is being used and one does not desire to see all infos) self.log_level = log_level logging.getLogger().setLevel(log_level) self.data = input_dfs # define the random state object which enbles random draw # repeatability if isinstance(random_state, int): msg = ( "The user did not provide a numpy random state " "object. Initiating one with a provided or default" " seed value = {}." ) log.info(msg.format(random_state)) self.random_state = np.random.RandomState(random_state) else: self.random_state = random_state def irradiation_and_water_main( self, climate_zone, collector_tilt="latitude", tilt_standard_deviation=None, collector_azimuth=0.0, azimuth_standard_deviation=None, location_ground_reflectance=0.16, solar_constant_Wm2=1367.0, method="isotropic diffuse", weather_data_source="cec", single_row_with_arrays=False, ): """Calculates the hourly total incident radiation on a tilted surface for any climate zone in California. If weather data from the provided database are passed as `input_dfs`, the user can specify a single climate. Two separate methods are available for use, with all equations (along with the equation numbers provided in comments) as provided in <NAME> and <NAME>, Solar engineering of thermal processes, 3rd ed. Hoboken, N.J: Wiley, 2006. Parameters: climate_zone: string String of two digits to indicate the CEC climate zone being analyzed ('01' to '16'). collector_azimuth: float, default: 0. The deviation of the projection on a horizontal plane of the normal to the collector surface from the local meridian, in degrees. Allowable values are between +/- 180 degrees (inclusive). 0 degrees corresponds to due south, east is negative, and west is positive. Default value is 0 degrees (due south). azimuth_standard_deviation: float, default: 'None' Final collector azimuth is a value drawn using a normal distribution around the collector_azimuth value with a azimuth_standard_deviation standard deviation. If set to 'None' the final collector azimuth equals collector_azimuth collector_tilt: float, default: 'latitude' The angle between the plane of the collector and the horizontal, in degrees. Allowable values are between 0 and 180 degrees (inclusive), and values greater than 90 degrees mean that the surface has a downward-facing component. If a default flag is left unchanged, the code will assign latitude value to the tilt as a good approximation of a design collector or PV tilt. tilt_standard_deviation: float, default: 'None' Final collector tilt is a value drawn using a normal distribution around the collector_tilt value with a tilt_standard_deviation standard deviation. If set to 'None' the final collector tilt equals collector_tilt location_ground_reflectance: float, default: 0.16 The degree of ground reflectance. Allowable values are 0-1 (inclusive), with 0 meaning no reflectance and 1 meaning very high reflectance. For reference, fresh snow has a high ground reflectance of ~ 0.7. Default value is 0.16, which is the annual average surface albedo averaged across the 16 CEC climate zones. method: string, default: 'HDKR anisotropic sky' Calculation method to use for estimating the total irradiance on the tilted collector surface. See notes below. Default value is 'HDKR anisotropic sky.' solar_constant_Wm2: float, default: 1367. Energy from the sun per unit time received on a unit area of surface perpendicular to the direction of propagation of the radiation at mean earth-sun distance outside the atmosphere. Default value is 1367 W/m^2. weather_data_source: string, default: 'cec' The type of weather data being used to analyze the climate zone for solar insolation. Allowable values are 'cec' and 'tmy3.' Default value is 'cec.' single_row_with_arrays : boolean A flag to reformat the resulting dataframe in a row of data where each resulting 8760 is stored as an array Returns: data: pd df Weather data frame with appended columns: 'global_tilt_radiation_Wm2', 'water_main_t_F', 'water_main_t_C', 'dry_bulb_C', 'wet_bulb_C', 'Tilt', 'Azimuth'] Notes: The user can select one of two methods to use for this calculation: 1) 'isotropic diffuse': This model was derived by <NAME> Jordan (1963). All diffuse radiation is assumed to be isotropic. It is the simpler and more conservative model, and it has been widely used. 2) 'HDKR anisotropic sky': This model combined methods from Hay and Davies (1980), Klucher (1979), and Reindl, et al. (1990). Diffuse radiation in this model is represented in two parts: isotropic and circumsolar. The model also accounts for horizon brightening. This is also a simple model, but it has been found to be slightly more accurate (and less conservative) than the 'isotropic diffuse' model. For collectors tilted toward the equator, this model is suggested. """ # Read in CEC weather data # Ensure climate_zone is a string and has a leading '0,' if needed climate_zone = str(climate_zone) if len(climate_zone) == 1: climate_zone = "0" + climate_zone # There are only 16 climate zones in CA, so ensure a valid zone # is provided. try: climate_zone_int = int(climate_zone) except: msg = ( "Climate zone value ({}) is not a number. Please" " ensure the climate zone is a number from 1-16, represented" " as a string." ) log.error(msg.format(climate_zone)) raise ValueError if (climate_zone_int > 16) | (climate_zone_int < 0): msg = ( "Climate zone in CA must be a number from 1-16." " Further available climate zone codes are: 0 " " for Banja Luka, BIH." ) log.error(msg) raise ValueError # draw azimuth value from a distribution if standard # deviation provided if azimuth_standard_deviation: azimuth_mean = collector_azimuth collector_azimuth = self.random_state.normal( azimuth_mean, azimuth_standard_deviation ) # Ensure collector_azimuth is between -180 (due east) and # +180 (due west) if (collector_azimuth > 180.0) | (collector_azimuth < -180.0): msg = ( "Collector azimuth angle must be a number between" " -180 degrees (due east) and +180 degrees (due west)." ) log.error(msg) raise ValueError # Ensure location_ground_reflectance is between 0 and 1. if (location_ground_reflectance > 1.0) | ( location_ground_reflectance < 0.0 ): msg = ( "The annual average location ground reflectance must" " be a number between 0. (no reflectance) and 1 (perfect" " reflectance)." ) log.error(msg) raise ValueError # Ensure the provided solar constant is reasonable if (solar_constant_Wm2 > 1450.0) | (solar_constant_Wm2 < 1300.0): msg = ( "The accepted solar constant is near 1367. W/m^2." " Please select a reasonable solar constant value that is" " between 1300. and 1450. W/m^2." ) log.error(msg) raise ValueError # Ensure selected method type is valid if (method != "isotropic diffuse") & ( method != "HDKR anisotropic sky" ): msg = ( "This model only calculated results for two models:" " 'isotropic diffuse' and 'HDKR anisotropic sky'." ) log.error(msg) raise ValueError # Read in header data to get latitude and longitude of given # climate zone if weather_data_source == "cec": key = "CTZ" + climate_zone + "S13b" header = pd.DataFrame(data=self.data[key].iloc[:20, :2]) header_data = pd.Series( data=header.iloc[:, 1].values, index=header.iloc[:, 0] ) # latitude in degrees, north = positive latitude = float(header_data["Latitude"]) # longitude in degrees, west = positive longitude = abs(float(header_data["Longitude"])) elif weather_data_source == "tmy3": # Map CEC climate zone to proper tmy3 weather file climate_zone_to_tmy3 = { # California, USA "01": "725945", "02": "724957", "03": "724930", "04": "724945", "05": "723940", "06": "722970", "07": "722900", "08": "722976", "09": "722880", "10": "722869", "11": "725910", "12": "724830", "13": "723890", "14": "723820", "15": "722868", "16": "725845", # Banja Luka, BIH "00": "145420", } key = climate_zone_to_tmy3[climate_zone] + "TY" # latitude in degrees, north = positive latitude = float(self.data[key].iloc[0, 4]) # longitude in degrees, west = positive longitude = abs(float(self.data[key].iloc[0, 5])) # set the tilt to latitude if no custom tilt got provided if collector_tilt == "latitude": collector_tilt = latitude # check tilt data type elif not isinstance(collector_tilt, float): msg = ( "Collector tilt value ({}) is neither a float nor" " 'latitude'. Please use an allowed value." ) log.error(msg.format(collector_tilt)) raise ValueError # draw tilt value from a distribution if standard deviation provided if tilt_standard_deviation: tilt_mean = collector_tilt collector_tilt = self.random_state.normal( tilt_mean, tilt_standard_deviation ) # Read in actual weather data for the given climate zone if weather_data_source == "cec": key = "CTZ" + climate_zone + "S13b" solar_data = pd.DataFrame( data=self.data[key].iloc[26:, :].values, columns=self.data[key].iloc[25, :], ) solar_data.columns = [x.lower() for x in solar_data.columns] # deal with data formats as needed solar_data = solar_data.astype(float) solar_data[solar_data.columns[:3]] = solar_data[ solar_data.columns[:3] ].astype(int) # Rename solar columns solar_data.rename( columns={ "global horizontal radiation": "global_horizontal_radiation_Wm2", "direct normal radiation": "direct_normal_radiation_Wm2", "diffuse horiz radiation": "diffuse_horizontal_radiation_Wm2", }, inplace=True, ) # Convert solar units from Btu/hr/ft^2 to W/m^2 solar_data.global_horizontal_radiation_Wm2 *= 3.15459075 solar_data.direct_normal_radiation_Wm2 *= 3.15459075 solar_data.diffuse_horizontal_radiation_Wm2 *= 3.15459075 solar_data["climate_zone"] = climate_zone # The hour data from the CEC is for the end of the hour; # we're setting it to be the start of the hour solar_data.hour -= 1 elif weather_data_source == "tmy3": solar_data = self.data[key].iloc[2:, :] solar_data = solar_data.apply(pd.to_numeric, errors="ignore") solar_data.columns = self.data[key].iloc[1, :] solar_data.columns = [x.lower() for x in solar_data.columns] # Rename solar columns solar_data.rename( columns={ "etr (w/m^2)": "extraterrestrial_horizontal_radiation_Wm2", "etrn (w/m^2)": "extraterrestrial_normal_radiation_Wm2", "ghi (w/m^2)": "global_horizontal_radiation_Wm2", "dni (w/m^2)": "direct_normal_radiation_Wm2", "dhi (w/m^2)": "diffuse_horizontal_radiation_Wm2", "alb (unitless)": "surface_albedo", }, inplace=True, ) solar_data["month"] = solar_data.apply( lambda x: int(x["date (mm/dd/yyyy)"][:2]), axis=1 ) solar_data["day"] = solar_data.apply( lambda x: int(x["date (mm/dd/yyyy)"][3:5]), axis=1 ) solar_data["hour"] = solar_data.apply( lambda x: int(x["time (hh:mm)"][:2]) - 1, axis=1 ) # The TMY3 data contain surface albedo values that can be used # Ensure missing values (coded as -9900) are replaced with the # average of the available data solar_data.surface_albedo = np.where( solar_data.surface_albedo == -9900.0, np.nan, solar_data.surface_albedo, ) solar_data.surface_albedo = np.where( np.isnan(solar_data.surface_albedo), solar_data.surface_albedo.mean(), solar_data.surface_albedo, ) location_ground_reflectance = solar_data.surface_albedo.values solar_data["day_number_of_year"] = solar_data.apply( lambda x: datetime.datetime(2018, x.month, x.day) .timetuple() .tm_yday, axis=1, ) solar_data = self._add_season_column(solar_data) # Calculate solar time: # Solar time - standard time [minutes]= 4 * # (longitude_standard - longitude_location) + E # where: longitude_standard = 15 * (PST-GMT), # and PST-GMT is always -8 hours # Calculate E (equation of time, in minutes) B = ( (solar_data.day_number_of_year - 1) * 360.0 / 365.0 ) # Equation 1.4.2 E_minutes = 229.2 * ( 0.000075 + (0.001868 * np.cos(B)) - (0.032077 * np.sin(B)) - (0.014615 * np.cos(2 * B)) - (0.04089 * np.sin(2 * B)) ) # Equation 1.5.3 # REMEMBER: longitudes are in degrees West, meaning they should # both be positive here for California! minutes_to_add = (4.0 * ((15.0 * 8.0) - longitude)) + E_minutes solar_time = solar_data.hour + minutes_to_add / 60.0 # in hours # Calculate the hour angle # hour_angle = 15 degrees per hour away from solar noon (12), # with morning being negative hour_angle_start = 15.0 * (solar_time - 12.0) hour_angle_end = 15.0 * (solar_time + 1.0 - 12.0) # Calculate the declination angle for the day (declination_angle) declination_angle = (180.0 / np.pi) * ( 0.006918 - (0.399912 * np.cos(np.radians(B))) + (0.070257 * np.sin(np.radians(B))) - (0.006758 * np.cos(2 * np.radians(B))) + (0.000907 * np.sin(2 * np.radians(B))) - (0.002697 * np.cos(3 * np.radians(B))) + (0.001480 * np.sin(3 * np.radians(B))) ) # Equation 1.6.1b # Calculate the ratio of beam radiation to that on a horizontal # surface for the collector, averaged over the hour of consideration # (to avoid mathematical issues that can arise for hours in which # sunrise or sunset occurs) R_b_a = ( ( ( ( np.sin(np.radians(declination_angle)) * np.sin(np.radians(latitude)) * np.cos(np.radians(collector_tilt)) ) - ( np.sin(np.radians(declination_angle)) * np.cos(np.radians(latitude)) * np.sin(np.radians(collector_tilt)) * np.cos(np.radians(collector_azimuth)) ) ) * np.radians(hour_angle_end - hour_angle_start) ) + ( ( ( np.cos(np.radians(declination_angle)) * np.cos(np.radians(latitude)) * np.cos(np.radians(collector_tilt)) ) + ( np.cos(np.radians(declination_angle)) * np.sin(np.radians(latitude)) * np.sin(np.radians(collector_tilt)) * np.cos(np.radians(collector_azimuth)) ) ) * ( np.sin(np.radians(hour_angle_end)) - np.sin(np.radians(hour_angle_start)) ) ) - ( np.cos(np.radians(declination_angle)) * np.sin(np.radians(collector_tilt)) * np.sin(np.radians(collector_azimuth)) * ( np.cos(np.radians(hour_angle_end)) - np.cos(np.radians(hour_angle_start)) ) ) ) R_b_b = ( ( np.cos(np.radians(latitude)) * np.cos(np.radians(declination_angle)) ) * ( np.sin(np.radians(hour_angle_end)) - np.sin(np.radians(hour_angle_start)) ) ) + ( ( np.sin(np.radians(latitude)) * np.sin(np.radians(declination_angle)) ) * (np.radians(hour_angle_end - hour_angle_start)) ) R_b_ave = R_b_a / R_b_b # Equation 2.14.6 # Calculate horizontal radiation in absense of atmosphere # (Equation 1.10.4, [J/m^2]) if weather_data_source == "cec": extraterrestrial_horizontal_radiation_Jm2 = ( 12.0 * 3600.0 / np.pi * solar_constant_Wm2 * ( 1.0 + 0.033 * np.cos(360.0 * solar_data.day_number_of_year / 365.0) ) * ( ( np.cos(np.radians(latitude)) * np.cos(np.radians(declination_angle)) * ( np.sin(np.radians(hour_angle_end)) - np.sin(np.radians(hour_angle_start)) ) ) + ( np.pi / 180.0 * (hour_angle_end - hour_angle_start) * np.sin(np.radians(latitude)) * np.sin(np.radians(declination_angle)) ) ) ) # Convert to W/m^2 and ensure the values aren't less than 0. solar_data["extraterrestrial_horizontal_radiation_Wm2"] = ( extraterrestrial_horizontal_radiation_Jm2 * 0.000277777778 ) solar_data.extraterrestrial_horizontal_radiation_Wm2 = np.where( solar_data.extraterrestrial_horizontal_radiation_Wm2 < 0.0, 0.0, solar_data.extraterrestrial_horizontal_radiation_Wm2, ) # Calculate beam radiation on a horizontal plane solar_data["beam_horizontal_radiation_Wm2"] = ( solar_data.global_horizontal_radiation_Wm2 - solar_data.diffuse_horizontal_radiation_Wm2 ) # Calculate total radiation on a tilted surface using the isotropic # diffuse model. if method == "isotropic diffuse": solar_data["global_tilt_radiation_Wm2"] = ( (solar_data.beam_horizontal_radiation_Wm2 * R_b_ave) + ( solar_data.diffuse_horizontal_radiation_Wm2 * ((1 + np.cos(np.radians(collector_tilt))) / 2.0) ) + ( solar_data.global_horizontal_radiation_Wm2 * location_ground_reflectance * ((1 - np.cos(np.radians(collector_tilt))) / 2.0) ) ) # Equation 2.15.1 elif method == "HDKR anisotropic sky": # Calculate the anisotropy index anisotropy_index = ( solar_data.beam_horizontal_radiation_Wm2 / solar_data.extraterrestrial_horizontal_radiation_Wm2 ) # Equation 2.16.3 # Calculate the modulating factor, f f = ( solar_data.beam_horizontal_radiation_Wm2 / solar_data.global_horizontal_radiation_Wm2 ) ** 0.5 # Equation 2.16.6 solar_data["global_tilt_radiation_Wm2"] = ( ( ( solar_data.beam_horizontal_radiation_Wm2 + ( solar_data.diffuse_horizontal_radiation_Wm2 * anisotropy_index ) ) * R_b_ave ) + ( solar_data.diffuse_horizontal_radiation_Wm2 * (1 - anisotropy_index) * ((1 + np.cos(np.radians(collector_tilt))) / 2.0) * ( 1 + (f * (np.sin(np.radians(collector_tilt / 2.0)) ** 3)) ) ) + ( solar_data.global_horizontal_radiation_Wm2 * location_ground_reflectance * ((1 - np.cos(np.radians(collector_tilt))) / 2.0) ) ) # Equation 2.16.7 # You can't get negative energy collection # It's also probably unreasonable to expect > 2000 W/m^2 # In comparisons with PVWatts results, when our model predicts # > 2000 W/m^2, it is due to a mathematical # anomaly where the actual result should be closer to 0. solar_data.global_tilt_radiation_Wm2 = np.where( (solar_data.global_tilt_radiation_Wm2 < 0.0) | (solar_data.global_tilt_radiation_Wm2 >= 2000.0), 0.0, solar_data.global_tilt_radiation_Wm2, ) # To avoid NaNs and other weird values, set the result to 0 if global # and diffuse horizontal are both 0 solar_data.global_tilt_radiation_Wm2 = np.where( (solar_data.global_horizontal_radiation_Wm2 == 0.0) & (solar_data.diffuse_horizontal_radiation_Wm2 == 0.0), 0.0, solar_data.global_tilt_radiation_Wm2, ) # Read in water mains temperature data # We only need one hour's worth of data for each month and location # because the provided # temperatures are equal for each hour of the day. water_mains_data = self.data["Appendix_54B_Schedules_WaterMain"].iloc[ 3:, 0:3 ] water_mains_data.columns = [ "climate_zone_water", "month_abb", "water_main_t_F", ] # Fill the climate zone forward # Only get water mains data for the climate zone we are analyzing # for all climate zones is CA if (climate_zone_int <= 16) and (climate_zone_int >= 1): climate_zone_water_main = climate_zone # for any additional climate zones of interest elif climate_zone == "00": climate_zone_water_main = "11" water_mains_data = water_mains_data.fillna(method="ffill") water_mains_data = water_mains_data.loc[ water_mains_data.climate_zone_water == "WaterMainCZ" + climate_zone_water_main ] # Convert calendar abbreviation to calendar number water_mains_data["month_num"] = water_mains_data.apply( lambda x: list(calendar.month_abbr).index(x.month_abb), axis=1 ) # Drop unused columns and merge with the weather data data = pd.merge( left=solar_data, right=water_mains_data, how="left", left_on="month", right_on="month_num", ) # convert temperatures from F to C data["water_main_t_C"] = UnitConv(data["water_main_t_F"]).degF_degC( unit_in="degF" ) if weather_data_source == "cec": data["dry_bulb_C"] = UnitConv(data["dry bulb"]).degF_degC( unit_in="degF" ) data["wet_bulb_C"] = UnitConv(data["wet bulb"]).degF_degC( unit_in="degF" ) elif weather_data_source == "tmy3": data["dry_bulb_C"] = data["dry-bulb (c)"] # Derive wet bulb temperature from dry bulb temperature and # relative humidity data["wet_bulb_C"] = self._wet_bulb_approx( data["dry_bulb_C"], data["rhum (%)"] ) # add collector tilt value data["Tilt"] = collector_tilt data["Azimuth"] = collector_azimuth data.drop( columns=["climate_zone_water", "month_abb", "month_num"], inplace=True, ) if single_row_with_arrays: data = self._pack_timeseries(data) return data @staticmethod def _wet_bulb_approx(dry_bulb_C, rel_hum): """Converts dry bulb temperature to wet bulb by using an approximation provided in this paper (<NAME>): https://journals.ametsoc.org/doi/pdf/10.1175/JAMC-D-11-0143.1 The provided formula is designed for a pressure like at sea level of 1013.25 hPa. Parameters: dry_bulb_C: pd df Timeseries containing dry bulb temperature in Celsius [degC] rel_hum: pd df Timeseries containing relative Humidity in percent (0 - 100) Returns: wet_bulb_C: pd df Timeseries containing wet bulb temperature in Celcius [degC] """ # Calculate wet bulb temperature wet_bulb_C = ( dry_bulb_C * np.arctan(0.151977 * np.power((rel_hum + 8.313659), 0.5)) + np.arctan(dry_bulb_C + rel_hum) - np.arctan(rel_hum - 1.676331) + 0.00391838 * np.power(rel_hum, 1.5) *
np.arctan(0.023101 * rel_hum)
numpy.arctan
# Copyright Contributors to the Pyro project. # SPDX-License-Identifier: Apache-2.0 # lightly adapted from https://github.com/pyro-ppl/pyro/blob/dev/tests/nn/ import numpy as onp from numpy.testing import assert_allclose, assert_array_equal import pytest from jax import jacfwd, random, vmap import jax.numpy as np from jax.experimental.stax import serial from numpyro.contrib.nn import AutoregressiveNN, MaskedDense from numpyro.contrib.nn.auto_reg_nn import create_mask from numpyro.contrib.nn.block_neural_arn import BlockNeuralAutoregressiveNN from numpyro.distributions.util import matrix_to_tril_vec @pytest.mark.parametrize('input_dim', [5]) @pytest.mark.parametrize('param_dims', [[1], [1, 1], [2], [2, 3]]) @pytest.mark.parametrize('hidden_dims', [[8], [6, 7]]) @pytest.mark.parametrize('skip_connections', [True, False]) def test_auto_reg_nn(input_dim, hidden_dims, param_dims, skip_connections): rng_key, rng_key_perm = random.split(random.PRNGKey(0)) perm = random.shuffle(rng_key_perm, onp.arange(input_dim)) arn_init, arn = AutoregressiveNN(input_dim, hidden_dims, param_dims=param_dims, skip_connections=skip_connections, permutation=perm) batch_size = 4 input_shape = (batch_size, input_dim) _, init_params = arn_init(rng_key, input_shape) output = arn(init_params,
onp.random.rand(*input_shape)
numpy.random.rand
"""Molecular geometric feature representation based on numpy. a loose collection of functions. Modular functions to compute distance matrix, angles, coordinates, connectivity, etc. Many functions are written for batches too. Ideally all functions are vectorized. Note: All functions are supposed to work out of the box without any dependencies, i.e. do not depend on each other. """ import numpy as np def coordinates_to_distancematrix(coord3d): """ Transform coordinates to distance matrix. Will apply transformation on last dimension. Changing of shape (...,N,3) -> (...,N,N) Arg: coord3d (np.array): Coordinates of shape (...,N,3) for cartesian coordinates (x,y,z) and N the number of atoms or points. Coordinates are last dimension. Returns: np.array: distance matrix as numpy array with shape (...,N,N) where N is the number of atoms """ shape_3d = len(coord3d.shape) a = np.expand_dims(coord3d, axis=shape_3d - 2) b = np.expand_dims(coord3d, axis=shape_3d - 1) c = b - a d = np.sqrt(np.sum(np.square(c), axis=shape_3d)) return d def invert_distance(d, nan=0, posinf=0, neginf=0): """ Invert distance array, e.g. distance matrix. Inversion is done for all entries. Keeping of shape (...,) -> (...,) Args: d (np.array): array of distance values of shape (...,) nan (value): replacement for np.nan after division, default = 0 posinf (value): replacement for np.inf after division, default = 0 neginf (value): replacement for -np.inf after division, default = 0 Returns: np.array: Inverted distance array as numpy array of identical shape (...,) and replaces np.nan and np.inf with e.g. 0 """ with np.errstate(divide='ignore', invalid='ignore'): c = np.true_divide(1, d) # c[c == np.inf] = 0 c = np.nan_to_num(c, nan=nan, posinf=posinf, neginf=neginf) return c def inversedistancematrix_to_coulombmatrix(dinv, proton_number): """ Calculate Coulombmatrix from inverse distance Matrix plus nuclear charges/proton number. Transform shape as (...,N,N) + (...,N) -> (...,N,N) Args: dinv (np.array): Inverse distance matrix defined at last two axis. Array of shape (...,N,N) with N number of atoms storing inverse distances. proton_number (np.array): Nuclear charges given in last dimension. Order must match entries in inverse distance matrix. array of shape (...,N) Returns: np.array: Numpy array with Coulombmatrix at last two dimension (...,N,N). Function multiplies Z_i*Z_j with 1/d_ij and set diagonal to 0.5*Z_ii^2.4 """ shape_z = proton_number.shape a = np.expand_dims(proton_number, axis=len(shape_z) - 1) b = np.expand_dims(proton_number, axis=len(shape_z)) c = a * b coul = dinv * c indslie = np.arange(0, shape_z[-1]) coul[..., indslie, indslie] = np.power(proton_number, 2.4) * 0.5 return coul def value_to_onehot(vals, compare): """ Convert array of values e.g. nuclear charge to one-hot representation thereof. a dictionary of all possible values is required. Expands shape from (...,) + (M,) -> (...,M) Args: vals (np.array): array of values to convert. compare (np.array): 1D-numpy array with a list of possible values. Returns: np.array: a one-hot representation of vals input with expanded last dimension to match the compare dictionary. Entries are 1.0 if vals == compare[i] and 0.0 else """ comp = np.array(compare, dtype=vals.dtype) vals_shape = vals.shape vals = np.expand_dims(vals, axis=-1) comp = np.broadcast_to(comp, vals_shape + comp.shape) # shape (1,1,...,M) out = np.array(vals == comp, dtype=np.float32) return out def coulombmatrix_to_inversedistance_proton(coulmat, unit_conversion=1): """Convert a coulomatrix back to inverse distancematrix + atomic number. (...,N,N) -> (...,N,N) + (...,N) Args: coulmat (np.array): Full Coulombatrix of shape (...,N,N) unit_conversion (float) : Whether to scale units for distance. Default is 1. Returns: tuple: [inv_dist,z] - inv_dist(np.array): Inverse distance Matrix of shape (...,N,N) - z(np.array): Atom Number corresponding diagonal as proton number. """ indslie = np.arange(0, coulmat.shape[-1]) z = coulmat[..., indslie, indslie] z = np.power(2 * z, 1 / 2.4) a = np.expand_dims(z, axis=len(z.shape) - 1) b = np.expand_dims(z, axis=len(z.shape)) zz = a * b c = coulmat / zz c[..., indslie, indslie] = 0 c /= unit_conversion z = np.array(np.round(z), dtype=np.int) return c, z def distance_to_gaussdistance(distance, bins=30, gauss_range=5.0, gauss_sigma=0.2): """Convert distance array to smooth one-hot representation using Gaussian functions. Changes shape for gaussian distance (...,) -> (...,GBins) The Default values match units in Angstroem. Args: distance (np.array): Array of distances of shape (...,) bins (int): number of Bins to sample distance from, default = 30 gauss_range (value): maximum distance to be captured by bins, default = 5.0 gauss_sigma (value): sigma of the gaussian function, determining the width/sharpness, default = 0.2 Returns: np.array: Numpy array of gaussian distance with expanded last axis (...,GBins) """ gamma = 1 / gauss_sigma / gauss_sigma * (-1) / 2 d_shape = distance.shape edge_dist_grid = np.expand_dims(distance, axis=-1) edge_gaus_bin = np.arange(0, bins, 1) / bins * gauss_range edge_gaus_bin = np.broadcast_to(edge_gaus_bin, np.append(np.ones(len(d_shape), dtype=np.int32), edge_gaus_bin.shape)) # shape (1,1,...,bins) edge_gaus_bin = np.square(edge_dist_grid - edge_gaus_bin) * gamma # (N,M,...,1) - (1,1,...,bins) edge_gaus_bin = np.exp(edge_gaus_bin) return edge_gaus_bin def sort_distmatrix(distance_matrix): """ Sort a flexible shaped distance matrix along last dimension. Keeps shape (...,N,M) -> index (...,N,M) + sorted (...,N,M) Args: distance_matrix (np.array): Matrix of distances of shape (...,N,M) Returns: tuple: [sorting_index, sorted_distance] - sorting_index (np.array): Indices of sorted last dimension entries. Shape (...,N,M) - sorted_distance (np.array): Sorted distance Matrix, sorted at last dimension. """ sorting_index = np.argsort(distance_matrix, axis=-1) sorted_distance = np.take_along_axis(distance_matrix, sorting_index, axis=-1) return sorting_index, sorted_distance def get_connectivity_from_inversedistancematrix(invdistmat, protons, radii_dict=None, k1=16.0, k2=4.0 / 3.0, cutoff=0.85, force_bonds=True): """ Get connectivity table from inverse distance matrix defined at last dimensions (...,N,N) and corresponding bond-radii. Keeps shape with (...,N,N). Covalent radii, from Pyykko and Atsumi, Che<NAME>. J. 15, 2009, 188-197. Values for metals decreased by 10% according to <NAME>'s Sterimol implementation. Partially based on code from <NAME>'s Sterimol script, which based this part on Grimme's D3 code Args: invdistmat (np.array): inverse distance matrix defined at last dimensions (...,N,N) distances must be in Angstroem not in Bohr protons (np.array): An array of atomic numbers matching the invdistmat (...,N), for which the radii are to be computed. radii_dict (np.array): covalent radii for each element. If default=None, stored values are used. Otherwise array with covalent bonding radii. example: np.array([0, 0.24, 0.46, 1.2, ...]) from {'H': 0.34, 'He': 0.46, 'Li': 1.2, ...} k1 (value): default = 16 k2 (value): default = 4.0/3.0 cutoff (value): cutoff value to set values to Zero (no bond) default = 0.85 force_bonds (value): whether to force at least one bond in the bond table per atom (default = True) Retruns: np.array: Connectivity table with 1 for chemical bond and zero otherwise of shape (...,N,N) -> (...,N,N) """ # Dictionary of bond radii # original_radii_dict = {'H': 0.34, 'He': 0.46, 'Li': 1.2, 'Be': 0.94, 'b': 0.77, 'C': 0.75, 'N': 0.71, 'O': 0.63, # 'F': 0.64, 'Ne': 0.67, 'Na': 1.4, 'Mg': 1.25, 'Al': 1.13, 'Si': 1.04, 'P': 1.1, 'S': 1.02, # 'Cl': 0.99, 'Ar': 0.96, 'K': 1.76, 'Ca': 1.54, 'Sc': 1.33, 'Ti': 1.22, 'V': 1.21, # 'Cr': 1.1, 'Mn': 1.07, 'Fe': 1.04, 'Co': 1.0, 'Ni': 0.99, 'Cu': 1.01, 'Zn': 1.09, # 'Ga': 1.12, 'Ge': 1.09, 'As': 1.15, 'Se': 1.1, 'Br': 1.14, 'Kr': 1.17, 'Rb': 1.89, # 'Sr': 1.67, 'Y': 1.47, 'Zr': 1.39, 'Nb': 1.32, 'Mo': 1.24, 'Tc': 1.15, 'Ru': 1.13, # 'Rh': 1.13, 'Pd': 1.19, 'Ag': 1.15, 'Cd': 1.23, 'In': 1.28, 'Sn': 1.26, 'Sb': 1.26, # 'Te': 1.23, 'I': 1.32, 'Xe': 1.31, 'Cs': 2.09, 'Ba': 1.76, 'La': 1.62, 'Ce': 1.47, # 'Pr': 1.58, 'Nd': 1.57, 'Pm': 1.56, 'Sm': 1.55, 'Eu': 1.51, 'Gd': 1.52, 'Tb': 1.51, # 'Dy': 1.5, 'Ho': 1.49, 'Er': 1.49, 'Tm': 1.48, 'Yb': 1.53, 'Lu': 1.46, 'Hf': 1.37, # 'Ta': 1.31, 'W': 1.23, 'Re': 1.18, 'Os': 1.16, 'Ir': 1.11, 'Pt': 1.12, 'Au': 1.13, # 'Hg': 1.32, 'Tl': 1.3, 'Pb': 1.3, 'Bi': 1.36, 'Po': 1.31, 'At': 1.38, 'Rn': 1.42, # 'Fr': 2.01, 'Ra': 1.81, 'Ac': 1.67, 'Th': 1.58, 'Pa': 1.52, 'U': 1.53, 'Np': 1.54, # 'Pu': 1.55} proton_raddi_dict = np.array( [0, 0.34, 0.46, 1.2, 0.94, 0.77, 0.75, 0.71, 0.63, 0.64, 0.67, 1.4, 1.25, 1.13, 1.04, 1.1, 1.02, 0.99, 0.96, 1.76, 1.54, 1.33, 1.22, 1.21, 1.1, 1.07, 1.04, 1.0, 0.99, 1.01, 1.09, 1.12, 1.09, 1.15, 1.1, 1.14, 1.17, 1.89, 1.67, 1.47, 1.39, 1.32, 1.24, 1.15, 1.13, 1.13, 1.19, 1.15, 1.23, 1.28, 1.26, 1.26, 1.23, 1.32, 1.31, 2.09, 1.76, 1.62, 1.47, 1.58, 1.57, 1.56, 1.55, 1.51, 1.52, 1.51, 1.5, 1.49, 1.49, 1.48, 1.53, 1.46, 1.37, 1.31, 1.23, 1.18, 1.16, 1.11, 1.12, 1.13, 1.32, 1.3, 1.3, 1.36, 1.31, 1.38, 1.42, 2.01, 1.81, 1.67, 1.58, 1.52, 1.53, 1.54, 1.55]) if radii_dict is None: radii_dict = proton_raddi_dict # index matches atom number # Get Radii protons = np.array(protons, dtype=np.int) radii = radii_dict[protons] # Calculate shape_rad = radii.shape r1 = np.expand_dims(radii, axis=len(shape_rad) - 1) r2 = np.expand_dims(radii, axis=len(shape_rad)) rmat = r1 + r2 rmat = k2 * rmat rr = rmat * invdistmat damp = (1.0 + np.exp(-k1 * (rr - 1.0))) damp = 1.0 / damp if force_bonds: # Have at least one bond maxvals = np.expand_dims(np.argmax(damp, axis=-1), axis=-1) np.put_along_axis(damp, maxvals, 1, axis=-1) # To make it symmetric transpose last two axis damp = np.swapaxes(damp, -2, -1) np.put_along_axis(damp, maxvals, 1, axis=-1) damp = np.swapaxes(damp, -2, -1) damp[damp < cutoff] = 0 bond_tab = np.round(damp) return bond_tab def get_indexmatrix(shape, flatten=False): """ Matrix of indices with a_ijk... = [i,j,k,..] for shape (N,M,...,len(shape)) with Indexlist being the last dimension. Note: numpy indexing does not work this way but as indexlist per dimension Args: shape (list, int): list of target shape, e.g. (2,2) flatten (bool): whether to flatten the output or keep inputshape, default=False Returns: np.array: Index array of shape (N,M,...,len(shape)) e.g. [[[0,0],[0,1]],[[1,0],[1,1]]] """ indarr = np.indices(shape) re_order = np.append(np.arange(1, len(shape) + 1), 0) indarr = indarr.transpose(re_order) if flatten: indarr = np.reshape(indarr, (np.prod(shape), len(shape))) return indarr def coordinates_from_distancematrix(distance, use_center=None, dim=3): """Compute list of coordinates from a distance matrix of shape (N,N). Uses vectorized Alogrithm: http://scripts.iucr.org/cgi-bin/paper?S0567739478000522 https://www.researchgate.net/publication/252396528_Stable_calculation_of_coordinates_from_distance_information no check of positive semi-definite or possible k-dim >= 3 is done here performs svd from numpy may even wok for (...,N,N) but not tested Args: distance (np.array): distance matrix of shape (N,N) with Dij = abs(ri-rj) use_center (int): which atom should be the center, dafault = None means center of mass dim (int): the dimension of embedding, 3 is default Return: np.array: List of Atom coordinates [[x_1,x_2,x_3],[x_1,x_2,x_3],...] """ distance = np.array(distance) dim_in = distance.shape[-1] if use_center is None: # Take Center of mass (slightly changed for vectorization assuming d_ii = 0) di2 = np.square(distance) di02 = 1 / 2 / dim_in / dim_in * (2 * dim_in * np.sum(di2, axis=-1) - np.sum(np.sum(di2, axis=-1), axis=-1)) mat_m = (np.expand_dims(di02, axis=-2) +
np.expand_dims(di02, axis=-1)
numpy.expand_dims
""" Many of these tests use the minimal test/data/gdc.bed file which has just enough complexity to be useful in testing corner cases. When reading through the tests, it's useful to have that file open to understand what's happening. """ import os import metaseq import multiprocessing from metaseq.array_helpers import ArgumentError import numpy as np from nose.tools import assert_raises from nose.plugins.skip import SkipTest nan = np.nan inf = np.inf gs = {} for kind in ['bed', 'bam', 'bigbed', 'bigwig']: gs[kind] = metaseq.genomic_signal(metaseq.example_filename('gdc.%s' % kind), kind) PROCESSES = int(os.environ.get("METASEQ_PROCESSES", multiprocessing.cpu_count())) def test_tointerval(): assert metaseq.helpers.tointerval("chr2L:1-10[-]").strand == '-' assert metaseq.helpers.tointerval("chr2L:1-10[+]").strand == '+' assert metaseq.helpers.tointerval("chr2L:1-10").strand == '.' def test_local_count(): def check(kind, coord, expected, stranded): try: result = gs[kind].local_count(coord, stranded=stranded) except NotImplementedError: raise SkipTest("Incompatible bx-python version for bigBed") assert result == expected, (kind, coord, result) for kind in ['bam', 'bigbed', 'bed']: for coord, expected, stranded in ( ('chr2L:1-80', 3, False), # easy case ('chr2L:1000-3000', 0, False), # above upper boundary ('chr2L:1-9', 0, False), # below lower boundary ('chr2L:71-73[-]', 2, False), # unstranded = 2 ('chr2L:71-73[-]', 1, True), # stranded = 1 ('chr2L:70-71', 2, False), # pathological corner case # ('chr2L:75-76', 0, False), # pathological corner case ): yield check, kind, coord, expected, stranded def test_local_coverage_stranded(): def check(kind, coord, expected): try: result = gs[kind].local_coverage(coord) except NotImplementedError: raise SkipTest("Incompatible bx-python version for bigBed") assert np.all(result[0] == expected[0]) and np.all(result[1] == expected[1]), (kind, coord, result) for kind in ['bam', 'bigbed', 'bed', 'bigwig']: for coord, expected in ( ('chr2L:1-20[-]', ( np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]),
np.array([0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0.])
numpy.array
import numpy as np from core_parallel.communicators import Communicators from mpi4py import MPI import scipy as sc class LinearHelpers(Communicators): def __init__(self): Communicators.__init__(self) def __next_alpha__(self, idx): if idx + 1 < len(self.alphas) and self.time_intervals > 1: idx += 1 return idx def __get_v__(self, t_start): v = np.zeros((self.rows_loc, self.cols_loc), dtype=complex) shift = self.rank_row * self.cols_loc # if we have spatial parallelization if self.frac > 1: for j in range(self.cols_loc): for k in range(self.time_points): v[:, j] += self.dt * self.Q[self.rank_subcol_alternating, k] * self.bpar(t_start + self.t[k] + (shift + j) * self.dt) # case without spatial parallelization else: for i in range(self.Frac): for j in range(self.cols_loc): for k in range(self.time_points): v[i * self.global_size_A:(i+1)*self.global_size_A, j] += self.dt * self.Q[i + self.Frac * self.rank_col, k] * self.bpar(t_start + self.t[k] + (shift + j) * self.dt) return v def __get_r__(self, v_loc): r = 0 temp = 0 for j in range(self.cols_loc): if self.rank_row == 0: # with spatial parallelization if self.frac is not 0: temp = np.linalg.norm(v_loc[:, j] + self.u0_loc, np.infty) # without spatial parallelization else: for i in range(self.Frac): temp = max(temp, np.linalg.norm(v_loc[i * self.global_size_A:(i+1) * self.global_size_A, j] + self.u0_loc, np.infty)) else: temp = np.linalg.norm(v_loc[:, j], np.infty) r = max(r, temp) if self.size > 1: time_beg = MPI.Wtime() temp = self.comm.allreduce(r, op=MPI.MAX) self.communication_time += MPI.Wtime() - time_beg return temp else: return r # fft def __get_fft__(self, w_loc, a): if self.time_intervals == 1: return w_loc, ['0'] g_loc = a ** (self.rank_row / self.time_intervals) / self.time_intervals * w_loc # scale n = int(np.log2(self.time_intervals)) P = format(self.rank_row, 'b').zfill(n) # binary of the rank in string R = P[::-1] # reversed binary in string, index that the proc will have after ifft we = np.exp(-2 * np.pi * 1j / self.time_intervals) # stages of butterfly for k in range(n): p = self.time_intervals // 2 ** (k + 1) r = int(R, 2) % 2 ** (k + 1) - 2 ** k scalar = we ** (r * p) factor = 1 if P[k] == '1': factor = -1 if scalar != 1: # multiply if the factor is != 1 g_loc *= scalar # make a new string and an int from it, a proc to communicate with comm_with = list(P) if comm_with[k] == '1': comm_with[k] = '0' else: comm_with[k] = '1' comm_with = int(''.join(comm_with), 2) # now communicate time_beg = MPI.Wtime() req = self.comm_row.isend(g_loc, dest=comm_with, tag=k) gr = self.comm_row.recv(source=comm_with, tag=k) req.Wait() self.communication_time += MPI.Wtime() - time_beg # glue the info g_loc = gr + factor * g_loc return g_loc, [R] def __get_w__(self, a, v_loc, v1=None): w_loc = v_loc.copy() if v1 is not None: # with spatial parallelization if self.frac > 1: w_loc[:, 0] = v1 + self.u0_loc - a * self.u_last_loc # without spatial parallelization else: for i in range(self.Frac): w_loc[i * self.global_size_A:(i+1) * self.global_size_A, 0] = self.u0_loc - a * self.u_last_loc w_loc[:, 0] += v1 return w_loc def __step1__(self, Zinv, g_loc): h_loc = np.empty_like(g_loc, dtype=complex) # case with spatial parallelization if self.frac > 1: for proc in range(self.size_subcol_alternating): h_scaled = Zinv[proc, self.rank_subcol_alternating] * g_loc time_beg = MPI.Wtime() temp = self.comm_subcol_alternating.reduce(h_scaled, op=MPI.SUM, root=proc) self.communication_time += MPI.Wtime() - time_beg if proc == self.rank_subcol_alternating: h_loc = temp.copy(order='C') # case without spatial parallelization else: for proc in range(self.proc_col): h_scaled = np.zeros_like(g_loc, dtype=complex, order='C') for i in range(self.Frac): for j in range(self.Frac): h_scaled[i*self.global_size_A:(i+1)*self.global_size_A] += Zinv[i + proc * self.Frac, j + self.rank_col * self.Frac] * g_loc[j*self.global_size_A:(j+1)*self.global_size_A] if self.size_col > 1: time_beg = MPI.Wtime() temp = self.comm_col.reduce(h_scaled, op=MPI.SUM, root=proc) self.communication_time += MPI.Wtime() - time_beg if proc == self.rank_col: h_loc = temp.copy(order='C') else: return h_scaled # self.comm.Barrier() return h_loc def __step2__(self, h_loc, D, x0, tol): h1_loc =
np.empty_like(h_loc, dtype=complex, order='C')
numpy.empty_like
# Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved. # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # http://www.apache.org/licenses/LICENSE-2.0 # or in the "license" file accompanying this file. This file is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. """Tests for individual operators""" from __future__ import absolute_import import unittest import numpy as np import numpy.testing as npt from onnx import helper from onnx_mxnet import backend as mxnet_backend class TestLayers(unittest.TestCase): """Tests for different layers comparing output with numpy operators. [WIP] More tests coming soon!""" def _random_array(self, shape): """Generate random array according to input shape""" return np.random.ranf(shape).astype("float32") def test_abs(self): """Test for abs operator""" node_def = helper.make_node("Abs", ["input1"], ["output"]) input1 = self._random_array([1, 1000]) output = mxnet_backend.run_node(node_def, [input1])[0] npt.assert_almost_equal(output, np.abs(input1)) def test_add(self): """Test for add operator with/without broadcasting""" node_def = helper.make_node("Add", ["input1", "input2"], ["output"], broadcast=1) input1 = self._random_array([1, 1, 5, 5]) input2 = self._random_array([5]) output = mxnet_backend.run_node(node_def, [input1, input2])[0] npt.assert_almost_equal(output, np.add(input1, input2)) node_def = helper.make_node("Add", ["input1", "input2"], ["output"]) input1 = self._random_array([1, 16, 16]) input2 = self._random_array([1, 16, 16]) output = mxnet_backend.run_node(node_def, [input1, input2])[0] npt.assert_almost_equal(output, np.add(input1, input2)) def test_sum(self): """Test for sum operator""" node_def = helper.make_node("Sum", ["input1", "input2"], ["output"]) input1 = self._random_array([1, 1, 16, 16]) input2 = self._random_array([1, 1, 16, 16]) output = mxnet_backend.run_node(node_def, [input1, input2])[0] npt.assert_almost_equal(output, np.add(input1, input2)) def test_sub(self): """Test for sub operator with/without broadcasting""" node_def = helper.make_node("Sub", ["input1", "input2"], ["output"], broadcast=1) input1 = self._random_array([1, 1, 5, 5]) input2 = self._random_array([5]) output = mxnet_backend.run_node(node_def, [input1, input2])[0] npt.assert_almost_equal(output, np.subtract(input1, input2)) node_def = helper.make_node("Sub", ["input1", "input2"], ["output"]) input1 = self._random_array([1, 1, 16, 16]) input2 = self._random_array([1, 1, 16, 16]) output = mxnet_backend.run_node(node_def, [input1, input2])[0] npt.assert_almost_equal(output, np.subtract(input1, input2)) def test_mul(self): """Test for mul operator with/without broadcasting""" node_def = helper.make_node("Mul", ["input1", "input2"], ["output"], broadcast=1) input1 = self._random_array([1, 1, 5, 5]) input2 = self._random_array([5]) output = mxnet_backend.run_node(node_def, [input1, input2])[0] npt.assert_almost_equal(output, np.multiply(input1, input2)) node_def = helper.make_node("Mul", ["input1", "input2"], ["output"]) input1 = self._random_array([1, 1, 16, 16]) input2 = self._random_array([1, 1, 16, 16]) output = mxnet_backend.run_node(node_def, [input1, input2])[0] npt.assert_almost_equal(output, np.multiply(input1, input2)) def test_div(self): """Test for div operator with/without broadcasting""" node_def = helper.make_node("Div", ["input1", "input2"], ["output"], broadcast=1) input1 = self._random_array([1, 1, 5, 5]) input2 = self._random_array([5]) output = mxnet_backend.run_node(node_def, [input1, input2])[0] npt.assert_almost_equal(output, np.divide(input1, input2)) node_def = helper.make_node("Div", ["input1", "input2"], ["output"]) input1 = self._random_array([1, 1, 16, 16]) input2 = self._random_array([1, 1, 16, 16]) output = mxnet_backend.run_node(node_def, [input1, input2])[0] npt.assert_almost_equal(output, np.divide(input1, input2)) def test_relu(self): """Test for relu operator""" node_def = helper.make_node("Relu", ["input1"], ["output"]) input1 = self._random_array([1, 256]) output = mxnet_backend.run_node(node_def, [input1])[0] npt.assert_almost_equal(output, np.maximum(input1, 0)) def test_neg(self): """Test for neg operator""" node_def = helper.make_node("Neg", ["input1"], ["output"]) input1 = self._random_array([1, 1000]) output = mxnet_backend.run_node(node_def, [input1])[0] npt.assert_almost_equal(output, np.negative(input1)) def test_reciprocal(self): """Test for reciprocal operator""" node_def = helper.make_node("Reciprocal", ["input1"], ["output"]) input1 = self._random_array([1, 1000]) output = mxnet_backend.run_node(node_def, [input1])[0] npt.assert_almost_equal(output, np.reciprocal(input1)) def test_floor(self): """Test for floor operator""" node_def = helper.make_node("Floor", ["input1"], ["output"]) input1 = self._random_array([1, 1000]) output = mxnet_backend.run_node(node_def, [input1])[0] npt.assert_almost_equal(output, np.floor(input1)) def test_ceil(self): """Test for ceil operator""" node_def = helper.make_node("Ceil", ["input1"], ["output"]) input1 = self._random_array([1, 1000]) output = mxnet_backend.run_node(node_def, [input1])[0] npt.assert_almost_equal(output, np.ceil(input1)) def test_sqrt(self): """Test for sqrt operator""" node_def = helper.make_node("Sqrt", ["input1"], ["output"]) input1 = self._random_array([1, 1000]) output = mxnet_backend.run_node(node_def, [input1])[0] npt.assert_almost_equal(output, np.sqrt(input1)) def test_leaky_relu(self): """Test for LeakyRelu operator""" node_def = helper.make_node("LeakyRelu", ["input1"], ["output"]) input1 = self._random_array([1, 10]) output = mxnet_backend.run_node(node_def, [input1])[0][0] # default slope in leakyrelu is 0.25 numpy_output = [x if x > 0 else x*0.25 for x in input1[0]] npt.assert_almost_equal(output, numpy_output) def test_elu(self): """Test for elu operator""" node_def = helper.make_node("Elu", ["input1"], ["output"]) input1 = self._random_array([1, 10]) output = mxnet_backend.run_node(node_def, [input1])[0][0] # default slope in elu is 0.25 numpy_output = [x if x > 0 else (np.exp(x)-1)*0.25 for x in input1[0]] npt.assert_almost_equal(output, numpy_output) def test_exp(self): """Test for exp operator""" node_def = helper.make_node("Exp", ["input1"], ["output"]) input1 = self._random_array([1, 10]) output = mxnet_backend.run_node(node_def, [input1])[0] npt.assert_almost_equal(output, np.exp(input1)) def test_log(self): """Test for log operator""" node_def = helper.make_node("Log", ["input1"], ["output"]) input1 = self._random_array([1, 10]) output = mxnet_backend.run_node(node_def, [input1])[0] npt.assert_almost_equal(output, np.log(input1)) def test_tanh(self): """Test for tanh operator""" node_def = helper.make_node("Tanh", ["input1"], ["output"]) input1 = self._random_array([1, 10]) output = mxnet_backend.run_node(node_def, [input1])[0] npt.assert_almost_equal(output, np.tanh(input1)) def test_pow(self): """Test for pow operator""" node_def = helper.make_node("Pow", ["input1", "input2"], ["output"]) input1 = self._random_array([1, 10]) input2 = self._random_array([1, 10]) output = mxnet_backend.run_node(node_def, [input1, input2])[0] npt.assert_almost_equal(output, np.power(input1, input2)) def test_sigmoid(self): """Test for sigmoid operator""" node_def = helper.make_node("Sigmoid", ["input1"], ["output"]) input1 = self._random_array([1, 10]) output = mxnet_backend.run_node(node_def, [input1]) np_output = [1/(1+np.exp(-input1))] npt.assert_almost_equal(output, np_output) def test_maximum(self): """Test for maximum operator""" node_def = helper.make_node("Max", ["input1", "input2"], ["output"]) input1 = self._random_array([1, 10]) input2 = self._random_array([1, 10]) output = mxnet_backend.run_node(node_def, [input1, input2])[0] npt.assert_almost_equal(output, np.maximum(input1, input2)) def test_minimum(self): """Test for minimum operator""" node_def = helper.make_node("Min", ["input1", "input2"], ["output"]) input1 = self._random_array([1, 10]) input2 = self._random_array([1, 10]) output = mxnet_backend.run_node(node_def, [input1, input2])[0] npt.assert_almost_equal(output, np.minimum(input1, input2)) def test_softmax(self): """Test for softmax operator""" node_def = helper.make_node("Softmax", ["input1"], ["output"]) input1 = self._random_array([1, 10]) output = mxnet_backend.run_node(node_def, [input1])[0] exp_score = np.exp(input1) numpy_op = exp_score / exp_score.sum(0) npt.assert_almost_equal(output, numpy_op) def test_reduce_max(self): """Test for ReduceMax operator""" node_def = helper.make_node("ReduceMax", ["input1"], ["output"], axes=[1, 0], keepdims=1) input1 = self._random_array([3, 10]) output = mxnet_backend.run_node(node_def, [input1])[0] numpy_op = np.max(input1, axis=(1, 0), keepdims=True) npt.assert_almost_equal(output, numpy_op) def test_reduce_min(self): """Test for ReduceMin operator""" node_def = helper.make_node("ReduceMin", ["input1"], ["output"], axes=[1, 0], keepdims=1) input1 = self._random_array([3, 10]) output = mxnet_backend.run_node(node_def, [input1])[0] numpy_op =
np.min(input1, axis=(1, 0), keepdims=True)
numpy.min
import numpy import scipy.stats import math def one_hot(array, N): """ Convert an array of numbers to an array of one-hot vectors. :param array: classes to convert :type array: numpy.ndarray :param N: number of classes :type N: int :return: one-hot vectors :rtype: numpy.ndarray """ array = array.astype(int) assert numpy.max(array) < N assert numpy.min(array) >= 0 one_hot = numpy.zeros((array.shape[0], N)) one_hot[numpy.arange(array.shape[0]), array] = 1 return one_hot def expand_as(array, array_as): """ Expands the tensor using view to allow broadcasting. :param array: input tensor :type array: numpy.ndarray :param array_as: reference tensor :type array_as: torch.Tensor or torch.autograd.Variable :return: tensor expanded with singelton dimensions as tensor_as :rtype: torch.Tensor or torch.autograd.Variable """ shape = list(array.shape) for i in range(len(array.shape), len(array_as.shape)): shape.append(1) return array.reshape(shape) def concatenate(array1, array2, axis=0): """ Basically a wrapper for numpy.concatenate, with the exception that the array itself is returned if its None or evaluates to False. :param array1: input array or None :type array1: mixed :param array2: input array :type array2: numpy.ndarray :param axis: axis to concatenate :type axis: int :return: concatenated array :rtype: numpy.ndarray """ assert isinstance(array2, numpy.ndarray) if array1 is not None: assert isinstance(array1, numpy.ndarray) return numpy.concatenate((array1, array2), axis=axis) else: return array2 def exponential_norm(batch_size, dim, epsilon=1, ord=2): """ Sample vectors uniformly by norm and direction separately. :param batch_size: how many vectors to sample :type batch_size: int :param dim: dimensionality of vectors :type dim: int :param epsilon: epsilon-ball :type epsilon: float :param ord: norm to use :type ord: int :return: batch_size x dim tensor :rtype: numpy.ndarray """ random = numpy.random.randn(batch_size, dim) random /= numpy.repeat(numpy.linalg.norm(random, ord=ord, axis=1).reshape(-1, 1), axis=1, repeats=dim) random *= epsilon truncated_normal = scipy.stats.truncexpon.rvs(1, loc=0, scale=0.9, size=(batch_size, 1)) random *= numpy.repeat(truncated_normal, axis=1, repeats=dim) return random def uniform_norm(batch_size, dim, epsilon=1, ord=2): """ Sample vectors uniformly by norm and direction separately. :param batch_size: how many vectors to sample :type batch_size: int :param dim: dimensionality of vectors :type dim: int :param epsilon: epsilon-ball :type epsilon: float :param ord: norm to use :type ord: int :return: batch_size x dim tensor :rtype: numpy.ndarray """ random = numpy.random.randn(batch_size, dim) random /= numpy.repeat(numpy.linalg.norm(random, ord=ord, axis=1).reshape(-1, 1), axis=1, repeats=dim) random *= epsilon uniform = numpy.random.uniform(0, 1, (batch_size, 1)) # exponent is only difference! random *= numpy.repeat(uniform, axis=1, repeats=dim) return random def uniform_ball(batch_size, dim, epsilon=1, ord=2): """ Sample vectors uniformly in the n-ball. See Harman et al., On decompositional algorithms for uniform sampling from n-spheres and n-balls. :param batch_size: how many vectors to sample :type batch_size: int :param dim: dimensionality of vectors :type dim: int :param epsilon: epsilon-ball :type epsilon: float :param ord: norm to use :type ord: int :return: batch_size x dim tensor :rtype: numpy.ndarray """ random = numpy.random.randn(batch_size, dim) random /= numpy.repeat(numpy.linalg.norm(random, ord=ord, axis=1).reshape(-1, 1), axis=1, repeats=dim) random *= epsilon uniform = numpy.random.uniform(0, 1, (batch_size, 1)) ** (1. / dim) random *= numpy.repeat(uniform, axis=1, repeats=dim) return random def uniform_sphere(batch_size, dim, epsilon=1, ord=2): """ Sample vectors uniformly on the n-sphere. See Harman et al., On decompositional algorithms for uniform sampling from n-spheres and n-balls. :param batch_size: how many vectors to sample :type batch_size: int :param dim: dimensionality of vectors :type dim: int :param epsilon: epsilon-ball :type epsilon: float :param ord: norm to use :type ord: int :return: batch_size x dim tensor :rtype: numpy.ndarray """ random = numpy.random.randn(batch_size, dim) random /= numpy.repeat(numpy.linalg.norm(random, ord=ord, axis=1).reshape(-1, 1), axis=1, repeats=dim) random *= epsilon return random def truncated_normal(size, lower=-2, upper=2): """ Sample from truncated normal. See https://stackoverflow.com/questions/18441779/how-to-specify-upper-and-lower-limits-when-using-numpy-random-normal. :param size: size of vector :type size: [int] :param lower: lower bound :type lower: float :param upper: upper bound :type upper: float :return: batch_size x dim tensor :rtype: numpy.ndarray """ return scipy.stats.truncnorm.rvs(lower, upper, size=size) def project_simplex(v, s=1): """ Taken from https://gist.github.com/daien/1272551/edd95a6154106f8e28209a1c7964623ef8397246. Compute the Euclidean projection on a positive simplex Solves the optimisation problem (using the algorithm from [1]): min_w 0.5 * || w - v ||_2^2 , s.t. \sum_i w_i = s, w_i >= 0 Parameters ---------- v: (n,) numpy array, n-dimensional vector to project s: int, optional, default: 1, radius of the simplex Returns ------- w: (n,) numpy array, Euclidean projection of v on the simplex Notes ----- The complexity of this algorithm is in O(n log(n)) as it involves sorting v. Better alternatives exist for high-dimensional sparse vectors (cf. [1]) However, this implementation still easily scales to millions of dimensions. References ---------- [1] Efficient Projections onto the .1-Ball for Learning in High Dimensions <NAME>, <NAME>, <NAME>, and <NAME>. International Conference on Machine Learning (ICML 2008) http://www.cs.berkeley.edu/~jduchi/projects/DuchiSiShCh08.pdf """ assert s > 0, "Radius s must be strictly positive (%d <= 0)" % s n, = v.shape # will raise ValueError if v is not 1-D # check if we are already on the simplex if v.sum() == s and numpy.alltrue(v >= 0): # best projection: itself! return v # get the array of cumulative sums of a sorted (decreasing) copy of v u = numpy.sort(v)[::-1] cssv = numpy.cumsum(u) # get the number of > 0 components of the optimal solution rho = numpy.nonzero(u * numpy.arange(1, n+1) > (cssv - s))[0][-1] # compute the Lagrange multiplier associated to the simplex constraint theta = float(cssv[rho] - s) / rho # compute the projection by thresholding v using theta w = (v - theta).clip(min=0) return w def projection_simplex_sort(v, z=1): n_features = v.shape[0] u = numpy.sort(v)[::-1] cssv = numpy.cumsum(u) - z ind = numpy.arange(n_features) + 1 cond = u - cssv / ind > 0 rho = ind[cond][-1] theta = cssv[cond][-1] / float(rho) w = numpy.maximum(v - theta, 0) return w def projection_simplex_pivot(v, z=1, random_state=None): rs = numpy.random.RandomState(random_state) n_features = len(v) U = numpy.arange(n_features) s = 0 rho = 0 while len(U) > 0: G = [] L = [] k = U[rs.randint(0, len(U))] ds = v[k] for j in U: if v[j] >= v[k]: if j != k: ds += v[j] G.append(j) elif v[j] < v[k]: L.append(j) drho = len(G) + 1 if s + ds - (rho + drho) * v[k] < z: s += ds rho += drho U = L else: U = G theta = (s - z) / float(rho) return numpy.maximum(v - theta, 0) def projection_simplex_bisection(v, z=1, tau=0.0001, max_iter=1000): lower = 0 upper = numpy.max(v) current = numpy.inf for it in xrange(max_iter): if numpy.abs(current) / z < tau and current < 0: break theta = (upper + lower) / 2.0 w = numpy.maximum(v - theta, 0) current = numpy.sum(w) - z if current <= 0: upper = theta else: lower = theta return w def project_ball(array, epsilon=1, ord=2): """ Compute the orthogonal projection of the input tensor (as vector) onto the L_ord epsilon-ball. **Assumes the first dimension to be batch dimension, which is preserved.** :param array: array :type array: numpy.ndarray :param epsilon: radius of ball. :type epsilon: float :param ord: order of norm :type ord: int :return: projected vector :rtype: torch.autograd.Variable or torch.Tensor """ assert isinstance(array, numpy.ndarray), 'given tensor should be numpy.ndarray' if ord == 0: assert epsilon >= 1 size = array.shape flattened_size = numpy.prod(numpy.array(size[1:])) array = array.reshape(-1, flattened_size) sorted = numpy.sort(array, axis=1) k = int(math.ceil(epsilon)) thresholds = sorted[:, -k] mask = (array >= expand_as(thresholds, array)).astype(float) array *= mask elif ord == 1: size = array.shape flattened_size = numpy.prod(numpy.array(size[1:])) array = array.reshape(-1, flattened_size) for i in range(array.shape[0]): # compute the vector of absolute values u = numpy.abs(array[i]) # check if v is already a solution if u.sum() <= epsilon: # L1-norm is <= s continue # v is not already a solution: optimum lies on the boundary (norm == s) # project *u* on the simplex #w = project_simplex(u, s=epsilon) w = projection_simplex_sort(u, z=epsilon) # compute the solution to the original problem on v w *= numpy.sign(array[i]) array[i] = w if len(size) == 4: array = array.reshape(-1, size[1], size[2], size[3]) elif len(size) == 2: array = array.reshape(-1, size[1]) elif ord == 2: size = array.shape flattened_size = numpy.prod(numpy.array(size[1:])) array = array.reshape(-1, flattened_size) clamped = numpy.clip(epsilon/numpy.linalg.norm(array, 2, axis=1), a_min=None, a_max=1) clamped = clamped.reshape(-1, 1) array = array * clamped if len(size) == 4: array = array.reshape(-1, size[1], size[2], size[3]) elif len(size) == 2: array = array.reshape(-1, size[1]) elif ord == float('inf'): array = numpy.clip(array, a_min=-epsilon, a_max=epsilon) else: raise NotImplementedError() return array def project_sphere(array, epsilon=1, ord=2): """ Compute the orthogonal projection of the input tensor (as vector) onto the L_ord epsilon-ball. **Assumes the first dimension to be batch dimension, which is preserved.** :param array: variable or tensor :type array: torch.autograd.Variable or torch.Tensor :param epsilon: radius of ball. :type epsilon: float :param ord: order of norm :type ord: int :return: projected vector :rtype: torch.autograd.Variable or torch.Tensor """ assert isinstance(array, numpy.ndarray), 'given tensor should be numpy.ndarray' size = array.shape flattened_size = numpy.prod(numpy.array(size[1:])) array = array.reshape(-1, flattened_size) array = array/numpy.linalg.norm(array, axis=1, ord=ord).reshape(-1, 1) array *= epsilon if len(size) == 4: array = array.reshape(-1, size[1], size[2], size[3]) elif len(size) == 2: array = array.reshape(-1, size[1]) return array def project_orthogonal(basis, vectors, rank=None): """ Project the given vectors on the basis using an orthogonal projection. :param basis: basis vectors to project on :type basis: numpy.ndarray :param vectors: vectors to project :type vectors: numpy.ndarray :return: projection :rtype: numpy.ndarray """ # The columns of Q are an orthonormal basis of the columns of basis Q, R = numpy.linalg.qr(basis) if rank is not None and rank > 0: Q = Q[:, :rank] # As Q is orthogonal, the projection is beta = Q.T.dot(vectors) projection = Q.dot(beta) return projection def project_lstsq(basis, vectors): """ Project using least squares. :param basis: basis vectors to project on :type basis: numpy.ndarray :param vectors: vectors to project :type vectors: numpy.ndarray :return: projection :rtype: numpy.ndarray """ x, _, _, _ = numpy.linalg.lstsq(basis, vectors) projection = basis.dot(x) return projection def angles(vectors_a, vectors_b): """ Compute angle between two sets of vectors. See https://people.eecs.berkeley.edu/~wkahan/Mindless.pdf. :param vectors_a: :param vectors_b: :return: """ if len(vectors_b.shape) == 1: vectors_b = vectors_b.reshape(-1, 1) # Normalize vector norms_a = numpy.linalg.norm(vectors_a, ord=2, axis=0) norms_b = numpy.linalg.norm(vectors_b, ord=2, axis=0) norms_a = numpy.repeat(norms_a.reshape(1, -1), vectors_a.shape[0], axis=0) norms_b = numpy.repeat(norms_b.reshape(1, -1), vectors_b.shape[0], axis=0) vectors_a /= norms_a vectors_b /= norms_b term_1 = numpy.multiply(vectors_a, norms_b) - numpy.multiply(vectors_b, norms_a) term_1 = numpy.linalg.norm(term_1, ord=2, axis=0) term_2 = numpy.multiply(vectors_a, norms_b) + numpy.multiply(vectors_b, norms_a) term_2 = numpy.linalg.norm(term_2, ord=2, axis=0) angles = 2*
numpy.arctan2(term_1, term_2)
numpy.arctan2